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Abstract
Reinforcement Learning (RL) has been widely used to solve sequential decision-mak-
ing problems. However, it often suffers from slow learning speed in complex scenarios. 
Teacher–student frameworks address this issue by enabling agents to ask for and give 
advice so that a student agent can leverage the knowledge of a teacher agent to facilitate 
its learning. In this paper, we consider the effect of reusing previous advice, and propose 
a novel memory-based teacher–student framework such that student agents can memorize 
and reuse the previous advice from teacher agents. In particular, we propose two methods 
to decide whether previous advice should be reused: Q-Change per Step that reuses the 
advice if it leads to an increase in Q-values, and Decay Reusing Probability that reuses the 
advice with a decaying probability. The experiments on diverse RL tasks (Mario, Preda-
tor–Prey and Half Field Offense) confirm that our proposed framework significantly out-
performs the existing frameworks in which previous advice is not reused.
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1 Introduction

Reinforcement learning (RL) has been employed to solve many real-world problems, e.g., 
robotics, optimizing memory control, and personalized web services [3, 16]. However, RL 
often suffers from slow learning speed in complex applications. This can be further inten-
sified when multiple agents are independently learning and observing since they adapt to 
one another. Undoubtedly, when a trained agent or a human expert is available, a new agent 
can benefit from asking advice for the current task. Even in a more general situation where 
all agents learn without prior knowledge, they can accelerate learning process by sharing 
acquired knowledge. Under practical constraints of limited computing resources or com-
munication, agents need to decide what and when to share, as well as how to utilize the 
shared knowledge.

Recently, the teacher–student framework [25] has received much attention. In this para-
digm [25], a trained agent (named teacher) advises a learning agent (named student) on 
which action to take in a state. Teachers and students are only required to have the same 
action set without specifying their learning structures. This provides much flexibility for 
practical scenarios in which agents may be equipped with different sensors or policy rep-
resentations to collaborate. Silva et al. [9] focus on how action advising improves agents’ 
mutual learning processes, and adapt the teacher–student framework to multi-agent settings 
where multiple simultaneously learning agents exist. In particular, advising opportunities 
are established on-demand taking into account the communication cost among agents. 
Omidshafiei et al. [19] view teaching in Multi-Agent Reinforcement Learning (MARL) as 
a high-level sequential decision task. Agents taking a student’s role learn to ask for advice 
or not, while agents taking a teacher’s role learn to advise heterogeneous teammates for 
actions.

Previous works on action advising focus on the problems of when and what to advise, 
but rarely on the problem of how to use the advice more efficiently. A key assumption 
[2, 9, 25] behind the teacher–student framework and its variations is that the teachers are 
more experienced than the students. However, the advice from the teachers is performed 
only once and then forgotten. We conjecture that reusing the advice, advice will improve 
the efficiency of learning. Imagine that a coach teaches a rookie how to shoot in a soccer 
game, and the rookie is instructed to aim following his coach’s advice. However, he may 
miss the shot at this time due to a noisy and stochastic environment, even though the action 
advised by the coach is optimal. When the rookie tries to shoot again, if he overlooks the 
previous advice, then it is likely that he will try other suboptimal actions or wait for a 
while to receive other advice from the coach. This, as one can imagine, will slow the rook-
ie’s learning process. On the contrary, if the rookie can memorize and reuse the previous 
advice, then the rookie’s learning will be accelerated by simply adopting the optimal action 
advised by the coach previously.

To this end, this paper studies if and how a student (e.g., the rookie) benefits from reus-
ing previous advice from a more experienced teacher (e.g., the coach). Building upon the 
existing teacher–student frameworks [2, 9], we propose a Memory-Based Teacher–Student 
Framework (MBTSF) such that agents are able to memorize and reuse previous advice. 
When a student receives advice in a state, the state is labeled as ‘advised’, and the state-
advice pair ⟨state, advice⟩ is stored. At every time step, each agent can choose among learn-
ing by itself, asking for advice, and reusing the previous advice if available. As agents have 
no prior knowledge, their policies and their advice are generally not optimal at the early 
stage of learning. To avoid the use of non-optimal previous advice, which may hinder the 
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student’s performance, we propose two methods to decide whether previous advice should 
be reused. (i) Q-Change per Step (QChange): a student will reuse previous advice if this 
advice leads to an increase in the Q-value (i.e., the expected return). (ii) Decay Reusing 
Probability (Decay): a student will reuse previous advice with a decaying probability, since 
the previous advice may be outdated in a stochastic environment. In our experiments, we 
consider three different RL tasks: Mario, Predator–Prey and Half Field Offense. We show 
that in all these tasks, the reuse of previous advice significantly accelerates the students’ 
learning.

The rest of this paper is organized as follows. Section  2 discusses the related works. 
Section 3 presents a brief background on RL and teacher–student frameworks. Section 4 
describes the proposed framework MBTSF and two proposed methods (QChange and 
Decay) for deciding the reuse of previous advice. Section 5 provides the settings, results 
and analysis of our experiments. The last section concludes this paper with a discussion of 
future works.

2  Related works

Action advising problems [8, 9, 11, 25] concerns two roles for agents: the teacher and the 
student. A more experienced teacher agent helps accelerate the learning of a student agent 
by suggesting actions to be taken in certain states.

Early works [2, 7, 12, 24, 25, 29, 31] assume the roles of agents are fixed beforehand, 
and a human expert or a pre-trained agent takes the role of the teacher. Clouse [7] focuses 
on human teacher agents and proposes that a teacher should help a student agent whenever 
the student asks for advice. Torrey and Taylor [24, 25] propose a teacher–student frame-
work, which allows a teacher to decide in which states to suggest actions to a student. 
They also introduce the concept of budget constraints that models limited communication 
between the teacher and student, in terms of the number of times that a teacher can pro-
vide action advice. Zimmer et al. [31] view teaching under the budget constraint to be a 
reinforcement learning problem and propose to learn when a teacher gives advice for a 
more efficient budget consumption. The teacher’s reward decreases if the student spends 
more time steps in reaching its goal, which makes the teacher try to accelerate the student’s 
learning through advising appropriately.

The jointly-initiated advising proposed by Amir et al. [2] assumes that an advisor-advi-
see relationship is built under the agreement of both the teacher and the student. A student 
can ask for advice if unsure what to do in a state, and a teacher who follows a fixed policy 
provides action advice if it considers the student’s state is important to be advised. Fachan-
tidis et  al. [12] investigate how to select an appropriate teacher from several pre-trained 
agents to generate advice. They reveal that the agent who achieves the best average score 
when acting alone may not be the best teacher. Zhan et al. [29] consider the possibility of 
receiving advice from multiple teachers. They propose to use a majority vote to combine 
suboptimal advice to make the teacher–student framework more robust, but without con-
sidering the optimality of the teachers.

The aforementioned works focus on single-student action advising settings, and 
assume that the roles of teacher and student are predetermined in advance. More 
recently, Silva et al. [9] extend the teacher–student framework to a multiple teacher–stu-
dent setting and propose an ad hoc advising framework. At every time step, each agent 
may take a student’s role to ask for advice, while it can also take a teacher’s role to 
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advise other students. Being a student or a teacher depends on an agent’s familiarity 
with the state to be advised, i.e., the number of times it has visited that state. Further, a 
teacher’s policy is not necessarily fixed or optimal and can be improved through learn-
ing from other agents’ advice. Wang et al. [26] incorporate a teacher–student framework 
to improve the speed of convention emergence in multi-agent systems. Different from 
the ad hoc advising framework, a student asks each of its neighbors in a network topol-
ogy for advice, instead of broadcasting a single request to all of the other agents.

