
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:7
https://doi.org/10.1007/s10458-022-09590-6

1 3

Accountability in multi‑agent organizations: from conceptual
design to agent programming

Matteo Baldoni1 · Cristina Baroglio1 · Roberto Micalizio1 · Stefano Tedeschi1

Accepted: 1 November 2022 / Published online: 28 November 2022
© Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This work proposes a notion of accountability for multi-agent systems, that supports the
development of robust distributed systems. Accountability is grounded on responsibility,
and encompasses both a normative dimension, and a structural dimension. For realizing
robust distributed systems, conceived as agent systems or organizations, it is necessary
to keep a right level of situational awareness, through the introduction of the means for
gathering and propagating accounts, upon which actions can be taken. This paper presents
a formalization of accountability, including the accountability lifecycle, for the design of
robust agent organizations. Particular attention is given to the interplay of accountability
and goals, by describing typical patterns in which accountability affects the state of an
agent’s goals and vice versa. We illustrate the practical aspects of the proposal by means
of JaCaMo (Boissier et al. Sci Comput Program 78(6):747–761, 2013.https:// doi. org/ 10.
1016/j. scico. 2011. 10. 004).

Keywords Accountability · Responsibility · Agent organizations · Engineering and
programming MAS · Robustness · JaCaMo

1 Introduction

Agent organizations (e.g., [2]) are a well-known abstraction for conceptualizing and devel-
oping distributed systems. The organization metaphor is, in fact, a useful mechanism
for modularizing code spread over different software components, that are opaque and
independent of each other. Agent organizations show the same kind of structure and of

 * Matteo Baldoni
 matteo.baldoni@unito.it

 Cristina Baroglio
 cristina.baroglio@unito.it

 Roberto Micalizio
 roberto.micalizio@unito.it

 Stefano Tedeschi
 stefano.tedeschi@unito.it

1 Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 185, 10149 Torino,
Italy

http://orcid.org/0000-0002-9294-0408
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-022-09590-6&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 2 of 37

advantage that sociologist Dave Elder-Vass explains for human organizations: an organiza-
tion provides a structure of constraints that allow a system consisting of many parts to act
as a whole, with the aim of achieving goals that otherwise would not be achievable (or not
as easily) [29].

Many approaches to multiagent systems and organizations, e.g. [15, 19, 25, 39], pro-
vide the means to design and realize the correct, expected behavior of the system, captur-
ing exactly what agents should do to contribute to the achievement of the organizational
goal. For instance, many approaches rely on norms (rules, protocols, etc.) to define what
is expected of each agent and which sanction is applied when an agent does not comply.
Sanctions are intended as deterrents to prevent norm violation, i.e., to keep the execution
oriented towards the achievement of the organizational goal.

The problem is that when the system faces an abnormal situation (i.e., a perturbation)
and some agent fails to achieve a goal, sanctions are of little utility, if any [8, 11, 22].
In this case, in fact, the agent may have earnestly tried its best to do what expected, but
something which is not under its control hindered the achievement. What is missing in
the picture is some support for allowing agents to provide an account on what happened,
propagating it through an appropriately devised structure inside the organization, for reach-
ing those agents that are equipped with the means for coping with it. Such a tool aims at
making the organization more robust, that is, capable to keep an acceptable behavior in
spite of unforeseen, abnormal, or stressful conditions. We see robustness [1] as a crucial
property for scaling from agents to agent organizations, and make a proposal that is based
on the concepts of accountability and responsibility.

Accountability is extremely important in the human world. The kind of accountability
we refer to is well-described in a report by the United Nations Development Programme
(UNDP) [30]. UNDP’s accountability framework describes organization-wide processes
for monitoring, analyzing, and improving performance in all aspects of the organization.
The framework gives managers the means to address recurring and systemic issues, and
to incorporate lessons learned into future activities. Inside the framework, accountabil-
ity is supported, among other things, by formally documented functions, responsibilities,
authority, management expectations, policies, processes and instruments for improving
performance.

Contribution. This paper proposes a formalization of accountability in multiagent
organizations (MAOs). This supports the development of robust distributed systems by
enabling the specification of a proper treatment of possible perturbations. In our approach,
accountability is grounded on the notion of responsibility, and is introduced along both its
normative and its structural dimensions, to express who is expected to provide an account
to whom (and under which circumstances), and to specify further requirements on how
responsibilities should be distributed through the agents in order to produce authoritative
accounts. The proposal is independent of the specific organizational model, nevertheless,
we illustrate the practical use of accountability by exploiting JaCaMo [16]. This paper
extends [13] in several ways. In first lieu, the conceptual model for robust organizations
is refined. Then, we introduce the lifecycle of accountability, and we show the interplay of
accountability and goals by describing six rules that amount to typical patterns, in which
accountability affects the state of an agent’s goals and vice versa. For each rule we report a
corresponding programming schema for the extension of JaCaMo with accountability. This
contribution is completed by the discussion of three scenarios where the rules (and sche-
mas) are used for tackling specific problems.

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 3 of 37 7

2 Realizing accountable MAOs

The notion of accountability has recently gained the attention of many authors (see e.g.,
[3, 7, 22, 24]), who see a powerful software engineering tool in it. We agree and add that
accountability is fundamental to design and realize robust agent systems. The authors of
[1] say on robustness: “A [property] of a [system] is robust if it is [invariant] with respect
to a [set of perturbations].” Brackets are original and emphasize that a formal treatment of
robustness requires a proper system specification. In other terms, robustness is primarily
a matter of good design, which in turn demands for proper engineering tools. We see in
accountability such a tool.

Building upon sociology literature [28, 32, 47], in agent organizations (e.g., [3, 24]),
accountability is a mutually accepted social relationship between two parties such that
(1) one of the parties (“account taker” or a-taker) can legitimately demand, under certain
conditions, an account about a process of interest, and (2) the other (“account giver” or
a-giver) is legitimately required to provide the account. In accountability, we recognize two
dimensions [10, 12, 13]:

– The normative dimension creates mutual expectations on the behavior of the involved
agents; it captures the legitimacy, for the account taker, of asking (and the availabil-
ity of the account giver to provide) an account (the standing of the account taker to
demand an account).

– The structural dimension concerns the capability to produce an account; for being
held to account about a process, an agent must exert control over the same process and
must have proper awareness of the situation it accounts for, possibly by relying on other
agents.

In general, agents are allowed to provide accounts for tasks that have been carried out by
others, or that involve the intervention of other agents; in order to do so, they must be in
position of receiving accounts by the other involved agents. In order for accounts to be reli-
able, the recursive structure of accountability should allow accounts to always be traced
back to the agents that are responsible for the involved tasks. In other terms, recursion
closes on some responsibility. This explains why accountability cannot be reduced to the
right/obligation involved in the relationship (normative dimension). In [12] we introduced
a conceptual model that defines organizational accountability by following this line.

Consequently, accountability is an emergent property of the specification of an organi-
zation (see [29] about emergent organizational powers), that shows a certain structure. Tak-
ing as references the models of organizations and institutions, discussed in [16, 20, 26, 27,
31, 39, 54], we propose a model of organization, see Fig. 1, where white boxes represent
the common concepts of organizations, and yellow boxes introduce concepts and relation-
ships that capture the normative aspects bounding the roles (played by agents) to account-
ing and treatment tasks.

However, in order for accountability to emerge as a property of the system as a whole,
it is also necessary to verify that the structural dimension is adequately captured (see
Sect. 3), as well as, it is necessary to capture the correct interplay between agent goals and
accountability agreements specified at organizational level (see Sect. 5.2). When this hap-
pens, proviso the specified treatment is effective, the resulting accountability-based multi-
agent system will be robust against given perturbations.

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 4 of 37

As pointed out in the literature, especially [17], organizations allow structuring the
activities performed by the agents, and to coordinate them. The society is often shaped by
a set of norms, that create social expectations through, e.g., commitments, authorizations,
prohibitions [49]. Responsibilities are seen as duties that the agents, who accepted to play
some Roles within the organization, are aware of and have accepted, while obligations are
seen as a mechanism for telling agents when and how to discharge their responsibilities, by
accomplishing their tasks.
Norms absolve this necessity by yielding obligations about the tasks that agents are held

to fulfill; they are, therefore, used to describe the expected behavior of agents in terms of
their responsibilities, rights and duties [41]. Many methodologies for agent organizations
(e.g., [26, 39, 54]) hinge on the concepts of Task and of Responsibility concern-
ing some Task. So, in Gaia [54], the functionality of a role is defined by its responsi-
bilities. The OperA framework [26] is able to define the global aims of an organization
(tasks), and the objectives and responsibilities of its participants. A similar idea recurs in
other frameworks, such as OMNI [27] and MOISE [39], where a functional decomposition
describes how a complex goal (task) can be achieved in a distributed way. Agents joining
the organization are expected to contribute by achieving subgoals of such a decomposition,
whenever obligations are triggered by the organization toward them. In MOISE, agents are
held to explicitly commit to missions (i.e., subsets of goals), this act implies an assump-
tion of responsibility of the agents toward their missions and, hence, the acceptance of
the related obligations that will be issued by the organization. Norms are reinforced by

Fig. 1 The proposed model of robust multiagent organizations

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 5 of 37 7

Sanctions, and involve Roles, while Responsibilitys are assigned to Roles. An
Agent can adopt/leave a Role, commit to/leave a Responsibility, and can achieve/
fail a Task by internalizing it as a goal of its own. We assume agents to be autonomous,
thus, we require them to explicitly commit to their responsibilities. The agent autonomy
is preserved, since agents can decide not to satisfy an obligation despite being possibly
sanctioned, or they can deliberate how to act to trigger certain obligations. Coming to
accountability, the model captures its normative dimension by the concept of Account-
ability Agreement, the structural dimension, instead, is formally defined in terms
of A-structures (Sect. 3.1). We use the term accountability to encompass both dimensions.
Accountability Agreement specializes Norm. An Accountability Agree-
ment between two parties specifies the a-taker and a-giver, the Requesting Condi-
tion, i.e., the condition under which a request is allowed, and the Account Template
(possibly many), that captures the expected structure of the account. The association “con-
cern” between Accountability Agreement and Task captures the object of the
account. That is, the a-giver is expected to produce an account that is relevant for the task
indicated via this association, when the a-taker legitimately asks for an account concerning
it. Account Templates are crucial because they allow a-taker and a-giver to tune their
behavior by specifying the kind of Account one needs and expects from the other. In
other words, a Requesting Task expects some Account Template to be followed.
Conversely, an Accounting Task uses some Account Template to produce some
Account. The characteristic of Requesting Tasks and Accounting Tasks, with
respect to plain Tasks, is their relationship with an Account Template.

Robustness is obtained by making the system tolerant to perturbations for which an ade-
quate treatment is known. In presence of perturbations, asking for and obtaining accounts
provides the ground for applying an adequate treatment. In the model, Account Tem-
plates are associated to Treatment Tasks (a Treatment Task understands some
Account Template), and agents playing Roles take on responsibility concerning
Treatment Tasks. From a normative perspective, the a-taker is permitted to perform
a Requesting Task in order to ask for an account. The a-giver may be obliged to
perform an Accounting Task to produce an account. This is captured by means of
the twofold association between Accountability Agreement and Agent – in one
case, an agent plays the role of a-taker; in the other, of a-giver.

3 Formalizing the dimensions of accountability

Let us now explain how the normative and the structural dimensions of accountability are
formalized in our proposal. An accountability agreement is formally defined as follows.

Definition 1 (Accountability Agreement) An accountability agreement, denoted as ��(x,
y, r, u), is a structure where x and y are agents playing roles in the organization; r deter-
mines when an account request is legitimate, and u is the object of the accountability
agreement.

