
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:41
https://doi.org/10.1007/s10458-023-09623-8

1 3

UPDATE

Generating and choosing organisations for multi‑agent
systems

Cleber J. Amaral1,2 · Jomi F. Hübner2 · Stephen Cranefield3

Accepted: 5 September 2023 / Published online: 24 September 2023
© Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The design of organisations is a complex and laborious task. It is the subject of recent
studies, which define models to automatically perform this task. However, existing models
constrain the space of possible solutions by requiring a priori definitions of organisational
roles and usually are not suitable for planning resource use. This paper presents GoOrg,
a model that uses as input a set of goals and a set of available agents to generate differ‑
ent arrangements of organisational structures made up of synthesised organisational posi‑
tions. The most distinguishing characteristics of GoOrg are the use of organisational posi‑
tions instead of roles and that positions are automatically synthesised rather than required
as a priori defined inputs. These characteristics facilitate the parametrisation, the use for
resource planning and the chance of finding feasible solutions. This paper also introduces
two model extensions, which define processes and constraints that illustrate how GoOrg
suits different domains. Among aspects that surround an organisation design, this paper
discusses models’ input, agents’ abstractions and resource planning.

Keywords  Organisation design · Organisational structure · Automated design

1  Introduction

An agent is a software entity that has particular beliefs, goals and capabilities, and
exhibits some autonomy in the sense that it determines how it will achieve its goals [1,
2]. Usually, an agent is not alone in the environment it is situated, i.e., it is part of a

 *	 Cleber J. Amaral
	 cleber.amaral@ifsc.edu.br

	 Jomi F. Hübner
	 jomi.hubner@ufsc.br

	 Stephen Cranefield
	 stephen.cranefield@otago.ac.nz

1	 Área de Telecomunicações, Instituto Federal de Santa Catarina, R. José Lino Kretzer,
São José 88103‑902, SC, Brazil

2	 Automação e Sistemas, Universidade Federal de Santa Catarina, R. Agronômico Ferreira,
Florianópolis 88040‑900, SC, Brazil

3	 Information Science, University of Otago, Clyde Street, Dunedin 9016, Otago, New Zealand

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09623-8&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 2 of 46

Multi-Agent System (MAS). The autonomy of agents in a MAS requires some mecha‑
nism to organise and coordinate them to achieve the system’s goals [3]. Organisations
are used to address this issue by promoting a coherent mechanism, which constrains and
enforces acceptable behaviour of agents [3–5]. Notice that organisations are independ‑
ent of the agents, thus organisations and agents are usually designed using independent
models and tools [6]. Additionally, the design of organisations is arguably as important
as the design of the agents [7, 8].

The design of organisations is a laborious task, especially when there are many goals,
constraints and agents [9]. In the last decades, researchers have created many organisa‑
tional design models [5, 10–13]. Due to the specificity of each case and the high number
of variables that surround the design process, no existing model can be considered a
decisive solution [13]. Indeed, it is challenging to define an effective, flexible and easy
to parametrise design model. This paper presents GoOrg, an MAS organisational design
model for automatically generating organisations, which addresses these issues.

GoOrg considers that organisational structures are composed of organisational posi‑
tions, which can be arranged into many shapes. It also considers that agents can occupy
organisational positions and commit to their assigned goals. As input, GoOrg expects a
set of goals and a set of available agents. The set of goals are used to synthesise organi‑
sational positions. Given a set of available agents, the organisational structures’ feasibil‑
ity can be checked.

Existing models for generating organisational structures for MAS [5, 10–13] use the
concept of roles, considering that agents and roles have many-to-many relationships.
Although intuitive, the concept of roles does not ease planning resource use and check‑
ing organisation feasibility. GoOrg uses organisational positions instead, which have
one-to-one relationships with agents [14], thus an organisational structure made up of
positions reflects resource demands. This allows the user to know in advance (at design
time) the required resources for an organisation to run. Above all, it is relevant when the
agents are physical devices that have to be available and usually must be allocated to a
unique operation at once. In an organisation based on GoOrg, this robot occupies a par‑
ticular position synthesised by the model.

Existing models expect roles as input, which means that roles should be defined a
priori by the user. This restricts the set of solutions, possibly making it infeasible to find
a structure to be filled by the available agents. In contrast to related works, in GoOrg,
organisational positions are synthesised. With synthesised positions, a broader range of
possible solutions can be generated, increasing the possibility of finding structures filla‑
ble by the available agents. Besides, a generator that automatically synthesises positions
from goals relieves the user from the task of defining roles.

This paper also introduces GoOrg4Prod and GoOrg4DSN, extensions of GoOrg for
two case studies. They illustrate how GoOrg can be customised for different purposes by
selecting particular constraints and defining particular processes.

The structure of this paper is as follows: Sect. 2 presents a background of the auto‑
mated organisation design research area and the state of the art of automated organisa-
tional structure generators, a class of generators in which GoOrg is included; Sect. 3
describes the GoOrg generic model; Sect. 4 presents GoOrg4Prod, an extension of
GoOrg for a factory domain; Sect. 5 presents GoOrg4DSN, an extension of GoOrg for
the Distributed Sensor Networks (DSN) domain; Sect. 6 discusses organisation design
aspects comparing GoOrg to other approaches; and Sect. 7 presents conclusions and
suggestions for future work.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 3 of 46  41

2 � Organisation design models

This work proposes an automated design model for generating organisations. It often uses
the terms organisational design model and organisation generator interchangeably. In fact,
a model is an abstraction of a system under study [15]. This work considers that a generator
is a model since each class of generators abstracts organisations in a distinctive approach
by undergoing some kind of transformation process. Our research is focused on the abil‑
ity to automatically conceive specifications of organisational structures. The generation of
organisational structures is mainly performed at design time. Still, there are works not cov‑
ered in this research, that instantiate specifications and orchestrate the MAS at run time.

Although this work is focused on automated design models, it is worth contextualising
the broad research area of organisational design models. Different design models can be
placed into categories and classes.1 The first categorisation is set from the research area
and the kind of organisational members. There are studies in the administration research
field for designing organisations for humans and in the computing area, which is mainly
concerned with designing organisations of software. Focusing on the design of organisa‑
tions of software, there are the subcategories of automated and non-automated models, and
organisations of autonomous and non-autonomous entities. Finally, in the matter of this
work, it is considered that automated design models are in different classes. Figure 1 pro‑
vides an overview of the works that lie under the referred categories and classes. Following
this, the categories and classes are detailed.

The design of organisations is a long-standing research topic in the administration
research field. This field is concerned with organisations formed by humans, such as com‑
panies. Most works propose frameworks that state an organisation model and issues to be
solved (often iteratively). According to the kinds of tasks, the job can be split into functions
and, for instance, if the organisation is geographically distributed, it may require depart‑
ments for different regions. Among the spawned models are the iterative method proposed
by Stoner (1999) [16], the Star Model proposed by Galbraith (1995) [9], the step-by-step
framework proposed by Burton (2011) [17] and the design process introduced by De Pinho
(2006) [18].

In the design of organisations of software, there are many studies of Service Composi-
tion, which can orchestrate applications by defining sequences of commands and manag‑
ing communication among Web services [19]. Service Composition has no concern about
the degree of autonomy of the software artefacts it is orchestrating. Also, there are many
studies of organisations formed by computational agents, i.e., autonomous entities, which
is a research subject of the MAS community.2 The models for designing organisations for
Service Composition and for MAS also can be placed into the subcategories of non-auto‑
mated and automated models. The former models require the definition of the organisation
from the user (engineer), and the latter uses artificial intelligence to automatically generate
organisations [19–21].

Considering just models for designing organisations for MAS, some examples
of non-automated organisation generators are STEAM [22], AALADIN [23] and
Moise

+ [24]. These models allow explicit organisational design in a variety of struc‑
tures considering aspects such as norms, roles, relationships, organisational goals,

1  The term “class” is being used to refer to something more specific than a category.
2  Since both humans and agents have some degree of autonomy, there is an intersection between studies of
organisations of MAS and studies of organisations of humans.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 4 of 46

and ontologies. They are problem-driven approaches, and the organisation’s design is
specified by a human (the user/engineer). However, this study is focused on automated
computational organisation generators, i.e., those that automatically generate organi‑
sations through computational processes.

To dive into the particular subcategory of automated models, this section presents
the current state of the art of automated computational organisation generators. It is
structured as follows: the next sections present three classes of automated organisa‑
tion generators: Sect. 2.1 presents automated organisational design by task planning;
Sect. 2.2 introduces self-organisation approaches; and Sect. 2.3 presents automated
organisational structure generators. This work is situated in the third class of organi‑
sational structure generators, which is the only one that focuses on generating explic‑
itly modelled organisations [25, 26].

2.1 � Automated organisational design by task planning

Automated organisational design by task planning is the first class to be introduced.
Generators in this class usually create problem-driven organisations, for specific and
often short-term purposes. The organisational structure, when it exists, is not explicit,
and it is frequently a non-intended result of a task allocation process. Such generators
are focused on solving a given problem by decomposing tasks, allocating them and
sending plans to available agents. Usually, there are no roles in this context; the agents
are already named and have received their responsibilities somehow. They typically
cooperate by fulfilling their tasks. In this sense, a common goal is achieved when a
number of tasks are achieved by the organisational members (agents). For instance,
a marketplace organisation that has the goal do business achieves it when a member
achieves the goal sell product and another member achieves the goal buy product. In
this particular class, the automated planning community has produced many contribu‑
tions to MAS design.

An earlier study on planners able to generate organisations is TÆMS [27]. This
domain-independent framework provides a way to quantitatively describe indi‑
vidual tasks that are performed in shared environments. It does not use the concept
of roles. Tasks, which are slightly similar to goals, are allocated directly to agents.
This approach proposes mixing perspectives from traditional task planners, i.e., prob‑
lem-driven, and self-organisation, which are experience-driven approaches. Sleight
(2014) [28] presents an agent-driven planner from a similar perspective, but using the
Decentralised Markov Decision Process model. It considers the organisation as a first-
class object with a dynamic response to environmental changes. There are no goals in
this domain-independent approach; it uses rewards in stochastic environments instead.
The concepts of roles and explicit structures are also absent.

Cardoso [29] has proposed a domain-independent model called Decentralised On-
line Multi-Agent Planning (DOMAP). This task planner first creates factored repre‑
sentations for each agent, based on their limited vision. The second step is to assign
goals to agents according to estimations. Following that, agents effectively plan indi‑
vidual actions without sharing private details. Finally, the allocated agents execute
their plans. Although the algorithm does not use explicit organisation in the allocation
process itself, it can use an organisational structure as input to fill the roles with avail‑
able agents.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 5 of 46  41

2.2 � Self‑organisation approaches

The second class uses self-organisation approaches, which is often referred to as Organi‑
sation Self-Design (OSD). In this class, the organisations emerge from the dynamics of
the scenario, usually defined by the agents’ common interests and interactions [30]. The
resulting organisations are flexible, may operate continuously, have overlapping tasks,
formed by named agents, have no external or central control, no hierarchy, and informa‑
tion flows among agents in many directions [31]. The organisational structure is usually
a non-intended ephemeral outcome of this bottom-up process, i.e., it is a result of arbi‑
trary and temporary situations. For instance, the agent that first achieves a goal leads a
team to achieve the next goal. The target of this method is to solve some problem and
not precisely design an organisation [12]. Self-organisation approaches are more concerned
about coordination policies and less concerned about the generated organisational structure
itself [32].

In one of the earlier studies, Ishida et al. [33] has presented an adaptive self-design
approach which creates and destroys agents to allocate tasks according to resources and
environmental changes and needs. Decker et al. [34] proposed an approach for adapta‑
tion of MAS on the organisational, planning, scheduling and execution levels. It uses the
cloning technique in the execution phase, which is the action of creating a clone agent
to partially or totally transfer tasks.3 A study presented by So and Durfee [13] character‑
ises different organisational designs and includes self-organisations and the reconfiguration
process for stable organisations. This study also proposes a way to evaluate the organisa‑
tion’s design. In another work, Kamboj and Decker [36] extended the study performed
by Decker et al. [34], adding a task representation framework, enabling this new method
to become domain-independent and to reason about quantitative aspects of tasks. There
are some studies on self-organised swarms based on computationally limited agents, which

Organisation
Design Models

humans

software

kind of
members

yes

no

automated
model?

yes

no

autonomous
members?

Galbraith's
Star Model

Burton's
Step-by-

step

Service
Composition
approaches

MAS
community's

studies

Ferber's
AALADIN

Tambe's
STEAM

task
planners

self-
organistions

structure
generators

Decker's
TAEMS

Sleight's
approach

Cardoso's
DOMAP

Ishida's
approach

So and
Durfee's
approach

Labella's
approach

Sierra's
SADDE

DeLoach's
OMACS

Sims's
KB-ORG

Horling's
ODML

GoOrg

Stoner and
Freeman's

method

De
Pinho's
process

Hubner's
Moise

Krausburg's
coalitions

Fig. 1   Design model categories

3  The cloning mechanism is used by agents when predicting or perceiving overload [35].

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 6 of 46

often do not even know about the presence of other agents and that are coordinated by sim‑
ple mechanisms [31, 37].

More recently, Kota et al. [38] presented a decentralised approach in which agents can
reason about adaptations to modify their structural relationships when there are opportuni‑
ties for improving the system performance. Ye et al. [39] joined cloning and spawning
functions in their self-design method. In this approach, besides cloning, when overhead is
detected, an agent is also able to delegate a task when it is detected that the agent cannot
perform the task at a certain time.

Ohta et al. [40], Rahwan et al. [2], Krausburg et al. [41] and other studies on coali‑
tions are also included in this class of organisation generators. These approaches differ in
some characteristics compared to other self-organisation approaches as they usually have
centralised information and algorithmic process that could not be considered a bottom-
up sequence. However, they do share other characteristics of self-organisation approaches
as they usually generate organisations of named agents, the organisations have little rela‑
tionship definitions fostering to handle overlapping tasks and have information flowing in
many directions.

