
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2022) 36:38
https://doi.org/10.1007/s10458-022-09565-7

1 3

Large‑scale agent‑based simulations of online social 
networks

Goran Murić1 · Alexey Tregubov1   · Jim Blythe1 · Andrés Abeliuk1 · 
Divya Choudhary1 · Kristina Lerman1 · Emilio Ferrara1

Accepted: 16 May 2022 / Published online: 18 June 2022 
© Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
As part of the DARPA SocialSim challenge, we address the problem of predicting behav-
ioral phenomena including information spread involving hundreds of thousands of users 
across three major linked social networks: Twitter, Reddit and GitHub. Our approach 
develops a framework for data-driven agent simulation that begins with a discrete-event 
simulation of the environment populated with generic, flexible agents, then optimizes the 
decision model of the agents by combining a number of machine learning classification 
problems. The ML problems predict when an agent will take a certain action in its world 
and are designed to combine aspects of the agents, gathered from historical data, with 
dynamic aspects of the environment including the resources, such as tweets, that agents 
interact with at a given point in time. In this way, each of the agents makes individual-
ized decisions based on their environment, neighbors and history during the simulation, 
although global simulation data is used to learn accurate generalizations. This approach 
showed the best performance of all participants in the DARPA challenge across a broad 
range of metrics. We describe the performance of models both with and without machine 
learning on measures of cross-platform information spread defined both at the level of the 
whole population and at the community level. The best performing model overall com-
bines learned agent behaviors with explicit modeling of bursts in global activity. Because 
of the general nature of our approach, it is applicable to a range of prediction problems that 
require modeling individualized, situational agent behavior from trace data that combines 
many agents.

Keywords  Massive scale simulations · Collaborative platforms · Agent based simulation · 
AI agents · Online social networks

 *	 Alexey Tregubov 
	 tregubov@isi.edu

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3374-0884
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-022-09565-7&domain=pdf


	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 2 of 21

1  Introduction

Agent-based simulations derived from observational data can be a powerful tool to model 
and predict how users react to different information to which they are exposed on social 
media platforms. However, a number of challenges present themselves in effectively using 
available data to build agent models that can be used in high-fidelity simulations to make 
such predictions. First, the phenomena of interest may be the product of many agents fol-
lowing decision workflows that are not easily recoverable from the available data. Sec-
ond, machine learning approaches have typically been used in this area to learn particular 
focused aspects of user behavior via classification methods (e.g. link-prediction, content 
suggestions), and have not been applied to larger questions of information flow and evo-
lution. Third, ML models that do address global information flow tend to create a single 
global model, that is limited in its predictive power because it does not capture the differ-
ing reactions and activities of individual agents that might behave differently in the future 
because of changes in their individual environment and goals. Fourth, the data usually 
embodies observations of events that took place within a given set of social media plat-
forms, meaning that positive examples of user activity abound while it is harder to find 
negative examples, for example of when and why a specific action was not taken. Finally, 
any learned or rule-based behavior must be designed to run very efficiently in order to 
scale simulations to hundreds of thousands or millions of users while modeling individual 
decisions taken in their dynamic contexts.

In this article we present a framework for agent modeling of user behavior from obser-
vational data that addresses these challenges and show its use in building an effective 
model of cross-platform behavior across GitHub, Twitter and Reddit. This article is an 
extension of a paper presented at AAMAS 2020 [24], and it includes in-depth analysis and 
discussion of the results. Some key contributions of this article include:

–	 We develop a set of ML models that learn aspects of user behavior in Twitter and Red-
dit as classification problems, combining features of users and resources.

–	 We integrate the ML models into agent behaviors as alternatives to simpler statistical 
and rule-based models of behavior developed within the DASH cognitive agent frame-
work [7, 10].

–	 We develop features for ML learning that can be interpreted differently for different 
agents, such as ‘the volume of the Reddit channel I have most frequently contributed 
to’, to combine generalization from the data with individualized agent behavior.

–	 We present performance results of four model configurations that were rigorously eval-
uated during the DARPA SocialSim Challenge event along with two baseline compari-
sons. Our models performed the best of all participants across a broad range of metrics 
defined for the event, indicating the promise of the approach we describe here. The best 
performing model overall combines learned agent behavior with statistical modeling of 
bursty behavior, indicating a beneficial interaction between this agent-centered learning 
and the architecture of the simulation.

The next section describes related work. We then introduce the domain in which we mod-
eled cross-platform information spread and the available data. Next, we introduce our agent 
model and the machine learning approaches used to define agent behavior. Finally, we pre-
sent our experimental results and discussion and point to the current and future work of our 
team in this area.



Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 3 of 21  38

2 � Related work

Several approaches have been proposed to study structure and user behavior on social 
media networks. For example, Bergenti et  al.  [4, 5] explore various models to simulate 
a static structure of the social networks enabled by social media. The authors introduce 
several metrics for network characterization generated by several agent-based simulations. 
Similar metrics were used in the DARPA SocialSim Challenge. However, the models dis-
cussed there focus on a static structure of the network and are often limited to simulation of 
one social platform, while the networks of the agent simulations we describe here are data-
driven and evolve from an existing state.

In recent years there has been evolving interest in studying cross-platform information 
spread (e.g. [15, 18, 21]). For example, Krijestorac et al.  [21] studied the cross-platform 
spillover effects of viral videos. They found that when video content appears on a lag plat-
form it doubles its subsequent view growth on the original platform. These approaches, 
however, do not make use of multi-agent simulations.

Simulation of information spread across multiple platforms on the scale of tens of thou-
sands to millions of agents can be computationally intensive. Previous work on the scal-
ability of agent-based simulation frameworks was described in [8, 9, 14, 16]. When simu-
lations are distributed across several computational nodes, it is important to group agents 
in order to minimize expensive cross-node communication [9, 14, 16]. In [9], the authors 
extend the geographic or grid-based segmentation heuristics that are commonly used in 
earlier approaches to consider segmentation based on clusters in the observed communica-
tion network.

Applications of machine learning methods were also widely discussed for link predic-
tion in social networks. There has been extensive research in the area of network embed-
ding and its application to link prediction  [17, 19, 22, 26]. Wang et al.  [27] casts a link 
prediction problem as a two class discrimination problem and uses machine learning 
approaches to learn prediction models. Link prediction is often used for recommending 
links on social networks [3]. The work we describe here is unique in applying such graph 
embedding models to the problem of agent decision-making.

Content-based link prediction methods have been developed and have gained popular-
ity among researchers. The large set of those models focus on predicting the activity in 
social networks based on a combination of numerous content and user features  [13, 29]. 
Link-prediction and information spread prediction on social networks is often challeng-
ing because available training data can only provide positive feedback. The authors in [28] 
use retweet networks to address this problem, with the retweet network used to reconstruct 
negative feedback.

3 � Challenge problem description

The DARPA SocialSim Challenge aims at simulating specific types of dynamics between 
users and content on three major online social platforms: GitHub, Twitter and Reddit. 
The goal of a challenge is to predict how a given unit of information will spread across 
a multi–platform online environment. In particular, it is designed to focus on the simu-
lation of social structure and temporal dynamics with the focus on: (1) cross-platform 
information spread, (2) spread of specific units of information: common vulnerabilities 



	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 4 of 21

and exposures (CVE) IDs, URLs and malware, and (3) quantifying how the newly created 
information spreads. A unit of information is any trackable string that can be identified 
across platforms, including specific URLs, CVE IDs and malware-related keywords. For 
example, suppose that an important malware has been discussed in Twitter with hashtag 
#malware_name, and consequently the associated anti-malware software starts appearing 
in GitHub and is discussed in Reddit. The simulation should capture as precisely as pos-
sible the behaviors of all actors involved in the information spread.