When r has occurred, two conditions should be implied: (1) y has the claim-right to
ask x for an account about u; and (2) x is actually in condition to provide substantive and
authoritative accounts about u. This happens when x can retrieve the necessary contextual
information about u, either because the agent is directly responsible for the execution of u,

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 6 of 37

or because it can rely on other agents to gather feedback on the execution of (all the parts
of) u. While the first condition is implied by the normative dimension of the accountabil-
ity, the second condition is only achieved by imposing an adequate structure to the set of
defined accountability agreements. Note that an accountability agreement does not imply
that x will perform u, but only that x can produce an account about u, possibly by relying
on accounts provided by other agents.

We adopt precedence logic [48], for expressing r and u, but with different purposes. On
the one side, we exploit residuation to determine when a formula is satisfied by a sequence
of events occurring in the system. On the other side, precedence logic is used to express
how a complex Task is decomposed into a workflow of atomic tasks. For the sake of gen-
erality of our formalization, an account request about u amounts to asking an account about
any of its sub-tasks. Namely, the a-giver will provide as much information as it can about
the whole task u (e.g., which atomic tasks have performed successfully, so far.) In the rest
of the paper we will denote as ũ the account (i.e., a piece of information) that x provides to
y about u.

The logic has three primary operators: ‘ ∨ ’ (choice), ‘ ∧ ’ (interleaving), and ‘ ⋅ ’ (order-
ing). Ordering allows constraining the order with which two events must occur, e.g., a ⋅ b
means that a must occur before b, but the two events do not need to occur one immediately
after the other. Instead, choice specifies that at least one of the events should occur, while
interleaving that all should occur but the order is unimportant. The residual of a workflow
u with respect to an event e, denoted as u/e, is the remainder workflow that would be left
over when e occurs, and whose satisfaction would guarantee the satisfaction of the work-
flow u. Residual can be calculated by means of a set of rewrite rules. The following equa-
tions are due to [48]. Here, u is a workflow, e is an event or ⊤ , and e , the complement of
e, is also an event. Initially, neither e nor e hold. On any run, either e or e may occur but
not both. Note that we assume that events are nonrepeating. In practice, we can assume
that timestamps differentiate multiple instances of the same event. Below, �u is the set of
literals and their complements mentioned in u. Thus, for instance, �e = {e, e} = �e and
�e⋅f = {e, e, f , f }.

Where symbols 0 and ⊤ behave as the Boolean constants false and true, respectively.
An event e is relevant to a workflow u if that event is involved in u, i.e. u∕e ≢ u [6]. We use
the expression r∕(e1,… , en) as a shortcut for ((r∕e1)∕…)∕en . Finally, let w = (e1,… , ek)
and z = (ek+1,… , en) be two sequences of events, wz is their concatenation (e1, … , ek, ek+1,
… , en).

Definition 2 (Inclusion) We denote by u[r] the fact that the workflow u contains as a sub-
formula the workflow r.

For example, if u = a ∧ (b ⋅ c) , we can write u[b ⋅ c] because of b ⋅ c is contained in u. Of
course, we have that ∀u ∶ u[u] ; i.e., a workflow is trivially a sub-workflow of itself.

Definition 3 (Entailment) we denote by u → u′ the fact that for any (e1,… , en) such that
u∕(e1,… , en) = ⊤ we also have that u�∕(e1,… , en) = ⊤.

0∕e ≐ 0 ⊤∕e ≐ ⊤

(r ∧ u)∕e ≐ ((r∕e) ∧ (u∕e)) (r ∨ u)∕e ≐ ((r∕e) ∨ (u∕e))

(e ⋅ r)∕e ≐ r, ife ∉ 𝛤r r∕e ≐ r, ife ∉ 𝛤r

(e� ⋅ r)∕e ≐ 0, ife ∈ 𝛤r (e ⋅ r)∕e ≐ 0

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 7 of 37 7

Example 1 (Bakery) Let us consider a bakery in which the process of bread selling involves
the following steps: first the dough is kneaded and, at the same time, the oven is set up for
baking. Once the dough and the oven are ready, the bread is actually baked and finally it is
sold to customers.

This workflow can be modeled in precedence logic as: (����� ∧ ��������) ⋅ ���� ⋅ ����.
Let us now consider agreement ��(harold, customer, �����, (����� ∧ ��������) ⋅ ���� ⋅

����) : customer has the right to ask harold (i.e., the bakery owner), about the whole baking
process provided that she has placed an order. It must be noticed, however, that such an
agreement alone is not an accountability. harold , in fact, may not be directly involved in
the production process, which could be carried out by his employees. To provide a sound
account on the process, harold needs to rely on the accounts of his employees. This can be
achieved by organizing the agreements into a tree-shaped structured as discussed in the fol-
lowing section and exemplified in Example 3.

Given ��(x, y, r, u) , we define its progression against the occurrence of an event e as
��(x, y, r, u)∕e = ��(x, y, r∕e, u) . When r/e progresses to ⊤ , y is legitimated to ask x for an
account, and x is required upon request, to provide y with an account of u.

3.1 Accountable workflows

As mentioned above, accountability is characterized by a structural dimension that is
grounded on the responsibilities taken up by the agents. In the following, we denote as
�(x, u) that x has the responsibility for task u. In agreement with Hart’s view of role respon-
sibilities [38, p. 212], �(x, u) yields an expectation over the agent x (that is, x is expected to
execute u when needed), because of some role x plays in the organization. Like account-
ability agreements, responsibilities are preserved at run-time, that is, they are not affected
by progression.

Definition 4 (Grounded Workflow) Given a workflow u, we say that a set of responsibili-
ties Ru , that contains a responsibility �(x, u�) for each atomic task u[u�] and any agent x, is a
distribution of responsibilities. In this case, we say that u is grounded on Ru.

Relying on the notion of grounded workflow, we can formally define accountability, and
in particular its structural dimension, by means of accountability structures (A-structure)
and two operations for merging them.

Definition 5 (A-structure) An A-structure is a pair ⟨A,T⟩ , where:

– A is a set of accountability agreements;
– T is either a set of responsibilities (in this case we call the A-structure an A-leaf) or a set

of A-structures.

Intuitively, an A-structure is the backbone upon which the structural dimension of
accountability can be achieved. Specifically, the definition of accountability (see Defini-
tion 8) will characterize A-structures so that A-leaves will represent one-step accounts:
situations where the agent providing an account about a workflow is also responsible for
the very same workflow, and this guarantees the soundness of accounts. Soundness, how-
ever, is guaranteed also when agents account for workflows of which they are not directly

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 8 of 37

responsible, see below. As shown in the following definitions, the two operators A-union
and A-join allow building A-structures consistently with the operators of the precedence
logic.

Definition 6 (A-union) The A-union between two A-structures, denoted by
⟨A1, T1⟩⊕ ⟨A2, T2⟩ , is either:

– ⟨A1 ∪ A2, T1 ∪ T2⟩ , if both the A-structures are A-leaves, or none of them is an A-leaf;
– ⟨A1 ∪ A2, T1 ∪ {⟨A2, T2⟩}⟩ , if ⟨A2, T2⟩ is an A-leaf and ⟨A1, T1⟩ is not;
– ⟨A1 ∪ A2, T2 ∪ {⟨A1, T1⟩}⟩ , if ⟨A1, T1⟩ is an A-leaf and ⟨A2, T2⟩ is not.

Definition 7 (A-join) The A-join between two A-structures, denoted by ⟨A1, T1⟩⊗ ⟨A2, T2⟩ ,
is recursively defined as follows:

– ⟨A1, T1⟩⊕ ⟨A2, T2⟩ , if ⟨A1, T1⟩ and ⟨A2, T2⟩ are A-leaves;
– ⟨A1 ∪ A2, {ti ⊗ tj,∀(ti, tj) ∈ T1 × T2}⟩ , otherwise.

The following definition of accountability specifies how an A-structure should be
defined over a grounded workflow u, whose atomic tasks are each under the responsibil-
ity of some agent. This assures that it is always possible to provide sound accounts for any
sub-workflow u′ of u (i.e., u[u�]). This is possible by way of the structural dimension recur-
sively encoded in an A-structure ⟨A,T⟩ : each accountability agreement in A is supported by
the sub-A-structures in T, each of which recursively brakes down to a set of responsibilities
for the atomic tasks mentioned in the agreement, in accordance with Definition 4. Indeed,
the sub-A-structures in T represent alternative workflow runs, that is, alternative scenarios
yielding an account for the workflow mentioned in the agreements in A.

Definition 8 (Accountability) Let u be a workflow that is grounded on Ru , an accountabil-
ity �(x, y, r, u) over Ru is an A-structure ⟨{��(x, y, r, u)}, T⟩ defined as follow:

– T is {�(x, u)} , such that �(x, u) ∈ Ru;
– �(x, y, r, u) = ��(x, y, r, u) +�(z, x, r, u);
– �(x, y, r, u� ∨ u��) = �(x, y, r, u�) ∨�(x, y, r, u��);
– �(x, y, r, u� ∧ u��) = �(x, y, r, u�) ∧�(x, y, r, u��);
– �(x, y, r, u� ⋅ u��) = �(x, y, r, u�) ⋅�(x, y, r ⋅ u�, u��).

Where the operations + , ∨ , ∧ , and ⋅ on accountabilities are defined as follows, supposing
�(x, y, r, u�) = ⟨Au� , Tu�⟩ , �(x, y, r, u��) = ⟨Au�� , Tu��⟩ , �(z, x, r, u) = ⟨Au, Tu⟩:

– ��(x, y, r, u) +�(z, x, r, u) = ⟨{��(x, y, r, u)}, {⟨Au, Tu⟩}⟩;
– �(x, y, r, u�) ∨�(x, y, r, u��) = ⟨{��(x, y, r, u� ∨ u��)}, {⟨Au� , Tu�⟩⊕ ⟨Au�� , Tu��⟩}⟩;
– �(x, y, r, u�) ∧�(x, y, r, u��) = ⟨{��(x, y, r, u� ∧ u��)}, {⟨Au� , Tu�⟩⊗ ⟨Au�� , Tu��⟩}⟩;
– �(x, y, r, u�) ⋅�(x, y, r ⋅ u�, u��) = ⟨{��(x, y, r, u� ⋅ u��)}, {⟨Au� , Tu�⟩⊗ ⟨Au�� , Tu��⟩}⟩.

We use Au as a shortcut for a singleton set {��(x, y, r, u)} for some agents x and y, and some
condition r and workflow u.

The above definition points out a compositional feature of accountability: a complex
workflow can be accounted for by an agent when such an agent can exploit accounts from

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 9 of 37 7

others about every portion of the workflow itself. This is possible thanks to the two opera-
tions upon A-structures. The union between two A-structures is used to collect alternative
ways for accounting a workflow when its main operator is a choice. On the other hand,
when the main operator of a workflow is interleaving or ordering, the join between two
A-structures is used to combine the ways for accounting for the two sub-workflows.

Example 2 In the bakery example, let us consider the following responsibility distribu-
tion R = {�(mike, �����), �(bart, ��������), �(bart, ����), �(sheila, ����)} . We can define
the accountability of harold , the bakery owner, towards a possible customer over R as:
�(harold, customer, �����, (����� ∧ ��������) ⋅ ���� ⋅ ����) . However, since harold is not
directly responsible for the whole workflow, such an accountability is well founded only
if it is grounded on the distribution R of responsibilities. That is, only when it is possible
to recursively demonstrate, by exploiting Definition 8, that every sub-workflow in (�����
∧ ��������) ⋅ ���� ⋅ ����) is grounded over R . Figure 2 sketches the structural dimension
underpinning accountability �(harold, customer, �����, (����� ∧ ��������) ⋅ ���� ⋅ ����) .
Indeed, this is a simplified representation of the A-structure supporting the accountability.
The A-leaves show that the accountability about atomic tasks is supported by responsibili-
ties in R . Intermediate nodes represent how the accountability of a sub-workflow is gained
by combining the accountabilities of its parts. Thus, the structure of accountability ensures
that customer will be in condition to receive an authoritative account about any part of
the workflow, let us say ���� , from harold . Despite not being directly involved in the task,
harold can recursively gather an account about it thanks to bart ’s accountability.

