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Abstract
We study the problem of exchange when agents are endowed with heterogeneous indivis-
ible objects, and there is no money. In this setting, no rule satisfies Pareto-efficiency, indi-
vidual rationality, and strategy-proofness; there is no consensus in the literature on satis-
factory second-best mechanisms. A natural generalization of the ubiquitous Top Trading 
Cycles (TTC) satisfies the first two properties on the lexicographic domain, rendering it 
manipulable. We characterize the computational complexity of manipulating this mecha-
nism; we show that it is �[�]-hard by reduction from MONOTONE WEIGHTED CIR-
CUIT SATISFIABILITY. We provide a matching upper bound for a wide range of pref-
erence domains. We further show that manipulation by groups (when parameterized by 
group size) is �[�]-hard. This provides support for TTC as a second-best mechanism. 
Lastly, our results are of independent interest to complexity theorists: there are few natural 
�[�]-complete problems and, as far as we are aware, this is the first such problem arising 
from the social sciences.

Keywords Top trading cycles · Parameterized complexity · Manipulation

1 Introduction

Gale’s Top Trading Cycles (TTC) is ubiquitous [37]. It is used extensively as a key 
building block for the design of mechanisms in real-life applications including kidney 
exchange, school choice, airplane arrival slots exchange, probabilistic assignment, and 
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mixed-ownership economies.1,2 For example, in the design of kidney exchange mecha-
nisms, the proposed Top Trading Cycles and Chains mechanism satisfies the usual desira-
ble axiomatic properties and features substantial welfare gains in terms of both number and 
quality of transplants compared to other mechanisms [35]. The mechanism loses its incen-
tive compatibility properties when moving to more general environments, though, and this 
is the setting of our paper.

Our precise setting is the problem of exchange between agents endowed with heteroge-
neous indivisible objects when there is no money. When each agent owns and eventually 
consumes one object, TTC is the unique mechanism satisfying Pareto-efficiency, individual 
rationality, and strategy-proofness, and selects the core allocation at each profile of prefer-
ences and endowments [24, 26, 34, 39, 44].3

Consider now the more general case in which each agent owns and consumes possi-
bly multiple objects. There are numerous applications to this type of model: Dual-donor 
kidney exchange, liver exchange, employee shift trading, and dynamic assignment mech-
anisms (i.e., a stream of assignments is a bundle indexed by time).4 Unfortunately, no  
mechanism satisfies all three properties [39], and there is no consensus on satisfactory 
second-best mechanisms. The frontier of viable mechanisms remains a relevant and open 
question with welfare implications.

Our paper contributes to this discussion. A natural generalization of TTC (which we 
will refer to also as TTC) satisfies Pareto-efficiency and individual rationality on the lexi-
cographic domain of preferences, rendering it manipulable. In this generalization, agents 
attempt to obtain their next most preferred available object and trade objects in cycles—
repeatedly until no objects are remaining.

We characterize the computational complexity of manipulating TTC. We argue that a 
parameterized complexity approach is appropriate: The size of endowments is a natural 
parameter that may remain bounded or grow much more slowly than the number of par-
ticipants. In general, the complexity of computational problems may depend heavily on 
parameters other than the total size of the input. Parameterized complexity thus offers a 
finer comparison of computational problems and reflects real-world constraints.5

Our main result is that the problem of manipulating TTC is �[�]-hard when param-
eterized by the size of the endowments (Theorem 3.1). Furthermore, we provide a match-
ing upper bound that holds for a large class of preference domains, including the additive 

3 An allocation is in the core if no group of agents would rather secede and trade amongst themselves. 
Strategy-proofness rules out beneficial manipulation by means of an agent misrepresenting their preference 
over objects.
4 See [6, 8, 15, 16, 20, 25]. These models typically add structure or constraints to the problem depending 
on the application at hand, but in essence feature agents exchanging multiple objects.
5 For example, see [17] for a parameterized complexity analysis of manipulation of sequential allocation 
when there are no endowments; and [7, 46] regarding manipulation of elections through voter control and 
bribery.

2 It also coincides with other well known solution concepts. In probabilistic assignment problems, ran-
domly endowing agents with objects and running TTC is equivalent to Random Serial Dictatorship [1]. For 
school choice, it coincides with a notion of competitive equilibrium [14].

1 In school choice, students have priorities at various schools instead of ownership, and TTC is the most 
fair strategy-proof and Pareto-efficient mechanism [2, 28]. The FAA’s mechanism for the exchange of air-
plane landing slots is improved upon by a variant of TTC [36]. For the more general “mixed-ownership” 
economies when some objects can be collectively owned, the three properties help characterize a TTC vari-
ant [40, 41]. Dropping individual rationality, the full class of Pareto-efficient and strategy-proof mecha-
nisms features agents trading objects in cycles [30, 33].
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domain (Theorem 4.1). Intuitively, as the market grows, even if agents’ endowments are 
below some finite bound, our result shows that manipulation of TTC is computationally 
difficult. We also consider group manipulability, wherein a number of agents can attempt 
to benefit by making a joint misreport to the mechanism. We show that TTC is �[�]-hard 
to manipulate by groups, when parameterized by the size of the group (Theorem 5.1). This 
does not follow directly from the previous result, but the proof technique is similar. These 
results give support to TTC as a candidate second-best mechanism satisfying Pareto-effi-
ciency and individual rationality (on the lexicographic domain).

The result is also of independent interest in computer science. To the best of our knowl-
edge, there are no known problems derived from social science applications known to be 
�[�]-complete. Natural problems that are complete for a given class are useful for reduc-
tions and help us understand the class. Populating parameterized complexity classes with 
problems from applications demonstrates the significance of parameterized complexity for 
practitioners.

We also remark that while the result is encouraging for TTC, complexity of manipu-
lation would be complementary to—as opposed to substituting for—other oft-considered 
large market properties such as asymptotic strategy-proofness where the benefit from 
manipulation vanishes as the market grows [5, 23].

1.1  Related literature

Responding to the incompatibility of Pareto-efficiency, individual rationality, and strategy-
proofness as shown by Sönmez [39], the literature has developed in several different direc-
tions. Closest to ours, Fujita et  al. [18, 19] show that in the conditionally lexicographic 
domain of preferences TTC selects from the core, implying Pareto-efficiency and indi-
vidual rationality, and is ��-hard to manipulate. When Pareto-efficiency is weakened to 
range-efficiency, Pápai [32] provides a characterization of the entire class of mechanisms 
(the “fixed-deal exchange rules” where possible exchanges are predetermined). Alterna-
tively, Sonoda et al. [42] and Sun et al. [43] cover several interesting domains where agents 
may have “tops-only”, m-chotomous, or correlated (referred to as asymmetric) preferences, 
and show the extent of compatibility as well as implications for single-valuedness of the 
core. If agents are restricted a priori to particular sets of trading partners, then compatibil-
ity may also be recovered [31, 45]. Finally, other authors also study tradeoffs in an environ-
ment where objects have types [21, 22, 27, 38].

2  Model

Let N  be a finite set of agents, and O be a finite set of objects. Each agent i ∈ N  has 
an endowment of objects 𝜔i ⊂ O . An endowment profile � = (�i)i∈N ∈ (2O)N  is a list of 
endowments for the agents such that 

⋃
i∈N �i = O , and for each i, j ∈ N  such that i ≠ j , 

it holds that �i ∩ �j = � . If � ∈ �i , then we say that agent i is the owner of � and that 
ow(�) = i . Each agent i ∈ N  has a preference relation Ri over subsets of objects; that is, 
Ri is a complete, transitive, and anti-symmetric binary relation over 2O . Let R be the set 
of all such preference relations. We denote the strict component of Ri by Pi , i.e. for each 
X, Y ⊆ O , it holds that X Pi Y  if and only if X Ri Y  and ¬Y Ri X . A preference profile 
R = (Ri)i∈N ∈ R

N  is a list of preference relations for the agents.
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An economy is a tuple E = (N,O,�,R) . An allocation z = (zi)i∈N ∈ (2O)N  for economy 
E is a list specifying for each agent a subset of objects, such that 

⋃
i∈N zi = O , and for each 

i, j ∈ N  such that i ≠ j , it holds that zi ∩ zj = � . Note that the endowment is an allocation. 
A rule � maps each economy E to an allocation for E . We denote by �i(E) the allocation of 
agent i under � at E ; if �(E) = z , then �i(E) = zi . We also refer to zi as an agent’s allocation.

