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Abstract
Distributed constraint optimization (DCOP) is a framework in which multiple agents with 
private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs 
are applicable in several multi-agent coordination/allocation problems, such as vehicle 
routing, radio frequency assignments, and distributed scheduling of meetings. However, 
optimization scenarios may involve multiple agents wanting to protect their preferences’ 
privacy. Researchers propose privacy-preserving algorithms for DCOPs that provide 
improved privacy protection through cryptographic primitives such as partial homomor-
phic encryption, secret-sharing, and secure multiparty computation. These privacy benefits 
come at the expense of high computational complexity. Moreover, such an approach does 
not constitute a rigorous privacy guarantee for optimization outcomes, as the result of the 
computation may compromise agents’ preferences. In this work, we show how to achieve 
privacy, specifically Differential Privacy, by randomizing the solving process. In particu-
lar, we present P-Gibbs, which adapts the current state-of-the-art algorithm for DCOPs, 
namely SD-Gibbs, to obtain differential privacy guarantees with much higher computa-
tional efficiency. Experiments on benchmark problems such as Ising, graph-coloring, and 
meeting-scheduling show P-Gibbs’ privacy and performance trade-off for varying privacy 
budgets and the SD-Gibbs algorithm. More concretely, we empirically show that P-Gibbs 
provides fair solutions for competitive privacy budgets.
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1 Introduction

The idea of distributed computation has been a trending topic among computer scien-
tists for decades. Distributing the computation has several well-known advantages over 
centralized computing. These include no single-point failure, incremental growth, reli-
ability, open system, parallel computing, and easier management of resources. In this 
paper, we focus on the distributed analogue of constrained optimization [1], namely dis-
tributed constraint optimization problem (DCOP), first introduced in [2].

DCOP is a problem where agents collectively compute their value assignments to 
maximize (or minimize) the sum of resulting constraint rewards. In DCOP, constraints 
quantify each agent’s preference for each possible assignment. DCOPs help model vari-
ous multi-agent coordination and resource allocation problems like distributed schedul-
ing of meetings and graph-coloring related applications such as mobile radio frequency 
assignments. For instance, consider the problem of meeting-scheduling in which several 
Chief Executive Officers (CEOs) aim to decide a date and time to meet. Each CEO will 
have a constraint for each date and time slot assignment, quantifying its preference for 
the assignment. The preferences may depend on the CEOs’ availability and favorable 
slots. In this scenario, the CEOs cannot directly employ a centralized coordinator to 
decide on an agreeable meeting slot. The coordinator will require information regarding 
the CEOs’ availability—which is often sensitive. Alternatively, the CEOs can generate 
a suitable schedule by modeling the problem as a DCOP and using any DCOP-solv-
ing algorithms. However, researchers show that despite their distributed nature, DCOP 
algorithms may themselves leak sensitive information [3].

1.1  Privacy in DCOPs

In general, the need to preserve the privacy of an agent’s sensitive information in AI/ML 
solutions is paramount [4–6]. Despite its distributed nature, ‘solving’ a DCOP instance 
transfers information across agents, which may leak sensitive information to the other 
participants, such as the agent’s preferences. In the above example, an information leak 
may involve a CEO inferring critical information about the other participating CEOs 
during the information exchange. Thus, privacy-preserving solutions to DCOPs are nec-
essary and form the basis of this work. Before discussing the existing privacy-preserv-
ing DCOP literature, we first summarize the existing DCOP algorithms.

1.1.1  DCOP algorithms

Solving a DCOP instance is NP-hard [7]. Nevertheless, the field has grown steadily over 
the years, with several algorithms being introduced to solve DCOP instances, each pro-
viding some improvement over the previous. These algorithms are either: (1) search-
based algorithms like SynchBB [8], ADOPT [7] and its variants, AFB [9] and MGM 
[10], where the agents enumerate through sequences of assignments in a decentralized 
manner; (2) inference-based algorithms like DPOP [11] and Max-Sum [12], where the 
agents use dynamic programming to propagate aggregated information to other agents; 
(3) sampling-based algorithms like DUCT [13, 14], where the agents iteratively sam-
ple promising assignments. We refer the reader to [15] for a comprehensive survey on 
DCOP algorithms.
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This paper focuses on SD-Gibbs (and its parallel analog PD-Gibbs) [16], the cur-
rent state-of-the-art algorithms for approximately solving DCOPs. SD-Gibbs is known 
to run faster (e.g., compared to DUCT [16]), find a better quality of solutions (e.g., com-
pared to MGM and DUCT [14]), and be applicable for larger problems (e.g., compared 
to DPOP [14] and DUCT [16]).

1.1.2  Privacy‑preserving DCOP algorithms

In literature, several algorithms exist to preserve privacy in DCOPs. Unfortunately, we 
identify that such existing privacy-preserving algorithms have two significant drawbacks. 
Firstly, these algorithms lack scalability with respect to the number of agents and con-
straints. Secondly, privacy-preserving complete algorithms for DCOPs converge at the 
optimal solution. As such, the said solution may be used to infer potentially critical infor-
mation regarding the DCOP instance. We next discuss these drawbacks in detail.

1.1.2.1 Non‑scalability of Private DCOPs  As DCOPs are NP-hard, complete DCOP algo-
rithms such as DPOP do not scale as it is. The added complexity of the underlying cryp-
tographic primitives further hits the scalability of its privacy variants: P-DPOP [3], P 3∕2
-DPOP [17], and P 2-DPOP [17]. Of these, P-DPOP scales the best, primarily due to its 
weaker privacy guarantees. Even for P-DPOP, the algorithm is known to only scale up to 12 
agents for graph-coloring, and 6 agents for meeting-scheduling – two popular benchmark 
problems in DCOP literature.

On the other hand, more recent algorithms like P-Max-Sum [18] and P-SyncBB [19] 
scale better, either in part to the underlying approximate algorithm (P-Max-Sum) or effi-
cient secure multi-party computation protocols (P-SyncBB). However, the algorithms are 
still computationally intensive. For instance, P-Max-Sum requires a computational over-
head ranging from minutes to an hour. Also, the algorithm’s run-time increases by a factor 
of 1000s over its non-private variant [18].

1.1.2.2 Solution Privacy  In addition to their lack of scalability, privacy-preserving DCOP 
algorithms built atop complete algorithms output the optimal assignment (or solution). 
However, these final assignments cannot be private and, in turn, may leak critical informa-
tion about agents’ preferences [3]. We refer to this information leak as solution privacy. 
For complete DCOP algorithms such as DPOP, their privacy variants built through crypto-
graphic primitives such as P-DPOP [3], P 3∕2-DPOP [17], and P 2-DPOP [17] trivially do not 
satisfy solution privacy.

1.2  Our goal and approach

In summary, we note that while algorithms exist that realize constraint privacy, their non-
scalability hinders their practical use. The cryptographic primitives used to achieve privacy 
further exaggerate this lack of scalability. Moreover, information leaked through the algo-
rithms’ output can be used to extract significant private information, especially when the 
problem is solved repeatedly. Motivated by these, we aim to construct a scalable DCOP 
algorithm while providing rigorous and provable privacy guarantees for agents’ constraints 
and one that satisfies solution privacy.

Note that the non-guarantee of solution privacy is an inevitable outcome of a crypto-
graphically secure algorithm. However, it is possible to make the final assignment of a 
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DCOP algorithm differentially private [20]. Consequently, to achieve such a private and 
scalable algorithm, we focus on the strong notion of differential privacy (DP) [20, 21]. In 
particular, we focus on achieving privacy in SD-Gibbs using DP techniques. Furthermore, 
we consider a stronger local model of privacy [21], which ensures the indistinguishability 
of any two agents.

1.2.1  Our approach and contributions

Differential privacy (DP) is usually achieved through randomization. This makes it natural 
to consider randomized algorithms, such as SD-Gibbs [16], which also, at the same time, 
are much more computationally efficient. However, these algorithms by themselves do not 
protect privacy, and we develop additional mechanisms to ensure DP of the entire process. 
More concretely, we consider the following approach to design a scalable DCOP that pre-
serves constraint privacy.

Identifying Privacy Leaks in SD-Gibbs. We first show that SD-Gibbs may leak informa-
tion about agent constraints during execution. More concretely, during the algorithm’s exe-
cution, agents send and receive information that directly depends on their utility functions, 
i.e., functions that quantify the preferences for each constraint. What is more, SD-Gibbs’ 
iterative nature may further lead to a high privacy loss over the iterations.

As such, we are required to construct an algorithm that not only preserves constraint 
privacy but one which incurs minor privacy leaks across iterations.

P-Gibbs. Towards this, we develop a new differentially private variant of SD-Gibbs. 
We present a novel algorithm P-Gibbs: which crucially differs from SD-Gibbs in three key 
aspects with respect to preserving constraint privacy. 

1. Sampling through Soft-max with Temperature. Sampling through Gibbs distribution 
[22] in SD-Gibbs leaks information about the underlying utilities. This leak is because 
a value with greater utility is more likely to be sampled. To overcome this, we use soft-
max with temperature over the Gibbs distribution. This process smooths out sampling 
distributions in SD-Gibbs.

2. Adding Gaussian Noise to Relative Utilities. Each agent in SD-Gibbs sends its relative 
utility to its immediate parent. These relative utilities are the difference between its 
previous assignment and its current one. As such, these values leak vital information 
about the utilities. E.g., if a particular assignment has a high utility for agent j, but low 
for others (and it is known), an intermediate agent will learn about agent j even from 
the aggregated utility. To this end, we add Gaussian noise to the relative utility in our 
algorithm. The added noise helps to perturb each agent’s relative utilities such that 
information regarding the utilities is protected.

3. Subsampling. As aforementioned, the iterative nature of SD-Gibbs implies that the 
privacy loss is accumulated over the iterations. To limit this loss, we propose that each 
agent must sample a new assignment with a subsampling probability q. This limits the 
information being leaked at each iteration, resulting in bounded privacy loss.

In addition, we provide a refined analysis of privacy within the framework of (�, �)-DP for 
P-Gibbs. We simulate P-Gibbs on three benchmark problems in DCOP literature, namely 
Ising [23], graph-coloring, and meeting-scheduling [24]. Our experiments demonstrate our 
novel algorithm’s practicality and robust performance for a reasonable privacy budget, i.e., 
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� , with SD-Gibbs as the baseline. Specifically, we show that P-Gibbs provides only a mar-
ginal drop in solution qualities than SD-Gibbs for a desirable privacy budget.