Definition 8 says accountability is a tree by construction, whose nodes have form �(x,
y, r, u) = ⟨{��(x, y, r, u)},Tu⟩ . ��(x, y, r, u) is an accountability agreement, and Tu is the
structure through which a sound account of u can be delivered to x. Thanks to this tree, it is
possible to navigate through accountabilities along feedback chains.

Definition 9 (Feedback chain) A feedback chain is a sequence of ⟨�(x0, y0, r0,
u0),… ,�(xn, yn, rn, un)⟩ such that for each i = 1,… , n, we have that ui−1[ui] , yi = xi−1 , and
ri → ri−1.

Grounding the tree over responsibilities (A-leaves) ensures that each agent, which is
involved in the structure, has the means for gaining situational awareness of the process
it is involved into; consequently, it can provide sound accounts. We formalize this as a
property of accountable workflows. Proposition 1 guarantees that, given a workflow u, it
is possible to define a proper set of feedback chains, from a-givers to the corresponding
a-takers, for every sub-workflow of u. Thanks to responsibility, a-givers are the agents that
are competent for each subprocess of u, and hence can provide sound accounts.

Proposition 1 (Accountable workflow) Let u be a workflow and let �(x, y, r, u) be an
accountability over Ru . There exists a feedback chain ⟨�(x, y, r, u), … , �(x�, y�, r�, u�)⟩ for
any workflow u′ such that u[u�] . We call u an accountable workflow through �(x, y, r, u)
over Ru.

Proof The proof is by induction on the structure of �(x, y, r, u).
In the base case, u is atomic so �(x, y, r, u) is ⟨{��(x, y, r, u)}, {�(x, u)}⟩ , and the chain

is given by ⟨�(x, y, r, u)⟩.

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 10 of 37

Fi
g.

 2

Th
e

str
uc

tu
ra

l d
im

en
si

on
 u

nd
er

ly
in

g
ac

co
un

ta
bi

lit
y
�
(h
a
ro
ld
,
cu
st
o
m
er
,
�
��
��
,
(�
�
��
�
∧
�
��
��

�
��
)
⋅
�
��
�
⋅
��
��)

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 11 of 37 7

In the general case, u is u1 ∧ u2 , then �(x, y, r, u1 ∧ u2) = �(x, y, r, u1) ∧ �(x, y, r, u2).
Since by hypothesis u[u�] , then we have either u1[u�] or u2[u�].
Let us assume u1[u�] . By inductive hypothesis, for any workflow u′ such that u1[u�] there

exists ⟨�(x, y, r , u1) , … ,�(x�, y�, r�, u�)⟩.
Now, if we substitute the first element of this chain with �(x, y, r, u) , we get again feed-

back chain. In fact, by initial hypothesis �(x, y, r, u) is an accountability, and by construc-
tion u[u1[u�]] holds.

The cases ∨ and ⋅ are similar.
Finally, in case �(x, y, r, u) = ��(x, y, r, u) +�(z, x, r, u) , we have by inductive hypoth-

esis, for any workflow u′ such that u[u�] there exists ⟨�(z, x, r, u), … , �(x�, y�, r�, u�)⟩.
Thus, the sequence ⟨�(x , y, r, u), �(z, x, r, u), … , �(x�, y�, r�, u�)⟩ is again a feedback

chain, and this proves the proposition. ◻

Example 3 With reference to Example 2, thanks to �(harold, customer, �����, (�����
∧ ��������) ⋅ ���� ⋅ ����) over R , the workflow turns out to be an accountable workflow.
For each subworkflow, due to the responsibilities in R and to the structure imposed by the
accountability, it is possible to find a suitable feedback chain. For instance, for ���� , the
feedback chain is:

⟨�(harold, customer, �����, (����� ∧ ��������) ⋅ ���� ⋅ ����),

�(harold, customer, �����, (����� ∧ ��������) ⋅ ����),

�(harold, customer, ����� ⋅ (����� ∧ ��������), ����),�(bart, harold, �����⋅

(����� ∧ ��������), ����)⟩ , as depicted in Fig. 2.

Accountability is preserved at runtime with respect to the events that occur during the
execution.

Proposition 2 (Accountability persistency) Let u be a workflow and let Ru be a responsibil-
ity distribution. Given �(x, y, r, u) over Ru and an event e such that r∕e ≠ 0 , we have that
�(x, y, r∕e, u) holds over Ru.

Proof The proof is by induction on the structure of �(x, y, r, u).
In the base case, �(x, y, r, u) is an A-leaf ⟨{��(x, y, r, u)} , {�(x, u)}⟩ . By definition of

progression on ��(⋅) , it follows that �(x, y, r, u)∕e = ⟨{��(x, y, r∕e, u)}, {�(x, u)}⟩ =
�(x, y, r∕e, u) : the awareness of the agent x does not change after the progression of the
context r under the occurrence of event e.

In the general case, we distinguish two situations. First, let �(x, y, r, u) be �(x, y, r,
u�) op �(x, y, r, u��) (where op ∈ {∨,∧, ⋅}), and by inductive hypothesis let �(x, y, r∕e, u�)
and �(x, y, r∕e, u��) hold. It follows immediately that also �(x, y, r∕e, u) holds. Second, let
�(x, y, r, u) be ��(x, y, r, u) +�(z, x, r, u) , also in this case the thesis follows directly by the
inductive hypothesis ��(x, y, r∕e, u) and �(z, x, r∕e, u) . ◻

The proposition assures that, when r is a complex condition, the progression of r against
an event e (such that r∕e ≠ 0) does not invalidate �(x, y, r, u) . That is, any residual expres-
sion r/e is still an enabling condition for the accountability. Eventually r/e progresses to ⊤ ,
allowingy to request x an account about u.

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 12 of 37

3.2 Accountability lifecycle

In order to understand the implications of accountability, depending on contextual condi-
tions, it is useful to associate to each �(x, y, r, u) a state, that may change depending on the
occurrence of events. Figure 3 shows the accountability lifecycle that we have devised.
This lifecycle assumes the existence of an agreement between the two agents x and y, and
assumes also that such an agreement is persistent throughout the execution.

Figure 3 highlights that accountability �(x, y, r, u) has two main states, Inactive and
Active, and that the latter is decomposed into the two substates Ready and Engaged. An
accountability remains Inactive until condition r occurs. From a normative perspective,
this implies that the a-taker y does not hold the right to request an account. Once condi-
tion r occurs, the accountability gets Active, and in particular Ready. Now the a-taker
has the right to place a request, and when this happens, the accountability evolves into
the Engaged state. Such a state captures the obligation over the a-giver x to provide an
account ũ about the workflow u. Providing the account leads the accountability back to
Ready: an accountability relationship is not resolved just because an account is provided,
rather the a-taker keeps the right to ask for an account as far as the accountability remains
Active. Ready and Inactive are an acceptance states (bold frames). Intuitively, we expect
that whenever the two agents terminate properly (or leave the organization), their account-
ability are in one of these two states. The rationale is that in these two states there are no
pending obligations that need to be fulfilled.

Finally, it is worth noting that condition r may, or may not, be under the control of the
agents, depending on the domain at hand. So, it may happen that an a-taker acquires the
right of asking for an account due to the occurrence of events in the environment. Under
this respect, in Sect. 5.2 we will discuss how the accountability lifecycle can be related to
the lifecycle of goals by means of some general practical rules that can help programming
agents while leveraging accountability.

4 Robustness upon accountability

Robustness is a property that a system has, or has not. It concerns a perturbation and
requires the existence of appropriate handlers, i.e., recovery strategies foreseen at an
organizational level, which the agent, receiving the perturbation account, should activate
for bringing the system to an acceptable state. Rephrasing [1], a process u is robust to some
perturbation, when u includes some kind of recovery that allows u to terminate smoothly
despite the occurrence of the perturbation (i.e., to terminate leaving the system in a “con-
sistent” state). We will see that, in order to allow recovery, agents will produce and return
accounts that witness what happened to disrupt the execution.

Fig. 3 Lifecycle of accountability �(x, y, r, u)

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 13 of 37 7

Definition 10 (Account) Given a workflow u:

– An account for u is a sequence of events ũ = (e1, e2,… , en) , such that for each ei ,
u∕ei ≠ u (the event ei is relevant for u).

– An account ũ! = (e1, e2,… , en) witnesses a perturbation for u when u∕(e1, e2,
… , en) = 0.

We denote as �⃖�u! a recovery event based on the account ũ! . Such an event abstracts any
workflow whose execution overcomes the effects of the perturbation witnessed by ũ!.

With reference to the model in Fig. 1, �⃖�u! amounts to the outcome of the Treatment
Task, associated with the Account Template. Note that an account is not the pertur-
bation it witnesses (i.e., an account does not identify the perturbation); if needed, perturba-
tions could be identified by diagnostic reasoning like [43].

Proposition 3 (below) states that a workflow is robust to a perturbation, when it includes
a recovery strategy, that can deal with the perturbation account so as to bring the workflow
to an acceptable termination state. Formally, a recovery strategy for a workflow u for a per-
turbation with account ũ! = (e1,… , en) is the workflow h(�u!) = e1 ⋅… ⋅ en ⋅ �⃖�u! . If the work-
flow u is perturbed with the account ũ! , the workflow u ∨ h(ũ!) is not. More importantly,
u ∨ h(�u!)∕(�u!, �⃖�u!) = ⊤ ; that is, when a perturbation is followed by an account describing
its context and a suitable recovery event, the system terminates in a consistent state. More
generally, we can prove the following proposition.

Proposition 3 (Robustness to a perturbation) Let u be a workflow such that u[v], where v
is perturbed with account ṽ! . Let w and z, be two sequences of events, such that u∕wtz = ⊤
and v∕t = ⊤ , for some sequence t. We have that (u ∨ h(�v!))∕wt

�z = ⊤ , where t� = (�v!, �⃖�v!).

Proof The proof is by induction on the structure of u.
If u ≡ v , then w and z are empty, and we just need to prove that (v ∨ h(�v!))∕t

� = ⊤.
This, however, follows directly from the definition of recovery strat-

egy since h(�v!) = e1 ⋅… ⋅ en ⋅ �⃖�v! = �v! ⋅ �⃖�v! , and t� = (�v!, �⃖�v!) by hypothesis. Thus,
(v ∨ h(ṽ!))∕t

� = v∕t� ∨ h(ṽ!)∕t
� ; the first disjunct progresses to 0 whereas the second to ⊤.

In the general case, v ≢ u , and u[v]. Suppose that u = a ∧ u� and u�[v] . By induc-
tive hypothesis (u� ∨ h(�v!))∕w

�t�z = ⊤ , where w = aw� . By progression, we have
(a ∧ u� ∨ h(ṽ!))∕aw

�t�z = (a ∧ u�)∕aw�t�z ∨ h(ṽ!)∕aw�t�z = (a∕aw�t�z ∧ u�∕aw�t�z) ∨ h(ṽ!)∕
aw�t�z = (⊤ ∧ u�∕w�t�z) ∨ h(ṽ!)∕w�t�z = u�∕w�t�z ∨ h(ṽ!)∕w

�t�z = (u� ∨ h(ẽ!))∕w
�t�z . By

inductive hypothesis (u� ∨ h(�v!))∕w
�t�z = ⊤.

