
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:36
https://doi.org/10.1007/s10458-023-09613-w

1 3

Combining theory of mind and abductive reasoning 
in agent‑oriented programming

Nieves Montes1 · Michael Luck2 · Nardine Osman1 · Odinaldo Rodrigues2 · 
Carles Sierra1

Accepted: 6 July 2023 / Published online: 11 August 2023 
© The Author(s) 2023

Abstract
This paper presents a novel model, called TomAbd, that endows autonomous agents with 
Theory of Mind capabilities. TomAbd agents are able to simulate the perspective of the 
world that their peers have and reason from their perspective. Furthermore, TomAbd agents 
can reason from the perspective of others down to an arbitrary level of recursion, using 
Theory of Mind of nth order. By combining the previous capability with abductive rea-
soning, TomAbd agents can infer the beliefs that others were relying upon to select their 
actions, hence putting them in a more informed position when it comes to their own deci-
sion-making. We have tested the TomAbd model in the challenging domain of Hanabi, a 
game characterised by cooperation and imperfect information. Our results show that the 
abilities granted by the TomAbd model boost the performance of the team along a variety 
of metrics, including final score, efficiency of communication, and uncertainty reduction.
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1  Introduction

The emergent field of social AI deals with the formulation and implementation of autono-
mous agents that can successfully act as part of a larger society, made up of other software 
agents as well as humans [1, 2]. In human social life, an essential requirement for effective 
participation is the ability to interpret and predict the behaviour of others in terms of their 
mental states, such as their beliefs, goals and desires. This ability to put oneself in the posi-
tion of others and reason from their perspective is called Theory of Mind (ToM) and is 
closely related to feelings of empathy [3] and moral judgements [4].

The work presented here starts from the assumption that, just as humans need a func-
tioning ToM, if autonomous software agents are to operate satisfactorily in social contexts, 
they also need some implementation of the abilities that ToM endows humans with [5]. 
In particular, in domains where agents have to deal with partial observability, agents can 
benefit by engaging in the type of reasoning pictured in Fig. 1: agents can infer additional 

Fig. 1   Outline of the reasoning process captured by the TomAbd agent model
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knowledge from observing the actions performed by others and deducing the beliefs that 
their peers were relying upon to select those actions. This process can be achieved directly 
as in Fig. 1a, where an observer adopts the perspective of an actor to provide an explana-
tion for their action, or through one (Fig. 1b) or more (Fig. 1c) intermediaries, where the 
observer adopts the perspective of the actor through an arbitrary number of agents. Hence, 
agents can use other agents as “sensors” with the purpose of being in a more informed 
position when it comes to their own decision-making. The backward inference from obser-
vations (actions by others) to their underlying motivations is called abductive reasoning 
and, together with ToM, is a central component of the agent model presented here.

The main contribution of this work is the TomAbd agent model, which combines the 
two capacities mentioned above (Theory of Mind and abduction) to provide the reasoning 
displayed in Fig. 1. This paper builds on a previous, much-reduced, preliminary version 
[6]. Here, we propose a completely domain-independent model where agents observe the 
actions of others, adopt their perspective and generate explanations that justify their choice 
of action. We cover all the steps involved in this reasoning process: from the switch from 
the agent’s perspective to that of a peer’s, to the generation, post-processing and update 
of previous explanations as the state of the system evolves. In addition, we also provide a 
complementary decision-making function that takes into account the gathered abductive 
explanations.

We implement the TomAbd agent model in Jason [7], an agent-oriented programming 
language based on the Belief- Desire-Intention (BDI) architecture. Given the functionali-
ties of our model, the ToM capabilities of TomAbd agents are strongly skewed towards the 
perception step of the BDI reasoning cycle (i.e. upon observation of an action by another 
agent, generate a plausible explanation for it). Nonetheless, we open up an avenue to intro-
duce ToM reasoning into the deliberation step of the BDI cycle as well through a comple-
mentary decision-making function.

Furthermore, we have applied the TomAbd agent model to Hanabi, a cooperative card 
game that we use as our benchmark. We clearly indicate the specific domain-dependent 
choices necessary in this application, that need not be shared for other domains. We ana-
lyse the model’s performance on a number of metrics, namely absolute team score and 
information gain and value. Our assessment quantifies the gains that can be unequivocally 
attributed to the ToM abilities of the agents.

This paper is organised as follows. In Sect.  2 we provide the necessary background 
on Theory of Mind, abductive reasoning and the Hanabi game. The central contribution 
of this paper, the TomAbd agent model, is exposed in detail in Sect. 3. Then, in Sect. 4 
we cover some issues related to the implementation and potential customisations of the 
model components. Section 5 presents the performance results of the TomAbd agent model 
applied to the Hanabi domain. Finally, Sect. 6 compares our work with related approaches, 
and we conclude in Sect. 7.

2 � Background

2.1 � Theory of mind

The first building block of the TomAbd agent model is Theory of Mind (ToM). Broadly 
defined, ToM is the human cognitive ability to perceive, understand and interpret others in 
terms of their mental attitudes, such as their beliefs, emotions, desires and intentions [8]. 
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Humans routinely interpret the behaviour of others in terms of their mental states, and this 
ability is considered essential for language and participation in social life [3].

ToM is not an innate ability. It is an empirically established fact that children develop a 
ToM at around the age of 4 [9]. It has been demonstrated that around this age, children are 
able to assign false beliefs to others, by having them undertake the Sally-Anne test [10]. 
The child is told the following story, accompanied by dolls or puppets: Sally puts her ball 
in a basket and goes out to play; while she is outside Anne takes the ball from the basket 
and puts it in a box; then Sally comes back in. The child is asked where will Sally look for 
her ball. Children with a developed ToM are able to identify that Sally will look for her ball 
inside the basket, thus correctly assigning a false belief to the character, that they them-
selves know to be untrue.

During the 1980s, the ToM hypothesis of autism gained traction, which states that defi-
cits in the development of ToM satisfactorily explain the main symptoms of autism. This 
hypothesis argues that the inability to process mental states leads to a lack of reciprocity 
in social interactions [10]. Although a deficiency in the identification and interpretation of 
mental states remains uncontested as a cause of autism, it is no longer viewed as the only 
one, and the disorder is now studied as a complex condition involving a variety of cogni-
tive mechanisms [11, 12].

Within philosophy and psychology, two distinct accounts of ToM exist: Theory ToM 
(TT) and Simulation ToM (ST) [13]. The TT account views the cognitive abilities assigned 
to ToM as the consequence of a theory-like body of implicit knowledge. This knowledge 
is conceived as a set of general rules and laws concerned with the deployment of mental 
concepts, analogous to a theory of folk psychology. This theory is applied inferentially to 
attribute beliefs, goals, and other mental states and predict subsequent actions.

In contrast, the ST account views the predictions of ToM not as a result of inference, but 
through the use of one’s own cognitive processes and mechanisms to build a model of the 
minds of others and the processes happening therein. Hence, to attribute mental states and 
predict the actions of others, one imagines oneself as being in the other agent’s position. 
Once there, humans apply their own cognitive processes, engaging in a sort of simulation 
of the minds of others. This internal simulation is very closely related to empathy, since it 
essentially consists of experiencing the world from the perspective of someone else. In this 
work, we adhere more closely to the ST account than to the TT one, as we view the former 
as having a clearer path to becoming operational. In our TomAbd model, agents simulate 
themselves to be in the position of another, and then apply abductive reasoning (covered in 
Sect. 2.2) to infer their beliefs.

Formally, ToM statements can be expressed using the language of epistemic logic, 
which studies the logical properties of knowledge, belief, and related concepts [14, 15]. 
The belief of agent i is expressed using modal operator Bi . Although modal operators also 
exist for other mental states such as desires and intentions [16], we focus on B, since the 
ToM abilities of our agent model are manifested by having the agent’s own beliefs replaced 
by an estimation of the beliefs of others. Then, the statement Bi� is read as “agent i 
believes that �”.

ToM statements can be expressed by nesting the previous beliefs about the state of 
the world. Therefore, statement BiBj� is read as “i believes that j believes � ”. This cor-
responds to a first-order ToM statement from the perspective of i. Subsequent nesting 
results in statements of higher order. For example, BiBjBk� is read as “i believes that j 
believes that k believes � ”, a second-order ToM statement. This recursion can be extended 
down to an arbitrary nesting level. In general, an n-th order ToM statement is expressed 
as BiBj1

…Bjn−1
Bjn

� and is read as “i believes that j1 believes … that jn−1 believes that 
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jn believes � ”. The psychologist Corballis argued that, in fact, the ability to think recur-
sively beyond the first nesting level, as in ToM statements of second order and beyond, is a 
uniquely human capacity that sets us apart from all other species [17, 18].

Within AI, implementations of ToM are often categorised under the umbrella of tech-
niques for modelling others [19]. In the majority of cases, these techniques are applied to 
competitive domains, where they are referred to as opponent modelling [20, 21]. ToM for 
autonomous software agents has so far been developed in a somewhat fragmented fashion, 
with every camp within the field implementing it according to their own techniques and 
methods.

In machine learning, prominent work by Rabinowitz et al. [22] has modelled ToM as 
a meta-learning process, where an architecture composed of several deep neural networks 
(DNN) is trained on past trajectories of a variety of agents, including random, reinforce-
ment learning (RL) and goal-directed agents, to predict action at the next time-step. The 
component of the architecture most related to ToM is the mental net, which parses trajec-
tory observations into a generic mental state embedding. It is not specified what kind of 
mental states (i.e. beliefs or goals) these embeddings represent. In contrast, Wang et  al. 
[23] also use an architecture based on DNNs for reaching consensus in multi-agent cooper-
ative settings. Their ToM net explicitly estimates the goal that others are currently pursuing 
based on local observations. Finally, an alternative approach by Jara-Ettinger [24] proposes 
to formalise the acquisition of a ToM as an inverse reinforcement learning (IRL) prob-
lem. However, these approaches have drawn some criticism for their inability to mimic the 
actual operation of the human mind, as the direct mapping from past to future behaviour 
bypasses the modelling of relevant mental attitudes, such as desires and emotions [25]. By 
contrast, in our work ToM is used to derive explicit beliefs. We leave the expansion of the 
model to include other mental states, such as desires and intentions, for future work.