All the teams participating in the challenge were provided with the training data: a set 
of relevant actions extracted from GitHub, Reddit and Twitter over the course of 32, 32 and 
19 months respectively. The data covers the period before the end of August 2017, which 
corresponds to the end of the training data period in Fig. 1. All data was provided in the 
”raw” format, as a set of the json objects returned from the platforms APIs for Twitter1, 
Reddit2, and GitHub.3 For GitHub, some additional data was provided, such as information 
on users4, the list of potential bot accounts, and information on repositories.5 The teams 
had the freedom to use the provided data as needed to make the appropriate models. At the 
beginning of the challenge, the teams received some additional data covering an unidenti-
fied period before the simulated time, which could be used to setup the initial conditions 
of the system (Fig. 1). Initial conditions data covers the period of 2 weeks right before the 
test period (simulation time). A time gap between the training data and the initial condi-
tions data could be introduced. The teams are requested to simulate a specific time interval 
after the initial conditions. The length of the test period or simulation time is 6 weeks, 
∼ 200K users and ∼ 500K tweets and posts in simulation. The accuracy of the simulation 
was assessed by comparing the simulation output to the ground truth using the set of meas-
ures as explained in Sect. 5.2.

At the beginning of the simulation, the initial condition data contains a set of actions 
and content which could contain the relevant keywords or no keywords at all. The users 
can interact with one or many pieces of content in any time during the simulation.

The simulation output is the list of all the actions performed by the relevant actors in all 
three platforms. For GitHub, we simulate ten actions that users can make: create or delete 
either a repository, a tag, or a branch (respectively Create and Delete), create or comment 

Training data Gap Initial
conditions

Ground truth
test data

Simulation
output

Time

Fig. 1   Simulation timeline. Training data has been used to train the models. Initial conditions data has been 
provided at the day of the challenge. It is used to set the initial state of the system before the simulation. 
After the simulation, the simulation output is then compared to ground truth to assess the accuracy of the 
simulation

1  Tweet object: https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/tweet.
2  Reddit API: https://www.reddit.com/dev/api/.
3  GitHub commit object: https://docs.github.com/en/rest/reference/commits.
4  GitHub user object: https://docs.github.com/en/rest/reference/users.
5  GitHub repository object: https://docs.github.com/en/rest/reference/repos.



Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 5 of 21  38

a pull request (respectively PullRequest and PullRequestReviewComment), create an issue 
(Issues, IssueComment), and push (Push, CommitComment). Moreover, a user can watch 
and fork existing repositories. For Reddit we simulate two user actions: post – creating the 
original content; and comment – commenting on a post or on another comment. For Twit-
ter we focus on two user actions: tweet – creating an original tweet; and retweet – broad-
casting the other user’s tweet.

4 � Agent framework and models

To simulate multiple social platforms with millions of users interacting with hundreds of 
thousands of pieces of content, we use the DASH agent framework implemented in the 
FARM simulation platform  [10], implemented in Python. The framework was deployed 
on a cluster of six Linux servers with 8 CPUs and 16GB RAM, which was sufficient for 
all simulations. The DASH framework was chosen in part because it provides support for 
cognitive modeling, including a dual process model, supporting reactive planning and for-
ward projection as well as spreading activation, within a framework where specific behav-
iors can easily be replaced or augmented with customized modules. This feature is used to 
implement decision processes that are influenced by the output of learning methods as we 
describe below. DASH uses an object-oriented model for agents allowing the creation of 
generic agents with representations for beliefs about their environment and action models. 
New agents can rapidly be modeled as sub-classes of these agents with specific additional 
behaviors. Finally, its discrete event simulation framework and support for large distributed 
simulations enabled efficient simulations of the size required for this task.

At the core of the simulation framework is a discrete event simulation where the event 
queue contains two different kinds of events, illustrated in Fig. 2. First, individual agents 
appear on the queue with specific time-points. When these agents reach the front of the 
queue they begin a decision process to determine what action will be taken, e.g. a comment 
on a Reddit post. On completing an action, the agent is placed back on the queue at a time 
point that implements a basic rate of activity for the agent. The second kind of object on 
the event queue is a trigger, which on reaching the front of the queue may conditionally 

Fig. 2   Dual event queue approach



	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 6 of 21

initiate new events based on the state of the simulation. As we describe below, in this case 
we use triggers to model bursty behavior, or rapid increases in the rate of activity perhaps 
triggered by some event that is external to the social media environment. We call this tech-
nique a dual event queue approach. While it is simple, it combines flexibility in modeling 
global behavior with the efficiency of the discrete event model.

4.1 � ML ready agents and simulation components

We describe our general approach to modeling agents that are active across multiple social 
media platforms. Some researchers have modeled cross-platform information spread at the 
global level or with very simple agents [15, 21]. In contrast, we use a high-fidelity multi-
agent model that allows agents to make independent choices using potentially complex 
decision algorithms. In reality, users of a social network have their personal preferences 
and habits. For example, one Twitter user may be interested in UK politics, while the other 
follows sports, and both of them are also interested in crypto coins. The first one might 
be very active and often engage in discussions, while the other one rarely replies. Users 
can vary widely across a number of different dimensions. In order to create such a model, 
however, we must specify this variety of behaviors for possibly millions of agents in a way 
that matches our observable data, and for this we turn to machine learning approaches as 
described below.

Agents in our simulation interact with each other by interacting with the social media 
resources they produce or are associated with. The nature of interactions can be various 
and multiple. For example, in Twitter we define agents as users and resources as tweets. 
Users can interact with tweets by retweeting them, liking them or replying to them.

The environment � , consists of the agents {�1, �2,… , �n} ∈ A and resources 
{r1, r2,… , rm} ∈ R . Agents and resources are defined by their state. Each state of an agent 
or a resource is represented by a vector X

�i
 and Xrj

 for agents and resources respectively. 
The states are not static and they change over time as the simulation progresses and the 
agents/resources engage in the activities. Those dynamic state vectors are used as the fea-
ture vectors in the ML decision models described in Sect. 4.2.