1.3  Paper overview

The paper structure is as follows. In Sect. 2, we place P-Gibbs concerning the privacy-pre-
serving DCOP literature. We formally introduce DCOP, describe SD-Gibbs, and define dif-
ferential privacy (DP) in our context in Sect. 3. We illustrate the nature of privacy leaks in 
SD-Gibbs with Sect. 4. Section 5 introduces our novel privacy variant P-Gibbs, including a 
refined analysis of (�, �)-DP. Next, in Sect. 6, we empirically validate P-Gibbs over several 
problem instances of benchmark problems in DCOP literature. Our experiments highlight 
our privacy variant’s efficiency. Section 7 concludes the paper along with a discussion on 
future research directions.

2  Related work

This section places our work concerning the general DCOP literature, focusing on privacy-
preserving DCOPs. Table 1 compares the works described in this section with our novel 
privacy variant, P-Gibbs, regarding their privacy guarantees and scalability.

Table 1  Comparing existing literature in privacy-preserving DCOPs with our novel privacy variant, 
P-Gibbs

† : P-Gibbs can support agent and topology privacy through anonymous communication (e.g., using code-
names [3]), ‡ : Differentially-private guarantee
Here, “✓”denotes the realization of the property, “ ◦”that the property is realized partially, and “✗”if the 
property is not realized. Note that the rest of the algorithms provide a cryptographic guarantee outside of 
P-Gibbs

Algorithm Complete Privacy agent Topol-
ogy 
privacy

Con-
straint 
privacy

Deci-
sion 
privacy

Solution 
privacy

Collusion 
resistance

No 
privacy 
overhead

P-DPOP [3, 
17]

✓ ✓ ◦ ◦ ◦ ✗ ✗ ✗

P3∕2-DPOP 
[17]

✓ ✓ ◦ ◦ ✓ ✗ ✗ ✗

P2-DPOP 
[17]

✓ ✓ ◦ ✓ ✓ ✗ ✗ ✗

P-SyncBB 
[19]

✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

P-Max-Sum 
[18]

✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

P-RODA [27] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗
PC-SyncBB 

[28]
✓ ✗ ✗ ✓ ◦ ✗ ✓ ✗

MD-Max-
Sum [29]

✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗

P-Gibbs ✗ ✓† ✓† ✓‡ ✗ ✓ ✓ ✓
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2.1  Distributed constraint optimization problem (DCOP)

As aforementioned in Sect. 1, despite the computationally hard nature of DCOPs, research-
ers have proposed various algorithms that aim to solve them either completely or approxi-
mately. Outside of the popular algorithms like DPOP [11], ADOPT [7], SyncBB [8], and 
Max-Sum [12], the field has also seen some recent sampling-based algorithms. Details 
follow.

Ottens et al. [13] propose Distributed Upper Confidence Tree (DUCT), an extension of 
UCB [25] and UCT [26]. While DUCT outperforms the algorithms above, its per-agent 
memory requirement is exponential in the number of agents. It prohibits it from scaling up 
to larger problems.

Nguyen et  al. [16] improve upon DUCT through their sampling-based DCOP algo-
rithms: Sequential Distributed Gibbs (SD-Gibbs) and Parallel Distributed Gibbs (PD-
Gibbs). These are distributed extensions of the Gibbs algorithm [22]. Both SD-Gibbs and 
PD-Gibbs have a linear-space memory requirement, i.e., the memory requirement per 
agent is linear in the number of agents. The authors empirically show that SD-Gibbs and 
PD-Gibbs find better solutions than DUCT, run faster, and solve large problems that DUCT 
fails to solve due to memory limitations. Therefore, in this work, we focus on SD-Gibbs. 
Our results can be trivially extended for PD-Gibbs.

SD-Gibbs [16] is a sampling-based algorithm in which the authors use the Gibbs dis-
tribution [22] to solve DCOPs. The algorithm can be broadly categorized into the follow-
ing four phases. (i) Initialization: Each agent initializes its algorithm-specific variables. (ii) 
Sampling: Agents sample an assignment to their variable based on the Gibbs distribution 
and depending on the assignments of their neighboring agents. (iii) Backtracking: After 
each agent has sampled its assignment, they calculate their relative utilities. That is, the 
difference between their previous assignment with their current assignment. The agents 
then send the utilities to their immediate parents. The parents add their utilities to the ones 
received, and the process continues till the root agent. This concludes one iteration. (iv) 
Deriving Solution: The backtracking process results in the root agent holding the global 
relative utility. Based on the solution observed thus far, the root throws away or keeps the 
solution.

In this paper, we focus on SD-Gibbs due to its improved performance in terms of solu-
tion quality and computational efficiency.

2.2  Privacy in DCOPs

The existing literature focuses on the following techniques to ensure privacy in DCOPs.

2.2.1  Achieving privacy through cryptosystems

Privacy in DCOPs has focused on using cryptographic primitives, such as partial homo-
morphic encryption and secret-sharing methods. To quantify the privacy guarantees, 
researchers propose the following four notions. 

1. Agent privacy [3, 17]. No agent must learn the existence of its non-neighboring agents, 
i.e., agents it does not share constraints with.
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2. Topology privacy [3, 17]. No agent must discover the existence of topological constructs 
in the constraint graph, such as nodes (i.e., variables), edges (i.e., constraints), or cycles, 
unless it owns a variable involved in the construct.

3. Constraint privacy [3, 17]. No agent should be able to discover the nature of a constraint 
that does not involve a variable it owns.

4. Decision privacy [3, 17]. No agent should be able to discover the value that another 
agent’s variable takes in the solution chosen for the problem (modulo semiprivate infor-
mation).

Several privacy-preserving algorithms exist, using secure multi-party computation [30] 
atop existing DCOP algorithms to provide cryptographic privacy guarantees. These 
include P-DPOP [3], P 3∕2-DPOP [17] , P 2-DPOP [17], which builds on the DPOP algo-
rithm; P-SyncBB [19] and PC-SyncBB [28] over SyncBB; P-Max-Sum [18] over Max-
Sum; and P-RODA [27] which is privacy variant for algorithms which fit in Region 
Optimal DCOP Algorithm (RODA) [27] framework. In Table 1, we provide the known 
private algorithms and the privacy notions they satisfy; details follow.

To guarantee agent and (partial) topology privacy, the algorithms P-DPOP, P 3∕2-
DPOP, and P 2-DPOP use “codenames”  (randomly generated numbers) in place of the 
actual variable names and domains. These codenames are used for information exchange 
between agents. The agent selected as the root then “decrypts” these values to arrive at 
the solution. In contrast, P-Max-Sum and PC-SyncBB support topology privacy. These 
algorithms also use information-hiding public-key encryption and random shifts and 
permutations.

P2-DPOP completely preserves constraint privacy. The algorithm uses the partial 
homomorphic property of ElGamal encryption for the same. This technique is unlike 
P-DPOP and P 3∕2-DPOP, which merely adds the random numbers communicated by 
agents, inadvertently leaking privacy. P-Max-Sum also preserves constraint privacy by 
communicating information through encryptions or random shares.

DCOPs are also solved using region-optimal algorithms such as KOPT [31] or DALO 
[32]. Grinshpoun et al. present an umbrella setup, namely RODA, that generalizes these 
region-optimal algorithms. The authors present P-RODA [27], which implements the 
privacy-preserving implementations of these region-optimal algorithms. P-RODA uses 
cryptographic primitives such as secret sharing and homomorphic encryptions. As such, 
P-RODA perfectly simulates RODA but with a significant computational overhead.

The algorithms mentioned above, except PC-SyncBB, assume that agents do not col-
lude. Note that any two or more colluding agents can leak sensitive information about 
the other agents. Using secure multi-party computation, Tassa et al. [28] show that PC-
SyncBB is collusion resistant as long as the majority of the agents do not collude. Most 
recently, Kogan et  al. [29] introduced MD-Max-Sum, a privacy-preserving, collusion-
resistant DCOP algorithm built atop the Max-Sum algorithm. Crucially, MD-Max-
Sum uses third parties, namely mediators, to guarantee collusion resistance and has a 
reduced run time compared to PC-SyncBB. The algorithm satisfies constraint, topology, 
and decision privacy.

2.2.1.1 Solution Privacy Research on privacy-preserving algorithms for DCOP typi-
cally focuses on complete algorithms guaranteed to compute the optimal assignment 
(solution) [3, 17]. Obviously, one cannot keep the solution secret, so the information 
leaked by knowledge of the solution has generally been considered an inevitable privacy 
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loss. Moreover, as the optimization outcome cannot be preserved, the computation may 
compromise agents’ preferences, thereby violating constraint privacy.

However, it is possible to make the solution, and therefore any information that can 
be inferred from it differentially private. We call this property solution privacy and add 
it as an additional objective for privacy-preserving DCOP. We show that our differen-
tially private variant, P-Gibbs, satisfies solution privacy through randomization of the 
computation process (Table 1).

Solution Privacy and Decision Privacy.  In this paper, we follow the classic security 
principle – “no security through obscurity”– meaning that we cannot assume privacy 
would be kept by simply hiding decisions from some agents (the server or other agents 
might reveal them; agents who get your decision can be malicious; decisions may be 
observed through agents actions by outsiders; and so on). Thus, in our context, the privacy 
notions of solution privacy and decision privacy are not equivalent.

2.2.1.2 Non‑scalability of Existing Private DCOP Algorithm  Unlike our privacy variant 
P-Gibbs (Table 1), cryptographic primitives and the computationally expensive nature 
of DCOPs results in the algorithms mentioned above not being scalable in terms of the 
number of agents and constraints. More concretely, we say that a private DCOP algo-
rithm admits a privacy overhead if it is significantly more computationally expensive 
compared to its non-private variant.

Our definition implies that private algorithms based on cryptographic primitives 
incur a significant privacy overhead. E.g., P-DPOP [3] scales up to 12 agents for graph-
coloring and 6 agents for meeting-scheduling. Such a lack of scalability is also present 
in privacy-preserving algorithms built atop approximate algorithms. E.g., P-Max-Sum’s 
run-time increases three-fold in magnitude over its non-private variant [18].

2.2.2  Other privacy notions

2.2.2.1 Information Entropy  In a parallel line of work, the authors in [33] use informa-
tion entropy to quantify the privacy loss incurred by an algorithm in solving a distributed 
constraint problem. The result is later furthered by [34, 35]. Grinshpoun et al. [35] present 
private local-search algorithms based on the algorithms above. The authors use this quantifi-
cation to show that their algorithms provide high-quality solutions while preserving privacy. 
While the privacy loss metric defined in [33] is interesting, it does not offer a worst-case 
guarantee. Practically, even a minor leak may result in information being revealed com-
pletely.

2.2.2.2 Utilitarian DCOPs  Savaux et al. [36, 37] propose Utilitarian DCOPs (UDCOPs) 
where privacy leakage is correlated to the quality of the final assignment. They assume 
that each agent also maintains a privacy cost for each assignment’s utility which captures 
the desire of the agent to preserve that utility’s privacy. With this modeling, they can 
derive the overall privacy cost along with the final solution.

