
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:14
https://doi.org/10.1007/s10458-022-09595-1

1 3

Learning by reusing previous advice: a memory‑based
teacher–student framework

Changxi Zhu1 · Yi Cai1 · Shuyue Hu2 · Ho‑fung Leung3 · Dickson K. W. Chiu4

Accepted: 10 December 2022 / Published online: 29 December 2022
© Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Reinforcement Learning (RL) has been widely used to solve sequential decision-mak-
ing problems. However, it often suffers from slow learning speed in complex scenarios.
Teacher–student frameworks address this issue by enabling agents to ask for and give
advice so that a student agent can leverage the knowledge of a teacher agent to facilitate
its learning. In this paper, we consider the effect of reusing previous advice, and propose
a novel memory-based teacher–student framework such that student agents can memorize
and reuse the previous advice from teacher agents. In particular, we propose two methods
to decide whether previous advice should be reused: Q-Change per Step that reuses the
advice if it leads to an increase in Q-values, and Decay Reusing Probability that reuses the
advice with a decaying probability. The experiments on diverse RL tasks (Mario, Preda-
tor–Prey and Half Field Offense) confirm that our proposed framework significantly out-
performs the existing frameworks in which previous advice is not reused.

Keywords Reinforcement learning · Multi-agent learning · Action advising · Teacher–
student

 * Shuyue Hu
 hushuyue@pjlab.org.cn

 Changxi Zhu
 c.zhu@uu.nl

 Yi Cai
 ycai@scut.edu.cn

 Ho-fung Leung
 lhf@cuhk.edu.hk

 Dickson K. W. Chiu
 dicksonchiu@ieee.org

1 School of Software Engineering, South China University of Technology, Guangzhou, China
2 Shanghai Artificial Intelligence Laboratory, Shanghai, China
3 Department of Computer Science and Engineering, The Chinese University of Hong Kong,

Hong Kong, China
4 Faculty of Education, The University of Hong Kong, Hong Kong, China

http://orcid.org/0000-0002-1908-1344
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-022-09595-1&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 2 of 30

1 Introduction

Reinforcement learning (RL) has been employed to solve many real-world problems, e.g.,
robotics, optimizing memory control, and personalized web services [3, 16]. However, RL
often suffers from slow learning speed in complex applications. This can be further inten-
sified when multiple agents are independently learning and observing since they adapt to
one another. Undoubtedly, when a trained agent or a human expert is available, a new agent
can benefit from asking advice for the current task. Even in a more general situation where
all agents learn without prior knowledge, they can accelerate learning process by sharing
acquired knowledge. Under practical constraints of limited computing resources or com-
munication, agents need to decide what and when to share, as well as how to utilize the
shared knowledge.

Recently, the teacher–student framework [25] has received much attention. In this para-
digm [25], a trained agent (named teacher) advises a learning agent (named student) on
which action to take in a state. Teachers and students are only required to have the same
action set without specifying their learning structures. This provides much flexibility for
practical scenarios in which agents may be equipped with different sensors or policy rep-
resentations to collaborate. Silva et al. [9] focus on how action advising improves agents’
mutual learning processes, and adapt the teacher–student framework to multi-agent settings
where multiple simultaneously learning agents exist. In particular, advising opportunities
are established on-demand taking into account the communication cost among agents.
Omidshafiei et al. [19] view teaching in Multi-Agent Reinforcement Learning (MARL) as
a high-level sequential decision task. Agents taking a student’s role learn to ask for advice
or not, while agents taking a teacher’s role learn to advise heterogeneous teammates for
actions.

Previous works on action advising focus on the problems of when and what to advise,
but rarely on the problem of how to use the advice more efficiently. A key assumption
[2, 9, 25] behind the teacher–student framework and its variations is that the teachers are
more experienced than the students. However, the advice from the teachers is performed
only once and then forgotten. We conjecture that reusing the advice, advice will improve
the efficiency of learning. Imagine that a coach teaches a rookie how to shoot in a soccer
game, and the rookie is instructed to aim following his coach’s advice. However, he may
miss the shot at this time due to a noisy and stochastic environment, even though the action
advised by the coach is optimal. When the rookie tries to shoot again, if he overlooks the
previous advice, then it is likely that he will try other suboptimal actions or wait for a
while to receive other advice from the coach. This, as one can imagine, will slow the rook-
ie’s learning process. On the contrary, if the rookie can memorize and reuse the previous
advice, then the rookie’s learning will be accelerated by simply adopting the optimal action
advised by the coach previously.

To this end, this paper studies if and how a student (e.g., the rookie) benefits from reus-
ing previous advice from a more experienced teacher (e.g., the coach). Building upon the
existing teacher–student frameworks [2, 9], we propose a Memory-Based Teacher–Student
Framework (MBTSF) such that agents are able to memorize and reuse previous advice.
When a student receives advice in a state, the state is labeled as ‘advised’, and the state-
advice pair ⟨state, advice⟩ is stored. At every time step, each agent can choose among learn-
ing by itself, asking for advice, and reusing the previous advice if available. As agents have
no prior knowledge, their policies and their advice are generally not optimal at the early
stage of learning. To avoid the use of non-optimal previous advice, which may hinder the

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 3 of 30 14

student’s performance, we propose two methods to decide whether previous advice should
be reused. (i) Q-Change per Step (QChange): a student will reuse previous advice if this
advice leads to an increase in the Q-value (i.e., the expected return). (ii) Decay Reusing
Probability (Decay): a student will reuse previous advice with a decaying probability, since
the previous advice may be outdated in a stochastic environment. In our experiments, we
consider three different RL tasks: Mario, Predator–Prey and Half Field Offense. We show
that in all these tasks, the reuse of previous advice significantly accelerates the students’
learning.

The rest of this paper is organized as follows. Section 2 discusses the related works.
Section 3 presents a brief background on RL and teacher–student frameworks. Section 4
describes the proposed framework MBTSF and two proposed methods (QChange and
Decay) for deciding the reuse of previous advice. Section 5 provides the settings, results
and analysis of our experiments. The last section concludes this paper with a discussion of
future works.

2 Related works

Action advising problems [8, 9, 11, 25] concerns two roles for agents: the teacher and the
student. A more experienced teacher agent helps accelerate the learning of a student agent
by suggesting actions to be taken in certain states.

Early works [2, 7, 12, 24, 25, 29, 31] assume the roles of agents are fixed beforehand,
and a human expert or a pre-trained agent takes the role of the teacher. Clouse [7] focuses
on human teacher agents and proposes that a teacher should help a student agent whenever
the student asks for advice. Torrey and Taylor [24, 25] propose a teacher–student frame-
work, which allows a teacher to decide in which states to suggest actions to a student.
They also introduce the concept of budget constraints that models limited communication
between the teacher and student, in terms of the number of times that a teacher can pro-
vide action advice. Zimmer et al. [31] view teaching under the budget constraint to be a
reinforcement learning problem and propose to learn when a teacher gives advice for a
more efficient budget consumption. The teacher’s reward decreases if the student spends
more time steps in reaching its goal, which makes the teacher try to accelerate the student’s
learning through advising appropriately.

The jointly-initiated advising proposed by Amir et al. [2] assumes that an advisor-advi-
see relationship is built under the agreement of both the teacher and the student. A student
can ask for advice if unsure what to do in a state, and a teacher who follows a fixed policy
provides action advice if it considers the student’s state is important to be advised. Fachan-
tidis et al. [12] investigate how to select an appropriate teacher from several pre-trained
agents to generate advice. They reveal that the agent who achieves the best average score
when acting alone may not be the best teacher. Zhan et al. [29] consider the possibility of
receiving advice from multiple teachers. They propose to use a majority vote to combine
suboptimal advice to make the teacher–student framework more robust, but without con-
sidering the optimality of the teachers.

The aforementioned works focus on single-student action advising settings, and
assume that the roles of teacher and student are predetermined in advance. More
recently, Silva et al. [9] extend the teacher–student framework to a multiple teacher–stu-
dent setting and propose an ad hoc advising framework. At every time step, each agent
may take a student’s role to ask for advice, while it can also take a teacher’s role to

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 4 of 30

advise other students. Being a student or a teacher depends on an agent’s familiarity
with the state to be advised, i.e., the number of times it has visited that state. Further, a
teacher’s policy is not necessarily fixed or optimal and can be improved through learn-
ing from other agents’ advice. Wang et al. [26] incorporate a teacher–student framework
to improve the speed of convention emergence in multi-agent systems. Different from
the ad hoc advising framework, a student asks each of its neighbors in a network topol-
ogy for advice, instead of broadcasting a single request to all of the other agents.

Ilhan et al. [13] combine the ad hoc advising framework with deep reinforcement
learning to tackle continuous state space. As the state space is large, random network
distillation is utilized to measure how frequently a state has been visited through non-
linear function approximation. Then each Deep Q-learning agent can ask for advice if
it has rarely visited a state, while it can give advice if it has visited a state frequently.
Silva et al. [10] consider that counting the number of visits ignores the uncertainty of an
agent. They utilize a multi-head version of Deep Q-network, where each head predicts a
different estimate of the Q-values based on different samples of experience. By updating
the network weights, the variance of the predictions is gradually reduced and used to
estimate the uncertainty for each state. Agents with high uncertainty will decide to ask
for advice, while those with low uncertainty will decide to provide advice.

There exist scenarios where agents may need to coordinate their behaviors. For
example, when they have to go in opposite directions with similar positions, using the
best actions from the teacher’s view may lead to suboptimal joint return. Omidshafiei
et al. [19] propose Learning to Coordinate and Teach Reinforcement to allow two agents
to decide when and which action to be advised. Each agent learns to interact with the
environment while learning when to take the role of teacher or student with a high-level
reinforcement learning. In a student’s role, an agent learns to choose whether to ask
for advice or not. In a teacher’s role, an agent learns to choose whether to give advice
or not and decides to what to advice: either a piece of empty advice or an action from
the student’s action space. On top, a centralized Actor-Critic algorithm is employed for
coordinating student and teacher activities as a high-level problem.

Notably, prior works primarily deal with the following three subproblems: (1) when
a student asks for help; (2) when a teacher advises; (3) which particular action a teacher
should advise. However, students generally discard the actions advised by teachers right
after use. In this paper, we conjecture that reusing prior teacher advice can save the
communication budget for a student and improve its learning and propose two differ-
ent ways for the efficient reuse of prior advice. Our extensive experiments confirm that
learning by reusing previous advice consumes fewer budgets and significantly improves
the learning speed for students.