Ilhan et  al. [13] combine the ad hoc advising framework with deep reinforcement 
learning to tackle continuous state space. As the state space is large, random network 
distillation is utilized to measure how frequently a state has been visited through non-
linear function approximation. Then each Deep Q-learning agent can ask for advice if 
it has rarely visited a state, while it can give advice if it has visited a state frequently. 
Silva et al. [10] consider that counting the number of visits ignores the uncertainty of an 
agent. They utilize a multi-head version of Deep Q-network, where each head predicts a 
different estimate of the Q-values based on different samples of experience. By updating 
the network weights, the variance of the predictions is gradually reduced and used to 
estimate the uncertainty for each state. Agents with high uncertainty will decide to ask 
for advice, while those with low uncertainty will decide to provide advice.

There exist scenarios where agents may need to coordinate their behaviors. For 
example, when they have to go in opposite directions with similar positions, using the 
best actions from the teacher’s view may lead to suboptimal joint return. Omidshafiei 
et al. [19] propose Learning to Coordinate and Teach Reinforcement to allow two agents 
to decide when and which action to be advised. Each agent learns to interact with the 
environment while learning when to take the role of teacher or student with a high-level 
reinforcement learning. In a student’s role, an agent learns to choose whether to ask 
for advice or not. In a teacher’s role, an agent learns to choose whether to give advice 
or not and decides to what to advice: either a piece of empty advice or an action from 
the student’s action space. On top, a centralized Actor-Critic algorithm is employed for 
coordinating student and teacher activities as a high-level problem.

Notably, prior works primarily deal with the following three subproblems: (1) when 
a student asks for help; (2) when a teacher advises; (3) which particular action a teacher 
should advise. However, students generally discard the actions advised by teachers right 
after use. In this paper, we conjecture that reusing prior teacher advice can save the 
communication budget for a student and improve its learning and propose two differ-
ent ways for the efficient reuse of prior advice. Our extensive experiments confirm that 
learning by reusing previous advice consumes fewer budgets and significantly improves 
the learning speed for students.

This paper is an extension of our earlier version [30]. In [30], we propose several 
advice reusing methods for students to decide how to reuse previous advice from teach-
ers. In this version, we unify those methods and propose a new framework, Memory-
Based Teacher–Student Framework (MBTSF), to highlight the usage of an extra mem-
ory space for students to store and reuse advice when necessary. Moreover, during 
implementation, we combine our proposed advice reusing methods with another popu-
lar advising method, Ask Uncertainty-Importance Advising (AUIA) [2], to illustrate that 
our proposed MBTSF can be applied to different advising mechanisms. In particular, 
our experimental results confirm the significant improvement induced by our advice 
reusing methods over the original AUIA.
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3  Preliminaries

This section summarizes our selection of relevant background knowledge and techniques 
from recent research on Action Advising required for presenting our approach.

3.1  Single‑agent RL and MARL

Reinforcement Learning (RL) enables the solution of Markov Decision Processes (MDPs) 
[23]. An MDP is described by a tuple ⟨S,A, T ,R, �⟩ , where S is a set of environment states, 
A is a set of actions an agent can take, T ∶ S × A × S → [0, 1] are transition probabilities 
between states, R ∶ S × A → ℝ is a reward signal, and � ∈ [0, 1) is a discount factor. At 
each time step, an RL agent observes the environment’s state s ∈ S and selects an action 
a ∈ A to execute. Then the agent receives a numerical reward r from the environment and 
observes the next state s� ∈ S . The goal of an agent is to learn a policy � ∶ S → A that 
maps states to actions such that the policy will maximize the expected cumulative dis-
counted reward.

Temporal difference (TD) RL algorithms, such as Q-learning [28] and SARSA [23], 
learn a Q-value Q(s, a) for each state-action pair (s, a), which estimates the expected return 
of an agent if it takes action a in state s. The Q-value Q(s, a) is updated based on the fol-
lowing rule:

where � ∈ [0, 1] is the learning rate, and � is the TD error. In Q-learning, we have:

where � ∈ [0, 1) is the discount factor, and s′ is the next state after taking action a in the 
current state s. In SARSA, we have:

where a′ is the action that the agent will execute in the next state s′ according to its policy. 
A common policy for balancing exploration and exploitation is �-greedy [23]. With a small 
probability � an agent takes a random action, while with a large probability (1 − �) it takes 
the action with the highest Q-value.

Q(� ) [23] and SARSA(� ) [20] are the extensions of Q-learning and SARSA, respec-
tively. At every time step, instead of updating the Q-value for one single state, Q(� ) and 
SARSA(� ) improve the learning speed by using the TD error of the current time step to 
update the Q-values from past states within the training episode. � ∈ [0, 1] is a trace decay 
factor that controls the impact of TD errors on the Q-values from past time steps. As the 
number of past Q-value updates increases, current TD error has a smaller influence on 
these Q-values.

In the multi-agent case, we are interested in cooperative RL agents getting local observa-
tions and learning in a decentralized fashion [17]. They jointly affect the environment and 
receive the same reward while learning individual policies without accessing knowledge 
beyond the environment. The learning problem of multiple decentralized agents with local 
observations is generally modelled as a Decentralised partially observable Markov decision 
process (Dec-POMDP) [18], which is an extension of the Markov Decision Process (MDP) 

(1)Q(s, a) ← Q(s, a) + � × �

(2)� = r + � max
a

Q(s�, a) − Q(s, a)

(3)� = r + �Q(s�, a�) − Q(s, a)
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[23]. A Dec-POMDP is defined by a tuple ⟨I,S,A, T,R,�,O, �⟩ , where I  is the set of n 
agents, S is the set of environment states, A = ×i∈IAi is the set of joint actions, T  is the 
state transition probabilities, R is the reward function, � = ×i∈IΩi is the set of joint obser-
vations, O is the set of conditional observation probabilities, and � ∈ [0, 1) is the discount 
factor. At every time step t in an environment state s′ , each agent i perceives its individual 
observation oi

t
 from one joint observation o = ⟨o1, ..., on⟩ determined by O(o|s�, a) , where 

a = ⟨a1, ..., an⟩ is the joint action that causes the state transition from s to s′ according to 
T(s�|a, s) , and receives the same reward r determined by R(s, a).

3.2  Teacher–student framework

Here we introduce two typical teacher–student frameworks for determining when to ask for 
advice and give advice, namely, Ask Uncertainty-Importance Advising [2] and AdhocTD 
[9]. In these two frameworks, the number of times that a student can ask for advice and that 
a teacher can give advice is constrained by two numeric budgets bask and bgive , respectively. 
The algorithms continue until the inquiry budget finishes.

3.2.1  Ask Uncertainty‑Importance Advising (AUIA)

This framework is an instance of the jointly-initiated advising framework [2]. A learning 
student agent and a trained teacher agent use respectively, Ask Uncertainty and Importance 
Advising, to decide advising opportunities. The Importance Advising method produces 
advice by querying the teacher’s learned value function for every state the student faces so 
that the budget is better spent on the states considered to be more important. The impor-
tance of a state s is computed as follows:

where the state importance I(s) encodes the difference between the best and the worst 
actions. A teacher will give advice in state s if I(s) exceeds a threshold tg . In AUIA, Ask 
Uncertainty enables a student to ask for advice when it is uncertain about which action to 
take in state s, such that

where ta is the student’s threshold for uncertainty.