Preference domains We define two natural subdomains of preference relations. An agent 
may prescribe for each object a utility level; subsequently, for each set of objects, their total 
utility is the summation of utilities over objects in the set. Formally, a preference relation 
Ri is additive if there is ui ∶ O → ℝ such that for each X, Y ⊆ O , it holds that X Ri Y  if and 
only if 

∑
�∈X ui(�) ≥

∑
�∈Y ui(�) . It is also possible that higher-ranked objects are worth 

significantly more than lower-ranked objects. In this case, in comparing two sets of objects, 
an agent first compares the respective top-ranked objects in each set, then the second... 
and so on, until one set contains a more preferred object. A special case of additivity is 
thus when Ri is lexicographic: for each X, Y ⊆ O , it holds that X Pi Y  if and only if there is 
� ∈ X ⧵ Y  such that for each � ∈ Y  with � Pi � , we have � ∈ X.6

For the remainder of the paper, we assume that all agents have lexicographic prefer-
ences. Note that in such preferences, the ordering over objects uniquely determines the 
ordering over sets of obects.7 Furthermore, no two orderings over objects induces the 
same ordering over sets of objects. Thus it is sufficient to focus on agents’ preferences 
over objects. We write Ri = (a, b, c,□) to mean that within objects, Ri prefers a above 
each other object, followed by b, followed by c, followed (in arbitrary order) by objects 
in �i ⧵ {a, b, c} , followed (in arbitrary order) by objects in O ⧵ (�i ∪ {a, b, c}).8 We write 
Ri = (a, b, c) to similarly mean that within objects Ri prefers a to b, b to c, and c to all other 
objects. Finally, if � Ri � for all � in some subset of objects O′ ⊆ O , we say that agent i 
topranks � in O′ (if O� = O we say simply that i topranks �).

Properties of rules Let E be an economy. Following standard notation we write (R�
i
,R−i) 

to be the preference profile obtained from R by replacing Ri with R′
i
≠ Ri . We say that R′

i
 is 

a misreport for agent i. Let E� = (N,O,�,R�
i
,R−i) ; a misreport R′

i
 is beneficial under � at E 

if �i(E
�) Pi �i(E) . A rule � is strategy-proof if for each economy E , no agent has a benefi-

cial misreport under � at E . We also consider manipulation by groups. For each M ⊆ N  , 
let R�

M
= (R�

i
)i∈M be a group misreport for group M , where for some i ∈ M , R′

i
≠ Ri . 

Let E� = (N,O,�,R�
M
,R−M) . A group misreport R′

M
 is beneficial under � at E if for each 

i ∈ M , it holds that �i(E
�) Ri �i(E) , and for some j ∈ M , it holds that �j(E

�) Pj �j(E) . A 
rule � is group strategy-proof if for each economy E , there is no group M ⊆ N with a ben-
eficial group misreport under � at E . These properties imply that no agent(s) have incentive 
to lie about their preferences even if they have full information about the preferences of the 
other agents. One trivial example of a group strategy-proof (and thus strategy-proof) rule 
is the “No Deal” rule—for each E , let �(E) = �—but this rule is suboptimal in terms of 
welfare as agents may benefit from trade. We say that an allocation z is Pareto-dominated 
at E if there is an allocation z′ for E such that for each i ∈ N  , it holds that z′

i
Ri zi , and for 

some j ∈ N  , it holds that z′
j
Pj zj . We say that an allocation is Pareto-efficient at E if it is 

8 Formally, 1) a Pi b Pi c , 2) for each x ∈ �i ⧵ {a, b, c} , it holds that c Pi x , and 3) for each each x ∈ �i , 
and each y ∈ O ⧵ (�i ∪ {a, b, c}) , it holds that x Pi y.

6 To see that any lexicographic Ri is additive, for each � ∈ O , let ui(�) = 2k(�) where 
k(�) = |{� ∈ O ∶ � Ri �}|.
7 For example, a Pi b Pi c implies that {a, b, c} Pi {a, b} Pi {a, c} Pi {a} Pi {b, c} Pi {b} Pi {c}.
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not Pareto-dominated at E , and that a rule is Pareto-efficient if for each economy E , it rec-
ommends an allocation that is Pareto-efficient at E . If an agent is worse off after the trade 
according to their own preference relation, then there is no incentive to take part. A rule is 
said to be individually rational if for each economy E , and each agent i ∈ N  , it holds that 
�i(E) Ri �i.

We give some examples of rules. The No Deal rule is individually rational and (group) 
strategy-proof, but not Pareto-efficient. The rule where for each economy, we give all of 
the objects to agent 1 is Pareto-efficient and (group) strategy-proof, but not individually 
rational. Finally, TTC is a rule that is Pareto-efficient and individually rational, but not 
(group) strategy-proof.

Graph theory A (directed) graph is a set V of vertices and a set E of edges which are 
ordered pairs of vertices. The edge (u, v) is said to start at u and end at v. If there is such an 
edge, then we say that u is a predecessor of v and that v is a successor of u. The in-degree 
of a vertex u, denoted in(u), is the number of edges that end at u; the out-degree, denoted 
out(u), is the number of edges that start at u. A source is a vertex of in-degree 0; a sink is a 
vertex of out-degree 0. A (directed) walk in a graph is a sequence (v1,… , vj) where vi is a 
vertex and (vi, vi+1) is an edge for 1 ≤ i < j . A path is a walk where no vertex is repeated. A 
cycle is a path plus an edge from vj to v1.

Top Trading Cycles We define the rule central to our study by means of an algorithm. In 
the first step, each agent points to their most preferred singleton object. If there is a cycle, 
then agents trade along that cycle. The process is repeated with the remaining agents and 
objects, until no agents remain. For the special case when each agent owns one object, the 
rule coincides with Gale’s TTC of [37].

Top Trading Cycles Algorithm
Input: An economy E = (N,O,�,R).
Output: An allocation z for E.

Initialize V1 = O . For each t ≥ 1:
Step t : 

1. Let Ht be the directed graph on Vt with an edge (�, �) in Et if and only if ow(�) 
topranks � in Vt.

2. If Vt is empty, then stop.
3. Otherwise, select an arbitrary cycle (�1, �2,… , �j) in Ht . 

(a) Add �1 to zow(�j) , and add �i+1 to zow(�i) for 1 ≤ i < j.
(b) Let Vt+1 = Vt ⧵ {�1,… , �j}.

We refer to Step t.3 in which the objects in the cycle (�1,… , �j) are allocated and removed, 
and the preference graph updated, as resolving the cycle (�1,… , �j) . To see that the order 
in which we resolve cycles doesn’t matter, observe that this is obvious when the endow-
ments are singletons (TTC is core-selecting [37]; the core is single-valued [34]). Inspecting 
the TTC protocol described above, we see that TTC does not distinguish between a sin-
gle agent with a multiple endowment and multiple agents with singleton endowments who 
happen to have the same preference relation. The allocation to the single agent in the for-
mer case is precisely the disjoint union of the allocations to the multiple agent in the latter. 
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Furthermore, all other agents’ allocations remain the same. Thus, after splitting all agents, 
we observe that the allocation is unique. This implies that any sequence of cycle selections 
results in the same allocation.9

Figure 1 gives an example of an economy with three agents, and shows the result of 
resolving one of its trading cycles. In this economy, N = {1, 2, 3} , �1 = {� , �} , �2 = {�} , 
�3 = {�} , R1 = (�, �,□) , R2 = (� , �, �,□) , and R3 = (� ,□) . We adopt the convention 
throughout the paper that a directed edge 

 between an object � and an object � indicates that, amongst the remaining objects in the 
economy, the owner of � prefers the object � to any other object. Similarly, 

 denotes second preference, 

 denotes third preference, 

 denotes fourth preference, and 

 denotes fifth preference. We only depict the preferences of an agent up to their endow-
ment and we may omit a loop (i.e. a directed edge from an object � to itself) for clar-
ity unless confusion may arise. We have included two additional examples of economies 
depicted in this way, and full descriptions of the steps of applying TTC in Figs. 10 and 11 
in the Appendix A.

We note that TTC is Pareto-efficient on the lexicographic domain, but not on the addi-
tive domain. To see this, consider an economy with two agents 1 and 2 in which �1 = {a} 
and �2 = {b, c} . Suppose that u1(a) = 4 , u1(b) = 3 , u1(c) = 2 , u2(a) = 10 , u2(b) = 2 , 

Fig. 1  In the economy on the left, the owner of � topranks � , whose owner topranks � , so (�, �) is a trading 
cycle. On the right we show the result of resolving the cycle

9 See also [4] where a weaker version of this property is referred to as splitting invariance.
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u2(c) = 1 . In this economy, TTC allocates each agent their own endowment; the total 
utility of the allocation to agent 1 is therefore u1(a) = 4 and the total utility to agent 2 is 
u2(b) + u2(c) = 3 . However, swapping bundles makes both better off: u1(b) + u1(c) = 5 and 
u2(a) = 10 . We remark that TTC is individually rational on both domains.