This paper is an extension of our earlier version [30]. In [30], we propose several
advice reusing methods for students to decide how to reuse previous advice from teach-
ers. In this version, we unify those methods and propose a new framework, Memory-
Based Teacher–Student Framework (MBTSF), to highlight the usage of an extra mem-
ory space for students to store and reuse advice when necessary. Moreover, during
implementation, we combine our proposed advice reusing methods with another popu-
lar advising method, Ask Uncertainty-Importance Advising (AUIA) [2], to illustrate that
our proposed MBTSF can be applied to different advising mechanisms. In particular,
our experimental results confirm the significant improvement induced by our advice
reusing methods over the original AUIA.

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 5 of 30 14

3 Preliminaries

This section summarizes our selection of relevant background knowledge and techniques
from recent research on Action Advising required for presenting our approach.

3.1 Single‑agent RL and MARL

Reinforcement Learning (RL) enables the solution of Markov Decision Processes (MDPs)
[23]. An MDP is described by a tuple ⟨S,A, T ,R, �⟩ , where S is a set of environment states,
A is a set of actions an agent can take, T ∶ S × A × S → [0, 1] are transition probabilities
between states, R ∶ S × A → ℝ is a reward signal, and � ∈ [0, 1) is a discount factor. At
each time step, an RL agent observes the environment’s state s ∈ S and selects an action
a ∈ A to execute. Then the agent receives a numerical reward r from the environment and
observes the next state s� ∈ S . The goal of an agent is to learn a policy � ∶ S → A that
maps states to actions such that the policy will maximize the expected cumulative dis-
counted reward.

Temporal difference (TD) RL algorithms, such as Q-learning [28] and SARSA [23],
learn a Q-value Q(s, a) for each state-action pair (s, a), which estimates the expected return
of an agent if it takes action a in state s. The Q-value Q(s, a) is updated based on the fol-
lowing rule:

where � ∈ [0, 1] is the learning rate, and � is the TD error. In Q-learning, we have:

where � ∈ [0, 1) is the discount factor, and s′ is the next state after taking action a in the
current state s. In SARSA, we have:

where a′ is the action that the agent will execute in the next state s′ according to its policy.
A common policy for balancing exploration and exploitation is �-greedy [23]. With a small
probability � an agent takes a random action, while with a large probability (1 − �) it takes
the action with the highest Q-value.

Q(�) [23] and SARSA(�) [20] are the extensions of Q-learning and SARSA, respec-
tively. At every time step, instead of updating the Q-value for one single state, Q(�) and
SARSA(�) improve the learning speed by using the TD error of the current time step to
update the Q-values from past states within the training episode. � ∈ [0, 1] is a trace decay
factor that controls the impact of TD errors on the Q-values from past time steps. As the
number of past Q-value updates increases, current TD error has a smaller influence on
these Q-values.

In the multi-agent case, we are interested in cooperative RL agents getting local observa-
tions and learning in a decentralized fashion [17]. They jointly affect the environment and
receive the same reward while learning individual policies without accessing knowledge
beyond the environment. The learning problem of multiple decentralized agents with local
observations is generally modelled as a Decentralised partially observable Markov decision
process (Dec-POMDP) [18], which is an extension of the Markov Decision Process (MDP)

(1)Q(s, a) ← Q(s, a) + � × �

(2)� = r + � max
a

Q(s�, a) − Q(s, a)

(3)� = r + �Q(s�, a�) − Q(s, a)

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 6 of 30

[23]. A Dec-POMDP is defined by a tuple ⟨I,S,A, T,R,�,O, �⟩ , where I is the set of n
agents, S is the set of environment states, A = ×i∈IAi is the set of joint actions, T is the
state transition probabilities, R is the reward function, � = ×i∈IΩi is the set of joint obser-
vations, O is the set of conditional observation probabilities, and � ∈ [0, 1) is the discount
factor. At every time step t in an environment state s′ , each agent i perceives its individual
observation oi

t
 from one joint observation o = ⟨o1, ..., on⟩ determined by O(o|s�, a) , where

a = ⟨a1, ..., an⟩ is the joint action that causes the state transition from s to s′ according to
T(s�|a, s) , and receives the same reward r determined by R(s, a).

3.2 Teacher–student framework

Here we introduce two typical teacher–student frameworks for determining when to ask for
advice and give advice, namely, Ask Uncertainty-Importance Advising [2] and AdhocTD
[9]. In these two frameworks, the number of times that a student can ask for advice and that
a teacher can give advice is constrained by two numeric budgets bask and bgive , respectively.
The algorithms continue until the inquiry budget finishes.

3.2.1 Ask Uncertainty‑Importance Advising (AUIA)

This framework is an instance of the jointly-initiated advising framework [2]. A learning
student agent and a trained teacher agent use respectively, Ask Uncertainty and Importance
Advising, to decide advising opportunities. The Importance Advising method produces
advice by querying the teacher’s learned value function for every state the student faces so
that the budget is better spent on the states considered to be more important. The impor-
tance of a state s is computed as follows:

where the state importance I(s) encodes the difference between the best and the worst
actions. A teacher will give advice in state s if I(s) exceeds a threshold tg . In AUIA, Ask
Uncertainty enables a student to ask for advice when it is uncertain about which action to
take in state s, such that

where ta is the student’s threshold for uncertainty.

3.2.2 AdhocTD

AdhocTD is a multi-agent teacher–student framework with no pre-trained agent taking the
role of teacher, and all of the agents advise one another to accelerate learning. In a state s,
an agent asks for advice with an inquiry probability Pask calculated as follows:

where va is a predetermined parameter, nvisit(s) is the number of times that the agent has
visited state s. If the agent visits state s very few times, the value of nvisit(s) is low, result-
ing in a higher probability Pask(s) of asking for advice. Each of the other agents advises the

(4)I(s) = max
a

Qteacher(s, a) −min
a

Qteacher(s, a)

(5)max
a

Qstudent(s, a) −min
a

Qstudent(s, a) < ta

(6)Pask(s) = (1 + va)
−
√
nvisit(s)

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 7 of 30 14

action having the highest Q-value in state s with a giving probability Pgive(s) calculated as
follows:

where vb is a predetermined parameter, and I(s) is the state importance defined in Eq. 4.
When another agent visits state s many times or the importance of state s is high, the other
agent provides its advice with a higher probability. If a student is advised by more than one
teacher, it uses the action advised by most of the teachers.

4 Proposed methods

In this research, we are interested in investigating how a student agent’s learning benefits
from reusing previous advice. Our proposed framework Memory-Based Teacher–Student
Framework (MBTSF), enables each agent to memorize advice from their teachers for nec-
essary reuse. Since a teacher agent may still be adjusting its policy when it gives advice,
the advised actions are likely to be non-optimal, and thus exploration needs to be allowed
for a student when it reuses previous advice. In MBTSF, each agent uses a memory space
to store advice from others and decides how long the advice should be memorized. Every
time a student agent encounters a state advised before, it chooses between (1) reusing pre-
vious advice, (2) asking for new advice, and (3) learning by following a usual exploration
strategy.

Next, we start by providing an overview of MBTSF in Sect. 4.1. Then, we describe the
core components of MBTSF, which are how a teacher generates advice and how a student
reuses previous advice stored in its memory space, respectively in Sects. 4.2 and 4.3.

4.1 Memory‑based teacher–student framework

In the proposed framework, each agent can take the role of student, teacher, or both of
them simultaneously. So, they may ask for advice (i.e., being a student), but provide advice
for others (i.e., being a teacher) at the same time step. Based on student’s role and teacher’s
role, an agent’s action selection process comprises the following procedures: first, advice
reusing, where the agent checks whether previous advice is available in the current state
through memory space; next, advice generation, where the agent asks for a piece of new
advice if no previous advice is reused; finally, exploration by itself, where the agent uses
its intended action. The process of advice reusing and advice generation continues until the
budget runs out.

4.1.1 Student’s role

A student agent has no prior knowledge about the task it performs. The student agent, who
indeed receives payoffs from the environment and learns by exploration, can also acceler-
ate learning by taking action suggestions from teachers in certain states. Furthermore, the
student is allocated with a memory space to memorize the advice that has been actually
executed in the task.

(7)Pgive(s) = 1 − (1 + vb)
−
√
nvisit(s)×I(s)

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 8 of 30

During the learning process, each agent decides when to ask for advice and how to use
advice according to the student’s role Rstudent . We define student role Ri

student
 for an agent i

as a tuple ⟨Pi
ask
, bi

ask
,Gi,Γi,M⟩:

– Pi
ask

∶ S → [0, 1] is the probability function for agent i to become a student. The func-
tion maps every state to an inquiry probability. In current state s, before choosing which
action to take, agent i sends a request with a probability Pi

ask
(s) to each of the other

agents for asking action advice. Some traditional teacher–student frameworks, for
example, Ask Uncertainty-Importance Advising, using deterministic asking function,
can be transformed to function Pi

ask
 , in which agents choose ’yes’ to seek advice and

’no’ to learn individually. In this case, Pi
ask

 can be defined as follows,

– bi
ask

 is the inquiry budget for agent i to ask for advice. At the current time step, bi
ask

decreases by 1 if the student is advised (even by more than one teacher), which implies
a valid communication. When the budget runs out, the student stops both asking for
advice and reusing previous advice, and learns individually at the following time steps.

– Gi is a collection of the other agents that can receive the request of agent i (i.e., the stu-
dent). In this paper, we define that Gi consists of all of the other agents whose budget of
giving advice does not run out.

– Γi is a function that combines all received advice if multiple teachers provide advice to
student i, and finally, an action will be selected among available advice for execution
in the environment. A general implementation is a majority vote, which chooses the
advice suggested by most teachers.

– M = {..., ⟨st, at⟩, ...} is a set of state-advice tuples which are selected and executed in
the environment by student i. M requires extra memory space. However, the maximum
capacity of memory M is bounded by the inquiry budget bi

ask
 as consuming one budget

means at most one advice will be performed and memorized finally. Every update of
memory M provides student i a chance to keep track of teachers’ current learning.