The authors introduce private DCOP algorithms based on this idea (e.g., DBOU and 
DSAU, which are extensions of DBO and DSA, respectively). The key privacy idea in 
these algorithms is that agents randomly sample new assignments and only broadcast 
the information if it positively changes their overall utility.
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While such a utility-based privacy cost is another interesting way of quantifying 
privacy leaks in DCOPs, we believe a (�, �)-DP approach is a more robust measure of 
the same. First, the privacy budget used in UDCOPs appears to be agent-specific (i.e., 
agents may define it in an arbitrary fashion). As such, it may not be applicable in prac-
tice as the agents may find it difficult to quantify the privacy cost of revealing informa-
tion about a certain resource. Furthermore, even if an agent can estimate its cost at one 
point, privacy implications can change with time. That is, the obtained solution quality 
may not be useful in the future. In contrast, there is a clear consensus on appropriate 
values of � and � in DP, implying quantifiable privacy guarantees.

Second, to the best of our knowledge, while we provide worst-case privacy guarantees 
for P-Gibbs, similar to the information entropy-based privacy measure, there are no worst-
case guarantees for the algorithms in [36, 37]. So, even if we disregard the arbitrary privacy 
cost assignments by each agent, it is not possible to say if the solution reveals something 
about the true utilities. And if there is a correlation between privacy costs and utilities, it 
might even reveal more.

3  Preliminaries

This section formalizes DCOPs, summarizes SD-Gibbs, and defines privacy definitions 
relevant to our work.

3.1  Distributed constraint optimization problem (DCOP)

Distributed Constraint Optimization Problem (DCOP) is a class of problems comprising a 
set of variables, a set of agents owning them, and a set of constraints defined over the set of 
variables. These constraints reflect each agent’s preferences.

Definition 1 (DCOP) A Distributed Constraint Optimization Problem (DCOP) is a tuple 
⟨X,A,D,F, �⟩ wherein,

• X = {x1,… , xp} is a set of variables;
• A = {1,… ,m} is a set of agents;
• D = D1 ×… × Dp is a set of finite domains such that Di is the domain of xi;
• F  is a set of utility functions Fij ∶ Di × Dj → ℝ . Fij gives the utility of each combina-

tion of values of variables in its scope. Let var(Fij) denote the variables in the scope of 
Fij.

• � ∶ X → A maps each variable to one agent.

In this work, w.l.o.g [38], we assume that p = m , i.e., the number of agents and the 
number of variables are equal. We also assume D = Di = Dj, ∀i, j , i.e., all variables have 
the same domain. Total utility in DCOP, for a complete assignment X = (x1,… , xp) is:



 Autonomous Agents and Multi-Agent Systems (2024) 38:8

1 3

8 Page 10 of 39

where X||D is the projection of X to the subspace on which Fij is defined. The objec-
tive of a DCOP is to find an assignment X∗ that maximizes1 the total utility, i.e., 
F(X∗) = maxX∈DF(X).

In DCOPs, a combination of variables (or alternately, agents) is referred to as a con-
straint. The utility functions over these constraints quantify how much each agent prefers a 
particular constraint. This constraint structure is captured through a constraint graph.

Definition 2 (Constraint Graph (CG)) Given a DCOP defined by ⟨X,A,D,F, �⟩ , its con-
straint graph G = ⟨X, E⟩ is such that (xi, xj) ∈ E, ∀j ∈ var(Fij).

A pseudo-tree arrangement has the same nodes and edges as the constraint graph. The 
tree satisfies (i) there is a subset of edges, called tree edges, that form a rooted tree; and 
(ii) two variables in a utility function appear in the same branch of that tree. The other 
edges are referred to as back edges. Nodes connected via a tree edge are referred to as par-
ent–child nodes. Likewise, back edges connect the pseudo-parent and its pseudo-children. 
Such an arrangement can be constructed using a distributed-DFS [39].

For the algorithms presented in this paper, let Ni refer to the set of neighbors of xi in CG. 
Also, let Ci denote the set of children xi in the pseudo-tree, Pi as the parent of variable xi , 
and PPi as the set of pseudo-parents of xi.

Furthermore, this paper specifically focuses on constraint privacy, formally defined in 
our context next.

Definition 3 (Constraint Privacy) Given a DCOP defined by ⟨X,A,D,F, �⟩ , constraint 
privacy implies that an agent i learns no information regarding the utility function {Fjk}k∈Nj

 
of any agent j ∈ A ⧵ Ni . That is, for any agent, it does not share a constraint with.

3.1.1  Example

Consider the maximization problem depicted in Fig. 1. Here, |X| = |A| s.t. X = {x1, x2, x3} 
and D1 = D2 = D3 = {0, 1} . The constraint graph and one possible pseudo tree configuration 
are presented in Figs. 1(a) and 1(b). In Fig. 1(b), the solid edges represent the tree edges, while 
the dashed edges represent the back edges. Fig. 1(c) shows the utility function that is identi-
cal for F12 = F23 = F13 . For this example, a solution is as follows. The optimal assignment is 
x1 = 1, x2 = 1 , and x3 = 1 , with the overall utility 6.

3.2  Sequential distributed Gibbs (SD‑Gibbs)

We now describe Sequential Distributed Gibbs (SD-Gibbs) as first introduced in [16]. In this, 
the authors map DCOP to a maximum a posteriori (MAP) estimation problem. Consider MAP 
on a Markov Random Field (MRF). MRF consists of a set of random variables represented 
by nodes, and a set of potential functions. Each potential function, represented by �ij(xi;xj) , is 

(1)F(X) ≜

m∑
i=1

(∑
j

Fij(X||D)

)
,

1 We can also define a DCOP that minimizes the total utility, i.e., F(X∗) = max
X∈D − F(X).
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associated with an edge. Let the graph constituting MRF, with nodes and edges, be denoted by 
⟨V ,E⟩.

Let Pr(xi = di;xj = dj) be defined as exp (�ij(xi = di;xj = dj)) . Then, the most probable 
assignment is:

Here, Z is the normalization factor. This corresponds to the maximum solution of DCOP if,

3.2.1  Sampling

We now describe sampling in SD-Gibbs. Let Ci denote agent i’s context, defined as the set 
consisting of its neighbors and the value assigned to them. In each iteration, each agent i sam-
ples a value di with the following equation,

Let, ℙi(xi) = {Pr(xi|xj ∈ X⧵{xi})|xi = di ∀di ∈ Di} . That is, ℙi represents SD-Gibbs’ prob-
ability distribution of each agent i. The relevant notations required for the SD-Gibbs algo-
rithm are presented in Table 2.

Pr(X) =
1

Z

∏
i,j∈E

e�ij(xi,xj) =
1

Z
exp

[∑
i,j∈E

�ij(xi, xj)

]
.

F(X) =
∑
i,j∈E

�ij(xi, xj).

(2)Pr(xi�xj ∈ Ni) =
1

Z
exp

⎡⎢⎢⎣
�

⟨xj ,dj⟩∈Ci

Fij(di, dj)

⎤⎥⎥⎦

x2

x1

x3

(a) Constraint Graph

x1

x2

x3

(b) Pseudo Tree

xi xj Fij

0 0 0
0 1 -1
1 0 -1
1 1 2

(c) Utilities (where i <
j)

Fig. 1  DCOP Example
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Algorithm 1  Sequential Distributed Gibbs [16]

Table 2  Variables maintained by 
each agent x

i
 in SD-Gibbs

Variables Definition

di and d̂i Values in current and previous iteration

d∗
i

Value in the best complete solution so far
d̄i Best response value
Ci and C̄i

Context and best-response context
ti, t

∗
i
, t̄∗
i

Time index, best-response and non-best response index
Δi Difference in current and previous local solution of agent i
Δ̄i Difference in current best-response solution with previous
Ω Shifted utility of the current complete solution
Ω̄ Shifted utility of the best-response solution
Ω∗ Shifted utility of the best complete solution
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3.2.2  Algorithm

Table 2 presents the values each agent i maintains in SD-Gibbs. Procedure 2 describes 
the complete sampling function. For completeness, we present the SD-Gibbs algorithm 
in Algorithm 1. The algorithm can be summarized as follows: 
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1. The algorithm starts with a construction of the pseudo-tree and each agent initializing 
each of their variables, from Table 2 to their default values. The root then starts the 
sampling, as described in Procedure 2, and sends the VALUE message (line 6) to each 
of its neighbors.

2. Upon receiving a VALUE message, each agent invokes Procedure 3. In it, an agent i first 
updates its current contexts, Ci and C̄i , with the sender’s values. If the message is from 
agent i’s parents, then the agent itself samples, i.e., executes Procedure 2. This sampling 
stage continues until all the leaf agents have executed Procedure 2.

3. Each leaf agent j then sends a BACKTRACK message to its parent comprising 
xj,Δj, and Δ̄j . As described in Procedure 4, when a parent receives such a message, 
it sends a BACKTRACK message to its parent. The process continues until the root 
receives the message – concluding one iteration.

4. Each agent i uses its current (Δi) and current best-response (Δ̄i) local utility differences 
to reach a solution. We refer to these differences as relative utilities. Upon receiving 
a BACKTRACK message, agent i adds the delta variables of its children to its own. 
Consequently, these variables for the root agent quantify the global relative utility. Based 
on this, at the end of an iteration, the root decides to keep or throw away the current 
solution (Procedure 4, line 4).

As aforementioned, in this work, we focus on constraint privacy to ensure the privacy of 
agent preferences. From Faltings et al. [3], constraint privacy states that no agent must be 
able to discover the nature of constraint (i.e., the utilities) that does not involve a variable 
it owns. Since absolute privacy is not an achievable goal [40], we formalise constraint pri-
vacy in terms of (�, �)-DP [21].

3.3  Differential privacy (DP)

Differential Privacy (DP) [20, 21] is a popular privacy notion that aims to provide a statis-
tical guarantee against a database that the inclusion or exclusion of any single entry will 
not significantly impact the results of the statistical analysis. The guarantee makes it dif-
ficult for an adversary to infer sensitive information about specific individuals present in 
the database from the said statistical analysis outcome. More concretely, consider any pair 
of adjacent databases, i.e., databases differing in a single entry. We say that a randomized 
mechanism M is (�, �) differentially private if the ratio of the probabilities between adja-
cent databases as inputs on M is upper-bounded by � with probability 1 − � . Here, we have 
𝜖 > 0 and � ∈ [0, 1) . The smaller the value of � , the higher the privacy protection. Further-
more, the lower the value of � , the lower the probability of privacy failure.