All models used the agent decision process shown in Fig.  3. This process is imple-
mented as a DASH agent and consists of modular components that can have multiple 
implementations (marked with grey blocks, for example 1.1, 1.2, 3.1–3.2 and 5.1–5.3). 
Experiments can also be configured to have heterogeneous agents using different modules 
implementations (algorithms). The major components of the agents’ decision process are 
the following: 

1.	 Activation. Agents become active and ready to take an action in one of two ways: 
internal self-activation by coming to the front of the event queue as an agent or external 
activation via a trigger that comes to the front of the queue. These methods can be used 
simultaneously or separately. The base model uses self-activation and burst model uses 
external activation, using the dual queue approach for incorporating external signal into 
simulations described in Sect. 4.4

2.	 Identification of the horizon. It is both computationally and cognitively infeasible for the 
active agent to consider all possible resources in making an action decision. The agent’s 
visible horizon h is defined by a set of rules that limit the resources the agent can pos-
sibly interact with in a given time step. The users of a social network are presented with 
a very small subset of the resources they could in theory interact with, as illustrated in 



Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 7 of 21  38

Fig. 4a. For example, a Twitter user can interact only with tweets that are displayed on 
their device. Our attempt is to emulate this limited visibility of the available resources 
by allowing agents to interact only with a specific fraction of resources. The models for 
calculating the visibility horizon h are described more in details in Sect. 4.5

3.	 Invoking the process of selecting a resource and action type. If an agent makes a deci-
sion to take an action on an already existing resource (e.g. edit or delete its tweet) then 
it needs to select resources to interact with. This decision can be translated into the 
following set of problems: for each agent-resource pair and corresponding sets of fea-

Fig. 3   Workflow of the DASH SocialSim agent - structural view of agent’s modular decision process. Grey 
blocks show alternative models and implementations



	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 8 of 21

tures, decide whether the action will be selected. These are classification problems, 
where a combined set of features x = x

�i
‖ xrj needs to be classified into positive or 

negative class. There are two models for this decision: one is probabilistic (the base 
model) and another is based on machine learning (the GitHub ITree model). Models 
developed for this problem are described in Sect. 4.2

4.	 Starting a new information cascade. Starting a information cascade means creating 
an original resource rather than acting on an already existing resource. Our simulation 
models use training data to sample the roots of information cascades. Information units 
(keywords, hashtags, URLs) are also sampled from the training data.

5.	 Reacting to an existing information cascade. This process is similar to (3). This deci-
sion can be translated into the following questions: for each agent-resource pair and 
corresponding sets of features, decide whether the action will be selected. Twitter and 
Reddit models developed for this problem are described in Sect. 4.2

6.	 Updating meta information. Agents add and update meta information based on the action 
that was taken. For example, agents’ and resources’ features and environment features.

Each of the agents in this framework are cross-platform agents in the sense that they can 
take actions on different platforms. The social platform, where the action happens, is speci-
fied when the agents’ activation is scheduled on the queue. Parameterization and training 
required for each component (1–5) in Fig. 3 is done for each social platform.

During the simulation, this process is repeated for each agent whenever it is activated 
as illustrated in Fig. 4b. To optimize the use of the resources, we sometimes pre-compute, 
parallelize or bundle some of the steps when possible.

4.2 � Twitter and Reddit ML models

ML models predict the probability of interaction between an agent and a resource. In 
the “real world” the users are presented with a set of objects they can interact with. For 
instance, a user on Twitter can see a few dozen tweets in a given moment. For each of 
the tweets, a user makes a decision either to like a tweet, retweet, reply or ignore it. In 
our simulation, for each of the actions the decision process is translated into a binary 
classification problem for a given feature vector Xk = X�

i
‖ Xr

j
‖ Xc

k
 . The feature vector 

is made up of feature vector X�

i
 for an agent i, a feature vector Xr

j
 for a resource j and a 

combined feature vector Xc
k
 which are concatenated into a single vector Xk . This way, 

(a) (b)

Fig. 4   Agents, visibility horizon and simulation in time: a An agent can interact with any resource which 
falls within their visibility horizon h. The decision if a particular agent will interact with a particular 
resource is left to other decision models; b Multiple agents are active within the simulated environment, 
and they repeat their decision process over time in the evolving environment



Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 9 of 21  38

for each combination of agent–resource pairs we can construct the unique feature vec-
tor that will be used to make a decision on an action. During the simulation, as each 
agent reaches the front of the event queue, it gets matched to the set of resources that 
are within the agent’s horizon h, and solves a binary classification problem on each one 
of them. For a given agent �i , a vector Xk is constructed for all resources that are within 
the horizon h. For example, the current simulated time step is t and we need to simulate 
the action of a user i on Twitter in the next time step t + 1 . The user i is defined by the 
corresponding state vector/feature vector. By using the horizon models (Sect.  4.5) we 
identify all the tweets (resources) the user might potentially interact with. Each of the 
resources j is also defined by their corresponding feature vector. If the user can “see” n 
tweets, we construct n combined feature vectors Xk and solve the binary classification 
problem for each of them. The solutions of the binary classifications are the probabili-
ties of the interaction between the user i and all the resource within their visible hori-
zon. During the simulation we then chose the match with the highest probability and 
perform an “action”, say a retweet.

Reddit training. On Reddit, users can comment either on a post, that is a top-level topic 
of discussion, or on another comment down the comment tree. In case of Reddit, we solve 
two classification problems: (1) post→ comment: whether the user will make a comment on 
a given post and (2) comment→ comment: whether the user will make a sub–comment on a 
given comment. For each of the two problems we build separate training datasets.

For the post→comment problem, we first match all the users with posts they commented 
on. Then, for each user–post pair we create a unified feature vector by concatenating user 
features, post features and combined features in a single vector as illustrated in Table 1. All 
the vectors created this way are assigned a positive label as they represent the instances 
of users commenting on the posts. The initial dataset consists only of positive examples. 
This problem is different from the standard supervised classification problem by the lack 
of negative examples in the training set. Usually, to properly train a binary classifier, one 
needs the negative examples. The data on “real” negatives could be harvested by carefully 
observing user’s behavior within the Reddit interface and select the posts user saw but 
decided to ignore. Such information is not available to us and we approach this task as the 
one-class classification problem.

Often referred to as PU learning, this problem is solved by building a binary clas-
sifier from a training set consisted of positive P and unlabeled U data. To create the U 
part of the dataset, we match users with posts they did not comment to and create the 
feature vector from such user–post pairs. A fairly naive interpretation of the PU learn-
ing process is that unlabeled vectors that are similar to true positives will be labeled as 
positive and unlabeled vectors which are different from true positive will be labeled as 

Table 1   To build the agent-based 
ML models, the training set 
has been build by assembling 
user features, post features and 
combined features

User features Post features Combined 
features

U0 ... Un P0 ... Pm C0 ... Cz y

X0 x�
0,0

... x�
0,n

xr
0,0

... xr
0,m

xc
0,0

... xc
0,m

1
X1 x�

1,0
... x�

1,n
xr
1,0

... xr
1,m

xc
1,0

... xc
1,m

1
⋮

Xi x�
i,0

... x�
i,n

xr
i,0

... xr
i,m

xc
j,0

... xc
j,m

0
Xk x�

−,0
... x�

−,n
xr
−,0

... xr
−,m

xc
k,0

... xc
k,m

0



	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 10 of 21

negative. It is out of the scope of this paper to discuss the multiple nuances of PU learn-
ing. To build our training sets, we use an approach similar to one proposed in [23].

Finally, with the training set ready, we build a classifier able to predict if a given 
user–post pair will result in a user commenting on a post. After comparing multiple 
classification algorithms and parameter optimization, we decided to use Multi-layer Per-
ceptron classifier with 15 hidden layers, which yielded the highest AUC score.

We approach the comment→comment problem in a similar way. The main differ-
ence is in the set of features used to predict the child comment. For the post→comment 
problem we match user features with the post features, while for the comment→com-
ment problem we match user features with the comment features. This way, we allow 
the agents to apply the different models when deciding to comment, depending on the 
resource they are commenting on.