4.1.2 Teacher’s role

A teacher is a role played by a human expert or an artificial agent. The teacher either adopts
a pre-trained policy to advise student’s learning, or follows an non-optimal policy and still
needs to improve itself.

The most significant aspect of MBTSF is that each agent stores advised actions from
teachers and reuse them if needed. Note that each agent may take the roles of student and
teacher simultaneously if the agent encounters a (local) state that lacks of learning, or has
already acquired more experience in other regions of the state space. Now we consider how
another agent j takes the role of teacher and gives its advice. We define the teacher’s role
R
j

teacher
 for agent j as a tuple ⟨Pj

give
, b

j

give
,�j⟩.

– P
j

give
∶ S → [0, 1] is the probability function of agent j that maps a student’s current state

to an advising probability to response the student’s inquiry. If agent j receives multiple
requests, the current states of each student are fed into function Pj

give
 to output a vector

of advising probabilities, then processing corresponding requests simultaneously. Simi-
lar to asking function, deterministic advising function used by previous methods (e.g.,

(8)Pi
ask
(s) =

{
1, if the student decides to ask for advice

0, otherwise
.

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 9 of 30 14

Ask Uncertainty-Importance Advising) can be absorbed into function Pj

give
 by using the

following definitions,

– b
j

give
 is the giving budget of agent j to share its advice. bj

give
 is decremented by 1 every

time the teacher offers his advice to a student. Once the budget is used up, agent j will
not provide advice anymore.

– �j is an operator that maps an agent’s policy �j to advice.

 In general, teachers and students share the same action space A, and the student can
directly perform the advised action in the environment. In teacher–student frameworks,
as agents involved advising relationships are assumed to have the same optimal policy,
a teacher usually uses the action with the highest Q-value as advice to the associated
students. We follow the same setting in this paper, and therefore operator �j can be
viewed as a maximum operation, which selects the action corresponding to teacher
agent j’s maximum Q-value for the requested state.

4.2 Advice generation

We assume that agent i arrives at an unknown state st (for time step t) so that no previ-
ous advice is available for the current learning. Agent i needs to explore how to take the
role of student, as described in Algorithm 1. In the current state st , agent i firstly checks
if the inquiry budget bi

ask
 is still available (Line 2). With the asking probability calculated

by function Pi
ask

 , student i initiates an inquiry and broadcasts to potential teachers from
collection Gi , e.g., all other agents in the environment (Lines 3–4). The request is either
composed of the student’s current state to let a teacher know in which state they should
provide advice, or simply denoted as a requesting signal if agents in Gi are able to recog-
nize the observation of student i. Then student i pauses its learning and waits for a prede-
termined time interval to collect the answer. Nevertheless, in the current time step, it still
has a chance to take a teacher’s role for any other requested states.

After receiving the request from student i, another agent j (from collection Gi) suspends
its current learning and determines how to give advice, as described in Algorithm 2. Agent
j firstly switches its own state to the requested state st . If the current giving budget bj

give
 is

greater than 0, agent j will evaluate the possibility of taking a teacher’s role through func-
tion Pj

give
 (Lines 2–3). We assume that all agents are equipped with similar state representa-

tion. Thus, advice can be easily derived by selecting the action with the highest Q-value
in state st (line 4). Every time advice is given, the giving budget bj

give
 is decremented by 1

(Line 5). Then, teacher j sends back its advice to associated students and switches back to
its original state, unless there are other requests that have to be processed.

The communication channel between student i and teachers will be closed in state st
once the time interval has been reached. Note that if no advice is shared or no previous
advice is available, the student learns individually as usual. After receiving all advice, stu-
dent i feeds those advised actions into combination function Γi to select the action that
will be executed in state st , as shown in Algorithm 1. The inquiry budget bj

ask
 is also dec-

remented by 1 if student i does receive action advice (Line 11). Then the Q-value of that

(9)P
j

give
(s) =

{
1, if agentj decides to give advice,

0, otherwise

(10)�j ∶ �j → A

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 10 of 30

particular state-action pair is updated by incorporating environmental rewards. Now, the
remaining part of MBTSF is to design a proper way to effectively use previous advice
when student i visits the same state st in the future.

4.3 Learning by reusing previous advice

Suppose that all advised state-action pairs are recorded to memory M forever. By reus-
ing advice from memory, however, the student is imitating the teacher’s behaviors rather
than learning a policy. On the other hand, when all agents are learning from scratch, their
policies are most likely to be non-optimal. Allowing a student to explore the environment
occasionally provides the student a chance to surpass the teacher. Moreover, with increased
training time, previous advice might be outdated. Therefore, new advice must be added
to memory timely so that a student can follow teacher’s latest advice. Also, learning by
reusing previous advice needs to consider when to reuse advice and how to update advice

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 11 of 30 14

memory, in order to balance the trade-off between insisting on previous advice, asking for
new advice, and using currently learned policy.

4.3.1 Q‑Change per step

As student agents aim to learn a policy which can bring long-term rewards, intuitively,
advice is beneficial if it leads to an increase of estimated cumulative rewards, i.e., the
Q-values. On the other hand, teachers advise actions that have the highest Q-values in
requested states. Therefore, the student’s Q-value corresponding to an advised action
should surpass the Q-values of the other actions. Inspired by this, we propose our first
implementation of the advice reusing process in our MBTSF (memory-based teacher–stu-
dent framework), named Q-Change per Step. In this method, a student agent will evaluate
the difference in Q-values corresponding to advice before and after following that advice
in the environment. If the difference is significant enough, for example, exceeding a thresh-
old, then the advice will be stored and reused in future time steps.

Algorithm 3 describes Q-Change per Step from the perspective of student agent i. At time
step t, the agent firstly gives priority to checking whether previous advice is available for the

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 12 of 30

current state st (with a subscript time step t) (Lines 1–4). When budget bask is exhausted pre-
maturely in the early stage of learning, the reusing process will be terminated for avoiding
sub-optimal suggestions having too much influence on students’ learning (Line 5). When the
budget bi

ask
 is larger than 0, agent i checks whether state st is recorded in memory M . If yes,

the stored advice is picked up and used as the finally executed action (Lines 6–8). However,
once the agent decides not to reuse previous advice, advice generation will be executed. When
agent i’s request is responded, new advice chosen by the agent is viewed as the action to be
performed in state st . At the same time, the advised action and state st are stored in memory
M for reuse next time. Specifically, if state st is advised before, the original advised action
in memory M will be replaced by the latest one aligning with the teachers’ latest knowledge
(Lines 10–19). As long as no advice is reused or suggested, agent i will learn by itself immedi-
ately, i.e., selecting an action from the usual exploration strategy like �-greedy (Lines 20–22).
In Q-Change per Step, agents will record their Q-values before and after executing the advice
in the environment, in order to evaluate the impact of the advice on agent i’s learning process.
In state st , if the change of agent i’s Q-value corresponding to the advice exceeds (or equals) a
predefined threshold � , then the agent keeps the advice in advice memory M , otherwise dis-
misses it (Lines 24–30).

4.3.2 Decay reusing probability

In many scenarios, agents face a stochastic and noisy environment, where the variance of
Q-values could mislead the decision of reusing previous advice in Q-Change per Step. In
those situations, agents using Q-change per Step may have less chance to reuse previous
advice, reducing the impact of teachers on students’ learning. In the meantime, students also
need to avoid the impact of early versions of teachers, to have a chance to explore the envi-
ronment and evaluate their own policies. Motivated by this, we propose a more flexible and
robust implementation of the advice reusing process, named Decay Reusing Probability, such
that agents use decaying probability (starting from 1) to reuse advice without abrupt termina-
tion as in Q-change per Step, and an increasing probability (starting from 0) to ask for new
advice and explore their own strategies.

Consider one of the most popular exploration strategies, the �−greedy exploration. Agents
have four ways to select an action in the environment: reusing previous advice, asking for new
advice, exploring the environment, and exploiting its own policy. In current state st , agent i
chooses an action at to perform in the environment according to the following probabilities,

where Pi
reuse

 is the probability for agent i to reuse previous advice, and Pi
advice

 is the prob-
ability for agent i to obtain new advice from other agents. In MBTSF, Pi

advice
 is defined as

follows:

Pi
advice

 summarizes the maximum probability that agent i’s inquiry request is responded
by teachers (i.e., agents from collection Gi), and is determined jointly by asking function
Pi
ask

 and giving function Pj

give
 . Reusing probability Pi

reuse
 represents whether student agent i

(11)at =

⎧
⎪⎨⎪⎩

Previous Advice w.p. Pi
reuse

Asking for Advice w.p. (1 − Pi
reuse

) × Pi
advice

Greedy Action w.p. (1 − Pi
reuse

) × (1 − Pi
advice

) × (1 − �)

Random Action w.p. (1 − Pi
reuse

) × (1 − Pi
advice

) × �

(12)Pi
advice

= Pi
ask

×max
j∈Gi

P
j

give

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 13 of 30 14

should reuse teachers’ advice to guide its action selection. Hence, agent i follows previous
advice with probability Pi

reuse
 , asks for a new advice with probability (1 − Pi

reuse
) × Pi

advice
 ,

exploits its Q-values with probability (1 − Pi
reuse

) × (1 − Pi
advice

) × (1 − �) , and acts ran-
domly with remaining probability, where the total probability of all choices equals to 1.

Now we propose a way to construct reusing probability Pi
reuse

 . Intuitively, in the early
stage of the reusing process, a student probably expects to have more opportunities to
reuse existing advice since it has no better options. As the number of times of advice being
reused increases, the student would prefer to get rid of old advice and follow the teacher’s
latest learning. Then we define Pi

reuse
 for agent i in the current state st as follows,

where decay value � ∈ [0, 1] is a hyperparameter and mvisit is the number of times that
the current advice is performed in state st . Whenever agent i chooses to ask for help and
receives a new advice in state st , mvisit is reinitialized as 0. Then, the value of reusing prob-
ability for that advice will be 1, indicating that agent i will try the advice at least once
more to enhance the impact of teachers on the student. Counter mvisit is accumulated and
refreshed along with learning to ensure that agent i can follow the teacher’s latest learning.
If decay parameter � ∈ (0, 1) , reusing probability Pi

reuse
(st) decreases exponentially as agent

i repeatedly performs the latest advice in state st . When the decay parameter � is 0, agent
i is not able to reuse advice, which is equal to learning in the traditional teacher–student
framework. When the decay value � is 1, agent i simply follows the teacher’s advice rather
than learning a policy.