The cases ∨ and ⋅ are similar. The proof can be generalized for any workflow preceding
and following u′ in u. ◻

It is worth noting that, when the perturbation does not occur, we still have that
(u ∨ h(�v!))∕wtz = ⊤ because u∕wtz = ⊤ . In the above proposition, we have made the sim-
plifying assumption that h(ṽ!) is not perturbed by other perturbations. This assumption can
be relaxed by introducing further recovery strategies, one for each perturbation affecting
h(ṽ!) . This could be repeated indefinitely specifying recovery strategies for perturbations
affecting recovery strategies. In practice, as usual happens in the design of complex sys-
tems, the designer has to put a limit to the depth of this chain of perturbation handlers.

Proposition 2 assures that accountability is preserved against progression. Intuitively,
when a workflow is robust to a perturbation with account ṽ! , not only there exists a specific

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 14 of 37

recovery strategy h(�v!) = �v! ⋅ �⃖�v! , but, thanks to accountability, it is also guaranteed that the
account of the perturbation will actually be available.

By providing the account ṽ! we get two results: first, it is possible to notify the agent
that will take care of the treatment that something wrong has occurred, and appropriate
action is needed; second, it is possible to provide the same agent with information that
helps understand how to handle the situation. This is important when agents, as often hap-
pens, do not have a complete view of events.

Proposition 4 (Account Availability) Let u = u� ∨ h(ṽ!) be a workflow such that u�[v] , and
let ṽ! be the account for a perturbation on v. Let Ru be a distribution of responsibility,
such that �(y, u) belongs to Ru . If u′ is an accountable workflow through �(x, y, r, u�) over
Ru , then the account is available to the agent y in charge of the recovery strategy for the
perturbation.

Proof The proof follows directly from Propositions 3 and 1. From Proposition 3, we have
that a workflow u′ such that u�[v] is robust to a perturbation with account ṽ! if a dedicated
recovery strategy h(�v!) = �v! ⋅ �⃖�v! is activated instead of u′ when ṽ! occurs. On the other hand,
the account ṽ! must be generated somewhere in the system. This is granted by Propo-
sition 1: since u′ is an accountable workflow, there is always the chance to generate an
account for any of its sub-workflow, including v, even when it is perturbed. There exists, in
fact, a feedback chain ⟨�(x, y, r, u�),… ,�(x�, y�, r�, v)⟩ , where the account ṽ! is first gener-
ated by x′ and then propagated to y, responsible for the whole workflow u = u� ∨ h(ṽ!) .
 ◻

Example 4 Let us consider a perturbation ���������� , concerning ���� , and a corre-
sponding recovery event ������������������ . We can extend the responsibility distri-
bution R so as to make the production workflow robust by adding the responsibility
�(harold, ������������������) and turning the workflow into (����� ∧ ��������) ⋅ ���� ⋅
����) ∨ ������������������) – harold will also be in charge of the treatment.

Should a perturbation ���������� occur, by way of the new responsibilities, an account
would be provided by bart to harold ; this, in turn, would exploit the account for activating
a recovery strategy.

5 Extending JaCaMo with accountability

We now show how accountability can be used in practice by describing an extension1 of
the JaCaMo [16] agent platform that encompasses it, and by showing the interplay between
accountability and goals, reporting six typical schemes that we have identified, that will be
used, in the following section, to program the agents.

Briefly, JaCaMo is a conceptual model and programming platform that integrates
agents (programmed in Jason [18]), environments (programmed in CArtAgO [46]) and
organizations (programmed in MOISE [39]). A MOISE organization has three dimen-
sions. JaCaMo’s structural dimension specifies roles, groups and links between roles in the

1 Available at http:// di. unito. it/ moise accou ntabi lity.

http://di.unito.it/moiseaccountability

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 15 of 37 7

organization. JaCaMo’s functional dimension is made of schemes, which elicit how the
global organizational goal is decomposed into subgoals, and how subgoals are grouped in
coherent sets, called missions – to be distributed to the agents. JaCaMo’s normative dimen-
sion binds the two previous dimensions by specifying permissions and obligations that are
associated with each role. At the beginning of the execution the agents, playing the differ-
ent roles, are asked to commit to certain missions, as specified by the norms. Then, in order
to coordinate the distributed execution, the organization will issue obligations to the com-
mitted agents to achieve mission goals.

A Jason agent is composed of a set of beliefs, i.e., predicates representing the agent’s
current state and knowledge about the environment, a set of goals, which correspond to
tasks the agent can perform, and a set of plans, i.e., courses of action that are triggered by
events and are pursued by executing plans. It is possible to specify both achievement (‘!’)
and test (‘?’) goals; moreover, goals can be either organizational or local. In the first case,
the goal is part of a schema (functional decomposition) of the organization, and is marked
as achieved by an explicit goalAchieved(...) operation within an agent plan. A plan
has the form:

where triggering_event denotes the event that the plan handles (a belief/goal addition
or deletion), context specifies the circumstances in which the plan can be used, the body
expresses a course of actions.

We map the concepts of Responsibility and Task, from the conceptual model in
Fig. 1, to the concepts Mission and Goal of JaCaMo. We interpret the agent’s commitment
to a mission as an assumption of responsibility. Indeed, in JaCaMo agents commit to mis-
sions before pursuing the organizational goal and, from that moment on, the organization
can issue obligations towards them to make them achieve the mission goals.

5.1 Encompassing accountability

In order to encompass accountability in JaCaMo, we have extended the XML specification
of a MOISE organization, so as to include accountability agreements thanks to a new set of
tags. The following piece of code shows how such an extension looks like.

triggering_event ∶ ⟨context⟩ ← ⟨body⟩

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 16 of 37

 Note how the XML tags reflect, as far as possible, the structures and relations that we have
depicted in the conceptual model of Fig. 1. In particular, we can see how the goals involved
in an accountability agreement (requesting, accounting and treatment goal) appear inside
JaCaMo missions, and norms are added to tie roles to such missions: the agents playing
such roles are obliged to commit to the associated missions. For the sake of readability, we
will use the following human-friendly representation of accountability agreement instead
of using XML:

It is worth noting how the above listing creates the connection among the model, that
was presented in Fig. 1, the formalization of agreements and accountability, and their
implementation in JaCaMo. The listing, indeed, represents an accountability agreement
��(x, y, r, u) . Fields concerns and requesting condition match directly the namesake rela-
tionships of the model. The former refers to the goal u, whereas the latter refers to condition
r. Note that in Sect. 3 u is a formula that specifies how a complex task is decomposed into

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 17 of 37 7

atomic tasks, this is mapped in JaCaMo to the functional decomposition of complex goal
u. Requesting condition r, instead, represents what events must occur to activate account-
ability. In JaCaMo, r is mapped to organizational events such as the achievement of goals,
the issue of obligations, the failure of goals, and so on. Section Account Template
specifies three aspects referring to accounts: how an account can be requested, how it can
be provided (and with which format), and, optionally, how it can be treated. For all these
three aspects we exploit JaCaMo goals. requesting goal denotes an organizational goal
whose satisfaction assumes the social meaning of a request for an account about u, thus
only a legitimate a-taker can pursue such a goal. Note that each Account Template
can include zero to many requesting goals. If no requesting goal is specified, an implicit
account request will be placed via the normative system of the organization as soon as
requesting condition becomes true. The field accounting goal denotes an organizational
goal that becomes enabled when a request has been done, and hence a corresponding obli-
gation is issued upon the appropriate a-giver. The a-giver will pursue such a goal by issu-
ing an account, shaped according to the field must account with: a list of arguments that
form the account. An account is therefore a structured piece of information that an agent
make available to others. In principle, an Account Template could maintain several
accounting goals as different ways for producing an account. In our current implementa-
tion, we can specify one accounting goal, and leave the extension to a future development.

Finally, treatment goal is an optional field that can be specified when the treatment to
some account is prescribed by design constraints. This means that the way for handling an
account is not left to the local decision of an agent, but it is an organizational goal; we will
better discuss this point in some examples below. More treatment goals can be specified for
a single account to capture alternative ways to cope with the account itself.

One can notice that neither the a-taker x nor the a-giver y involved in the accountability
agreement are directly mentioned within the XML tag. This happens because we rely on
the structures already defined in JaCaMo, and in particular on JaCaMo roles and missions.
In fact, the goals mentioned within the XML tag must be included, as any other organi-
zational goal in JaCaMo, within a mission, to which agents playing roles have to com-
mit. The commitment to a mission creates, thus, the binding between a goal and the agent
responsible for that goal. The optional field when associated with each goal in the account
template represents an applicability condition that the organization designer may be willing
to specify.

Accountability agreements capture the normative dimension of accountability. More
precisely, each accountability agreement is translated into a set of norms that will be inte-
grated within the normative program followed by the organization. These norms will yield
permissions and obligations about accounts during the system execution. We refer to [13]
for a detailed description on how an accountability agreement is translated into JaCaMo
norms. In order to guarantee the availability of sound accounts, an organization designer
must take care of defining a proper set of agreements, so as to capture the structural dimen-
sion, as well. An automated tool to verify the structural consistency of a given set of
accountability agreements is discussed in [9].

5.2 Interplay between goals and accountability

From an agent programming perspective, it is useful to make the relationship between
accountability and goals explicit, so as to guide the programmer in the development of
“accountable” agents, and in particular when agents have to decide how to cope with

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 18 of 37

perturbations and opportunities. Account request and account production amount to goals;
thus, accountability has an impact on the goals that agents pursue. To this end, we first
briefly formalize the notion of goal lifecycle, and then relate such a lifecycle with that of
accountability by means some practical rules directly implemented as JaCaMo plans.

Generally speaking, a goal represents a condition that an agent wants to achieve. Many
works in literature (e.g., [34, 50–53]) have proposed several formalizations to serve as a
basis for mechanisms of goal reasoning. In this paper, we take as a reference the formali-
zation proposed in [50, 53], where a goal is modeled as a structure �(x, p, v, q, s, f) denot-
ing: x the agent responsible for the goal; p a precondition that must be true before G can
become Active and hence pursued by x; v an invariant condition that is true once G is
Active until its achievement; q a post-condition that holds when G is successfully achieved.
Finally, s and f specify the success and failure conditions, respectively, of G. Such a rich
representation of goals allows agents to reason about their objectives. In JaCaMo, however,
there is not a substantial distinction between q and s, and the concept of invariant condi-
tion v is not native. Thus, to simplify the discussion, in the following we consider goals
shaped as �(x, p, s, f) ; however, our approach allows one to take full advantage of v and
q, as well, when these conditions are directly available in the framework at hand. Several
lifecycles have been proposed to capture relevant state changes in goals. In this paper, we
take as a reference the lifecycle introduced in [34] showed in Fig. 4. A goal is Inactive if
its preconditions do not hold. When inactive, a goal cannot be pursued by agent x. A goal
is Active when its preconditions hold and neither satisfaction nor failure holds. This means
that agent x is pursuing such a goal. A goal is Satisfied when condition s holds. Whereas, a
goal is Failed, if failure occurs. An active goal may also be suspended, if the precondition
stops to hold. The Satisfied and Failed states are terminal states.

We are now in the position for introducing some practical rules that relate accountabil-
ity and goals. These rules highlight how accountability actually affects agent behaviors:
a change in the state of one accountability induces a change in the one or more goals of
the corresponding a-taker and a-giver. These rules are independent of any specific agent
platform at hand, but play a central role in programming the agents. To emphasize this, we
map each rule into a Jason template (involving two or more plans), that represents a possi-
ble way to implement the rule. In Sect. 6 we will show how these templates can be used as
building blocks for solving recurrent interaction problems of distributed systems.