ToM approaches have also been investigated from an analytical game theoretical per-
spective. De Weerd et  al. [26, 27] show that the marginal benefits of employing ToM 
diminish with the nesting level in competitive scenarios. In particular, while first-order and 
second-order ToM present a clear advantage with respect to opponents with ToM abilities 
of lower order (or no ToM capacity at all), the benefits of using higher-order ToM are out-
weighed by the complexity it entails. The same authors also prove that high-order ToM is 
beneficial in dynamic environments, with the magnitude of the benefits increasing with the 
uncertainty of the scenario [28]. It is therefore important to devise techniques that attempt 
to measure the information gained through the addition of ToM of any order, a concern 
also considered in this paper.

Finally, symbolic approaches to ToM have studied the effects of announcements on the 
beliefs of others and the ripple-down effects on their desires and the actions they motivate 
in response, for the purposes of deception and manipulation [29, 30].

2.2 � Abductive logic programming

The second main component of the TomAbd agent model is abductive reasoning. Abduc-
tion is a logical inference paradigm that differs from traditional deductive reasoning [31]. 
Classical deduction makes inference following the modus ponens rule: from knowledge of 
� and of the implication � → � , � is inferred as true. In contrast, abduction makes infer-
ences in the opposite direction: from knowledge of the implication � → � and the observa-
tion of � , � is inferred as a possible explanation for �.
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Hence, instead of inferring conclusions deductively, abduction is concerned with the 
derivation of hypothesis that can satisfactorily explain an observed phenomenon. For 
this reason, abduction is broadly defined as “inference to the best explanation” [32], 
where the notion of best needs to be specified by some domain-dependent optimality 
criterion. Abduction is also distinct from the inference paradigm of inductive reason-
ing [33]. While induction works on a body of observations to derive a general princi-
ple, explanations inferred in abductive reasoning consist of extensional knowledge, i.e. 
knowledge that only applies to the domain under examination.

In the context of logic programming, the implementation of abductive reasoning is 
called Abductive Logic Programming (ALP) [34, 35], defined as follows.

Definition 1  An Abductive Logic Programming theory is a tuple ⟨T ,A, IC⟩ , where:

•	 T is a logic program representing expert knowledge in the domain;
•	 A is a set of ground abducibles (which are often defined by their predicate symbol), 

with the restriction that no element in A appears as the head of a clause in T; and
•	 IC is a set of integrity constraints, i.e. a set of formulas that cannot be violated.

Then, an abductive explanation is defined as follows.

Definition 2  Given an ALP theory ⟨T ,A, IC⟩ and an observation Q, an abductive explana-
tion Δ for Q is a subset of abducibles Δ ⊆ A such that:

•	 T ∪ Δ ⊧ Q ; and
•	 T ∪ Δ verifies IC.

The verification mentioned in Definition  2 can take one of two views [34]. First, 
the stronger entailment view states that the extension of T with explanation Δ needs to 
derive the set of constraints, T ∪ Δ ⊧ IC . Second, the weaker consistency view states 
that it is enough for the extended logic program not to violate IC, i.e. T ∪ Δ ∪ IC is 
satisfiable, or T ∪ Δ ̸⊧ ¬IC . In this work, we adhere to the latter view. We do not model 
integrity constraints directly but rather their negation. We introduce into the agent pro-
gram formulas that should never hold true through special rules called impossibility 
clauses. More details on this are provided in Sect. 3.1. Taking the consistency position 
allows us to work with incomplete abductive explanations that need not complement the 
current knowledge base to the extent that IC can be derived, but that nonetheless pro-
vide valuable information.

In practice, most existing ALP frameworks compute abductive explanations using 
some extension of classical Selective Linear Definite (SLD) clause resolution, or its 
negation-as-failure counterpart SLDNF [36–39]. The current state-of-the-art integrates 
abduction in Probabilistic Logic Programming (PLP), where the optimal explanation 
is considered to be the one that is compatible with the constraints and simultaneously 
maximises the joint probability of the query and the constraints [40].

The purpose of computing abductive explanations is to expand an existing knowledge 
base KB, which may or may not correspond to the logic program T used to compute 
explanation Δ in the first place. During knowledge expansion, which occurs one formula 
at a time, the following four scenarios may arise [34]. 
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1.	 The new information can already be derived from the existing explanation, 
KB ∪ Δ ≡ KB , and hence Δ is uninformative.

2.	 KB can be split into two disjoint parts, KB = KB1 ∪ KB2 , such that one of them, together 
with the new information, implies the second, KB1 ∪ Δ ⊧ KB2 . In the worst case, the 
addition of Δ renders a part of the original knowledge base redundant.

3.	 The new information Δ violates the logical consistency of KB. To integrate the two, it is 
necessary to modify and/or reject a number of the assumptions in KB or in Δ that lead 
to the inconsistency.

4.	 Δ is independent and compatible with KB. This is the most desirable case, as Δ can be 
assimilated into KB in a straightforward manner.

In the TomAbd agent model, we deal with scenarios 1 and 3 through the post-process-
ing of the generated abductive explanations by the explanation revision function (ERF). 
Essentially, uninformative explanations (scenario 1) as well as explanations that violate the 
integrity of the current belief base (scenario 3) are discarded. More details are provided in 
Sect. 3.3.

Hence, the addition of abductive explanations does not affect the correctness of KB, but 
it may affect its efficiency. The addition of � into the knowledge base may subsume some 
information already there, as anticipated by scenario 2. However, in the TomAbd model, 
we do not check whether a new explanation renders part of the knowledge base redundant. 
We work with dynamic belief bases, which change as agents update their perceptions of 
the environment. When the system evolves and an agent’s perception of it changes, some 
abductive explanations currently in the belief base need to be dropped because they are no 
longer correct, or they are now redundant. This operation is performed by the explanation 
update function (EUF), covered in Sect. 3.3. If, due to the addition of � , a part of the belief 
base had been discarded, it would raise the issue of whether it needs to be recovered once 
the explanation that caused it to become irrelevant is dropped. We bypass this question by 
retaining all of the belief base upon adding an explanation, provided that this explanation 
has previously passed all the redundancy and consistency checks.

2.3 � The Hanabi game

In this paper, we use the Hanabi game as a running example for the presentation of the 
TomAbd agent model and to evaluate its performance. Hanabi has been by other AI 
researchers as a testbed to test techniques for multi-agent cooperation [41, 42]. Hanabi is 
an award-winning1 card game, where a team of two to five players work together towards a 
common objective. The goal of the team is to build stacks of cards of five different colours 
(blue, green, yellow, red and white), with the stacks composed of a card of rank 1, followed 
by a card of rank 2, and so on, until the stack is completed with a card of rank 5. A typical 
setup of an ongoing Hanabi game appears in Fig. 2a.

At the start of the game, players are handed four or five cards, depending on the size of 
the team. Players place their cards in a way such that everyone except themselves can see 
them. For example, the setup in Fig. 2a is drawn from the perspective of player Alice, who 
cannot see her own cards but has access to Bob’s and Cathy’s cards. Initially, no stack has 
any card on it (their size is 0). Additionally, eight information tokens (the round blue and 

1  https://​www.​spiel-​des-​jahres.​de/​en/​games/​hanabi/.

https://www.spiel-des-jahres.de/en/games/hanabi/
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black chips in Fig. 2) and three live tokens (the heart-shaped chips in Fig. 2) are placed on 
the table.

Players take turns in order, one at a time, in which they must perform one of three 
actions. First, they can discard a card (Fig. 2b). Here, the player picks a card from their 
hand and places it in the discard pile, which is observable by everyone. By doing so, they 
recover one spent information token (which is spent by giving hints) and replace the vacant 
slot in their hand with a card drawn from the deck. A player cannot discard a card if there 
are no information tokens to recover.

Second, players can play cards from their hand. They pick a card and place it on the 
stack of the corresponding colour. Players need not state in which stack they are going to 
play their card before they do so. In other words, they are allowed to play “blindly”. There 
are two possible outcomes to this move. The card is correctly played if its rank is exactly 1 

Fig. 2   Basic set-up for the Hanabi game and actions that can be performed
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unit over the size of the stack of the card’s colour. For example, in Fig. 2c Alice plays her 
white 3 card on the white stack, which has size 2 (i.e. there is a white 1 card at the bottom 
and a white 2 card in top of it). After a card is played correctly, the team score is increased 
by 1 unit (the score corresponds to the sum of the ranks at the top of each stack). Moreover, 
if a player correctly places a card of rank 5 and therefore completes one stack, one infor-
mation token is recovered for the team, assuming there are some tokens left to recover. 
Finally, the player replaces the gap in their hand with a card from the deck.

The card is incorrectly played if the rank does not match the size of the stack plus 1. 
For example, in Fig. 2d Alice attempts to play a blue 5 while the blue stack has size of 2. 
If this happens, the player places the card they attempted to play in the discard pile, and 
replaces it with a new card from the deck. Furthermore, the whole team loses one of their 
life tokens.

Third, players can give hints to one another about the cards they hold. Hints are pub-
licly announced, i.e. everyone hears them. Players can hint to one another about the colour 
(Fig. 2e) or rank of their cards (Fig. 2f). In order to give a hint, the moving player must 
spend one information token. The team must have at least one information token, which 
is spent when the hint is given. When players give hints to others, they must indicate all 
of the receiver’s cards that match the colour or rank being hinted. For example, in Fig. 2e, 
Alice has to tell Bob where all of his white cards are. Alice is not allowed to tell Bob only 
the colour of a card in a single slot if he has other cards of the same colour. Analogously, 
in Fig. 2f, Alice tells Cathy which of her cards have rank 1, not mentioning their colour, 
regardless of any previous hints.

There are three possible ways in which a game of Hanabi might end. First, the players 
might manage to complete all of the stacks up to size 5, hence finishing the game with 
the maximum score of 25. Second, the team might lose all three life tokens. In this case, 
immediately after losing the third life token, the game finishes with the minimum score of 
0. Third and last, after a player has drawn the final card from the deck, all participants take 
one more turn. After that, the game finishes with score equal to the sum of the size of the 
stacks.

The Hanabi game has three features that make it particularly interesting to test tech-
niques for modelling others. This has led some researchers to point to Hanabi as the next 
great challenge to be undertaken by the AI community [41]. The first feature is the purely 
cooperative nature of the game, since all participants have a common goal, which is to 
build the stacks as high as possible. Consequently, players can benefit from understanding 
the mental state of others, such as their intentions with respect to their cards, or the short-
term goals they want to achieve during the course of a game. Additionally, the effective-
ness of the developed approaches can be experimentally assessed through the final score.