2.3 � Automated organisational structure generators

Finally, the third class is that of automated organisational structure generators. It is
concentrated on defining goals, examining the organisational environment, allocating
resources, and generating organisational structures [25]. It considers inputs such as organi‑
sational goals, available agents, resources and performance targets, producing explicit
organisation definitions, which may include roles, constraints, assignments of responsibili‑
ties, hierarchy levels, and other relationships. In recent years, this class received little atten‑
tion. Studies on task planning have attracted interest for a while, and in recent years, stud‑
ies on self-organisations have gained even more attention. Nevertherless, the automated
organisational structure generators are the only ones that carefully design organisations as
first-class abstractions [12]. This paradigm of conceiving about organisations treats them
as separate from the environment and the agents. This has a number of benefits, one of
which is that it supports the separation of concerns in a MAS which is a strategy to deal
with complex systems.

This work is in this particular class. The adopted definitions for organisation and organi‑
sational design, as follows, are adherent to this particular class of organisation generators.

2.3.1 � Structure generators’ background

According to Pattison et al. [42, p. 88], “organisation design is the problem of choosing
the best organisation class—from a set of class descriptions—given knowledge about the
organisation’s purpose (goal, task, and constraints on the goal) and the environment in
which the organisation is to operate”. This definition assumes that the design is rational
and built as a top-down process. This approach is commonly used to create explicit organi‑
sations. When organisations are explicit entities, agents and designers can reason about the
organisation itself, facilitating its improvement.

As stated by McAuley et al. [43, p. 12] organisations are “collectivities of people whose
activities are consciously designed, coordinated and directed by their members to pursue
explicit purposes and attain particular common objectives or goals”. Pattison et al. [42,
p. 64] define an organisation as “a group of one or more individuals whose purpose is

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 7 of 46  41

to perform some set of tasks in an attempt to achieve a set of goals while observing a set
of constraints”. For Katz and Kahn [44], an organisation is “a system of roles” and “the
psychological basis of organisational function are seen in terms of motivation to fulfil the
roles”. For this class, an organisation is represented by a structure of organisational roles or
positions and their relationships, and agents occupy these positions, cooperating to achieve
the organisational goals. In this sense, the organisation and the agents are separate entities.
Consequently, agents can reason about the organisation, they can enter or leave it, they can
change or adapt it, and they can obey or disobey its rules [45].

Notably, the definition given by Katz and Kahn [44] mentions organisational roles,
which are impersonal representations used as interfaces between the organisation and
agents. A role is defined as “an abstract representation of an agent function, service, or
identification within a group” [23, p. 130], and roles “can be seen as place-holders for
agents and represent the behaviour expected from agents by the society design” [46, p. 2].
A role refers to a set of responsibilities, often materialised as one or more organisational
positions to be occupied by agents.

Many studies of what is known as contingency theory point out that there is no one best
way to design organisations and no general principles for all situations [13]. One may even
say that organisations, as instances of design models, cannot be considered absolutely right
or wrong because it depends on the attribute in focus. An organisation may exist for many
purposes and can be inserted into different environments and contexts. For instance, com‑
panies positioned in competitive markets have to achieve some set of goals using minimal
resources, delivering some specified quality as soon as possible. Other organisations exist
for other purposes such as common safety, knowledge sharing, technological improve‑
ments, social assistance and health care, and so on. Indeed, the concept of “best” is subjec‑
tive, so it is supposed to be defined by the user (engineer).

In this class, the organisational structure (social structure or simply “structure”) is the
most essential element of an organisation. As stated by Mintzberg [47, p. 2], a structure
can be defined as “the sum total of the ways in which its labour is divided into distinct
tasks and then its coordination is achieved among these tasks”. It represents the existing
positions of an organisation, showing the hierarchy, relationships, and responsibilities [48].
It refers to an administrative instrument resulting from identification, analysis, ordering and
grouping of activities and resources of companies, including decision processes to achieve
the expected goals [30]. The structure is intrinsically linked to many other organisational
aspects. Besides, as pointed out by Durfee et al. [49, p.1280], “an organisational structure
specifies a set of long-term responsibilities and interaction patterns”, and it “provides guid‑
ance without dictating local decisions”. Notably, the structure is a staple of organisational
design [50]. The inseparability of organisation and structure concepts is observed in differ‑
ent studies in which correlated categorisations are presented [16, 25, 51, 52]. In this class,
organisations are described by their structures. From organisational structure descriptions,
organisations can be instantiated to be occupied by agents in a running system.

Approaches based on organisational roles or positions tend to create formal organisa‑
tions in a top-down manner on the basis of organisational purposes, which are typically
stated as a set of goals. For many authors [53, 54], goals provide the first pillar of an organ‑
isational design, representing the organisation’s strategy. A goal is a desired state of the
world [4], and thus can be used to define the system’s overall behaviour [55].

An organisation can be seen as a subsystem embedded in a supersystem: the environ‑
ment. The environment provides inputs to its subsystems and consumes their outputs [25].
Organisations are diverse in kind and form according to their purposes and environments.
Arguably, it is practically impossible to address particularities of all sorts of organisational

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 8 of 46

purposes and environments. For this reason, domain-independent models in this class
allow the user to adapt the model for specific domains.

2.3.2 � State of the art

An earlier study in this class is Social Agents Design Driven by Equations (SADDE) [5]. It
uses as input mathematical models to predict efforts and create an organisational structure.
It is a comprehensive method for designing a MAS that starts from a manual process for
creating domain-specific equations. Then, it establishes the organisation, which is a semi-
automatic process. The last two procedures are the definition of agent models and the crea‑
tion of a MAS. All these phases are connected by defined transitions, including feedback
from the MAS to each earlier phase.

DeLoach and Matson [10] proposed another approach called Organization Model for
Adaptive Computational Systems (OMACS) (see also [56, 57]). It is an extension of the
work Multiagent Systems Engineering (MaSE), a methodology that among its functions
defines a way to identify roles from a given set of goals, in this case, aided by an a priori
definition of use cases. However, MaSE is not an automated model. OMACS proposes a
mathematical process in which agents are allocated into roles based on the capabilities that
an agent possesses, and what a role requires. To design an organisation, it needs goals,
roles, capabilities, and agent types as input. The model requires roles defined a priori. It
does not set hierarchy relationships directly but defines a function for setting relationships
in a generic way. Agents can also have a special kind of relationship to define a coordina‑
tion level.

Sims et al. [12] have proposed the model Knowledge-Based Organization Designer
(KB-ORG) to generate organisations for MAS. Their approach does a combinatorial search
over the space of candidate organisations describing both hierarchical and peer-to-peer ele‑
ments. The main improvement is a reduction in computing effort due to the segmentation
of application-level and coordination-level functions in the planning process. When an
application-level role is split among agents, the algorithm synthesises a coordination role.
The whole process allocates agents to roles, and resources to specific tasks, and creates
organisational coordination roles. As inputs, the algorithm has environmental conditions,
goals, performance requirements, role characterisations and agents’ capabilities. The out‑
puts are the allocation of agents to application-level and coordination-level roles. KB-ORG
uses quantitative models to define roles.

In another study, Horling and Lesser [11] introduced the Organizational Design Mod‑
eling Language (ODML). Their approach allows quantifying organisation models, which
can be used to predict performance and as a heuristic method to choose designs. They
argue that with this, it is possible to deduce how and why a design can be chosen over
others for a given context. An algorithm template produces a range of possible organisa‑
tion instances to be searched by the automated process. The organisation search space is
defined by decision points specified by variables and has-a relationships. The template is
similar to a structure of roles, showing their hierarchy and relationships. The algorithm cre‑
ates instances for all possible structures foreseen by the templates and, after that, searches
for the best one. ODML is considered both as a language and as a search-space algorithm
that creates and chooses organisation instances. The input includes organisation charac‑
teristics and node definitions. For instance, a role can be defined as a node in which the
desired behaviour of an agent that enacts such a role should follow. Other parameters that
should be defined are scenario constants, the cardinality of each node, relationships among

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 9 of 46  41

nodes, and constraints. The authors acknowledged that the approach’s drawbacks are the
level of effort necessary to build the models and the complexity of the algorithm response.

2.3.3 � Comparing structure generators

Table 1 gives an overview of Automated Organisational Structure Generators, the class of
generators that GoOrg belongs to. The models are being compared by their inputs, by char‑
acteristics of their organisational generation process, and their outputs.

In this particular class of generators, it is expected to start the organisational design
with the organisation strategy, i.e., the goals. In the first column, it is assessed whether
Goals are inputs. It can be considered that all the generators in this class have organisa‑
tional goals as their primary concern. Even the models SADDE and ODML, which require
agents’ behaviours instead of goals, can be considered as having goals as inputs since
the agents’ behaviours are usually defined to accomplish goals. The Do not need roles as
inputs column indicates if the generator needs a priori defined roles. The definition of roles
can be a complex task since it requires knowledge about the domain and available agents
to define which sets of responsibilities should be joined together. Even in a known domain,
such as a school, in which one may expect the roles of teacher, secretary and director, it
is possible to have less obvious roles, such as tutor and discipline coordinator. Indeed, it
is hard to know which roles a MAS should present. GoOrg is the only model that does not
require role definitions, easing the user’s parametrising job (this statement is further dis‑
cussed in Sects 6.1 and 6.4).

The column Has quantitative analysis describes the capability of generators to create
structures that take into account quantitative parameters. For instance, a model may be
parametrised with the expected effort to accomplish a goal, which helps the model gen‑
erate more accurate organisations considering the production scenario. Organisations are
explicit refers to models that use explicit organisation representations. Top-down design
approaches usually generate explicit organisations as entities, which agents and humans
can reason about. An explicit organisation is also a way for entrants to know their responsi‑
bilities in the system, easing their cooperation in achieving organisational goals. Is domain-
independent relates to models that are not restricted to any particular problem domain. All
the assessed models have these three mentioned features.

The next columns are related to the outputs of the generators. Synthesises Roles/Posi-
tions refers to the ability to automatically synthesise roles/positions. GoOrg is the only
model that is able to synthesise positions, which enlarges the search space, making it pos‑
sible to find more solutions to a given problem. For example, in the school domain among
the solutions generated by GoOrg, some positions have a set of responsibilities that are
usually delegated to what is known as a teacher, others to a secretary, tutor and so on. In
this sense, GoOrg synthesises positions that can be recognised as usual roles, and it may
also synthesise positions that could not be foreseen by the user (engineer). The Synthe-
sises coordination levels column represents the ability of the model to synthesise coordina‑
tion roles. KB-ORG specifically synthesises coordination roles/positions using quantitative
data to infer the need for coordination agents. GoOrg synthesises positions, placing them
into many combinations regarding their levels in hierarchies, producing both superordinate
and subordinate positions. In this sense, GoOrg can synthesise coordination levels because
some of the generated structures have coordination goals associated with superordinate
positions. Synthesise organisational norms indicates whether generators automatically cre‑
ate organisational norms, such as permissions and obligations, for each role of a MAS.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 10 of 46

Ta
bl

e 
1  

C
om

pa
ris

on
 a

m
on

g
au

to
m

at
ed

 o
rg

an
is

at
io

na
l s

tru
ct

ur
e

ge
ne

ra
to

rs

Le
ge

nd
: (

Y
)e

s,
(-

)N
o,

 o
n

th
e

(F
)u

tu
re

 w
or

k
an

d
(*

) s
ee

 c
om

m
en

ts

O
rg

an
i‑

sa
tio

n
ge

ne
ra

to
r

G
oa

ls

ar
e

in
pu

ts

D
o

no
t n

ee
d

ro
le

s a
s

in
pu

ts

H
as

qu

an
tit

at
iv

e
an

al
ys

is

O
rg

an
is

a‑
tio

ns
 a

re

ex
pl

ic
it

Is
 d

om
ai

n-
in

de
pe

nd
‑

en
t

Sy
nt

he
si

se
s

Ro
le

s/
Po

si
‑

tio
ns

Sy
nt

he
si

se
s

C
oo

rd
.

Le
ve

ls

Sy
nt

he
si

se
s

O
rg

. N
or

m
s

Sy
nt

he
si

se
s

de
pa

rtm
en

ts
B

in
ds

 a
ge

nt
s

an
d

ro
le

s/
po

si
‑

tio
ns

D
oe

s
re

so
ur

ce

pl
an

ni
ng

G
oO

rg
Y

Y
Y

Y
Y

Y
Y

*
F

Y
*

Y
Y

SA
D

D
E

Y
*

–
Y

Y
Y

–
–

-
–

Y
–

O
M

A
C

S
Y

–
Y

Y
Y

–
–

–
–

Y
–

K
B

-O
RG

Y
–

Y
Y

Y
–

Y
–

–
Y

–
O

D
M

L
Y

*
–

Y
Y

Y
–

–
–

–
Y

–

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 11 of 46  41

None of the works generate organisational norms. Synthesises departments refers to the
specific ability of the generator to create organisational departments automatically. GoOrg
can synthesise multiple hierarchies, which can form multiple organisations or departments
of an organisation.

Binds agents and roles column tells whether the model is doing agent allocations into
roles/positions. This feature shows that the model can suggest an allocation of the avail‑
able agents throughout the generated organisational structure. If all the roles/positions can
be filled, an organisation is considered feasible. Although all the assessed models are able
to check the organisation’s feasibility, they use roles. Roles do not ease the planning of
resources, since the dynamism of a role-based system (with many-to-many relationships
between agents and roles) makes the allocation of resources a very complex and hard-to-
determine task. These models can create instances of roles to register that a role is being
used a number of times. Although it is resembling the idea of an organisational position,
these models are unable to predict the number of agents needed to fill the structure (see
Sect. 6.2, for more details). In other words, other models estimate (plan) the number of
roles, not the number of agents that are necessary to a system. GoOrg, does resource plan-
ning because it uses positions instead of roles, positions reflect the need for agents.

In summary, the data presented in Table 1 indicates that the assessed models have in
common: (i) the (direct or indirect) use of goals as input; (ii) they generate explicit organi‑
sations; (iii) they are domain-independent; (iv) they bind agents and roles/positions; and
(v) they generate feasible organisations. However, most of the models are missing other
features in which GoOrg stands out: (a) GoOrg does not require roles as inputs; (b) it
automatically synthesises positions, which can be placed in different hierarchy levels; (c)
GoOrg produces multiple hierarchies such as organisations or departments of an organisa‑
tion; and (d) GoOrg is the only model that uses the concept of positions, which facilitates
resources planning.

Finally, it is essential to point out that there is no single type of organisation suitable for
all situations [58]. It is also true that there is no individual approach ideal for creating all
organisations [48]. Each technique offers some advantages that the others may lack, espe‑
cially regarding different organisation generator classes.