When each agent owns only one object, TTC is strategy-proof; however, when agents 
own multiple objects, it is not. In Fig. 1, when agent 1 reports the lie R�

1
= (�, �,□) , TTC 

assigns them {�, �} . Since � is ranked higher than � , agent 1 is better off and thus has a 
beneficial misreport.

In Fig. 2 we provide an example of a particular beneficial misreport. The intuition of the 
example will carry over into the proof of our main result. The idea is as follows: an agent 
ranks several “undesired” objects first in order to acquire more preferred objects later. 
There are two forces at play: Agent 1 has multiple opportunities to get � because � ranks 
two objects in the endowment of agent 1, so getting � can be delayed. Getting x1 and x2 first 
then “unlocks” the opportunity to get � [the path (�, y1, y2, e�)].

Since manipulation of TTC is possible, we next examine if computing a beneficial mis-
report is computationally tractable.

Computational complexity We are interested in the complexity of the following problem:

BENEFICIAL MISREPORT (BM)
INPUT: An economy E.
QUESTION: Does agent 1 have a beneficial misreport under TTC at E?

For simplicity’s sake, we always assume that agent 1 is the would-be liar. Since we are 
mainly interested in proving (conditional) lower bounds on the complexity of manipulat-
ing TTC, we focus on the decision version of the problem, which is ��-hard as shown 
by Fujita et al. [18]. Since the outcome of TTC depends only on the reported preferences 
over singletons, we may assume that the input to BM includes only a total ordering of 
the objects for each agent apart from agent 1. It is necessary to compare bundles in the 
consumption space according to the true preference of agent 1 in order to solve BM, and 
we assume that the preference of agent  1 comes in the form of an algorithm that takes 
f (k) ⋅ |E|O(1) computational steps to compare two bundles of size k, where |E| is the number 

Fig. 2  In this economy, agent 1 has a beneficial misreport. Agent 1 owns e1, e2, e� , and e� . Their true 
preference relation, not shown, is (�, �, e� , e� , e1, e2,□) . If agent 1 reports the truth, their allocation is 
{�, e� , e� , e2} . If they report (x1, x2, �, �,□) , then their allocation is {�, �, x1, x2}
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of bits needed to represent E and f is some computable function. We argue that this is a 
reasonable assumption. Choosing between two bundles of size k does not depend on the 
existence of alternative bundles, which implies the existence of an algorithm to compare 
bundles of size k whose runtime does not depend on the total size of the economy.

Parameterized complexity For a full treatment of the topic of parameterized complex-
ity, we refer the reader to the textbook by Downey and Fellows [13]. For completeness, we 
recall some important terminology and definitions.

We define a parameterized language to be a subset of Σ∗ × ℕ for some alphabet Σ . If 
(s, k) is a member of a parameterized language L we say that k is the parameter. An algo-
rithm that decides whether (s, k) is a member of L in time f (k) ⋅ |s|O(1) for some comput-
able function f is said to be an fpt-algorithm for L. The class of languages decidable by an 
fpt-algorithm is called ��� . We call the decision problem associated with a parameterized 
language a parameterized problem (these terms are commonly used interchangeably).

A reduction between (classical) decision problems Π1 and Π2 is an algorithm which takes 
a string s1 and produces a string s2 such that s1 is a yes-instance of Π1 if and only if s2 is a yes-
instance of Π2 . A problem Π is ��-hard if there is a special kind of resource-bounded reduc-
tion from any problem in �� to Π . There are several choices for the definition of this reduction; 
the reader unfamiliar with this concept is directed to, e.g., [29]. Proving that Π is ��-hard is a 
conditional lower bound for the run time of an algorithm that solves Π . An analogous notion 
of a reduction and a corresponding conditional lower bound exists in the parameterized set-
ting. An fpt-reduction between parameterized languages L1 and L2 is an algorithm which, for 
some computable functions f and g, takes (s1, k1) as input and, in time at most f (k) ⋅ |s1|O(1) , 
produces (s2, g(k1)) as output, such that (s1, k1) ∈ L1 if and only if (s2, g(k1)) ∈ L2.

The class �[1] contains ��� and can be defined as the set of parameterized languages 
that can be reduced, by an fpt-reduction, to the language associated with the following 
decision problem.

SHORT NONDETERMINISTIC TURING MACHINE HALTING
INPUT: A nondeterministic multitape Turing machine M.
PARAMETER: An integer k.
QUESTION: Is it possible for M to reach a halting state in at most k steps?

It is considered extremely unlikely that ��� = �[1] . A parameterized problem Π is 
�[1]-hard if every problem in �[1] can be reduced, by an fpt-reduction, to Π . The �[1]

-hardness of a given problem is evidence of its intractability. For example, the problem of 
deciding whether a given graph contains a clique of size k (that is, k vertices every pair of 
which is adjacent), parameterized by k, is �[1]-complete [12].

The class �[1] is the first level of the so-called �-hierarchy  of complexity classes: 
��� ⊆ �[1] ⊆ �[2] ⊆ … ⊆ �[t] ⊆ … ⊆ �[�] . We omit the technical definition of each 
level of the �-hierarchy but, for example, deciding the existence of a dominating set of 
size k, parameterized by the size of the solution, is a �[2]-complete problem. We are par-
ticularly interested in the class �[�] , which contains the class W[t] for all t. The following 
theorem gives a characterization of �[�] that we will make use of later.

Theorem 2.1 ([11] but see [9, 10]) A parameterized problem Π is in �[�] if and only if 
there exists a Turing machine M that decides Π such that, on input (x, k), M performs at 
most g(k)q(|x|) steps and at most g(k) log2 |x| nondeterministic steps, where g is a comput-
able function and q is a polynomial.
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To state the defining problem of �[�] , and the problem we will use to prove that BM 
is �[�]-hard when parameterized by the size of the endowment to agent 1, we introduce 
some notions from circuit complexity.

Boolean circuits A Boolean circuit C is a directed acyclic graph with one sink. We call 
the vertices of C gates and the edges wires. The sources of C , are labelled with Boolean vari-
ables x1,… , xn (or g1,… , gn ); we call these input gates. The sink, gN , is called the output 
gate. The remaining gates, denoted gn+1,… , gN−1 are called the internal gates. Each of the 
gates gn+1,… , gN is labeled ∨,∧ or ¬ . A ¬-gate must have in-degree 1, otherwise the degrees 
are unrestricted. For brevity, we omit the word “Boolean” and refer simply to “circuits”. An 
assignment to a circuit assigns Boolean values to the input gates. We denote Boolean truth 
by the symbol 1 and falsehood by 0. It is convenient to refer to an assignment as a subset X 
of the input gates, namely the subset that is assigned 1. We evaluate a circuit C at an assign-
ment X by assigning values to all of the gates recursively, according to their labels and to 
the assigned values of their predecessors. A ¬-gate whose predecessor is assigned the value 
b is assigned the negation of b, denoted by ¬b . An ∨-gate whose predecessors are assigned 
the values b1,… , bj is assigned the logical disjunction of these values. An ∧-gate whose 
predecessors are assigned the values b1,… , bj is assigned the logical conjunction of these 
values. The value assigned to gN is the output of C given the assignment X, denoted C(X) . If 
C(X) = 1 we say that X is satisfying and that X satisfies C . The size of X is called its weight.

WEIGHTED CIRCUIT SATISFIABILITY (WCSAT)
INPUT: A circuit C.
PARAMETER: An integer k.
QUESTION: Does C have a satisfying assignment of weight k?

A circuit with no ¬-gates is said to be monotone; such a circuit is depicted in Fig. 3. The 
WCSAT problem is �[�]-complete even when the input is restricted to monotone circuits 
[3]. We call this restricted problem MWCSAT.

Observation 2.2 If a monotone circuit has a satisfying assignment of weight at most k, 
then it has a satisfying assignment of weight exactly k.

We introduce the following terminology and a useful corollary of the previous observa-
tion. Let xi be an input gate of a monotone circuit C and let gj be a successor of xi . Let X 
be an assignment to C . We define an evaluation of C at X that is faulty on the wire (xi, gj) 
in the sense that gj is assigned a value as if xi were assigned 0, regardless of X. Formally, 

Fig. 3  A monotone circuit with 
two input gates
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if gj is an ∨-gate, then the value it is assigned is the logical disjunction of the values of its 
predecessors except that of xi ; if gj is an ∧-gate, it is assigned 0. We then proceed with the 
evaluation in the normal way, and denote the result by Ci,j(X) . We may extend the defini-
tion of a faulty evaluation to an arbitrary subset W of the wires starting at input gates, and 
denote the result by CW (X).

Observation 2.3 Let C be a monotone circuit, W be a subset of the wires starting at the 
input gates of C , and X be an assignment for C . Then, CW (X) = 1 implies C(X) = 1.