3.3.1  DP: applications

One of the foremost applications of DP is towards private query releases [21]. Here, the 
goal is to provide answers to user queries in a differentially private manner. DP has also 
emerged as the gold standard of privacy in the AI/ML literature. For instance, DP is used 
to protect user’s sensitive information in ML. DP-variants exist for SVMs [41], PCA [42], 
Multi-armed Bandits (MABs) [43] as well as deep learning-based techniques including 
DP-SGD [4] and PATE [44]. The mechanism design literature also uses DP to guarantee 
the privacy of an agent’s private information [45, 46]. McSherry and Talwar [47] present 



Autonomous Agents and Multi-Agent Systems (2024) 38:8 

1 3

Page 15 of 39 8

the first such mechanism that uses DP to design an approximately truthful digital goods 
auction.

3.3.2  DP: our setting

As stated, DP is normally defined for adjacent databases. However, in this instance, not 
only do we want to protect privacy against external adversaries but also against curious 
fellow agents, i.e., agents looking to decipher sensitive information. One may note that 
when the set of variables and agents involved is globally known, there are more efficient 
techniques for distributed optimization using a central coordinator and stochastic gradient 
descent. Researchers have developed DP techniques for this context as well [48]. While 
such algorithms are well-suited for contexts such as federated learning, where the model 
parameters are common knowledge, in meeting-scheduling, they would leak the informa-
tion of who is meeting with whom, which is usually the most sensitive information. There-
fore, we focus on algorithms where each participant has local information, i.e., only knows 
about agents it shares constraints with and nothing about the rest of the problem.

3.3.3  Local DP

As a result, we consider the local model of differential privacy [21]. It is defined on indi-
vidual entries rather than databases or, in our setting, on individual agents. As a result, 
local DP does not require defining adjacency. Formally, we want our algorithm for any two 
utility functions (vectors in ℝp ) to satisfy the following definition from [21],

Definition 4 (Local Differential Privacy) A randomized mechanism M ∶ F → R with 
domain F  and range R satisfies (�, �)-DP if for any two inputs F,F� ∈ F  and for any sub-
set of outputs O ⊆ R we have,

Definition 4 states that for any two pairs of inputs, F and F′ , the output of the rand-
omized mechanism M is similar up to a factor � with probability at least 1 − � . The smaller 
the � , the more similar the outputs. In other words, the smaller the � , the harder the adver-
sary finds it to distinguish between F and F′ . The typical � values are of the order O(1∕m) 
or O(1∕m2) [21], where m denotes the number of records. In our setting, m denotes the 
number of variables or agents.

3.3.4  Privacy Loss

We now present another way of interpreting the local-DP definition defined in Eq. 3. For 
this, we define the privacy loss random variable (PRVL) L, as follows:

Now, we can say that a randomized mechanism M satisfies (�, �)-DP if with probability at 
least 1 − � , we have Lo

M(F)||M(F�)
≤ � [21]. The PRVL L is often used to analyze the � and 

� guarantees of a DP mechanism, e.g., the famous Gaussian mechanism [21] as discussed 
next.

(3)Pr[M(F) ∈ O] ≤ e� Pr[M(F�) ∈ O] + �

(4)Lo
M(F)||M(F�)

= ln

(
Pr[M(F) = o]

Pr[M(F�) = o]

)
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3.3.5  Gaussian mechanism

As the name suggests, the Gaussian mechanism [21]  privatizes a statistic by adding 
noise sampled by the Gaussian distribution to the statistic analysis outcome. More con-
cretely, given the PDF of the Gaussian distribution N(0, �2) =

1√
2��2

exp
�
−

x2

2�2

�
 , the 

Gaussian mechanism defined by:

is (�, �)-DP where M(F) is the (non-private) outcome of the statistic analysis and 
Y ∼ N

(
0, 2 ln(

1.25

�
)
�2

�2

)
 is the Gaussian noise added [21]. The term � denotes the sensitivity, 

which is the measure of how much the outcome of the statistic analysis changes in response 
to the addition or removal of a single data entry. In Sect. 5.3, we re-look at the Gaussian 
mechanism in our context.

4  Privacy leakage in SD‑Gibbs

In SD-Gibbs, constraint privacy is compromised in the following two ways:
By sampling. Each variable value in SD-Gibbs is sampled according to agent i’s util-

ity Fij . As values with more utility are more likely to be drawn, SD-Gibbs leaks sensi-
tive information about these utility functions. Fortunately, this stage can be secured by 
simply making distributions more similar across agents (Sect. 5.2).

By relative utility Δ . Every leaf agent j in the pseudo-tree sends its Δj and Δ̄j to its 
parent i. The parent agent adds the values to its Δi and Δ̄i , respectively, and passes them 
on up the tree. The process continues until the values reach the root. Thus, any inter-
mediate agents, or an adversary observing Δ , can learn something about j’s utility even 
if sampling is private. E.g., suppose a particular assignment has a high utility for agent 
j but is low for others (and it is known). In that case, an intermediate agent will learn 
about agent j even from the aggregated utility.

These privacy leaks follow by observing what critical information gets transferred 
by each agent i in Algorithm 1. We ignore t∗ and t̄∗ because these are simply functions 
of utility, i.e., will be private by post-processing property once the utility is private. We 
next illustrate the same.

4.1  Illustrating Privacy Leak in SD‑Gibbs on Figure 1

Consider the execution of SD-Gibbs (Algorithm 1) on the example provided in Fig. 1. 
Recall that we aim to preserve constraint privacy in DCOP. The agent x1 must not learn 
anything about the nature of the constraint between the agents x2 and x3.

Upon execution of Algorithm 1 with each variable initialized with 0, the initial Gibbs 
distribution for x2 and x3 (from Eq.  2) takes the form [0.88,  0.12] and [0.88,  0.45], 
respectively. As x1 is the neighboring agent for both x2 and x3 , it will be aware of 
their current and best assignments. Moreover, as the number of iterations increases, 
x1 observes that its Gibbs distribution converges to [0.002,  0.998]. Further, one can 
also see that x2 ’s and x3 ’s Gibbs distribution changes to [0.002, 0.998]. That is, x1 can 
observe that x2 and x3 prefer assignment 1 (with high probability) given its context. 

M(F) ≜ M(F) + Y ,
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Based on the assignment sampling, x1 already has a qualitative idea of the nature of the 
constraint x2–x3 . Since it knows it prefers assignment 1, it can estimate the constraint 
x2–x3 will be such that it is less or equal in value—for any assignment other than their 
current x2 = x3 = 1 . If not, x2 and x3 would have changed their assignments to grab the 
additional utility.

To get a quantitative estimate, x1 can observe the relative utilities. In our exam-
ple, as there are only three constraints, x1 can use the information on the prob-
able assignments of x2 and x3 , 1 and 1, and the final utility 6 to derive the value 
F23(x2 = 1, x3 = 1) = 6 − F12(x1 = 1, x2 = 1) − F13(x1 = 1, x3 = 1) = 6 − 2 − 2 = 2  . 
Therefore, x1 can learn information regarding the constraint F23 violating constraint pri-
vacy. Applying similar qualitative knowledge of the assignment, on each iteration’s Δ s, 
can potentially leak information of the entire utility function.

With these as a backdrop, we now build upon SD-Gibbs to formally present our novel, 
scalable algorithm for DCOPs that preserve constraint privacy, namely P-Gibbs.

5  P‑Gibbs: preserving constraint privacy in DCOP with SD‑Gibbs

In general, for DP, we need to ensure full support of the outcome distribution. If 
Pr[M(D�) = o] = 0 for some output o, the privacy loss L incurred is infinite, and one 
cannot bound � . For the specific context of ensuring constraint privacy in SD-Gibbs, this 
implies that all agents must have the same domain for their variables and non-zero utility 
for each value within the domain.2 In other words, D1 = D2 = … = Dp and |Fij(⋅, ⋅)| > 0,∀i . 
Without these, the probability distributions defined in Eq. (2) may not be bounded as any 
pair of agents i and j (i ≠ j) may have Di ≠ Dj . As a result, the � with respect to constraint 
privacy (Definition 3) will not be defined. Formally, consider the following claim.

Claim 1 With respect to constraint privacy, SD-Gibbs (Algorithm 1) is non-private, i.e., the 
privacy loss variable L is not defined for SD-Gibbs.

Proof Consider any two agents i, j ∈ A s.t. (i ≠ j) and Di ≠ Dj . W.l.o.g., let Di = Dj + {d} . 
From Definition 3, the privacy loss variable L (Eq. (4)) can be written as,

as d ∈ Di while d ∉ Dj . Thus, the privacy loss variable, L, is not defined for SD-Gibbs.  
 ◻

Claim 1 implies that the privacy budget, � in (�, 0)-DP, is also not-defined for SD-
Gibbs. Consequently, to provide meaningful privacy guarantees for constraint privacy 
in DCOPs, we present P-Gibbs (Sect. 5). In it, we first use soft-max with temperature 
to bound the SD-Gibbs distributions (Sect. 5.2). The resulting bound only depends on 
the temperature parameter and does not leak any agent’s sensitive information. Then, we 
“clip” the relative utilities to further bound the sensitivity (Sect. 5.3). Lastly, to reduce 

Ld
ℙi||ℙj

= ln

(
ℙi(xi = d)

ℙj(xj = d)

)
= ln

(
v

0

)
where v > 0,

2 If any agent has a zero utility for some value, then all agents must have zero utility, and w.l.o.g., we can 
simply exclude such values from all domains.
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the growth of � , we randomly select a subset of agents to sample new values at each 
iteration. We then provide a refined privacy analysis for the resulting (�, �)-DP (Theo-
rem  1). Table  2 and Table  3 provide a reference point for the notations used in this 
section.

Table 3  Notations Symbol Definition

� Sensitivity
c Clipping constant
ℙi SD-Gibbs probability distribution for Agent i
pi Soft-max function on ℙi for Agent i
� Soft-max temperature parameter
q Sub-sampling probability
T Number of iterations in P-Gibbs
N(0, �2) Gaussian distribution with mean zero and variance �2

(�s, �) Privacy parameters of the Sampling stage
(�n, �) Privacy parameters for the Relative utilities
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5.1  P‑Gibbs: algorithm

Recall that privacy leak in SD-Gibbs is due to the qualitative and quantitative informa-
tion loss due to communicating the sampled value d and the relative utilities Δ , respec-
tively (Sect.  4). Our privacy variant, P-Gibbs, preserves this information loss through 
its novel sampling procedure. We formally provide the sampling in P-Gibbs with Proce-
dure 5. The differences, compared to SD-Gibbs’ sampling procedure, are summarized as 
follows: 

1. To preserve constraint privacy loss due to sampling (Procedure 5, Lines 3–9):

• P-Gibbs uses soft-max function over SD-Gibbs distributions for sampling di’s, ∀i . 
As shown later in Proposition 1, this bounds any two agent distributions in SD-
Gibbs, resulting in finite privacy loss.