3 � GoOrg model

This section presents GoOrg, a model for automatically designing organisations, expressed
as structures composed of organisational positions. As stated by Seidewitz [59, p. 2], “a
model is a set of statements about some system under study”. GoOrg is a generic model.
Its applicability to specific domains lies with the addition of elements and constraints as
required by the domain. Thus, GoOrg needs to be extended (specialised) to the domain it is
being applied.

In fact, there is a diversity of domains in which organisations are used. For instance, one
may want to design organisations of agents for the production of a factory, or for tracking
objects of interest, or for rescuing victims of a calamity. Each domain may have particular
requirements and indicators of interest. For instance, a factory is concerned with moving,
assembling and efficiency; tracking is concerned with identification and vision coverage;
and rescue work is concerned with finding, supporting and minimising the impact of a
calamity.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 12 of 46

GoOrg defines elements and relationships between them. Figure 2 presents an overview
of GoOrg.4 The shaded shapes represent the elements of the model. The hollow shapes
represent attributes of an organisational structure. The solid lines indicate relationships
with their cardinalities, in which filled diamonds indicate compositions, hollow diamonds
indicate aggregations, hollow arrowheads indicate inheritances and no arrowhead indicate
associations.

In the following, the model is presented in detail. Section 3.1 describes GoOrg from the
perspective of the model’s elements; Sect. 3.2 describes GoOrg from the perspective of
organisational structure attributes. and, Sect. 3.3 highlights GoOrg characteristics and the
differences between the generic model and its extensions.

3.1 � GoOrg elements

The GoOrg model considers only essential elements for an organisation’s design: goals,
agents, organisational positions, features and the organisational structure. Formally, each
element is described as follows.

A goal is a desired state of the world to be achieved by the organisation. An example of
a goal is to move a box from point A to point B or to track an object that is being perceived
by sensors. Formally, GoOrg defines a goal as follows.

Definition 1  (goal) A goal g is represented as a symbol, and the set of all goals is denoted
by G.5

An agent is an entity that acts to achieve the goals it is committed to. An example of an
agent is a robot that moves boxes across the floor or an application that solves factorials.
Formally, GoOrg defines an agent as follows.

Definition 2  (agent) An agent a is represented as a symbol, and the set of all agents is
denoted by A.

Positions are place-holders for agents in an organisation. They reflect the necessity of
agents for an organisation to function. The organisation’s goals are distributed across its
organisational positions. If a position is not assigned to any organisation’s goal, it is not
explicitly considered to be a part of the structure. The agent that occupies a position is in
charge of achieving the goals assigned with that position. Each position can only have one
agent in it at a time, and each agent can only occupy one position at a time. Formally, an
organisational position is defined as follows.

Definition 3  (position) A position p is represented as a symbol, and the set of all positions
is denoted by P. The goals assigned to p are specified by the function gp, considering that

g ∶ symbol, g ∈ G

a ∶ symbol, a ∈ A

4  The presented diagram follows the UML (Unified Modeling Language) class diagram convention for rep‑
resenting relationships between elements.
5  In this work, a symbol is a single constant term, e.g., “MoveBox” and “manage_sector_NW”.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 13 of 46  41

p must have at least one goal associated. The function ap specifies the agent occupying the
position p, considering that p is a “free position” when ap(p) = � , and that an agent cannot
be bound to more than one position.

To check if an agent can occupy a position, GoOrg compares the features that an
agent has to the features that the goals assigned to a position have. For instance, the
goal solve combinatorics can be associated with the feature solve factorials, represent‑
ing a requirement to fulfil the goal. Similarly, the agent calculator may have the feature
solve factorials representing something the agent is able to do. In this case, the agent
calculator is able to fulfil the goal solve combinatorics since it has the the requirement
solve factorials. In this regard, a feature is defined as follows.

Definition 4  (feature) A feature f is an n-tuple, in which the first element is a symbol.
Besides the first element, optionally, a feature may have other elements ( e2, ..., en ). The set
of all features is denoted by F. The function fg specifies the features required by a goal.
The function fa specifies the features an agent has.

GoOrg considers that each organisational structure is a particular description of an
organisation. GoOrg defines an organisational structure as follows.

Definition 5  (structure) An organisational structure o is represented as a tuple. It is com‑
posed of the already presented sets and functions G, A, P, F, gp, fg , fa and ap.

3.2 � Attributes of an organisational structure

Each generated organisation has attributes that quantify it. The model only defines the
attribute feasibility. The feasibility of an organisational structure is the ratio between
positions bound to agents and the total number of positions. It represents how viable it
is to fill the structure using the available agents. If every organisational position has an
agent to occupy it, the organisation is considered feasible.

Definition 6  (feasibility) The feasibility of the organisational structure o is represented as
�(o) , a real number in the range [0,1]. It is the ratio of the number of bound positions and
the number of all organisational positions of the organisation o (Eq. 1). The set B contains

p ∶ symbol, p ∈ P

gp ∶ P → 2G

∀p ∈ P, gp(p) ≠ {}

ap ∶ P → A ∪ {�}

∀p, p� ∈ P, (p ≠ p�) ∧ (ap(p) ≠ �) ∧ (ap(p�) ≠ �) ⇒ (ap(p) ≠ ap(p�))

f ∶ ⟨symbol, e2,… , en⟩, f ∈ F

fg ∶ G → 2F

fa ∶ A → 2F

o ∶ ⟨G,A,P,F, gp, fg, fa, ap⟩

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 14 of 46

the agents that are bound to positions in P (Eq. 2). The organisation is entirely feasible
( �(o) = 1) when every position is bound to an agent.

3.3 � Highlighted characteristics of GoOrg

GoOrg is a generic model for designing organisations which considers that an organisa‑
tion is represented by its structure of positions. The organisational goals are assigned to
positions. Each position should be occupied by an agent. Based on the specifics of each
domain, the goals may have certain features that help to assign goals to positions and to
bind agents to them. In the generic model, features are defined in the generic sense, i.e.,
it has no specified meaning. The generic model includes goals, agents, features, posi‑
tions and structure given that these elements have been recognised as fundamental to all
domains.

For GoOrg, an organisational structure might have any form (shape). For instance, it
can be single positions with no relationships with each other, a group of positions with
clear relationships between them, or groupings of positions with relationships within
their own groups but none between them.

It is worth mentioning that the GoOrg model does not specify that the generation of
structures depends on the set of available agents. However, the set of available agents
is used to check the structure’s feasibility. If there is no available agent, no generated
structure is feasible. If the set of available agents changes over time, a new assessment
of the organisation’s feasibility must be made.

As GoOrg must be extended to address the requirements of each domain, this paper
presents two extensions: GoOrg4Prod, an extension of GoOrg for a factory domain; and
GoOrg4DSN, an extension of GoOrg for the DSN domain. Table 2 describes the generic
model elements that are present on its extensions, some of which are shared by the
domains shown and others of which are exclusive to a particular domain. As a generic
model, GoOrg does not specify any kind of relationship between positions. Indeed, even
a common kind of relationship such as “is superior of” is not considered generic as it is
not present in all kinds of structures (such as federations and holons [58]).

In both studied domains, a feature for quantifying the effort required to achieve a
goal was defined (called workload). However, it is shown that the definition differs by

(1)�(o) =
|B|
|P|

(2)B ={ap(p)|ap(p) ≠ �, p ∈ P}

Fig. 2   GoOrg model

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 15 of 46  41

domain, which makes it not generic. In addition, we recognise that there are alterna‑
tive approaches to quantifying the usage of a resource (such as the amount of sent data,
energy consumption, etc.), depending on the specifics of the domain. In Table 2, the
remaining defined features (skills, sectors, and indents) are already exclusive to a single
domain, i.e., they are truthfully not generic. The next sections give more details about
the elements and relationships that were defined for each domain.

GoOrg also does not specify a method for designing organisations. Although the pre‑
sented extensions (GoOrg4Prod and GoOrg4DSN) use the same search algorithm for gen‑
erating organisations, it can be seen that the processes slightly differ. Besides, we acknowl‑
edge that other techniques can be applied.

4 � GoOrg4Prod: an extension for a factory production line domain

GoOrg4Prod illustrates how GoOrg can be used in a particular domain.6 GoOrg4Prod gen‑
erates structures of positions responsible for production activities in a factory.7 In a particu‑
lar production process, the goals can be achieved by many organisation structures, but they
would perform differently in some characteristics. For instance, one may consider that it is
better to have interchangeable agents to provide more robustness, or it is better to have a
unique agent leading the others to get reports from a central unit, and so on. It is essential
to know in advance which kinds of agents are necessary to execute the specified production
process, notably when the agents are physical entities.

GoOrg4Prod synthesises positions generating organisations in which goals should be
achieved routinely by executing some workloads.8 To be able to execute workloads, agents
should have some skills. GoOrg4Prod matches agents and positions using skills. GoOrg-
4Prod uses workloads to calculate the organisation’s efficiency, which among other attrib‑
utes can be used to choose organisations based on the user’s preferences. It is assumed that
an external mechanism will pick the organisational structure indicated by GoOrg4Prod to
use it in the run time, orchestrating the agents according to the organisation’s definition.

The generation of hierarchical structures is considered in this domain. It is assumed that
the hierarchical levels of each organisational member are relevant for the MAS at run time.
In fact, a structure generated by GoOrg4Prod tells the places in the hierarchy and assigned
goals of the synthesised positions. The use of the hierarchy defined by GoOrg4Prod is
up to the running MAS (coded in the agents and/or an orchestrating mechanism—hich is
out of our scope). In a running MAS, for instance, agents must report the goals they have
accomplished to the agent occupying the top superior position. Roughly, hierarchies can be
expressed by organisational charts.9 As it is generating hierarchies, the structures present
the attributes height and generality, as later explained.

6  An implementation of GoOrg4Prod is available at https://​github.​com/​clebe​rjama​ral/​GoOrg​4Prod.
7  In this work, the term GoOrg4Prod refers to both a model’s extension and an implementation that can
generate organisation descriptions for a factory domain.
8  Notice that this particular approach is using a baseline of 24 h (a day in a factory).
9  There are criticisms arguing that organisational charts miss crucial aspects of organisational struc‑
tures [60]. Although charts are limited, they are suitable for the purposes of this work which focus on repre‑
senting superordinate-subordinate relationships.

https://github.com/cleberjamaral/GoOrg4Prod

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 16 of 46

A maximum capacity of handling workloads can be set on GoOrg4Prod to avoid
exceeding agents’ capacities. Figure 3 highlights the organisational attributes and features
added by GoOrg4Prod on extending GoOrg model.

As an illustrating application, it is considered a production line scenario in which the
head of a conveyor belt must be fed with items that are inside boxes, which need to be
moved from shelves. An external database must be accessed to get orders for items. The
system has to get boxes from shelves, move them to near the conveyor belt, and finally pick
items from boxes to place on the head of the conveyor belt. In this motivating scenario,
it is required to move a certain quantity of boxes a day in which it is predicted to spend
a certain time on each activity. Some skills are required to achieve these goals, they are:
db access, lift, move and pnp (pick and place). In this example, it is necessary to consult a
database for getting orders. Figure 4 illustrates how this scenario is modelled.

4.1 � GoOrg4Prod elements

GoOrg4Prod extends GoOrg elements by specifying two features: workloads and skills.
These features constrain the organisation design while synthesising positions, arranging
hierarchies and binding agents to positions.

From the agents’ perspective, it is considered that agents have skills. A skill s is defined
as a singleton tuple which belongs to the set S of all skills, as follows.

For achieving goals, it may be required the execution of workloads. A workload w rep‑
resents a demanded effort e ∈ ℝ

+ which requires a skill s ∈ S to be performed.10 In the
example of Fig. 4, there are four workloads: (i) the skill db access with a predicted effort of
0.1 h; (ii) the skill lift with a predicted effort of 4 h; (iii) the skill move with effort equals to
8 h; and (iv) the skill pnp with a predicted effort of 1 h. The function wg maps goals to their
workloads, as follows.

s ∶ ⟨symbol⟩, s ∈ S

Table 2   Generic and specific
elements of the models

Item/Model GoOrg GoOrg4Prod GoOrg4DSN

Goal element ✓ ✓ ✓

Agent element ✓ ✓ ✓

Structure element ✓ ✓ ✓

Position element ✓ ✓ ✓

Feature element ✓ ✓ ✓

“Is superior of” Relationship ✓ ✓

Workload Feature ✓ ✓

Skill Feature ✓

Sector Feature ✓

Intent Feature ✓

10  The model assumes that there is no difference in agents’ performance and all the given agents are fully
available to be used by the organisation.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 17 of 46  41

The set F of features, is composed of workloads and skills, as follows. To match positions
and agents only skills are used (the skills that agents have and skills that workloads require).

As a design choice, GoOrg4Prod considers that organisational positions may have super‑
ordinate-subordinate relationships, which are represented as “is superior of” relationships.
Such a relationship can be used by a running orchestrating mechanism, for instance, to
define which position is in charge of delegating small grain sized tasks or solving conflicts.
Indeed, a tree representing a hierarchy may have positions belonging to different levels.
The function sp(p) records the position p′ , which is the immediate superordinate of the
position p. If p has “no superordinate”, sp(p) = � . This function is defined as follows.

Since the relationship “is superior of” and the function wg is used by the generator, they
are being added as elements of the organisational structure. In this sense, the stated defini‑
tion of the structure (Definition 5) is replaced by the following formula.

An organisational structure is formed by one tree (hierarchy) or more, as a forest of hier‑
archies. A tree may be composed by only one position (having no superordinate and no
subordinates). A forest with all trees composed of only one position has all these positions
in the same hierarchy level, which is the flattest structure. It is also possible to have a forest
with only one tree. Among the generated structures, there may exist trees that are com‑
posed of similar positions but in different places in the hierarchies. For instance, in a fac‑
tory hierarchy, the position assembler is superordinate of the packer; in another hierarchy,
packer is superordinate of assembler; and in another, both are on the same level.

Finally, GoOrg4Prod has a few more parameters. In practice, agents have limited
capacity for performing workloads. In response to this practical issue, in GoOrg4Prod,
�p ∈ ℝ

+ is defined to represent the maximum workload allowed on each position. To
allow splitting goals into smaller ones when necessary, �g ∈ ℝ

+ is defined to refer to the
maximum grain size for workloads.