3  The main result

In this section, we state and prove our main result: BM is �[�]-hard.

Theorem 3.1 BM, parameterized by the size of the endowment, is �[�]-hard.

We prove the theorem by a reduction from MWCSAT. Let C be a monotone circuit and 
recall that we call its input gates x1,… , xn , its internal gates gn+1,… , gN−1 , and its output gate 
gN . We construct an economy EC with agent 1 having k+2 objects, such that agent 1 has a ben-
eficial misreport if and only if C has a satisfying assignment of weight k.

In order to clarify the proof, we describe the construction in two stages. First, in Sect. 3.1, 
we show how to construct an economy E′

C
 such that a weight-k satisfying assignment for C can 

be converted into a beneficial misreport for agent 1. Then, in Sect. 3.2 we show how to modify 
E
′
C
 to get the economy EC in which the converse holds.

3.1  Constructing economy E′
C

In both of our economies, agent  1 is endowed with k + 2 objects and every other agent is 
endowed with exactly one object. To simplify our notation, we identify each such agent with 
the object they own, whenever this can be done unambiguously. For example, when we say 
that � topranks � , we will mean that the owner of the object � topranks the object � . We repre-
sent the preference relations of all agents as a list of singletons.

We now describe the set of objects and agents in E′
C
 . Firstly, we include agent 1 and the 

objects in the endowment to agent 1; namely, �1 = {e1,… , ek, e� , e�} . For each input gate 
xi we add objects x1

i
,… , x

out(i)

i
 , and we say these objects represent xi ; to simplify our nota-

tion, we will write x∗
i
 instead of xout(i)

i
 . For each gate gp with n < p < N we add objects 

g1
p
,… , g

out(p)
p  and also h1

p
,… , h

in(p)
p  . Only the objects g1

p
,… , g

out(p)
p  are said to represent gp ; 

the remaining objects are called the auxiliary objects of gp . For the output gate gN , we add a 
special object y which represents gN in this case. We add auxiliary objects h1

N
,… , h

in(N)

N
 for gN 

just as for the other gates. Finally, we add objects �, �, � , �1,… , �k.
We will construct E′

C
 so that TTC allocates agent 1 the bundle {�, e� , e� , ek,… , e2} and, 

furthermore, that agent 1 will prefer a bundle B to this allocation if and only if both � and � are 
in B. Thus let

R1 = (�, �, e� , e� , ek, ek−1,… , e1,◻)
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be the preference relation of agent 1. The only good preferred by agent 1 to any good in 
the allocation is � . Since R1 is lexicographic, it is clear that agent 1 must obtain � and � to 
benefit from any misreport.

The key intuitive idea behind our construction is that if (say) {xi1 ,… , xik} is a satisfying 
assignment to C , then agent  1 can benefit by reporting R�

1
= (x∗

i1
,… , x∗

ik
, �, �,◻) . If 

{xi1 ,… , xik} is not a satisfying assignment, and agent 1 reports R′
1
 , then we want y and � to 

ultimately form a trading cycle when we run TTC; that is, agent 1 is unable to obtain � . On 
the other hand, if it is a satisfying assignment, we want that �1,… , �k and y are in trading 
cycles without � , so that the allocation of agent 1 will be {�, �, x∗

i1
,… , x∗

ik
} . We will show 

that if there exists a beneficial misreport for agent 1, then there exists one of the form R′
1
.

We now describe the preference relations of the other agents. In order to keep our nota-
tion simple, we refer to the agents by the name of their object. Since each agent, except 
agent 1, owns one object this will be unambiguous. Let

for each i ∈ {1,… , k} . These preference relations imply that the allocation to agent 1 when 
they report the truth R1 is as stated above: Observe that (�, � , e1) is a trading cycle. When 
this cycle is resolved, � topranks �1 and vice versa, creating a trading cycle; so � is not in 
the allocation for agent 1.

We now define the preferences of the agents owning objects representing xi . In the defi-
nitions below, gp is a successor of xi . According to some arbitrary ordering over the pre-
decessors and successors of each gate, gp is the jth successor of xi and, in turn, xi is the qth 
predecessor of gp . Let

We now describe the preferences of agents that represent internal gates and their auxiliary 
agents. See Fig. 4 for an example of the construction.

In the following definitions, gp is an ∧-gate with a predecessor gi (which may possibly 
be an input gate xi ) and a successor gw . The gate gi is the qth predecessor of gp , and gp is 
the jth successor of gi . The gate gw is the uth successor of gp , and gp is the vth predecessor 
of gw . Let

The preference relations of agents representing ∨-gates are similar. Now let gp be an  
∨-gate with a predecessor gi (which may possibly be an input gate xi ) and a successor gw . 

R� = (� ,◻),

R� = (� , �1,… , �k, y, e� ,◻),

R� = (e1,… , ek, e� ,◻), and

R�i
= (ei, �,◻)

R
x
j

i

= (𝛾1,… , 𝛾k, h
q
p
,◻) if j = 1 and

R
x
j

i

= (x
j−1

i
, hq

p
,◻) if j > 1.

Rh
q
p
= (g

j

i
, hq+1

p
,◻) if q < in(p),

Rh
q
p
= (g

j

i
, gout(p)

p
,◻) if q = in(p),

Rgu
p
= (h1

p
, hv

w
,◻) if u = 1, and

Rgu
p
= (gu−1

p
, hv

w
,◻) if 1 < u ≤ out(p).
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As before, gi is the qth predecessor of gp , gp is the jth successor of gi , gw is the uth succes-
sor of gp and gp is the vth predecessor of gw . Let

Finally we deal with the output gate gN . The preference relations of the auxiliary agents 
for gN are similar to those above, simply replace g1

N
 with y in the definitions (think of gN as 

a gate with one output, and y as a relabeling of g1
N

 ). The preference relation of y is simply 
(h1

N
, �,◻) if gN is an ∧-gate or (h1

N
,… , h

in(N)

N
, �,◻) if gN is an ∨-gate.

Figure 5 gives a full example of the construction in the case k = 1.10 The circuit cor-
responding to the economy in the figure is the circuit with two input gates x1 and x2 , and 
an output gate which is an ∧-gate. Agent  1 has k + 2 objects denoted by e� , e� and e1 , 
which are depicted as squares in the figure. If agent 1 tells the truth, then they are allocated 
{�, e� , e�} . The preferences of agent 1 are not shown in the figure, though, as the goal of 
agent 1 is to find a beneficial misreport if one exists. Note that the circuit has no satisfying 
assignment of weight  1, and that the misreports R�

1
= (x∗

1
, �, �,◻) and R��

1
= (x∗

2
, �, �,◻) 

are not beneficial. As x∗
1
= x1

1
 and x∗

2
= x1

2
 , these misreports give agent  1 {x1

1
, �, e�} and 

{x1
2
, �, e�} , respectively. We detail the steps of TTC for misreport R′

1
 in Appendix A.2.11

Rh
q
p
= (g

j

i
, gout(p)

p
,◻),

Rgu
p
= (h1

p
,… , hin(p)

p
, hv

w
,◻) if u = 1, and

Rgu
p
= (gu−1

p
, hv

w
,◻) if 1 < u ≤ out(p).

Fig. 4  Left: an ∧-gate gadget; Right: an ∨-gate gadget. In both cases the gate is g4 ; its predecessors are 
g1, g2 , and g3 ; its successors are g5 and g6 . It happens that g4 is the first successor of each of its predeces-
sors, and also the first predecessor of each of its successors

10 We also provide an additional example of this construction for a circuit with one internal gate in Appen-
dix A.1.
11 We also provide steps of TTC for a similar construction when the output gate is an ∨-gate, instead, in 
Appendix A.3.
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Note that there is a beneficial misreport for agent 1 in the depicted economy (and indeed 
any economy constructed as we have described). If agent 1 reports R���

1
= (y, �, �,◻) , then 

they are allocated {y, �, �} . We return to this issue in the next section. For now, we prove 
that the strategy of obtaining a set of objects corresponding to an assignment produces a 
beneficial misreport if and only if the assignment is satisfying.

Proposition 3.2 Let X = {xi1 ,… , xik} be an assignment to C and let R�
1
= (x∗

i1
,… , x∗

ik
, 

�, �,◻) be a misreport. Then R′
1
 is beneficial if and only if X is satisfying.

Proof We run TTC on E′
C
 with agent 1 misreporting R′

1
 . Intuitively, a particular (non-out-

put) gate in C has value 1 in the evaluation of the assignment if and only if the objects 
representing the gate are traded in the same cycle. Once all the objects representing a gate 
are traded we say that the gate is fixed. If all the objects representing a gate were traded in 
the same cycle, we will say that the gate is fixed with value 1, and with value 0 otherwise. 
Recall that we may choose the order in which to resolve cycles. We first resolve cycles 
including objects representing input gates. After dealing with the input gates, we deal with 
gates whose predecessors are all fixed.