• P-Gibbs randomly chooses subsets of agents to sample new values in each itera-
tion. More specifically, in every iteration, each agent i samples a new value di 
with probability q or uses previous values with probability 1 − q.

2. To preserve constraint privacy loss due to relative utilities (Procedure 5, Lines 13–16):

• In P-Gibbs, we sanitize the relative utilities with calibrated Gaussian Noise.
• To bound the sensitivity (see Sect.  5.3), we “clip”  the relative utilities by ±c , 

where c is the clipping constant (Procedure 5, Lines 16 and 17).

In the next subsection, we formally show that soft-max bounds the SD-Gibbs probabil-
ity distributions. We then provide a formal analysis for privacy loss due to sampling.

5.2  P‑Gibbs: bounding sampling divergence with soft‑max

Towards achieving bounded sampling divergence without compromising on constraint 
privacy itself, we propose to apply soft-max to sampling distributions. Let pi be the soft-
max distribution with temperature parameter as � , i.e.,

Firstly, observe that pi(⋅, �) , for a finite � , has full support of the outcome determination. 
That is, pi(xi, 𝛾) > 0 s.t. xi = dk,∀dk ∈ D . This observation ensures that the scenario of an 
unbounded privacy loss due to pi(xi, �) = 0 , described earlier with Claim 1, will not occur 
for P-Gibbs.

Secondly, to also ensure that � is finite, we require that the bound pi(⋅)
pj(⋅)

 for any distinct 
pair i and j is bounded. To this end, the following claim shows that the ratio of the 
resulting soft-max probabilities, pi(⋅) and pj(⋅) for any two agents i and j, is bounded by 
2∕� . The proof uses the fact that D = Di = Dj and 1∕e ≤ exp(pi(x) − pj(x)) ≤ e.

Proposition 1 For two probability distributions using soft-max, pi and pj defined by 
Eq. (5), we have, ∀i, j , ∀d ∈ D and ∀D , s.t. |D| > 1, 𝛾 ≥ 1

(5)pi(xi, �) =

�
exp (ℙi(xi = dk)∕�)∑

dl∈D
exp (ℙi(xi = dl)∕�)

;∀dk ∈ D

�
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Proof Because pi and pj are soft-max distributions, we have,

Now, recall that ℙi and ℙj are the probability distributions through SD-Gibbs sampling. 
With this, observe the following:

Here, N1 =
∑

dl∈D
exp (ℙi(xi = dl)∕�) and N2 =

∑
dl∈D

exp (ℙj(xj = dl)∕�) . Now, in 
Eq.  (6) observe that both the numerator and denominator in r.h.s of Eq.  (6) are positive. 
Further, as ln(x) is an increasing function x, this implies that r.h.s of Eq. (6) is maximum 
when the numerator is maximum, and the denominator is minimum. Thus the difference, 
ℙi(xi = d) − ℙj(xj = d) , can be at-most 1. Therefore, numerator in r.h.s of Eq. (6) is at-most 

exp (1∕�) = e1∕�.
The denominator in r.h.s of Eq. (6) is minimum when N1 is minimum and N2 is maxi-

mum. Note that, N1 is minimum when ℙi(xi = d) = 0,∀d , i.e., minimum N1 = |D| . But, N2 
is maximum when ℙj(xj = d) = 1,∀d , i.e., maximum N2 = |D| ⋅ e1∕� . Using these values in 
Eq. (6) completes the claim.   ◻

5.2.1  Effect of soft‑max

We illustrate the effect of soft-max on the SD-Gibbs sampling distribution with 
the following example. Let Dj = {d1, d2, d3},∀j such that ℙi = [0.8, 0.15, 0.05] . 
Observe that the distribution is such that the probability of sampling d1 is sig-
nificantly more than others. Now, the corresponding soft-max distributions, from 
Eq.  (5), will be: p(⋅, � = 1) = [0.50, 0.26, 0.24] , p(⋅, � = 2) = [0.41, 0.30, 0.29] , and 
p(⋅, � = 10) = [0.35, 0.33, 0.32] . That is, the soft-max distribution is more uniform than 
the original distribution. This implies that the maximum ratio of the probabilities will 
be smaller. That is, an adversary will be more indifferent towards the domain values 
while sampling. For e.g., d1 and d2 in p(⋅, � = 10) compared to in p(⋅, � = 1).

Observe that the bound provided in Proposition  1 does not depend on an agent’s 
sensitive information. This implies that the bound does not encode (and reveal) any 
sensitive information. Thus, we conclude that the bound provided in Proposition 1 is 
desirable and hence use it to construct the sampling distribution in P-Gibbs.

ln

[
pi(xi = d, �)

pj(xj = d, �)

]
≤

2

�

pi(xi, �) =

�
exp (ℙi(xi = dk)∕�)∑

dl∈D
exp (ℙi(xi = dl)∕�)

; ∀dk ∈ D

�
,

pj(xj, �) =

�
exp (ℙj(xj = dk)∕�)∑

dl∈D
exp (ℙj(xj = dl)∕�)

; ∀dk ∈ D

�
.

(6)ln

�
pi(xi = d, ⋅)

pj(xj = d, ⋅)

�
≤ ln

⎡⎢⎢⎢⎣

exp (ℙi(xi=d)∕�)∑
dl∈D

exp (ℙi(xi=dl)∕�)

exp (ℙj(xj=d)∕�)∑
dl∈D

exp (ℙj(xj=dl)∕�)

⎤⎥⎥⎥⎦
≤ ln

�
exp (1∕�(ℙi − ℙj)))

N1∕N2

�
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5.2.2  Privacy guarantees for sampling in P‑Gibbs

We first calculate the privacy parameters of the sampling stage, denoted by �s and � , in 
P-Gibbs. We use an extension of the moments accountant method [4] for non-Gaussian 
mechanisms. Following derivations by [49],

Here, L is the privacy loss between any two agents and D�(pi||pj) = 1

�−1
log�d∼pj

(
pi(d)

pj(d)

)�

 
is Rényi divergence [50] of order 𝜆 ∈ ℕ

+, 𝜆 > 1 . From [49], the choice of the hyperparam-
eter � is arbitrary since the bound holds for any feasible value of � . Note that the value of � 
determines how tight the bound is.

Also from [49], we borrow the notion of privacy cost ct(�) . By trivial manipulation, for 
each iteration t,

where Eq. (8) is due to monotonicity D�(P||Q) ≤ D�+1(P||Q) ≤ D∞(P||Q), ∀� ≥ 0.
Subsampling. The privacy cost ct in Eq.  (8) can be further reduced by subsampling 

agents with probability q << 1 . Balle et al. [51] show that the privacy guarantees of a DP 
mechanism can be amplified by applying the mechanism to a small random subsample of 
records of any database.

Reproducing the steps of the sampled Gaussian mechanism analysis by [49] for our 
mechanism and classical DP, we formulate the following result.

Theorem 1 Privacy cost ct(�) at iteration t of a sampling stage of P-Gibbs, with agent sub-
sampling probability q, is

where B(�, q) is the binomial distribution with � experiments and probability of success as 
q, � ∈ ℕ.

Proof The result follows by substituting 2∕� in place of the ratio of normality distributions 
in [49, Theorem 3].   ◻

Unlike the analysis in [49, Theorem  3], we do not have cL
t
(�) and cR

t
(�) , as well as 

expectation over the data. This is because we compute the conventional differential pri-
vacy bounds instead of Bayesian DP and, thus, directly use the worst-case ratio, i.e., 2∕� . 
Finally, merging the results, we can compute �s, � across multiple iterations as

Figure 2 shows the variation of �s for different values of � and � , with the sampling prob-
ability q = 0.1 . We observe that � has a clear effect on the final �s value, and one should 
ideally minimize the bound over �.

(7)Pr[L ≥ �s] ≤ max
pi,pj

e�D�+1

[
pi||pj

]
−��s

(8)ct(�) = max
i,j

�D�+1

[
pi(d)||pj(d)

]
≤ � ⋅ 2∕� ,

(9)c
(s)
t (�) = ln�k∼B(�+1,q)

[
ek⋅2∕�

]
,

(10)
ln � ≤

∑T

t=1
c
(s)
t (�) − ��s

�s ≤
1

�

�∑T

t=1
c
(s)
t (�) − ln �

�
�
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5.2.3  P‑Gibbs∞ : an extreme case

We presented P-Gibbs, which uses a soft-max with temperature function to bound the 
sampling divergence, thereby bounding the privacy loss incurred by sampling. We 
smooth the distribution using soft-max’s temperature parameter to reduce further the 
information encoded in SD-Gibbs sampling. We then use Theorem 1 to quantify privacy 
parameters �s and �.

From Proposition 1, observe that the temperature parameter in P-Gibbs may be tuned 
to decrease the overall privacy budget for sampling, i.e., �s . An “extreme” case occurs 
when � → ∞ . For this, we have pi = pj , which implies that �s → 0 . Thus, increasing � 
leads to P-Gibbs sampling distribution mimicking a uniform distribution, as more infor-
mation on SD-Gibbs sampling distribution is lost. To distinguish this extreme case, we 
refer to P-Gibbs with � → ∞ as P-Gibbs∞.

5.3  P‑Gibbs: privacy of relative utilities ( 1)

In the previous subsection, we deal with the privacy loss occurring due to sampling in 
P-Gibbs. As aforementioned, the values Δ and Δ̄ also leak information about agents’ 
constraints. In order to achieve DP for these Δ’s, we need to bound its sensitivity. Sensi-
tivity is defined as the maximum possible change in the output of a function we seek to 
make privacy-preserving. Formally,

Definition 5 (Sensitivity ( � )) It is the maximum absolute difference between any two rela-
tive utility values Δ and Δ� , i.e.,

As we clip the relative utilities with a constant c (see Procedure 5, Line 16–17), trivi-
ally from Eq. 11, � = 2 ⋅ c.

(11)� = max
Δ,Δ�

|Δ − Δ�|
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Next, we must sanitize the relative utilities so as to preserve privacy fully. We achieve 
this through the Gaussian noise mechanism (Sect. 3.3 and [21]) defined as

where Yi ∼ N(0, �2�2) , � is the sensitivity and � is the noise parameter.
Privacy parameters for the relative utility Δ , denoted by �n and � , can be computed either 

using the basic composition along with [21, Theorem A.1] or the moments accountant [4]. 
The latter can be unified with the accounting for the sampling stage by using:

Figure  2 shows the variation of �n for different values of � and � , with the sampling 
probability q = 0.1 and � = 1 . We observe that � has a clear effect on the final �n value as 
well, although the change is virtually the same for � = 10, 25 and 50 . The trend is similar 
to the one observed in Fig. 2, i.e., �n decreases as � increases. However, the decrease is not 
smooth when � = 5 , which sees a sharp change in �n as � increases. This change is similar 
to what is observed in [49, Figure 5], suggesting that one should be careful while deciding 
on the value of �.