4.2 � GoOrg4Prod added attributes

GoOrg4Prod defines new attributes of an organisational structure. Based on superordinate-
subordinate relationships, the structure height is calculated. Based on how the goals are
distributed across positions, the generality of the structure is calculated. From the added
feature workload, the efficiency of an organisation can be quantified. These attributes are
represented in a three-dimensional space. Every generated organisation has a coordinate in
this space. Figure 5 illustrates the organisation attributes space.

Height refers to how centralised and bureaucratic an hierarchical organisation is, since
a long chain in a tree may imply that the organisation is very centralised, impacting its
decision-making model. Generality indirectly changes the shape of the structure, in both
the vertical and the horizontal directions, since it may impact on the organisation workflow.

w ∶ ⟨s, e⟩, s ∈ S, e ∈ ℝ
+, w ∈ W

wg ∶ G → 2W

(3)F = W ∪ S

sp ∶ P → P ∪ {�}

o ∶ ⟨G,A,P,F, gp, fg, fa, ap, sp,wg⟩

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 18 of 46

Besides, one may argue that generalist positions may improve robustness since other agents
would be able to take on responsibilities in case of an agent failing. Efficiency indicates
how close the combined capacity of the agents, which will occupy the generated positions,
is to the expected efforts considering the given goals.

The height of an organisational structure is defined as a ratio between the actual height
and the tallest hierarchy that GoOrg4Prod can generate from the input. The top level is
formed by all top superordinate positions (the positions that have no superordinate, i.e.,
sp(p) = � ). The next level contains all subordinates of the top superordinate positions. The
other levels follow the same idea.

Formally, the height of an organisational structure o is represented as �(o) , a real num‑
ber in the range [0,1]. Roughly, �(o) is the ratio between the actual height and the maxi‑
mum height that the model generates (Eq. 5). The function l(p) maps a position p to an
integer representing the hierarchical level that the position p is situated at (Eq. 4). The
function l(p) counts from the position p to its top superordinate position, one level for each
relative superior in the organisational structure. The longest chain of hierarchies (trees of
the structure) is defined by max(l(p)), for all p ∈ P . The cardinality of the set of goals (|G|)
represents the maximum chain of positions that the model produces.11

The generality of an organisational structure measures the similarity of positions con‑
sidering their assigned goals. The most generalist organisation has all goals assigned to

(4)l(p) =

{
0 sp(p) = �

1 + l(sp(p)) otherwise

(5)�(o) =

{
max
p∈P

(l(p))−1

|G|−1 |G| ≥ 2

0 otherwise

Fig. 3   GoOrg4Prod model

Fig. 4   A given set of goals with associated workloads 

11  |G| should be equal to or greater than 2 to generate different and comparable candidates.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 19 of 46  41

every position, i.e., all the agents would be able to play any position and perform any goal.
GoOrg4Prod can split a goal into smaller ones to assign it to multiple positions.

Formally, the generality of an organisational structure o is represented as �(o) , a real
number in the range [0,1]. Roughly, it is the ratio between the actual and the maximum
possible number of goals assigned to positions (Eq. 6). The set GP contains the recorded
goals for all positions (Eq. 7), and its cardinality is represented as |GP|. The minimal pos‑
sible number of goals spread across positions is given by the minimal of the cardinality of
G and the cardinality of P. The maximum possible number of goals assigned to positions is
given by |G||P|. In this sense, the maximum generality ( �(o) = 1) occurs when every posi‑
tion is assigned to every goal. In contrast, the minimum generality ( �(o) = 0), which repre‑
sents the most specialist organisation, has each goal assigned to only one position.

In GoOrg4Prod the efficiency of a structure o is represented as �(o) a real number in the
range [0,1]. In this context, it is given by the ratio between utilisation and capacity (Eq. 8).
The utilisation is given by the sum of workload’s efforts (in hours) associated with all
given goals.12 The organisation’s capacity is the number of positions of the organisational
structure times �p (the maximum workload’s efforts (in hours) allowed per position).

With these new attributes, GoOrg4Prod can quantify an organisation by height, generality,
feasibility and efficiency.

4.3 � GoOrg4Prod processes

GoOrg4Prod generates and chooses organisations in a chain of four subprocesses: (i) the
given goals in G are split down into smaller goals according to the granularities ( �p and �g )
set by the user; (ii) organisational positions are synthesised and structures are generated in
a process that searches the space with all possible organisations according to the supported
transformations; (iii) the positions of generated structures are bound to the given agents
and the feasibility of the organisation is calculated; and (iv) an organisation with positions
and bound agents is chosen. Figure 6 illustrates the referred subprocesses.13

(6)�(o) =
|GP| − min(|G|, |P|)
|G||P| − min(|G|, |P|)

(7)GP =
⋃
p∈P

gp(p)

(8)
�(o) =

∑
g∈G

∑
w∈wg(g)

�2(w)

|P|�p

12  �i(a) refers to the ith element of the tuple a.
13  Although this work is suggesting a method for organisation generation, it is not claiming it is the only
possible one.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 20 of 46

4.3.1 � Preparing goals for assignments

GoOrg4Prod splits the given goals into smaller ones according to a given workload grain
�g . In this sense, the goals of G that are set with more effort than the respective grain size
should split into smaller ones, creating the set G′ . Splitting goals allows assigning the same
goal (with less effort) to multiple positions, which may increase the generality of the final
organisation since it potentially creates interchangeable positions. This extension assumes
that achieving all parts implies the achievement of the original goal.

To exemplify, it is considered the set G illustrated in Fig. 4. This set has four goals
(FeedProduction, GetBox, MoveBox and PlaceBox) which are associated with work-
loads. Considering that the grain �g is set as 4 hours, the workload effort e = 8 of the goal
MoveBox is greater than �g , requiring to split this goal into smaller ones. To fit them to �g ,
MoveBox is split into two similar goals with half of the original effort. The resulting set of
goals that suit the given granularities are illustrated in Fig. 7.

4.3.2 � Generating organisations

GoOrg4Prod generation process is based on a state-space search algorithm. Each state rep‑
resents a partial or finished structure of organisational positions. The initial state is a struc‑
ture with no positions and all g ∈ G to be assigned to a position.14 Every goal assigned to a
position is a step towards building an organisational structure. The solution is an organisa‑
tional structure o with all g ∈ G assigned. The search algorithm uses a cost function based
on the user’s preferences. It first explores search states representing the most preferred
organisations. After building the most preferred solutions, the algorithm keeps building
other structures until there are no unexplored search states.

To generate a variety of structures, GoOrg4Prod apply three structure transformations
considering every goal in two stages. In the first stage, a new structure is generated assign‑
ing one goal g ∈ G to a new top superordinate position. In the second stage, each remaining
g� ∈ (G ⧵ {g}) is: (i) assigned to a new top superordinate position, i.e., it applies the same
transformation used in the first stage which creates a new tree in the forest; (ii) assigned to
new positions that are created to be subordinate of every p ∈ P ; and (iii) assigned to every
existing p ∈ P (no position is created). These transformations are detailed as follows.

Fig. 5   Organisational structure
attributes in three dimensions

14  To simplify, it is being considered that G = G� , i.e., G is the set of goals after some of them were split.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 21 of 46  41

In the first transformation, called addSuperiorPosition(g), a goal is assigned to a new
superordinate position. The new position is added to the set of existing positions P. The
assigned goal g is recorded by the function gp, the skills of the workloads of g given by the
function wp are recorded by the function fg (set S′ ) and the function sp records that p has
no superior. The set S′ records the skills that are associated to workloads, which stands in
for the skills an agent needs in order to occupy this new position. This transformation from
the structure o to the structure o′ is formalised as follows.15

In the second transformation, called addASubordinate(g, p�) , the goal g is assigned to
a new position p that is a subordinate of p′ . Thus, the new position is added to the set of
existing positions P. The goal g is assigned to the new position p, which is recorded by the
function gp. The skills of the workloads of g given by the function wp are recorded by the
function fg (set S′ ). The function sp records p′ as superior of p. This transformation is for‑
malised as follows.

In the third transformation, called joinAPosition(g, p), the goal g is assigned to an exist‑
ing position p. Thus, no new position is created, just g is assigned to the existing p being
recorded by gp(p). After assigning g to p, the skills of the workloads of g given by the
function wp are recorded by fg (set S′ ). This transformation is formalised as follows.

15  Barred arrow notation for elements are used to represent the mappings of a function, i.e., a ↦ b means b
is the image of a, such that a and b are elements of finite sets.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 22 of 46

These transformations are applied by the search algorithm on every state explo‑
ration. The Algorithm 1 specifies the successor states of the search. The set Gna has all
non-assigned goals and P has all positions of this state (according to the partial organisa‑
tional structure o). Each transformation creates a new state to be explored. For instance,
addSuperiorPosition(g) creates a state based on the current state (current partial o) assign‑
ing g to a new superordinate position in P and updating Gna . Each created state will be later
explored, and new successors may be created.16

Fig. 6   The four subprocesses of GoOrg4Prod 

Fig. 7   The set G′ of split goals for �
g
= 4

16  To generate successors of the created search states, the algorithm use G′
na

 such that G�
na

= Gna ⧵ {g}.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 23 of 46  41

GoOrg4Prod does not stop searching after finding a solution. Instead, it keeps exploring
all the search space. Thus, the final output is not only one solution, but a list of all possible
solutions.

4.3.3 � Binding agents and positions

GoOrg4Prod binds agents and positions matching their features. It allows the verification
of the organisation feasibility considering the available agents. As presented in Eq. (3), the
set of features F is formed by the sets of workloads and skills (both workloads and agents’
skills).

To bind agents to positions, GoOrg4Prod uses the First Fit algorithm. The available
agents in A are settled one-by-one into positions of the set P, using the skills in F to deter‑
mine if the agent a can occupy the position p. As mentioned, in this work, agents and
positions are one-to-one relationships. An agent a can be bound to a position p only if a
is not bound to another position and if a has all the necessary skills that p requires, i.e.,
fa(a) ⊇ {fg(g)|g ∈ gp(p) ∧ fg(g) ∈ S} . When the position p is bound with an agent a, then
ap(p) = a (Definition 5).

4.3.4 � Choosing organisations

GoOrg4Prod sorts the generated organisations according to their efficiency ( �(o) ), height
( �(o) ), generality ( �(o) ) and the complementary attributes (the inverse of each attribute).17

17  The complementary attribute is obtained as the complementary percentage. For instance, choosing � as a
criterion means there is a preferrence for structures with great � (structures as tall as possible). In this sense,
choosing 1−� means there is a preferrence for structures with � near zero (structures as flat as possible).

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 24 of 46

The user may define multiple criteria which follow a priority order.18 The organisation in
the highest ordering level of the priority criterion is considered the best candidate. If two
or more organisations are in the same ordering level, for a priority criterion, then the next
priority criterion is used. This subprocess is detailed as follows.

Let c be an ordering criterion ( c ∈ {�, �, �, 1−�, 1−�, 1−�} ) based on the organisa‑
tional attributes. Let � ∈ Γ be a natural number ( Γ ⊆ ℕ) , representing a priority order for
a criterion according to the user’s preferences, in which c1 is the most important criterion
for the user. Let c� (o) be a criterion value for the organisation o according to the priority � .
A partial order relation representing the user’s preferences is defined as >𝜌  , in which o >

𝜌 o′
means that o is preferred to o′ . If two criteria were set ( Γ = {1, 2} ), o >

𝜌 o′ is defined as:
o
>
𝜌 o� ⟺ [c1(o) > c1(o

�) ∨ (c1(o) = c1(o
�) ∧ c2(o) > c2(o

�))] which can be generalised
as stated by the following formula.19

4.3.5 � Computational complexity

GoOrg4Prod uses a blind search technique to generate structures, the breadth-first search
algorithm. On the one hand, it is complete and optimal; on the other hand, it is computa‑
tionally heavy. Considering n = |G| , Eq. (9) gives the worst estimation of the number of
states visited by GoOrg4Prod search algorithm.20

As presented in Algorithm 1, all the possible structures have no positions before the first
iteration, so the algorithm does the only suitable transformation for each existing goal:
addSuperiorPosition. On the next iterations, the algorithm picks the next goal to assign.
The algorithm creates one state for each of the three transformations and for each existing
position. In this sense, each goal creates a new superordinate (addSuperiorPosition), cre‑
ates a subordinate (addASubordinate) of each existing position and joins in each existing
position (joinAPosition).

As an example, it is considered the case illustrated in Fig. 7, in which |G| = 5 . Accord‑
ing to Eq. (9), the algorithm may explore 9,606 states as the worst estimation for searching
for all possible solutions of this case.

o
>
𝜌 o� ⟺

⎡⎢⎢⎣

�Γ�⋁
𝛾 = 1

c𝛾 (o) > c𝛾 (o
�) ∧

⎛⎜⎜⎝

𝛾 − 1

∀

i = 1

ci(o) = ci(o
�)

⎞⎟⎟⎠

⎤⎥⎥⎦

(9)1 + n + 2(n−1)n!n = O(2nn!)

18  The feasibility attribute ( �(o) ) is not being used to order but to exclude non-feasible organisations.
19  In the case of two or more organisations are in the same level, considering all criteria, any of these
organisations is chosen.
20  Eq. (9) does not take into account states that are pruned for being similar to existing ones (with the same
goals assigned to similar structures).

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 25 of 46  41

4.4 � GoOrg4Prod results

To illustrate how the best candidate is chosen, the set of goals represented in Fig. 7 is con‑
sidered. It is assumed that the user prefers the most generalist, efficient and flatter structure,
in this priority order. Figure 8 illustrates the three kind of agents available: (i) the DB Link-
able Elevator, an agent with the skills lift and database access for lifting boxes on shelves
and to be programmed to access an external database; (ii) the Box Transporter, an agent
with the skill move for moving boxes around the floor; and (iii) the Pick & Place, an agent
with the skill pick and place for picking items from the box and placing them on the con‑
veyor belt.

For the given example, the generation subprocess has produced 1,646 organisational
structure candidates.21 Every organisational structure candidate has all the given goals
assigned to positions. These candidates are represented in Fig. 9. Each circle represents
one or more candidates, since they can be overlapped.