Reddit features. For the post→comment problem, the final feature vector Xk consists 
of ≈ 200 features made from user features X�

i
 , post features Xr

j
 and combined features Xc

k
.

–	 User features X�

i
 consist of preference features, sentiment features and frequency 

features. Preference features are multidimensional vectors which represent the user’s 
preference towards keywords, subreddits and domains. The main idea behind build-
ing the preference vectors is to quantify the user’s interests and leaning towards cer-
tain topics. The preference vectors are built using FastText word embedding tech-
nique [11]. First we train a set of FastText models using the corpus from the relevant 
content on Reddit. Then, we assign the embedded vectors to each keyword, subreddit 
name and domain which appear in the training data. During the simulation, there is 
a possibility of encountering the keywords or subreddit names which do not exist 
in the training data. FastText can embed words which were never seen before but 
appear in a similar context or have a similar lexical features as the words from the 
training corpus. For each user, the preference vector is computed as the separate 
weighted averaged vector of all the keywords, subreddits and domains they used. For 
example, the keyword preference vector for the user i is calculated as Pki =

∑n

j=1
fjKj , 

where Kj is an embedded vector of a keyword j used by the user, and fj is the number 
of instances the keyword has been used. This way, we are able to identify the direc-
tion of the user interests. The preference vectors for the subreddits and domains are 
calculated in a similar fashion. Sentiment features quantify the two dimensions of 
user’s writing on Reddit, namely polarity and subjectivity. Polarity is a measure usu-
ally in the range between -1 and 1 where 1 means positive statement and -1 means 
a negative statement. Subjectivity measures how likely the sentence is a personal 
opinion, where 0 is very objective and 1 is very subjective statement. We calculate 
the means and the standard deviations of polarity and subjectivity of all user’s posts 
and comments separately. Frequency features quantify the user’s activity by measur-
ing the number of their posts, comments and subreddits together with the additional 
temporal measures of user’s activity.

–	 Post features Xr
j
 , similarly to user features, consist of embedded vectors of keywords, 

subreddits and domains related to the post. Additionally, we use a single measure of 
sentiment polarity and subjectivity extracted from the post content. Furthermore, we 
include the info about the author of the post.

–	 Combined features Xc
k
 are the cosine and Euclidean distances of user preference vectors 

and post-related embedded vectors. This way we quantify the similarity between the 
given post and user’s interests in the past.



Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 11 of 21  38

For the comment→comment problem we use a similar approach. Instead of the post features 
we calculate the similar set of comment features and concatenate it together with the user 
features and combined features. We add an additional feature which represents the position 
of a comment in a discussion tree.

Twitter Model. For Twitter, we focus on modeling the ‘retweet’ action of a user. At any 
instance, a user has access to multitude of tweets on the platform. In our simulation, we 
develop a classification model for ‘retweet’ action tweet, user→retweet: whether a tweet 
will be retweeted for a given (tweet,user) combination. This model is applied to all tweets 
that an agent has access to whenever it reaches the front of the event queue. The simula-
tion selects one of the tweets with highest probability according to the model and creates a 
retweet event for this agent and tweet. The final model used for the task was a ‘Word2Vec’ 
model combined with a ‘random forest’ model.

Twitter Feature Engineering. In order to build a predictive retweet model, we need 
true indicative features from textual data to help the model learn. There are two main types 
of retweet activity by users on the platform- ‘normal retweet’ and ‘quoted retweet’. A nor-
mal retweet is when a user retweets the original tweet without any additions, while the 
quoted retweet has additions to the original tweet. So a quoted retweet can give increased 
information of overlap of the tweet with the user profile as compared to the normal tweet. 
This understanding is important to decipher the learning of the model. The feature space 
used for the model consists of 3 types of features: user features, tweet features and com-
bined features.

–	 User features: We create user profile in terms of their historical tweet activity on the 
platform. The intent is to model the user’s persona on the platform based on their past 
activities. There are 84 features describing a user. One set of features is focused on 
user’s profile including user description, number of followers, number of friends etc. 
The other set is focused on the tweet activity of a user such as their average number of 
tweets per week, maximum number of user mentions per tweet, average retweet period, 
etc. We also exploit hashtags used by users to model their interest in multiple topics 
floating on the platform in the form of tweets at any given time. The user description 
field has an interesting potential to define users’ interests at a broader level. A retweet 
score is separately assigned to each of the connections of a user. Every tweet has an 
author and the authors’ retweet score for the user will be added to the final set of fea-
tures. This is to capture the hypothesis that a user is more likely to retweet a tweet from 
one of their connections with the highest retweet score.

–	 Tweet features: Tweets are described with features including time of the day, day of the 
week, hashtags used, user mentions, number of characters and several others.

–	 Combined features: User historical features are adjoined with features of the entire set 
of tweets the user can take an action on at a given time. ’Word2Vec’ model (W) is used 
to find out the similarity of the user’s profile with the tweet features. It is trained on all 
hashtags of the corpus along with user descriptions. A representing feature vector Vk is 
obtained for all the hashtags. We create an average hashtag feature vector for a user Hui

 
based on the most frequently used hashtags of the user. The user description vector Dui

 
is created for each user. Hui

 and Dui
 are then used to find similarity of the user features 

with tweets. For each hashtag ( Vk ) of each tweet(t), cosine similarity is calculated with 
the Hui

 and Dui
.

Feature engineering equipped the data with multiple defining features as mentioned above. 
For the current model, we use hashtags as major input for Word2Vec features for both 



	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 12 of 21

normal retweet and quoted retweet. The model is then trained with the given data of feature 
set, retweet labels. A separate development set is used to tune parameters to eventually 
obtain a model accuracy of 92% on the test data.

Notice that the sets of features used to build the agent decision models for Reddit are 
not exactly the same as the features on Twitter. The choice of features depends on multiple 
factors. First, the platforms we simulate are different and it dictates the set of features we 
can use. For example, users on Twitter can follow other users while on Reddit that is not 
possible. Secondly, the data we have access to consists of multiple enrichments including 
sentiment measures and other user-related characteristics. During the model training, we 
eliminate the least informative features and it leads to the different final sets of features for 
two platforms. An example of a feature that is more important in one platform is one that 
indicates at which time of the day a user is active. Since both platforms operate at a differ-
ent pace, that dictates the rate of actions as well as the lifetime of the content. It also affects 
the importance of some temporal features. The time of the day is important in Twitter, and 
can lead to better prediction, while in Reddit it is less important and can often be ignored.

4.3 � GitHub Inverse Tree (ITree) model

Consider the following task: given a user ui and the repository rj , predict the number of 
actions yi,j the user ui will perform on a repository rj . This translates to a typical regression 
problem and could be approached in multiple ways. However, in GitHub the target reposi-
tory is often uncertain while the rate of user’s actions is typically already known, since 
the users activity rate varies slowly, and it is easily predicted just by observing the rates 
in the past. The active users remain active and the new users usually start with a slow rate 
of actions. Thus we solve the inverse problem: given a user ui and the number of actions 
yi , predict the repository ri that user will most likely perform an action on. To predict the 
repository, we build a model that narrows down our choice to the set of repositories that 
share the same set of features.

