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Abstract
The goal of this paper is to propose a framework for representing and reasoning about 
the rules of auction-based protocols. Such a framework is of interest for building digital 
marketplaces based on this type of mechanism. Hence the framework should fulfill two 
requirements: (i) it should enable bidders to express their preferences over combinations 
of items and (ii) it should allow the mechanism designer to describe the rules governing 
the market, namely the legality of bids, the allocative choice, and the payment rule. To do 
so, we define a logical language in the spirit of the Game Description Language, namely 
Auction Description Language with a set of functions FB (ADL [FB] ). ADL [FB] is the first 
language for describing auctions in a logical framework. With our approach, each stage 
in a protocol is seen as an independent direct revelation mechanism. Our contribution is 
three-fold: first, we illustrate the general dimension by representing different kinds of pro-
tocols. Second, we show how this machine-processable language enables reasoning about 
auction properties, including playability, termination, and classical conditions from mecha-
nism design (e.g., budget-balance and individual rationality). Finally, we develop a model-
checking algorithm for ADL [FB] , with complexity in PTIME when the functions in FB can 
be computed in polynomial time.
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1 Introduction

Auction-based markets are widely used for automated business transactions. There are 
numerous variants depending on the parameters considered, including the number of dis-
tinct items1 and their copies and the number of sellers and buyers [35, 36]. For a fixed set 
of parameters, the protocol, i.e., the bidding, payment and allocation rules, may also dif-
fer. Building intelligent agents that can switch between different auctions and process their 
rules is a key issue for building automated auction-based marketplaces. In this setting, the 
auction designer should at first describe the rules governing the auction and second allow 
participants to express their preferences. The aim of this paper is to propose a language 
with clear semantics for enabling the representation of auctions as well as the reasoning 
about its rules and properties. More precisely, such a language should address the six auc-
tion dimensions introduced by Parkes and Kalagnanam [33]: 

1. Resources: the auction protocol may involve a single item or multiple items, with single 
or multiple units of each item. The type of the item may also be considered, i.e., the item 
may be a multi-attribute commodity;

2. Market structure: the auction may differ on whether it has single or multiple buyers 
and/or sellers. In single-sided auctions, there is either a single seller selling resources 
to multiple buyers (i.e., forward auctions), or a single buyer sourcing resources from 
multiple suppliers (i.e., reverse auctions). In a double auction, there are multiple sup-
pliers selling resources to multiple buyers. Finally, an exchange is a generalization of 
double auctions, where the participants trade items;

3. Preference structure: the participants’ preferences define their utilities over different 
outcomes (e.g., marginal utility, quasi-linear utility);

4. Bid structure: it refers to the flexibility with which participants can express their prefer-
ences. The bid structure ranges from simple statements of willingness to accept a given 
selling price to complex bids that state prices, quantities, bundles, and logical connec-
tives. In single-dimensional auctions, only one attribute is considered in the bid (e.g., 
the price offered for a good). On the other hand, multi-dimensional auctions handle a 
number of attributes in the bid (e.g., quality, delivery date) [55];

5. Market clearing: in relation to the method for matching the supply to demand, an auction 
may be single-sourcing (i.e., matching pairs of buyers and sellers) or multi-sourcing 
(i.e., matching multiple sellers with a single buyer, or vice-versa);

6. Information feedback: auctions may also differ on whether they are direct (i.e., one-stage 
protocols without information feedback) or indirect mechanisms (i.e., protocols where 
agents can adjust their bids in response to information feedback).

In the spirit of the General Game Playing (GGP) [21] where games are described with the 
help of Game Description Language (GDL), we previously introduced a logical language 
for describing auctions, denoted Auction Description Language (ADL) [45, 46].

In this paper, we go further and present a new version of ADL, named ADL [FB] , which 
is described as Auction Description Language with a set of functions FB . ADL [FB] builds 
upon bidding languages, and hence provides a natural way to represent a wide range of 
protocols, ranging from single-units auctions to iterative combinatorial exchanges [53]. As 

1 Throughout the paper we use the terms “item” and “good” interchangeably.



Autonomous Agents and Multi-Agent Systems (2022) 36:20 

1 3

Page 3 of 47 20

for GDL and ADL, we propose a precise semantics based on state-transition models, that 
gives a clear meaning to the auction rules. Different bidding languages can be used with 
ADL [FB] , including the Tree-Based Bidding Language [53], which generalizes known lan-
guages such as XOR/OR [50] to combinatorial exchange. To the best of our knowledge, 
ADL [FB] is the first framework offering a unified perspective on an auction mechanism 
and it offers two benefits: (i) with this language, one can represent many kinds of auctions 
in a compact way and (ii) the precise state-transition semantics can be used to derive key 
properties.

Our motivation for proposing ADL [FB] is twofold. First, to enable automated reasoning 
about properties and features of an auction. These include determining whether the pro-
tocol is well-formed, in terms of termination and playability, as well as properties related 
to the mechanism itself, such as individual rationality and efficiency. Second, inspired by 
General Game Playing, our goal is to implement general players and an auction server to 
evaluate their adaptability among different protocols and their ability to learn from other 
agents’ behavior. Just like for the GGP, ADL [FB] provides the ground for testing auction 
players and creating market-based competitions.

1.1  Contributions

Our main contribution is to provide a general framework for representing auctions. For dis-
cussing the generality of ADL [FB] , we refer again to the six dimensions of auctions [33]: 

1. Resources as from ADL, we can represent variants with single and multiple units. ADL 
[FB] also considers multiple types of goods;

2. Market structure while ADL is restricted to single-sided auctions, ADL [FB] also rep-
resents double auctions and exchange protocols. However, we cannot represent dynamic 
sets of agents and goods;

3. Preference structure as we are concerned with the general representation of auctions, 
we focus on how agents can express their preferences rather than on the underlying 
structures of their utility functions. Following the literature on mechanism design [54], 
we consider agents with quasi-linear utilities. In such a case, the agents’ utilities are 
based on a preference function over the outcomes and her payment. For a discussion on 
the hierarchy of preference functions, the reader may refer to Feige et al. [19];

4. Bid structure ADL [FB] can be used alongside different bidding languages. We define 
requirements for the bidding set and we illustrate how to employ two languages with 
different expressiveness in ADL [FB] . This aspect was not previously explored with 
ADL;

5. Market clearing as for ADL, we can model single-sourcing auctions. ADL [FB] can 
also encode multi-sourcing auctions;

6. Information feedback in ADL [FB] , direct mechanisms are described by a one-stage 
protocol and indirect mechanisms are represented by iterative protocols.

Hence, ADL [FB] addresses all these dimensions and is general enough to represent most 
settings. Notice that, similar to GDL (Game Description Language), ADL [FB] focuses 
on deterministic and perfect information protocols. GDL-II is an extension for handling 
imperfect information [64] and may be considered for auctions such as iterative sealed-bid 
auctions. These are however less common.
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Beyond the auction setting, ADL [FB] is also able to represent several kinds of resource 
allocation problems: as noticed by Chevaleyre et al. [15], auctions can be seen as a sub-
division of allocation mechanisms. The main characteristics of an auction are (i) central 
authority (the auctioneer), (ii) monetary transfer among participants, and (iii) agents’ pref-
erences expressed through bids. All these key features are expressible in ADL [FB].