Second, players in Hanabi have to cope with partial observability (or imperfect infor-
mation, the preferred term in the game theory community), as players can see every-
one else’s cards but not their own. To cope with this, players provide information to one 
another through hints. There are two facets to these hints. One is the explicit information 
carried by the hint, i.e. the colour or rank of the cards directly involved. The other facet is 
the additional implicit information that can be derived from understanding the intention of 
the player making a move when they provide a hint.

To understand this second facet, consider the situation displayed in Fig. 2a. It is Alice’s 
turn to move, and she decides to give a colour hint to Cathy, pointing to her rightmost card 
as being the only red card she has. In principle, Cathy now only knows that her rightmost 
card is red, and all others are not. However, Cathy may be able to understand that Alice 
would only provide such a hint if she wanted her to play that card, and since it is red and 
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the red stack has size 3, Cathy’s card must be a red 4. Cathy can draw such a conclusion 
from the observation of the current state of the game, and an assumption about the strategy 
that Alice is following. In the TomAbd agent model, this implicit information is identified 
with the abductive explanations that agents are able to generate by taking the perspective of 
the player making the move.

Finally, the third interesting feature of Hanabi is the fact that the sharing of information 
is quantified through discrete tokens that must be managed as a collective resource. Agents 
must manage the number of hint tokens available altogether, by balancing the need to pro-
vide a hint in the current state of the game versus discarding a card to recover a token that 
then becomes available for another hint.

Previous work on autonomous Hanabi-playing agents has followed one of two 
approaches: rule-based and reinforcement learning (RL) agents. Rule-based Hanabi bots 
[43–47] play following a set of pre-coded rules. In contrast, RL bots [41, 48–50] apply 
single-agent or multi-agent RL techniques to learn a policy for the game. Sarmasi et  al. 
[51] have compiled a database of Hanabi-playing agents developed so far.

Our TomAbd agent models relies on a pre-coded strategy to decide what action to take 
next and hence aligns more closely with the rule-based approach. However, our agent 
model is agnostic with respect to the specifics of the strategy that the agent follows. In 
contrast, previous work on rule-based agents for Hanabi [43–47] has focused on the details 
of the developed strategies. Also, unlike both rule-based and RL agents, our agent model is 
domain-independent, and it is applied to Hanabi as a test case. The type of reasoning that 
TomAbd agents engage in is general but can be useful for this particular game.

Autonomous agents for Hanabi can be evaluated in three different settings: self-play, 
where all the participants of the team follow the same approach and strategy; cross-play, 
where teams are composed of heterogeneous software agents; and human-play, where 
teams include human players. The majority of the current research on Hanabi AI evaluates 
performance during self-play, as we do in this paper. In self-play, RL agents outperform 
rule-based agents, with the former routinely achieving average scores of around 23 points, 
while the latter struggle to break into 20 points for the average score. The current state-of-
the-art for Hanabi AI combines both RL and rule-based techniques, and produced an aver-
age score of 24.6 in self-play [49]. To achieve that, first, one agent learns a game-playing 
policy while all other team members follow the same pre-coded strategy. Second, all agents 
use multi-agent learning, where they perform the same joint policy update after every itera-
tion, if feasible. If not, they fall back on the same set of pre-coded rules.

Although RL agents display superior performance in self-play, they require a compu-
tationally intensive learning process. Additionally, in a recent survey [42] several types of 
rule-based or RL agents were paired with human players, forming teams of 2. Despite there 
being no statistically significant difference in game score between rule-based and RL team-
mates, humans perceived rule-based agents as more reliable and predictable, while express-
ing feelings of confusion and frustration more often when paired with RL teammates.

3 � Agent model

In the current section, we detail the TomAbd agent model, which constitutes the core of this 
work. First, we outline the agent architecture, its components and introduce some neces-
sary notation. Later, we explain how these components operate.
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3.1 � Preliminaries

TomAbd is a symbolic, domain-independent agent model with the ability to adopt the point 
of view of fellow agents, down to an arbitrary level of recursion. Consider the traditional 
multi-agent setting, where a set of agents A = {i, j, k,…} operate in a shared environment. 
For the remainder of Sect.  3, the explanations are presented from the perspective of an 
arbitrary observer agent i; i.e. we will be considering the cognitive processes that i autono-
mously undertakes when it observes its fellow agents taking actions.

The main components of the TomAbd agent model are presented in Fig. 3. Rectangles 
represent belief base (BB) data structures. Hexagons represent immutable functions, that 
are not customisable. Diamonds represent functions for whom only default implementa-
tions are provided, and that allow users to customise them according to their application’s 
needs. The rounded square for BUF corresponds to the belief update function, a common 
functionality for situated agents. We do not define this function in our work, but tailor the 
default BUF method in our language of choice to include some operations on the gathered 
abductive explanations. Details on this are provided in Sect. 4.

The agent architecture is composed of the main BB data structure which contains the 
logic program that the agent is currently working with, plus a backup to store the agent’s 
own beliefs when switching to another agent’s perspective. At all times, the BB contains 
a logic program: a set of ground literals representing facts about the world and a set of 
rules representing relationships between literals. We denote by Ti the logic program of 
agent i; i.e. the content of their BB at initialization time. Ti is composed of the following 
components. 

1.	 Percepts are ground literals that represent the information that the agent receives from 
the environment. Incoming percepts update the BB according to the belief update func-

Fig. 3   Architecture of the TomAbd agent model
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tion (BUF in Fig. 3). For example, in a situation of Hanabi like the one displayed in 
Fig. 2, agent Alice would receive the following percepts:

	   These indicate that Alice observes Bob having a card of colour blue and rank 3 in his 
fourth slot (counting from the left). We assume, implicitly, that the agents are limited 
by partial observability, meaning that they do not perceive all the information there is 
to know about the environment. In general, different agents will have access to differ-
ent parts of the environment, and will receive different percepts. In the Hanabi game 
in particular, players do not a priori know about their own cards or about the order of 
cards in the deck.

2.	 Domain-related clauses are traditional logic programming rules that establish relation-
ships between facts in the domain. For example, the following clause expresses that, in 
Hanabi, a card of colour C and rank R is playable if the size Sz of the corresponding 
stack is one unit below the rank of the card.

3.	 Impossibility clauses have atom imp as their head and whose body contains literals that 
cannot hold simultaneously true. They capture the constraints of the domain, if there are 
any. For example, in the Hanabi game, the following clause states that a player P cannot 
have cards of two different colours, C1 and C2, in the same slot S.2

	   As stated in Sect. 2.2, we adopt the consistency view when it comes to verifying the 
expansion of the belief base with an abductive explanation. To incorporate integrity 
constraints into an agent’s program, we need a mechanism that triggers an exceptional 
event when one or several constraints are violated. This is precisely the role of the 
impossibility clauses.

	   To clarify, consider an impossibility clause . The conjunction Conj 
in its body corresponds to a formula that should never hold true. In other words, its 
negation ¬���� is equivalent to a traditional integrity constraint IC that can never be 
violated. Therefore, the derivation of imp indicates that IC has been violated. To avoid 
this, the generated abductive explanations undergo post-processing operations where 
they are filtered out if their expansion into the program causes the derivation of imp.

4.	 Theory of mind clauses are rules that are essential to the agent’s cognitive ability to put 
itself in the shoes of others. They function as a meta-interpreter on the agent’s current 
program to generate an estimation of another agent’s program. ToM clauses have the 
literal believes(Ag,F) as their head, to express the fact that agent i believes that 
agent Ag knows about some fact F. In the Hanabi domain, the following ToM clause 

2  Note that Jason, our implementation language of choice, does not include any default mechanisms 
to check the consistency of an agent’s BB, i.e. an agent may simultaneously believe b and ∼ b . It hence 
becomes the responsibility of the agent developer to implement, if needed, additional mechanisms to avoid 
such inconsistencies, which the TomAbd agent model achieves through the introduction of impossibility 
clauses.
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indicates that agent i believes that player Agj can see the card that a third player Agk 
has in their S-th slot, and, in particular, Agj can observe its colour C.

5.	 Abducible clauses have literal abducible(F) at their head, and express what missing 
beliefs can potentially be added to agent i’s BB to obtain a more detailed representa-
tion of the state of the system. The definition of the literals that may be missing from 
an agent’s BB is a domain-dependent component of the program. For example, in the 
Hanabi domain, the following belief indicates that, from the viewpoint of i, a player P 
may have, in their S-th slot, a card of colour C if i does not already hold a belief about 
the colour of the card in S, nor does i explicitly hold a belief explicitly indicating that 
P does not have a card of colour C in S.3

6.	 Action selection clauses are a set of rules with head action(Ag,Act) 
[priority(n)] that indicate the pre-conditions for agent Ag to select and execute 
action Act. These clauses correspond to agent i’s beliefs about the other agents’ strate-
gies (for instances where �� = j, j ≠ i ) as well as, potentially, agent i’s own strategy (for 
instance when �� = i ). The head is annotated with a priority(n) literal, where  n  is 
a number (any number, not necessarily an integer). These priorities state in which order 
the action selection clauses should be considered when they are queried. Details about 
the action selection are provided in Sect. 3.4.

	   As an example for the Hanabi domain, the following clause indicates that a participant 
P should play their card in slot S if it is of a playable colour C and rank R.

	   The action selection clauses are used by TomAbd agents to compute abductive expla-
nations from the observation of actions by other agents. Hence, it is compulsory that 
they capture agent i’s beliefs about the strategy agent j ≠ i is following. Nonetheless, 
the TomAbd model is flexible concerning whether such action selection clauses also 
implement agent i’s own strategy. The action selection function presented in Sect. 3.4 
certainly provides an avenue to use action selection clauses during the agent’s own 
practical reasoning. However, this is a complement to the TomAbd model (whose focus 
is on the generation and maintenance of abductive explanations using ToM) rather than 
a fundamental component.