For the given vectors of input and target variables, the regression tree finds a mapping 
from the input variables to a finite number of groups of output variables such that the aver-
age within group squared error of the target variables is minimized. The ITree traverses 
the trained regression tree backwards and for a given target variable and set of known 
features, extracts the boundaries of the unknown features. A regression model relates y 
to a function of X, so that y ≈ f (X) . In our case, X = Xu ‖ Xr ‖ Xc , and we need to solve 
Xr = f (y,Xu,Xc) . In the Fig.  5 we illustrate the back-traversal of a simple decision tree 
involving a handful of features. In this example, the value of feature3 is already known. 
The task is to find the upper and lower bounds of other features that would, in case of 
a decision tree regression, yield a desired outcome. By traversing the decision tree back-
wards, we can identify the sets of upper and lower bounds of desired features. We find such 
approach useful in cases when values of some features and the value of the target variable 
are known, but the values of other features are missing, e.g. user features are known but 
repository features are missing.

The problem of predicting the set of target variables resembles the problem known as 
a multi-output regression [6, 12], known also as the multi-target [1, 2] or multi-response 
regression [25]. Multi-output regression models are built to simultaneously predict multi-
ple real-valued target variables. The result is usually a vector of values. However, instead 
of predicting a single vector, the ITree algorithm outputs two vectors: the first one Li with 



Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 13 of 21  38

lower bounds and the second one Ui with upper bounds for each feature we want to predict. 
Finally, the output is processed as a set of tuples where Yi = {(l1, u1),… , (lm, um)}.

The ITree model works in the opposite direction compared to the “traditional” regres-
sion tree model. First, we build a training data set D of N instances such that each instance 
is characterized by an input vector of m real variables Xk = (x1

k
,… , xm

k
) and a single target 

variable yk . The input vectors are built by concatenating the user features Xu
i
 , repository 

features Xr
j
 and combined features Xc

k
 so that Xk = Xu

i
‖ Xr

j
‖ Xc

k
 . Then, we build a regres-

sion tree able to predict the number of user–repository actions, which is the target variable 
y. During the simulation, we do not predict y, as it is already estimated based on the previ-
ous user’s activity. However, we use the target variable yi together with known features Xu

i
 

and Xc
k
 and back-traverse the previously trained regression tree. By traversing the regres-

sion tree backwards, we extract the boundaries of unknown features Xr
j
 which describe the 

repository. Based on the lower and upper feature bounds, we select the set of repositories 
to choose from. The initial version of the model picks a single repository rj from the set 
of chosen repositories uniformly at random and assigns the yi actions from a user ui to 
a repository rj . For instance, assume it is known that user ui will make z push actions. 
The ITree model will first calculate the feature boundaries of the repositories the user is 
most likely to push. This way we narrow down our selection to multiple repositories as the 
potential targets. Then, ITree model randomly chose z repositories from the narrow selec-
tion and simulates the push action of user ui to chosen repositories.

4.4 � Dual queue event scheduling and burstiness

The framework has two queues: one for scheduling agents own activation time (self-acti-
vation) and one for external signal or triggers. Events that are scheduled in the main event 
queue are executed as a discrete event schedule. Events from external signal queue repre-
sent triggers that activate events on the main queue. In this paper external queue was used 
for burst events (burst activation model 1.2 in Fig.  3). Use of the external signal queue 
is optional because agents can schedule their next events on the main queue using self-
activation rate.

Fig. 5   GitHub Inverse Tree (ITree) model example. Back-traversing a decision tree starting from a leaf 
node (representing a desired outcome) will result in the upper and lower bounds of the features of interest



	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 14 of 21

In this paper we discuss only one type of external triggers - burst events. In our experi-
ments we observed that using only agent self-activation rate does not simulate burstiness of 
events well. For this reason we used the external signal queue to trigger bursts of events. 
Bursts were measured in training data. A sequence of bursts observed in training data 
was sampled replayed in simulation. Each burst event was scheduled in the external sig-
nal queue. When a burst event is handled by the simulation controller, it creates multiple 
events associated with this burst and schedules them in the main queue. Size and length 
of each burst as well as participating users were sampled from bursts observed in training 
data. Kleinberg’s algorithm [20] was used to detect bursts.

4.5 � Horizon and limited visibility models

Limited visibility models determine what active discussions and events are visible to 
agents to react to. Formally we define the agent’s horizon at a time step as all resources that 
are visible to an agent at the step. Depending on the platform it may be a list of repositories 
for GitHub, tweets and retweets for Twitter, posts and comments for Reddit that are visible 
to an agent. Resources can form information cascades—a tree of resources (e.g., tweet and 
its retweets and replies in Twitter). In our experiments we used resource age (time between 
when it was posted and when is viewed) to determine if it should be visible to an agent.

Resources from different platforms have different life spans. For GitHub we used all 
repositories observed during the training period (2-6 weeks of training data) and kept them 
during the test period (6 weeks). Twitter and Reddit are more fast-paced social platforms. 
For example, the majority of Twitter discussions have a life span of  2 days.

We used the following algorithm to determine visible resources for each agent. Each 
information cascade stays visible x number of days where x is minimum between a fixed 
threshold (2 days) and estimated lifespan of the information cascade. Lifespan of the infor-
mation cascade is estimated using training data. It is done as follows. When new informa-
tion cascade is created (agent creates a root resource, e.g. original tweet), its metadata (e.g. 
features) is sampled from training data. These features include lifespan, which becomes an 
estimation for a lifespan of a new cascade.

5 � Results

5.1 � Experiments and models

Our simulation produces a sequence of events that represent users’ activity on Reddit, 
Twitter, and GitHub. The resulting sequence of events is then compared to the ground truth 
according to a set of metrics described below. The ground truth is the sequence of events 
recorded from the actual social networks for the simulated period, as illustrated in Fig. 1. 
In this paper we discuss the following model configurations:

Random null model: this model does not rely on the simulation framework but instead 
replays the training data in the test time period, randomly shuffling the order of events.
Base model: a model where each step in agent’s decision workflow is executed using 
simple probabilistic model. Probability of each decision is based on frequency of that 
decision in the training data. For example, steps such as selecting action type or select-
ing a resource are separately determined using this approach.



Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 15 of 21  38

ML model: an extension of the base model where for Reddit and Twitter platforms we 
use the ML model to determine how cascades grow (what tweets are retweeted and what 
posts are commented on). This is step 5 in Fig. 3.
Bursts model: an extension of the base model where in additions to self-activation 
agents are activated by burst events using the external signal queue as described in 
Sect. 4.4. The approach samples from a set of bursts detected in the training data using 
Kleinberg’s algorithm [20]. For each burst, we sample from a subset of agents that are 
activated during a very short period of time (within 30 min) after the burst.
Combined model: a combination of the Bursts and ML models from above.
ITree for GitHub: an extension of the base model where GitHub agents use ITree mod-
els to determine action type and resource (step 3 in Fig. 3)

The ML model, Bursts model, Combined model, and ITree for GitHub model are all built 
on top of the base model. The ML and ITree models augment the agent’s decision flow, and 
the Bursts model adds bursts in the event queue.

5.2 � Evaluation metrics

In order to capture information spread across platforms we track information units, which 
are keywords, hashtags or associated URLs, depending on the platform. These are typically 
gathered from metadata, and one action or resource may be associated with multiple infor-
mation units. In order to evaluate the predicted information spread across platforms, we 
measure the number of shares (e.g. number of retweets in Twitter, or comments in Reddit), 
the size of the audience (the number of unique users who shared), the speed of informa-
tion spread, and its lifetime. The speed of information spread is measured as the number of 
shares over time (the number of shares per day).