We also show how ADL [FB] can be used for the automated verification of mechanism 
design properties and for automatically checking whether descriptions written in ���[FB] 
are well-formed. We illustrate the generality of ADL [FB] by focusing on two auction types: 
simultaneous ascending auction (SAA) and combinatorial exchange as we believe they are 
representative to demonstrate the expressive power of ADL [FB] . Combinatorial exchange 
is a generalization of combinatorial and double-sided auctions, and SAA generalizes the 
English auction to multiple items. We evaluate these protocols in terms of the aforemen-
tioned properties. Finally, we show that if functions in FB can be computed in polynomial 
time, then the model-checking problem for a ���[FB]-formula belongs to PTIME, that is, 
that it can be solved in polynomial time using a deterministic Turing machine.

The paper is organized as follows: in Sect. 2 we discuss the related work. In Sect. 3 we 
detail the semantics and syntax of ADL [FB] . In Section 4 we introduce general properties 
for evaluating ADL [FB]-based protocols. In Sects. 5 and 6, we show how to represent auc-
tions in ADL [FB] and we demonstrate how to derive properties from their description. In 
Sect. 7, we explore the complexity of deciding whether an ADL [FB]-formula is true with 
respect to a model and an execution of such model. Finally, Sect. 8 concludes the paper and 
discusses future work. The proofs omitted in the main text are presented in the appendix.

2  Related work

Our work is rooted in the key contributions on Auction Theory [36, 50, 51, 72]. All these 
works adopt a mechanism design perspective: they focus on designing and evaluating pro-
tocols and bidding languages. Our work has a different purpose. The ADL [FB] language 
is intended to represent the auction protocols and to allow a modular definition of actions 
sets, which may be characterized by a subset of a bidding language. ADL [FB] can be used 
to automatically derive properties for these protocols. ADL [FB] is also a tool for mecha-
nism design, since it is a well suited framework for testing new auctions.

2.1  Auction representation

To the best of our knowledge, almost all contributions on the computational representa-
tion of auctions focus on the implementation of the winner determination problem. For 
instance, Baral and Ulyan [4] show how a specific auction, namely combinatorial auctions, 
can be encoded in a logic program. A hybrid approach mixing linear programming and 
logic programming has been proposed by Lee and Lee [38]: they focus on sealed-bid auc-
tions and show how qualitative reasoning helps to refine the optimal quantitative solutions. 
Giovannucci et al. [22] explore a graphical formalism to compactly represent the winner 
determination problem for multi-unit combinatorial auctions. Linear Logic has also been 
used [57] for modeling combinatorial auctions. The authors explore the representation of 
bids and the winner determination. However, there is no temporal operator to allow reason-
ing on iterative auctions.
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The descriptive auction language [59] allows a formal specification of auctions. Agents 
can only bid through XOR combinations of items. Although the XOR language is widely 
used, the specification approach is more flexible when the bidding language is not fixed for 
all protocols. In fact, as stated by Nisan [51], the choice of a bidding language should aim 
to find a balance between expressivity (i.e., being able to express every preference func-
tion) and simplicity (i.e., being intuitive and computationally efficient). There are numer-
ous auction protocols that do not require the expressive power of the XOR language and 
can be implemented with simpler bidding languages. For instance, in a Dutch auction, 
agents may simply say whether they accept the current selling price or not. Our proposal is 
intended to be more flexible, as one may use different bidding languages with ADL [FB] for 
defining distinct protocols.

A rule-based scripting language for representing single-dimensional auctions have 
been proposed by Lochner et  al. [39]. Since it is single-dimensional, bids are composed 
exclusively by prices. On the other hand, the framework Multiple criteria English Reverse 
Auctions (MERA) [7, 8] characterizes bids with vectors of attributes and criteria. MERA 
allows to represent English reverse auctions that differ in relation to the aggregation model 
of bidders’ preferences and the information feedback provided to the participants.

2.2  Representation of negotiation protocols

A related problem to auction specification is the one of representing negotiation protocols. 
As noted by Meyer et al. [43] negotiation is investigated from different perspectives, such 
as economics, psychology, computer science and others. Consequently, there is no agree-
ment in relation to its definition and the distinction between negotiation and auctions may 
be vague. Although some authors consider auctions as types of negotiation protocols, in 
this work we consider them related, but rather distinct, types of allocation procedures.

Following the definition from Chevaleyre et al. [15], by auctions we refer to centralized 
mechanisms that specify trades of items and payments based on the bidders’ reported pref-
erences. On the other hand, we consider that in negotiation protocols, allocations emerge 
as the result of a sequence of local negotiation steps. That is, they describe the negotiation 
over resources in a distributed setting. Another important difference is that negotiation pro-
tocols for exchanging goods may not be dependant on monetary transfer.

In their paper [3], Bădică et al. discuss how rule-based approaches can be used to auto-
mated negotiation. The paper focuses on experimental results for concurrent negotiation 
and do not address the generality of their approach. Huder et al. [25] propose a framework 
to enable negotiations according to bilateral and multilateral negotiation protocols using a 
meta-language to define protocols based on a set of attributes and parameters. In a subse-
quent work [24], the authors propose a language based on Extensible Markup Language 
(XML) for meta-negotiating the choice of negotiation protocols and for instantiating and 
parameterizing the system used for conducting the chosen protocol. Similarly, rule-markup 
languages have also been used for the declarative representation of negotiations [18].

Due to the lack of a precise semantics, the approaches considered up to here are too 
poor to enable reasoning. This limitation motivates the use of logic-based languages. In 
two papers [70, 71], Wooldridge and Parsons briefly compare the use of different lan-
guages for negotiation, including propositional logic, a language for electronic commerce 
and a negotiation meta-language. The problems considered involve simple protocols with 
multi-attribute negotiation of single goods. Even in this setting, the problems of determin-
ing if agreement has been reached and determining if a particular protocol will terminate 
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are computationally hard. A basic logical framework for negotiation has also been pro-
posed by Meyer et al. [43]. In the two agents setting, the work explores modes of negotia-
tion from which an agreement over an outcome can be reached when the participants are 
rational, cooperative and truthful.

2.3  GDL‑based approaches

The Game Description Language (GDL) is the official language used for the General 
Game Playing (GGP) competition [21]. Due to its initial limitations, several extensions 
and variants have been successfully proposed, including GDL with imperfect information 
(GDL-II) [64] and introspection (GDL-III) [65] for specifying epistemic games. GDL has 
also been extend for defining, comparing and combining strategies in [77, 78]. This exten-
sion includes the dual connectives prioritised disjunction and prioritised conjunction for 
expressing preferences when combining strategies.

The use of GDL-based languages for describing market-based protocols have also been 
studied. De Jonge and Zhang [31] discuss the use of GDL for modeling negotiation. The 
main advantage is being able to apply the existing domain-independent techniques from 
GGP. For instance, the Monte Carlo Tree Search algorithm has been adapted for negotia-
tions in non-zero-sum games [32]. In another paper [30], they propose the use of GDL as a 
unifying language for defining general and complex negotiation domains.