 Note. We provide the formal sampling procedure comprising the privacy techniques 
discussed above with Procedure  5. The rest of the procedures are the same as provided 
with Algorithm 1. Table 4 summarises expressions for per-iteration and total � values for 
P-Gibbs and P-Gibbs∞.

5.3.1  Collusion Resistance

Recall that in the private DCOP literature, an algorithm is collusion resistant if no subset of 
agents can collude to gain additional information about the remaining agents. We remark 
that P-Gibbs trivially satisfies collusion-resistance. This is because each agent in P-Gibbs 
locally adds noise or randomness to its utility and assignment sampling. Due to the post-
processing property of DP, no subset of the agent will be able to infer any additional infor-
mation outside of the (�, �)-DP guarantee.

MG(Δ) ≜ Δ + Yi,

(12)c
(n)
t (�) = ln�k∼B(�+1,q)

[
ekD�+1[N(0,�2�2)||N(�,�2�2)]

]
.

Table 4  Per-iteration and final (�, �) bounds

Algorithm (�
s
, �) (�

n
, �) (� = �

s
+ �

n
, �) for T iterations

P-Gibbs (2∕� , 0)
(

�

�

√
2 ln

1.25

�
, �

) (
T

�
c
(s)
t (�) +

T

�
c
(n)
t (�) −

1

�
ln �, �

)

P-Gibbs∞ (0, 0)
(

�

�

√
2 ln

1.25

�
, �

) (
T

�
c
(n)
t (�) −

1

�
ln �, �
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6  Experiments

We now empirically evaluate the performance of our novel algorithm, P-Gibbs w.r.t. to 
SD-Gibbs. This section first describes our experimental setup and benchmark problems 
(Sect. 6.1). Next, in Sect. 6.2, we present the results for P-Gibbs’ performance in terms of 
solution w.r.t. SD-Gibbs. Section 6.3 presents criteria to empirically explain the privacy 
protection in P-Gibbs with regard to changes in the privacy budget. Section 6.4 provides a 
general discussion of the results presented and summarizes the advantages of our DP-based 
approach compared to the existing cryptographic approach for privacy-preserving DCOP 
algorithms.

6.1  Benchmark problems and experimental setup

We now describe the DCOP benchmark problems and illustrate our experimental setup.

6.1.1  Benchmark problems

We construct the following problem instances to test our novel differentially private vari-
ant, P-Gibbs. These are standard benchmarks in the DCOP literature.

6.1.1.1 Ising [23] We generate 20 sample Ising problems. For this, the constrained graph 
is a rectangular grid with each agent/variable connected to its four nearest neighbors. The 
problems are such that the number of agents/variables lie between [10, 20). Each agent’s 
domain is binary, i.e., Di = {0, 1},∀i . The constraints are of two types: (i) binary constraints 
whose strength is sampled from U[�, �] where � ∈ [1, 10) and (ii) unary constraints whose 
strength is sampled from U[−�, �] where � ∈ [0.05, 0.9) . Ising is a minimization problem.

6.1.1.2 Graph‑Coloring (GC)  We generate 20 sample graph-coloring problems. The prob-
lems are such that the number of agents/variables lies between [30, 100) and agents’ domain 
size between [10, 20). Each constraint is a random integer taken from (0, 10). Graph-color-
ing is a minimization problem.

6.1.1.3 Meeting‑Scheduling (MS) [24]  We generate 20 sample meeting-scheduling prob-
lems. The problems are such that the number of agents and variables lies between [1, 75) 
with the number of slots, i.e., the domain for each agent randomly chosen from [30, 100). 
Each constraint is a random integer taken from (0, 100), while each meeting may randomly 
occupy [1, 5] slots. Meeting-scheduling is a maximization problem.

While meeting-scheduling is a concrete problem [24], even abstract problems like 
graph-coloring can model real-world scenarios. E.g., Radio Frequency or Wireless Net-
work Assignment can be modeled as a graph-coloring problem [52]. The Ising model is 
also a widely used benchmark in statistical physics [23].

 Importantly, we perform our experiments on much larger problems than earlier com-
plete algorithms (e.g., [3]) can handle.3 Concerning the infeasibility of a DCOP solution, 

3 For e.g., DPOP, a non-private, complete algorithm timed-out after 24 h of computing (i) an Ising instance 
with 10 variables, (ii) a graph-coloring instance with 12 variables and |D| = 8 , (iii) a meeting-scheduling 
instance with 25 variables and |D| = 20 . For details, refer to Appendix 1.



Autonomous Agents and Multi-Agent Systems (2024) 38:8 

1 3

Page 25 of 39 8

we remark that incomplete (or random) algorithms like MGM, DUCT, and SD-Gibbs do 
not aim to solve problems with hard constraints. A hard constraint will leak vital informa-
tion about the constraints, and a differentially private solution will not work in such a set-
ting. Like [16], we focus on soft constraints; thus, infeasible solutions will not occur.

6.1.2  Experimental setup

Our experimental setup is as follows.
Implementation. pyDCOP [53] is a Python module that provides implementations of 

many DCOP algorithms (DSA, MGM, MaxSum, DPOP, etc.). It also allows easy imple-
mentation of one’s DCOP algorithm by providing all the required infrastructure: agents, 
messaging system, and metrics collection, among others. We use pyDCOP’s public imple-
mentation of the SD-Gibbs algorithm to run our experiments. In addition, we also imple-
ment P-Gibbs.

Generating Test-cases. pyDCOP allows for generating random test-cases for various 
problems through its command line’s generate option. With this, we generate instances for 
our benchmark problems, i.e., Ising, graph-coloring, and meeting-scheduling. We test the 
performance of our algorithms across 20 such randomly generated problems.

Method. We consider the utility given by SD-Gibbs’ solution as our baseline. Further, 
these algorithms, i.e., SD-Gibbs and P-Gibbs, are random algorithms. Hence, we run each 
benchmark problem instance 10 times for a fair comparison and use the subsequent average 
utility for our results.

The complete codebase is available at: github.com/magnetar-iiith/PGiBBS.
Performance Measure. We measure P-Gibbs’ performance w.r.t. SD-Gibbs using the 

following performance measure.

Definition 6 (Solution Quality (SQ)) Solution quality SQA of an algorithm A is defined as

for utility of A as UA and SD-Gibbs as US.

With SQ, we normalize P-Gibbs’ utility in the context of SD-Gibbs. SQ ≈ 1 indicates 
that utility does not deteriorate than SD-Gibbs. On the other hand, SQ ≈ 0 means little util-
ity as compared to the SD-Gibbs solution. It is possible that SQ > 1 due to randomness and 
privacy noise acting as simulated annealing4 [56].

SQA =

{ US

UA

for minimization
UA

US

for maximization

4 We remark that this behavior is different from the Distributed Simulated Annealing (DSAN) algorithm 
for DCOPs [54, 55]. DSAN is an iterative optimization algorithm with a temperature parameter that aims 
to control the likelihood of accepting worse solutions. DSAN consists of an annealing schedule that deter-
mines the change in the temperature parameter over time. As the parameter decreases, DSAN becomes 
more selective and explores the solution space more effectively. Instead of selecting the next assignment 
through a specific, utility-based distribution like in SD-Gibbs (Eq. 2), in DSAN, an agent randomly chooses 
its next assignment. E.g., by uniform sampling or by swapping values with neighboring agents. DSAN is 
neither complete nor private.
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6.2  Results

In this subsection, we present (i) the overall trend for change in P-Gibbs’ SQ vs. � , and (ii) 
the effect of hyperparameters (�, � , q) and the problem size on P-Gibbs’ SQ.

6.2.1  General trends for solution quality

We now provide general trends w.r.t. � s and SQs. More specifically, we focus on the change 
in the SQ with the change in � (aka privacy budget).

(�, �)-bounds. Throughout these experiments, we choose � = 10−2 , T = 50, � = 50 and 
� s as 100. As standard, our choice of � is such that 𝛿 < 1∕m [21]. We calculate � using 
different permutations of � ∈ {4, 8, 20,∞}, q ∈ {0.1, 0.2}, and � ∈ {7, 10, 25, 1000} . With 
these, we obtain the following � values: � = 0.046 where � = 1000, � = ∞ and q = 0.1 , (ii) 
� = 0.662 where � = 25, � = 20 and q = 0.1 , (iii) � = 1.31 where � = 25, � = 20 and q = 0.2 , 
(iv) � = 4.101 where � = 10, � = 8 and q = 0.2 , (v) � = 9.55 where � = 7, � = 4 and q = 0.2 .

Note that the case with � = 0.046 corresponds to P-Gibbs∞ as � = ∞.

6.2.1.1 Results  Fig.  3 presents the overall change in the SQ concerning an increase in 
� . We plot SQ scores averaged across all problems. For all three benchmarks, the average 
SQ improves between � ∈ [0.046, 9.55] . This behavior is expected as greater � s imply an 
increase in the subsampling probability and a decrease in the noise added ( � ). The increase 
in the probability of subsampling allows an agent to explore more values in its domain. That 
is an increase in the chance of encountering better assignments for itself.

We observe that the average solution quality is least for Ising and the highest for MS. 
The quality for GC is slightly lower than that of MS. For all three benchmarks, the qual-
ity increases sufficiently with increasing privacy budget, i.e., � . P-Gibbs’ performance for 
meeting-schedule is strong, especially for higher � s. Note that 𝜖 < 1 is typically desirable. 
We consider � ≥ 1 for illustrative purposes. P-Gibbs also provides good solution qualities 
for 𝜖 < 1 . Specifically, for Ising, the average quality crosses 0.75. For GC, the average qual-
ity remains above 0.8 and crosses 0.92 for MS.

Coefficient of Variation. The Coefficient of Variation (CoV) is a statistical measure 
equal to the ratio between the standard deviation and the average. Note that lower CoVs 

Fig. 3  The average and standard 
deviation of P-Gibbs’ Solution 
Quality (SQ) for different privacy 
budgets. Note that, the case 
with � = 0.046 corresponds to 
P-Gibbs∞ as � = ∞
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imply a lower extent of variability with the average solution quality. We compute the CoV 
values for each � based on the reported average and standard deviations (refer to Fig. 3).