3.2.2  AdhocTD

AdhocTD is a multi-agent teacher–student framework with no pre-trained agent taking the 
role of teacher, and all of the agents advise one another to accelerate learning. In a state s, 
an agent asks for advice with an inquiry probability Pask calculated as follows:

where va is a predetermined parameter, nvisit(s) is the number of times that the agent has 
visited state s. If the agent visits state s very few times, the value of nvisit(s) is low, result-
ing in a higher probability Pask(s) of asking for advice. Each of the other agents advises the 

(4)I(s) = max
a

Qteacher(s, a) −min
a

Qteacher(s, a)

(5)max
a

Qstudent(s, a) −min
a

Qstudent(s, a) < ta

(6)Pask(s) = (1 + va)
−
√
nvisit(s)
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action having the highest Q-value in state s with a giving probability Pgive(s) calculated as 
follows:

where vb is a predetermined parameter, and I(s) is the state importance defined in Eq. 4. 
When another agent visits state s many times or the importance of state s is high, the other 
agent provides its advice with a higher probability. If a student is advised by more than one 
teacher, it uses the action advised by most of the teachers.

4  Proposed methods

In this research, we are interested in investigating how a student agent’s learning benefits 
from reusing previous advice. Our proposed framework Memory-Based Teacher–Student 
Framework (MBTSF), enables each agent to memorize advice from their teachers for nec-
essary reuse. Since a teacher agent may still be adjusting its policy when it gives advice, 
the advised actions are likely to be non-optimal, and thus exploration needs to be allowed 
for a student when it reuses previous advice. In MBTSF, each agent uses a memory space 
to store advice from others and decides how long the advice should be memorized. Every 
time a student agent encounters a state advised before, it chooses between (1) reusing pre-
vious advice, (2) asking for new advice, and (3) learning by following a usual exploration 
strategy.

Next, we start by providing an overview of MBTSF in Sect. 4.1. Then, we describe the 
core components of MBTSF, which are how a teacher generates advice and how a student 
reuses previous advice stored in its memory space, respectively in Sects. 4.2 and 4.3.

4.1  Memory‑based teacher–student framework

In the proposed framework, each agent can take the role of student, teacher, or both of 
them simultaneously. So, they may ask for advice (i.e., being a student), but provide advice 
for others (i.e., being a teacher) at the same time step. Based on student’s role and teacher’s 
role, an agent’s action selection process comprises the following procedures: first, advice 
reusing, where the agent checks whether previous advice is available in the current state 
through memory space; next, advice generation, where the agent asks for a piece of new 
advice if no previous advice is reused; finally, exploration by itself, where the agent uses 
its intended action. The process of advice reusing and advice generation continues until the 
budget runs out.

4.1.1  Student’s role

A student agent has no prior knowledge about the task it performs. The student agent, who 
indeed receives payoffs from the environment and learns by exploration, can also acceler-
ate learning by taking action suggestions from teachers in certain states. Furthermore, the 
student is allocated with a memory space to memorize the advice that has been actually 
executed in the task.

(7)Pgive(s) = 1 − (1 + vb)
−
√
nvisit(s)×I(s)
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During the learning process, each agent decides when to ask for advice and how to use 
advice according to the student’s role Rstudent . We define student role Ri

student
 for an agent i 

as a tuple ⟨Pi
ask
, bi

ask
,Gi,Γi,M⟩:

– Pi
ask

∶ S → [0, 1] is the probability function for agent i to become a student. The func-
tion maps every state to an inquiry probability. In current state s, before choosing which 
action to take, agent i sends a request with a probability Pi

ask
(s) to each of the other 

agents for asking action advice. Some traditional teacher–student frameworks, for 
example, Ask Uncertainty-Importance Advising, using deterministic asking function, 
can be transformed to function Pi

ask
 , in which agents choose ’yes’ to seek advice and 

’no’ to learn individually. In this case, Pi
ask

 can be defined as follows, 

– bi
ask

 is the inquiry budget for agent i to ask for advice. At the current time step, bi
ask

 
decreases by 1 if the student is advised (even by more than one teacher), which implies 
a valid communication. When the budget runs out, the student stops both asking for 
advice and reusing previous advice, and learns individually at the following time steps.

– Gi is a collection of the other agents that can receive the request of agent i ( i.e., the stu-
dent). In this paper, we define that Gi consists of all of the other agents whose budget of 
giving advice does not run out.

– Γi is a function that combines all received advice if multiple teachers provide advice to 
student i, and finally, an action will be selected among available advice for execution 
in the environment. A general implementation is a majority vote, which chooses the 
advice suggested by most teachers.

– M = {..., ⟨st, at⟩, ...} is a set of state-advice tuples which are selected and executed in 
the environment by student i. M requires extra memory space. However, the maximum 
capacity of memory M is bounded by the inquiry budget bi

ask
 as consuming one budget 

means at most one advice will be performed and memorized finally. Every update of 
memory M provides student i a chance to keep track of teachers’ current learning.

4.1.2  Teacher’s role

A teacher is a role played by a human expert or an artificial agent. The teacher either adopts 
a pre-trained policy to advise student’s learning, or follows an non-optimal policy and still 
needs to improve itself.

The most significant aspect of MBTSF is that each agent stores advised actions from 
teachers and reuse them if needed. Note that each agent may take the roles of student and 
teacher simultaneously if the agent encounters a (local) state that lacks of learning, or has 
already acquired more experience in other regions of the state space. Now we consider how 
another agent j takes the role of teacher and gives its advice. We define the teacher’s role 
R
j

teacher
 for agent j as a tuple ⟨Pj

give
, b

j

give
,�j⟩.

– P
j

give
∶ S → [0, 1] is the probability function of agent j that maps a student’s current state 

to an advising probability to response the student’s inquiry. If agent j receives multiple 
requests, the current states of each student are fed into function Pj

give
 to output a vector 

of advising probabilities, then processing corresponding requests simultaneously. Simi-
lar to asking function, deterministic advising function used by previous methods (e.g., 

(8)Pi
ask
(s) =

{
1, if the student decides to ask for advice

0, otherwise
.
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Ask Uncertainty-Importance Advising) can be absorbed into function Pj

give
 by using the 

following definitions, 

– b
j

give
 is the giving budget of agent j to share its advice. bj

give
 is decremented by 1 every 

time the teacher offers his advice to a student. Once the budget is used up, agent j will 
not provide advice anymore.

– �j is an operator that maps an agent’s policy �j to advice. 

 In general, teachers and students share the same action space A, and the student can 
directly perform the advised action in the environment. In teacher–student frameworks, 
as agents involved advising relationships are assumed to have the same optimal policy, 
a teacher usually uses the action with the highest Q-value as advice to the associated 
students. We follow the same setting in this paper, and therefore operator �j can be 
viewed as a maximum operation, which selects the action corresponding to teacher 
agent j’s maximum Q-value for the requested state.

4.2  Advice generation

We assume that agent i arrives at an unknown state st (for time step t) so that no previ-
ous advice is available for the current learning. Agent i needs to explore how to take the 
role of student, as described in Algorithm 1. In the current state st , agent i firstly checks 
if the inquiry budget bi

ask
 is still available (Line 2). With the asking probability calculated 

by function Pi
ask

 , student i initiates an inquiry and broadcasts to potential teachers from 
collection Gi , e.g., all other agents in the environment (Lines 3–4). The request is either 
composed of the student’s current state to let a teacher know in which state they should 
provide advice, or simply denoted as a requesting signal if agents in Gi are able to recog-
nize the observation of student i. Then student i pauses its learning and waits for a prede-
termined time interval to collect the answer. Nevertheless, in the current time step, it still 
has a chance to take a teacher’s role for any other requested states.