The closest contributions to ours are the Market Specification Language (MSL) [66] 
and ADL [45, 46], also based on GDL. Both works focus on representing single item auc-
tions through a set of rules and then interpreting an auction-instance with the help of a 
state-based semantics. MSL is limited to single agent perspective while ADL is not. How-
ever, the main limit of both approaches is the lack of a clear link between the language, 
the mechanism formalization and the agents’ preferences, which prevents the evaluation of 
GDL-based specifications as mechanisms. In this paper, we extend ADL [46] for enabling 
the integration with bidding language and going further on the representation of quantita-
tive aspects.

2.4  Formal verification of auctions

To some extent, our work is also related to the literature of formal verification of auc-
tions. Some works explore computed-aided verification [5, 12, 34], where the process is 
only assisted by a reasoner. There are also works that focus on a particular variant of an 
auction. For instance, model-checking approaches have been proposed for verifying sus-
pect behaviors of bidders in concurrent online auctions [73, 74]. Based on Artifact Sys-
tems techniques, Belardinelli [6] explores the model checking of properties concerning the 
evolution of the bidding process in simultaneous ascending auctions. A similar approach 
investigates the verification of agent-based English auctions using temporal logic [2]. A 
more general concept has also been introduced [56, 69], where the authors advocate the use 
of Alternating-time Temporal Logic [1] to reason about economic mechanisms. Strategy 
Logic (SL) [14, 47] allows for explicit representation of strategies, which enables captur-
ing solution concepts from Game Theory [52]. In [42], the authors investigate a quantita-
tive version of SL with imperfect information for the automated verification of indirect 
mechanisms. However, as SL and ATL cannot model the internal structures of strategies, 
these languages are not fitted for reasoning about the actions that were actually executed in 
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a moment of the game, which is an important feature to be considered for General Game 
Playing.

In this paper, we show how ADL [FB] is suitable for the automated verification of direct 
revelation mechanisms. We encode individual rationality, efficiency and budget-balance as 
ADL [FB]-formulae. Verifying such properties amounts to model-checking ADL [FB]-for-
mulae, which can be done in PTIME, when functions in FB can be computed in PTIME. 
Other properties can be analyzed via meta-reasoning and we exemplify this case with 
strategyproofness.

3  Auction description language with a set of functions FB

The Auction Description Language with a set of functions FB (ADL [FB] ) is a framework 
for specification of auction-based markets and it is composed by a state-transition model 
and a logical language. To encode an auction, we first define its signature, which specifies 
the participants (the agents), the goods being traded and the propositions and variables 
describing each state of the auction:

Definition 1 An auction signature S is a tuple (N,G,B,Φ, Y, I,FB) , where:

– N = {1,… , �} is a nonempty finite set of agents (or bidders);
– G = {1,… ,�} is a finite set of good types;
– B is a nonempty finite set of bids (or actions);
– Φ is a finite set of atomic propositions specifying features of a state;
– Y is a finite set of numerical variables specifying numerical features of a state;
– I ⊂ ℤ is an interval of integer numbers, denoting the value range for any countable 

component of the framework. We assume I is equipped with a partial order2 ⪯I , cap-
turing the standard less-than-or-equal relation over its elements. We let zmin, zmax ∈ ℤ 
denote the minimum and maximum values in I , that is, zmin ⪯I z and z ⪯I zmax for each 
z ∈ I . By convenience, we assume 0 ∈ I and denote I⪰0 = [0, zmax] and I≻0 = (0, zmax] 
as the non-negative and positive parts of I , respectively. Similarly, I⪯0 = [zmin, 0] and 
I≺0 = [zmin, 0) denote the non-positive and negative parts of I.

– FB ⊆ {f ∶ B
𝖺 × I𝖻 → I ∣ 𝖺, 𝖻 ∈ I⪰0} is a set of state-independent functions of possibly 

different arities.

Hereafter, we will fix an auction signature S and all concepts will be based on this sig-
nature, except if stated otherwise. Note that zmin and zmax , in the definition of I , should be 
large enough to represent the total supply of goods being traded as well as the cumulative 
available money among agents. Through the rest of this paper, we assume that is the case. 
Any function value outside I is rounded to the nearest value zmin or zmax . We assume that 
FB contains the functions sum(z1, z2) = z1 + z2 , sub(z1, z2) = z1 − z2 , times(z1, z2) = z1 ⋅ z2 , 
denoting the addition, subtraction and multiplication of two integers z1, z2 ∈ I , respectively. 
Similarly, we also assume FB contains the functions

2 A partial order is a relation that is reflexive, antisymmetric and transitive.
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and

capturing the maximum and minimum among two integers z1, z2 ∈ I.
Given a list integers (z�)�∈N ∈ I� and a 2-ary function f ∈ FB such that f ∶ I × I → I , we 

will use the following shortcut:

A trade is a tuple (λ�,j)j∈G,�∈N ∈ I�� , where λ�,j denotes the number of units j being traded by 
agent  � . A trade specifies which items each agent is selling and/or buying. A positive trade 
expresses how many units of a good type are purchased and a negative trade represents 
how many units are sold. Similarly, a positive payment denotes how much a buyer will pay 
and a negative payment expresses how much a seller will receive.

A tuple of objects indexed by agents in N is called a profile. In a profile, we may omit 
the index set and we write it in bold, e.g., � for (λ�)�∈N and (𝛌j)j∈G for (λ�,j)j∈G,�∈N . Given a 
profile o , we let o� be the component of agent � and o−� be (o�)�≠�.

Let us now present the model and the language’s syntax and semantics.

3.1  Syntax

Let Lz be the set of numerical terms, with each z ∈ Lz defined as follows:

where β ∈ B is an action, x ∈ I is an integer, y ∈ Y is a numerical variable and f ∈ FB is a 
function3.

The logical language for ADL [FB] is denoted by L���[FB]
 and a formula � in L���[FB]

 is 
defined by the following Backus-Naur Form grammar:

where p ∈ Φ is a proposition, � ∈ N is an agent, β ∈ B is an action and z ∈ Lz is a numeri-
cal term.

Intuitively, initial and terminal specify the initial terminal states, resp.; legal�(β) asserts 
that agent � is allowed to take action β at the current state and does�(β) asserts that agent � 
takes action β at the current state. The formula ○� means “ � holds at the next state”. The 
formula z1 ≤ z2 means that the numerical term z1 is smaller or equal to the numerical term 
z2.

We use the standard abbreviations from propositional logic, such as � ∨ � for 
¬(¬� ∧ ¬�) , � → � for ¬� ∨ � , and � ↔ � for (� → �) ∧ (� → �) . We take ⊤ to be 
an abbreviation for some fixed propositional tautology such as p ∨ ¬p , and let ⊥ be an 

max(z1, z2) =

{
z1 if z2 ⪯I z1
z2 otherwise

min(z1, z2) =

{
z1 if z1 ⪯I z2
z2 otherwise

f�∈N(z�) = f (z1, f (z2, f (… , f (z�−1, z�))))

z ∶∶= x ∣ y ∣ f (β,… , β, z,… , z)

� ∶∶= p ∣ initial ∣ terminal ∣ legal�(β) ∣ does�(β) ∣ ¬� ∣ � ∧ � ∣ ○� ∣ z ≤ z

3 Notice f (.) may be 0-ary.
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abbreviation of ¬⊤ . We also use abbreviations for comparison operators, such as z1 = z2 
for z1 ≤ z2 ∧ z2 ≤ z1 , z1 < z2 for z1 ≤ z2 ∧ ¬(z1 = z2) , z1 ≠ z2 for ¬(z1 = z2) , z1 ≥ z2 for 
z2 ≤ z1 and z1 > z2 for z1 ≥ z2 ∧ z1 ≠ z2 . The extension of the comparison operators to 
multiple arguments is straightforward.