3  We distinguish between strong negation ( ∼ Fact) and negation as failure (not Fact). In epistemic 
logic notation, they are expressed as B

i
[∼ �] and ∼ B

i
� , respectively.
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So far, we have presented the components of the logical program of a TomAbd agent. Now, 
we move on to explain how they are utilised. The distinguishing feature of our agent model 
is the ability to put themselves in the shoes of others. For example, when engaging in first-
order ToM (recursive level 1), agent i changes their perception of the world to the way in 
which they believe that some other agent j is perceiving it. In epistemic logic notation, 
these are the beliefs denoted by BiBj� . In other words, in an attempt to perceive the world 
how i believes j is perceiving it, agent i’s BB changes to BBj

i
= {� ∣ ��������(j,�)} , 

where BBj

i
 denotes i’s estimation of j’s BB given i’s current logic program.

However, the TomAbd agent model is not limited to first-order ToM. It can, in 
fact, switch its perception of the world to that of another agent down to an arbitrary 
level of recursion. For example, agent i may want to view the world in the way that 
they believe j believes that k is perceiving it. This corresponds to second-order ToM 
and is expressed as BiBjBk� in epistemic logic notation. In particular, i may want to 
estimate j’s estimation of itself. This is equivalent to the previous case BiBjBk� with 
i = k , BiBjBi�.

The nesting exposed in the previous paragraph can be extended to an arbitrary level 
of recursion: agent i attempts to view the world how it believes that j believes … that 
k believes that l views it. This is denoted by BiBj …BkBl� . We define the sequence of 
agent perspectives [j, ..., k, l] recursively adopted by i as a viewpoint:

Definition 3  For agent i, a viewpoint is an ordered sequence of agent designators [j, ..., k, l] 
where there are no two consecutive equal elements and the first element is different from i.

Hence, when we talk about agent i adopting viewpoint [j,… , k, l] we mean the pro-
cess by which agent i switches its own perspective of the world by the one it believes 
that j believes … that k believes that l has. To do this, agent i has to modify its own 
program Ti , contained in its main BB, by the estimation that it can build of j’s esti-
mation … of k’s estimation of l’s program. This new program will, in general, indeed 
be an estimation since agents have access to (possibly) overlapping but different fea-
tures of the environment. We denote this estimated program by Ti,j,…,k, and define it as 
follows:

Definition 4  Given agent i with logic program Ti , i’s estimation of viewpoint [j, ..., k, l] is a 
new logic program Ti,j,…,k,l:

Equation  (1) indicates that, in order to estimate the BB of the next agent whose per-
spective is to be adopted, the agent must query its current BB to find all the ground lit-
erals that, according to the ToM rules, the next agent knows about. Therefore, agent 
i must substitute their current program by the set of unifications to the second variable 
in believes(Ag,F). In other words, agent i runs the query believes(ag ,F) in 
its BB and obtains a set of unifications for F as output, {� ↦ �1,… , � ↦ �n} , where �i , 
i = 1,… , n denotes a groud literal (e.g. has_card_colour(alice,3,red), has_
card_rank(bob,1,5)). Then, agent i substitutes the contents in its BB by the set 
{�1,… ,�n}.

(1)Ti,j,…,k,l = {𝜙 ∣ Ti,j,…,k ⊧ ��������(l,𝜙)}
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The operationalisation of Definition 4 is presented in function AdoptViewpoint, Algorithm 1. 
It takes as its only argument a viewpoint as defined in Definition 3. Given this viewpoint, agent 
i adopts it, first, by saving a copy of its own BB in the backup. Then, i queries the ToM clauses 
with the next agent whose perspective is to be estimated as their first argument. The result of this 
operation becomes agent i’s new BB, and they move on to the next iteration.

3.2 � The TomAbductionTask function

Function AdoptViewpoint captures the nth-order Theory of Mind capabilities in the TomAbd 
agent model, for arbitrary integer value of n. However, the purpose of switching one’s perspec-
tive is to be able to reason from the point of view of another agent. Therefore, it is not enough for 
i to invoke AdoptPerspective. It should, once the switch has occurred, infer the motivation for 
the actions taken by the other. This reasoning process is implemented in the core function of the 
TomAbd agent model, TomAbductionTask, in Algorithm 2.
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TomAbductionTask takes three arguments as input: an observer viewpoint, an act-
ing agent l and the action l took al . The last two are straightforward to understand. The 
observer viewpoint is a list as defined in Definition  3. It indicates what ToM order i 
is engaging in, and through which other agents it is estimating the perception that the 
actor l has of the world. For example, suppose i would like to understand why l chose al 
directly. In this case, i observes its peer’s action from its own perspective. The observer 
viewpoint would, in this case, correspond to the empty list (“[ ]”). However, i might 
want to understand why a third agent j thinks that l made their choice. Then, i is observ-
ing l’s action through j, and hence the observer viewpoint is [j]. This viewpoint can be 
subsequently extended to any desired level of recursion. For example, agent i may want 
to estimate the impression that actor l thinks they are making on agent j when executing 
al . This corresponds to observer viewpoint [l, j].

The first step of TomAbductionTask (Lines 1 and 2) is to build the actor’s viewpoint 
by simply appending actor agent l to the observer viewpoint and to adopt it by calling 
AdoptPerspective. Now, agent i is in a position to reason from the perspective of the 
actor, possibly through a number of intermediate observers. In the simplest case, agent 
i is switching its logical program Ti to the program it estimates actor l to be working 
with, i.e. Ti,l . This case corresponds to agent i engaging in first-order ToM at the time 
of adopting the actor’s viewpoint. Alternatively, agent i may switch its program Ti to 
the program they estimate that j1 estimates that … jn−1 estimates that jn is working with, 
Ti,j1,…,jn−1,jn

 , this time engaging in nth-order ToM.
Once the actor’s viewpoint has been adopted, the agent uses ALP to generate abduc-

tive explanations that justify agent l’s action al . The ALP theory that the agent uses 
is composed of its current BB (in the general case, Ti,j,…,k,l ), and the set of abducibles 
derived from it, which we denote as Ai,j,…,k,l:

The set of plausible abductive explanations is computed by function Abduce in Line 4 
of Algorithm  2, using the set of abducibles defined in Eq.  (2). The pseudocode for this 
function is not provided, as it does not constitute any technical innovation. The input to 
this function is the query Q = ������(l, al) . The Abduce function consists of an abduc-
tive meta-interpreter, based on classical SLD clause resolution with a small extension. To 
compute abductive explanations, this meta-interpreter attempts to prove the query Q as a 
traditional goal in SLD clause resolution. However, when it encounters a sub-goal that is 
not provable, before failing the query, it checks whether this sub-goal can be unified to any 
element in the set of abducibles Ai,j,…,k,l . If so, the sub-goal is added to the explanation 
under construction in the branch being currently explored.

Function Abduce backtracks upon failure or completion of the query, just as tradi-
tional SLD solvers. Consequently, the output of this function is a set � of m potential 
explanations. At the same time, every element in � is itself a set of ground abducibles 
from Ai,j,…,k,l:

Once the abductive explanations have been computed, they are first refined through the 
application of the explanation revision function, EERF, in Line 5. Then, they are trans-
formed into a literal, that is, to a format suitable to be added to a logical program, through 

(2)Ai,j,…,k,l = {𝛼 ∣ Ti,j,…,k,l ⊧ ���������(𝛼)}

(3)
� = {Φ1,… ,Φm}, where Φh = {�h1,… ,�hnh

}

and �hg ∈ Ai,j,…,k,l,∀h, g
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the BuildAbdLit function in Line 6. Both of these steps are reviewed in detail in the next 
section.

At this point, the abductive explanations have been computed and post-processed, 
all from the perspective of the actor, i.e. whilst agent i’s BB contains Ti,j,…,k,l . How-
ever, agent i does not derive this information only so that it can build a better estima-
tion of the actor’s BB. It also reasons about how this information affects beliefs at the 
observer’s viewpoint level. Therefore, agent i has to first return to its original program 
Ti by retrieving it from the backup (Line 7). Then, it adopts the observer’s viewpoint 
(Line 9) and perform the same post-processing steps (explanation revision in Line 10 
and format transformation in Line 11) from this new perspective. Eventually, agent i 
recovers its original program Ti from the backup in Line 12.

It should be noted that the TomAbductionTask function does not, by default, add 
the abductive explanations (or rather, the associated literals generated by BuildAb-
dLit) to agent i’s program Ti (observe the dashed arrow from TomAbductionTask to 
the BB in Fig. 3). Rather, the function returns the revised explanations and their for-
matted literals. This choice has been made to allow flexibility to potential users. If nec-
essary, users can perform further reasoning and modifications to the returned explana-
tions. For example, agent i can decide whether to append the returned literals to their 
BB based on some trust metric it has towards the actor.

3.3 � Explanation revision, assimilation and update

This section reviews the post-processing operations that are performed on the raw 
abductive explanations returned by the Abduce function. In the cases where the imple-
mentations provided are defaults, this is clearly indicated. Details of how these defaults 
can be overridden are provided in Sect. 4.

During the execution of TomAbductionTask, two calls are made to the explanation 
revision function (EERF), one from the point of view of the actor and one from the 
point of view of the observer. The purpose of this function is to refine and/or filter the 
raw explanations based on the current content of agent i’s BB, which is either the esti-
mation of the actor’s program Ti,j,…,k,l or the estimation of the observer’s program Ti,j,…,k.
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The default implementation of the EERF function appears in Algorithm  3 and 
consists of two steps. First, in Line 3, the agent trims every explanation Φh (a set of 
ground abducibles) to remove uninformative atoms. Admittedly, this step only makes 
a difference when EERF is called from the perspective of the observer (Line 10 in 
Algorithm 2), and not from the perspective of the actor (Line 5 in Algorithm 2). The 
abduction meta-interpreter does not add proven sub-goals to the explanation under con-
struction. Therefore, from the perspective of the actor (where the raw abductive expla-
nations are actually computed), there cannot be uninformative facts in the explanation 
sets.

The second step is a consistency check (Lines 4 to 6 in Algorithm  3). This check 
takes in every trimmed explanation and inspects whether it, together with agent i’s cur-
rent BB, entails any impossibility clause. Recall from the discussion in Sect. 3.1 that the 
derivation of imp is equivalent to an integrity constraint IC being violated. The impos-
sibility clauses that this check considers include both domain-related and impossibility 
clauses derived from prior executions of TomAbductionTask. If no violation occurs, the 
explanation is returned as part of the set of revised explanations.