After receiving the request from student i, another agent j (from collection Gi ) suspends 
its current learning and determines how to give advice, as described in Algorithm 2. Agent 
j firstly switches its own state to the requested state st . If the current giving budget bj

give
 is 

greater than 0, agent j will evaluate the possibility of taking a teacher’s role through func-
tion Pj

give
 (Lines 2–3). We assume that all agents are equipped with similar state representa-

tion. Thus, advice can be easily derived by selecting the action with the highest Q-value 
in state st (line 4). Every time advice is given, the giving budget bj

give
 is decremented by 1 

(Line 5). Then, teacher j sends back its advice to associated students and switches back to 
its original state, unless there are other requests that have to be processed.

The communication channel between student i and teachers will be closed in state st 
once the time interval has been reached. Note that if no advice is shared or no previous 
advice is available, the student learns individually as usual. After receiving all advice, stu-
dent i feeds those advised actions into combination function Γi to select the action that 
will be executed in state st , as shown in Algorithm 1. The inquiry budget bj

ask
 is also dec-

remented by 1 if student i does receive action advice (Line 11). Then the Q-value of that 

(9)P
j

give
(s) =

{
1, if agentj decides to give advice,

0, otherwise

(10)�j ∶ �j → A
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particular state-action pair is updated by incorporating environmental rewards. Now, the 
remaining part of MBTSF is to design a proper way to effectively use previous advice 
when student i visits the same state st in the future.

4.3  Learning by reusing previous advice

Suppose that all advised state-action pairs are recorded to memory M forever. By reus-
ing advice from memory, however, the student is imitating the teacher’s behaviors rather 
than learning a policy. On the other hand, when all agents are learning from scratch, their 
policies are most likely to be non-optimal. Allowing a student to explore the environment 
occasionally provides the student a chance to surpass the teacher. Moreover, with increased 
training time, previous advice might be outdated. Therefore, new advice must be added 
to memory timely so that a student can follow teacher’s latest advice. Also, learning by 
reusing previous advice needs to consider when to reuse advice and how to update advice 
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memory, in order to balance the trade-off between insisting on previous advice, asking for 
new advice, and using currently learned policy.

4.3.1  Q‑Change per step

As student agents aim to learn a policy which can bring long-term rewards, intuitively, 
advice is beneficial if it leads to an increase of estimated cumulative rewards, i.e., the 
Q-values. On the other hand, teachers advise actions that have the highest Q-values in 
requested states. Therefore, the student’s Q-value corresponding to an advised action 
should surpass the Q-values of the other actions. Inspired by this, we propose our first 
implementation of the advice reusing process in our MBTSF (memory-based teacher–stu-
dent framework), named Q-Change per Step. In this method, a student agent will evaluate 
the difference in Q-values corresponding to advice before and after following that advice 
in the environment. If the difference is significant enough, for example, exceeding a thresh-
old, then the advice will be stored and reused in future time steps.

Algorithm 3 describes Q-Change per Step from the perspective of student agent i. At time 
step t, the agent firstly gives priority to checking whether previous advice is available for the 
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current state st (with a subscript time step t) (Lines 1–4). When budget bask is exhausted pre-
maturely in the early stage of learning, the  reusing process will be terminated for avoiding 
sub-optimal suggestions having too much influence on students’ learning (Line 5). When the 
budget bi

ask
 is larger than 0, agent i checks whether state st is recorded in memory M . If yes, 

the stored advice is picked up and used as the finally executed action (Lines 6–8). However, 
once the agent decides not to reuse previous advice, advice generation will be executed. When 
agent i’s request is responded, new advice chosen by the agent is viewed as the action to be 
performed in state st . At the same time, the advised action and state st are stored in memory 
M for reuse next time. Specifically, if state st is advised before, the original advised action 
in memory M will be replaced by the latest one aligning with the teachers’ latest knowledge 
(Lines 10–19). As long as no advice is reused or suggested, agent i will learn by itself immedi-
ately, i.e., selecting an action from the usual exploration strategy like �-greedy (Lines 20–22). 
In Q-Change per Step, agents will record their Q-values before and after executing the advice 
in the environment, in order to evaluate the impact of the advice on agent i’s learning process. 
In state st , if the change of agent i’s Q-value corresponding to the advice exceeds (or equals) a 
predefined threshold � , then the agent keeps the advice in advice memory M , otherwise dis-
misses it (Lines 24–30).

4.3.2  Decay reusing probability

In many scenarios, agents face a stochastic and noisy environment, where the variance of 
Q-values could mislead the decision of reusing previous advice in Q-Change per Step. In 
those situations, agents using Q-change per Step may have less chance to reuse previous 
advice, reducing the impact of teachers on students’ learning. In the meantime, students also 
need to avoid the impact of early versions of teachers, to have a chance to explore the envi-
ronment and evaluate their own policies. Motivated by this, we propose a more flexible and 
robust implementation of the advice reusing process, named Decay Reusing Probability, such 
that agents use decaying probability (starting from 1) to reuse advice without abrupt termina-
tion as in Q-change per Step, and an increasing probability (starting from 0) to ask for new 
advice and explore their own strategies.

Consider one of the most popular exploration strategies, the �−greedy exploration. Agents 
have four ways to select an action in the environment: reusing previous advice, asking for new 
advice, exploring the environment, and exploiting its own policy. In current state st , agent i 
chooses an action at to perform in the environment according to the following probabilities,

where Pi
reuse

 is the probability for agent i to reuse previous advice, and Pi
advice

 is the prob-
ability for agent i to obtain new advice from other agents. In MBTSF, Pi

advice
 is defined as 

follows:

Pi
advice

 summarizes the maximum probability that agent i’s inquiry request is responded 
by teachers (i.e., agents from collection Gi ), and is determined jointly by asking function 
Pi
ask

 and giving function Pj

give
 . Reusing probability Pi

reuse
 represents whether student agent i 

(11)at =

⎧
⎪⎨⎪⎩

Previous Advice w.p. Pi
reuse

Asking for Advice w.p. (1 − Pi
reuse

) × Pi
advice

Greedy Action w.p. (1 − Pi
reuse

) × (1 − Pi
advice

) × (1 − �)

Random Action w.p. (1 − Pi
reuse

) × (1 − Pi
advice

) × �

(12)Pi
advice

= Pi
ask

×max
j∈Gi

P
j

give
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should reuse teachers’ advice to guide its action selection. Hence, agent i follows previous 
advice with probability Pi

reuse
 , asks for a new advice with probability (1 − Pi

reuse
) × Pi

advice
 , 

exploits its Q-values with probability (1 − Pi
reuse

) × (1 − Pi
advice

) × (1 − �) , and acts ran-
domly with remaining probability, where the total probability of all choices equals to 1.

Now we propose a way to construct reusing probability Pi
reuse

 . Intuitively, in the early 
stage of the  reusing process, a student probably expects to have more opportunities to 
reuse existing advice since it has no better options. As the number of times of advice being 
reused increases, the student would prefer to get rid of old advice and follow the teacher’s 
latest learning. Then we define Pi

reuse
 for agent i in the current state st as follows,

where decay value � ∈ [0, 1] is a hyperparameter and mvisit is the number of times that 
the current advice is performed in state st . Whenever agent i chooses to ask for help and 
receives a new advice in state st , mvisit is reinitialized as 0. Then, the value of reusing prob-
ability for that advice will be 1, indicating that agent i will try the advice at least once 
more to enhance the impact of teachers on the student. Counter mvisit is accumulated and 
refreshed along with learning to ensure that agent i can follow the teacher’s latest learning. 
If decay parameter � ∈ (0, 1) , reusing probability Pi

reuse
(st) decreases exponentially as agent 

i repeatedly performs the latest advice in state st . When the decay parameter � is 0, agent 
i is not able to reuse advice, which is equal to learning in the traditional teacher–student 
framework. When the decay value � is 1, agent i simply follows the teacher’s advice rather 
than learning a policy.