Assume the bids � = (β�)�∈N , where β� ∈ B is a bid associated to the agent � ∈ N . The 
formula does(�) =def

⋀
�∈N does�(β�) represents that the agents in N perform the joint 

action �.

3.2  Semantics

The semantics of ADL [FB] are based on state-transition models, which allows us to 
represent the key aspects of an auction, at first the legal bids and the transitions among 
states.

Definition 2 A state-transition-model (ST-model for short) M is a tuple (W, w̄, T, L, U, πΦ, πY) , 
where:

– W is a nonempty set of states;
– w̄ ∈ W is the initial state;
– T ⊆ W is a set of terminal states;
– L ⊆ W × N × B is a legality relation, describing the legal actions at each state, we let 

L(w, �) = {a ∈ B ∣ (w, �, a) ∈ L} be the set of all legal actions for agent �  at state w;
– U ∶ W × B

𝗇 → W is an update function, given d ∈ B
� , let d� be the individual action 

for agent �  in the joint action d;
– πΦ ∶ W → 2Φ is the valuation function for the state propositions;
– πY ∶ W × Y → I , is the valuation function for the numerical variables.

A path represents a run or execution of an auction protocol. Formally,

Definition 3 Given an ST-model M = (W, w̄, T, L, U, πΦ, πY) , a path is a sequence of 

states and joint actions w0

d1

−−→ w1

d2

−−→ …
dt

−→ wt

dt+1

−−−→ … such that for any t ≥ 1 : (i) w0 = w̄ ; 
(ii) wt ≠ w0 ; (iii) dt� ∈ L(wt−1, �) for any � ∈ N , (iv) wt = U(wt−1, d

t) ; and (v) if wt−1 ∈ T , 
then wt−1 = wt.

For any path δ , let δ[t] denote the t-th state of δ , θ(δ, t) denote the joint action per-
formed at stage t  of δ , θ�(δ, t) denote the action of agent �  performed at stage t  of δ , and 
δ[0, t] denote the finite prefix w̄

d1

−−→ w1

d2

−−→ …
dt

−→ wt . A path δ is complete if δ[e] ∈ T , 
for some e > 0 . After reaching a terminal state δ[e] , for any e′ > e , δ[e�] = δ[e] . Finally, 
for a given model M , any state w such that there exists a complete path δ of M such that 
w ∈ δ will be called a reachable state of M.

The semantics for ADL [FB] is given in two steps. First, we define function fz to 
compute the meaning of numerical terms z ∈ Lz in some specific state. Next, a formula 
� ∈ L���[FB]

 is interpreted with respect to a stage in a path.

Definition 4 Given an ST-model M , we define function fz ∶ Lz ×W → I , assigning any 
z ∈ Lz and state w ∈ W to a number in I:
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where n,m ∈ I⪰0.

Definition 5 Let M be an ST-Model. Given a path δ of M , a stage t on δ and a formula 
� ∈ L���[FB]

 , we say � is true (or satisfied) at t of δ under M , denoted by M, δ, t ⊧ 𝜑 , 
according to the following definition:

A formula � is globally true through δ , denoted by M, δ ⊧ 𝜑 , if M, δ, t ⊧ 𝜑 for any stage 
t of δ . A formula � is globally true in an ST-model M , written M ⊧ 𝜑 , if M, δ ⊧ 𝜑 for all 
paths δ in M . Finally, let Σ be a set of formulae in L���[FB]

 , then M is a model of Σ if M ⊧ 𝜑 
for all � ∈ Σ.

Similar to Epistemic GDL [29], the following propositions hold:

Proposition 1 Let M be an ST-model, for each agent � ∈ N and each action β ∈ B , 

1. M ⊧ does𝗂(β) → ¬does𝗂(β
�) , for any β� ∈ B such that β� ≠ β

2. M ⊧
⋁

β�∈B does�(β
�)

3. M ⊧ does𝗂(β) → legal𝗂(β)

4. M ⊧ ¬○ initial

5. M ⊧ terminal ∧ 𝜑 → ○𝜑 , for any � ∈ L���[FB]

6. M ⊧ initial → ¬terminal

Statements 1 and 2 specify an agent performs exactly one action in each state. Further-
more, if she does an action, then it must be legal (Statement 3). As a consequence from the 
path construction, we have that no state can be followed by the initial one (Statement 4) 
and any formula that holds in a terminal state also holds in the subsequent state (Statement 
5). Finally, if a state is the initial one then it is not a terminal state (Statement 6).

We also have tautologies related to the partial order ⪯I:
Observation.  Let M be an ST-model, � ∈ N be an agent, z = (z1, z2,… , zn) be a list of 

numerical terms (i.e., z ∈ L
n
z
 ) and f ∈ FB be any function such that f ∶ In → I , for some 

n ∈ I≻0 , 

1. M ⊧ z1 ℜ z1 , for ℜ ∈ {≤,≥,=}

2. M ⊧ z1 ℜ z2 ∧ z2 ℜ z1 → z1 = z2 , for ℜ ∈ {≤,≥,=}

fz(z, w) =

⎧
⎪⎨⎪⎩

πY(w, z) if z ∈ Y

f (β1,… , βn, fz(z1, w),… , fz(zm, w)) if z = f (β1,… , βn, z1,… , zm)

z if z ∈ I

M, δ, t ⊧ p iff p ∈ πΦ(δ[t])

M, δ, t ⊧ ¬𝜑 iff M, δ, t ̸⊧ 𝜑

M, δ, t ⊧ 𝜑1 ∧ 𝜑2 iff M, δ, t ⊧ 𝜑1 and M, δ, t ⊧ 𝜑2

M, δ, t ⊧ initial iff δ[t] = w̄

M, δ, t ⊧ terminal iff δ[t] ∈ T

M, δ, t ⊧ legal�(β) iff β ∈ L(δ[t], �)

M, δ, t ⊧ does�(β) iff θ�(δ, t) = β

M, δ, t ⊧ ○𝜑 iff M, δ, t + 1 ⊧ 𝜑

M, δ, t ⊧ z1 ≤ z2 iff fz(z1, δ[t]) ⪯I fz(z2, δ[t])
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3. M ⊧ z1 ℜ z2 ∧ z2 ℜ z3 → z1 ℜ z3 , for ℜ ∈ {≤,≥,=}

4. M ⊧ zi = zj ↔ f (zi, z−i) = f (zj, z−i) , for any 1 ≤ i ≤ n

5. M ⊧ z1 = z2 ↔ z2 = z1
6. M ⊧ z1 ℜ z2 → ¬(z2 ℜ z1) , for ℜ ∈ {<,>}

Statements 1, 2 and 3 are a consequence from ⪯I being reflexive, antisymmetric and transi-
tive, respectively. Ceteris paribus, two numerical terms are equal if and only if the value 
obtained after applying f is equal for both terms (Statement 4). Statement 5 says that the 
equality operator is symmetric and Statement 6 states that the operators representing the 
relations smaller-than and greater-than are asymmetric.