For model performance evaluation we use the following metrics:

–	 Temporal correlation of shares (audience sizes)—the Pearson correlation between the 
number of shares (audience sizes) time series is computed between all pairs of plat-
forms. This distribution is computed for both simulation and the ground truth. Then the 
Kolmogorov-Smirnov test and Jensen-Shannon divergence are computed to measure 
similarity.

–	 Time delta—determines the number of hours it takes for a piece of information to 
appear on another platform. The Kolmogorov-Smirnov test and Jensen-Shannon diver-
gence are computed to measure similarity.

–	 Correlation of shares (audiences)—the Pearson correlation between the activity (audi-
ence size) time series between all pairs of platforms. Measured as RMSE.

–	 Correlation of lifetimes—the Pearson correlation of the average lifetime for each plat-
form, then correlation between simulation and the ground truth is computed. Measured 
as RMSE.

–	 Correlation of speeds—the Pearson correlation between speeds of information across 
platforms for each information unit, then correlation between simulation and the ground 
truth is measured. Measured as RMSE.

For burst measurements we use Kleinberg’s algorithm [20] to detect bursts on all plat-
forms (population level measurement). Each metric related to bursts is computed as 



	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 16 of 21

the RMSE of the correlation between simulation and the ground truth. Figure 6 shows 
RMSE of correlation of the following distributions:

–	 Distribution of the number of bursts
–	 Distribution of the average burst size
–	 Distribution of the average number of users per burst
–	 Distribution of the number of new users per burst
–	 Distribution of bursts lifetime

In this paper we present measurements for two scales: population level and commu-
nity level. Community is a subset of users grouped by a certain criteria (e.g. active on 
the same sub-reddit, use the same repositories or use similar information units, etc.). 
We identified several dozens of communities. Community level metrics were computed 
separately for each community and average is shown in Fig. 6. Results for population 
level metrics (burst and cross-platform) are shown in Fig. 7. Higher values are better in 
Figs. 6 and 7 as we show 1/RMSE. Table 2 summarizes evaluation metrics values and 
uses original non-inverted RMSE values (lower values show smaller error).

From Table 2, Figs. 6 and 7, we can see that ML model, burst model and their com-
bination outperform the random null model in a majority of the metrics. ML model 
and GitHub ITree model scored on average 23% higher in Jensen-Shannon divergence 
of the temporal correlation of audiences. Twitter and Reddit ML models also improved 
cross-platform community metrics. Both Jensen-Shannon divergence and Kolmogo-
rov-Smirnov test of the temporal correlation of audiences and shares have the highest 
values in the ML model and combined ML+bursts model, meaning maximum simi-
larity to the ground truth. At the same, time burst metrics were the most difficult for 
all models we tested. In two out of five metrics the random null model showed better 
performance.

We discuss these results in greater detail below in Sect. 6.

0.0 0.2 0.4 0.6 0.8

Audience (js)

Audience (ks)

Share (js)

Share (ks)

Time delta (js)

Time delta (ks)

Cross-platform communities (JS and KS)

Random Null model
Base model

ML+Bursts model
Bursts model

ML model
GitHub ITree

10−2 10−1 100

Burst
lifetime

New users
per burst

Avg. users
per burst

Avg. burst
size

Number of
bursts

Bursts metrics (RMSE)

Fig. 6   Cross-platform community and burst metrics. Our models outperform the base model in the majority 
of metrics



Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 17 of 21  38

Ta
bl

e 
2  

E
va

lu
at

io
n 

m
et

ric
s v

al
ue

s:
 c

ro
ss

-p
la

tfo
rm

 c
om

m
un

ity
, c

ro
ss

-p
la

tfo
rm

 p
op

ul
at

io
n 

an
d 

bu
rs

t m
et

ric
s

M
et

ric
G

itH
ub

 IT
re

e 
m

od
el

M
L 

m
od

el
B

ur
st 

m
od

el
M

L+
B

ur
st 

m
od

el
B

as
e 

m
od

el
R

an
do

m
 

N
ul

l 
m

od
el

C
om

m
un

ity
 ti

m
e 

de
lta

 (K
S)

0.
00

0
0.

16
7

0.
29

9
0.

33
9

0.
16

7
0.

0
C

om
m

un
ity

 ti
m

e 
de

lta
 (J

S)
0.

66
7

0.
66

7
0.

40
8

0.
37

5
0.

16
7

0.
0

C
om

m
un

ity
 sh

ar
e 

(K
S)

0.
26

5
0.

30
0

0.
39

8
0.

39
1

0.
35

4
0.

0
C

om
m

un
ity

 sh
ar

e 
(J

S)
0.

61
0

0.
72

5
0.

56
4

0.
64

7
0.

55
1

0.
0

C
om

m
un

ity
 a

ud
ie

nc
e 

(K
S)

0.
32

1
0.

28
3

0.
35

5
0.

40
2

0.
34

4
0.

0
C

om
m

un
ity

 a
ud

ie
nc

e 
(J

S)
0.

62
3

0.
75

0
0.

46
4

0.
53

7
0.

54
3

0.
0

Po
pu

la
tio

n 
au

di
en

ce
 (K

S)
0.

57
9

0.
59

8
0.

59
5

0.
64

9
0.

52
4

0.
23

7
Po

pu
la

tio
n 

au
di

en
ce

 (J
S)

0.
66

2
0.

75
7

0.
52

7
0.

68
9

0.
66

6
0.

43
2

Po
pu

la
tio

n 
sh

ar
e 

(K
S)

0.
55

4
0.

58
6

0.
62

7
0.

65
7

0.
53

2
0.

24
0

Po
pu

la
tio

n 
sh

ar
e 

(J
S)

0.
45

6
0.

64
4

0.
70

9
0.

67
6

0.
77

4
0.

42
4

Po
pu

la
tio

n 
sh

ar
es

 (R
M

SE
)

0.
19

2
0.

22
3

0.
15

8
0.

09
0

0.
17

1
0.

52
9

Po
pu

la
tio

n 
au

di
en

ce
s (

R
M

SE
)

0.
18

8
0.

21
5

0.
15

9
0.

09
4

0.
17

2
0.

52
7

Po
pu

la
tio

n 
lif

et
im

es
 (R

M
SE

)
0.

18
5

0.
19

3
0.

15
1

0.
13

4
0.

15
6

0.
19

8
Po

pu
la

tio
n 

sp
ee

ds
 (R

M
SE

)
0.

09
3

0.
12

5
0.

09
3

0.
13

8
0.

13
4

0.
45

6
B

ur
st 

lif
et

im
e 

(R
M

SE
)

7.
09

2
2.

80
9

2.
53

2
2.

53
8

3.
20

5
1.

26
3

N
ew

 u
se

rs
 p

er
 b

ur
st 

(R
M

SE
)

12
5.

00
0

11
1.

11
1

14
2.

85
7

83
.3

33
11

1.
11

1
66

.6
67

A
vg

. u
se

rs
 p

er
 b

ur
st 

(R
M

SE
)

76
.9

23
55

.5
56

10
0.