In the initial preference graph, there is just one trading cycle (e1, x∗i1 ,… , x1
i1
, �1) . We 

resolve this cycle, and fix xi1 with value 1. The updated preference graph contains several 

Fig. 5  The economy E′
C
 where C is the circuit with one ∧-gate g3 and two input gates x1 and x2 , with k = 1 

(agent 1 has endowment size k + 2 = 3) . The true preference of agent 1, not shown, is (�, �, e� , e� , e1)
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trading cycles; we proceed by resolving the cycle (ej, x∗ij ,… , x1
ij
, �j) and fixing xij with 

value 1 for j = 2,… , k . At the end of this process, each gate in X is fixed with value 1.
Now, for each gate xi that is not in X, there is a trading cycle (x1

i
, h

q
p) , where gp is the 1st 

successor of xi , and xi is the qth predecessor of gp . We resolve this cycle, and update the 
preference graph. There is now a trading cycle (x2

i
, h

q�

p�
) , where gp′ is the 2nd successor of 

xi , and xi is the q′ th predecessor of gp′ . Resolving this cycle and repeating for the remaining 
successors of xi , we then fix xi with value 0. We do the same for all the input gates outside 
of X, and so all of the input gates are fixed.

We continue by fixing any ∧-gate whose predecessors were all fixed. Let gp be such a 
gate; we show that gp is fixed with value 1 if and only if all its predecessors were fixed with 
value 1. Suppose first that each predecessor was fixed with value 1. Let the qth predeces-
sor of gp be gj ; since it was fixed with value 1 the objects representing it were traded in the 
same cycle. In particular, if gp is the � th successor of gj , the object g�

j
 was traded in the 

cycle with g1
j
,… , g

out(j)

j
 and not with hqp . Therefore, hqp is in the current preference graph, 

and currently topranks hq+1p  , unless q = in(p) , in which case it topranks gout(p)p  . Thus there 
is a trading cycle (gout(p)p ,… , g1

p
, h1

p
,… , h

in(p)
p ) . We resolve this cycle, fixing gp with value 1 

as required. Now suppose that j′ is the smallest integer such that the predecessor gj′ was 
fixed with value 0, and suppose that gj′ is the q′ th predecessor of gp . Then the objects rep-
resenting gj′ were not traded in the same cycle. We claim that (g��

j�
, h

q�

p ) was a trading cycle 
already resolved in a previous step of TTC. Indeed, if gj′ was in fact an input gate, then this 
follows from the previous paragraph. Since there must be a gate all of whose predecessors 
are input gates, the claim will follow by induction. Since hq

′

p  has been traded, (hq
�−1

p ) is a 
trading cycle in the current preference graph, which we resolve. After repeating this step 
q
�−1 times, h1

p
 is traded. Suppose the first successor of gp is gr and gp is the sth predeces-

sor of gr . Then g1
p
 topranks hs

r
 in the current preference graph, since h1

p
 was traded. Since 

hs
r
 topranks g1

p
 by definition, there is a trading cycle (g1

p
, hs

r
) . Resolving this cycle completes 

the induction to give the claim. Thus, the objects representing gp are not traded in the same 
cycle, which is what we wanted: gp is fixed with value 0.

The procedure is similar for ∨-gates. Let gp be such a gate; we show that gp is fixed 
with value 0 if and only if all its predecessors were fixed with value 0. Suppose first that 
each predecessor was fixed with value 0. Let the qth predecessor of gp be gj , and suppose 
gp is the � th sucessor of gj . By the same inductive reasoning as in the previous paragraph, 
we may assume that (g�

j
, h

q
p) was a trading cycle resolved in a previous step. Let the first 

successor of gp be gr and suppose that gp is the sth predecessor of gr . Then g1
p
 topranks 

hs
r
 in the current preference graph, since h1

p
,… , h

in(p)
p  were removed. Since hs

r
 topranks g1

p
 

by definition, there is a trading cycle (g1
p
, hs

r
) . After resolving this cycle, we see that the 

objects representing gp are not traded in the same cycle, which is what we wanted: gp is 
fixed with value 0. Now let j′ be the smallest integer such that the predecessor gj′ was fixed 
with value 1, and suppose that gj′ is the q′ th predecessor of gp . Then the objects represent-
ing gj′ were traded in the same cycle. As in the previous paragraph, hq

′

p  is in the current 
preference graph, but since gp is an ∨-gate, hq

′

p  topranks gout(p)p  . Thus there is a trading cycle 
(g

out(p)
p ,… , g1

p
, h

q�

p ) . We resolve this cycle, fixing gp with value 1 as required.
After repeating the above for all gates, we may observe that, if X is satisfying, then gN 

will be fixed with value 1, and the object y was in a cycle with its auxiliary objects and not 
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in the remaining preference graph. Otherwise, y will be fixed with value 0, and there will 
be a trading cycle (y, �) , which will prevent agent 1 from getting �.

To complete the proof, we consider � and � . Since each of the objects in the endowment 
to agent 1 has been traded, � topranks e� . Agent 1 now topranks � , so there is a trading 
cycle (�, � , e�) . We resolve this cycle, which adds � to the allocation to agent 1 as required. 
Consider the current preference graph. Since � was traded when the previous cycle was 
resolved, � topranks e� if and only if y was already traded. Therefore, if X is satisfying, we 
will have a trading cycle (�, e�) and resolving it will add � to the allocation to agent 1. Oth-
erwise, we will have a trading cycle (�, y) and the allocation of agent 1 does not include � . 
This completes the proof that R′

1
 is beneficial if and only if X is satisfying.   ◻

We have proved that if C has a satisfying assignment of weight k then agent  1 
has a beneficial misreport in E

′
C
 . However, the converse may not hold. Indeed 

R��
1
= (y, �2,… , �k, �, �,◻) is a beneficial misreport for E′

C
 for any C and thus the main 

theorem is not yet proved. Before we overcome this difficulty, we make the following 
observation.

Observation 3.3 Let X = {xi1 ,… , xik} be an assignment to C . For each j ∈ {1,… , k} , let 
�j ∈ {�j, x

1
ij
,… , x∗

ij
} , and let R�

1
= (�1,… , �k, �, �,◻) . Then if R′

1
 is beneficial so is 

R��
1
= (x∗

i1
,… , x∗

ik
, �, �,◻).

Proof By Proposition 3.2, running TTC with R′′
1
 is equivalent to evaluating C at the assign-

ment X = {xi1 ,… , xik} . Running TTC with R′
1
 is equivalent to a faulty evaluation of C at X, 

with some faulty wires starting at input gates. The claim follows from Observation 2.3.  
 ◻

3.2  Constructing economy EC

In order to complete the proof of Theorem 3.1, we modify E′
C
 to obtain the final construc-

tion EC . Let the circuit structure of E′
C
 be the set of objects representing gates, the set of 

auxiliary objects, and the preference relations of their respective owners. In the previous 
section, we observed that it is possible for agent 1 to destroy the circuit structure in E′

C
 , e.g., 

by topranking y, so that running TTC is not equivalent to evaluating some assignment to 
C . We will show how to prevent this outcome by duplicating the circuit structure in E′

C
 k+1 

times.
For each object in the circuit structure of E′

C
 we include k+1 copies in EC . We distinguish 

these copies by adding a label from 1 to k+1 to their subscripts. For instance, the copies of 
g
j

i
 are denoted gj

i,1
,… , g

j

i,k+1
 . The copies of the output gates are denoted y1,… , yk+1 . We 

will use x∗
i
 to denote only the last copy of xout(i)

i
 ; that is, x∗

i
= x

out(i)

i,k+1
.

We now describe the preference relations of the copies. For the � th copy of the objects 
representing an internal gate or any auxiliary object (including those of the output gate), we 
obtain a preference relation from that of its original in E′

C
 by adding � to the subscript and 

putting all objects that are not in the � th copies after itself. Similarly, Ry𝓁
= (h1

N,𝓁
, �,□) if 

gN is an ∧-gate and Ry𝓁
= (h1

N,𝓁
,… , h

in(N)

N,𝓁
, �,□) if gN is an ∨-gate.

We treat the copies of objects representing input gates differently. The first copy of x1
i
 

has a similar preference relation to its original, but the � th copy topranks the �−1 th copy 
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of xout(i)
i

 . The copies of xj
i
 for j > 1 have similar preference relations to their originals, the 

effect of which is that all the copies of all the objects representing the input gate xi form a 
directed path in the graph of first preferences. As in the original definitions, in what follows 
gp is a successor of xi . In particular, it is the jth successor of xi and xi is the qth predecessor 
of gp . Let

An example of the result of this duplication process is given in Fig. 6.
The final modification that we make is to change the preference relation of � to 

R� = (� , �1,… , �k, y1,… , yk+1, e� , �,◻).