For Ising, for varying � , we observe a maximum CoV of 0.123 and a minimum of 0.050. 
Likewise, for GC, we observe a minimum CoV of 0.059 and a maximum of 0.104. For 
meeting-scheduling, we have 0.044 (minimum) and 0.086 (maximum). Notably, for all 
three benchmarks, the maximum CoV corresponds to � = 0.046 . For graph-coloring, the 
minimum CoV corresponds to � = 9.55 and for Ising and meeting-scheduling to � = 4.101 . 
As expected, the maximum CoV corresponds to the lowest � since the amount of noise (or 
the loss in SD-Gibbs’ distribution) is highest. In contrast, higher � infuse lesser noise, and 
consequently, the CoVs are lower.

The above observation supports the improvement in solution quality with increasing � 
in Fig. 3. As � increases, the decrease in CoV values denotes a lower extent of variability 
concerning the average solution quality. That is, as � increases, P-Gibbs is likelier to output 
a solution quality closer to the average quality reported.

6.2.2  Effect of specific parameters on solution quality

We now study the specific effect of parameters �, � , and q on the quality of P-Gibbs’ solu-
tion. First, we vary � while fixing the other parameters and observing SQ changes. Then, 
we likewise vary � followed by q and observe the change in SQ for these. We conduct these 
experiments on the same 20 benchmark problem instances as earlier and report the average 
values across 20 runs.

Effect of the Noise Parameter (�) . Similar to our previous subsection experiments, we 
let � s be 100 and � = 10−2 . Further, we fix � = ∞ , � = 50 , and q = 0.1 . We vary � from the 
set {1000, 100, 50, 25, 10} . As � decreases, the privacy budget � increases. Intuitively, we 
expect the solution quality to improve with a decrease in noise added.

Figure 4 presents the change in SQ w.r.t to the change in � . We derive the � values using 
Table 4. As expected, we observe an overall increase in the solution quality of P-Gibbs as 
� decreases. However, the increase is marginal for graph-coloring, while the quality signifi-
cantly improves for Ising and meeting-scheduling.

Interestingly, the solution quality for meeting-scheduling for � = 10 (� = 0.32) is simi-
lar to the earlier reported quality for � = 9.55 (Fig. 3). In contrast, from Fig. 3, the SQ for 
graph-coloring is comfortably better for � = 9.55.

Effect of the Temperature Parameter (�) . We now turn our attention to the effect of � on 
the solution qualities of P-Gibbs. For this, we fix � = 50, � = 100 and q = 0.1 while vary-
ing � = {∞, 16, 8, 4, 2} . Similar to the case of � , as the temperature parameter � decreases, 
the privacy budget � increases. As � decreases, greater information of the original SD-
Gibbs distribution is retained.

Figure  4 presents the results. We observe an increase in SQs as � decreases. This 
increase is because an increase in � implies that P-Gibbs’ sampling distribution tends to the 
original SD-Gibbs’ distribution. As such, the resulting solution also tends towards that of 
SD-Gibbs.

Effect of the subsampling Probability (q). To study the effect of subsampling probabil-
ity q, we vary the value from the set q ∈ {0.1, 0.2, 0.3, 0.4, 0.5} . We fix the other param-
eters, i.e., � = 16 , � = 100 , and � = 50 . As the probability q increases, the privacy budget 
� increases.

Figure 4 presents our results. Similar to our previous results, we see an increase in solu-
tion quality for graph-coloring as the probability of sampling increases. This increase is 
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because an increase in the subsampling probability implies an increase in each agent’s 
probability of sampling a better assignment. However, for meeting-scheduling, we do not 
observe any such trend.

Note. These results show that the loss in sampling information deteriorates the solution 
quality in graph-coloring, while meeting-scheduling’s solution quality largely depends on 
the amount of noise added. This may be due to differences between graph-coloring and 
meeting-scheduling [24]. In particular, we believe that abstract problems like graph-color-
ing better satisfy the SD-Gibbs assumption of statistical independence of variables, while 
concrete problems like meeting-scheduling do not. Thus, solution quality for graph-color-
ing depends more on the SD-Gibbs probability distribution than meeting-scheduling.

Effect of Problem Size (m). We now measure the effect of the change in the num-
ber of agents (m) on P-Gibbs’ SQ. To this end, we generate test cases for the two 
benchmarks5 Graph-coloring (GC) and Meeting-scheduling (MS), by varying 
m ∈ {10–30 , 30–50 , 50–70 , 70–90 , 90–110 } . We fix the hyperparameters in P-Gibbs to 
derive � = 0.662 . We generate 10 problem instances for each m and report the average and 
standard deviation for P-Gibbs’ SQ. Figure 4 depicts the results.

Fig. 4  The average and standard deviation of P-Gibbs’ Solution Quality (SQ) for different hyperparameters 
(�, � and q) and the problem size, m 

5 We omit Ising from this set of experiments, as Ising instances with > 20 agents ran out of memory during 
execution.
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For GC, the average SQ generally increases as the number of agents increases from 
10–30 to 90–110. Further, the standard deviation is more significant when the number of 
agents is small. When m is 50–70 or more, we observe greater SQ and the standard devia-
tion is lesser than 10–30. Contrarily, for MS, the average SQ is almost similar across differ-
ent problem sizes. This behavior may be due to the SQs being significantly large for each 
problem size.

Privacy Leak due to Hyperparameter Tuning. Researchers have shown that hyperparam-
eter tuning of ML models may compromise their privacy [57]. Fortunately, in our case, the 
tuning only corresponds to DP parameters. These parameters can be tuned via simulating 
privacy computation in advance, without running the actual problem-solving algorithm, 
and thus without revealing any information.

6.3  Explaining P‑Gibbs’ privacy protection for varying �

In this paper, we provide a rigorous (�, �)-DP guarantee for P-Gibbs. Moreover, in the pre-
vious subsection, we provide the empirical quality of P-Gibbs’ solution w.r.t. SD-Gibbs for 
a given privacy budget. We now demonstrate the privacy guarantee of P-Gibbs by compar-
ing the final assignments of P-Gibbs and SD-Gibbs concerning a random assignment.

Note that a random final assignment will be perfectly privacy-preserving since no infor-
mation about an agent’s utility function will get encoded in the assignment. As such, the 
closer a DCOP algorithm’s final assignment is to the random assignment, the greater the 
privacy protection. Figure 5 depicts this observation for a graph-coloring benchmark test 
instance with the domain D = {d1,… , d10} for any variable/agent i.

We can see that SD-Gibbs’ distribution prefers the assignment d2 with ≈ 0.9 probability. 
Sampling a value with the SD-Gibbs’ distribution will imply that agent i greatly prefers d2 
(i.e., agent i’s utility function has a sufficiently greater value for d2 compared to D ⧵ {d2} ). 
P-Gibbs’s distribution is closer to random, thus plugging the information leak. To measure 
the distance of the assignments, we introduce the metric: Assignment Distance.

Fig. 5  Visualizing Sampling 
Distributions for SD-Gibbs and 
P-Gibbs with a Random Assign-
ment
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6.3.1  Assignment distance

As depicted in Fig. 5, we can explain the increased privacy guarantees in P-Gibbs by meas-
uring the distance between the final assignment from P-Gibbs with a random assignment. 
To measure the distance, we employ the Jensen-Shannon divergence (JSD) [58].6 Now, 
consider a DCOP algorithm A and domain D = {d1,… , dp} such that for each variable/
agent i, the assignment distribution after T iterations is given by the vector 
pi
A
= {pi

d1
,… , pi

dp
} . Now, consider the following definition.

Definition 7 (Assignment Distance (ADA )) We define Assignment Distance (ADA ) of a 
DCOP algorithm A as the average Jensen-Shannon divergence (JSD) [58] between the vec-
tor of the assignment distribution for variable/agent i from algorithm A, i.e., pi

A
 , with the 

vector r from the random assignment, i.e., r = 1

|D| ⋅ 1p . Formally,

From Eq. (13), ADA ∈ [0, 1] . When ADA → 0 , it shows that algorithm A’s final assign-
ment is closer to the random assignment, i.e., A is as private as a random assignment. For 
ADA → 1 , the assignment is farthest, implying that A encodes the maximum information 
possible. By comparing the assignment distance, i.e., ADSD-Gibbs and ADP-Gibbs , we can 
explain the increased privacy of P-Gibbs.

6.3.2  Experimental evaluation

To better study assignment distance, we empirically derive its values for two DCOP bench-
marks, graph coloring and meeting scheduling. We omit Ising from this set of experiments 
as the domain there is binary.

Instance Setup. For graph coloring, we have 30 agents/variables with domain size 10 
and each constraint between (0, 10]. For meeting scheduling, we have 30 agents/variables 
with domain size 10 and each constraint between [−1000, 10]⧵{0}.

Results. We run both the benchmark instances 40 times and report the corresponding 
assignment distance (AD) values in Table 5. For graph-coloring, AD values for P-Gibbs 
are ≈ 50% less than that for SD-Gibbs. Whereas for meeting-scheduling, it is ≈ 10% . This 
shows that P-Gibbs’ final assignment encodes less information compared to SD-Gibbs’, 
in turn, better preserving constraint privacy. Moreover, as � increases, the decrease in the 
noise added and increase in subsampling probability results in an increase in AP values for 
P-Gibbs as the algorithm behaves more like SD-Gibbs.

(13)ADA =

∑
i∈[p] JSD (pi

A
��r)

p
.

6 JSD [58] is a statistical method to measure the similarity of two probability distributions. It is based on 
KL-divergence, but does not require the same support for the distributions.
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6.4  Discussion

Overall, P-Gibbs provides strong solution quality for a competitive privacy budget. Concern-
ing specific hyperparameters, we observe that the amount of noise (�) added has the most 
impact on the quality of the solution – especially for meeting-scheduling. In practice, one 
needs to properly tune the parameters based on the problem at hand [24]. Since ours is the first 
method of its kind, to the best of our knowledge, we believe the results presented are strong, 
and future work may further improve the performance.

6.5  Advantages of our DP‑based Approach

We present the first differentially private DCOP algorithm with provable guarantees for con-
straint privacy with P-Gibbs. Here we emphasize the utility of a DP-based solution compared 
to the existing cryptographic solutions. Notably, as also mentioned in [3], in cryptography-
based solutions, the final assignment may leak critical information about the constraints, i.e., 
existing algorithms do not satisfy solution privacy. Our DP-based approach overcomes this 
prevalent issue by randomizing the computation and perturbing agents’ utility values. In turn, 
the final assignment may not always be optimal, i.e., with P-Gibbs, there is a drop in solution 
quality.

Another crucial advantage of DP is the scalability of P-Gibbs. Since our privacy guarantees 
do not depend on computationally heavy cryptographic primitives, we conduct experiments 
on much larger problems than existing algorithms (e.g., [3, 17]). P-Gibbs’ run time remains 
the same as SD-Gibbs in contrast to private DCOP algorithms based on cryptographic primi-
tives (e.g., [18, 19, 28]).