Requirements for representing verifiable auctions For verifying a protocol 
expressed in ADL [FB] with respect to properties from mechanism design, its signature 
S = (N,G,B,Φ, Y, I,FB) must comply with the following requirements:

• FB should include a function v𝗂 ∶ B × I𝗇𝗆 → I for each agent � ∈ N , where v�(β, �) 
denotes the value of β given a joint trade � ∈ I�� , i.e., v�(β, �) represents the value 
reported for trade � under � ’s bid β;

• There are no duplicate bids in B , that is, there are no two bids β, β� ∈ B , such that 
β ≠ β� and v�(β, �) = v�(β

�, �) , for any trade � ∈ I�� and any agent �;
• Each payment and trade should be represented as a numerical variable, that is, 

{payment�, trade�,j ∶ � ∈ N, j ∈ G} ⊆ Y . The variables payment� and trade�,j denote the 
value in a state of agent � ’s payment and her trade for the good j , respectively.

Other functions may as well be included in FB . For instance, for indirectly representing 
market clearing with ADL [FB] , one may encode a winner determination function, such 
that it assigns bids and allocations to trades. Such function is not a compulsory requirement 
for the bidding language, since we can also directly represent the market clearing through 
L���[FB]

-rules.4

4  Evaluating auction‑based protocols

In this section, we explore the general evaluation of auction-based protocols. First, we 
recall concepts from mechanism design and present their formulation in ADL [FB] . As for 
GDL, we then define well-formulated protocol descriptions.

4.1  Mechanism design

A mechanism aggregates agents’ preferences and decides for an outcome (e.g., an alloca-
tion of goods, a result of an election, etc) [16]. Auctions are a type of mechanism, in which 
the outcome is described in terms of trades and monetary transfers among the participants. 
According to a given objective, the goal of Mechanism Design (MD) is to design a game 
(i.e., the mechanism) such that an outcome with desirable features is reached, despite 
the agents’ self interests [62]. The objective of a mechanism can include, for instance, 

4 A winner determination function is shown in Sect.  6.1.2 and the protocol presented in Sect.  5 has the 
market clearing represented through L���[FB]

-rules.
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truthfulness of agents (i.e., strategyproofness), maximization of social welfare (i.e., effi-
ciency), voluntary participation (i.e., individual rationality), and so on.

Let us recall concepts from MD and show how to represent some classical but important 
objectives (hereafter called properties) in ADL [FB] , namely budget-balance, efficiency, 
individual rationality and strategyproofness. As we focus on auctions, we denote the mech-
anism outcome as a pair (�, �) , where 𝛌 = (𝛌j)j∈G is a trade and p� is the payment for agent �
.

The preference of an agent � in N over a trade � is modeled by a preference function 
�𝗂 ∶ I𝗇𝗆 → I , where �� ∈ V� and V� is a finite set of possible preference functions for � . We 
call V� the preference space of � . We classically assume that the utility of agent � over an 
outcome (�, �) is quasi-linear (i.e., the utility’s dependence on the payment is separable and 
linear)5, defined as ��(�) − p�.

Since different action sets may have different expressiveness and syntactical structures, 
we use the value reported in a bid for a given trade to assess whether the bid represents the 
agent’s preference function.

Definition 6 Let B be an action set and V� be the preference space of agent � ∈ N . A bid 
β ∈ B represents a preference function �� ∈ V� , denoted by β ∼� �� , iff v�(β, �) = ��(�) , for 
all trade � ∈ I��.

Similarly, an action set may represent a preference space. In this case, exactly one bid in 
the action set should represent a preference function.

Definition 7 Given a set of actions B and a preference space V� of agent � ∈ N , we say B 
represents V� , denoted by B ≈� V� iff for each �� ∈ V� there exists a unique bid β ∈ B such 
that β ∼� �� and for each bid β ∈ B there exists a preference function �� ∈ V� such that 
β ∼� ��.

If B ≈� V� , for each �� ∈ V� we let β�� denote the bid β ∈ B such that β ∼� �� , that is, β�� is 
the bid that represents �� . Given a preference profile � , let �

�
= (β�� )�∈N denote the profile 

of bids representing �.
Notice not all elements of I are feasible values for trades, for instance in a traditional 

English auction, the trade for each agent should be either 0 or 1 while the interval I could 
include greater values for encoding the payments. In the following, the possible choices 
considered for trades in the mechanism are denoted Λ ⊆ I��.

An indirect mechanism describes the available actions for each agent and an outcome 
function that maps vectors of actions (also know as strategies) into outcomes. In a direct 
mechanism, each agent’s available action consists on reporting preferences from her prefer-
ence space [26]. Formally, a direct mechanism is defined as follows [52]:

Definition 8 A direct mechanism (�, �) specifies a social choice function 𝗌 ∶
∏

𝗂∈N V𝗂 → Λ 
and a profile of payment functions � , where 𝗉𝗂 ∶

∏
𝗂∈N V𝗂 → I denotes the amount agent � 

pays (or receives).

5 Quasilinearity of utilities refers to the fact that the utility function is a linear combination of the prefer-
ence valuation function and the price paid by the agent. However, the preference function �� itself can be 
general.
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Regardless whether a protocol is multi- or single-stage, we view each step we

de+1

−−−→ we+1 
of a path w0

d1

−−→ w1

d2

−−→ …
dt

−→ wt

dt+1

−−−→ … in an ST-model M as a direct mechanism, where 
e ≥ 0 and the social choice and payments are encoded by the update and valuation func-
tions in M . Formally,

Definition 9 Given a preference space profile V , an ST-model M and a state w ∈ W 
such that L(w, �) ≈� V� for each � ∈ N , and let the set of possible trades be defined as 
Λ = {(πY(w

�, trade�,j))�∈N,j∈G ∶ w� = U(w, �
�
) & � ∈

∏
�∈N V�} . Then state w is a direct 

mechanism (�, �) , where for each � ∈
∏

�∈N V� , the outcome is denoted by the valuation 
of the numerical variables regarding trades and payments in the state w� = U(w,�

�
) . The 

social choice function is

where λ�,j = πY(w
�, trade�,j) for each agent � and good j . The payment function for agent � is

The state w� = U(w,�
�
) in the above definition is called an outcome state. Any 

reachable state in an ST-model is an outcome state, except the initial state. For the 
next subsections, we fix an ST-Model M and a preference space profile V such that 
L(w, �) ≈� V� for each agent �  and state w ∈ W.

4.1.1  Budget‑balanced mechanisms

A mechanism is strongly budget-balanced (SBB) if the cumulative payment among the 
bidders is zero, for every preference they may have [44]. A mechanism where there 
is no monetary deficit, that is, where only the designer can earn revenue, is called 
weakly budget-balanced (WBB) [44]. This condition is a relaxation from SBB, where 
the cumulative payment among the bidders cannot be negative.