Here, we have only presented a basic EERF implementation that can be customised 
if needed. For example, the EERF could annotate every explanation Φh with an uncer-
tainty metric. Alternatively, it could operate differently depending on whether it is being 
called while the agent is working under the actor or the observer point of view. In fact, 
the belief addition operations in Lines 3 and 9 of Algorithm  2 are there precisely to 
allow for this possibility. Further details are provided in Sect. 4.

The set of revised explanations �′ is, like the set of raw explanations � , a set of sets of 
ground abducibles, see Eq. (3). Therefore, it is not in a suitable format to be added to agent 
i’s BB, which is a logical program composed of facts and clauses. The conversion from 
a set of sets to a clause that can be added to a logical program is performed by function 
BuildAbdLit (short for “build abductive literal”) in Algorithm 4.

To understand how this function operates, consider that a (revised) abductive explana-
tion � = {{�11,… ,�1n1

},… , {�m1,… ,�mnm
}} can be written as the following disjunctive 

normal form (DNF):
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The formula in Eq. (4) must hold, meaning it has the status of a traditional IC discussed 
in Sect. 2.2. Therefore, its negation ¬� must never hold true. If ¬� is derived from the 
agent’s program, it means that the formula in Eq. (4) has been violated, and an exceptional 
event (i.e. the derivation of imp) should be triggered. This observation leads to the use 
of ¬� to build a new impossibility clause. This new clause has the same format as the 
domain-related impossibility clauses presented in Sect. 3.1 but its head imp is annotated 
with source(abduction) to denote that it is not domain-specific but derived from an 
abductive reasoning process. This step corresponds to Line 1 in Algorithm 4.

Nonetheless, this new impossibility clause does not consider the level of recursion, 
or, in other words, the viewpoint, where the explanation was generated. This information 
needs to be incorporated in Lines 2 to 6. In summary, if the agent is operating under view-
point 

[
j,… , k, l

]
 , BuildAbdLit nests the abductive impossibility clause constructed in Line 

1 into the following literal:

Therefore, the next time agent i adopts viewpoint 
[
j,… , k, l

]
 , the bare imp 

[source(abduction)] clause will become part of their BB (assuming the user has 
decided to add it to Ti in the first place).

Finally, there is one last operation performed on the clauses and literals derived from 
TomAbductionTask, which is the update of those that have been incorporated into the 
original BB of the agent, Ti , as new percepts are received. We refer to this operation as the 
explanation update function (EEUF). In contrast to the other functions presented in this 
section, the EEUF is not executed within TomAbductionTask, but is called from the belief 
update function (BUF, see Fig. 3). The BUF is a standard function of the BDI agent rea-
soning cycle whose purpose is to update the BB depending on the percepts received from 
the environment and the messages passed on by other agents. Therefore, upon receiving 
percepts from the environment, the agent first modifies its ground percept beliefs, and then 

(4)� =
(
�11 ∧… ∧ �1n1

)
∨… ∨

(
�m1 ∧… ∧ �mnm

)

(5)
��������(j,… , ��������(k, ��������(l, {���[������(���������)] ∶ −

(¬�11 ∣ … ∣ ¬�1n1
) , … , (¬�m1 ∣ … ∣ ¬�mnm

)}))…).
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updates clauses and literals derived from previous executions of TomAbductionTask, if 
there are any.

The default implementation of EEUF appears in Algorithm  5. In it, agent i discards 
previous abductive explanations if they are deemed to be no longer informative at the view-
point at which they were generated. To do so, the agent loops over all the literals that origi-
nated from an abductive reasoning process, denoted by the tuple ⟨vp,�, ���⟩ composed of 
the viewpoint vp where the explanation � originated and the associated literal (or clause) 
lit (Line 2). Agent i then adopts viewpoint vp with a routine call to AdoptViewpoint, and 
checks if explanation � can be derived from the current BB, T[i∣vp].4 If so, the explanation is 
deemed to be no longer informative and its associated literal lit is added to a removal set.

3.4 � Action selection

The functions presented so far constitute the agent’s core cognitive abilities combining 
Theory of Mind and abductive reasoning. However, the purpose of undergoing all this 
cognitive work is for agent i to be in a more informed position when it comes to i’s own 
decision-making. To do so, agent i needs to consider the generated abductive explanations 

4  We use Prolog notation for lists [H ∣ T] , where H is the first element (head) and T is the tail of the list, 
which is itself another list, possibly empty.
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when reasoning about which action to perform next. We provide such a function, Selec-
tAction in Algorithm  6, which takes into account all the impossibility clauses in the 
agent’s BB, including those coming from the output of TomAbductionTask.

Similarly to the EERF and EEUF, the provided implementation is a basic one, and it 
is customisable. The user can, for example, reason probabilistically about which action to 
take next, in case they have associated an uncertainty metric to the generated abductive 
explanations. The default implementation in Algorithm 6 takes a cautious approach, where 
an action is only selected if it is the action prescribed by the action selection clauses in all 
the possible worlds.

Additionally, the SelectAction function presented here is a complement to the other 
functionalities of the TomAbd agent model, and not a core component of the model. 
We provide a default querying mechanism to select an action given the action selection 
clauses and the set of current impossibility constraints. However, the agent developer 
might decide to use an alternative implementation that, for instance, does not use the 
action selection clauses to pick the action to execute next, or they might decide to not 
use the SelectAction function at all. This is enabled by the fact that this function has 
been wrapped in an internal action (IA) that can be called from within the agent code. 
More details on this point are provided in Sect. 4.

Algorithm 6 proceeds as follows. First, in Line 1, it retrieves action selection clauses 
in descending order of priority, so rules with higher priority take precendence over rules 
with lower priority. Then, the variable at the first argument in the head is unified with 
the identity of agent i in Line 2.

Second, the body of the clause is retrieved (Line 3) and the set of skolemised abducibles 
is built. This is done by function SkolemisedAbducibles (whose pseudo-code is not pro-
vided) in Line 4. This means that whenever an abducible in the rule body cannot be proven 
by the agent’s BB (i.e. Ti ), its free variables are substituted by Skolem constants. In gen-
eral, one action selection clause will generate several skolemised forms of its abducibles.

Third, the agent searches for all of the potential instantiations of every skolemised 
form. This corresponds to the call to function Instantiate in Line 6. Again, for every 
set of skolemised abducibles, there will be, in general, several possible ways of binding 
their variables. Each of these possible instantiations provides additional beliefs that can 
partly complement the agent’s BB to obtain a more complete view of the current state 
of the world. However, it is not necessary to complement the agent view to the point of 
complete observability, just to add enough information to be able to query the action 
selection clause currently under consideration.

The agent only considers the complete instantiations of abducibles that, together with 
agent i’s BB, do not lead to an impossibility clause. This check takes place in Line 9. 
For those instantiations that pass the check, agent i queries for the action of maximum 
priority that is entailed if the grounded abducibles were part of the BB. As we have 
seen, for this default implementation, action selection clauses with higher priority take 
precedence over clauses with lower priority. Hence, when querying for actions, the one 
with the highest priority is returned.

So, every action selection clause (i.e. an iteration of the loop in Line 1) leads to several 
sets of skolemised abducibles. In its turn, every set of skolemised abducibles (i.e. an itera-
tion of the loop in Line 5) leads to several sets of ground abducibles. If each of these instan-
tiations leads to the same action (Line 14), the SelectAction function returns the action in 
question and execution continues from the point where the function had been called.

If all the action selection clauses have been processed and no action has been 
selected, the SelectAction function returns null. The user is advised to deal with this 
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situation by including some contingency measure, e.g. use a default action when Selec-
tAction return null. Further details are provided in Sect. 4.

To illustrate how the default SelectAction function works, consider the action selec-
tion clause provided as an example in Sect. 3.1:

Then, after the execution of Line 3, we have: 

Now, suppose agent Alice, in the setting of Fig. 2a, has the following information in 
her BB, derived from a hint:

This means that Alice knows that she has cards of rank 3 in her 2nd and 4th slots, 
and that she has cards of rank different from 3 at all others.

Then, after execution of Line 4, we have:

where skn are Skolem constants.
In addition, suppose that she has in her BB the following IC, derived from a previous 

execution of TomAbductionTask:

This IC would have been derived by BuildAbdLit (Algorithm 4) from the following 
set of (revised) abductive explanations:



Autonomous Agents and Multi-Agent Systems (2023) 37:36	

1 3

Page 23 of 41  36

meaning that, from a previous move by another player, agent i interpreted that they 
must have either a blue or a white car in the second slot.

Then, when looping through the second element of Γ , in Line 6, the following instan-
tiations will be generated:

Of all the instantiations in Π , only two are compatible with the previous IC:

When querying for which action to select, the two previous instantiations will lead to 
play_card(2) (due to the action clauses with priority 3.0), and this will be the return 
value of the function SelectAction.

4 � Implementation

Listing 1: Usage of the tomabd.agent.tom_abduction_task IA. A “+” precedes
variables that must be bound at invocation time, while a “-” precedes variables
that are bound by the IA.

The agent model presented in Sect.  3 has been implemented in Jason [7], an agent-ori-
ented programming language based on the BDI architecture. Jason implements and extends 
the abstract AgentSpeak language [52], offering a wide range of features and options for 
customisation. To utilize the TomAbd in their projects, the user is required to have prior 
knowledge on the Jason programming language [7, Chapter 3], the basics of the Jason rea-
soning cycle [7, Chapter 4] and the customisation of Jason components [7, Chapter 7]. Our 
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implementation is documented and publicly available under a Creative Commons license.5 
It has been packaged into a Java Archive (.jar) file to facilitate its use as an external library 
for developers who want to include it in their applications.

The core of the implementation consists of the  class, a 
subclass of Jason’s default agent class. It contains all the methods to implement the func-
tions in Fig. 3 (plus some auxiliaries). Besides the main BB (inherited from Jason’s default 
agent class),  also has a backup BB. The BUF is part of 
Jason’s default agent class, which we override in our implementation to include a call to 
EEUF after percepts have been updated. The abductive reasoner implementing the Abduce 
function is included as a set of Prolog-like rules in an AgentSpeak file, which the agent 
class automatically includes at initialization time.