The Be-Accountable rule

states that when an accountability �(x, y, r, u) gets engaged, the a-giver x has to activate
an internal goal that produces the asked account ũ about workflow u. The rationale is that,

�
E(x, y, r, u) ⇒ 𝖦A(x, p, ũ, f)

Fig. 4 Goal �(x, p, s, f) lifecycle
[34]

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 19 of 37 7

to be accountable, an agent has to pursue the goal of producing an account when a legiti-
mate request is placed. Since �(x, y, r, u) is part of the organization state, and modeled by
means of dedicated norms, the organization acts as a mediator between the a-taker and
the a-giver: the a-taker’s request is placed by accomplishing an organizational Request-
ing Task (see Fig. 1). The normative system, thus, progresses the accountability into the
engaged state, and generates an obligation to produce an account targeted on the a-giver.
Such an obligation is justified by virtue of the agreement, between the a-taker and a-giver
and implicitly maintained in �(x, y, r, u) , for which the a-giver assumes the responsibil-
ity to produce an account when asked for. To fulfill this obligation, the a-giver needs to
accomplish an organizational Accounting Task, that is mapped into an internal goal
�(x, p, ũ, f) . Of course, it is expected that the obligation to achieve the goal is issued only
when precondition p holds. The following Jason template captures this behavior.

The first plan is triggered when the agent receives an obligation to provide an account
by accomplishing the organizational goal accounting-goal. To do so, the agent activates
an internal agent-accounting-goal whose plan ends up by producing an account by means
of operation giveAccount(<account>), which changes the state of the organization
with the addition of a new fact, as an observable properties, in one of the organizational
artifacts. The achievement of the internal goal, thus, entitles the agent to mark the organi-
zational goal as achieved, too.

The Auditing rule

states that, given an inactive goal �(y, ũ, s, f) and a ready accountability �(x, y, r, u) (i.e., y
has the permission to ask x about u), then y can make �(y, ũ, s, f) active by activating goal
�(y, p, requestAccountOn-u, f) , provided that condition cxt holds. This goal amounts to a
Requesting Task, and hence to transition y ∶ �������(x, u) in the accountability lifecy-
cle (Fig. 3). The Jason template mapping this behavior is as follows:

The first plan captures the situation in which agent y needs to achieve condition s, but
the goal �(y, ũ, s, f) cannot be activated due to the lack of information ũ (see context condi-
tion <account-ũ needed>). However, condition r holds and hence the normative sys-
tem has granted y to achieve the organizational goal requestAccountOn-u. The body of this

𝖦I(y, ũ, s, f) ∧�
R(x, y, r, u) ⇒ 𝖦A(y, p, requestAccountOn-u, f)

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 20 of 37

plan, thus, consists of marking requestAccountOn-u as achieved (a request is placed), and,
then, waiting for the corresponding answer. When the answer is ready, y achieve condition
s by invoking the second plan.

The Activate rule

is applicable only when agent y has control over condition r, activating accountability rela-
tionship �(x, y, r, u) . The rationale is that, when y wants to activate a goal �(y, ũ, s, f �) , as
before, but the accountability is Inactive, then the agent can activate goal �(y, p, r, f ��) in
order to make �(x, y, r, u) progress to the Active state. In the next section we points out
how this rule applies when agent y needs further information (i.e., the account ũ), to handle
a specific situation, such as a perturbation or an opportunity. The following Jason template
addresses this situation in a similar way as before. First, one specifies a plan for achieving
condition s when an account is needed and the condition r does not hold. The body of this
plan consists in the activation of another goal, achieveRequestingCondition-r, that aims at
getting condition r. Reasonably the body of this second plan will contain some organiza-
tional goal since condition r must be true within the organizational state in order to activate
the accountability. Once achieveRequestingCondition-r is accomplished, the agent can try
to get condition s. To do so, the previous Jason template for Auditing can be applied.

The Alert rule

captures the situation in which an agent is requested to provide an account about the failure
of an organizational goal, which can be seen as perturbation affecting the normal, expected
behavior. The rationale is that the goal failure, that calls for special treatments, is not nec-
essarily observed directly by the agent who will handle that failure. To fill this gap, the
account is implicitly asked, through the organization, so as to enable the failure treatment.
This means that the normative system of the organization will issue an obligation to pro-
vide an account for a failure as soon as the very same failure is signaled by an agent. Of
course, an accountability must exist between the agent x, detecting the failure (a-giver),
and the agent y, handling the failure (a-taker). In addition, such an accountability must be
Active. The a-giver, thus, activates a goal that will produce an account ũ about the failed
goal. In Jason, the rule is implemented by the following template.

𝖦I(y, ũ, s, f �) ∧�
I(x, y, r, u) ⇒ 𝖦A(y, p, r, f ��)

𝖦F(x, t, u, f �) ∧�
A(x, y, r, u) ⇒ 𝖦A(x, p, ũ, f ��)

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 21 of 37 7

The first plan represents the failure of an organizational goal: the trigger event is the
deletion of the goal and the body consists in marking that goal as failed when the failure
condition f ′ holds. Note that operation goalFailed() is part of our JaCaMo extension
since in standard JaCaMo goals cannot marked as failed by the agents.

The second plan captures the obligation (i.e., the implicit request generated by the nor-
mative system) to provide an account about the failed goal. Specifically, the obligation is
about the achievement of organizational goal accounting-goal. To accomplish such a goal,
the agent pursues the local goal agent-accounting-goal, handled by the third plan. This last
plan produces the account, and makes it available to the other agents in the organization by
means of operation giveAccount(). Goal accounting-goal can therefore be marked as
achieved, and the normative system will progress the state of the organization by issuing an
obligation on agent y responsible for the failure treatment.

The Treatment rule

describes the complementary situation of the previous rule. Namely, an agent that has
access to an account ũ is, then, asked to achieve an organizational goal that amounts to the
treatment for such an account. In this case, the current state of �(x, y, r, u) is irrelevant, and
hence �(⋅) is not included in the head of the rule. The point is that �(⋅) has already played
its role for the production of ũ , and now ũ needs to be addressed. The Jason template cor-
responding to this situation is as follows.

The first plan allows the agent to intercept an obligation about the organizational goal
treatment-goal. As in the previous case, this organizational goal is mapped into an agent
goal, namely agent-treatment-goal, which is pursued by the second plan in the template.
The completion of the local goal enables the agent to mark the organizational goal as
achieved.

ũ ⇒ 𝖦A(y, ũ, s, f)

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 22 of 37

6 Agent programming

We now illustrate how the rules above can be used to practically program agents in JaC-
aMo. We will describe three scenarios, that capture a number of typical situations. Each
scenario will be introduced by explaining the general problem and highlighting which rules
can be used to solve it. Then, we get into the details of agent programming.

6.1 Information gathering

Problem: An agent needs a piece of information in order to take a decision. The informa-
tion is not directly accessible to it; however, by way of an appropriate feedback chain speci-
fied by the organization designer, the agent can rely on fellow agents in the organization in
order to retrieve it.

Context: Accountability �(x, y, r, u) is defined in the organization between y, the agent
needing the information about u, here acting as a-taker, and x, which can account for u,
here acting as a-giver. Either condition r already holds, so the accountability is in the state
Ready of its lifecycle (see Sect. 3.2), or the accountability is Inactive and agent y has the
possibility to make r hold.

Rules: Activate and Auditing for the a-taker, and Be-Accountable for the a-giver.
Exemplification: Let us consider Example 1, where harold is the bakery owner. In

JaCaMo the workflow (����� ∧ ��������) ⋅ ���� ⋅ ���� amounts to the organizational goal.
It is the root of the functional decomposition in Fig. 5, where it is identified by the label
selling-bread. The organizational goal is decomposed into four subgoals, which are under
the responsibility of three different agents (sheila , bart , mike). This happens because such
agents play the roles seller, baker and kneader respectively. In JaCaMo, missions contain
the goals from the functional decomposition, and are assigned to roles through norms. At
runtime, agents playing such roles are required to commit to the corresponding missions,
taking responsibilities for mission goals. In this way, responsibilities are distributed in JaC-
aMo. In particular, as shown in Example 2, we have that the workflow is grounded over the
following responsibility distribution R = {�(mike, �����), �(bart, ��������), �(bart, ����),
�(sheila, ����)}.

The following listing illustrates how sheila’s, bart ’s and mike ’s responsibilities are
encoded, through roles, missions, and norms in the organizational specification.

Fig. 5 Functional decomposition
of the organizational goal in the
Information Gathering scenario.
Over each goal the name of
the mission, to which the goal
belongs, is reported. In red, we
show the names of the roles
whom the mission is assigned to

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 23 of 37 7

 Mission mBaker, for instance, contains goals heatOven and bake, and it is assigned to
role baker through norm n2. At runtime, agent bart will play the baker role and, by com-
mitting to such a mission, he will take on the responsibility for the two goals. In a similar
way, responsibilities are taken on by sheila , and mike.

Let us show how, by exploiting a feedback chain specified at design time via
accountability, sheila can get pieces of information that are outside her scope, and
use them in her local decision-making process. Let us assume that agent sheila , who
sells the bread, is also in charge of setting the price depending on the type of flour
that is used. However, sheila does not know what flour type was used, since she is not
directly involved in the process of kneading and baking the bread. Two account-
abilities, specified in the organization, can help sheila ; a1 ∶ �(mike, bart,⊤, �����) , and
a2 ∶ �(bart, sheila, ����������������, (����� ∧ ��������) ⋅ ����) . Since the type of flour
can influence the baking time, accountability a1 allows bart to ask mike for an account
about knead; the requesting condition ⊤ means that bart can always legitimately ask mike
about ����� . On the other hand, accountability a2 allows sheila to ask for an account about
the workflow producing the bread, which will include also information on the used type of
flour. However, sheila can request an account provided that she gets the authorization by
the owner: getAuthorization is an event that is generated as a consequence of the goals
pursued by sheila herself. Following the same reasoning explained in Example 3, it is pos-
sible to show that the two accountabilities form a feedback chain, given the responsibil-
ity distribution R , and hence the subworkflow (����� ∧ ��������) ⋅ ���� is an accountable
workflow (see Proposition 1). In fact, by means of a2 , sheila can have information on the
bread production process from bart , which can in turn leverage a1 to gather information
from mike about the kneading part.

In JaCaMo, the two accountabilities a1 and a2 are specified by introducing the two fol-
lowing agreements:

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 24 of 37

The a-taker and a-giver agents are designated by including the requesting goals
requestFlourTypeToKneader and requestFlourTypeToBaker in the missions assigned
to the baker and seller roles, and the accounting goals notifyFlourTypeToBaker and noti-
fyFlourTypeToSeller in the missions assigned to the kneader and baker roles, respectively
(see the listing above). In addition, since the responsibility distribution R assigns each
atomic task of the workflow (����� ∧ ��������) ⋅ ���� ⋅ ���� to one of the three agents,
both agreements are grounded on responsibility. Agreements and responsibilities together
yield, thus, accountabilities as in Definition 8. For instance, the A-structure ⟨{��(mike,
bart, �����, �����)}, {�(mike, �����)}⟩ , representing accountability a1 , is encoded in our
extended JaCaMo by agreement a1 above and the distribution of responsibilities encoded
by missions. Accountability a2 is also encoded within the system in a similar way.

Coming to agent programming, the Activate and Auditing rules easily guide the writing
of sheila’s program, as follows.

 The first plan allows sheila to activate the accountability by making its requesting con-
dition hold (Activate pattern). To this end, she pursues and sets the organizational goal
getAuthorization as achieved. The other plans, instead, follow the Auditing pattern. The
second one allows sheila to request for an account, provided none is already available; she

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 25 of 37 7

will do so while pursuing her own goal sell. The request is concretely performed by
marking the requesting goal requestFlourType as achieved. The execution of the plan is
then suspended until the account is made available. Once the needed information is pro-
vided, sheila attempts to pursue the sell goal again, likely selecting a different plan for exe-
cution. For instance, the last plan will be executed if the received account denotes the use
of an organic flour. Other plans targeting different eventualities may be available, as well.