00
0

58
.8

24
43

.4
78

50
.0

00
A

vg
. b

ur
st 

si
ze

 (R
M

SE
)

25
.6

41
26

.3
16

10
0.

00
0

58
.8

24
43

.4
78

47
.6

19
N

um
be

r o
f b

ur
sts

 (R
M

SE
)

16
.3

93
13

.6
99

18
.5

19
41

.6
67

18
.1

82
35

.7
14



	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 18 of 21

6 � Conclusion and Discussion

In this paper we present several agent-base simulation models that utilize machine learn-
ing in the agent’s decision workflow. We also introduce a dual queue technique for dis-
crete event scheduling that allows incorporating external event signals such as bursts. Our 
experiments on cross-platform information spread show that machine learning methods 
can be successfully used in multi-platform agent-based simulations, and they improve per-
formance metrics compared to simple probabilistic models (base model and random null 
model).

In our experiments, all models perform significantly better in terms of the temporal 
correlation of cross-platform information spread than the random null model (see Figs. 6 
and 7). In fact, the random null model scores zeros across all community level metrics.

Both ML models and ITree model score on average 23% higher in Jensen-Shannon 
divergence of the temporal correlation of audiences. The results are similar for popula-
tion and community level measurements, showing that the Reddit and Twitter ML mod-
els help agents to make a better (relative to base model) decisions about what tweets and 
posts should be retweeted. Also the GitHub ITree model helps make better decisions about 
which repositories agents interact with.

All models presented in the paper are data-driven, which allows us to build large-scale 
high-fidelity simulations. The results also suggest that predicting bursts of events is hard 
without external signals. Reproducing bursts using burst samples taken from training data 
can improve temporal metrics.

The base model and random null model perform relatively well in burst metrics. In 
most burst metrics the bursts model does not perform well compared to all other mod-
els. This suggests that replaying a sequence of bursts from the initial conditions data-set 
does not improve the metrics that measure burst properties and distributions. However, 
the combined model (ML + Bursts) scores the best across almost all population level 
cross-platform information spread metrics while the bursts model and ML model sepa-
rately come second and third respectively in these metrics. This can be explained by the 
fact that explicit modeling of bursts (bursts model) affects all time-sensitive metrics. 

0.0 0.2 0.4 0.6 0.8

Audience
(js)

Audience
(ks)

Share
(js)

Share
(ks)

Bounded metrics (KS and JS)

Random Null model
Base model

ML+Bursts model
Bursts model

ML model
GitHub ITree

0 5 10

Audiences

Lifetimes

Shares

Speeds

Unbounded metrics (RMSE)

Fig. 7   Cross-platform population metrics. Our models outperform both the base model and the random 
model in the majority of metrics



Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 19 of 21  38

Introducing bursts alone did not improve the burstiness metrics but improved temporal 
correlations of content shares and audience sizes.

There is no single ML model that performs the best on all metrics, though mod-
els that use ML approach often outperform others. While ML approach alone is not 
always the best solution, it is a viable option for simulating various phenomena, which 
is demonstrated by some metrics. The main advantage of the integrated ML approach 
is the generalizability: with properly developed ML models, we are able to rapidly 
deploy simulations for new, never seen scenarios. It is worth emphasizing that ML mod-
els were never used alone, but always as an addition for decision-making within the 
larger simulation framework. On the other hand, it is important to recognize the flaws 
of such approach. The main drawbacks lie in interpretability and potential modeling 
errors. ML models are prone to modeling errors due to data availability and data imbal-
ance. It might seem counterintuitive, but an online action is a relatively rare event for a 
single user on average. The majority of the users are mostly passive and decide to get 
active in a very short time window. On the agent level, such a characteristic of a system 
is translated to solving a classification problem with a highly unbalanced data, where 
the majority of the data points is labeled as negative and just a few of them as positive. 
Additionally, due to the scale of the problem, our ML models have not been tuned by 
running simulation multiple times and choosing the best parameters. ML models are 
trained in the separate procedures first and then embedded in the agent’s decision pipe-
line. This multi-step procedure might additionally allow some unwanted artifacts to be 
transferred from training to the simulation.

The results presented in this paper lay ground for the future research and extensions 
of the proposed models. This includes incorporating external signals that drive the acti-
vation of agents. It can potentially improve prediction of event bursts (reaction of a sub-
set of agents on external signal). Machine learning methods can also be applied to other 
aspects of agent’s decision workflow. For example, when agents generate new informa-
tion cascades they have to choose information units. This choice can also be learned 
from observational data.

The approach we have described is capable of incorporating models that operate 
on different levels of resolution, e.g. a macro level (models of global phenomena), a 
meso level (models of groups of agents), and the micro level of individual agents and 
resources. This is important, since observation data pertinent to a simulation may be 
available at several different levels, and some predictive techniques are known to work 
well at a macro level where more data is available and predicted features may be more 
stable. In this work, for example, we made use of burst prediction data, which predicts 
a volume of activity independent of particular agents, by assigning predicted actions 
to individual agents that are naturally likely to take those actions. We are currently 
developing more general and flexible approaches to incorporate learned information 
described at a macro or meso level within the agent simulation at an individual level.

Finally, there are multiple ways in which the event visibility horizon can be imple-
mented. In this paper we used a naive approach with an estimation of the resource life 
span (which determines how long it will stay within the horizon). What rules define vis-
ible events can affect agents decisions. The visibility horizon model can be also used as 
a tool for modeling social network users’ cognitive load and limitations.

Acknowledgements  The authors are grateful to the Defense Advanced Research Projects Agency (DARPA), 
contract W911NF-17-C-0094, for their support.



	 Autonomous Agents and Multi-Agent Systems (2022) 36:38

1 3

38  Page 20 of 21

References

	 1.	 Aho, T., Ženko, B., Džeroski, S., & Elomaa, T. (2012). Multi-target regression with rule ensembles. 
Journal of Machine Learning Research, 13(Aug), 2367–2407.

	 2.	 Appice, A., & Džeroski, S. (2007). Stepwise induction of multi-target model trees. In Machine 
learning: ECML 2007 (pp. 502–509). Berlin: Springer. https://​doi.​org/​10.​1007/​978-3-​540-​74958-5

	 3.	 Backstrom, L., & Leskovec, J. (2011). Supervised random walks: Predicting and recommending 
links in social networks. In Proceedings of the fourth ACM international conference on web search 
and data mining, WSDM ’11 (pp. 635–644). New York: ACM. https://​doi.​org/​10.​1145/​19358​26.​
19359​14.

	 4.	 Bergenti, F., Franchi, E., & Poggi, A. (2011). Selected models for agent-based simulation of social 
networks. In 3rd Symposium on social networks and multiagent systems (SNAMAS 2011), pp. 
27–32.

	 5.	 Bergenti, F., Franchi, E., & Poggi, A. (2013). Agent-based interpretations of classic network models. 
Computational and Mathematical Organization Theory, 19(2), 105–127.