A call to the main function of this agent model (TomAbductionTask) is not included 
within Jason’s native reasoning cycle, and hence does not constrain it in any way. Instead, 
an internal action (IA), , is provided as an interface to the 
agent’s method. The usage of this IA is illustrated in Listing 1. Calling TomAbductionTask 
through an IA allows the agent developer flexibility and control over when to trigger it 
from within the application-specific agent code. Furthermore, the invocation of TomAb-
ductionTask from an IA ensures that the whole function is executed within one  step 
of the BDI reasoning cycle. Therefore, its execution does not interfere with changes in the 
BB that happen during other  or  steps (e.g. belief removal or addition opera-
tions) of the BDI reasoning cycle.

We have exposed the reasons why TomAbductionTask is not called from within the 
agent’s reasoning cycle, but using an IA interface. In summary, through an IA the Tom-
Abd agent model provides additional functionalities to Jason agents, without restrict-
ing the use of other custom components nor placing constraints on the BDI reason-
ing cycle. Similar remarks apply to the SelectAction function and its counterpart IA 

 (also included in our implementation), which operates similarly 
to  but provides an interface to SelectAction instead. It 
is called as , where  is a free variable bounded by the IA to 
the return value of SelectAction.

Listing 2: Usage of the tomabd.agent.select_action IA and a possible contingency
plan to handle its failure.

5  https://​github.​com/​nmont​esg/​tomabd.

https://github.com/nmontesg/tomabd
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As covered in Sect. 3.4, if using the default implementation of SelectAction (or any 
other implementation that may return null), contingency measures should be put into 
place to handle the possibility of failure. In Listing 2 we propose a strategy to do this. In 
the first plan, the agent uses the  to decide which action to 
perform next. If the IA is successful, the agent goes on to execute it as a standard action 
on the environment. If not, the second plan in Listing 2 handles the failure. The anno-
tations in this plan, namely the  and  literals, ensure that this plan handles 
only the failure of , not of any other source of failure in the 
previous plan (e.g. the failure of execution of  on the environment). In Listing 2, if 

 fails, the agent queries its BB to look for a default action, and 
executes it on the environment.

Listing 3: Customisation of the ERF function, based on whether the agent
is currently adopting the actor or the observer’s viewpoint.

In Listings 1 and 2, the IAs  and 
 are invoked as part of the body of agent plans. Nonetheless, 

similarly to standard Jason IAs, they may also appear in the context of plans. If that is the 
case, the execution of the corresponding TomAbductionTask and SelectAction would be 
moved to the  step of the BDI reasoning cycle. Whether it is more desirable to 
have the mentioned functions execute in an  step (by placing their corresponding IAs 
in the plan body) or in a  step (by placing them in the plan context) is a decision 
for the agent developer to take.

In summary, of the agent functions displayed in Fig.  3, only TomAbductionTask 
and SelectAction have a correspondinging IA interface, with SelectAction being the 
only one of the two that is customisable. Additionally, the EERF and the EEUF are 
also customisable, but these are called from within other functions and hence are not 
accompanied by an IA interface.

To override the default implementation of any of these functions, the devel-
oper needs to write new ,  and  methods in an agent subclass of 

. For example, Listing 3 provides an agent subclass with an 
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alternative implementation of EERF that applies a different revision function depending on 
whether the agent is currently working at the observer’s or at the actor’s perspective.

5 � Results

5.1 � Experimental setting

As a proof of concept, we have applied the TomAbd agent model to the Hanabi domain 
presented in Sect. 2.3, for teams of 2 to 5 players in self-play mode.6 This means that the 
teams are homogeneous, composed exclusively of TomAbd agents. As for the action/2 
clauses that implement the team strategy, Hanabi has a thriving community of online play-
ers that have gathered a set of conventions for the game, called the H-group conventions.7 
These conventions comprise definitions (e.g. what constitutes a save hint or a play hint) 
and guidelines to follow during game play. We have taken inspiration from these conven-
tions to devise our action selection clauses. However, while these conventions are itemised 
according to player experience, we have only made use of the introductory-level ones. Our 
goal is not to synthesise the playing strategy that achieves the maximum possible score, but 
to explore the usefulness of the capabilities of the TomAbd model in an example domain. 
We leave the exploration of more sophisticated conventions for future work.

To trigger the execution of the TomAbductionTask function, participants publicly 
broadcast their action of choice prior to execution. To handle these announcements, we 
define a Knowledge Query and Manipulation Language (KQML) custom performa-
tive, . Agents react to messages with this performative by executing the 

 IA using first-order ToM. This means that, when adopt-
ing the other acting agent’s viewpoint, agents do not take that perspective through any 
intermediate agents. Hence, agents work with program Ti,l , where i is the observer and l 
is the acting agent, when adopting the actor’s viewpoint to generate explanations. Conse-
quently, the variable  in Algorithm 2 is bound to the empty list “ [ ] ”. Additionally, all 
the generated literals from the abductive explanations are immediately incorporated into 
the agent’s program.

We evaluate the performance of the TomAbd agent model for the Hanabi domain, using 
the basic set of H-group conventions and first-order ToM. We ran 500 games with random 
seed 0 to 499, for every team size and switching on/off the call to TomAbductionTask. The 
simulations were distributed over 10 nodes at the high performance computing cluster at 
IIIA-CSIC.8

5.2 � Score and efficiency

The results are first evaluated in terms of the absolute score at the end of every game. This 
is the most straightforward performance metric and one that allows comparison with other 
work on Hanabi AI. Beyond the absolute score, we also evaluate teams according to their 

6  The code that applies the TomAbd model to Hanabi is available at https://​github.​com/​nmont​esg/​tomabd/​
examp​les/​hanabi.
7  https://​hanabi.​github.​io/.
8  https://​www.​iiia.​csic.​es/​en-​us/​resea​rch/​ars-​magna/.

https://github.com/nmontesg/tomabd/examples/hanabi
https://github.com/nmontesg/tomabd/examples/hanabi
https://hanabi.github.io/
https://www.iiia.csic.es/en-us/research/ars-magna/
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communication efficiency, which we define as the ratio between the final score and the total 
number of hints given during the course of a complete game. This metric quantifies how 
efficient the team is at turning communication (i.e. hints) into utility (i.e. score). Intuitively, 
a lower bound for the efficiency metric is 1

2
 , as two hints are needed (one for colour and one 

for rank) to completely learn about a card’s identity and be able to safely play it.
Box plots for the results of performance in terms of score and efficiency are displayed 

in Fig. 4. Additionally, the experimental distributions are available in Fig. 8 in the Supple-
mentary information. Visually, Fig. 4 conveys that the incorporation of ToM and abductive 
reasoning capabilities boosts performance, both in terms of score and efficiency. Further-
more, regardless of team size, the efficiency is over the lower bound for over 75% of the 
games when the ToM and abduction capabilities are used. In contrast, when these cogni-
tive abilities are switched off, the efficiency falls below the lower bound for approximately 
75% of the runs.

In Table  1 the means and standard deviations for the score and communication effi-
ciency are provided. Moreover, the average percentage increase (comparing pairs of games 
with the same random seed with and without calls to TomAbductionTask) is displayed 
in the Improvement row for every team size. The average scores in Table 1, even with the 
ToM and abductive reasoning switched on, are still far from the current state-of-the-art in 
Hanabi AI, with average score of up to 24.6 [49]. Nonetheless, they are in line with the 
performance of current rule-based Hanabi-playing bots (see Table  1 by Siu et  al. [42]). 
Moreover, recall that the goal of this work is not to synthesise the optimal team strategy for 
Hanabi, but to develop a domain-independent agent model capable of putting itself in the 
shoes of other agents and reasoning from their perspective. The Hanabi game was selected 
as a test bed for this model, alongside a very simplistic playing strategy. Yet, we antici-
pate that the results presented here could be improved through the introduction of more 
advanced playing conventions, such as “prompts” and “finesses”.

To confirm the observation that performance is better when agents make use of the Tom-
AbductionTask function, we used statistical testing. First, we applied the Shapiro-Wilk test 
of normality [53] to test that the score and efficiency distributions in Fig. 8 are normally 
distributed, under all the experimental conditions. We confirm that this is indeed the case 
for confidence level 99%. Second, we used the paired samples t-test [54] to confirm that the 
averages for the score and the efficiency, across all team sizes, are significantly better when 
the TomAbduction function is used. We used the paired samples version of the t-test, rather 
than the independent samples, because games with equal random seeds are related as far as 
the sequence of cards that are dealt from the deck is the same for all. The results confirm 
that the averages for the score and the efficiency are significantly better when the TomAb-
ductionTask function is called with respect to when it is not, across all team sizes and for 
confidence level 99%. Therefore, we conclude that the use of the TomAbductionTask func-
tion quantitatively boosts the performance of teams, independently of their size.

Once we confirmed that, indeed, the execution of the TomAbductionTask function pro-
duces significantly better performance in terms of score and efficiency, we sought to quan-
tify this improvement. As explained earlier, games of equal team size and random seed 
are related since the sequence of dealt cards is the same for both. For this reason, it makes 
sense to compare the score and the efficiency for games with the ToM capabilities on and 
off, while controlling for team size and seed. To do this, we computed the percentage 
increase in the score and efficiency when using the TomAbductionTask function, and then 
aggregated these values into the average across all random seed. These results are displayed 
in the Improvement row in Table 1. They show that there is indeed a notable percentage 
increase in both score and efficiency, and this improvement increases monotonically with 
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team size. For example, the increase in score is around 30% for teams of two players while 
it reaches almost 60% for the largest teams (five players).

Fig. 4   Results for the score (a) and communication efficiency (b). Cyan ruled boxes correspond to games 
where agents make use of the capabilities of the TomAbd agent model, and yellow dotted boxes correspond 
to games where they do not. The dashed line on the efficiency plot indicates the bound of two hints per 
score point (Color figure online)

Table 1   Average, standard 
deviation and improvement when 
using the TomAbductionTask 
function for the score and 
communication efficiency

Paired samples t-test confirmed that the average score and efficiency 
are significantly better when the TomAbductionTask function is used, 
regardless of team size

Num. players TomAbductionTask Score Efficiency

2 Yes 18.61 ± 5.92 0.71 ± 0.22

No 14.57 ± 2.93 0.46 ± 0.10

Improvement 27% 54%
3 Yes 17.97 ± 1.94 0.70 ± 0.10

No 12.52 ± 1.56 0.42 ± 0.07

Improvement 45% 71%
4 Yes 16.50 ± 1.61 0.64 ± 0.09

No 11.23 ± 1.36 0.38 ± 0.06

Improvement 49% 75%
5 Yes 14.42 ± 1.37 0.62 ± 0.09

No 9.23 ± 1.30 0.33 ± 0.06

Improvement 59% 91%
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5.3 � Elapsed time

The results presented in the previous section clearly prove that the use of the TomAbduc-
tionTask function (using first-order ToM and with the selected action selection rules) has 
a positive effect on the team performance, both in their final score and the efficiency of 
communication. In this section, we analyse the computational load associated to this per-
formance boost.