(13)Pi
reuse

(st) = �mvisit(st)

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 14 of 30

Algorithm 4 describes advice reusing process with Decay Reusing Probability. At time
step t, agent i observes the current state st (Lines 2–3). Firstly, the agent decides whether to
reuse previous advice from its memory. Then the probability of reusing advice is decayed
by multiplying decay parameter � , leading to a lower chance to choose previous advice
in state st (Lines 6–9). Then, if no advice is reused, agent i decides to ask for new advice
through advice generation. If state st exists in memory M , previous advice will be replaced
by the latest one to follow the teacher’s learning. The associated reusing probability for
state st is then initialized with 1 (Lines 11–21). Finally, for the situation where no previ-
ous advice is reused or no new advice is suggested, agent i performs its intended action
selected by �−greedy (Lines 22–24).

4.3.3 Discussion

Q-Change per Step and Decay Reusing Probability are two implementations of advice
reusing in MBTSF. The former utilizes Q-values to decide whether the advice is beneficial
for obtaining more rewards. Specifically, threshold � evaluates the minimum increase in
the Q-values for an advised action to be reused. Due to the variance in Q-value estimation,
the amount of increase in Q-values may fluctuate over time, which prevents students from
constantly reusing teachers’ advice. Thus, Q-Change per Step would be more effective in
domains where the advice can be misleading or of low quality. In this case, students can

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 15 of 30 14

easily get rid of the negative impact of teachers. By contrast, Decay Reusing Probability
provides a more stable way to reuse teachers’ advice, by incorporating a decaying prob-
ability for deciding whether previous advice should be reused before asking a new one. If
the same advice is likely to remain useful for a while, Decay Reusing Probability should be
better.

5 Experiments

Traditional teacher–student frameworks can be used to generate advice for MBTSF. To
demonstrate the flexibility of our proposed methods, we combine the two implementa-
tions of advice reusing process in MBTSF, Q-Change per Step and Decay Reusing Prob-
ability, with two popular advising methods, Ask Uncertainty-Importance Advising [2] and
AdhocTD [9]. Then previous advising methods are embedded into our framework to decide
when to ask for advice and give advice. In the experiments, we compare the performance
of the following methods,

(a) Independent Learners (IL) [6]. Each agent learns independently without communica-
tion. IL is served as a baseline method to validate the benefit of advising and reusing
advice in different tasks.

(b) Ask Uncertainty-Importance Advising (AUIA) [2]. Importance-based methods rely
on the range of Q-values for a certain state, which is a widely used metric for deter-
mining when to give advice. There are various forms of Importance-based advising
frameworks. In order to balance budget constraints and experimental results, we use
the version of AUIA.

(c) AUIA-QChange/Decay. AUIA can be combined with our proposed advice reusing
methods Q-Change per Step (i.e., AUIA-QChange) and Decay Reusing Probability
(i.e., AUIA-Decay) to generate advice. Therefore, Eqs. 5 and 4 are used in AUIA-
QChange/Decay to decide when to ask for and give advice. Then, the asking function
Pask and the giving function Pgive output probability 1 for asking and giving advice
when a state is uncertain for a student, i.e., maxa Q

student(s, a) −mina Q
student(s, a) < ta

and important for a teacher, i.e., maxa Q
teacher(s, a) −mina Q

teacher(s, a) > tg . Otherwise,
agents will not ask for advice or give advice, i.e., Pask = Pgive = 0 . AUIA, AUIA-
QChange and AUIA-Decay share the same parameters ta and tg . We fine-tune the values
of ta and tg based on empirical experience and hence their values are generally different
across different scenarios.

(d) AdhocTD [9]. AdhocTD is the state-of-the-art multi-agent advising approach that has
been shown to largely reduce advising budget and achieve excellent results in a soccer
game.

(e) AdhocTD-QChange/Decay. AdhocTD can be viewed as an ideal advice generation
algorithm. We combine AdhocTD with our proposed methods Q-Change per Step
(QChange) and Decay Reusing Probability (Decay), respectively. Therefore, the ask-
ing function Pask (i.e., Eq. 6) and the giving function Pgive (i.e., Eq. 7) proposed in
AdhocTD are directly used in AdhocTD-QChange/Decay to decide when to ask for
advice and give advice. AdhocTD, AdhocTD-QChange and AdhocTD-Decay share
the same parameters va and vb , which will be chosen empirically or fine-tuned for the
following experiments.

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 16 of 30

We conduct experiments on three typical reinforcement learning tasks: Mario, Preda-
tor–Prey, and Half Field Offense. Mario is a complex stochastic game in which a single
agent, “Super Mario”, learns to obtain higher scores. In Mario, the teacher’s role is taken
by another agent who has already learned a fixed policy. For AUIA and AdhocTD and
corresponding advice reusing methods, we record the number of times that the teacher vis-
its each state and its Q-values after following a fixed policy. Predator–Prey is a popular
benchmark for multi-agent learning. Half Field Offense is a difficult robot soccer game,
where agents must take stochastic action effects and noisy observations into account. In
both Predator–Prey and Half Field Offense, all agents learn from scratch without using
predefined policies, and they accelerate joint learning by advising one another and reusing
previous advice.

5.1 Mario

5.1.1 Game description

The Mario AI benchmark is based on Nintendo’s classic platform game Super Mario Bros.
In this research, we use the publicly available code released by Karakovskiy and Togelius
[14]. The Mario agent can walk and run to the right and left, jump, and shoot fireballs
through 2-D levels, with the goal to collect as many points as possible. The state-space in
Mario is fairly complex, as Mario observes all information pertaining to himself. We use
27 discrete state-variables, which are also adopted by previous works [22, 27]. The state
features are composed of three boolean variables which define whether Mario is able to
jump, shoot fireballs, or stand on a tile; two variables that define the direction of Mario’s
movements on x-dir and y-dir; eight values that define whether there is an enemy in match-
ing cell surrounding by the agent; another eight variables that keep track of the cells one
step away from the immediate cells; four boolean variables that identify whether there are
obstacles on the four vertical cells to the immediate right of Mario; and finally two vari-
ables that represent the Euclidean distance between the agent and the closest enemy on
x-dir and y-dir. The agent can take 12 actions by combining one of each option from three
sets: {left, right, no direction}, {jump, do not jump}, and {run, do not run}. Mario receives
a reward of +10 for stepping on an enemy, +16 for collecting a coin, +24 for finding a hid-
den block, +58 for eating a mushroom, +64 for eating a fire-flower, +1024 for successfully
finishing the level, -42 for getting hurt by an enemy (e.g., losing fire-flower), and -512 for
dying. Mario game is designed as an episodic task. In every episode, the Mario agent plays
a randomly generated level, starting from a randomly selected mode (small, large, and fire-
Mario). The level is ended either with the agent’s success, the agent’s death, or a timeout of
200 seconds.

5.1.2 Parameters setup

We use Average Reward per Episode (ARE) to assess the Mario agent’s performance. ARE
is the average reward per a certain amount of training episodes, and we set 100 to obtain a
smooth learning curve. Higher ARE values mean better performance. As the whole train-
ing process contains 50,000 episodes, we can get 500 ARE values for a single run. Then we
perform 60 runs for all methods to stabilize the performance. In Mario, we use Q(�) with
a learning rate of � = 0.001 , a discount factor of � = 0.9 , and a decay rate of � = 0.5 for
all the experiments. Whenever an agent chooses the final actions to be performed, it will

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 17 of 30 14

use Q(�) to update the corresponding Q-values. When no advice is reused or advised, the
agents use �-greedy as the exploration strategy with � = 0.05 . The parameters of AdhocTD
(i.e., va and vb) and AUIA (i.e., ta and tg) can heavily affect the advising opportunities as
well as corresponding action reusing methods. For example, when va is a small value and
vb is a high value, an agent in AdhocTD is more likely to ask for advice, and other agents
are more likely to provide advice for him/her. Thus, the budget can be consumed quickly.
On the contrary, with higher va and lower vb , advice is suggested when a student visits the
current state a few times while the teacher has experienced the student’s state many times.
The parameters for AdhocTD and AUIA are tuned respectively, to balance the budget con-
sumption and performance. Then in AdhocTD, we choose va = 2 and vb = 0.2 , and the
same values in AdhocTD-QChange/Decay. For AUIA, we use ta = 0.01 and tg = 0.03 ,
and also the same values in AUIA-QChange/Decay. Then for AdhocTD-QChange/Decay

(a) Average reward per 100 episodes (b) The spent budget

Fig. 1 ARE and budget consumption of IL-Q(�), AdhocTD and AdhocTD-QChange/Decay when
bask = bgive = 50, 000 , � = 0 , and � = 0.8

(a) Average reward per 100 episodes (b) The spent budget

Fig. 2 ARE and budget consumption of IL-Q(�), AUIA and AUIA-QChange/Decay when
bask = bgive = 500, 000 , � = 0 , and � = 0.9

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 18 of 30

and AUIA-QChange/Decay, we investigate the effect of different values of threshold � and
decay value � on the learning performance. Therefore, we choose: � = 0 , 0.01, and 0.03 for
both AdhocTD-QChange and AUIA-QChange; � = 0.8, 0.9 , and 0.99 for AdhocTD-Decay,
and � = 0.7, 0.8 , and 0.9 for AUIA-Decay. For the budget setting, we use a sufficiently
large budget to enable agents to ask for advice.

5.1.3 Performance comparison

Figure 1 shows the Average Reward per Episode (ARE) metric and consumed budget for
IL-Q(�), AdhocTD, and the corresponding action reusing algorithms with selected thresh-
old � and decay value � in Mario. The results show that AdhocTD and our proposed meth-
ods benefit from asking (or reusing) advice in the beginning. Notably, AdhocTD-Decay
with � = 0.8 performs much better than other methods and spends much less budget. Tra-
ditional advising framework, AdhocTD, consumes the largest budget, while achieves even
lower ARE values than independent learners. In AdhocTD, agents ask for too much advice
during learning, and they almost have no time to explore the environment. Due to reus-
ing previous advice, AdhocTD-QChange has higher ARE values than AdhocTD. Even
though AdhocTD-QChange surpasses IL-Q(�) in the beginning, they end up with similar
performance. This may be attributed to the fact that the teacher’s suggestions in AdhocTD-
QChange cannot have a long-term impact on student learning.