In Fig. 9, the height axis represents the � attribute (Eq. 5) as a percentage given by 100� ,
and the generality axis represents the � attribute (Eq. 6) as a percentage given by 100� .
The sizes of the circles represent the efficiency � (Eq. 8) as a percentage given by 100� .
The biggest circle represents 54.6% of efficiency and the smallest ones represent 10.9% of
efficiency. The circle on the top of the generality axis and with minimal height represents
the best candidate according to the user’s preferences. Notice that as feasibility is consid‑
ered volatile and that 100% feasibility is a requisite (not a preference), it does not affect the
order for generating candidates.

As depicted in Fig. 10a, the candidate #1 presents only one organisational position,
which would be occupied by one agent that is responsible for achieving all goals. This
solution has 100% of generality since all positions (only one in this case) are assigned to
all goals. It also has the minimum height, i.e., one level. Its efficiency is the highest for
this problem, 54.6%, which is the total effort (13.1 h) over the baseline (24 h). Although it
is the best candidate according to the user’s preferences, this solution is not feasible since
there is no available agent that has all the four skills (db access, lift, move and pnp) required
by the position p0.

Figure 10b depicts the candidate #2, the second best solution according to the user’s
preferences. This candidate has also the lowest height, since the two generated positions
are in the same hierarchy level. However, its generality was reduced since each position
has some degree of specialisation. Additionally, its efficiency is reduced since it has two
positions instead of only one, which increases its idleness. This candidate is 50% feasible
because only position p1 has an agent able to perform it. Although candidates #1 and #2
are preferred according to the user’s preferences, neither of them is 100% feasible.

Figure 11 depicts two feasible candidates for the given example. The candidate #134 is
one of the flattest structures, since it presents just one hierarchy level. However, its general-
ity is even more reduced comparing to the candidates #1 and #2. Besides, compared to the
best candidates, it has more positions to be occupied, which drives to an undesirable lower
efficiency. Although it is far from the ideal solution (candidate #1), taking the given avail‑
able agents and the user’s preferences, this candidate is GoOrg4Prod first choice since it is
the first one that is 100% feasible.

21  This took 1.3 s of user time in an Intel® Core™ i7-8550U CPU @ 1.80GHz with 16 GB RAM com‑
puter.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 26 of 46

Figure 11 gives another example of a feasible solution: the candidate #446. The gen-
erality, efficiency and feasibility attributes are same as for the candidate #134. However,
according to the user’s preferences, this solution is not as good as candidate #134 because
there are hierarchical relationships (represented as solid arrows), which makes this solution
less flat.22

The candidate #1646 (Fig. 12) is on the bottom of the list to be chosen, it is the worst
candidate for the user’s preferences. Its generality is very low, since only the positions p0
and p2 are interchangeable. Its efficiency is also low due to the high number of positions
( |P| = 5 for this candidate). Its height is also far from what the user prefers (it has 5 levels).
This candidate is 100% feasible assuming that there are 2 units of the agents Box Trans-
porter and DB Linkable Elevator. In case of having only one unit of each kind of agent,
this candidate is just 60% feasible.

As demonstrated, the three transformations of GoOrg4Prod can produce structures with
superordinate-subordinate relationships as found in classic organisational charts.23 A supe‑
rior (superordinate) is often responsible for some kind of coordination of its subordinates.
A superordinate-subordinate relationship may imply, for instance, power and accountabil‑
ity of a position to another [50]. The addSuperiorPosition transformation can create the
first position of an organisation, as well as other independent pairs of the first position,
potentially producing a forest of hierarchies. A forest may represent multiple departments
or even a collection of organisations. Additionally, the transformations joinAPosition and
addASubordinate assign a goal to existing positions and to new organisational positions.
Combining these transformations, it is possible to have very hierarchical trees in which
there are long chains of superordinate-subordinate relationships (e.g., candidates #446 and
#1646). In contrast, it is also possible to have very flat structures with no superordinate-
subordinate relationship in an organisational chart (e.g., candidates #1, #2 and #134).

5 � GoOrg4DSN: an extension for the distributed sensors network
domain

GoOrg4DSN is another extension of GoOrg.24 It addresses the problem of Distributed Sen‑
sor Networks (DSN), introduced by Lesser et al. [61]. GoOrg4DSN is concerned with the
generation of organisational structures for tracking one or more moving targets in an area.25
The objective is to detect targets and follow the target by selecting sensors to get the most
accurate coordinates of the target as it moves. A network of sensors that are fixed in geo‑
graphical positions provide the coordinates of targets as sensors signals are triangulated.
The resolution track depends on how the sensors used on triangulations are distributed
along the area and their distance of the target. Although restricted, the processing capacity
of the sensors can be used to host agents’ processes. Other aspects such as the low-speed
and unreliable communication, and the need to select communication channels to avoid
collisions bring additional challenges.

22  This candidate could be the first choice if the user’s preferences were set for the tallest and most general
and efficient solution.
23  Hierarchies are one of the existing MAS organisational paradigms [58].
24  In this paper, the term GoOrg4DSN refers to both a model’s extension and an implementation that can
generate organisation descriptions for the DSN domain.
25  An implementation of GoOrg4DSN is available at https://​github.​com/​clebe​rjama​ral/​GoOrg​4DSN.

https://github.com/cleberjamaral/GoOrg4DSN

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 27 of 46  41

GoOrg4DSN is based on the approach proposed by Horling and Lesser [11]. In their
work, the area covered by the sensors is divided into sectors as groups of sensors. The
approach defines three roles: Sensor Agent, Sector Manager and Track Manager. The Sen-
sor Agent performs scans for targets and reports detections. The Sector Manager performs
many tasks: it sends to Sensor Agents of the sector a scanning schedule, defines communi‑
cation channels, combines data from sensors to identify a target, communicates with other
Sector Managers and elect a sensor to enact the role Track Manager, when a new target
is identified. The Track Manager picks sensors to keep updated about target coordinates,
reporting this information to the Sector Manager. All the sensors (agents) enact the Sensor
Agent role. In Horling and Lesser’s implementation, the geographical area of each sector is
arbitrarily defined according to the quantity of sensors by sector, which varies from 5 to 10
units, and also according to the density of sensors. Each sector has a Sector Manager which
is user-defined a priori. When a new target is identified, as the Sector Manager is usually
busy with its duties, it prefers to elect other agents rather than itself to be Track Manager.

For this problem, GoOrg4DSN uses the Multi-Agent Oriented Programming (MAOP)
approach [7]. In MAOP, autonomous entities are modelled as agents, non-autonomous enti‑
ties such as environmental tools and resources exploited by the agents are modelled as arte‑
facts, and coordination mechanisms are modelled as organisations. Adapting the solution

Fig. 8   The available agents

Fig. 9   The generated candidates
quantified according to the user’s
preferences

Fig. 10   The two best structures, which are not 100% feasible

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 28 of 46

proposed by Horling and Lesser [11], GoOrg4DSN uses a new conceptual model for sen‑
sors. In GoOrg4DSN, the scanning task that referred author assigned to Sensor Agents are
instead executed by non-autonomous entities (artefacts).26 The main conceptual changes
are the absence of explicit roles and that the procedural task of scanning the area is placed
on another level of abstraction. This MAOP approach is represented in Fig 13.

In the top dashed rectangle, the MAS is shown in three dimensions: organisation, agents
and artefacts. The agents interact among themselves and also act on and perceive the arte‑
facts, which are interfaces to the external environment. In this domain, the external envi‑
ronment is formed by physical sensors situated in a delimited sector which can be visited
by moving targets.

The tasks performed by the agents change according to the environment dynamism
caused by entry, exit and movement of targets within the monitored area and across sectors.
Indeed, such dynamism changes the goals of the organisation, i.e., changes its strategy. For
instance, an agent that manages a sector with no detected targets has to wait for an event
to be communicated by the sector artefacts or by agents that manage other sectors. When a

Fig. 11   Two feasible structures for the given example

Fig. 12   Candidate #1646

26  In Horling and Lesser’s approach, Sensor Agents have some autonomy when they negotiate their sched‑
ule with the Sector Manager. However, they mainly execute scans for targets, which are procedural tasks.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 29 of 46  41

target is detected, a goal for tracking that particular target is created. In this sense, a change
to the set of organisational goals brings the need to redesign the organisation.

The bottom dashed rectangle of Fig. 13 represents a sector that contains five geographi‑
cally distributed sensors. The central sensor with a shaded inner circle represents the device
that was a priori defined to host the agent to manage the sector. Figure 13 is illustrating a
situation in which a target was detected. The sensor with a shaded outer circle was elected
to be the manager of this tracking. The rest of the sensors are devices that are hosting
agents that are not yet part of the organisation,27

Figure 14 illustrates how it extends GoOrg. To represent that agents become busy while
managing a sector and managing a tracking, the goals have a feature of kind workload,
which have an identification (referring to an intent) and an expected effort to execute the
workload. The attribute efficiency is calculated using workloads expected efforts. This
implementation specifies two types of efforts: manage_sector and manage_track . The
agents that manage sectors are defined a priori by the user.28 To represent this, the specified
agents have a feature of kind intents recording they were set to manage a sector. All agents
also have a feature of kind sector to record which sector they belong to. This includes the
agents that occasionally are not members of the organisation, but are available and may
become a tracking manager if necessary. A goal to track a target also has a feature of kind
sector, allowing to identify the sector that is handling the tracking. In the running system,
the agent in charge of manage_sector , in the sector that is handling a tracking, must choose
an agent to be assigned to manage this tracking. In this sense, the chosen agent occupies
the position that GoOrg4DSN has synthesised for tracking the corresponding target.29 By
the attribute nearness, it is possible to check whether an agent and a target are in the same
sector or not.

5.1 � GoOrg4DSN elements

GoOrg4DSN specifies three features to constrain the organisation design while synthesis‑
ing positions, arranging hierarchies and binding agents to positions. The added features
are: (i) intents, which are associated with agents; (ii) workloads, which are associated with
goals; and (iii) sectors which are associated with both goals and agents.

The agents have associated intents. These are used to inform GoOrg4DSN about the a
priori defined usage of the agents, regarding the ones that are chosen to manage a sector.
An intent is formally defined as a singleton tuple containing a symbol, as follows.

A goal may have a workload required to achieve it. A workload w represents a demanded
effort e ∈ ℝ

+ associated with an intent t ∈ T  . A workload is formally defined as a tuple of
a symbol and a real positive number. The function wg maps goals to their workloads, as
follows.

t ∶ ⟨symbol⟩, t ∈ T

27  The network has distributed processing along sensors. In GoOrg4DSN each sensor hosts an artefact pro‑
cess and also an agent process, which is often a stand-by agent. Indeed, most of the sensors host an avail‑
able agent which can be bound to an organisational position, becoming an organisation’s member.
28  According to signal ranges, sector managers are usually the agents that can better reach sector sensors,
and also reach other sector managers.
29  It is assumed that if the target is simultaneously detected by sensors from different sectors, the man‑
agers of the corresponding sectors will negotiate which sector should be associated with the respective
manage_track workload.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 30 of 46

Both agents and goals are associated with sectors. A sector refers to a group an agent or a
target belongs to. The sector feature is a priori associated with all available agents (the ones
that are defined to host a manager of a sector and the ones that are defined to host avail‑
able agents). In case of goals, the sector feature is associated with the goals manage_sector
according to the sector that is handling the tracking. A sector is formally defined as a sin‑
gleton tuple of a symbol, as follows.

The sets of workloads (W), intents (T) and sectors (C) are subsets of the set of features, as
follows.

Like GoOrg4Prod, GoOrg4DSN considers that organisational positions may have super‑
ordinate-subordinate relationships. This only occurs in the case of a superordinate being
assigned to the manage_sector workload and the subordinate being assigned to the

w ∶ ⟨t, e⟩, t ∈ T , e ∈ ℝ
+, w ∈ W

wg ∶ G → 2W

c ∶ ⟨symbol⟩, c ∈ C

(10)F = W ∪ T ∪ C

Fig. 13   An MAOP approach for the DSN domain

Fig. 14   GoOrg4DSN model

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 31 of 46  41

manage_track workload. The function sp(p) that records the superordinate of the position p
and the organisational structure o are defined as for GoOrg4Prod (Sect. 4.1).

GoOrg4DSN also adds a design parameter to prevent positions being assigned to a sum
of workloads efforts that surpass 100%. It is defined as �p ∈ ℝ

+ , representing the maxi‑
mum workload allowed on each position.

5.2 � GoOrg4DSN added attributes

GoOrg4DSN defines new attributes of an organisational structure. From the added feature
workload, the efficiency of a structure is calculated, which was already defined in Eq. (8).
From the feature sector, the nearness of a structure is calculated.

Considering that a structure is a forest of hierarchies, nearness refers to how much simi‑
lar the positions of every tree in the forest are in terms of their sectors. This gives an idea
of how geographically near the positions are.30 Formally, the nearness of an organisational
structure o is represented as �(o) , a real number in the range [0,1] (Eq. 11). The near‑
ness reduces when a position has a different sector comparing to its superordinate. The
maximum nearness ( �(o) = 1) occurs when every hierarchy (tree) is formed by positions
assigned to goals of the same sector.

5.3 � GoOrg4DSN processes

GoOrg4DSN generates and chooses organisations in a chain of three subprocesses31: (i)
organisational positions are synthesised and structures are generated in a process that
searches the space with all possible organisations according to the supported transforma‑
tions; (ii) the positions of generated structures are bound to the given agents and the feasi‑
bility of the organisation is calculated; and (iii) an organisation with positions and bound
agents is chosen. Figure 15 illustrates these subprocesses.