Conversely, the Be accountable rule can be applied to bart ’s code, below (in combina-
tion with the Auditing one).

 The request performed by sheila makes a2 ∶ �(bart, sheila, ����������������,
(����� ∧ ��������) ⋅ ����) become engaged, resulting in an obligation for bart to pursue
the corresponding accounting goal. The first plan realizes this behavior by mapping such
an obligation to an internal goal of the agent, which is, then, satisfied by means of the
second and third plans. If the flour type is already available to the agent (second plan), the
account is produced by means of the giveAccount(...) primitive, that is provided by
our extended JaCaMo infrastructure. It is worth noting that the last two plans follow the
Auditing rule, as well. If the flour type is not available to the agent, yet, the last plan allows
bart to request an account to mike, in a similar way to what done by sheila.

Finally, agent mike can be programmed by simply following the Be accountable rule as
follows.

6.2 Context‑aware adaptation

Problem: An agent is interested in an event, which has an impact on the achievement of
the agent’s goals (e.g., it may represent an occasion the agent could profit, or some pertur-
bation that may negatively impact on the efficiency by which the goal can be achieved).
The occurrence of such an event may induce the agent to consider to change its behavior in
order to adapt to the situation. The decision on if/how to react to the event depends on the

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 26 of 37

context in which the event occurs, but this information is outside the scope of the agent;
however, the agent can take advantage of the accountabilities of other agents, where it acts
as a-taker.

Context: An accountability �(x, y, r, u) is defined in the organization between agent y,
interested to know about u when event r occurs, and x which can account for u. Since event
r has occurred the accountability is Ready.

Rules: Auditing for the a-taker and Be-Accountable for the a-giver.
Exemplification: Figure 6 shows the functional decomposition of an organization for

the delivery of some goods. The process involves many agents playing multiple roles (in
red) and carrying out several activities from goods packaging to shipping and delivery. We
assume that the shipment is distributed and involves multiple trucks carrying the goods,
e.g., to a construction site. In this case, a truck driver who realizes the delay of some fel-
low truck may likely be interested in avoiding the issue, if any, that the fellow truck has
encountered.

Let us consider a case in which two agents (alice and bob) play the same role truck-
Driver. The two are responsible for reaching the destination with their respective trucks.
We suppose that accountability �(alice , bob , delay(reachDestination), reachDestina-
tion) holds; that is, should a delay2 occur in the achievement of goal reachDestination,
bob would have the right to ask alice an account, if interested. A complementary relation-
ship, involving bob as a-giver and alice as a-taker holds, as well.

We can capture both accountabilities by means of the following accountability agree-
ment, which also specifies that the account includes a reason for the delay, and a list of
roads, that are concerned.

Fig. 6 Functional decomposition of the Context-Aware Adaptation scenario

2 delay(G) is a keyword encoding an organizational event of unfulfillment of an obligation concerning goal
G, issued towards some responsible agent. We use it as a shortcut for the formula scheme_id(S) & unfulfill
ed(obligation(_,_,done(S,G,_),_)).

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 27 of 37 7

Since alice and bob play the same role in the organization, they will be able to act both
as a-taker or a-giver, depending on the circumstance. To this end, both the requesting and
the accounting goals are included in the mission assigned to the truckDriver role, that is
played by the two agents, as follows.

Here, the mission cardinality states that exactly two agents should commit to the mis-
sion because the two agents take part to the same delivery. Goal reachDestination will
have the same cardinality, meaning that it will be considered as satisfied only when both
agents will have achieved it.

The Auditing rule can be applied to realize the account taking behavior needed for adap-
tation. The following excerpt of code allows each of the two agents to ask for an account to
the other and react accordingly.

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 28 of 37

The first three plans result from the Auditing rule. Suppose one of the agents, e.g. alice ,
detects a delay (i.e., a perturbation) in the achievement of the organizational goal reach-
Destination by its partner bob (i.e., the unfulfillment of bob ’s obligation). Such a delay
activates the accountability agreement between the two, which allows alice to investigate
the reasons of bob ’s delay by pursuing the organizational goal requestDelayReason.

The fourth plan realizes the agent’s recovery strategy to the new situation it became
aware of. It is triggered once the account is available. In the example program some roads
are added to a black list and avoided. In general, the agent program will contain many
plans (i.e., recovery strategies), for tackling different situations. Finally, the account giving
behavior of the two agents can be programmed by following the Be Accountable rule, as
before.

It is worth noting that the adaptation could be exploited not only in case of perturba-
tions, but also in order to take advantage of opportunities that may arise during the execu-
tion. Suppose, for instance that one of the two drivers reaches the destination earlier than
expected. The partner agent could be interested in investigating the reasons, e.g., to exploit
the same low traffic roads. We can define an accountability agreement that is similar to the
previous one.

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 29 of 37 7

 Here, the requesting condition denotes the successful achievement of goal reachDes-
tination by some agent. In order to allow the agents take advantage of the opportunity, the
plans, needed for adaptation, are to be slightly modified, as follows.

Now, the first plan is triggered by an obligation fulfillment instead of an unfulfillment.
By this, the a-taker can leverage the a-giver’s experience to optimize its journey towards
the destination. Adaptation, indeed, is realized by using the information in the account to
take a low traffic shortcut.

6.3 Exception handling

Problem: In a MAO, the agent detecting an exceptional condition is not usually in the
position for treating it. Accountability supports the realization of exception handling mech-
anisms: whenever an exceptional condition occurs, an account (i.e., exception) concerning
that condition is reported by default to the agent(s) responsible for handling it. Termino-
logically, the a-giver can be identified as the exception raiser, the a-taker as the exception
handler, and the account amounts to the raised exception.

Context: An accountability �(x, y, r, u) is defined in the organization between agent y,
responsible for handling some exceptional condition r, that may occur during the execu-
tion of u, and agent x, which can provide the account ũ . We assume that condition r holds
(i.e., an exceptional condition has actually occurred), and that the account request has been
implicitly sent, so the accountability is Active.

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 30 of 37

Rules: Alert for the a-giver (exception raiser), and Treatment for the a-taker (exception
handler).

Exemplification: Let us consider the house building scenario described in [16]. Here,
the organizational goal is to build a house on a plot, involving multiple companies that
contribute on specific goals, as shown in Fig. 7. For instance, site preparation must be com-
pleted before any other step. Should a failure occur in the achievement of this goal, the
whole house construction could not proceed. It is, thus, important to foresee a suitable
strategy to deal with a possible failure of this goal. Indeed, depending on the reasons for
the failure, different recovery actions could be applicable. We can effectively target this
eventuality by specifying the following accountability agreement.

The agreement specifies that an account (exception) must be provided (raised) every
time a failure in the achievement of goal sitePrepared occurs, and it amounts to an error
code. Two different treatments are included, to be applied depending on the provided error
code.

By taking responsibility for the accounting goal notifySiteProblem, the com-
panyX agent (playing the site prep contractor role and already in charge of site prepara-
tion) becomes exception raiser. Similarly, the agent playing the engineer role, by taking

Fig. 7 Functional decomposi-
tion of the Exception Handling
scenario

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 31 of 37 7

responsibility for the treatment goals, can be identified as exception handler. The Alert rule
guides the writing of companyX.

The first plan, triggered when the internal goal sitePrepared fails, notifies the failure
to the organizational infrastructure through the goalFailed(...) primitive. The other
plans are analogous to the ones foreseen by the Be Accountable rule. The only difference is
that, the obligation to pursue the accounting goal is issued as soon as the failure is signaled
within the organization, since an account request is assumed implicit.

Conversely, the following excerpt of code shows the Treatment rule applied to the engi-
neer agent. Here two plans, targeting the two different treatment goals specified in the
agreement, are defined.

 The first plan is triggered when the provided account denotes that the failure is due to
a flooding. In this case, the treatment includes water removal in order to restore the site.
Once the exception has been handled, the initial goal sitePrepared is marked as released
through operation goalReleased(...), provided by the extended organizational
infrastructure. By doing so, the agent states that the failure has been solved and the house
construction can proceed. The second plan, in turn, is activated if the failure is due to the
finding of some archaeological remains. Here, the exception is handled by removing the
remains and by resetting goal sitePrepared, so that another attempt can be made in site
preparation.

These three scenarios demonstrate the usefulness of accountability in a wide range of
situations. In exception handling, in particular, the social structure realized by account-
ability, orthogonal to the functional decomposition of the organizational task, is exploited
for conveying an account (i.e., an exception) to the agent apt to handle it. Approaching
exception handling in this way has many advantages. First of all, the solution relies on
the abstractions of agent-based architectures (e.g., goals, beliefs, norms, etc.), and does
not need any special structure dedicated to the management of exceptions. In addition,
the overall system enjoys low coupling and high cohesiveness, two desirable software

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 32 of 37

engineering properties [33, 36, 44]. Low coupling is gained since agents dependence is
limited to the exchange of an exception, specified as Account Template within the
organization. High cohesiveness, instead, is obtained by ascribing the tasks of raising and
handling exceptions to the agents that have the right functionalities to accomplish them.

7 Discussion and related works

Building upon suggestions from many works, we have defined a constructive technical
framework of accountability (Definition 8) for supporting the realization of robust multia-
gent organizations, and we have illustrated how the framework can be mapped onto the
JaCaMo agent platform and leveraged for practical agent programming. Accountability
legitimates the a-taker to ask for an account, and creates the expectation that the a-giver
will provide a meaningful account. The meaningfulness of the account is grounded on
the structural dimension of accountability. This is the distinctive feature of accountabil-
ity compared to other social relationships like business contracts and social commitments,
which only yield obligations to do something; in other words, they present only a norma-
tive dimension.

The proposal features a clear separation of concerns: at design time the kinds of pertur-
bation of interest are identified; how these are actually handled, however, depends on the
specific plans (or behaviors) implemented by the agents (known only at runtime), playing
organizational roles. Moreover, our proposal is useful to handle perturbations that cannot
be properly addressed by a single agent. In many cases, the agent that detects a perturba-
tion is not aware of the global context (e.g., how the perturbation may indirectly affect
tasks of other agents), and has no power for fixing the problem. On the other hand, the
agent that could handle the perturbation has no access to the situation where the perturba-
tion has occurred. Accountability is the means through which an account about a perturba-
tion is reported to the agent who is responsible for treating that perturbation. In some way,
accountability complements the plan failure mechanism of JaCaMo (where failure is tack-
led by an agent locally), because it enables a sort of escalation of a failure.

The relevance of accountability in the design of agent organizations has been also high-
lighted in [22, 49], where the authors posit that interaction is the central notion around
which a MAS should be designed. In particular, in their proposal agent interactions should
only occur via social protocols, that specify social relationships via normative expectations
(e.g., commitments, authorizations, prohibitions). Norms and organizations are, therefore,
strictly related to each other: an organization is defined via norms, and a norm is defined in
an organization [49]. Accountability emerges as an (implicit) directed relationship between
agents, reflecting the legitimate expectations induced by the norms. Agents are, in fact,
accountable for such expectations: they are free to violate them, but, then, they could be
asked to account for their choice, and possibly be sanctioned. Contrary to our proposal,
accountability in [22] is not explicitly modeled as a first-class notion. Rather, it is the con-
sequence of the commitments taken on by the agents. Moreover, the structural dimension
of accountability is not taken into account, thus there is no conceptual support in the defi-
nition of feedback chains that, as we have shown, are essential to convey sound accounts to
the most competent agents in distributed scenarios.