Figure 2 shows the ARE values and budget consumption achieved by independent learn-
ers, AUIA, and our proposed methods throughout the overall evaluation. Our experiment
show that AUIA and corresponding action reusing methods (i.e., AUIA-Decay/QChange)
have much lower ARE values than IL-Q(�). Nevertheless, AUIA-Decay still obtains much
higher ARE than AUIA and AUIA-QChange.

Table 1 Performance metrics for the agents in Mario (average of over 60 trials)

Higher values of Initial, Last and Mean are better, while lower values of Budget are better. The best value of
each column is shown in bold

Agents Initial Last Mean Budget

IL-Q(�) -218.061 1560.148 1318.743 -
AdhocTD 830.007 1393.961 1263.297 48,812
AdhocTD-QChange (� = 0) 931.293 1533.551 1370.024 42,233
AdhocTD-QChange (� = 0.01) 868.465 1408.128 1262.018 48,628
AdhocTD-QChange (� = 0.03) 844.979 1396.403 1258.330 48,764
AdhocTD-Decay (� = 0.8) 738.327 1628.328 1483.522 37,206
AdhocTD-Decay (� = 0.9) 847.532 1592.780 1453.173 36,120
AdhocTD-Decay (� = 0.99) 855.415 1489.469 1338.959 34,219
AUIA 1005.591 1105.782 989.924 465,944
AUIA-QChange (� = 0) 998.733 1110.647 997.067 185,631
AUIA-QChange (� = 0.01) 1024.009 1087.953 992.455 466,739
AUIA-QChange (� = 0.03) 967.605 1097.942 978.921 466,778
AUIA-Decay (� = 0.7) 1171.516 1209.140 1087.889 250,481
AUIA-Decay (� = 0.8) 1198.386 1225.343 1131.825 227,506
AUIA-Decay (� = 0.9) 1173.953 1315.205 1218.803 193,977

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 19 of 30 14

Table 1 summarizes the first ARE value (Initial), the last ARE value (Last), the average
ARE of the whole training episodes (Mean), and the final consumed budget (Budget) of
all methods. Notably, AUIA and corresponding action reusing methods spend significantly
larger budget than other methods. At the beginning of training, since agents rarely explore
the environment, consuming budget can quickly get more guidance from the teacher to
improve agents’ learning. However, sacrificing the opportunity to explore the environment
eventually leads to worse performance than independent learning. In AdhocTD-Decay,
with increased decay value � , agents have fewer opportunities to learn from the environ-
ment, resulting in lower Mean value. However, AUIA-Decay achieves better performance
with higher decay value � . Another interesting finding in the table is that both AdhocTD-
QChange and AUIA-QChange achieve the best results with the threshold � = 0 . Higher
values of � , like 0.01 or 0.03, make it more difficult for the agent to reuse previous sug-
gestions. This inspires us that both inefficient usage of previous advice and asking for too
much advice can hinder the student’s learning.

5.2 Predator–Prey

5.2.1 Game description

Predator–Prey (PP) is a grid-based game that becomes a benchmark environment for evalu-
ating multi-agent systems (MAS) before applying them in more complex situations. We
use the publicly available instantiation of the PP domain [4]. In our experiments, four
predators explicitly coordinate their actions to capture one prey in a discrete N × N grid
environment, where N is the number of cells in each direction, and we set N =10. One
cell is allowed to be occupied by only one agent to avoid deadlock. At each time step, four
predators and the prey execute one of the five possible actions: Stay, Go Up, Go Down, Go
Left, and Go Right. The predators are reinforcement learning agents and learn to catch the
prey as soon as possible. To make the learning task more realistic, the prey moves accord-
ing to a randomized policy: it takes a random action with a probability of 0.2, with the rest
of the time moving away from all predators. By executing an action, each agent moves cell
by cell in the corresponding direction. The prey is captured when four predators are located
in cells adjacent to the prey in four cardinal directions separately. After a capture, preda-
tors and prey are set up in distinct random positions. One episode starts when four preda-
tors and the prey are initialized with random positions in the grid world. The episode ends
either when predators catch the prey, or a time limit of 2500 is exceeded. The state space is
represented by the relative position of the four predators to the prey. All values of states are
normalized to [1, 1] by dividing by the number of cells N. Tile coding [21] is used to force
a generalization with 8 tilings and tile-width 0.5 to reduce the number of states. A capture
results in a reward of 1 for every predator. In all other situations, the reward is 0. Despite
this environment’s representational and mechanical simplicity, it is still capable of present-
ing complex cooperative behaviors for MARL.

5.2.2 Parameters setup

PP game has one standard metric for performance evaluation: Time to Goal (TG) is
the number of steps that four predators take to catch the prey. At every 100 training
episodes, the TG values of this period are averaged to get a more smooth value. We
train 20,000 episodes in total to get 200 TG values for this run, and all experiments

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 20 of 30

are performed over 200 runs. For agents updating their Q-values, they use Q(�) with
a learning rate of � = 0.1 , a discount factor of � = 0.9 , and a decay rate of � = 0.9 . �−
greedy with � = 0.01 serves as an exploration strategy for all agents. Similar to HFO,
the parameters of AdhocTD and AUIA are selected to gain competitive performance.
Thus, we choose va = 0.2 and vb = 1 for AdhocTD and AdhocTD-QChange/Decay, and
ta = 0.01 and tg = 0.05 for AUIA and AUIA-QChange/Decay, respectively. To compare
the effect of different values of parameters, we set threshold � = 0 , 0.01, and 0.03 for
both AdhocTD-QChange and AUIA-QChange; and decay value � = 0.9 , 0.99, and 0.999
for both AdhocTD-Decay and AUIA-Decay. For the budget setting, we use a sufficiently
large budget to enable agents to ask for advice.

(a) Time to Goal per 100 episodes (b) The spent budget

Fig. 3 TG and budget consumption of IL-Q(�), AdhocTD and AdhocTD-QChange/Decay when
bask = bgive = 5000 , � = 0.01 , and � = 0.99

(a) Time to Goal per 100 episodes (b) The spent budget

Fig. 4 TG and budget consumption of IL-Q(�), AUIA and AUIA-QChange/Decay when
bask = bgive = 6000 , � = 0.01 , and � = 0.99

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 21 of 30 14

5.2.3 Performance comparison

Figure 3 shows the Time to Goal (TG) and spent budget observed for IL-Q(�),
AdhocTD, AdhocTD-QChange with threshold � = 0.01 and AdhocTD-Decay with
decay value � = 0.9 9. Notably, action reusing method AdhocTD-Decay has much
lower TG values than all other algorithms, and consumes less budget. AdhocTD-
QChange, which does not insist on previous advice for too long, has very similar
results to AdhocTD. Figures 4a and 4b show, respectively, the TG metric and used
advice budget achieved by AUIA and each action reusing algorithm. Unlike AdhocTD,
AUIA achieves significantly lower TG than IL-Q(�) before about episode 7000. AUIA-
QChange with threshold � = 0.01 has similar performance to advising method AUIA
while consuming much less budget. AUIA-Decay with decay value � = 0.9 9 finishes
the experiment with less than 1500 budget used and achieves a significant speed-up of
the learning.

Table 2 shows the first TG value (Initial), the last TG value (Last), the average TG
values of the entire training episodes (Mean), and the spent budget (Budget) for inde-
pendent learners, previous advising methods, and our proposed methods with different
parameters. Notably, a proper value of threshold � , like 0.01 in AdhocTD-QChange
or 0.03 in AUIA-QChange, can obtain lower TG values than other values of � . Since
agents are learning and adjusting their policies together, increasing the threshold to a
certain extent can help the agents reduce the impact of some non-optimal suggestions.
As expected, when the decay value is 0.999, even with a smaller budget consumption,
the performance is much worse than other parameters since the agents always follow
the advice of others rather than learning by themselves.

Table 2 Performance metrics for the agents in PP game (average of over 200 trials)

Lower values of Initial, Last, Mean and Budget are better. The best value of each column is shown in bold

Agents Initial Last Mean Budget

IL-Q(�) 1087.019 105.360 179.920 -
AdhocTD 1079.019 104.031 173.406 5113
AdhocTD-QChange (� = 0) 1109.262 102.907 176.157 5027
AdhocTD-QChange (� = 0.01) 1105.113 105.530 173.867 5036
AdhocTD-QChange (� = 0.03) 1129.243 104.310 175.901 4961
AdhocTD-Decay (� = 0.9) 1001.528 93.705 127.653 5982
AdhocTD-Decay (� = 0.99) 1021.499 94.667 136.923 4073
AdhocTD-Decay (� = 0.999) 1071.310 105.361 170.373 2163
AUIA 1108.693 96.665 157.976 6330
AUIA-QChange (� = 0) 1118.398 97.052 157.721 4791
AUIA-QChange (� = 0.01) 1135.733 97.509 156.734 4848
AUIA-QChange (� = 0.03) 1084.614 96.991 156.269 4857
AUIA-Decay (� = 0.9) 909.573 90.945 131.429 2296
AUIA-Decay (� = 0.99) 835.043 88.890 130.300 1386
AUIA-Decay (� = 0.999) 844.135 92.836 138.992 862

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 22 of 30

5.3 Half field offense

5.3.1 Game description

Half Field Offense (HFO) is a simulated robot soccer game [15], and we use the imple-
mentations released by Da Silva [9] with three players and one goalkeeper in the field.
The goalkeeper adopts a fixed Helios Policy [1], which is obtained before the whole
learning. The players are reinforcement learning agents and learn to shoot faster and
more accurately. HFO is designed as an Episodic task. An episode starts when three
payers and the ball are initialized with random positions on the field. The episode ends
when either the players score a goal, the goalkeeper catches the ball, the ball leaves the
field, or a time limit of 200 is exceeded. Note that each player can score a goal only if
he possesses the ball, and otherwise, the option is to move. When a player possesses
the ball, he can choose between four actions: Shoot, Pass Near, Pass Far, and Dribble.
The players can benefit from cooperative behaviors: for example, one player passes the
ball to another player for a better shot. A player’s state is composed of the following
observations:

1. Whether the player is in possession of the ball;
2. The proximity to the center of the goal;
3. The angle from one player to the goal center;
4. The largest angle of one player to the goal without blocking players;
5. The goal opening angle of the nearest (or farthest) partner.