(13)Pi
reuse

(st) = �mvisit(st)
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Algorithm 4 describes advice reusing process with Decay Reusing Probability. At time 
step t, agent i observes the current state st (Lines 2–3). Firstly, the agent decides whether to 
reuse previous advice from its memory. Then the probability of reusing advice is decayed 
by multiplying decay parameter � , leading to a lower chance to choose previous advice 
in state st (Lines 6–9). Then, if no advice is reused, agent i decides to ask for new advice 
through advice generation. If state st exists in memory M , previous advice will be replaced 
by the latest one to follow the teacher’s learning. The associated reusing probability for 
state st is then initialized with 1 (Lines 11–21). Finally, for the situation where no previ-
ous advice is reused or no new advice is suggested, agent i performs its intended action 
selected by �−greedy (Lines 22–24).

4.3.3  Discussion

Q-Change per Step and Decay Reusing Probability are two implementations of advice 
reusing in MBTSF. The former utilizes Q-values to decide whether the advice is beneficial 
for obtaining more rewards. Specifically, threshold � evaluates the minimum increase in 
the Q-values for an advised action to be reused. Due to the variance in Q-value estimation, 
the amount of increase in Q-values may fluctuate over time, which prevents students from 
constantly reusing teachers’ advice. Thus, Q-Change per Step would be more effective in 
domains where the advice can be misleading or of low quality. In this case, students can 
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easily get rid of the negative impact of teachers. By contrast, Decay Reusing Probability 
provides a more stable way to reuse teachers’ advice, by incorporating a decaying prob-
ability for deciding whether previous advice should be reused before asking a new one. If 
the same advice is likely to remain useful for a while, Decay Reusing Probability should be 
better.

5  Experiments

Traditional teacher–student frameworks can be used to generate advice for MBTSF. To 
demonstrate the flexibility of our proposed methods, we combine the two implementa-
tions of advice reusing process in MBTSF, Q-Change per Step and Decay Reusing Prob-
ability, with two popular advising methods, Ask Uncertainty-Importance Advising [2] and 
AdhocTD [9]. Then previous advising methods are embedded into our framework to decide 
when to ask for advice and give advice. In the experiments, we compare the performance 
of the following methods, 

(a) Independent Learners (IL) [6]. Each agent learns independently without communica-
tion. IL is served as a baseline method to validate the benefit of advising and reusing 
advice in different tasks.

(b) Ask Uncertainty-Importance Advising (AUIA) [2]. Importance-based methods rely 
on the range of Q-values for a certain state, which is a widely used metric for deter-
mining when to give advice. There are various forms of Importance-based advising 
frameworks. In order to balance budget constraints and experimental results, we use 
the version of AUIA.

(c) AUIA-QChange/Decay. AUIA can be combined with our proposed advice reusing 
methods Q-Change per Step (i.e., AUIA-QChange) and Decay Reusing Probability 
(i.e., AUIA-Decay) to generate advice. Therefore, Eqs. 5 and 4 are used in AUIA-
QChange/Decay to decide when to ask for and give advice. Then, the asking function 
Pask and the giving function Pgive output probability 1 for asking and giving advice 
when a state is uncertain for a student, i.e., maxa Q

student(s, a) −mina Q
student(s, a) < ta 

and important for a teacher, i.e., maxa Q
teacher(s, a) −mina Q

teacher(s, a) > tg . Otherwise, 
agents will not ask for advice or give advice, i.e., Pask = Pgive = 0 . AUIA, AUIA-
QChange and AUIA-Decay share the same parameters ta and tg . We fine-tune the values 
of ta and tg based on empirical experience and hence their values are generally different 
across different scenarios.

(d) AdhocTD [9]. AdhocTD is the state-of-the-art multi-agent advising approach that has 
been shown to largely reduce advising budget and achieve excellent results in a soccer 
game.

(e) AdhocTD-QChange/Decay. AdhocTD can be viewed as an ideal advice generation 
algorithm. We combine AdhocTD with our proposed methods Q-Change per Step 
(QChange) and Decay Reusing Probability (Decay), respectively. Therefore, the ask-
ing function Pask (i.e., Eq. 6) and the giving function Pgive (i.e., Eq. 7) proposed in 
AdhocTD are directly used in AdhocTD-QChange/Decay to decide when to ask for 
advice and give advice. AdhocTD, AdhocTD-QChange and AdhocTD-Decay share 
the same parameters va and vb , which will be chosen empirically or fine-tuned for the 
following experiments.
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We conduct experiments on three typical reinforcement learning tasks: Mario, Preda-
tor–Prey, and Half Field Offense. Mario is a complex stochastic game in which a single 
agent, “Super Mario”, learns to obtain higher scores. In Mario, the teacher’s role is taken 
by another agent who has already learned a fixed policy. For AUIA and AdhocTD and 
corresponding advice reusing methods, we record the number of times that the teacher vis-
its each state and its Q-values after following a fixed policy. Predator–Prey is a popular 
benchmark for multi-agent learning. Half Field Offense is a difficult robot soccer game, 
where agents must take stochastic action effects and noisy observations into account. In 
both Predator–Prey and Half Field Offense, all agents learn from scratch without using 
predefined policies, and they accelerate joint learning by advising one another and reusing 
previous advice.

5.1  Mario

5.1.1  Game description

The Mario AI benchmark is based on Nintendo’s classic platform game Super Mario Bros. 
In this research, we use the publicly available code released by Karakovskiy and Togelius 
[14]. The Mario agent can walk and run to the right and left, jump, and shoot fireballs 
through 2-D levels, with the goal to collect as many points as possible. The state-space in 
Mario is fairly complex, as Mario observes all information pertaining to himself. We use 
27 discrete state-variables, which are also adopted by previous works [22, 27]. The state 
features are composed of three boolean variables which define whether Mario is able to 
jump, shoot fireballs, or stand on a tile; two variables that define the direction of Mario’s 
movements on x-dir and y-dir; eight values that define whether there is an enemy in match-
ing cell surrounding by the agent; another eight variables that keep track of the cells one 
step away from the immediate cells; four boolean variables that identify whether there are 
obstacles on the four vertical cells to the immediate right of Mario; and finally two vari-
ables that represent the Euclidean distance between the agent and the closest enemy on 
x-dir and y-dir. The agent can take 12 actions by combining one of each option from three 
sets: {left, right, no direction}, {jump, do not jump}, and {run, do not run}. Mario receives 
a reward of +10 for stepping on an enemy, +16 for collecting a coin, +24 for finding a hid-
den block, +58 for eating a mushroom, +64 for eating a fire-flower, +1024 for successfully 
finishing the level, -42 for getting hurt by an enemy (e.g., losing fire-flower), and -512 for 
dying. Mario game is designed as an episodic task. In every episode, the Mario agent plays 
a randomly generated level, starting from a randomly selected mode (small, large, and fire-
Mario). The level is ended either with the agent’s success, the agent’s death, or a timeout of 
200 seconds.