Definition 10 A direct mechanism (�, �) is strongly budget-balanced (resp. weakly budget-
balanced) if for each � ∈

∏
�∈N V�,

We denote the condition of a state being SBB by the following ADL [FB]-formula:

The formula wbb is defined similarly, with ≥ instead of = . Remind we consider that each 
stage in M represents a direct mechanism. The ST-model M is SBB (resp. WBB) if that is 
the case for all outcome states of all paths in M , that is, if M ⊧ ○sbb (resp. M ⊧ ○wbb).

Similarly, we could represent conditions for the balance of trades. Balance of sup-
ply-demand requires the cumulative of trades for each good to be exactly zero [37]. 
Mechanisms with free disposal allow trades to sell more items than are purchased [54], 
that is, the cumulative of trades for each good must be at most zero.

�(�) = (𝛌j)j∈G

��(�) = πY(w
�, payment�)

∑
�∈N

��(�) = 0 (resp.
∑
�∈N

��(�) ≥ 0)

sbb =def sum�∈N(payment�) = 0
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4.1.2  Strategyproof mechanisms

A mechanism is strategyproof (SP), or incentive compatible, if each agent � prefers reporting 
her real preference �� than reporting any other preference �′

�
 , since �� gives her at least the same 

utility [52].

Definition 11 A direct mechanism (�, �) is strategyproof if for every agent � ∈ N , every 
preference profile � and every ��

�
∈ V�,

Now we reformulate this condition in terms of states from an ST-model. Let V� denote the 
preference space for each agent �.

Given the ST-model M , a path � in M and a stage t ≥ 0 in � , such that L(�[t], �) ≈� V� 
for each � . For any preference profile � , let �

�
 denote a path such that �[0, t] = �

�
[0, t] and 

�(�
�
, t) = �

�
 (i.e., M, 𝛿

�
, t ⊧ does(�

�
) ). In other words, �

�
 is a path with the same prefix as � , 

but one in which agents report the preferences � in �
�
[t] instead of the actions they perform in 

�[t].
We say that �[t] is strategyproof if for every � ∈ N , every preference profile � and every 

��
�
∈ V� , we have that, for some x ∈ I,

and

M is strategyproof if each stage t ≥ 0 of each path � in M is strategyproof.

4.1.3  Efficient mechanisms

A mechanism is efficient (EF) if the social choice function maximizes the (utilitarian) social 
welfare [54], i.e., the cumulative preference among the agents.

Definition 12 A direct mechanism (�, �) is efficient if for every preference profile �,

Let us express this condition in terms of an ST-model M . The following formula deter-
mines whether the current trade maximizes the social welfare:

We say M is EF if, after performing a joint action, the trade in the outcome state maximizes 
agents’ preferences, that is M ⊧ does(�) → ○ef(�) , for every � ∈ B

�.

��(�(�)) − ��(�) ≥ ��(�(�
�
�
, �−�)) − ��(�

�
�
, �−�)

M, 𝛿
�
, t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G), payment�) = x

M, 𝛿(𝜗�
�
,𝜗−�)

, t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G), payment�) ≤ x

∑
�∈N

��(�(�)) = max
�∈Λ

∑
�∈N

��(�)

ef(𝛃) =def

(
sum�∈N(v�(β�, (tradej)j∈G)) = max

𝛌∈Λ
(sum�∈N(v�(β�, 𝛌)))

)
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4.1.4  Individually rational mechanisms

A mechanism is (ex-post) individually rational (IR), if agents always get non-negative util-
ity [52]. Given a reported preference, in an IR mechanism, the agent’s utility when par-
ticipating is at least as good as if she did not participate (assuming the utility of non-par-
ticipation is zero). Individual rationality is also known as voluntary participation since it 
expresses the idea that agents are not forced to participate in the mechanism [54].

Definition 13 A direct mechanism (�, �) is individually rational if for every agent � ∈ N , 
every � ∈

∏
�∈N V�,

We use the following ADL [FB]-formula to denote whether an state is IR:

The ST-model M is IR if performing a joint action leads to an individually rational state, 
that is, M ⊧ does(�) → ○ir(�) , for every � ∈ B

�.
The properties described in this section are classical in mechanism design, since they 

describe desirable features of the outcome. The objective of a mechanism may include a 
combination of different properties. However, well-known impossibility results restrict the 
feasible combination of such properties: no mechanism can be efficient, strongly budget-
balanced and individual-rational [49] and no mechanism can be efficient, incentive com-
patible and strongly budget-balanced [23].

In this paper, we verify ST-models by considering that each stage is a direct mechanism, 
that is, an iterative protocol is treated as a sequence of (independent) direct mechanisms. 
The revelation principle [52] states that any indirect mechanism that implements a function 
in dominant strategies can be converted into a strategyproof direct mechanism. For this 
reason, considering direct mechanisms is of first interest.

If we want to verify an ST-model M as an (unique) indirect mechanism, we need to 
evaluate properties considering the final outcome, that is, on the terminal states of each 
path. The classical approach in mechanism design requires properties to hold in strategic 
equilibrium rather than for all possible outcomes. As ADL [FB] does not involve quantifica-
tion over strategies, we need meta-reasoning to capture the strategic equilibrium for a given 
solution concept (such as Nash or dominant strategy equilibrium). The reader may refer to 
[52] for a discussion on the problem of finding strategic equilibria.

In the next subsection, we will focus on properties that ensure well-formed descriptions 
in ���[FB] . This properties are not related to the mechanism outcome but require proto-
cols to be playable and eventually end.

4.2  Characterizing well‑formed protocols

Love et al. [40] introduced constraints for games used in General Game Playing. This con-
straints constitute desirable features of games described in GDL by ensuring their descrip-
tions to be meaningful (or well-formed), in the sense that games are playable, eventually 
terminate and are weakly winnable by any player.

��(�(�)) − �(�) ≥ 0

ir(𝛃) =def

⋀
�∈N

sub(v�(β�, (tradej)j∈G), payment�) ≥ 0
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We rephrase the constraints for termination and playability in terms of ST-models. First, 
termination refers to whether each path from an ST-model reaches a terminal state.

Definition 14 An ST-model M terminates if each path � in M is complete, that is, �[t] ∈ T , 
for some t > 0.

Playability means there is a legal action for each agent to take in each moment of the 
auction.

Definition 15 An ST-model M is playable if L(w, �) ≠ � for each reachable state w ∈ W 
and agent � ∈ N.

Weak winnability means that, for each agent, there is a sequence of joint actions that 
leads to a terminal state where the goal value is maximal. In the logical formulations of 
GDL, weak winnability means that every player has a chance to win [60, 75], that is, there 
exists a path to a winning state. In ADL [FB] , weak winnability follows from our assump-
tion that each stage represents a direct mechanism. Since we understand the agent’s prefer-
ences as represented by legal actions, there exists a joint action in each stage leading to a 
state that maximizes her utility among the possible outcomes. Hence, we do not focus on 
weak winnability for determining whether a protocol is well-formed.