The state values are normalized in the range [1, 1] and discretized by Tile Coding [21]
with 5 tilings and 0.5 tile size for simplifying the learning task. The players are awarded a
reward of +1 when they score a goal, while they receive a reward of -1 if the ball is caught
by the goalkeeper or out of bounds, encouraging them to find the goal as quickly as pos-
sible. In all remaining situations, the reward is 0.

5.3.2 Parameters setup

For evaluating the learning performance in this domain, we use two popular metrics: Goal
Percentage (GP) is the percentage of testing episodes in which a goal is scored, and Time
to Goal (TG) for HFO is the average number of steps that the players score a goal dur-
ing testing episodes. All agents are trained for 10,000 episodes, with a pause at every 50
training episodes to perform 100 testing episodes. During testing, all players do not update
their Q-values, ask for advice, or reuse previous advice. They utilize the currently best
learned actions for every time step to obtain 200 GP (TG) values for that run. The proce-
dure is repeated over 50 executions to draw the curve of averaged results. We performed
all the experiments using SARSA(�) with � = 0.1 , � = 0.9 , and � = 0.9 as the algorithm to
learn a policy in tasks. The �-greedy is used as the exploration strategy of all players with
� = 0.1 . For the parameters va and vb of AdhocTD, we use the same values adopted by Da
Silva [9], which is also tested on HFO. Then we use va = 0.5 and vb = 1.5 for AdhocTD,
AdhocTD-QChange, and AdhocTD-Decay. As for AUIA, different values of thresholds
have a great influence on the results. Finally, we choose ta = 0.01 and tg = 0.03 , which con-
sumes less budget while achieves similar results as other combinations of ta and tg . We test

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 23 of 30 14

the proposed methods on different values of threshold � and decay value � . Thus we set:
threshold � = 0 , 0.01, and 0.03 for both AdhocTD-QChange and AUIA-QChange; decay

Fig. 5 GP, TG and budget consumption of IL-SARSA(�), AdhocTD and AdhocTD-QChange/Decay when
bask = bgive = 1000 , � = 0.03 , and � = 0.8

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 24 of 30

Fig. 6 GP, TG and budget consumption of IL-SARSA(�), AUIA and AUIA-QChange/Decay when
bask = bgive = 1000 , � = 0.01 , and � = 0.8n

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 25 of 30 14

value � = 0.8 , 0.9, and 0.99 for AdhocTD-Decay, and � = 0.7 , 0.8, and 0.9 for AUIA-
Decay. For the budget setting, we follow AdhocTD to use sufficiently large budget to ena-
ble agents to ask for advice.

Table 3 GP metric for the agents
in HFO (average of over 50
trials)

Higher values of Initial, Last and Mean are better. Lower values of
Budget are better. The best value of each column is shown in bold

Agents Initial Last Mean Budget

IL-SARSA(�) 2.990 68.740 58.421 -
AdhocTD 2.920 69.800 59.843 405
AdhocTD-QChange (� = 0) 3.210 68.490 59.847 404
AdhocTD-QChange (� = 0.01) 2.700 68.050 59.722 400
AdhocTD-QChange (� = 0.03) 3.300 67.510 59.796 402
AdhocTD-Decay (� = 0.8) 2.830 72.670 61.701 312
AdhocTD-Decay (� = 0.9) 3.320 70.840 61.256 283
AdhocTD-Decay (� = 0.99) 3.170 69.170 57.852 176
AUIA 3.570 69.450 58.167 2583
AUIA-QChange (� = 0) 3.100 70.080 59.235 2207
AUIA-QChange (� = 0.01) 2.680 70.300 59.430 2124
AUIA-QChange (� = 0.03) 3.220 69.020 59.311 2268
AUIA-Decay (� = 0.7) 3.200 66.230 56.332 1485
AUIA-Decay (� = 0.8) 3.310 68.440 56.671 1339
AUIA-Decay (� = 0.9) 3.080 66.800 54.769 1177

Table 4 TG metric for the agents
in HFO (average of over 50
trials)

Lower values of Initial, Last, Mean and Budget are better. The best
value of each column is shown in bold

Agents Initial Last Mean Budget

IL-SARSA(�) 39.700 97.990 99.104 -
AdhocTD 36.220 96.850 98.070 405
AdhocTD-QChange (� = 0) 39.850 97.130 98.086 404
AdhocTD-QChange (� = 0.01) 36.460 97.400 98.191 400
AdhocTD-QChange (� = 0.03) 37.490 96.510 98.242 402
AdhocTD-Decay (� = 0.8) 37.390 93.090 95.598 312
AdhocTD-Decay (� = 0.9) 39.960 92.930 95.572 283
AdhocTD-Decay (� = 0.99) 40.690 94.760 95.617 176
AUIA 39.480 97.890 98.775 2583
AUIA-QChange (� = 0) 38.900 96.770 97.992 2207
AUIA-QChange (� = 0.01) 36.890 95.950 98.113 2124
AUIA-QChange (� = 0.03) 38.260 95.790 97.938 2268
AUIA-Decay (� = 0.7) 38.260 96.640 97.551 1485
AUIA-Decay (� = 0.8) 40.800 94.860 96.583 1339
AUIA-Decay (� = 0.9) 39.890 94.840 96.506 1177

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 26 of 30

5.3.3 Performance comparison

Figure 5 shows the GP values, TG values, and consumed budget obtained by each algo-
rithm. In Figures 5a and 5b, advising method AdhocTD achieves significant performance
improvements on GP metric compared to IL-SARSA(�). Based on AdhocTD, AdhocTD-
Decay with decay value � = 0.8 obtains even higher GP values. Similar results can be
observed in the TG metric. As shown in Figure 5c and 5d, after around 2000 episodes,
AdhocTD-Decay starts to show better performance. The spent advice budget is recorded
in Figure 5e. AdhocTD-Decay achieves significant improvements while spending the mini-
mum budget.

Figure 6 shows the performance evaluated by GP, TG, and the used budget for IL-
SARSA(�), AUIA, AUIA-QChange with threshold � = 0.01 , and AUIA-Decay with decay
value � = 0.8 . In Figure 6a and 6b with GP metric, we can see that AUIA performs worse
than IL-SARSA(�) before about 2000 episodes, which probably means that AUIA is not
an ideal advising mechanism for HFO. Therefore, the performance of AUIA-Decay is not
improved as expected. However, AUIA-QChange still achieves significant improvements
roughly around after 4000 episodes. As for the TG shown in Figures 6c and 6d, both
AUIA-QChange and AUIA-Decay have lower TG values than other methods. Figure 6e
shows the consumed budget of each algorithm. Compared to AUIA, AUIA-Decay can save
about half of the budget, while AUIA-QChange consumes higher budget than AUIA-Decay
but lower than AUIA.

The first GP/TG value (Initial), the last GP/TG value (Last), the average GP/TG value of
the whole training episodes (Mean), and the spent budget (Budget) for all experiments are
shown in Tables 3, 4. We can see that when the decay value � increases, both AdhocTD-
Decay and AUIA-Decay consume less budget. Q-Change per Step and Decay Reusing
Probability can achieve better performance with selected critical parameters, i.e., threshold
� and decay value � . Notably, the performance of our proposed methods depend on the fun-
damental advising mechanism. Nevertheless, AUIA-QChange surpasses the performance
of AUIA and IL-SARSA (�) on both GP and TG metrics.

6 Conclusion and future work

In this research, we address how to use and reuse advice more effectively in the teacher–stu-
dent paradigm, which is particularly suitable under communication budget constraints. Our
proposed framework, MBTSF, is extended from previous advising methods, in particular,
for generating suggestions for reuse next time. With our proposed methods, when an agent
encounters a state advised before, it either reuses previous advice, asks for new advice, or
selects an action with a usual exploration strategy.

Table 5 summarizes the difference in the game characteristics used in our experiments.
The effectiveness of MBTSF depends on the mechanism for generating advice. When the
advising mechanism performs poorly, such as worse than the independent learner, MBTSF
cannot guarantee that it performs better than the independent learner. But overall, com-
pared with traditional teacher–student frameworks, MBTSF still performs better.

The effect of MBTSF also depends on the teacher’s strategy. In multi-agent games like
Predator–Prey and HFO, the teacher’s strategy is adjusted and changed. In comparison,
for the single-agent game Mario, the teacher is assumed by an agent that has been trained,

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 27 of 30 14

Ta
bl

e
5

 C
om

pa
ris

on
 o

f e
xp

er
im

en
ts

C
om

pa
ris

on
M

ar
io

Pr
ed

at
or

–P
re

y
H

al
f fi

el
d

off
en

se

G
am

e
ty

pe
Si

ng
le

-a
ge

nt
 g

am
e

M
ul

ti-
ag

en
t c

ol
la

bo
ra

tiv
e

ga
m

e,
 w

ith
 e

ac
h

ag
en

t r
ec

ei
vi

ng
 th

e
sa

m
e

re
w

ar
d

Le
ar

ne
r e

xc
ha

ng
e

In
de

pe
nd

en
t l

ea
rn

er
s:

 th
er

e
is

 n
o

co
m

m
un

ic
at

io
n

am
on

g
stu

de
nt

 a
ge

nt
s,

an
d

ag
en

ts
 o

nl
y

co
m

m
un

ic
at

e
th

e
cu

rr
en

t s
ta

te
 a

nd
 su

g-
ge

ste
d

ac
tio

ns
 fo

r t
ea

ch
er

–s
tu

de
nt

 e
xc

ha
ng

e
Ro

le
s

Fi
xe

d
te

ac
he

r a
nd

 st
ud

en
t r

ol
es

Th
e

ro
le

s o
f s

tu
de

nt
s a

nd
 te

ac
he

rs
 a

re
 n

ot
 fi

xe
d,

 i.
e.