In Fig. 5 we present the results for the elapsed time of the TomAbductionTask function. 
Every box contains data on at least 4,000 runs of the function. The samples in Fig. 5 cor-
respond to the execution of the TomAbductionTask function across different games with 
different random seeds, and at different stages of the game.

In all cases, the execution of the function has magnitude in the hundreds of millisec-
onds. As expected, the elapsed time tends to increase and fall within a larger range as the 
team size increases. This is due to the larger BB that agents have to manage when they are 
part of a larger team. This results in a larger space to search through in order to construct 
the abductive explanations. For example, for teams of size 2, agents have 10 percepts con-
cerning the rank and colour of the cards of their fellow player. Meanwhile, for teams of size 
5, agents have 32 percepts about the cards of others.

As explained in Sect.  4, the TomAbductionTask function (and also SelectAction) is 
executed through an IA at the discretion of the developer. Hence, it is not natively inte-
grated into the BDI reasoning cycle. Nonetheless, there is one TomAbd-specific function 
that is called from the BDI reasoning cycle: EEUF, which is called from BUF, a central 
component of the sensing step in the Jason reasoning cycle. Hence, to quantify the burden 
put on the BDI reasoning cycle by the TomAbd agent model, we have to analyse the perfor-
mance of EEUF.

In Fig. 6 we present the results for the elapsed time of EEUF. Every box contains at 
least 750 data points. The results are itemized by the number of explanations in the agent’s 
BB at the time EEUF was executed, since our default implementation of EEUF loops over 
the literals in the BB that originated from an abductive reasoning process. There were no 
instances found with 4 or more explanations. The results in Fig. 6 show that, for the first 
order ToM we are using for the Hanabi domain, EEUF entails a negligible overhead on 
the execution time of the Jason reasoning cycle. Its execution time is around two orders of 
magnitude smaller than that of TomAbductionTask and, as expected, follows an approxi-
mately linear trend with respect to the number of abductive explanations in the BB. 
Nonetheless, we expect the execution time of EEUF to increase as higher-order ToM is 
introduced.

5.4 � Information gain

The previous analyses quantify the overall outcome of a game, either in terms of score or 
efficiency, and their computational requirements. Now, in the current and the following 
section, we would like to quantify the amount and the value of the information that agents 
derive from the execution of the TomAbductionTask function.

The analysis that follows relies on some features that are specific to Hanabi and hence 
not generally exportable to other domains where the TomAbd agent model may be applied. 
The first enabling feature is the fact that Hanabi has a well-defined set of states that the 
game might be in at any given moment. These states are defined by the heights of the 
stacks, the available information tokens, the number of lives remaining and the cards in the 
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discard pile, which are all observable by all players. Additionally, states are also character-
ised by the cards at each player’s hand, which are not common knowledge.9

In game theoretical terms, the above feature is referred to as Hanabi being a game of 
imperfect yet complete information. In other words, players in Hanabi do not in general 
have access to all the information characterising the current state of the game, but they 
can infer a finite set of states the game might be in. Additionally, using domain knowledge 
(namely, the number of duplicate identical cards, which depends on their rank) and, poten-
tially, the abductive explanations currently in their BB, agents can compute, for every slot 
S in their hand, the marginal probability distribution for the colour and the rank of their 
card in S. By examining these probability distributions and comparing them to the true one 
(which assigns unit probability to the colour and rank of the actual card a player holds in S, 
and zero otherwise), we can quantify the information gain, which we present in the present 
section.

The second feature of Hanabi that enables the analysis on information value in 
Sect. 5.5 is the fact that, as any classical game, Hanabi has a set of well-defined end-
states with an assigned numerical utility or score. This characteristic, together with the 
previous one, allows us to relate the reduction in uncertainty of the probability distri-
butions over the cards in player’s slots with the increase in score when the ToM and 
abductive reasoning capabilities of the TomAbd agent model are introduced.

We begin, then, by quantifying the gain in information derived from the combina-
tion of ToM and abductive reasoning. To help with this, consider Fig. 7. Agents main-
tain a marginal probability distribution over the identity of the card at each of their 
slots, i.e. the tuple (C,R) of random variables corresponding to the card’s colour and 
rank. At every turn of the game, there are three distributions to consider: the pre-action 
distribution before the action is executed ℙpreAct

S
 , the post-action distribution after the 

action is executed ℙpostAct

S
 , and the post-explanation distribution after the action is exe-

cuted and the abductive literals derived from the TomAbductionTask function have 

Fig. 5   Execution time of the 
TomAbductionTask function for 
the Hanabi domain with different 
team sizes

9  The sequence of cards in the deck, which is hidden to all players, might also be considered as part of the 
state description in Hanabi. However, we prefer to view it as a randomising device rather than as part of the 
state description. In any case, its treatment is not relevant to the analysis in Sects. 5.4 and 5.5.
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been introduced into the agent’s BB ℙpostExpl

S
 . In addition to these three distributions, 

the true identity of a card at slot S is denoted as (CS,RS) . We refer to (CS,RS) as the 
ground truth for slot S. Trivially, the true probability distribution can be considered to 
be ℙ∗

S
(CS,RS) = 1 and 0 otherwise.

To quantify the distance between two probability distributions, we use the Kull-
back–Leibler divergence [55], which defines the relative entropy from distribution Q to 
distribution P as:

If P(xi) = 0 for some i, the contribution of the i-th term is assumed to be null.
The Kullback–Leibler distance quantifies how much information is lost when approx-

imating P using Q or, alternatively, how much information is gained by refining Q into 
P. In the Hanabi game, we are working with probability distributions over the domain of 
card identities, which has size 25 (5 colours × 5 ranks). Therefore, for all our computa-
tions we take the logarithm in Eq. (6) with base 25.

We evaluate the gain provided by the abductive explanations by comparing the distance 
to the ground truth between the post-action and the post-explanation distributions at every 
game turn. Since the ground truth corresponds to a single card identity with probability 
1, the Kullback–Leibler distance from the two aforementioned distributions to the ground 
truth is reduced to:

The results for the percentage reduction in distance between the post-action and the 
post-explanation distribution to the ground truth appear in Table 2. The reduction in dis-
tance is large across all teams sizes, starting at around 85% for teams of 2 players, and 
increasing monotonically with team size up to a 91% for teams of 5 players.

(6)DKL(P‖Q) =
�

xi∈X

P(xi) log

�
P(xi)

Q(xi)

�

(7)DKL(ℙ
∗
S
‖ℙ{⋅}

S
) = − log

�
ℙ
{⋅}

S
(CS,RS)

�

Fig. 6   Execution time of the 
EEUF for the Hanabi domain, 
as a function of the abductive 
explanations in the agent’s BB at 
execution time
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5.5 � Information value

The previous results indicate that the incorporation of abductive explanations does shrink 
the distance to the ground truth to a very large extent. However, the analysis does not indi-
cate how valuable the information derived from these abductive explanations is. In other 
words, how much score are agents able to draw from the information provided by abduc-
tive explanations.

To quantify the score value of abductive explanations, we define the two following 
quantities (see Fig. 7). First, we define the explicit information gain as the Kullback-Leibler 
distance from the pre-action distribution to the post-action distribution. Second, we define 
the implicit information gain as the Kullback–Leibler distance from the post-action dis-
tribution to the post-explanation distribution. The explicit information gain quantifies the 
knowledge acquired just from observing the progress of the game, as new cards are drawn 
and revealed. Meanwhile, the implicit information gain quantifies the knowledge derived 
only from the abductive explanations.

Next, we define the total explicit information gain (TEIG) as the sum across all slots S 
and moves mi over the course of a game of the explicit information gain:

Fig. 7   Outline of the probabilistic analysis of the simulation results

Table 2   Reduction is distance to 
the ground truth from the post-
action to the post-explanation 
distribution

Num. players %

2 85.33
3 88.29
4 89.43
5 91.49
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The total implicit information gain (TIIG) is defined analogously to Eq. (8), but using the 
distance from the post-action to the post-explanation distribution, DKL(ℙ

postExpl

S
‖ℙpostAct

S
) , 

instead. The TEIG is defined for all games, regardless of whether agents are using the Tom-
AbductionTask function. The TIIG is defined only for games where the mentioned func-
tion is active. For these games, we compute the percentage of information that is derived 
from the ToM and abduction capabilities as:

Then, to quantify the contribution of each type of information to score, we start by com-
puting the explicit score rate (ESR) as the ratio of the score to the TEIG, for games where 
agents are not using the TomAbductionTask function. Once we have the ESR, we turn to 
games where agents are using this function, and we estimate the residual score that cannot 
be explained away by the explicit information that agents acquire by observing the evolu-
tion of the system as:

where ESRseed is the ESR for the game without calls to TomAbductionTask with the same 
random seed, and TEIG (TIIG) is the total explicit (implicit) information gain for the game 
that employs the TomAbductionTask function. We use the ratio between the residual score 
in Eq. (10) and the total score as the estimation of the contribution of the implicit informa-
tion to the overall performance of the team.

The results for the average percentage of implicit information and the average percent-
age score that can be assigned to this explicit information appear in Table 3, for games 
where agents use the TomAbductionTask function. Across all team sizes, the information 
derived from the ToM and abduction capabilities accounts for between 15% and 20% of the 
total information. However, this implicit information accounts for disproportionate amount 
of the final score, between 27% and 40% of it. Therefore, when agents use the capabilities 
of the TomAbd model, the information derived from these capabilities ends up being over-
represented in the final score by a factor of between ×1.7 and ×2.0.