5.3.1 � Generating organisations

GoOrg4DSN uses the same state-space search algorithm that GoOrg4Prod uses. It assigns
goals to positions step by step, follows a cost function based on the user’s preferences,
and generates all possible solutions according to its constraints. The algorithm for generat‑
ing successors states is similar to Algorithm 1, the difference is in the constraints of the
transformation.

n(p) =

{
0 ∃g ∈ gp(p)∃g� ∈ gp(sp(p)), fg(g) ∩ C ≠ fg(g�) ∩ C

1 otherwise

(11)�(o) =

∑
p∈P n(p)

�P�

30  For simplicity, this work does not specify distances between sensors. Instead, GoOrg4DSN considers
that sensors of the same sector are close to each other and sensors of different sectors are far away from
each other.
31  Comparing to GoOrg4Prod, the subprocess for preparing goals is not necessary in the DSN domain,
since for this domain the goals are not divisible.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 32 of 46

GoOrg4DSN applies three structure transformations for every goal into two stages. In
the first stage, a transformation assigns one goal g ∈ G that are associated with the work-
load manage_sector to new top superordinate positions. In the second stage, each remain‑
ing g� ∈ (G ⧵ {g}) are the subject of the following structure transformations: (i) if g′ is asso‑
ciated with a workload manage_sector , it is assigned to a new top superordinate position
creating a new tree in the forest; (ii) if g′ is associated with a workload manage_track , it is
assigned to new subordinate positions (for each position associated with a manage_sector
workload); and (iii) if g′ is associated with a workload manage_track , it is assigned to
every existing position (the ones associated with a manage_track or with manage_sector
workloads). These transformations are presented as follows.

In the addSuperiorPosition(g) transformation, a goal associated with the workload
manage_sector is assigned to a new superordinate position.32 The new position is added to
the set of existing positions P. The assigned goal g is recorded by the function gp, the first
element ( �1 ) of a workload tuple is recorded by the function fg and the function sp records
that p has no superior.33 This transformation from the structure o to the structure o′ is for‑
malised as follows.

In the addASubordinate(g, p�) transformation, a goal associated with the workload
manage_track is assigned to a new subordinate position. The superior position p′ must

32  Since, in the running system, an agent that manages a sector performs some actions that imply authority,
a workload �

1
(fg(g)) = manage_sector is only assigned to superordinate positions.

33  The element �
1
 of a workload refers to an intent, which can be either manage_sector or manage_track .

The only feature that is recorded by fg is the intent inside of the workload, since it is the only relevant data
for further subprocesses.

Fig. 15   The three subprocesses of GoOrg4Prod 

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 33 of 46  41

be associated with a manage_sector workload. The new position is added to the set of
existing positions P. The assigned goal g is recorded by the function gp, the first ele‑
ment of the workload tuple is recorded by the function fg , and the function sp records
p′ as superior of p. This transformation from the structure o to the structure o′ is for‑
malised as follows.

In the joinAPosition(g, p) transformation, a goal associated with the workload
manage_track is assigned to one of the existing positions. This transformation is
applied if g is not associated with a manage_sector workload which prevents to have a
position responsible to manage more than one sector. The assigned goal g is recorded
by the function gp, and the first element of the workload tuple ( �1 ) is recorded by the
function fg . This transformation from the structure o to the structure o′ is formalised
as follows.

5.3.2 � Binding agents and positions

To bind agents and positions, GoOrg4DSN uses the First Fit algorithm. The set of features
F is formed by the sets of workloads, sectors, intents and the first element of workload
tuples. The agents and positions are match by intents and the first element of workload
tuples.34

34  Notice that GoOrg4DSN implements a binding process just to check the organisation feasibility. At run‑
ning conditions, the binding between agents and positions in charge of manage_track are defined by posi‑
tions in charge of manage_sector (which are superordinates of their sectors).

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 34 of 46

5.3.3 � Choosing organisations

GoOrg4DSN sorts the generated organisations according to their efficiency ( �(o) ), nearness
( �(o) ) and their complementary attributes (the inverse of each attribute). If the feasibility
( �(o) ) is not 100%, the organisational structure is not considered. The formula used for
choosing structures by the user-defined criteria is the same as GoOrg4Prod (Sect. 4.3.4).

5.3.4 � Computational complexity

The worst estimation of the number of search states visited is the same of GoOrg4Prod
(Eq. 9). Yet, GoOrg4DSN prunes more states, for instance, constraining hierarchies in
which a goal associated with manage_sector workload is assigned to a subordinate posi‑
tion and when a goal associated with manage_track workload is triggering the creation of
superordinate positions. For comparison, for a scenario with |G| = 5 , GoOrg4Prod visits
9,606 states and generates 1,646 candidates. For the same number of goals, GoOrg4DSN
visits only 80 states and generates just 8 candidates.35

5.4 � GoOrg4DSN results

To illustrate how GoOrg4DSN generates organisational structures, it is considered an area
divided into four sectors identified by the four geographical quadrants (Fig. 16). Each sec‑
tor contains five sensors.

The user’s preferences are based on Horling and Lesser’s [11] approach. Due to com‑
putational and communication limitation of the sensors that host agents, it is preferred idle
structures (less efficient).36 In other words, it is preferred to avoid assigning manage_track
to a position in charge of manage_sector or to a position that is already in charge of another
manage_track . Besides, to optimise the communication among sensors, it is preferred a
structure with a high nearness. As both manage_sector and manage_track goals are associ‑
ated with a sector feature, a structure with the higher nearness has all superordinate-sub‑
ordinate relationships between positions assigned to goals associated with the same sector.
For instance, if there is a target in the sector se, according to this criterion, the position
assigned to manage_track should be a subordinate of the position assigned to manage the
sector se, as they are physically close to each other.

To show how GoOrg4DSN is used in such a dynamic scenario, in this section differ‑
ent situations in terms of targets that should be tracked are presented. First, it is being

35  This took 1.0 s of user time on an Intel® Core™ i7-8550U CPU @ 1.80GHz with a 16 GB RAM com‑
puter. However, the number of states to visit grows exponentially. For more complex scenarios, the number
of states and candidates may become too large and not viable for the search approach used by GoOrg4DSN
To exemplify, for |G| = 7 GoOrg4DSN, took 1.1 s to generate 612 candidates and for |G| = 8 it took 1.7 s to
generate 5812 candidates.
36  In respect to computational limitation of the sensors, in DSN domain it is important to avoid assign‑
ing multiple goals to the same position. Both efficiency and generality attributes defined for GoOrg4Prod
domain helps to measure the distribution of goals in a structure, but for GoOrg4DSN efficiency is better.
In the case of generality, the preference for more specialist structures could result in structures that avoid
assigning the manage_track goal to positions that are assigned to manage_sector , however it would not
avoid having multiple manage_track goals to the same position. In the other hand, the preference for more
idle structures using the attribute efficiency avoids both of the referred situations.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 35 of 46  41

considered a situation in which no sensor is detecting any target. It is only necessary to
manage each sector, as illustrated by Fig. 17.

For this situation, GoOrg4DSN generates only one organisational structure, as it
is the only solution. Indeed, the goals to be assigned are just the ones associated with
manage_sector workloads. As stated, each goal associated with manage_sector workload
should be assigned to a top superior position. It is specified that a manage_sector workload
makes an agent 60% (0.6) busy with this duty. As a result, for every goal, a tree with only
one position is created in the forest (organisational structure), as illustrated by Fig. 18. This
is a standby situation for most of the sensors, i.e., most of them are just scanning the area
as there is no tracking underway.

In another situation, it is considered that the sensors have detected a target on the
south-east (se) sector. For this situation, there are five goals to be achieved by the organi‑
sation: manage each of the four sectors and manage the tracking, which is identified by
manage_track_1 . Figure 19 illustrates the set of goals for this situation. It is specified that
an agent that is managing a tracking is 20% busy with this goal. In this sense, it is possible
to have the same agent managing a sector and a tracking goal. However, it would create a
less idle structure, which is not desired according to the user’s preferences.

For the scenario with one target being detected on the sector se, GoOrg4DSN has gen‑
erated 8 candidates. The best candidate is illustrated by Fig. 20. It considers the user’s
preference for delegating the manage_track_1 goal to a sensor in the same sector, and
that it is better to not assign this goal to an agent that is managing a sector. In this candi‑
date, a new position was created as a subordinate of the position in charge of managing
the sector se. The second best solution generated has the sector manager also assigned to
manage_track_1 , which is not so good considering the user’s preference because the agent
would be busier. The rest of the candidates are even worse because they suggest delegating
the manage_track_1 goal to agents of other sectors and also to assign this goal to the man‑
agers of other sectors.

To illustrate a situation with multiple targets, it is considered a scenario in which three
targets are detected, two on the sector se and one target on the sector nw. For this scenario
with 7 goals (4 goals to manage sectors and 3 goals to manage tracks), GoOrg4DSN has
generated 612 candidates. According to the user’s preferences, the best candidate is the
one illustrated by Fig. 21. In this candidate, two positions are created as subordinates of the
position in charge of managing the sector se, and one position is created as a subordinate
of the position in charge of managing the sector nw. For this situation of multiple targets,
compared to candidate #1, the second best solution found differs because it has only one
subordinate of the position in charge of managing the sector se. This position is assigned
to track two objects which makes it busier, and this structure less preferred according to
the user’s preferences, comparing to the candidate #1. The rest of the candidates are even
worse according to the user’s preferences because manage_track goals are assigned to posi‑
tions of other sectors and also because existing positions accumulate duties.

As seen, this scenario is very dynamic as targets move along the scanned area. In the
case of a target passing from one sector to another, it is assumed that the goal to track this
target will have its feature sector changed to the other sector, which changes the goals of
the organisation and requires a redesign. Besides, as illustrated in different scenarios, in
the case of a target entering or leaving the area, a redesign is also necessary. In case of an
agent failure, other agents (possibly some of the stand by agents) may occupy the position,
which is done by a simple re-allocation. However, a change on agents’ availability may also

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 36 of 46

drives to a structure-switching, for instance, if there are 4 targets being detected in a sector
and one of the agents fails. A new binding between agents and positions would revise the
idlest structure as not feasible, making other candidates more suitable in this condition.

Fig. 16   A motivating scenario
with four sectors, each one with
5 sensors

Fig. 17   The set of goals in which no target is being detected

Fig. 18   Candidate #1 (unique) when there is no target being detected

Fig. 19   The set of goals in which one target is being detected

Fig. 20   Candidate #1 for the scenario with 1 target being detected

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 37 of 46  41

6 � Discussion

This section presents a discussion about aspects related to the organisation design, compar‑
ing GoOrg to other approaches: (i) assigning goals to named agents, to roles or to posi‑
tions; (ii) planning resources (agents) of organisations; (iii) the difference between syn‑
thesising positions and having a priori user-defined roles; and (iv) the difference of using
goals as input instead of roles and behaviours.

6.1 � Assigning goals to named agents and to impersonal representations

Task allocating models [27–29] can generate organisations. These models assign goals
(or tasks) to named agents, as illustrated in Fig. 22a. For instance, let us consider a mar-
ketplace organisation that has the (root) goal do business. This root goal can be decom‑
posed into the subgoals sell product and buy product, which can be decomposed into other
subgoals, and so on. One agent assigned to sell product interacting with another agent
assigned to buy product are sharing the same root goal, and should cooperate to achieve
it. In this sense, the distribution of subgoals to a group of agents generates organisations.
These organisations are fixed and closed as they are formed only by the named agents. In
other words, a change in the set of goals or in agents availability implies a new design.

In the particular class of generators in which GoOrg is included, goals are somehow
assigned to impersonal representations of agents, such as roles and positions. The studies
DeLoach and Matson [10], Horling and Lesser [11] and Sims et al. [12] use the concept of
roles. Roles are largely used in human organisations and have been adopted by the MAS
community. For instance, a person that enacts the assembler role in a factory is responsible
to assemble parts of products in a production line. Sometimes, there are many-to-many
relationships such as when that person concomitantly enacts another role like the supervi-
sor role, dividing their working hours between assembling and supervising activities. Fig‑
ure 22b represents an organisational structure formed by roles. In this case, the goals are
assigned to roles and the agents enact roles, becoming in charge of their assigned goals.

GoOrg proposes the use of organisational positions. In this approach, goals are assigned
to positions. A position is a place in the organisational structure that has one-to-one rela‑
tionship with an agent. Agents can occupy and leave positions, but an organisational posi‑
tion can be occupied by only one agent at time. As illustrated in Fig. 22c, a position directly
reflects an agent, i.e., it may have all relevant characteristics an agent has for a design pro‑
cess, but without naming it.

Using impersonal representations, the organisation is decoupled from the agents.
Indeed, a generator is not limited to the availability of agents, i.e., it can generate organisa‑
tions that best match design criteria, such as the best distribution of goals. In this sense,
the use of impersonal representations allows a generation of more appropriate solutions
according to design criteria, since it has no concerns about specificities of agents.37

Additionally, when using impersonal representations, the design of the organisation (as
an entity) can be apart of the process of binding agents and positions or roles. It simplifies
the generating process since the binding part can be delegated to another process. When
these processes are separated, the redesign can be a lighter procedure.

37  A proper parametrisation of a generator can avoid the design of organisations that are not fillable by the
available agents.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 38 of 46

The use of impersonal representations also prevents the need for redesigning processes,
which is usually computationally heavy. To exemplify, let us compare the approaches rep‑
resented in Fig. 22a against the approaches represented in Fig. 22b and c. In the former,
goals are assigned to agents that are fixed to the organisational structure. In that case, if an
agent is not able to perform its job, a redesign is needed. Using impersonal representations,
the agents are associated with roles or positions. They make the organisation and the agents
decoupled entities. In these cases, if an agent is not able to achieve the goals assigned to its
role or position, no redesign is necessary, it is just needed to have another agent enacting
that role or occupying that position. Thus, an organisation made up of roles or positions
can be an open system, i.e., agents can join and leave the organisation at any time.

6.2 � Planning resources of organisations

Comparing models based on impersonal representations for agents, roles provide more
flexibility at run time than positions. For instance, an agent may enact the role assembler
and the role supervisor at the same time. It may also leave one of these roles and keep the
another, and many more combinations over the time. When an agent enacts or leaves a role,
it is changing its assigned goals. This flexibility can also avoid the need for changing the
structure. For instance, structure-switching is necessary when a different distribution of
goals along positions is needed. In a structure of roles, whether a combination of multiple
roles satisfies the changing needs, no structure-switching is necessary, it is just needed to

Fig. 21   Candidate #1 for the scenario in which three targets are being detected

Fig. 22   Different forms of assigning goals to organisational members

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 39 of 46  41

change agent enactments. However, such flexibility makes the estimation of resources a
tough task, especially when role enactments are very dynamic.38

In contrast, a structure made up of positions (one-to-one relationships) directly reflects
resource needs. The use of positions is also an intuitive approach for defining sets of
responsibilities and relationships. In the example of an assembler that also supervises the
production, a design model can synthesise a position responsible for both activities. In this
sense, this position is reflecting the actual run time dynamics but with the advantage of
defining it in the design time, which facilitates resource needs estimation. Positions also
provide some flexibility at run time, for instance, when in the absence of the agent that usu‑
ally occupies a position, an available agent may come to occupy it.