5.1.2  Parameters setup

We use Average Reward per Episode (ARE) to assess the Mario agent’s performance. ARE 
is the average reward per a certain amount of training episodes, and we set 100 to obtain a 
smooth learning curve. Higher ARE values mean better performance. As the whole train-
ing process contains 50,000 episodes, we can get 500 ARE values for a single run. Then we 
perform 60 runs for all methods to stabilize the performance. In Mario, we use Q(�) with 
a learning rate of � = 0.001 , a discount factor of � = 0.9 , and a decay rate of � = 0.5 for 
all the experiments. Whenever an agent chooses the final actions to be performed, it will 
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use Q(�) to update the corresponding Q-values. When no advice is reused or advised, the 
agents use �-greedy as the exploration strategy with � = 0.05 . The parameters of AdhocTD 
(i.e., va and vb ) and AUIA (i.e., ta and tg ) can heavily affect the advising opportunities as 
well as corresponding action reusing methods. For example, when va is a small value and 
vb is a high value, an agent in AdhocTD is more likely to ask for advice, and other agents 
are more likely to provide advice for him/her. Thus, the budget can be consumed quickly. 
On the contrary, with higher va and lower vb , advice is suggested when a student visits the 
current state a few times while the teacher has experienced the student’s state many times. 
The parameters for AdhocTD and AUIA are tuned respectively, to balance the budget con-
sumption and performance. Then in AdhocTD, we choose va = 2 and vb = 0.2 , and the 
same values in AdhocTD-QChange/Decay. For AUIA, we use ta = 0.01 and tg = 0.03 , 
and also the same values in AUIA-QChange/Decay. Then for AdhocTD-QChange/Decay 

(a) Average reward per 100 episodes (b) The spent budget

Fig. 1  ARE and budget consumption of IL-Q(� ), AdhocTD and AdhocTD-QChange/Decay when 
bask = bgive = 50, 000 , � = 0 , and � = 0.8

(a) Average reward per 100 episodes (b) The spent budget

Fig. 2  ARE and budget consumption of IL-Q(� ), AUIA and AUIA-QChange/Decay when 
bask = bgive = 500, 000 , � = 0 , and � = 0.9
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and AUIA-QChange/Decay, we investigate the effect of different values of threshold � and 
decay value � on the learning performance. Therefore, we choose: � = 0 , 0.01, and 0.03 for 
both AdhocTD-QChange and AUIA-QChange; � = 0.8, 0.9 , and 0.99 for AdhocTD-Decay, 
and � = 0.7, 0.8 , and 0.9 for AUIA-Decay. For the budget  setting, we use  a sufficiently 
large budget to enable agents to ask for advice.

5.1.3  Performance comparison

Figure 1 shows the Average Reward per Episode (ARE) metric and consumed budget for 
IL-Q(� ), AdhocTD, and the corresponding action reusing algorithms with selected thresh-
old � and decay value � in Mario. The results show that AdhocTD and our proposed meth-
ods benefit from asking (or reusing) advice in the beginning. Notably, AdhocTD-Decay 
with � = 0.8 performs much better than other methods and spends much less budget. Tra-
ditional advising framework, AdhocTD, consumes the largest budget, while achieves even 
lower ARE values than independent learners. In AdhocTD, agents ask for too much advice 
during learning, and they almost have no time to explore the environment. Due to reus-
ing previous advice, AdhocTD-QChange has higher ARE values than AdhocTD. Even 
though AdhocTD-QChange surpasses IL-Q(� ) in the beginning, they end up with similar 
performance. This may be attributed to the fact that the teacher’s suggestions in AdhocTD-
QChange cannot have a long-term impact on student learning.

Figure 2 shows the ARE values and budget consumption achieved by independent learn-
ers, AUIA, and our proposed methods throughout the overall evaluation. Our experiment 
show that AUIA and corresponding action reusing methods (i.e., AUIA-Decay/QChange) 
have much lower ARE values than IL-Q(� ). Nevertheless, AUIA-Decay still obtains much 
higher ARE than AUIA and AUIA-QChange.

Table 1  Performance metrics for the agents in Mario (average of over 60 trials)

Higher values of Initial, Last and Mean are better, while lower values of Budget are better. The best value of 
each column is shown in bold

Agents Initial Last Mean Budget

IL-Q(�) -218.061 1560.148 1318.743 -
AdhocTD 830.007 1393.961 1263.297 48,812
AdhocTD-QChange ( � = 0) 931.293 1533.551 1370.024 42,233
AdhocTD-QChange ( � = 0.01) 868.465 1408.128 1262.018 48,628
AdhocTD-QChange ( � = 0.03) 844.979 1396.403 1258.330 48,764
AdhocTD-Decay ( � = 0.8) 738.327 1628.328 1483.522 37,206
AdhocTD-Decay ( � = 0.9) 847.532 1592.780 1453.173 36,120
AdhocTD-Decay ( � = 0.99) 855.415 1489.469 1338.959 34,219
AUIA 1005.591 1105.782 989.924 465,944
AUIA-QChange ( � = 0) 998.733 1110.647 997.067 185,631
AUIA-QChange ( � = 0.01) 1024.009 1087.953 992.455 466,739
AUIA-QChange ( � = 0.03) 967.605 1097.942 978.921 466,778
AUIA-Decay ( � = 0.7) 1171.516 1209.140 1087.889 250,481
AUIA-Decay ( � = 0.8) 1198.386 1225.343 1131.825 227,506
AUIA-Decay ( � = 0.9) 1173.953 1315.205 1218.803 193,977
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Table 1 summarizes the first ARE value (Initial), the last ARE value (Last), the average 
ARE of the whole training episodes (Mean), and the final consumed budget (Budget) of 
all methods. Notably, AUIA and corresponding action reusing methods spend significantly 
larger budget than other methods. At the beginning of training, since agents rarely explore 
the environment, consuming budget can  quickly get more guidance from the teacher to 
improve agents’ learning. However, sacrificing the opportunity to explore the environment 
eventually leads to worse performance than independent learning. In AdhocTD-Decay, 
with increased decay value � , agents have fewer opportunities to learn from the environ-
ment, resulting in lower Mean value. However, AUIA-Decay achieves better performance 
with higher decay value � . Another interesting finding in the table is that both AdhocTD-
QChange and AUIA-QChange achieve the best results with the threshold � = 0 . Higher 
values of � , like 0.01 or 0.03, make it more difficult for the agent to reuse previous sug-
gestions. This inspires us that both inefficient usage of previous advice and asking for too 
much advice can hinder the student’s learning.

5.2  Predator–Prey

5.2.1  Game description

Predator–Prey (PP) is a grid-based game that becomes a benchmark environment for evalu-
ating multi-agent systems (MAS) before applying them  in more complex situations. We 
use the publicly available instantiation of the PP domain [4]. In our experiments, four 
predators explicitly coordinate their actions to capture one prey in a discrete N × N grid 
environment, where N is the number of cells in each direction, and we set N =10. One 
cell is allowed to be occupied by only one agent to avoid deadlock. At each time step, four 
predators and the prey execute one of the five possible actions: Stay, Go Up, Go Down, Go 
Left, and Go Right. The predators are reinforcement learning agents and learn to catch the 
prey as soon as possible. To make the learning task more realistic, the prey moves accord-
ing to a randomized policy: it takes a random action with a probability of 0.2, with the rest 
of the time moving away from all predators. By executing an action, each agent moves cell 
by cell in the corresponding direction. The prey is captured when four predators are located 
in cells adjacent to the prey in four cardinal directions separately. After a capture, preda-
tors and prey are set up in distinct random positions. One episode starts when four preda-
tors and the prey are initialized with random positions in the grid world. The episode ends 
either when predators catch the prey, or a time limit of 2500 is exceeded. The state space is 
represented by the relative position of the four predators to the prey. All values of states are 
normalized to [1, 1] by dividing by the number of cells N. Tile coding [21] is used to force 
a generalization with 8 tilings and tile-width 0.5 to reduce the number of states. A capture 
results in a reward of 1 for every predator. In all other situations, the reward is 0. Despite 
this environment’s representational and mechanical simplicity, it is still capable of present-
ing complex cooperative behaviors for MARL.