Proof of Theorem 3.1 Let C be a monotone circuit and EC be the economy obtained from E′
C
 

by the modifications described above. We will show that C has a satisfying assignment of 
weight k if and only if agent 1 has a beneficial misreport in EC . Furthermore, EC can be con-
structed in time g(k) ⋅ |C| . We will conclude that there is a parameterized reduction from 
MONOTONE WCSAT to BM, as required.

R
x
j

i,1

= (𝛾1,… , 𝛾k, h
q

p,1
,◻) if j = 1,

Rx1
i,�
= (x

out(i)

i,�−1
, h

q

p,�
,◻) if 1 < � ≤ k + 1, and

R
x
j

i,�

= (x
j−1

i,�
, h

q

p,�
,◻) if j > 1&1 ≤ � ≤ k + 1.

Fig. 6  The economy EC where C = x1 ∧ x2 , as in Fig. 5, in which k = 1 . Here, k = 5 , chosen to illustrate the 
general construction. We omit the objects � , � , � , e� , and e� for clarity
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Let X = {xi1 ,… , xik} be an assignment for C.

Claim 3.4 R�
1
= (x∗

i1
,… , x∗

ik
, �, �,◻) is a beneficial misreport for agent 1 in EC if and only if 

R′
1
 is beneficial for agent 1 in E′

C
.

The above claim follows by the construction of EC . To see this, consider the first step of 
TTC for this economy. As x∗

i1
= x

out(i1)

i1,k+1
 , the only cycle that forms is

Note then that for each copy of the circuit structure, the respective input gate xi1 takes  
value 1 (i.e. for copy � < k + 1 , the objects {xout(i1)

i1,�
,… , x1

i1,�
} are in the cycle as in Proposi-

tion 3.2).12 A symmetric statement holds for each other input gate {xi2 ,… , xik} . After we 
resolve each such trading cycles, we can run TTC in any of the copies of the circuit struc-
ture independently of the others in a way that is identical to the proof of Proposition 3.2. 
As a corollary, if C has a satisfying assignment of weight k then agent 1 has a beneficial 
misreport in EC as required.

We must show that if there is some beneficial misreport for agent 1, then there is a satis-
fying assignment for C of weight k. Let R′

1
 be such a misreport, and consider running TTC 

on EC with agent 1 misreporting R′
1
 . We define a corresponding assignment for C later. Let 

A = {�, �, �1,… , �k} be the allocation of agent 1 when they report R′
1
 . We may assume that 

the first k+2 objects in R′
1
 coincide with A; therefore, for each object � ∈ O ⧵ A , and each 

�� ∈ A , we have that �′ R′
1
� . We may also assume, without loss of generality, that �j R�

1
�j+1 

for all j. We make the following useful observations about A and R′
1
 : Agent i cannot simul-

taneously obtain objects a ∈ A and � , and in order to obtain A, agent i must report a certain 
order of objects.

Observation 3.5 � ∉ A.

Proof Since � topranks � , they are either traded in the same cycle or � is traded before � . If 
� is traded before � then (�) will be a trading cycle, and the owner of � retains � . So � ∉ A , 
a contradiction.   ◻

Observation 3.6 � R′
1
�.

Proof If � R′
1
� , then since � topranks � , we have that � is necessarily traded before � . Then 

the argument in Observation 3.5 applies.   ◻

Observation 3.7 �i R′
1
� for 1 ≤ i ≤ k.

Proof Let i be the smallest integer such that � R′
1
�i . By construction, the trading cycle 

containing � must be (�, � , ei) . After removing this cycle, (�, �i) is a trading cycle, which is 
a contradiction to � ∈ A .   ◻

(e1, x
out(i1)

i1,k+1
,… , x1

i1,k+1
, x

out(i1)

i1,k
, x

out(i1)−1

i1,k
,… , x1

i1,1
, �1).

12 For intuition, see Fig. 6. There, if agent 1 topranks x1
1,6

 , then {x1
1,6
,… , x1

1,1
} are included in the first trad-

ing cycle. Thus, for each of the six copies, the respective objects representing input gate x1 are removed. 
This indicates that input gate x1 takes value 1 in each copy.
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The above observations show that R′
1
 takes the form (�1,… , �k, �, �,◻) and that each 

�j is in some copy of the circuit structure (or �j = �j , although we will see below that this 
effectively represents giving a lower weight assignment to C ; in this case the result will fol-
low from Observation 2.2). Figure 8 in Appendix A.1 provides a reference example econ-
omy for which the reasoning of Observation 3.7 can be applied.

Intuitively, agent 1 makes k trading cycles each in some copy of the circuit structure 
of EC representing the circuit, and then tries to get � and � . Since there are k+1 copies 
of the circuit structure, there is at least one copy where �1,… , �k are not objects in the 
circuit structure. In this copy, the trading cycles including its objects only interact with 
input gates. Thus, its circuit structure is preserved, and agent 1 needs to avoid a trad-
ing cycle between its copy of y and � . We describe formally how to extract a satisfying 
assignment of weight k from this interaction below.

We apply TTC according to the following ordering of the trading cycles. For 
each j = 1,… , k , we remove the trading cycle Cj containing �j and ej and update the 
preference graph. We call these the initial cycles. There are at most k input gates xi 
such that some copy of some object representing xi has been removed. We call these 
X = {xi1 ,… , xik� } where k′ ≤ k . Our goal is to prove that X is a satisfying assignment 
for C . By Observation 2.2, it will follow that C has a satisfying assignment of weight 
exactly k.

In order to achieve our goal, we continue our application of TTC in EC with agent  1 
reporting R′

1
 . Observe that there must be some z with 1 ≤ z ≤ k+1 such that none of the zth 

copies of the objects representing internal gates and auxiliary objects have been removed. 
As we remove trading cycles representing zth copies of objects, we fix the value of the 
gates similarly to the proof of Proposition 3.2. Let xi be a gate not in X, and consider the 
object x1

i,1
 . Since �1,… , �k have been removed, and x1

i,1
 has not, there is a trading cycle 

(x1
i,1
, h

q

p,1
) where the first successor of xi is the qth predecessor of gp . If z ≠ 1 , we remove 

this cycle, and then there is a trading cycle (x2
i,1
, h

q�

p� ,1
) which we remove, and so on up to 

(x
out(i)

i,1
, h

q��

p��,1
) . Now there is a trading cycle (x1

i,2
, h

q

p,2
) which we remove. We continue this 

process until we reach x1
i,z

 . When we resolve the cycles (x1
i,z
, h

q
p,z),… , (x

out(i)

i,z
, h

q��

p��,z
) we fix 

the gate xi with value 0 (much as we did in the proof of Proposition 3.2). We repeat this 
process for each xi ∉ X.

Now consider a gate xi ∈ X (in other words i ∈ {i1,… , ik} ) and consider the zth cop-
ies of the objects representing xi . There are three cases to consider. If all the objects 
x1
i,z
,… , x

out(i)

i,z
 were removed in the same initial cycle, then we can simply fix xi with value 1 

and continue. If none of the objects x1
i,z
,… , x

out(i)

i,z
 have been traded (in other words, if 

an initial cycle removed xq
i,�
,… , x1

i,�
, x

out(i)

i,�−1
,… , x1

i,�−1
,… , x

out(i)

i,1
,… , x1

i,1
 for some q and 

for some � < z ) then we can fix xi with value 0 and repeat the above process, eventually 
resolving (x1

i,z
, h

q
p) where the first successor of xi is the qth predecessor of gp , and so on. 

In the third case, some of the objects x1
i,z
,… , x

out(i)

i,z
 have been traded and some have not. 

Note that this can only happen if �j = xr
i,z

 for some j and r so that there was an initial cycle 
(ej, x

r
i,z
, xr−1

i,z
,… , x1

i,z
, x

out(i)

i,z−1
,… , x1

i,1
, �j) . In this case we fix xi with value 1, but now we have 

a trading cycle (xr+1
i,z

, h
q
p,z) , where gp is the r + 1 th successor of xi , and xi is the qth predeces-

sor of gp . When we resolve this cycle, we will say that gp received the value 0 from xi , and 
that the wire from xi to gp is faulty. We repeat this process for each r′ from r + 1 to out(i). It 
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will follow that continuing to run TTC in the zth copy of the circuit structure is equivalent 
to a (possibly faulty) evaluation of the assignment X.