7  Conclusion

In this paper, we addressed the problem of privacy-preserving distributed constraint optimi-
zation. With our novel algorithm – P-Gibbs, we are the first to show a DP guarantee for the 
same. Using the local DP model, our algorithm preserves the privacy of unrelated agents’ 
preferences. This guarantee also extends to the solution. We also achieve high-quality solu-
tions with reasonably strong privacy guarantees and efficient computation, especially in meet-
ing-scheduling problems.

Table 5  Empirically evaluating Assignment Distance for SD-Gibbs and P-Gibbs. Note that AD → 0 implies 
greater privacy protection, while AD → 1 implies maximum information leak

Benchmark Assignment distance (AD)

SD-Gibbs P-Gibbs 
(� = 0.046)

P-Gibbs 
(� = 0.662)

P-Gibbs 
(� = 9.55)

Graph-coloring 0.553 0.253 0.275 0.288
Meeting-scheduling 0.71 0.623 0.624 0.64
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7.1  Future Work

As a first attempt at providing a differential privacy guarantee for DCOPs, we focused on the 
classical DP notion in this paper. Using the notion of Bayesian DP [49] may further improve 
the (�, �) guarantees. More concretely, with Bayesian DP, we may be able to estimate the pri-
vacy cost ct(�) with the agent’s actual distribution (instead of the worst-case for all agents). 
We remark that such an estimation is non-trivial as it may require certain assumptions of other 
agent’s distribution. We leave the analysis for future work.

Alternatively, one can further enrich our DCOP model by relaxing the assumption of 
domains being the same for each agent while ensuring meaningful privacy guarantees. Con-
cerning P-Gibbs, we can also perform experiments on real-world datasets to further fine-tune 
the algorithm’s hyperparameters.

Appendix 1 Comparing P‑Gibbs’ quality of solution with DPOP

Complete algorithms like DPOP fail to solve sufficiently large problems. More concretely, 
in our experiments, the pyDCOP’s DPOP solver timed out after 24 h for (i) an Ising bench-
mark instance with 10 variables/agents, (ii) a graph-coloring benchmark instance with 12 
variables/agents and |D| = 8 , (iii) a meeting-scheduling benchmark instance with 25 vari-
ables/agents and |D| = 30 . Recall that in Sect. 6, we conduct experiments on significantly 
larger problems than these.

Fig. 6  The average and standard deviation of P-Gibbs’ Solution Quality (SQ) for different privacy budgets, 
compared to DPOP. Note that, the case with � = 0.046 corresponds to P-Gibbs∞ as � = ∞
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As private algorithms built atop DPOP (i.e., P-DPOP, P 3∕2-DPOP and P 2-DPOP) use 
computationally expensive cryptographic primitives, these algorithms are less efficient 
than DPOP [3, 17]. Given this evidence, we conclude that P-Gibbs is significantly more 
scalable than the DPOP family of algorithms.

Next, we want to compare the quality of solutions given by the DPOP family of algo-
rithms and P-Gibbs. As each of P-DPOP, P 3∕2-DPOP, and P 2-DPOP do not any noise/ran-
domness to the computation process, it suffices to compare the solution quality of DPOP 
and SD-Gibbs (refer Definition 6). We begin by setting up the benchmark problems.

Solution Quality

Benchmarks. As in Sect. 6, the instances are created using pyDCOP’s generate option.7

1. Ising [23]. We generate 5 sample Ising problems with variables/agents between [5, 8] 
and Di = {0, 1},∀i . The constraints are of two types: (i) binary constraints whose 
strength is sampled from U[�, �] where � ∈ [1, 10) and (ii) unary constraints whose 
strength is sampled from U[−�, �] where � ∈ [0.05, 0.9) . Ising is a minimization problem.

2. Graph-coloring (GC). We generate 5 sample graph-coloring problems. The problems 
are such that the number of agents/variables lies between [8, 12] and agents’ domain 
size between [10, 20). Each constraint is a random integer taken from (0, 10). Graph-
coloring is a minimization problem.

3. Meeting-scheduling (MS). We generate 5 sample meeting-scheduling problems. The 
problem instances are such that the number of agents and variables lies between [15, 20] 
with the number of slots, i.e., the domain for each agent randomly chosen from [20, 30]. 
Each constraint is a random integer taken from (0, 100), while each meeting may ran-
domly occupy [1, 5] slots. Meeting-scheduling is a maximization problem.

Results. Fig. 6 depicts the results. As previously observed in Fig. 4, P-Gibbs’ solution qual-
ity improves as the problem size (m) increases. As DPOP does not scale, we see that the 
solution quality remains around 50–75%, with an increase in the quality with an increase in 
� . Furthermore, as P-DPOP, P 3∕2-DPOP, and P 2-DPOP do not add noise/randomness in the 
solution process, we argue that these results, although hold for them.

Appendix 2 Comparing P‑Gibbs’ quality of solution with max‑sum

As P-Max-Sum perfectly simulates Max-Sum, i.e., preserves the solution of its underlying 
non-private counterpart [18, Theorem 4.1], we now compare P-Gibbs’ quality of solution 
with that of Max-Sum. We begin by generating the benchmark instances.

Benchmarks. As in Sect. 6, the instances are created using pyDCOP’s generate option. 
We use similarly sized problems as in the experiments in Sect. 6. 

1. Ising [23]. We generate 5 sample Ising problems with variables/agents between [10, 20) 
and Di = {0, 1},∀i . The constraints are of two types: (i) binary constraints whose 

7 Compared to the instances created in Sect. 6, we only scale down the number of variables and the domain 
size while keeping the nature of the constraints the same.
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strength is sampled from U[�, �] where � ∈ [1, 10) and (ii) unary constraints whose 
strength is sampled from U[−�, �] where � ∈ [0.05, 0.9) . Ising is a minimization problem.

2. Graph-coloring (GC). We generate 5 sample graph-coloring problems. The problems 
are such that the number of agents/variables lies between [50, 100] and agents’ domain 
size between [10, 20). Each constraint is a random integer taken from (0, 10). Graph-
coloring is a minimization problem.

We omitted meeting-scheduling from this set of experiments, as Max-Sum did not perform
Results. For both Ising and GC, the solution quality remains > 1 . That is, P-Gibbs con-

sistently outputs better solutions than Max-Sum. The quality also improves as the privacy 
budget, � , increases from 0.046 to 9.55. 

Runtime. Here, we show that while P-Max-Sum perfectly simulates Max-Sum, it does so 
with a significant computational overhead. More concretely, from [18, Section 6.2], we know 
that P-Max-Sum’s computational overhead (compared to Max-Sum), for any iteration and 
each node is quadratic in the domain size. E.g., from [18, Section 6.7], for random graphs, 
the runtime increases from 100 s for |D| = 3 , to 242 s for |D| = 5 and 450 s for |D| = 7.

With this, we conclude that P-Gibbs’ performance is comparable to Max-Sum (Fig. 7) 
and, importantly, without the significant computational overhead of P-Max-Sum.

Comparing P-Gibbs, P-RODA and P-Max-Sum. From Table 1, P-RODA [27] satis-
fies topology, constraint, and decision privacy. In terms of performance, P-RODA finds 
better quality solutions than P-Max-Sum [27]. With Fig.  7, we also see that P-Gibbs 
provides better quality of solution than Max-Sum (and, consequently, P-Max-Sum). 
Given these observations, we believe that the solutions of P-Gibbs and P-RODA may be 
comparable.

Furthermore, our differentially private variant is significantly less computation-
ally expensive than P-RODA. For instance, in [27, Figure  8], we see that there is a 

Fig. 7  The average and standard deviation of P-Gibbs’ Solution Quality (SQ) for different privacy budgets, 
compared to Max-Sum. Note that, the case with � = 0.046 corresponds to P-Gibbs∞ as � = ∞
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non-linear increase in P-RODA’s runtime with an increase in the domain size. In fact, 
P-RODA takes (a minimum of) ≈ 200 seconds for an iteration when the domain size is 
25 [27, Figure 8]. In contrast, P-Gibbs takes ≈ 300 and 25 s to complete 50 iterations for 
randomly generated instances of graph-coloring and meeting-scheduling for the same 
domain size and 100 agents.

Appendix 3 Explaining P‑Gibbs’privacy protection for varying �

To measure the proximity of the assignments between the maximum distribution values, 
we introduce the metric: Assignment Proximity. The critical difference between Assign-
ment (AD) Distance and Assignment Proximity (AP) is that while AD compares the 
distance between the overall assignment distribution, AP compares the distance between 
the most probable assignment and a random assignment.

Assignment Proximity

Consider the following definition.

Definition 8 (Assignment Proximity (APA )) We define Assignment Proximity (APA ) of a 
DCOP algorithm A as the L2-distance between the vector of the most probable assignment 
for each variable across l runs with the vector of the random assignment. Formally,

where 1p is a p-dimensional unit vector, xk
i
 is the final assignment of variable xi in the 

k ∈ [l] run, ��������(⋅) is a function which outputs the most frequently occurring value 
given an input vector and xfi is the most frequent assignment of variable xi.

The intuition behind introducing assignment proximity is that given APSD-Gibbs and 
APP-Gibbs , one can compare the proximity of P-Gibbs’ assignment to a random assignment 
with that of SD-Gibbs. A greater value of APSD-Gibbs will imply that with SD-Gibbs, each 
variable is being assigned a particular domain value with high probability, in turn encoding 
maximum information. In contrast, a lower value of APP-Gibbs will imply that with P-Gibbs, 
each variable is being assigned a particular domain value with probability closer to random 
(i.e., 1/|D|). By comparing the assignment proximity values, we can explain the increased 
privacy of P-Gibbs.

Experimental Evaluation

To better visualize assignment proximity, we empirically derive the values of it for the two 
DCOP benchmarks, graph coloring and meeting scheduling.

Instance Setup. For graph coloring, we have 30 agents/variables with domain size 10 
and each constraint between (0, 10]. For meeting scheduling, we have 30 agents/variables 
with domain size 20 and each constraint between [−1000, 10]⧵{0}.

(14)APA =

‖‖‖‖‖‖

(
xfi ∶ ��������(x1

i
,… , xl

i
)

l

)

i∈[p]

−
1

|D| ⋅ 1p

‖‖‖‖‖‖2
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Results. We run both the benchmark instances l = 20 times and report the correspond-
ing assignment proximity (AP) values in Fig. 8. From the table, observe that AP value for 
P-Gibbs is ≈ 50% less than that for SD-Gibbs. This shows that P-Gibbs’ final assignment 
encodes less information compared to SD-Gibbs’, in turn, better preserving constraint pri-
vacy. Moreover, as � increases, the decrease in the noise added and increase in subsampling 
probability results in an increase in AP values for P-Gibbs as the algorithm behaves more 
like SD-Gibbs.
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