Also our proposal takes for granted the existence of an organization as a context within
which norms, including accountability, are defined. However, in [22, 49] the organization
is just a set of norms, that specify the expected, correct behaviors of the agents. In our

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 33 of 37 7

case, instead, an organization is set up to achieve a complex goal; its purpose is to define
a structure for distributing responsibilities among agents and allow the coordination of
their activities. In this sense, the organization is a shared environment, which provides the
agents artifacts for their coordination. The execution of tasks is carried out in a distributed
manner by the agents, that play roles in the organization, and are autonomous and opaque
to each other. The agents focus on organization artifacts, and in this way become aware of
obligations, amounting to goals they should achieve. It is worth noting that the autonomy
of the agents is preserved since, as in [22], agents are free to violate expectations by not
discharging their obligations.

This work sets the ground for several future directions. First, it represents a general
schema that can be tailored to specific applications, as illustrated in Sect. 6, e.g., to real-
ize an exception handling mechanism in agent organizations, by constraining the way in
which agents produce and consume accounts. The current proposal builds robustness on
top of a given distribution of responsibility, but we mean to extend the study to the cases
where responsibilities may change along time, either by effect of the received accounts
or due to external circumstances; e.g., an agent leaving the organization or a bottleneck
that is identified and solved by splitting some responsibilities among many agents. Another
future direction of work concerns the realisation of tools that can support the work of
actual organizations, like the mentioned UNDP, by combining accountability frameworks
with oversight policies. This case is more general than the one we have tackled because
accounts will often concern performances, and taking advantage of opportunities is also a
concern.

In software engineering, robustness is considered a key property of software systems
[40], and is usually gained by ensuring (at design time) that “exceptional” events will be
reported to those software components which have the means for handling them properly.
As pinned out in [45], traditional exception handling approaches, however, do not fit some
key characteristics of multiagent systems, like openness, heterogeneity, agent encapsula-
tion, and distribution. In particular, they usually assume that software components are col-
laborative, and that their code can be inspected while handling some given exception. But
introspection is often impossible when dealing with agents, and collaboration cannot be
given for granted. [45] suggests that an exception handling mechanism for multiagent sys-
tems should leverage both on the proactivity of agents, and on the environment in which
agents are situated. Nevertheless, a few authors faced the problem of modeling exceptions
in an agent-based system. Among them, [42] relies on commitment-based protocols, while
[35] proposes an obligation-based approach for exception handling in interaction protocols.
Some insight on how accountability and responsibility can support the realization of an
exception handling mechanism in a multiagent environment can be found in [4, 5, 14].

In [21, 22] the authors explain how, within Socio-Technical Systems, accountability
plays a fundamental role in balancing the principals’ autonomy: a principal can decide to
violate any expectation for which it is accountable, however, by way of accountability the
principal would be held to account about that violation.

Accountability is recognized as a value for developing software also in [24], where a
proposal complementary to ours is made. There, the authors focus on answer production
in presence of an accountability relationship, tacking questions: how to properly define the
temporal window to consider? Which pieces of information are relevant in this time inter-
val? Which questions are suitable to be asked in this setting? The account giving agent
produces an answer in terms of its internal mechanisms. The proposal, however, does not
provide the organizational view of the system of interacting agents and does not tackle
robustness and exceptions.

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 34 of 37

In [23], accountability enables the process of norms adaptation by feeding outcomes
back into the design-phase. In this approach, the account is a justification of an agent’s
norm-violating behavior. This is a different understanding of accounts than ours because,
for us, account givers are not rule violators: they meet perturbations, and provide informa-
tion about the encountered situations. The account takers, on their hand, will interpret the
received accounts – possibly combining them with further information provided by other
agents or that simply belongs to the callee’s level. The adaptation process in [23], that con-
sists in norm modification, however, can be seen as a kind of robustness. Our objective is
different: we do not target norm modification, but the achievement of the organizational
goal despite the occurrence of perturbations. The two approaches are not in contrast, rather,
they complement each other. They are both exemplifications of the perspective put forward
in [1], for which a property of a system is robust if it is invariant with respect to a set of
perturbations. The difference lies in the type of perturbations the two approaches aim at.

Finally, MOCA [9] provides an information model of accountability, that captures the
kind of facts that must be available to allow the identification of account-givers in certain
situation of interest. The model is given in Object-Role Modeling (ORM) [37] due to the
relational nature of the represented concepts, and enables automatic verification of consist-
ency The information model is centered around two basic concepts: just expectation and
control. Just expectation is intended as the mutual awareness and acceptance of an account-
ability relationships between the involved a-giver and a-taker. Control, instead, is intended
as the power, possibly exerted indirectly by means of other agents, of achieving a condition
of interest. The normative and structural dimensions of accountability, that characterize
our proposal, respectively capture these two features. Through the normative dimension,
agents are aware of the obligations they may be subjected as a-givers, and what permis-
sions they have as a-takers. The structural dimension, instead, grounds accountability rela-
tionships over an explicit assumption of responsibility by the agents, that we interpret as a
declaration of direct control.

References

 1. Alderson, D. L., & Doyle, J. C. (2010). Contrasting views of complexity and their implications for
network-centric infrastructures. IEEE Transactions Systems, Man, and Cybernetics - Part A: Systems
and Humans, 40(4), 839–852. https:// doi. org/ 10. 1109/ TSMCA. 2010. 20480 27.

 2. Aldewereld, H., Boissier, O., Dignum, V., Noriega, P. & Padget, J. (eds.): (2016). Social coordination
frameworks for social technical systems, Law, Governance and Technology Series, vol. 30. Springer
International Publishing https:// doi. org/ 10. 1007/ 978-3- 319- 33570-4

 3. Baldoni, M., Baroglio, C., Boissier, O., May, K.M., Micalizio, R. & Tedeschi, S. (2018)Accountability
and responsibility in agent organizations. In T. Miller, N. Oren, Y. Sakurai, I. Noda, B.T.R. Savari-
muthu, T. Cao Son (eds.) PRIMA 2018: Principles and Practice of Multi-Agent Systems - 21st Interna-
tional Conference, Tokyo, Japan, October 29 - November 2, Proceedings, Lecture Notes in Computer
Science, vol. 11224, pp. 261–278. Springer (2018). https:// doi. org/ 10. 1007/ 978-3- 030- 03098-8_ 16

 4. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R. & Tedeschi, S. (2021) Demonstrating Excep-
tion Handling in JaCaMo. In F. Dignum, J.M. Corchado, F. De La Prieta (eds.) Advances in Practi-
cal Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection - 19th
International Conference, PAAMS Salamanca, Spain, October 6-8, 2021, Proceedings, Lecture Notes
in Computer Science, vol. 12946, pp. 341–345. Springer (2021). https:// doi. org/ 10. 1007/ 978-3- 030-
85739-4_ 28

 5. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R. & Tedeschi, S. (2021). Distributing Responsi-
bilities for Exception Handling in JaCaMo. In U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.)
Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’21, pp. 1752–1754. IFAAMAS https:// doi. org/ 10. 5555/ 34639 52. 34642 26

https://doi.org/10.1109/TSMCA.2010.2048027
https://doi.org/10.1007/978-3-319-33570-4
https://doi.org/10.1007/978-3-030-03098-8_16
https://doi.org/10.1007/978-3-030-85739-4_28
https://doi.org/10.1007/978-3-030-85739-4_28
https://doi.org/10.5555/3463952.3464226

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 35 of 37 7

 6. Baldoni, M., Baroglio, C., Capuzzimati, F., & Micalizio, R. (2018). Type checking for protocol role
enactments via commitments. Journal of Autonomous Agents and Multi-Agent Systems, 32(3), 349–
386. https:// doi. org/ 10. 1007/ s10458- 018- 9382-3.

 7. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R. & Tedeschi, S. (2016) Computational account-
ability. In Proc. of the AI*IA Workshop on Deep Understanding and Reasoning, CEUR Workshop
Proceedings, vol. 1802, pp. 56–62. CEUR-WS.org

 8. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R. & Tedeschi, S. (2018). Computational Accounta-
bility in MAS Organizations with ADOPT. Applied Sciences 8(4) https:// doi. org/ 10. 3390/ app80 40489

 9. Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., & Tedeschi, S. (2019). MOCA: An ORM MOdel
for computational accountability. Journal of Intelligenza Artificiale, 13(1), 5–20. https:// doi. org/ 10.
3233/ IA- 180014.

 10. Baldoni, M., Baroglio, C. & Micalizio, R. (2020). Fragility and Robustness in Multiagent Systems. In
C. Baroglio, J.F. Hubner, M. Winikoff (eds.) Post-Proc. of the 8th International Workshop on Engi-
neering Multi-Agent Systems, EMAS 2020, Revised Selected Papers, no. 12589 in LNAI, pp. 61–77.
Springer, Auckland, New Zealand https:// doi. org/ 10. 1007/ 978-3- 030- 66534-0

 11. Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. (2020) Is explanation the real key factor for
innovation? In: C. Musto, D. Magazzeni, S. Ruggieri, G. Semeraro (eds.) Proceedings of the Italian
Workshop on Explainable Artificial Intelligence co-located with 19th International Conference of the
Italian Association for Artificial Intelligence, XAI.it@AIxIA 2020, Online Event, November 25-26,
CEUR Workshop Proceedings, vol. 2742, pp. 87–95. CEUR-WS.org http:// ceur- ws. org/ Vol- 2742/
short2. pdf

 12. Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. (2021). Reimagining robust distributed sys-
tems through accountable MAS. IEEE Internet Computing 25(6) https:// doi. org/ 10. 1109/ MIC. 2021.
31154 50

 13. Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. (2021). Robustness based on Accountability
in Multiagent Organizations. In U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.) Proceedings of
the 20th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, pp.
142–150. IFAAMAS https:// doi. org/ 10. 5555/ 34639 52. 34639 75

 14. Baldoni, M., Baroglio, C., Micalizio, R. & Tedeschi, S. (2022). Exception Handling as a Social Con-
cern. IEEE Internet Computing, https:// doi. org/ 10. 1109/ MIC. 2021. 31154 50

 15. Bauer, B., Müller, J., & Odell, J. (2001). Agent UML: A formalism for specifying multiagent software
systems. Software Engineering and Knowledge Engineering, 11(3), 207–230. https:// doi. org/ 10. 1142/
S0218 19400 10005 17

 16. Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., & Santi, A. (2013). Multi-agent oriented program-
ming with JaCaMo. Science of Computer Programming, 78(6), 747–761. https:// doi. org/ 10. 1016/j.
scico. 2011. 10. 004

 17. Boissier, O., Bordini, R.H., Hübner, J.F. & Ricci, A. (2019). Dimensions in programming multi-agent
systems. The Knowledge Engineering Review, 34 https:// doi. org/ 10. 1017/ S0269 88891 80000 5X

 18. Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming Multi-Agent Systems in Agent-
Speak Using Jason. USA: John Wiley & Sons.

 19. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–
236. https:// doi. org/ 10. 1023/B: AGNT. 00000 18806. 20944. ef

 20. de Brito, M., Hübner, J. F., & Boissier, O. (2017). Situated artificial institutions: stability, consistency,
and flexibility in the regulation of agent societies. Autonomous Agents and Multi-Agent Systems, 1–33.
https:// doi. org/ 10. 1007/ s10458- 017- 9379-3.