Figure 23 illustrates two structures for the same scenario. In this scenario, there is a pro‑
duction cell for assembling some products which has three agents in the team. Figure 23a
illustrates a structure using the concept of roles. Agent A enacts two roles and Agent B and
Agent C both enact the same role. Figure 23b illustrates a possible solution given by a
model that extends GoOrg. It is a structure of three positions to be occupied by the Agent
A, Agent B and Agent C. Since only Agent A is able to do both supervising and assembling
activities, it is bound to the supervisor position. Agent B and Agent C are occupying the
other positions. At design time, the need for three agents is only clear in a structure of posi‑
tions. Although both structures represent solutions for the same scenario, only the structure
of positions represents resource needs, enabling its usage as a resource planning tool.

6.3 � Synthesising positions instead of requiring user‑defined roles

In other organisation generators [5, 10–12], the user (engineer) has to specify roles a priori.
For these studies, “it is the task of the engineer to determine which roles will be present at
the level of the society design by means of an electronic institution” [5, p. 3]. Usually, for
defining roles, users conceive an arrangement for the system, and assess some characteris‑
tics of goals, and behaviours and capabilities of known agents. To exemplify, for the DSN
domain, one may specify the roles sector_manager, sensor and track_manager, since it is
intended to have groups of agents organised into physical sectors. Basing role definitions

38  Although the studies presented by Horling and Lesser [11] and Sierra et al. [5] do not focus on planning
resources, it may be possible to estimate resources need using roles’ behaviours, which are inputs of the
corresponding models.

Fig. 23   Comparing a structure of roles and a structure of positions

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 40 of 46

in known elements facilitates the specification task and may generate coherent structures
according to existing elements and to the user’s conception of the system. Yet, it may come
with biases, for instance, a wrong assumption on specifying a role may make it infeasible
to available agents to play such a role.

An a priori user-defined roles approach presumably produces a smaller number of
solutions compared to a model that synthesises positions.39 A reduced number of candi‑
dates should be faster to generate. However, a generator that produces fewer candidates
using defined roles that might be specified with biases may not generate feasible solutions.
Indeed, the a priori user-defined roles approach may struggle when the system conditions
do not match with the user’s design assumptions.40

For the example illustrated by Fig. 8, one can define the following roles: DB Linkable
Elevator, Box Transporter and Picker & Placer. Models based on a priori defined roles
generate different structures for these given roles. Figure 24 presents examples that can be
generated by each of these approaches.41 In Fig. 24a there are two of the possible structures
of a priori defined roles. In this example, the given set of available agents does not match
the assumption used to define the roles. The role DB Linkable Elevator requires two skills
that no agent has, i.e., in both examples there is no way to fill the positions by the given
agents. Other possible solutions beyond these examples are also made up of the same set of
roles. Thus, there is no feasible solution regarding the exemplified condition. As a result, a
design model based on those a priori defined roles cannot find a feasible solution without a
user intervention redefining the roles and running the process again. Figure 24b, illustrates
two solutions that GoOrg4Prod generates from synthesised positions. The example #1 is
a solution presenting the same limitation of Fig. 24a examples, exemplifying that GoOrg-
4Prod also generates non-feasible solutions. However, since GoOrg4Prod synthesises posi‑
tions, among the solutions, there are structures in which the features of the set of positions
match with the given agents as illustrated by the example #2 of Fig. 24b.

Besides bringing biases and limiting the set of possibilities, it is arguably complex and
demanding to provide a priori definition of roles as input to a model. It is illustrated in this
work that although not requiring a priori definitions, a model that automatically synthesises
positions (or roles) can reach similar (or more) results comparing to a priori definitions.
For instance, it was not defined a priori that a sector manager role/position should exist in
the DSN situation illustrated in Fig. 17, but the solution presented in Fig. 18 has generated

40  Using the concept of roles and allowing many-to-many relationships between roles and agents, a method
that defines a role for each given goal can achieve a higher number of combinations. However, besides
complicating resource planning, such an approach makes the design less relevant since it delegates what is
arguably a design task to another system (possibly the running system that decides on agent enactments).
For instance, when assigning goals to a position, a method is already defining what the performer of the
position should perform or not. In case of many-to-many relationships and roles with little job to do, it is
complex for the design process to define that the performer of the goal g0 should not perform the goal g1
(which could be a goal to assemble something and another to check its quality, which would be better if
they are performed by different agents). Besides, it would not allow a user to define preferences at design
time, as GoOrg does.
41  The assigned goals of the structure of positions are omitted to simplify this example, showing only skills
as a matching feature for both role-based and position-based approaches.

39  At run time, the number of combinations can be enlarged using many-to-many relationships between
agents and roles. However, roles defined a priori still limit the combinations, since an agent should be able
to perform all defined responsibilities of a role. A problem may occur, for instance, if the user sets a role
with too many requirements, in a situation in which there is no agent that matches all requisites. Alterna‑
tively, the user may set roles with few requirements, increasing occurrences of agents enacting multiple
roles, which can make the coordination and planning of the system more complex.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 41 of 46  41

positions that have this purpose. As GoOrg4DSN may find similar solutions with fewer
input parameters, it can be simpler to parametrise, easing the job of the user that is setting
up the organisation generator. The parametrisation of models and their demanded design
effort are discussed in Sect. 6.4.

6.4 � Using goals as input instead of roles and behaviours

The definition of the system goals is often a very early step in a design. One may say that
stating the goals of the system is the first step of a design since other definitions depend
on it, including the definition of agents’ expected behaviour. GoOrg is based on this
assumption.

Instead of requiring goals explicitly, the organisation generators presented by Horling
and Lesser [11] and Sierra et al. [5] require roles’ behaviours expressed by equations. These
definitions should be provided by the user (engineer) as input to the generator, and they
are used to constrain the search for possible organisational structure descriptions. Whether
the user definitions are correct, they can generate precise and coherent organisations for
a MAS. In such a case, the search is supposed to be more constrained and faster when
comparing to generators that tend to create wider search spaces such as GoOrg, DeLoach
and Matson’s [10] and Sims et al.’s [12] models. Although it is not explicit, one can say
that generators which require roles’ expected behaviours are also based on goal definitions.
Indeed, roles are set of responsibilities (goals) an agent is supposed to be committed to,
and behaviours are actions agents should take to achieve their responsibilities (goals).

Figure 25 illustrates sets of user definitions that should be provided as input to differ‑
ent generators. Figure 25a represents an organisation generator model such as Horling
and Lesser’s and Sierra et al.’s models in which goals are defined by the user (even if not

Fig. 24   Comparing examples of a priori defined roles and synthesised positions structures

Fig. 25   Comparing generators with behaviours and goals as input

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 42 of 46

explicitly), then roles’ behaviours are defined and given as inputs. Figure 25b represents
an organisation generator model based on GoOrg such as GoOrg4DSN in which goals and
features are user-defined and given as inputs.

In the approach of Fig. 25a, since roles’ behaviour definitions depend on goals, it may
require a wider revision of inputs if the system goals change. For instance, in the DSN
domain one may suggest replacing the sector approach with a less hierarchical approach in
which the agent that has the stronger signal of the target follows it until passing over this
duty to another agent that becomes to have the stronger signal. In this case, the goal man-
age_sector would not exist and the goal manage_track would be performed differently. In
this hypothetical less hierarchical approach, the agent in charge of manage_track would
also have to communicate to other agents to compare their signal strength and negotiate
a possible delegation of the goal manage_track. With such a change to the system goals,
for a generator that requires roles’ behaviours as input, a revision to the roles and expected
behaviours is necessary. In a model based on GoOrg, a change to the system goals requires
only a revision to goals and their features, which is supposed to be a simpler job.

The kinds of inputs in the approaches presented in Fig. 25 are also different. The input
goals is about what should be done. The input behaviours is about how things should be
done. The specification of how things should be done must be accurate according to system
run time behaviour, which brings an extra concern when using models that require such
inputs.

7 � Conclusion

Organisation design has been refined continuously over the years. Many studies in the
Administration Research Field propose theories and frameworks for this task. In the
2000 s, studies on Automated Organisational Structure Generators have gained traction
spurred on by challenges like the DSN. One may think that automating the design process
could make the task easier for users. However, it is crucial to make such a process simple
to be parametrised by the user. Indeed, the parametrisation complexity of some existing
models may require high logic and programming skills from the user. GoOrg has great
concern for simplifying its parametrisations, in which the automated position synthesising
approach is highlighted.

Besides, GoOrg is extendible for dealing with the specificity and complexity of each
domain. GoOrg has only the fundamental elements that are found in any organisational
design. Domain-specific and even common elements, such as “is superior of” relationships,
are not part of the generic model, which makes GoOrg more concise.

This study adopted positions instead of roles for designing organisational structures. The
reason is that positions carry the same advantage of the roles in respect to being detached
from named agents, while numerically reflecting the need for resources. It means that the
feasibility for a specific state of an organisation can be checked during the design.

Finally, this paper presented two extensions of GoOrg. These extensions can gener‑
ate sets of structures which are candidates when considering a range of possible agents
to occupy positions. The generated candidates have quantified attributes which enables a
multi-criteria approach to choose the “best” organisation. The proposed algorithms can
solve simple problems in a satisfactory time. For both extensions, distinguishing processes
were defined.

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 43 of 46  41

As future work, it is planned to: (i) test organisation run time adaptations in situations
that require simple reallocations to complex redesigns; (ii) adopt an existing solution or
implement an algorithm that uses heuristics combined with an anytime approach which
may produce faster answers for the search algorithm and make it suitable for more com‑
plex problems [62]; (iii) implement more extensions of the model to test its applicability in
other domains, to design other kinds of structures, and propose a methodology for selecting
features and constraints for a domain; (iv) define a generic method for generating structures
for different domains; and (v) test organisational aspects such as power, span of control,
accountability, and trust.

Author Contributions  Amaral wrote the main manuscript which is a result of a 4 years research supervised
by both Hübner and Cranefield. Hübner and Cranefield actively proposed, discussed and revised the parts of
this work.

Declarations 

Competing Interests  The authors declare that there are no competing interests that might be perceived to
influence the results and/or discussion reported in this paper. This paper is the result of PhD research per‑
formed by Amaral and supervised by Hübner and Cranefield, who actively worked on the construction of this
manuscript. The research was partially funded by Project AG-BR Petrobras and Programme PrInt CAPES-
UFSC “Automação 4.0”. The results discussed in this paper can be (re)generated following the instructions
provided on the repositories https://​github.​com/​clebe​rjama​ral/​GoOrg​4Prod and https://​github.​com/​clebe​
rjama​ral/​GoOrg​4DSN. Ethical approval is not applicable. The authors declare no competing interests.

References

	 1.	 Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in Agent-
Speak using Jason Series in agent technology (1st ed.). UK: Wiley.

	 2.	 Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2015). Coalition structure generation:
A survey. Artificial Intelligence, 229, 139–174. https://​doi.​org/​10.​1016/j.​artint.​2015.​08.​004

	 3.	 Hübner, J.F., Sichman, J.S., & Boissier, O. (2002). A model for the structural, functional, and deontic
specification of organizations in multiagent systems. In: SBIA ’02: Proceedings of the 16th Brazilian
symposium on artificial intelligence: Advances in artificial intelligence, pp. 118–128. https://​doi.​org/​
10.​5555/​645853.​669463. Springer.

	 4.	 Boissier, O., Hübner, J. F., & Ricci, A. (2016). The JaCaMo framework. Governance and Technology
Series. https://​doi.​org/​10.​1007/​978-3-​319-​33570-4_7

	 5.	 Sierra, C., Sabater, J., Augusti, J., & Garcia, P. (2004). The SADDE methodology: Social agents design
driven by equations. In: Methodologies and software engineering for agent systems. Springer, Boston.

	 6.	 Gasser, L. (2001). Perspectives on organizations in multi-agent systems (pp. 1–16). Berlin: Springer.
	 7.	 Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., & Santi, A. (2013). Multi-agent oriented program‑

ming with JaCaMo. Science of Computer Programming, 78(6), 747–761. https://​doi.​org/​10.​1016/j.​
scico.​2011.​10.​004

	 8.	 Cardoso, R. C., & Ferrando, A. (2021). A review of agent-based programming for multi-agent systems.
Computers, 10, 1–15. https://​doi.​org/​10.​3390/​compu​ters1​00200​16

	 9.	 Galbraith, J. R. (1995). Designing organizations: an executive briefing on strategy, structure, and pro-
cess. San Francisco, USA: Jossey-Bass Publishers.

	10.	 DeLoach, S.A., & Matson, E. (2004). An organizational model for designing adaptive multiagent
systems. In: The AAAI-04 workshop on agent organizations: Theory and practice (AOTP 2004),
pp. 66–73. AAAI Press, San Jose, USA.

	11.	 Horling, B., & Lesser, V. (2008). Using quantitative models to search for appropriate organizational
designs. Autonomous Agents and Multi-Agent Systems, 16(2), 95–149. https://​doi.​org/​10.​1007/​
s10458-​007-​9020-y

https://github.com/cleberjamaral/GoOrg4Prod
https://github.com/cleberjamaral/GoOrg4DSN
https://github.com/cleberjamaral/GoOrg4DSN
https://doi.org/10.1016/j.artint.2015.08.004
https://doi.org/10.5555/645853.669463
https://doi.org/10.5555/645853.669463
https://doi.org/10.1007/978-3-319-33570-4_7
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.3390/computers10020016
https://doi.org/10.1007/s10458-007-9020-y
https://doi.org/10.1007/s10458-007-9020-y

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 44 of 46

	12.	 Sims, M., Corkill, D., & Lesser, V. (2008). Automated organization design for multi-agent systems.
Autonomous Agents and Multi-Agent Systems. https://​doi.​org/​10.​1007/​s10458-​007-​9023-8

	13.	 So, Y.-P., & Durfee, E. H. (1998). Designing organizations for computational agents. Computa-
tional Organization Theory (Simulating Organizations), 2, 47–64. https://​doi.​org/​10.​1007/​BF001​
27275

	14.	 Slade, S. (2018). Going horizontal: Creating a non-hierarchical organization, one practice at a time,
1st edn., pp. 1–204. Berrett-Koehler Publishers, Inc., Oakland, CA.