A well-formed protocol is a set of rules in ADL [FB] whose model is an ST-model that 
satisfies both termination and playability.

Definition 16 Given an ST-Model M and a finite set of ADL [FB]-formulae Σ ⊂ L���[FB]
 , 

Σ is a well-formed protocol over M if M is a model of Σ , M terminates and it is playable.

It is possible to have different descriptions that are well-formed with respect to the same 
model (e.g., due to redundancy). In fact, a given auction description may also be sound in 
respect to several models. Investigating minimal descriptions is an interesting non trivial 
open question. A potential path is to characterize the minimum equivalent of an original 
ST-model, that is, the canonical model. This problem was explored for GDL [27], where 
they use the notion of bisimulation equivalence between ST-models. In a recent paper, 
Zhang [76] investigates the equivalence of two GDL-descriptions when they describe 
games behaviourally the same.

Similar to ADL [FB] , the semantics of GDL is based on fixed paths. Thus, the con-
straints for well-formed descriptions cannot be encoded through formulae using the stand-
ard formulation of GDL. Zhang [75] proposes a GDL-based modal logic to enable rea-
soning over game descriptions, with which one can express conditions such as playability, 
termination and winnability. However, the work does not investigate the complexity of 
verifying formulae in this modal logic. Ruan et al. [60] use ATL [1] to reason about GDL-
specified games. They prove that the problem of interpreting ATL formulae over proposi-
tional GDL descriptions is EXPTIME-complete and show how to use ATL for the verifi-
cation of well-formedness conditions, which might or might not hold on various games. 
Deciding whether a GDL description [40] is well-formed is undecidable in general, since 
deciding whether a description leads to games that always terminates would solve the halt-
ing problem for a Turing machine [61].

���[FB] is useful for representing the rules of an auction as well as for verifying a number 
of properties. As we discussed above, we can encode different properties of direct mechanisms 
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as ���[FB]-formulae (e.g., individual rationality and budget balance). Although we can-
not represent strategyproofness and the constraints for well-formed descriptions entirely 
as ���[FB]-formulae, we are still able to infer them by meta-reasoning over the model 
specification.

Other logical languages are suitable for encoding properties. Termination and playability, 
for instance, can be written as ATL-formulae [1]. As SL [14] includes quantification over 
strategies, it allows the evaluation of games in strategic equilibria. Therefore, it can be used to 
encode properties for indirect mechanisms as logical formulae, as proposed in [42]. However, 
the expressivity of such languages brings a computational cost. The model-checking problem 
for ATL* with perfect information is in PSPACE in the memoryless case and deterministic 
double exponential time with perfect recall [63]. As for SL, the model-checking is Non Ele-
mentary with respect to the size of the specification. More specifically, it is k-EXPSPACE-
hard in the alternation number k of quantifications in the specification [48]. As we shall see 
in Sect. 7, the model-checking for ���[FB] is in PTIME in the size of the formula. For this 
reason, we believe ���[FB] provides a reasonable cost-benefit for expressing and evaluating 
general auctions. As a drawback for ATL, SL and ADL [FB] , representing auctions as concur-
rent game structures or state-transition models may require exponential size.

In the next sections, we illustrate the use of ADL [FB] for specification of different although 
representative types of auctions: a simultaneous ascending auction, a Vickrey–Clarke–Groves 
mechanism and an iterative combinatorial exchange.

5  Representing a simultaneous ascending auction

Let us now consider the simultaneous ascending auction (SAA), which is a single-side and 
single-unit auction similar to the traditional English auction, except that several goods are sold 
at the same time, and that the participants simultaneously bid for any number of goods they 
want. According to Cramton [17]:

“The simultaneous ascending auction (and its variants) will remain the best method for 
auctioning many related items in a wide range of circumstances, even settings where 
some of the goods are complements for some bidders.”

To represent a SAA with � types of goods and � agents, we first describe the auction sig-
nature, written Ssa = (N,G,B,Φ, Y, I,FB) , where N = {1,… ,�} , G = {1,… , �} , 
Φ = {soldj, bid�,j ∶ j ∈ G & � ∈ N} , Y = {price, pricej, trade�,j, paymenti ∶ j ∈ G & 
� ∈ N} and I ⊂ ℕ . The propositions soldj and bid�,j represent whether the good j was sold 
and whether � is bidding for j , resp. The variables price and pricej specify the current 
price for any unsold good and the selling price for j , resp. Agents may specify the value 
they are willing to pay for each good in a given state. The action set is defined as follows: 
B = {(p1,… , p�) ∶ pj ∈ I⪰0, 1 ≤ j ≤ �} , where pj denotes the price for good j.

FB includes the functions previously introduced (e.g., sum(z1, z2) , max(z1, z2) ). It also con-
tains the function v𝗂 ∶ B × I𝗇𝗆 → I , for each agent � ∈ N . This function is defined as follows:

for a trade � ∈ I�� and a bid (p1,… , p�) ∈ B.
Each instance of a SAA is specific and defined with respect to B , I and the constant 

values ���,�, � ∈ I≻0 and ����� ∈ I⪰0 , representing the quantity of agents and types of 

v�((p1,… , p�), �) =
∑
j∈G

λ�,j ⋅ pj
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goods, the bid increment, and the starting price, respectively. Then, the rules of an SAA 
are formulated by ADL [FB]-formulae as shown in Fig. 1.

In the initial state, no agent is bidding, no trade is performed and the prices have the 
value ����� (Rule 1). A good is sold if it is traded to some agent (Rule 2). In a terminal 
state, all the goods are either sold or no one is bidding for them (Rule 3). A good will 
be traded to an agent in the next state if she is currently the only active bidder for this 
item, otherwise there is no trade (Rules 4–5). For each good, an agent can either bid the 
value 0, an increment on the current price (for unsold goods) or repeat her winning bid 
for this good (Rule 6). In a non-terminal state, the propositions and numerical variables 
are updated as follows: (i) the current price increases, (ii) the selling price increases for 
unsold goods, and (iii) the active bidders for each good are updated with respect to their 
bids (Rules 7–9). The payment for an agent is the cumulative value of the selling price 
for her traded goods (Rule 10). Let Σsa be the set of Rules 1–10.