 21. Chopra, A.K. & Singh, M.P. (2014). The thing itself speaks: Accountability as a foundation for
requirements in sociotechnical systems. In IEEE 7th Int. Workshop RELAW. IEEE Computer Society
https:// doi. org/ 10. 1109/ RELAW. 2014. 68934 77

 22. Chopra, A.K. & Singh, M.P. (2016). From social machines to social protocols: Software engineering
foundations for sociotechnical systems. In Proceedings of the 25th International Conference on World
Wide Web, pp. 903–914 https:// doi. org/ 10. 1145/ 28724 27. 28830 18

 23. Chopra, A.K. & Singh, M.P. (2018). Sociotechnical Systems and Ethics in the Large. In: J. Furman,
G.E. Marchant, H. Price, F. Rossi (eds.) Proceedings of the 2018 AAAI/ACM Conference on AI, Eth-
ics, and Society, AIES 2018, New Orleans, LA, USA, February 02-03, 2018, pp. 48–53. ACM https://
doi. org/ 10. 1145/ 32787 21. 32787 40

 24. Cranefield, S., Oren, N. & Vasconcelos, W.W. (2018). Accountability for practical reasoning agents.
In: M. Lujak (ed.) Agreement Technologies - 6th International Conference, AT 2018, Bergen, Norway,
December 6-7, 2018, Revised Selected Papers, Lecture Notes in Computer Science, vol. 11327, pp.
33–48. Springer https:// doi. org/ 10. 1007/ 978-3- 030- 17294-7_3

https://doi.org/10.1007/s10458-018-9382-3
https://doi.org/10.3390/app8040489
https://doi.org/10.3233/IA-180014
https://doi.org/10.3233/IA-180014
https://doi.org/10.1007/978-3-030-66534-0
http://ceur-ws.org/Vol-2742/short2.pdf
http://ceur-ws.org/Vol-2742/short2.pdf
https://doi.org/10.1109/MIC.2021.3115450
https://doi.org/10.1109/MIC.2021.3115450
https://doi.org/10.5555/3463952.3463975
https://doi.org/10.1109/MIC.2021.3115450
https://doi.org/10.1142/S0218194001000517
https://doi.org/10.1142/S0218194001000517
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1017/S026988891800005X
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1007/s10458-017-9379-3
https://doi.org/10.1109/RELAW.2014.6893477
https://doi.org/10.1145/2872427.2883018
https://doi.org/10.1145/3278721.3278740
https://doi.org/10.1145/3278721.3278740
https://doi.org/10.1007/978-3-030-17294-7_3

 Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

7 Page 36 of 37

 25. Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Sci-
ence of Computer Programming, 20(1), 3–50. https:// doi. org/ 10. 1016/ 0167- 6423(93) 90021-G

 26. Dignum, V., Dignum, F., & Meyer, J. J. (2004). An agent-mediated approach to the support of knowl-
edge sharing in organizations. The Knowledge Engineering Review, 19(2), 147–174. https:// doi. org/ 10.
1017/ S0269 88890 40002 44

 27. Dignum, V., Vázquez-Salceda, J. Dignum, F. (2004). OMNI: introducing social structure, norms and
ontologies into agent organizations. In Programming Multi-Agent Systems, Second International
Workshop ProMAS, Selected Revised and Invited Papers, Lecture Notes in Computer Science, vol.
3346, pp. 181–198. Springer https:// doi. org/ 10. 1007/ 978-3- 540- 32260-3_ 10

 28. Dubnick, M.J. & Justice, J.B. (2004) Accounting for accountability. Annual Meeting of the American
Political Science Association

 29. Elder-Vass, D. (2011). The Causal Power of Social Structures: Emergence, Structure and Agency.
Cambridge: Cambridge University Press.

 30. Executive Board of the United Nations Development Programme and of the United Nations Population
Fund: The UNDP accountability system, accountability framework and oversight policy. Tech. Rep.
DP/2008/16/Rev.1, United Nations (2008)

 31. Feltus, C. (2014) Aligning access rights to governance needs with the responsability metamodel
(ReMMo) in the frame of enterprise architecture. Ph.D. thesis, University of Namur, Belgium

 32. Garfinkel, H. (1967) Studies in ethnomethodology. Prentice-Hall Inc.
 33. Goodenough, J. B. (1975). Exception handling: Issues and a proposed notation. Communication ACM,

18(12), 683–696. https:// doi. org/ 10. 1145/ 361227. 361230.
 34. Günay, A., Winikoff, M. & Yolum, P. (2012). Commitment protocol generation. In: M. Baldoni,

L.A. Dennis, V. Mascardi, W.W. Vasconcelos (eds.) Declarative Agent Languages and Technolo-
gies X - 10th International Workshop, DALT 2012, Valencia, Spain, June 4, 2012, Revised Selected
Papers, Lecture Notes in Computer Science, vol. 7784, pp. 136–152. Springer https:// doi. org/ 10. 1007/
978-3- 642- 37890-4_8

 35. Gutierrez-Garcia, J.O., Koning, J. & Ramos-Corchado, F. (2009). An obligation approach for excep-
tion handling in interaction protocols. In 2009 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology, vol. 3, pp. 497–500 https:// doi. org/ 10. 1109/ WI-
IAT. 2009. 334

 36. Hägg, S. (1997). A sentinel approach to fault handling in multi-agent systems. In Multi-Agent Systems
Methodologies and Applications, pp. 181–195. Springer Berlin Heidelberg

 37. Halpin, T., & Morgan, T. (2008). Information Modeling and Relational Databases. USA: Morgan
Kaufmann Publishers.

 38. Hart, H. L. A. (1968). Punishment and responsibility. Oxford: The Clarendon Press.
 39. Hubner, J. F., Sichman, J. S., & Boissier, O. (2007). Developing organised multiagent systems using

the MOISE+ model: Programming issues at the system and agent levels. International Journal of
Agent-Oriented Software Engineering, 1(3/4), 370–395. https:// doi. org/ 10. 1504/ IJAOSE. 2007. 016266

 40. ISO/IEC/IEEE: Systems and software engineering - Vocabulary (2017)
 41. López y López, F. & Luck, M. (2003). Modelling norms for autonomous agents. In 4th Mexican Inter-

national Conference on Computer Science (ENC 2003), 8-12 September 2003, Apizaco, Mexico, pp.
238–245. IEEE Computer Society https:// doi. org/ 10. 1109/ ENC. 2003. 12329 00

 42. Mallya, A.U. & Singh, M.P. (2005). Modeling exceptions via commitment protocols. In Proceedings of
the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
’05, pp. 122–129. ACM https:// doi. org/ 10. 1145/ 10824 73. 10824 92

 43. Micalizio, R., & Torasso, P. (2014). Cooperative monitoring to diagnose multiagent plans. Journal of
Artificial Intelligence Research, 51, 1–70. https:// doi. org/ 10. 1613/ jair. 4339

 44. Miller, R., & Tripathi, A. (2004). The guardian model and primitives for exception handling in dis-
tributed systems. IEEE Transactions on Software Engineering, 30(12), 1008–1022. https:// doi. org/ 10.
1109/ TSE. 2004. 106

 45. Platon, E., Sabouret, N. & Honiden, S. (2007). Challenges for exception handling in multi-agent sys-
tems. In Software Engineering for Multi-Agent Systems V, pp. 41–56. Springer https:// doi. org/ 10.
1145/ 11380 63. 11380 72

 46. Ricci, A., Piunti, M., Viroli, M. & Omicini, A. (2009). Environment Programming in CArtAgO, pp.
259–288. Springer US https:// doi. org/ 10. 1007/ 978-0- 387- 89299-3_8

 47. Romzek, B. S., & Dubnick, M. J. (1987). Accountability in the Public Sector: Lessons from the Chal-
lenger Tragedy. Public Administration Review, 47(3).

 48. Singh, M.P. (2003). Distributed Enactment of Multiagent Workflows: Temporal Logic for Web Ser-
vice Composition. In The Second International Joint Conference on Autonomous Agents & Multiagent

https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.1017/S0269888904000244
https://doi.org/10.1017/S0269888904000244
https://doi.org/10.1007/978-3-540-32260-3_10
https://doi.org/10.1145/361227.361230
https://doi.org/10.1007/978-3-642-37890-4_8
https://doi.org/10.1007/978-3-642-37890-4_8
https://doi.org/10.1109/WI-IAT.2009.334
https://doi.org/10.1109/WI-IAT.2009.334
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1109/ENC.2003.1232900
https://doi.org/10.1145/1082473.1082492
https://doi.org/10.1613/jair.4339
https://doi.org/10.1109/TSE.2004.106
https://doi.org/10.1109/TSE.2004.106
https://doi.org/10.1145/1138063.1138072
https://doi.org/10.1145/1138063.1138072
https://doi.org/10.1007/978-0-387-89299-3_8

Autonomous Agents and Multi-Agent Systems (2023) 37:7

1 3

Page 37 of 37 7

Systems, AAMAS 2003, July 14-18, 2003, Melbourne, Victoria, Australia, Proceedings, pp. 907–914.
ACM https:// doi. org/ 10. 1145/ 860575. 860721

 49. Singh, M. P. (2013). Norms as a basis for governing sociotechnical systems. ACM Transactions on
Intelligent Systems and Technology, 5(1), 21. https:// doi. org/ 10. 1145/ 25421 82. 25422 03

 50. Telang, P.R., Singh, M.P. & Yorke-Smith, N. (2011). Relating Goal and Commitment Seman-
tics. In Programming Multi-Agent Systems - 9th Int. Workshop, ProMAS, Revised Selected
Papers, Lecture Notes in Computer Science, vol. 7217, pp. 22–37. Springer https:// doi. org/ 10. 1007/
978-3- 642- 31915-0_2

 51. Telang, P. R., Singh, M. P., & Yorke-Smith, N. (2019). A coupled operational semantics for goals
and commitments. Journal of Artificial Intelligence Research, 65, 31–85. https:// doi. org/ 10. 1613/ jair.1.
11494

 52. Thangarajah, J., Harland, J., Morley, D.N. & Yorke-Smith, N. (2010). Operational behaviour for exe-
cuting, suspending, and aborting goals in BDI agent systems. In A. Omicini, S. Sardiña, W.W. Vascon-
celos (eds.) Declarative Agent Languages and Technologies VIII - 8th International Workshop, DALT
2010, Toronto, Canada, May 10, 2010, Revised, Selected and Invited Papers, Lecture Notes in Com-
puter Science, vol. 6619, pp. 1–21. Springer https:// doi. org/ 10. 1007/ 978-3- 642- 20715-0_1

 53. Winikoff, M., Padgham, L., Harland, J. & Thangarajah, J. (2002) Declarative & procedural goals in
intelligent agent systems. In D. Fensel, F. Giunchiglia, D.L.M. Guinness, M. Williams (eds.) Proc. of
the 8th Int. Conf. on Principles and Knowledge Representation and Reasoning (KR-02), pp. 470–481.
Morgan Kaufmann

 54. Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003). Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software Engineering Methodology, 12(3), 317–370. https:// doi.
org/ 10. 1145/ 958961. 958963

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1145/860575.860721
https://doi.org/10.1145/2542182.2542203
https://doi.org/10.1007/978-3-642-31915-0_2
https://doi.org/10.1007/978-3-642-31915-0_2
https://doi.org/10.1613/jair.1.11494
https://doi.org/10.1613/jair.1.11494
https://doi.org/10.1007/978-3-642-20715-0_1
https://doi.org/10.1145/958961.958963
https://doi.org/10.1145/958961.958963

	Accountability in multi-agent organizations: from conceptual design to agent programming
	Abstract
	1 Introduction
	2 Realizing accountable MAOs
	3 Formalizing the dimensions of accountability
	3.1 Accountable workflows
	3.2 Accountability lifecycle

	4 Robustness upon accountability
	5 Extending JaCaMo with accountability
	5.1 Encompassing accountability
	5.2 Interplay between goals and accountability

	6 Agent programming
	6.1 Information gathering
	6.2 Context-aware adaptation
	6.3 Exception handling

	7 Discussion and related works
	References