Consider a gate gp all of whose predecessors are input gates. Following the proof of 
Proposition  3.2, if gp is an ∧-gate, then there will be a trading cycle (h1

p,z
,… , h

in(p)
p,z , 

g
out(p)
p,z ,… , g2

p,z
, g1

p,z
) only if each predecessor of gp was assigned the value 1. Similarly, if 

gp is an ∨-gate, there will be a trading cycle (hi
p,z
, g

out(p)
p,z ,… , g2

p,z
, g1

p,z
) only if at least one of 

the predecessors of gp was assigned the value 1; namely, its ith predecessor. The rest of the 
proof is identical to Proposition 3.2. Since R′

1
 is beneficial, eventually (�, e�) is a trading 

cycle. Therefore, (yz, �) is never a trading cycle; in other words, the output gate gN must be 
fixed with value 1 after we run TTC. We conclude that X is a satisfying assignment for C.

It remains only to justify that the construction of EC can be performed in g(k) ⋅ |C|O(1) 
steps for some computable function g; that is, the reduction described above is truly an 
fpt-reduction. For each of the N gates of C , at most N objects and agents are created in 
E
′
C
 , each with a preference relation that is a list of objects of length at most k+2 . We 

duplicate these k+2 times in EC . This takes at most f (k) ⋅ O(N2 log2 N) time for some 
computable f. Agent 1 has k+2 objects and a preference relation of length k+4 . There 
are k+3 remaining objects and agents which each have a preference relation of length at 
most k+4 . Constructing these objects and agents takes f �(k) ⋅ O(log2 N) time for some 
computable f ′ . Combining the above shows that the reduction takes g(k) ⋅ |C|O(1) steps as 
required.   ◻

4  The upper bound

In this section, we show that BM is a member of �[�] and is thus �[�]-complete.

Theorem 4.1 BM is �[�]-complete.

Proof Let E = (N,O,�,R) be an economy. We show that there exists a Turing machine M 
that decides the existence of a beneficial misreport in E that performs at most g(k)q(|E|) 
steps and at most g(k) log2 |E| nondeterministic steps, for some computable g and polyno-
mial q. By Theorem 2.1, this gives the upper bound that matches the lower bound of the 
previous section, and thus the result.

Our proof relies on the fact that a beneficial misreport for an agent with an endowment 
of size k has a canonical form that takes O(k⌈log2 �O�⌉) bits to specify. To prove this claim, 
it is necessary to fix a precise order in which cycles are removed by the TTC algorithm. 
In particular, for each economy E we fix a total ordering over the set of its objects O . We 
can thus refer to the first object in O . Observe that for each object � in Vt there is a unique 
directed walk with no repeated edges starting at � ; we call this the trading walk starting at 
� . Since every element of Vt has outdegree 1, this walk must contain a cycle. We define the 
cycle chosen to be resolved in Step t.3 of the TTC algorithm to be the one contained in the 
trading walk starting at the first object in Vt . We can now define the trading time ttE(�) of 
an object � in a run of TTC on E to be the least integer t such that � ∈ Vt ⧵ Vt+1 . When the 
economy is unambiguous, we write tt(�) = ttE(�) . The following observation says that, if 
an agent i receives an object � at a particular step, then all objects that are preferable to � 
under Ri must have had an earlier trading time.
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Observation 4.2 Let E be an economy, i ∈ N  be an agent, and z be the allocation that TTC 
recommends for E . For each � ∈ zi , and each � ∈ O ⧵ {�} , if � Pi � , then tt(𝛼) < tt(𝛽).

We are now ready to show that every beneficial misreport is equivalent to one that can 
be specified efficiently, in the sense that they yield the same allocation. In particular, the 
following claim shows that it is enough to guess the first k objects of a beneficial misreport.

Claim 4.3 Suppose the allocation of agent  1 under TTC at (R�
1
,R−1) is z1 = {�1,… , �k} 

and that �i R�
1
�i+1 for 1 ≤ i < k . Let R��

1
= (�1,… , �k,◻) . Then the allocation of agent 1 at 

(R��
1
,R−1) is also z1.

Proof Let E′ and E′′ be the (otherwise identical) economies in which agent 1 reports R′
1
 and 

R′′
1
 respectively. For t = 1, 2,… let H′

t
 and H′′

t
 be the graphs generated by running TTC on 

E
′ and E′′ respectively. Let tt�(�) and tt��(�) be the trade times of � during a run of TTC on E′ 

and E′′ respectively. By Observation 4.2, tt�(𝛾1) < tt�(𝛾i) and tt��(𝛾1) < tt��(𝛾i) for 1 < i ≤ k . 
Consider H�

tt�(�1)
 . None of the cycles that were resolved to obtain H�

2
,… ,H�

tt�(�1)−1
 have 

included any of �1,… , �k . Therefore we may assume without loss of generality that the 
same cycles are resolved to obtain H��

2
,… ,H��

tt��(�1)−1
 and thus H��

tt��(�1)
 and H�

tt�(�1)
 are identi-

cal. Since �1 is allocated to agent 1 in E′ , it must also be allocated to agent 1 in E′′ . The 
claim follows by induction.   ◻

Observe that TTC runs in polynomial time since in each step we reduce the total num-
ber of objects by at least one. In particular, there exists a Turing machine MTTC that runs 
in time O(|E|c) for some constant c, takes as input a binary string representing the list of 
preferences over singletons of each agent, and returns an allocation by running TTC on the 
economy given by that string. Our Turing machine M will use MTTC as a subroutine. We 
omit the details but M has three phases.

Phase 1 In this phase, M prepares an input string for MTTC . First, M nondeterministi-
cally writes a binary string representing an ordered list of k objects onto one of its tapes, 
which is the beginning of R′

1
 . Since there are |O| objects in total, this string has length 

O(k⌈log2 �O�⌉) . The rest of R′
1
 can be prepared deterministically by ordering the remain-

ing objects by their representation as a binary string. Finally the rest of the input to 
MTTC is prepared by writing the preferences of the other agents.
Phase 2 In this phase, M runs MTTC on the input written on the tape in the previous 
phase, and also on the true preferences. It writes the true allocation A and the allocation 
A′ under R′

1
 on one of its tapes.

Phase 3 In this phase, M compares A and A′ according to R1 . If A′ R1 A , then M accepts. 
Otherwise, M rejects.

Phase 1 uses O(k⌈log2 �O�⌉) nondeterministic steps; in particular, it takes no more than 
g(k) log2 |E| bits of nondeterminism. By Claim 4.3 a beneficial misreport will be guessed 
in Phase 1 if one exists. Listing the remaining elements to complete the construction of R′

1
 

in the deterministic part of Phase 1 takes linear time. Phase 2 takes polynomial time by the 
definition of MTTC , and Phase 3 takes polynomial time by the definition of BM. Therefore 
M fulfils the requirements of Theorem 2.1 as required.   ◻
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5  Group manipulation

Consider now the possibility of manipulation by a group of agents. For intuition, we depict a 
scenario in Fig. 7 that extends upon that of Fig. 2. Now, instead of only one agent who must 
obtain an undesirable object to get a more desirable one, we have two agents who each must 
obtain an undesirable object for each of them to get their respective more desirable objects. 
In general, a group misreport may consist of agents in the group who simply state their true 
preference. Thus, in this scenario, if there is a third agent who benefits even if they state 
their true preference, then there is also a beneficial group misreport for the three agents.

Formally, we consider the following problem:

GROUP MANIPULATION (GM)
INPUT: An economy E , an integer m.
QUESTION: Do agents 1,… ,m have a beneficial group misreport under TTC at E?

The natural parameters for GM are the size of the group and the size of the union 
of the endowments of the group. If we parameterize GM by the latter, then we obtain 
a �[�]-hard problem as a corollary of our main result. If the number of manipulating 
agents is not part of the parameter, we can choose its size in the definition of the reduc-
tion. Thus the group can be of size one, and the exact same construction works.

We now adapt the proof of Theorem 3.1 to show that GM, parameterized by the size 
of the group k, is �[�]-hard. In that proof, agent 1 had to obtain k unwanted objects in 
order to obtain a preferred bundle. Those k choices corresponded to choosing an assign-
ment of weight k to a circuit. We adapt this idea by dividing the k choices among the 
manipulating agents. The agents each must obtain one unwanted object. Their choices 
will collectively correspond to an assignment of weight k to a circuit. As in Theo-
rem 3.1, they will benefit if and only if they are able to find a satisfying assignment.

Theorem 5.1 GM, parameterized by the size of the manipulating group, is �[�]-hard.