5.2.2  Parameters setup

PP game has one standard metric for performance evaluation: Time to Goal (TG) is 
the number of steps that four predators take to catch the prey. At every 100 training 
episodes, the TG values of this period are averaged to get a more smooth value. We 
train 20,000 episodes in total to get 200 TG values for this run, and all experiments 
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are performed over 200 runs. For agents updating their Q-values, they use Q(� ) with 
a learning rate of � = 0.1 , a discount factor of � = 0.9 , and a decay rate of � = 0.9 . �−
greedy with � = 0.01 serves as an exploration strategy for all agents. Similar to HFO, 
the parameters of AdhocTD and AUIA are selected to gain competitive performance. 
Thus, we choose va = 0.2 and vb = 1 for AdhocTD and AdhocTD-QChange/Decay, and 
ta = 0.01 and tg = 0.05 for AUIA and AUIA-QChange/Decay, respectively. To compare 
the effect of different values of parameters, we set threshold � = 0 , 0.01, and 0.03 for 
both AdhocTD-QChange and AUIA-QChange; and decay value � = 0.9 , 0.99, and 0.999 
for both AdhocTD-Decay and AUIA-Decay. For the budget setting, we use a sufficiently 
large budget to enable agents to ask for advice.

(a) Time to Goal per 100 episodes (b) The spent budget

Fig. 3  TG and budget consumption of IL-Q(� ), AdhocTD and AdhocTD-QChange/Decay when 
bask = bgive = 5000 , � = 0.01 , and � = 0.99

(a) Time to Goal per 100 episodes (b) The spent budget

Fig. 4  TG and budget consumption of IL-Q(� ), AUIA and AUIA-QChange/Decay when 
bask = bgive = 6000 , � = 0.01 , and � = 0.99
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5.2.3  Performance comparison

Figure  3 shows the Time to Goal (TG) and spent budget observed for IL-Q(� ), 
AdhocTD, AdhocTD-QChange with threshold � = 0.01 and AdhocTD-Decay with 
decay value � = 0.9 9. Notably, action reusing method AdhocTD-Decay has much 
lower TG values than all other algorithms, and consumes less budget. AdhocTD-
QChange, which does not insist on previous advice for too long, has very similar 
results to AdhocTD. Figures  4a and  4b show, respectively, the TG metric and used 
advice budget achieved by AUIA and each action reusing algorithm. Unlike AdhocTD, 
AUIA achieves significantly lower TG than IL-Q(� ) before about episode 7000. AUIA-
QChange with threshold � = 0.01 has similar performance to advising method AUIA 
while consuming much less budget. AUIA-Decay with decay value � = 0.9 9 finishes 
the experiment with less than 1500 budget used and achieves a significant speed-up of 
the learning.

Table 2 shows the first TG value (Initial), the last TG value (Last), the average TG 
values of the entire training episodes (Mean), and the spent budget (Budget) for inde-
pendent learners, previous advising methods, and our proposed methods with different 
parameters. Notably, a proper value of threshold � , like 0.01 in AdhocTD-QChange 
or 0.03 in AUIA-QChange, can obtain lower TG values than other values of � . Since 
agents are learning and adjusting their policies together, increasing the threshold to a 
certain extent can help the agents reduce the impact of some non-optimal suggestions. 
As expected, when the decay value is 0.999, even with a smaller budget consumption, 
the performance is much worse than other parameters since the agents always follow 
the advice of others rather than learning by themselves.

Table 2  Performance metrics for the agents in PP game (average of over 200 trials)

Lower values of Initial, Last, Mean and Budget are better. The best value of each column is shown in bold

Agents Initial Last Mean Budget

IL-Q(�) 1087.019 105.360 179.920 -
AdhocTD 1079.019 104.031 173.406 5113
AdhocTD-QChange ( � = 0) 1109.262 102.907 176.157 5027
AdhocTD-QChange ( � = 0.01) 1105.113 105.530 173.867 5036
AdhocTD-QChange ( � = 0.03) 1129.243 104.310 175.901 4961
AdhocTD-Decay ( � = 0.9) 1001.528 93.705 127.653 5982
AdhocTD-Decay ( � = 0.99) 1021.499 94.667 136.923 4073
AdhocTD-Decay ( � = 0.999) 1071.310 105.361 170.373 2163
AUIA 1108.693 96.665 157.976 6330
AUIA-QChange ( � = 0) 1118.398 97.052 157.721 4791
AUIA-QChange ( � = 0.01) 1135.733 97.509 156.734 4848
AUIA-QChange ( � = 0.03) 1084.614 96.991 156.269 4857
AUIA-Decay ( � = 0.9) 909.573 90.945 131.429 2296
AUIA-Decay ( � = 0.99) 835.043 88.890 130.300 1386
AUIA-Decay ( � = 0.999) 844.135 92.836 138.992 862
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5.3  Half field offense

5.3.1  Game description

Half Field Offense (HFO) is a simulated robot soccer game [15], and we use the imple-
mentations released by Da Silva [9] with three players and one goalkeeper in the field. 
The goalkeeper adopts a fixed Helios Policy [1], which is obtained before the whole 
learning. The players are reinforcement learning agents and learn to shoot faster and 
more accurately. HFO is designed as an Episodic task. An episode starts when three 
payers and the ball are initialized with random positions on the field. The episode ends 
when either the players score a goal, the goalkeeper catches the ball, the ball leaves the 
field, or a time limit of 200 is exceeded. Note that each player can score a goal only if 
he possesses the ball, and otherwise, the option is to move. When a player possesses 
the ball, he can choose between four actions: Shoot, Pass Near, Pass Far, and Dribble. 
The players can benefit from cooperative behaviors: for example, one player passes the 
ball to another player for a better shot. A player’s state is composed of the following 
observations: 

1. Whether the player is in possession of the ball;
2. The proximity to the center of the goal;
3. The angle from one player to the goal center;
4. The largest angle of one player to the goal without blocking players;
5. The goal opening angle of the nearest (or farthest) partner.

The state values are normalized in the range [1, 1] and discretized by Tile Coding [21] 
with 5 tilings and 0.5 tile size for simplifying the learning task. The players are awarded a 
reward of +1 when they score a goal, while they receive a reward of -1 if the ball is caught 
by the goalkeeper or out of bounds, encouraging them to find the goal as quickly as pos-
sible. In all remaining situations, the reward is 0.

5.3.2  Parameters setup

For evaluating the learning performance in this domain, we use two popular metrics: Goal 
Percentage (GP) is the percentage of testing episodes in which a goal is scored, and Time 
to Goal (TG) for HFO is the average number of steps that the players score a goal dur-
ing testing episodes. All agents are trained for 10,000 episodes, with a pause at every 50 
training episodes to perform 100 testing episodes. During testing, all players do not update 
their Q-values, ask for advice, or reuse previous advice. They utilize the currently best 
learned actions for every time step to obtain 200 GP (TG) values for that run. The proce-
dure is repeated over 50 executions to draw the curve of averaged results. We performed 
all the experiments using SARSA(� ) with � = 0.1 , � = 0.9 , and � = 0.9 as the algorithm to 
learn a policy in tasks. The �-greedy is used as the exploration strategy of all players with 
� = 0.1 . For the parameters va and vb of AdhocTD, we use the same values adopted by Da 
Silva [9], which is also tested on HFO. Then we use va = 0.5 and vb = 1.5 for AdhocTD, 
AdhocTD-QChange, and AdhocTD-Decay. As for AUIA, different values of thresholds 
have a great influence on the results. Finally, we choose ta = 0.01 and tg = 0.03 , which con-
sumes less budget while achieves similar results as other combinations of ta and tg . We test 
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the proposed methods on different values of threshold � and decay value � . Thus we set: 
threshold � = 0 , 0.01, and 0.03 for both AdhocTD-QChange and AUIA-QChange; decay 

Fig. 5  GP, TG and budget consumption of IL-SARSA(� ), AdhocTD and AdhocTD-QChange/Decay when 
bask = bgive = 1000 , � = 0.03 , and � = 0.8
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Fig. 6  GP, TG and budget consumption of IL-SARSA(� ), AUIA and AUIA-QChange/Decay when 
bask = bgive = 1000 , � = 0.01 , and � = 0.8n
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value � = 0.8 , 0.9, and 0.99 for AdhocTD-Decay, and � = 0.7 , 0.8, and 0.9 for AUIA-
Decay. For the budget setting, we follow AdhocTD to use sufficiently large budget to ena-
ble agents to ask for advice.