6 � Related work

This section compares our contribution with related approaches. Previous work on Theory 
of Mind implementations in agent-oriented programming have, for the most part, used lan-
guages based on the BDI architecture [29, 30, 56, 57]. This is a natural choice that we share, 

(8)TEIG =
�

mi

�

S

DKL(ℙ
postAct

S
‖ℙpreAct

S
)

(9)% implicit info. =
TIIG

TIIG + TEIG
⋅ 100

(10)residual score = score − ESRseed ⋅ TEIG

Table 3   Average percentage of 
implicit information and average 
score assigned to this implicit 
information

Num. players % implicit info. % implicit score

2 15.15 27.80
3 15.51 30.55
4 18.79 32.24
5 19.40 38.37
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since BDI-based languages provide constructs for the mental states that ToM estimates and 
operates on. Specifically, some ToM implementations are, like our TomAbd agent model, 
developed in Jason [29, 30, 56]. In contrast, other work uses Extended 2APL [57].

Panisson et al. [30] implement ToM for deceptive purposes. They focus on the commu-
nicative interventions, i.e. the requesting and sharing of (possibly untruthful) information, 
and provide operational semantics [56] for the effects that these actions have of the mod-
els that agents maintain of one another. Their approach is very much in line with the TT 
account of ToM. It uses dedicated predicates to infer additional mental states, such as goals 
and future actions, given prior beliefs. These inferences are made from within the agent 

Fig. 8   Experimental distributions of the absolute score and the communication efficiency. Cyan ruled boxes 
correspond to games where agents make use of the capabilities of the TomAbd agent model, and yellow 
dotted boxes correspond to games where they do not. The Shapiro-Wilk test confirmed that all experimental 
histograms follow a normal distribution (Color figure online)



Autonomous Agents and Multi-Agent Systems (2023) 37:36	

1 3

Page 35 of 41  36

program, a feature which we consider qualifies as adherence to the theoretical version of 
ToM.

Sarkadi et  al. [29] extend the previous model by incorporating elements of trust and 
modelling several agent profiles based on their attitudes. In this extension, they distinguish 
between TT and ST components within their model. They argue that the TT component 
handles the assignment of prior beliefs to other agents, while the ST component handles 
inferences based on those. In our work, we do not distinguish between TT and ST compo-
nents, but consider that our approach overall aligns more closely with the ST account of 
ToM than with the TT account.

Harbers et  al. [57] establish a different criterion for classifying ToM approaches into 
TT and ST. They develop two separate ToM implementations, one identified with TT and 
the other with ST, for applications in virtual training systems. Both architectures maintain 
knowledge bases for the beliefs, logical rules and goals of other agents. The difference 
between the ST and TT approaches is found in the reasoner that is applied to the knowledge 
bases assigned to other agents. The TT architecture applies rules about how other agents 
combine their beliefs, goals and plans, which are explicitly included as part of the agent’s 
own knowledge. In contrast, the ST architecture uses the agent’s native reasoner, making it 
more lightweight. Besides this, other advantages were found for the ST architecture with 
respect to the TT one, namely code reusability and flexibility to deal with non-BDI agents.

The choice to maintain belief bases for other agents, in addition to the agent’s own 
belief base, is very different to the TomAbd agent model, where we generate estimations 
of the beliefs of others on demand at run-time, using the set of ToM rules as a meta-inter-
preter. This allows the TomAbd model to engage in higher-order ToM by recursively apply-
ing the set of ToM rules. In comparison, the maintenance of belief bases for other agents 
hinders the use of ToM beyond first-order. For every recursive path that the agent would 
like to take into account, i.e. what we refer to as the viewpoint in Definition 3, a different 
knowledge base would have to be initialised and updated throughout the agent’s lifetime, 
resulting in a rapid combinatorial explosion in memory requirements. This limitation to 
first-order ToM is also shared by other work [29, 30].

There is an important difference in the focus of ToM between the works reviewed in 
this section and the TomAbd agent model of this paper. In related work [29, 30, 56, 57], the 
purpose of the ToM functionalities is to compute the action that best pursues the agent’s 
goal, whether it is to deceive an opponent or to provide explanation to assist in staff train-
ing. Hence, ToM is directed towards the deliberation step of the BDI reasoning cycle. 
In contrast, in our approach, ToM is directed towards the sensing step, with the TomAbd 
model computationally implementing the cognitive processes to use other agents as sen-
sors. Accordingly, the core function of the TomAbd agent model is TomAbductionTask, 
which uses abduction to compute explanations either about the state of the environment or 
the mental state of other agents. The execution of this function results in the agent being in 
a more informed position when it comes to its own decision-making.

It should be noted that, even if at this current stage the TomAbd agent model strongly 
links ToM with sensing, it provides an avenue to include these capabilities into the agent’s 
deliberation stage too. The component directed towards practical reasoning, the SelectAc-
tion function, has not thus far received as much attention as TomAbductionTask. None-
theless, as mentioned previously, this function is a customisable component of the model. 
This leaves a lot of room to develop further implementations that more explicitly use the 
ToM capabilities of the agent during the deliberation stage, for example by making calls to 
the AdoptPerspective procedure within SelectAction.
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To summarise, the publications reviewed so far orient the ToM capabilities of agents 
towards deliberation. Nonetheless, work by Sindlar et al. [58], similarly to ours in its goals, 
focuses on mental state abduction, i.e. the inference of beliefs and goals of BDI agents 
given a sequence of observed actions. They use the APL agent programming language, 
where an agent is composed, among others, of goals achievement rules, analogous to Jason 
plans. An agent program and its observed actions are translated into an Answer Set Pro-
gramming (ASP) program, which is then resolved with an off-the-shelf ASP solver. The 
authors argue that the ToM capabilities provided through this mode of reasoning have 
potential to enhance the social awareness and credibility of non-player characters in role-
playing games [59].

In contrast to our current work, the approach by Sindlar et al. is restricted to first-order 
ToM and, in our opinion, leans heavily towards the theoretical account of ToM (TT), pre-
sented in Sect.  2.1. Finally, compared with the work we cite previously (where ToM is 
oriented towards action selection), Sindlar et al. do not offer details about how the obtained 
explanations are integrated into the abducing agent’s own knowledge or decision-making.

7 � Conclusions

In this paper, we have presented the novel TomAbd model, an agent architecture combining 
Theory of Mind and abductive reasoning. Its main functionality is the ability to perceive 
the state of the system through the eyes of their peers, and infer the beliefs that account for 
their most recent action using abductive reasoning. This core functionality is accompanied 
by other functions that handle how the abductive explanations are refined, updated and 
used during practical reasoning.

There are four features that make the TomAbd agent model stand out. First, the model 
is able to handle ToM of an arbitrary order without additional memory requirements. Sec-
ond, our approach has a strong preference for a simulation account of ToM over a theory 
account. Third, we emphasise the role of ToM for sensing over deliberation. The goal of 
ToM in our model is to extract the information as perceived by other agents, hence using 
them as proxies for obtaining data about the world. Finally, we would like to highlight the 
user-friendliness and the flexibility of our implementation, which allows customisation of 
many of its components.

We have tested our model in the benchmark domain of Hanabi. Our results show that 
teams whose agents use ToM consistently perform better than those that do not, both in 
terms of absolute score and efficiency of communication. In terms of information gain, our 
analysis shows that the knowledge derived from the abductive reasoning component of the 
model greatly reduces uncertainty. Additionally, the information derived from the combi-
nation of ToM and abductive reasoning contributes to the final score in a disproportionate 
amount, with respect to the explicit information derived from the observation of the evolu-
tion of the game alone.

The TomAbd agent model presented here offers several directions for future work. First, 
within the Hanabi game domain, an option would be to investigate more sophisticated 
action selection rules. Additionally, it would be interesting to investigate the perception 
that human players have of TomAbd teammates, for strategies of different skill levels. This 
research could shine light on how well is human ToM captured by the agents, and how 
compatible is human ToM and the artificial ToM we have presented here.
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Second, the TomAbd agent model can be applied to other domains where ToM capabili-
ties may entail a potential benefit, with the goal of extracting the common general features 
that a domain must have in order for ToM to result in improved performance. This research 
could also expand the set of customised functions for explanation revision and update, as 
well as the incorporation of ToM in the deliberation stage. Furthermore, the application to 
other domains would require the development of additional metrics to quantify the benefits 
entailed by the agents’ ToM capabilities, analogous to the information gain and informa-
tion value metrics we present in this paper for Hanabi. Such metrics would naturally need 
to consider the domain properties such as whether there is a closed set of states and/or any 
heuristics available to quantify the value of MAS states.

Third, the flexibility of the TomAbd model could be enhanced by extending the type 
of constructs for which the TomAbd agent model is able to provide explanations. In other 
words, with small additional functionality, TomAbd agents could be adapted to compute 
abductive explanations not just for actions, but for mental states such as beliefs, goals and 
intentions. Of course, the mental state that is taken as input to the machinery of the Tom-
Abd agent model must either be the result of some observation (e.g. agent i overhears agent 
j discuss its goals with a third party), or of other techniques, such as goal recognition, that 
aggregate granular observations into a mental state, i.e. a sequence of atomic actions into 
the goal or intention pursued by those actions.

Regardless of the modality of the observation, the process of generating an explanation for 
it would be analogous to that presented in the TomAbd agent model for actions. In summary, 
as long as some agent i has an input about another agent j (such as an action j has taken, a 
belief or a desire j holds, or an intention j is pursuing) and an estimation of the inference rules 
that j is using, i can provide an explanation for the input. Of course, its precision will depend 
on the accuracy of the input and of the inference rules that i believes j to have.

Last but not least, the computational requirements versus the performance benefits of 
using higher-order Theory of Mind, in the Hanabi game or in other domains, presents an 
interesting challenge. Note that, in the TomAbd agent model, the same mechanism that ena-
bles an agent to use first-order ToM also enables it to use ToM of any order (i.e. query-
ing the believes(Ag, Fact) clauses and substituting the contents of its belief base), 
hence the ToM level that a TomAbd agent uses is, by construction, unbounded. Here too, 
many questions arise. For example, does performance plateau around a particular recur-
sion level npl ? Is npl a domain-independent quantity? How does it compare with respect to 
the maximum order of ToM that humans usually apply? Does this have any evolutionary 
implications? In other words, did humans develop ToM just far enough to obtain the maxi-
mum evolutionary advantage, but not any further to save resources?

To conclude, our work presents and tests a novel model for agents with Theory of Mind. 
It provides the cognitive machinery to adopt the perspective of a peer and reason from its 
perspective. It is inspired by the though processes that humans engage in when trying to 
understand the motivations for the behaviour of others. Our model endows autonomous 
agents with essential social abilities, that are becoming increasingly important in the cur-
rent AI landscape (Fig. 8).
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