	 6.	 Blockeel, H., De Raedt, L., & Ramon, J. (2000). Top-down induction of clustering trees. arXiv pre-
print arXiv:​cs/​00110​32

	 7.	 Blythe, J. (2012). A dual-process cognitive model for testing resilient control systems. In 2012 5th 
international symposium on resilient control systems (pp. 8–12). IEEE. https://​doi.​org/​10.​1109/​ISRCS.​
2012.​63092​85

	 8.	 Blythe, J., Ferrara, E., Huang, D., Lerman, K., Muric, G., Sapienza, A., Tregubov, A., Pacheco, D., 
Bollenbacher, J., & Flammini, A., et al. (2019). The darpa socialsim challenge: Massive multi-agent 
simulations of the github ecosystem. In Proceedings of the 18th international conference on auton-
omous agents and Multiagent systems (pp. 1835–1837). International Foundation for Autonomous 
Agents and Multiagent Systems.

	 9.	 Blythe, J., & Tregubov, A. (2018). Farm: Architecture for distributed agent-based social simulations. 
In D. Lin, T. Ishida, F. Zambonelli, & I. Noda (Eds.), Massively multi-agent systems II (pp. 96–107). 
Springer International Publishing.

	10.	 Blythe, J., & Tregubov, A. (2019). FARM: Architecture for distributed agent-based social simulations. 
In International workshop on massively multiagent systems (pp. 96–107). Cham: Springer. https://​doi.​
org/​10.​1007/​978-3-​030-​20937-7

	11.	 Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword 
information. Transactions of the Association for Computational Linguistics.

	12.	 Borchani, H., Varando, G., Bielza, C., & Larrañaga, P. (2015). A survey on multi-output regression. 
WIREs Data Mining Knowl Discov, 5, 216–233. https://​doi.​org/​10.​1002/​widm.​1157

	13.	 Can, E.F., Oktay, H., & Manmatha, R. (2013). Predicting retweet count using visual cues. In Proceed-
ings of the 22nd ACM international conference information & knowledge management—CIKM ’13 
(pp. 1481–1484). New York: ACM Press. https://​doi.​org/​10.​1145/​25055​15.​25078​24

	14.	 Collier, N., & North, M. (2013). Parallel agent-based simulation with repast for high performance 
computing. Simulation, 89(10), 1215–1235.

	15.	 D O’Brien, J., Dassios, I. .K., & Gleeson, J. .P. (2019). Spreading of memes on multiplex networks. 
New Journal of Physics, 21(2), 025001.

	16.	 Deissenberg, C., Van Der Hoog, S., & Dawid, H. (2008). Eurace: A massively parallel agent-based 
model of the European economy. Applied Mathematics and Computation, 204(2), 541–552.

	17.	 Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A sur-
vey. Knowledge-Based Systems. https://​doi.​org/​10.​1016/j.​knosys.​2018.​03.​022

	18.	 Jung, A.K., Mirbabaie, M., Ross, B., Stieglitz, S., Neuberger, C., & Kapidzic, S. (2018). Information 
diffusion between twitter and online media. In Proceedings of the thirty ninth international conference 
on information systems.

	19.	 Kazemi, S. M., & Poole, D. (2018). Simple embedding for link prediction in knowledge graphs. In 
Advances in neural information processing systems (Vol. 2018-December, pp. 4284–4295). Neural 
Information Processing Systems Foundation.

	20.	 Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Dis-
covery, 7(4), 373–397.

	21.	 Krijestorac, H., Garg, R., & Mahajan, V. (2019). Cross-platform spillover effects in consumption of 
viral content: A quasi-experimental analysis using synthetic controls. Available at SSRN 3011533

	22.	 Linyuan, L. L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statisti-
cal Mechanics and its Applications. https://​doi.​org/​10.​1016/j.​physa.​2010.​11.​027.

	23.	 Mordelet, F., & Vert, J. P. (2014). A bagging SVM to learn from positive and unlabeled examples. Pat-
tern Recognition Letters, 37, 201–209. https://​doi.​org/​10.​1016/J.​PATREC.​2013.​06.​010

https://doi.org/10.1007/978-3-540-74958-5
https://doi.org/10.1145/1935826.1935914
https://doi.org/10.1145/1935826.1935914
http://arxiv.org/abs/cs/0011032
https://doi.org/10.1109/ISRCS.2012.6309285
https://doi.org/10.1109/ISRCS.2012.6309285
https://doi.org/10.1007/978-3-030-20937-7
https://doi.org/10.1007/978-3-030-20937-7
https://doi.org/10.1002/widm.1157
https://doi.org/10.1145/2505515.2507824
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1016/J.PATREC.2013.06.010


Autonomous Agents and Multi-Agent Systems (2022) 36:38	

1 3

Page 21 of 21  38

	24.	 Murić, G., Tregubov, A., Blythe, J., Abeliuk, A., Choudhary, D., Lerman, K.,&Ferrara, E. (2020). 
Massive cross-platform simulations of online social networks. In 19th international conference on 
autonomous agents and multiagent systems (AAMAS).

	25.	 Similä, T., & Tikka, J. (2007). Input selection and shrinkage in multiresponse linear regression. Com-
putational Statistics & Data Analysis, 52, 406–422.

	26.	 Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). LINE: Large-scale information 
network embedding. In WWW 2015—Proceedings of the 24th international conference on world wide 
web (pp. 1067–1077). Association for Computing Machinery, Inc . https://​doi.​org/​10.​1145/​27362​77.​
27410​93

	27.	 Wang, P., Xu, B., Wu, Y., & Zhou, X. (2015). Link prediction in social networks: The state-of-the-art. 
Science China Information Sciences, 58(1), 1–38. https://​doi.​org/​10.​1007/​s11432-​014-​5237-y.

	28.	 Zaman, T. R., Herbrich, R., Van  Gael, J., & Stern, D. (2010). Predicting information spreading in 
twitter. In: Workshop on computational social science and the wisdom of crowds (Vol. 104, pp. 17599–
601) . NIPS.

	29.	 Zhang, Q., Gong, Y., Wu, J., Huang, H., & Huang, X. (2016). Retweet prediction with attention-based 
deep neural network. In Proceedings of the 25th ACM international on conference on information and 
knowledge management—CIKM ’16 (pp. 75–84). New York: ACM Press. https://​doi.​org/​10.​1145/​
29833​23.​29838​09

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Goran Murić1 · Alexey Tregubov1   · Jim Blythe1 · Andrés Abeliuk1 · 
Divya Choudhary1 · Kristina Lerman1 · Emilio Ferrara1

	 Goran Murić 
	 gmuric@isi.edu

	 Jim Blythe 
	 blythe@isi.edu

	 Andrés Abeliuk 
	 aabeliuk@isi.edu

	 Divya Choudhary 
	 dchoudha@isi.edu

	 Kristina Lerman 
	 lerman@isi.edu

	 Emilio Ferrara 
	 ferrarae@isi.edu

1	 Information Sciences Institute, Marina del Rey, CA, USA

https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1007/s11432-014-5237-y
https://doi.org/10.1145/2983323.2983809
https://doi.org/10.1145/2983323.2983809
http://orcid.org/0000-0003-3374-0884

	Large-scale agent-based simulations of online social networks
	Abstract
	1 Introduction
	2 Related work
	3 Challenge problem description
	4 Agent framework and models
	4.1 ML ready agents and simulation components
	4.2 Twitter and Reddit ML models
	4.3 GitHub Inverse Tree (ITree) model
	4.4 Dual queue event scheduling and burstiness
	4.5 Horizon and limited visibility models

	5 Results
	5.1 Experiments and models
	5.2 Evaluation metrics

	6 Conclusion and Discussion
	Acknowledgements 
	References