	15.	 Kühne, T. (2006). Matters of (meta-) modeling. Journal on Software and Systems Modeling, 5,
369–385.

	16.	 Stoner, J. A. F., & Freeman, R. E. (1992). Management (1st ed.). New Jersey, USA: Prentice-Hall.
	17.	 Burton, R. M., Obel, B., & Desanctis, G. (2011). Organizational design: A step-by-step approach

(p. 272). Cambridge, UK: Cambridge University Press.
	18.	 De Pinho Rebouças De Oliveira, D. (2006). Estrutura organizacional: Uma abordagem para resulta‑

dos e competitividade. Editora Atlas, São Paulo, Brazil.
	19.	 Wu, Z., Deng, S., & Wu, J. (2015). Chapter 7 - service composition. In Z. Wu, S. Deng, & J. Wu

(Eds.), Service computing (pp. 177–227). Boston: Academic Press.
	20.	 Amaral, C. J., & Hübner, J. F. (2019). Goorg: Automated organisational chart design for open

multi-agent systems. In F. De La Prieta, A. González-Briones, P. Pawleski, D. Calvaresi, E. Del
Val, F. Lopes, V. Julian, E. Osaba, & R. Sánchez-Iborra (Eds.), PAAMS (pp. 318–321). Cham:
Springer.

	21.	 Amaral, C. J., & Hübner, J. F. (2020). From goals to organisations: Automated organisation gen‑
erator for mas. In L. A. Dennis, R. H. Bordini, & Y. Lespérance (Eds.), Engineering multi-agent
systems (pp. 25–42). Cham: Springer.

	22.	 Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Research, 7,
83–124. https://​doi.​org/​10.​1613/​jair.​433

	23.	 Ferber, J., & Gutknecht, O. (1998). A meta-model for the analysis and design of organizations
in multi-agent systems. Proceedings - International Conference on Multi Agent Systems, ICMAS,
1998, 128–135. https://​doi.​org/​10.​1109/​ICMAS.​1998.​699041

	24.	 Hübner, J.F., & Sichman, J.S. (2003). Organização de sistemas multiagentes. III Jornada de Mini‑
Cursos de Inteligência Artificial JAIA03 8, 247–296.

	25.	 Hatch, M. J. (1997). Organization theory: Modern, symbolic, and postmodern perspectives.
Oxford, UK: Oxford University Press.

	26.	 Sims, M., Corkill, D., & Lesser, V. (2004). Separating domain and coordination in multi-agent
organizational design and instantiation. In: Proceedings - IEEE/WIC/ACM international conference
on intelligent agent technology. IAT 2004, pp. 155–161. https://​doi.​org/​10.​1109/​IAT.​2004.​13429​38

	27.	 Decker, K.S. (1995). Environment centered analysis and design of coordination mechanisms, p.
219. PhD Thesis, University of Massachusetts, Massachusetts, USA.

	28.	 Sleight, J. (2014). Agent aware organizational design (doctoral consortium). In: Proceedings of the
2014 international conference on autonomous agents and multi-agent systems. AAMAS ’14, pp.
1739–1740, Paris, France. https://​doi.​org/​10.​5555/​26157​31.​26161​53

	29.	 Cardoso, R.C., & Bordini, R.H. (2019). Decentralised planning for multi-agent programming plat‑
forms. In: AAMAS’19: Proceedings of the 18th international conference on autonomous agents and
multiagent systems, pp. 799–807 . https://​doi.​org/​10.​1007/​978-3-​642-​02377-4_4

	30.	 Fink, S. L., Jenks, R. S., & Willits, R. D. (1983). Designing and managing organizations (1st ed.).
Ilinois, USA: Irwin Series in Financial Planning and Insurance. R.D. Irwin.

	31.	 Ye, D., Zhang, M., & Vasilakos, A. V. (2016). A survey of self-organisation mechanisms in multi-
agent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems,. https://​doi.​org/​10.​
1109/​TSMC.​2015.​25043​50

	32.	 Sleight, J.L., Durfee, E.H., Baveja, S.S., Cohn, A.A.E.M., & Lesser, E.V.R. (2015). Agent-driven
representations, algorithms, and metrics for automated organizational design. PhD thesis, Univer‑
sity of Michigan..

	33.	 Ishida, T., Gasser, L., & Yokoo, M. (1992). Organization self-design of distributed production sys‑
tems. IEEE Transactions on Knowledge and Data Engineering, 4(2), 123–134. https://​doi.​org/​10.​
1109/​69.​134249

	34.	 Decker, K., Sycara, K., & Williamson, M. (1997). Cloning for intelligent adaptive information agents.
Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lec-
ture notes in bioinformatics), 1286, 63–75. https://​doi.​org/​10.​1007/​BFb00​30082

	35.	 Shehory, O., Sycara, K., Chalasani, P., & Jha, S. (1998). Agent cloning: An approach to agent mobility
and resource allocation. IEEE Communications Magazine, 36(7), 58–6367. https://​doi.​org/​10.​1109/​35.​
689632

https://doi.org/10.1007/s10458-007-9023-8
https://doi.org/10.1007/BF00127275
https://doi.org/10.1007/BF00127275
https://doi.org/10.1613/jair.433
https://doi.org/10.1109/ICMAS.1998.699041
https://doi.org/10.1109/IAT.2004.1342938
https://doi.org/10.5555/2615731.2616153
https://doi.org/10.1007/978-3-642-02377-4_4
https://doi.org/10.1109/TSMC.2015.2504350
https://doi.org/10.1109/TSMC.2015.2504350
https://doi.org/10.1109/69.134249
https://doi.org/10.1109/69.134249
https://doi.org/10.1007/BFb0030082
https://doi.org/10.1109/35.689632
https://doi.org/10.1109/35.689632

Autonomous Agents and Multi-Agent Systems (2023) 37:41	

1 3

Page 45 of 46  41

	36.	 Kamboj, S., & Decker, K. S. (2007). Organizational self-design in semi-dynamic environments.
AAMAS. https://​doi.​org/​10.​1145/​13291​25.​13293​70

	37.	 Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2007). Division of labor in a group of robots inspired
by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25.
https://​doi.​org/​10.​1145/​11529​34.​11529​36

	38.	 Kota, R., Gibbins, N., & Jennings, N. R. (2012). Decentralized approaches for self-adaptation in agent
organizations. ACM Transactions on Autonomous and Adaptive Systems, 7(1), 1–28. https://​doi.​org/​10.​
1145/​21682​60.​21682​61

	39.	 Ye, D., Zhang, M., & Sutanto, D. (2014). Cloning, resource exchange, and relation adaptation: An
integrative self-organisation mechanism in a distributed agent network. IEEE Transactions on Parallel
and Distributed Systems, 25(4), 887–897. https://​doi.​org/​10.​1109/​TPDS.​2013.​120

	40.	 Ohta, N., Iwasaki, A., Yokoo, M., Maruono, K., Conitzer, V., & Sandholm, T. (2006). A compact
representation scheme for coalitional games in open anonymous environments. Proceedings of the
National Conference on Artificial Intelligence, 1(1994), 697–702.

	41.	 Krausburg, T., Dix, J., & Bordini, R.H. (2021). Computing sequences of coalition structures. In: 2021
IEEE symposium series on computational intelligence (SSCI), pp. 01–07. https://​doi.​org/​10.​1109/​
SSCI5​0451.​2021.​96601​27.

	42.	 Pattison, H. E., Corkill, D. D., & Lesser, V. R. (1987). Chapter 3 - instantiating descriptions of organi‑
zational structures. In M. N. Huhns (Ed.), Distributed Artificial Intelligence (pp. 59–96). San Fran‑
cisco: Morgan Kaufmann.

	43.	 McAuley, J., Duberley, J., & Johnson, P. (2007). Organizational theory: Challenges and perspectives
(1st ed., p. 448). New Jersey: Prentice-Hall.

	44.	 Katz, D., & Kahn, R. (1987). Psicologia social da organizações (3rd ed., p. 512). São Paulo, Brazil:
Atlas.

	45.	 Hübner, J. F., Boissier, O., Kitio, R., & Ricci, A. (2010). Instrumenting multi-agent organisations with
organisational artifacts and agents: Giving the organisational power back to the agents. Autonomous
Agents and Multi-Agent Systems, 20(3), 369–400. https://​doi.​org/​10.​1007/​s10458-​009-​9084-y

	46.	 Dastani, M., Dignum, V., & Dignum, F. (2003). Role-assignment in open agent societies. In: Pro‑
ceedings of the second international joint conference on autonomous agents and multiagent systems
- AAMAS ’03, p. 489. https://​doi.​org/​10.​1145/​860575.​860654.

	47.	 Mintzberg, H. (1983). Structure in fives (1st ed.). New Jersey: Prentice-Hall.
	48.	 Daft, R. L. (2009). Organization theory and design (10th ed.). USA: South-Western College Pub Cent‑

age Learning.
	49.	 Durfee, E. H., Lesser, V. R., & Corkill, D. D. (1987). Coherent cooperation among communicating

problem solvers. IEEE Transactions on Computers, C–36(11), 1275–1291. https://​doi.​org/​10.​1109/​TC.​
1987.​50094​68

	50.	 Kilmann, J., Shanahan, M., Toma, A., & Zielinski, K. (2010). Demystifying organization design. (June:
Technical report. Boston Consulting Group - BCG White Paper).

	51.	 Burns, T., & Stalker, G.M. (1994). Mechanistic and organic systems of management. In: The manage‑
ment of innovation vol. 21, pp. 96–125. Oxford University Press, Oxford, UK

	52.	 Pettigrew, A. M., & Fenton, E. M. (2000). The innovating organization (1st ed.). London, UK: SAGE
Publications.

	53.	 Newman, D. A. (1973). Organization design: An analytical approach to the structuring of organisa-
tions (1st ed.). London, UK: Edward Arnold.

	54.	 Robbins, S., & Coulter, M. (2012). Management (11th ed.). New Jersey, USA: Prentice-Hall.
	55.	 Uez, D. M., & Hübner, J. F. (2014). Environments and organizations in multi-agent systems: From

modelling to code. In F. Dalpiaz, J. Dix, & M. B. van Riemsdijk (Eds.), Engineering multi-agent sys-
tems (pp. 181–203). Cham: Springer.

	56.	 Matson, E.T., & Deloach, S.A. (2005). Autonomous organization-based adaptive information sys‑
tems. In: 2005 international conference on integration of knowledge intensive multi-agent systems,
KIMAS’05: Modeling, exploration, and engineering 2005, 227–234.

	57.	 Deloach, S.A., Oyenan, W.H., & Matson, E.T. (2008). A capabilities-based model for adaptive
organizations. In: Autonomous agents and multi-agent systems, pp. 13–56. https://​doi.​org/​10.​1007/​
s10458-​007-​9019-4.

	58.	 Horling, B., & Lesser, V. (2004). A survey of multi-agent organizational paradigms. Knowledge Engi-
neering Review, 19(4), 281–316. https://​doi.​org/​10.​1017/​S0269​88890​50003​17

	59.	 Seidewitz, E. (2003). What models mean. IEEE Software, 20, 26–32. https://​doi.​org/​10.​1109/​MS.​
2003.​12311​47

	60.	 Mintzberg, H., & Van der Heyden, L. (1999). Organigraphs: Drawing how companies really work.
Harvard Business Review, 77(5).

https://doi.org/10.1145/1329125.1329370
https://doi.org/10.1145/1152934.1152936
https://doi.org/10.1145/2168260.2168261
https://doi.org/10.1145/2168260.2168261
https://doi.org/10.1109/TPDS.2013.120
https://doi.org/10.1109/SSCI50451.2021.9660127
https://doi.org/10.1109/SSCI50451.2021.9660127
https://doi.org/10.1007/s10458-009-9084-y
https://doi.org/10.1145/860575.860654
https://doi.org/10.1109/TC.1987.5009468
https://doi.org/10.1109/TC.1987.5009468
https://doi.org/10.1007/s10458-007-9019-4
https://doi.org/10.1007/s10458-007-9019-4
https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1109/MS.2003.1231147
https://doi.org/10.1109/MS.2003.1231147

	 Autonomous Agents and Multi-Agent Systems (2023) 37:41

1 3

41  Page 46 of 46

	61.	 Lesser, V., Ortiz, C.L., & Tambe, M. (eds.) (2003). Distributed sensor networks: A multiagent perspec‑
tive, pp. 1–376. Springer, USA.

	62.	 Dean, T., & Boddy, M. (1988). An analysis of time-dependent planning. In: Proceedings of the seventh
AAAI national conference on artificial intelligence. AAAI’88, pp. 49–54. AAAI Press, Saint Paul,
Minnesota.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	Generating and choosing organisations for multi-agent systems
	Abstract
	1 Introduction
	2 Organisation design models
	2.1 Automated organisational design by task planning
	2.2 Self-organisation approaches
	2.3 Automated organisational structure generators
	2.3.1 Structure generators’ background
	2.3.2 State of the art
	2.3.3 Comparing structure generators

	3 GoOrg model
	3.1 GoOrg elements
	3.2 Attributes of an organisational structure
	3.3 Highlighted characteristics of GoOrg

	4 GoOrg4Prod: an extension for a factory production line domain
	4.1 GoOrg4Prod elements
	4.2 GoOrg4Prod added attributes
	4.3 GoOrg4Prod processes
	4.3.1 Preparing goals for assignments
	4.3.2 Generating organisations
	4.3.3 Binding agents and positions
	4.3.4 Choosing organisations
	4.3.5 Computational complexity

	4.4 GoOrg4Prod results

	5 GoOrg4DSN: an extension for the distributed sensors network domain
	5.1 GoOrg4DSN elements
	5.2 GoOrg4DSN added attributes
	5.3 GoOrg4DSN processes
	5.3.1 Generating organisations
	5.3.2 Binding agents and positions
	5.3.3 Choosing organisations
	5.3.4 Computational complexity

	5.4 GoOrg4DSN results

	6 Discussion
	6.1 Assigning goals to named agents and to impersonal representations
	6.2 Planning resources of organisations
	6.3 Synthesising positions instead of requiring user-defined roles
	6.4 Using goals as input instead of roles and behaviours

	7 Conclusion
	References