Table 3  GP metric for the agents 
in HFO (average of over 50 
trials)

Higher values of Initial, Last and Mean are better. Lower values of 
Budget are better. The best value of each column is shown in bold

Agents Initial Last Mean Budget

IL-SARSA(�) 2.990 68.740 58.421 -
AdhocTD 2.920 69.800 59.843 405
AdhocTD-QChange ( � = 0) 3.210 68.490 59.847 404
AdhocTD-QChange ( � = 0.01) 2.700 68.050 59.722 400
AdhocTD-QChange ( � = 0.03) 3.300 67.510 59.796 402
AdhocTD-Decay ( � = 0.8) 2.830 72.670 61.701 312
AdhocTD-Decay ( � = 0.9) 3.320 70.840 61.256 283
AdhocTD-Decay ( � = 0.99) 3.170 69.170 57.852 176
AUIA 3.570 69.450 58.167 2583
AUIA-QChange ( � = 0) 3.100 70.080 59.235 2207
AUIA-QChange ( � = 0.01) 2.680 70.300 59.430 2124
AUIA-QChange ( � = 0.03) 3.220 69.020 59.311 2268
AUIA-Decay ( � = 0.7) 3.200 66.230 56.332 1485
AUIA-Decay ( � = 0.8) 3.310 68.440 56.671 1339
AUIA-Decay ( � = 0.9) 3.080 66.800 54.769 1177

Table 4  TG metric for the agents 
in HFO (average of over 50 
trials)

Lower values of Initial, Last, Mean and Budget are better. The best 
value of each column is shown in bold

Agents Initial Last Mean Budget

IL-SARSA(�) 39.700 97.990 99.104 -
AdhocTD 36.220 96.850 98.070 405
AdhocTD-QChange ( � = 0) 39.850 97.130 98.086 404
AdhocTD-QChange ( � = 0.01) 36.460 97.400 98.191 400
AdhocTD-QChange ( � = 0.03) 37.490 96.510 98.242 402
AdhocTD-Decay ( � = 0.8) 37.390 93.090 95.598 312
AdhocTD-Decay ( � = 0.9) 39.960 92.930 95.572 283
AdhocTD-Decay ( � = 0.99) 40.690 94.760 95.617 176
AUIA 39.480 97.890 98.775 2583
AUIA-QChange ( � = 0) 38.900 96.770 97.992 2207
AUIA-QChange ( � = 0.01) 36.890 95.950 98.113 2124
AUIA-QChange ( � = 0.03) 38.260 95.790 97.938 2268
AUIA-Decay ( � = 0.7) 38.260 96.640 97.551 1485
AUIA-Decay ( � = 0.8) 40.800 94.860 96.583 1339
AUIA-Decay ( � = 0.9) 39.890 94.840 96.506 1177
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5.3.3  Performance comparison

Figure 5 shows the GP values, TG values, and consumed budget obtained by each algo-
rithm. In Figures 5a and 5b, advising method AdhocTD achieves significant performance 
improvements on GP metric compared to IL-SARSA(� ). Based on AdhocTD, AdhocTD-
Decay with decay value � = 0.8 obtains even higher GP values. Similar results can be 
observed in the TG metric. As shown in Figure  5c and  5d, after around 2000 episodes, 
AdhocTD-Decay starts to show better performance. The spent advice budget is recorded 
in Figure 5e. AdhocTD-Decay achieves significant improvements while spending the mini-
mum budget.

Figure  6 shows the performance evaluated by GP, TG, and the used budget for IL-
SARSA(� ), AUIA, AUIA-QChange with threshold � = 0.01 , and AUIA-Decay with decay 
value � = 0.8 . In Figure 6a and 6b with GP metric, we can see that AUIA performs worse 
than IL-SARSA(� ) before about 2000 episodes, which probably means that AUIA is not 
an ideal advising mechanism for HFO. Therefore, the performance of AUIA-Decay is not 
improved as expected. However, AUIA-QChange still achieves significant improvements 
roughly around after 4000 episodes. As for the TG shown in Figures  6c and  6d, both 
AUIA-QChange and AUIA-Decay have lower TG values than other methods. Figure  6e 
shows the consumed budget of each algorithm. Compared to AUIA, AUIA-Decay can save 
about half of the budget, while AUIA-QChange consumes higher budget than AUIA-Decay 
but lower than AUIA.

The first GP/TG value (Initial), the last GP/TG value (Last), the average GP/TG value of 
the whole training episodes (Mean), and the spent budget (Budget) for all experiments are 
shown in Tables 3,  4. We can see that when the decay value � increases, both AdhocTD-
Decay and AUIA-Decay consume less budget. Q-Change per Step and Decay Reusing 
Probability can achieve better performance with selected critical parameters, i.e., threshold 
� and decay value � . Notably, the performance of our proposed methods depend on the fun-
damental advising mechanism. Nevertheless, AUIA-QChange surpasses the performance 
of AUIA and IL-SARSA ( � ) on both GP and TG metrics.

6  Conclusion and future work

In this research, we address how to use and reuse advice more effectively in the teacher–stu-
dent paradigm, which is particularly suitable under communication budget constraints. Our 
proposed framework, MBTSF, is extended from previous advising methods, in particular, 
for generating suggestions for reuse next time. With our proposed methods, when an agent 
encounters a state advised before, it either reuses previous advice, asks for new advice, or 
selects an action with a usual exploration strategy.

Table 5 summarizes the difference in the game characteristics used in our experiments. 
The effectiveness of MBTSF depends on the mechanism for generating advice. When the 
advising mechanism performs poorly, such as worse than the independent learner, MBTSF 
cannot guarantee that it performs better than the independent learner. But overall, com-
pared with traditional teacher–student frameworks, MBTSF still performs better.

The effect of MBTSF also depends on the teacher’s strategy. In multi-agent games like 
Predator–Prey and HFO, the teacher’s strategy is adjusted and changed. In comparison, 
for the single-agent game Mario, the teacher is assumed by an agent that has been trained, 
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which makes the learning method based on reusing advice more effective. Notably, reusing 
suggestions not only increase the learning speed, but also consume less budget. Long-term 
adherence to the teacher’s previous suggestions, such as using a larger � value in Decay 
Reusing Probability, may consume much less budget, but may also be harmful to learning 
because it cannot follow the teacher’s learning in time.

Despite the variety of settings, our experiments show that reusing advice achieves sig-
nificantly better performance than the advising methods without specifying advice reusing 
in all the scenarios. Moreover, when all agents are learning and adapting their policies, 
they need to explore alternatives while reusing the advised actions so that they may out-
perform their teachers. Last but not least, insisting on non-optimal teachers’ advice for too 
long may even hinder the overall learning process.

For future work, we consider filtering the influence of bad advice, and learning a model 
to represent the shared knowledge from teachers. A student can also learn how to choose 
to reuse advice following the exploration strategy or ask for advice. Such a decision can 
be included in a high-level advising framework like LeCTR [19]. We would also consider 
using student feedback and teacher reputation [5] in our future framework. Besides, the 
influence of different budgets on advising and advice reusing process can be investigated.
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