, e
ve

ry
 a

ge
nt

 h
as

 th
e

op
po

rtu
ni

ty

to
 b

e
a

stu
de

nt
 o

r t
ea

ch
er

Le
ar

ni
ng

O
nl

y
th

e
M

ar
io

 a
ge

nt
 le

ar
ns

 in
 th

e
en

vi
ro

nm
en

t,
an

d
it

ca
n

on
ly

 ta
ke

th

e
stu

de
nt

’s
 ro

le
. A

no
th

er
 a

ge
nt

 th
at

ha

s b
ee

n
tra

in
ed

 in
 a

dv
an

ce
 a

ct
s t

he

te
ac

he
r’s

 ro
le

Fo
ur

 h
un

te
rs

 le
ar

n
ho

w
 to

 c
at

ch
 p

re
ys

 a
nd

su

gg
es

t a
ct

io
ns

 to
 o

ne
 a

no
th

er
Th

re
e

pl
ay

er
s l

ea
rn

 to
 sh

oo
t a

nd
 su

gg
es

t
ac

tio
ns

 to
 o

ne
 a

no
th

er

Te
ac

he
r’s

 p
ol

ic
y

Th
e

te
ac

he
r’s

 st
ra

te
gy

 h
as

 b
ee

n
fix

ed
. T

he

co
rr

es
po

nd
in

g
ex

pe
rim

en
ta

l e
ffe

ct
 is

du

e
to

 o
nl

y
th

e
in

de
pe

nd
en

t l
ea

rn
er

Th
e

te
ac

he
r’s

 st
ra

te
gy

 is
 n

ot
 fi

xe
d

an
d

is
 st

ill
 b

ei
ng

 a
dj

us
te

d
an

d
le

ar
ne

d

A
dh

oc
TD

, A
dh

oc
TD

-Q
C

ha
ng

e
an

d
A

dh
oc

TD
-D

ec
ay

A
dh

oc
TD

 w
as

 o
rig

in
al

ly
 u

se
d

in
 m

ul
ti-

ag
en

t l
ea

rn
in

g,
 w

he
re

 e
ac

h
ag

en
t c

an

ta
ke

 th
e

ro
le

 o
f a

 te
ac

he
r o

r a
 st

ud
en

t.
In

th

is
 a

rti
cl

e,
 w

e
fix

 th
e

ro
le

s o
f t

ea
ch

er

an
d

stu
de

nt
 to

 e
na

bl
e

A
dh

oc
TD

 to
 b

e
us

ed
 in

 M
ar

io
 g

am
es

, i
.e

.,
th

e
tra

in
ed

ag

en
t a

ct
 a

s t
he

 te
ac

he
r t

o
ad

vi
se

 th
e

M
ar

io
 a

ge
nt

. S
in

ce
 A

dh
oc

TD
 d

ec
id

es

w
he

n
to

 a
sk

 a
nd

 p
ro

vi
de

 su
gg

es
tio

ns

ba
se

d
on

 th
e

nu
m

be
r o

f t
im

es
 th

e
ag

en
t

vi
si

ts
 th

e
st

at
e

(a
nd

 th
e

Q
-v

al
ue

),
it

is

ne
ce

ss
ar

y
to

 re
co

rd
 th

e
nu

m
be

r o
f t

im
es

th

e
te

ac
he

r v
is

its
 e

ac
h

st
at

e
an

d
th

e
Q

-v
al

ue
 a

fte
r t

ra
in

in
g.

A
s P

re
da

to
r–

Pr
ey

 is
 a

 m
ul

ti-
ag

en
t g

am
e,

A

dh
oc

TD
 c

an
 b

e
us

ed
 d

ire
ct

ly
 o

n
Pr

ed
at

or
–P

re
y.

H
FO

 w
as

 o
rig

in
al

ly
 u

se
d

to
 te

st
th

e
eff

ec
t

of
 A

dh
oc

TD
. S

o,
 w

e
di

re
ct

ly
 u

se
 th

e
se

t-
tin

gs
 o

f A
dh

oc
TD

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 28 of 30

Ta
bl

e
5

 (c
on

tin
ue

d)

C
om

pa
ris

on
M

ar
io

Pr
ed

at
or

–P
re

y
H

al
f fi

el
d

off
en

se

A
U

IA
, A

U
IA

-Q
C

ha
ng

e
an

d
A

U
IA

-D
ec

ay
A

U
IA

 w
as

 fi
rs

t u
se

d
in

 a
n

en
vi

ro
nm

en
t

w
he

re
 th

e
ro

le
s o

f t
ea

ch
er

s a
nd

 st
ud

en
ts

w

er
e

fix
ed

. I
n

A
U

IA
, t

he
 te

ac
he

r
de

ci
de

s w
he

n
to

 p
ro

vi
de

 a
dv

ic
e

ba
se

d
on

 th
e

Q
-v

al
ue

 le
ar

ne
d.

 S
o,

 w
e

ne
ed

 to

re
co

rd
 th

e
co

rr
es

po
nd

in
g

Q
-v

al
ue

 o
f

ea
ch

 st
at

e
af

te
r t

he
 te

ac
he

r t
ra

in
in

g

In
 m

ul
ti-

ag
en

t l
ea

rn
in

g,
 th

e
ro

le
s o

f t
ea

ch
er

 a
nd

 st
ud

en
t a

re
 n

ot
 fi

xe
d,

 a
nd

 e
ac

h
ag

en
t

is
 le

ar
ni

ng
. T

o
ad

ju
st

A
U

IA
 to

 a
pp

ly
 m

ul
ti-

ag
en

t l
ea

rn
in

g,
 th

e
on

ly
 c

ha
ng

e
re

qu
ire

d
is

 th
at

 th
e

ag
en

t n
o

lo
ng

er
 re

co
rd

s i
ts

 o
w

n
Q

 v
al

ue
, b

ut
 w

he
n

th
e

stu
de

nt
 a

sk
s,

it
w

ill
 d

ec
id

e
w

he
th

er
 to

 p
ro

vi
de

 a
dv

ic
e

ba
se

d
on

 th
e

Q
 v

al
ue

 it
 le

ar
ne

d

Ex
pe

rim
en

t r
es

ul
t o

f A
dh

oc
TD

Th
e

eff
ec

t o
f A

dh
oc

TD
 is

 w
or

se
 th

an
 th

at

of
 In

de
pe

nd
en

t L
ea

rn
er

. I
n

A
dh

oc
TD

-
Q

C
ha

ng
e,

 w
he

n
�
=
0
 , i

ts
 e

ffe
ct

 is

be
tte

r t
ha

n
A

dh
oc

TD
 a

nd
 In

de
pe

nd
en

t
Le

ar
ne

r,
an

d
it

co
sts

 le
ss

 b
ud

ge
t.

W
he

n
�
=
0
.8

 , A
dh

oc
TD

-D
ec

ay
 a

ch
ie

ve
d

th
e

be
st

eff
ec

t (
hi

gh
es

t A
R

E
va

lu
e)

 in
 a

ll
ex

pe
rim

en
ts

Th
e

eff
ec

t o
f A

dh
oc

TD
 is

 b
et

te
r t

ha
n

th
an

 o
f I

nd
ep

en
de

nt
 L

ea
rn

er
. W

he
n

�
=
0
.0
1 ,

 th
e

eff
ec

t o
f A

dh
oc

TD
-

Q
C

ha
ng

e
is

 si
m

ila
r t

o
th

at
 o

f
A

dh
oc

TD
, b

ut
 it

 c
os

ts
 le

ss
 b

ud
ge

t.
In

A

dh
oc

TD
-D

ec
ay

, a
ll

th
e

va
lu

es
 o

f �

ha
ve

 o
bt

ai
ne

d
lo

w
er

 T
G

 v
al

ue
s.

W
he

n
�

is
 0

.9
9,

 it
 is

 m
uc

h
be

tte
r t

ha
n

A
dh

oc
TD

an

d
A

dh
oc

TD
-Q

C
ha

ng
e

an
d

co
ns

um
es

le

ss
 b

ud
ge

t

A
dh

oc
TD

 is
 su

pe
rio

r t
o

In
de

pe
nd

en
t

Le
ar

ne
r i

n
bo

th
 G

P
an

d
TG

. A
dh

oc
TD

-
Q

C
ha

ng
e

ha
s t

he
 sa

m
e

eff
ec

t a
s

A
dh

oc
TD

 o
n

G
P

an
d

TG
. W

he
n
�
=
0
.8

an

d
0.

9,
 A

dh
oc

TD
-D

ec
ay

 is
 b

et
te

r t
ha

n
A

dh
oc

TD
 o

n
TG

 a
nd

 G
P,

 a
nd

 c
on

su
m

es

le
ss

 b
ud

ge
t.

W
he

n
�
=
0
.9

 9,
 th

e
eff

ec
t o

n
G

P
is

 w
or

se
 th

an
 In

de
pe

nd
en

t L
ea

rn
er

an

d
A

dh
oc

TD
, b

ut
 it

 c
on

su
m

es
 le

ss

bu
dg

et
Ex

pr
im

en
t r

es
ul

t o
f A

U
IA

Th
e

eff
ec

t o
f A

U
IA

 is
 w

or
se

 th
an

 th
at

 o
f

In
de

pe
nd

en
t L

ea
rn

er
 a

nd
 A

dh
oc

TD
. I

n
co

m
pa

ris
on

, w
he

n
�
=
0
 , A

dh
oc

TD
-

Q
C

ha
ng

e
is

 b
et

te
r t

ha
n

A
U

IA
 a

nd
 c

on
-

su
m

es
 m

uc
h

le
ss

 b
ud

ge
t.

In
 A

dh
oc

TD
-

D
ec

ay
, c

om
pa

re
d

to
 A

U
IA

 a
nd

A

dh
oc

TD
-Q

C
ha

ng
e,

 a
ll

th
e

va
lu

es
 o

f �

ha
ve

 a
ch

ie
ve

d
be

tte
r r

es
ul

ts
 o

n
A

R
E

Th
e

eff
ec

t o
f A

U
IA

 is
 si

gn
ifi

ca
nt

ly
 b

et
te

r
th

an
 th

at
 o

f I
nd

ep
en

de
nt

 L
ea

rn
er

 a
nd

A

dh
oc

TD
. A

U
IA

-Q
C

ha
ng

e
ha

s t
he

sa

m
e

eff
ec

t a
s A

U
IA

 u
nd

er
 d

iff
er

en
t �

va

lu
es

 b
ut

 c
on

su
m

es
 le

ss
 b

ud
ge

t.
Th

e
eff

ec
t o

f A
U

IA
-D

ec
ay

 is
 b

et
te

r t
ha

n
A

U
IA

 a
nd

 A
U

IA
-Q

C
ha

ng
e,

 a
nd

 w
he

n
�

is
 0

.9
99

, t
he

 b
ud

ge
t c

on
su

m
ed

 is
 m

uc
h

lo
w

er
 th

an
 a

ll
ot

he
r m

et
ho

ds

Th
e

eff
ec

t o
f A

U
IA

 is
 w

or
se

 th
an

 In
de

-
pe

nd
en

t L
ea

rn
er

 o
n

G
P,

 a
nd

 sl
ig

ht
ly

be

tte
r f

or
 In

de
pe

nd
en

t L
ea

rn
er

 o
n

TG
.