Fig. 7  Agent 1 owns {e� , e0, e�} and agent 2 owns {e�
�
, e�

0
, e�

�
} . Let R1 = (�, �, e� , e� , e0,□) , and 

R2 = (��, ��, e�
�
, e�

�
, e�

0
,□) . If agent 2 tells the truth, then agent  1 can only get {�, e� , e�} (by telling 

the truth). If agent 2 lies by reporting R�
2
= (x�, ��, ��,□) , then agent  1 can benefit by reporting the lie 

R�
1
= (x, �, �,□) : In the subsequent preference profile (R�

1
,R�

2
,R−{1,2}) , agent 1 receives {x, �, �} , and agent 

2 receives {x�, ��, ��} . In this group misreport, agents 1 and 2 additionally obtain � and �′ (respectively) 
through the cycle (e� , �, y, e�� , �

�, y�, e� )
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Proof We reduce from MWCSAT. Let C be a monotone circuit. Recall the construction of 
EC from the proof of the main theorem. We adapt this construction to obtain an economy 
E
∗
C
 . To construct EC , we modified E′

C
 by duplicating the circuit structure k+1 times. We do 

the same operation but instead we make 2k duplications. In order to explain our construc-
tion better, we label the copies with the pairs (0, 1), (1, 1),… , (0, k), (1, k) and refer to the 
copy with label (b, i) as the (b, i)th copy. In particular, we denote the 2k duplications of y 
by y0,i, y1,i for 1 ≤ i ≤ k . We further duplicate the objects �, �, � , e� , e� , and label the copies 
�i, � i, � i, ei

�
, ei

�
 for i = 1,… , k . The endowment of manipulating agent i is {ei, ei� , e

i
�
} . The 

preference relations of the manipulating agents and the owners of the duplicated objects 
over singletons are given below.

Finally, we change the preferences of the owners of � i, y0,i , and y1,i for each i by replacing � 
in their preference relation with � i.

The true allocation of manipulating agent i is {�i, ei
�
, ei

�
} , and each manipulating agent 

can only improve upon this allocation by obtaining both �i and � i . The proof of the follow-
ing proposition is analogous to that of Proposition 3.2.

Proposition 5.2 Let X = {xi1 ,… , xik} be an assignment to C and let (R�
j
)k
j=1

 be a group mis-
report defined by R�

j
= (x∗

ij
, �i, � i) for each j. Then, (R�

j
)k
j=1

 is beneficial if and only if X is 
satisfying.

It remains to show that if the manipulating agents have a beneficial group misreport, 
then there is a satisfying assignment for C . The reasoning follows that of the proof of 
the main theorem. Let A = {A1,… ,Ak} = {{�1, �1, �1},… , {�k, �k, �k}} be the assign-
ments to the manipulating agents. The following observation is completely analogous to 
Observations 3.5, 3.6, and 3.7.

Observation 5.3 For i = 1,… , k : 

1. � i ∉ Ai

2. �i R′
i
� i

3. �i R
′
i
�i

As in the proof of the main theorem, the above observation shows that the misreport 
must take a certain form. For agent i, we have that R�

i
= (�i, �

i, � i) , where �i is part of the 
circuit structure (again it could be the case that �i = �i but this will simply result in a 
lower weight assignment to C).

Let z be the smallest integer such that, for some b ∈ {0, 1} , none of the objects 
�1,… , �k are elements of the (b, z)th copy. The rest of the proof is identical to that of the 
main theorem. By running TTC we perform a (possibly faulty) evaluation of an assign-
ment to C of weight k. Since (yb,z, �z) is not a trading cycle, the assignment must be satis-
fying, as required.   ◻

R
i

= (�i
, � i, ei

�
, e

i

�
,◻)

R�i = (� i, ei
�
,◻)

R� i = (� i, �
i
, y

1,i
, y

2,i
, e

i

�
,◻)
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Appendix A

In this section we provide several fully worked examples of the constructions defined 
in the main text. Previously, in Figs. 5 and 6, we considered a simple circuit with no 
internal gates, and depicted the corresponding economies E′

C
 and EC . In Figs. 8 and 9 we 

consider a circuit with one internal gate (Fig. 3), and provide the full constructions of 
the corresponding E′

C
 and EC . In Figs. 10 and 11 we detail several steps of TTC for two 

different circuits and their resulting economy E′
C
 constructions.

Appendix A.1: a circuit with one internal gate

Consider the circuit from Fig. 3 equivalent to the formula x1 ∧ (x1 ∨ x2) . It is degenerate 
in a certain sense: it is equivalent to the circuit with a single gate x1 serving as input and 
output. Thus there is only one satisfying assignment of weight 1, in which x1 = 1 and 

Fig. 8  The economy E′
C
 for a circuit with one internal gate
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x2 = 0 . In Fig. 8, we depict the corresponding economy E′
C
 following the definitions in 

Sect. 3.1.
By design, there is a beneficial misreport of a particular form corresponding to 

the satisfying assignment of weight  1. Consider the possible preference relations that 
agent 1 can report. Recall that their true preference is R1 = (�, �, e� , e� , ek, ek−1,… , e1) . If 
agent 1 reports the truth, then they receive {�, e� , e�} . If agent 1 reports R�

1
= (x2

1
, �, �,◻) 

(which represents the satisfying assignment x1 = 1 ), then they receive {x2
1
, �, �} and 

Fig. 9  The economy EC “duplicates” certain elements of E′
C
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are better off. If agent  1 reports R��
1
= (x1

2
, �, �,◻) (which represents a non-satisfying  

weight 1 assignment x2 = 1 ), then they receive {x1
2
, �, e�} and are worse off.

Next, we show the result of the duplication process to construct EC for k = 1 in Fig. 9. 
As in Fig. 6, we omit the objects � , � , � , e� , and e� in this diagram for readability.

Fig. 10  Four steps of TTC for an economy E′
C
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Appendix A.2: steps of TTC for economy from Fig. 5

The economy from Fig. 5 is the construction E′
C
 where circuit C is equivalent to x1 ∧ x2 and 

k = 1 . Recall that the true preference of agent 1 is R1 = (�, �, e� , e� , e1) , and that they are 
allocated {�, e� , e�}.

Fig. 11  Four steps of TTC for an economy E′
C
 with an ∨ output gate
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In Fig.  10, we show the result of applying TTC when agent  1 misreports to 
R�
1
= (x∗

1
, �, �,◻) . For readability, we omit drawing agent 1’s preference except where nec-

essary. In the top left, we depict Step 1 of TTC. Since agent 1 topranks x∗
1
= x1

1
 , we have 

the cycle (x∗
1
, �1, e1) . All objects that agent 1 owns point to x∗

1
 as well, but we omit these 

directed edges. We resolve this cycle. In the top right of the figure, we depict Step 2. We 
remove objects that were in a cycle in Step 1 (now greyed) and update all agents’ prefer-
ences over remaining objects. For example, since e1 is gone, the owner of � now topranks 
e� . Agent 1 owns e� which now topranks and points to � . Two cycles appear: (x1

2
, h2

3
) and 

(�, � , e�) . We select the former to resolve. In Step 3 (bottom left), we update preferences, 
and since h3

1
 only ranked one object in the previous step, they now toprank their own object. 

Again there are two cycles: (h3
1
) and (�, � , e�) . We select the former to resolve. In Step 4 

(bottom right), (�, � , e�) is the only cycle. In Step 5 (not shown), (y, �) form a cycle. Thus, 
we have that agent 1 is allocated {x∗

1
, �, e�} . This outcome is worse than the outcome if they 

had told the truth.
Note that in Step 2, removing h2

3
 from the graph corresponds to the second predeces-

sor of the ∧-gate g3 taking value 0. Thus, the output ∧-gate g3 takes value 0. The result, by 
design, is that y cycles with � , taking away the opportunity for agent 1 to receive �.

Appendix A.3: steps of TTC for economy another circuit

In Fig.  11, we show the construction of E′
C
 where C is the circuit equivalent to x1 ∨ x2 

and k = 1 . The true preference of agent  1 is R1 = (�, �, e� , e� , e1) , and they are allo-
cated {�, e� , e�} . We show the result of applying TTC when agent  1 misreports to 
R�
1
= (x∗

1
, �, �,◻) . Note that this is a satisfying assignment of weight 1 for the circuit. By 

design, the misreport R�
1
= (x∗

1
, �, �,◻) will be beneficial.

In the top left, we depict Step 1 of TTC. Since agent 1 topranks x∗
1
= x1

1
 , we have the 

cycle (x∗
1
, �1, e1) . We resolve this cycle. All objects that agent 1 owns point to x∗

1
 as well, 

but again we omit these directed edges. In Step 2 (top right), given updated preferences, we 
have three cycles: (h2

3
, x1

2
) , (y, h1

3
) , and (�, � , e�) . We select the first cycle to resolve. In Step 

3 (bottom left), cycles are (y, h1
3
) , and (�, � , e�) . Again, we select the first cycle to resolve. 

In Step 4 (bottom right), (�, � , e�) is the only cycle. In Step 5 (not shown), (�, e�) form a 
cycle. Thus, we have that agent 1 is allocated {x∗

1
, �, �} . This outcome is preferred to the 

one where they told the truth.
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