A
U

IA
-Q

C
ha

ng
e

is
 b

et
te

r t
ha

n
A

U
IA

 a
nd

In

de
pe

nd
en

t L
ea

rn
er

 o
n

G
P

an
d

TG
, a

nd

co
ns

um
es

 le
ss

 b
ud

ge
t.

A
U

IA
-D

ec
ay

 is

w
or

se
 th

an
 A

U
IA

 o
n

G
P

bu
t c

on
su

m
es

le

ss
 b

ud
ge

t,
an

d
pe

rfo
rm

s b
et

te
r t

ha
n

A
U

IA
 o

n
TG

Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

Page 29 of 30 14

which makes the learning method based on reusing advice more effective. Notably, reusing
suggestions not only increase the learning speed, but also consume less budget. Long-term
adherence to the teacher’s previous suggestions, such as using a larger � value in Decay
Reusing Probability, may consume much less budget, but may also be harmful to learning
because it cannot follow the teacher’s learning in time.

Despite the variety of settings, our experiments show that reusing advice achieves sig-
nificantly better performance than the advising methods without specifying advice reusing
in all the scenarios. Moreover, when all agents are learning and adapting their policies,
they need to explore alternatives while reusing the advised actions so that they may out-
perform their teachers. Last but not least, insisting on non-optimal teachers’ advice for too
long may even hinder the overall learning process.

For future work, we consider filtering the influence of bad advice, and learning a model
to represent the shared knowledge from teachers. A student can also learn how to choose
to reuse advice following the exploration strategy or ask for advice. Such a decision can
be included in a high-level advising framework like LeCTR [19]. We would also consider
using student feedback and teacher reputation [5] in our future framework. Besides, the
influence of different budgets on advising and advice reusing process can be investigated.

Acknowledgements This work was supported by National Natural Science Foundation of China
(62076100), and Fundamental Research Funds for the Central Universities, SCUT (D2210010, D2200150,
and D2201300), the Science and Technology Planning Project of Guangdong Province (2020B0101100002).

References

 1. Akiyama, H. (2012). Helios team base code.
 2. Amir, O., Kamar, E., Kolobov, A., & Grosz, B. J. (2016). Interactive teaching strategies for agent train-

ing. In Proceedings of the twenty-fifth international joint conference on artificial intelligence (IJCAI)
(pp. 804–811).

 3. Barto, A. G., Thomas, P. S., & Sutton, R. S. (2017). Some recent applications of reinforcement learn-
ing. In Proceedings of the 18th Yale workshop on adaptive and learning systems.

 4. Brys, T., Nowé, A., Kudenko, D., Taylor, M. (2014). Combining multiple correlated reward and shap-
ing signals by measuring confidence. In Proceedings of 28th AAAI conference on artificial intelligence
(pp. 1687–1693).

 5. Chiu, D. K. W., Leung, H. F., & Lam, K. M. (2009). On the making of service recommendations: An
action theory based on utility, reputation, and risk attitude. Expert Systems with Applications, 36(2),
3293–3301.

 6. Claus, C., & Boutilier C. (1998). The dynamics of reinforcement learning in cooperative multiagent
systems. In The national conference on artificial intelligence (pp. 746–752)

 7. Clouse, J. A. (1996). On integrating apprentice learning and reinforcement learning. PhD thesis, Uni-
versity of Massachusetts

 8. da Silva, F. L., & Costa, A. H. R. (2019). A survey on transfer learning for multiagent reinforcement
learning systems. Journal of Artificial Intelligence Research, 64, 645–703.

 9. da Silva F. L., Glatt, R., & Costa, A. H. R. (2017). Simultaneously learning and advising in multiagent
reinforcement learning. In Proceedings of the 16th international conference on autonomous agents and
multiagent systems (pp. 1100–1108).

 10. Felipe Leno da Silva, Pablo Hernandez-Leal, Bilal Kartal, and Taylor, M. E. (2020) Uncertainty-aware
action advising for deep reinforcement learning agents. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence (pp.5792–5799

 11. Felipe Leno da Silva, Matthew E. Taylor, and Anna Helena Reali Costa (2018) Autonomously reusing
knowledge in multiagent reinforcement learning. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence (pp.5487–5493

 12. Fachantidis, A., Taylor, M. E., & Vlahavas, I. P. (2017). Learning to teach reinforcement learning
agents. Machine Learning and Knowledge Extraction, 1, 21–42.

 Autonomous Agents and Multi-Agent Systems (2023) 37:14

1 3

14 Page 30 of 30

 13. Ilhan, E., Gow, J., & Liebana, D. P. (2019) Teaching on a budget in multi-agent deep reinforcement
learning. arXiv: 1905. 01357

 14. Karakovskiy, S., & Togelius, J. (2012). The Mario AI benchmark and competitions. IEEE Transactions
on Computational Intelligence and AI in Games, 4(1), 55–67.

 15. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., & Matsubara, H. (1997). Robocup: A chal-
lenge problem for AI. AI Magazine, 18, 73–85.

 16. Kober, J., Bagnell, J.A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The Inter-
national Journal of Robotics Research, 32, 1238–1274.

 17. Matignon, L., Laurent, G. J., & Le Fort-Piat, N. (2012). Independent reinforcement learners in coop-
erative markov games: A survey regarding coordination problems. Knowledge Engineering Review, 27,
1–31.

 18. Oliehoek, F. A., & Amato, C. (2016). A concise introduction to decentralized POMDPs (1st ed.).
Springer: New York.

 19. Omidshafiei, S., Kim, D.-K., Liu, M., Tesauro, G., Riemer, M., Amato, C., Campbell, M., How, J. P.
(2019). Learning to teach in cooperative multiagent reinforcement learning. In The thirty-third AAAI
conference on artificial intelligence (pp. 6128–6136).

 20. Rummery, G. A., & Niranjan, M. (1994). On-line q-learning using connectionist systems. Technical
report cued/f-infeng/tr 166, Cambridge University Engineering Department.

 21. Sherstov, A. A., & Stone, P. (2005). Function approximation via tile coding: Automating parameter
choice. In Proceedings symposium on abstraction, reformulation, and approximation (SARA-05),
Edinburgh, Scotland, UK

 22. Suay H. B., Brys T., Taylor, M. E., & Chernova S. (2016). Learning from demonstration for shap-
ing through inverse reinforcement learning. In Proceedings of the 2016 international conference on
autonomous agents and multiagent systems) (pp. 429–437).

 23. Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction (1st ed.). Cambridge,
MA: MIT Press.

 24. Taylor, M. E., Carboni, N., Fachantidis, A., Vlahavas, I. P., & Torrey, L. (2014). Reinforcement learn-
ing agents providing advice in complex video games. Connection Science, 26(1), 45–63.

 25. Torrey, L., & Taylor, M. E. (2013). Teaching on a budget: Agents advising agents in reinforcement
learning. In Proceedings of 12th the international conference on autonomous agents and multiagent
systems (pp. 1053–1060).

 26. Wang, Y., Lu, W., Hao, J., Wei, J., & Leung, H. f. (2018). Efficient convention emergence through
decoupled reinforcement social learning with teacher–student mechanism. In Proceedings of the 17th
international conference on autonomous agents and multiagent systems (pp. 795–803).

 27. Wang, Z., & Taylor. M. E. (2017). Improving reinforcement learning with confidence-based demon-
strations. In Proceedings of the twenty-sixth international joint conference on artificial intelligence
(IJCAI) (pp. 3027–3033).

 28. Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, 8, 279–292.
 29. Zhan, Y., Bou-Ammar, H., & Taylor, M. E. (2016). Theoretically-grounded policy advice from multi-

ple teachers in reinforcement learning settings with applications to negative transfer. In Proceedings of
the twenty-fifth international joint conference on artificial intelligence (pp. 2315–2321).

 30. Zhu, C., Cai, Y., Leung, H.-f., & Hu, S. (2020). Learning by reusing previous advice in teacher–stu-
dent paradigm. In: A. El Fallah Seghrouchni, G. Sukthankar, B. An, and N. Yorke-Smith (Eds.), Pro-
ceedings of the 19th international conference on autonomous agents and multiagent systems, AAMAS
’20, Auckland, New Zealand, May 9–13, 2020. International foundation for autonomous agents and
multiagent systems, 2020 (pp. 1674–1682).

 31. Zimmer, M., Viappiani, P. & Weng, P. (2014). Teacher–student framework: A reinforcement learning
approach. In AAMAS workshop.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/1905.01357

	Learning by reusing previous advice: a memory-based teacher–student framework
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Single-agent RL and MARL
	3.2 Teacher–student framework
	3.2.1 Ask Uncertainty-Importance Advising (AUIA)
	3.2.2 AdhocTD

	4 Proposed methods
	4.1 Memory-based teacher–student framework
	4.1.1 Student’s role
	4.1.2 Teacher’s role

	4.2 Advice generation
	4.3 Learning by reusing previous advice
	4.3.1 Q-Change per step
	4.3.2 Decay reusing probability
	4.3.3 Discussion

	5 Experiments
	5.1 Mario
	5.1.1 Game description
	5.1.2 Parameters setup
	5.1.3 Performance comparison

	5.2 Predator–Prey
	5.2.1 Game description
	5.2.2 Parameters setup
	5.2.3 Performance comparison

	5.3 Half field offense
	5.3.1 Game description
	5.3.2 Parameters setup
	5.3.3 Performance comparison

	6 Conclusion and future work
	Acknowledgements
	References