5.1  Representing as a model

Next, we address the model representation of SAA. Let Msa be the set of ST-models 
Msa defined for any constant values ����� ∈ I⪰0 and ���, �,� ∈ I≻0 . Each Msa is defined as 
follows:

– W = {⟨(bj)j∈G, (𝛌j)j∈G, p, (pj)j∈G⟩ ∶ b�,j, λ�,j ∈ {0, 1} & p, pj ∈ I⪰0 & � ∈ N & j ∈ G} , 
where b�,j denotes whether agent �  is bidding for good j , λ�,j specifies the number of 
goods with type j traded for agent �  , p denotes the current price and pj represents the 
selling price for j;

– w̄ = ⟨0,… , 0, 0,… , 0, �����, �����,… , �����⟩ , in the initial state, there is no trade or 
active agent and the prices are �����;

Fig. 1  Simultaneous Ascending Auction represented by Σsa
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– T = {w ∶ w = ⟨(bj)j∈G, (𝛌j)j∈G , p, (pj)j∈G⟩ ∈ W⧵{w̄} & for all j ∈ G , either (i) λ�,j = 1 
for some � ∈ N or (ii) bid�,j = 0 , for all � ∈ N} , the terminal states are the ones where 
every good was sold or there is no bidder interested on purchasing it;

– L = {(w, �, (prj)j∈G) ∶ � ∈ N & w = ⟨(bj)j∈G, (𝛌j)j∈G, p, (pj)j∈G⟩ ∈ W & for all j ∈ G , and 
all 0 ≤ prj < zmax − ��� such that either (i) prj = 0 & λ�,j = 0 or (ii) prj = p + ��� & 
λ�,j ≠ 1 , for all � ∈ N or (iii) prj = pj & λ�,j = 1} , that is, agents can choose to raise their 
bid or to give up of unsold goods, if an agent bought a good, she must keep her bid for 
it;

– For every w = ⟨(bj)j∈G, (𝛌j)j∈G, p, (pj)j∈G⟩ in W and all d ∈ B
� , U is defined as follows: 

if w ∈ T then U(w, d) = w . Otherwise, U(w, d) = ⟨(b�
j
)
j∈G

, (𝛌�
j
)
j∈G

 , p�, (𝛌j)j∈G⟩ , where 
for every � ∈ N and j ∈ G each component is updated as follows, 

 (i) b�
�,j
= 1 iff di ≠ 0 ; and b�

�,j
= 0 otherwise;

 (ii) λ�
�,j
= 1 iff b�

�,j
= 1 and for all � ∈ N⧵{i}, b�

�,j
≠ 1 ; and λ�

�,j
= 0 otherwise;

 (iii) p� = p + ���;
 (iv) p�

j
= pj + ��� iff λ�

r,j
= 0 for all � ∈ N ; and p�

j
= pj otherwise.

– For each w = ⟨(bj)j∈G, (𝛌j)j∈G, p, (pj)j∈G⟩ in W , � ∈ N and j ∈ G , 

Fig. 2  A Path in Msa , with 2 bidders and 2 goods
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 (i) πY(w, trade�,j) = λ�,j;
 (ii) πY(w, price) = p;
 (iii) πY(w, pricej) = pj;
 (iv) πY(w, payment�) =

∑
j∈G pj ⋅ λ�,j

– For each w ∈ W , πΦ(w) = {soldj ∶ λ�,j = 1 & j ∈ G & � ∈ N} ∪ {bid�,j ∶ b�,j = 1 & 
j ∈ G & � ∈ N}.

Hereafter, we assume an instance of Msa ∈ Msa and Σsa for some ����� ∈ I⪰0 and 
���, �,� ∈ I≻0.

Example 1 Let Msa ∈ Msa , such that ����� = 1 and ��� = 1 . We assume there are two agents 
in N , denoted by � and � , and two types of goods in G , denoted by � and � . Figure 2 illus-
trates a path in Msa , showing the value of the numerical variables and the propositions that 
hold in each state. For convenience, we omit the numerical variables when their value is 0. 
In state w0 , agents � and � bid for good � , but only agent � bids for good � . In state w1 , since 
� is the only bidder for � , it is sold to her. Agent � cannot change her bid for � and � can no 
longer bid for it. In w1 , only agent � accepts to increase her bid for � . In state w2 , � is sold to 
� . Since all the goods were sold, this state is terminal.

5.2  Evaluating the protocol

Let us now evaluate the protocol. First, we show that Σsa is a sound representation of Msa.

Lemma 1 Msa is an ST-model and it is a model of Σsa.

Next, we show that no good can be bought by two different agents, i.e., given any two 
agents and a good, one of them will have her trade equal to zero. When a good is sold, it 
will still be sold in the next state.

Proposition 2 For each j ∈ G and each �, � ∈ N such that � ≠ � , 

1. Msa ⊧ trade�,j = 0 ∨ trade�,j = 0

2. Msa ⊧ soldj → ○soldj
3. Msa ⊧ ¬soldj → price = pricej

Each path in Msa reaches a terminal state, and thus the protocol satisfies the termination 
condition. Furthermore, Msa satisfies playability, that is, there is always a legal action for 
each agent to take. Thus, Σsa is well-formed over Msa.

Theorem 1 Σsa is a well-formed protocol over the ST-model Msa.

Proof Since Msa is a model of Σsa (see Lemma 1), we have to show that for each path δ in 
Msa and each agent � ∈ N , 
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1. δ is a complete path;
2. Msa ⊧

⋁
a∈B legal�(a).

Let us start by verifying Statement 1. Remind ����� ∈ I⪰0 and ��� ∈ I≻0 . Let δ be a path in 
Msa . In δ[0] , πY(δ[0], price) = ����� . By the update function, for any stage t  , if δ[t] ∉ T , 
then πY(δ[t + 1], price) = πY(δ[t], price) + ���.

For the sake of contradiction, let us assume δ is not complete. Let � ∈ N be an 
agent. By the definition of L , (p1,… , p�) ∈ L(δ[t], �) , for all 0 ≤ pj < zmax − ��� and 
j ∈ G , such that either (i) pj = 0 & πY(δ[t] , trade�,j) = 0 , or (ii) pj = price + ��� & 
πY(δ[t], trader,j) = 0 for all r ∈ N , or (iii) pj = pricej & πY(δ[t], trader,j) = 0 . Since 
πY(δ[t + 1], price) > πY(δ[t], price) , there will be a stage e ≥ 0 in δ , where the condi-
tion (ii) will not be true for any 0 ≤ pj < zmax − ��� . Thus, for each good j , it will be the 
case that � bids 0 for it or the good was assigned to her (i.e., πY(δ[e], trade�,j) = 1 ). From 
Rules 3 and 9 in Σsa , it follows that δ[e + 1] ∈ T . Thus, δ is a complete path, which is a 
contradiction.

We now consider Statement 2. Given a path δ in Msa and a stage t in δ , we show that 
there is a legal action for agent � in δ[t] . For each j ∈ G , let pj = 0 if πY(δ[t], trade�,j) = 1 . 
Otherwise, let pj = πY(δ[t], pricej) . By L definition, we have (p1,… , p�) ∈ L(δ[t], �) . Thus, 
Msa, δ, t ⊧

⋁
a∈B legal�(a).

From being a single-side auction where all agents are buyers, it follows that there is 
no monetary deficit in Msa , but it is not strongly budget-balanced.

Proposition 3 Msa ⊧ ○wbb and Msa ̸⊧ ○sbb

The simultaneous ascending auction is only efficient on states preceding the terminal 
one.

Proposition 4 Given a joint action � ∈ B
� , 

1. Msa  ⊧ does(�) → ○ef(�)

2. Msa ⊧ does(�) → ○(terminal → ef(�))

The auction described by Msa is individually rational, since agents pay at most their 
bids.

Theorem 2 Given a joint action � ∈ B
� , Msa ⊧ does(�) → ○ir(�)

Proof Given a path δ in Msa and a stage t , assume Msa, δ, t ⊧ does(�) for some � ∈ B
� . We con-

sider first the case where δ[t] ∉ T . Let � ∈ N be an agent and (p1,… , p�) denote the bid of � 
in the joint action � . Let us consider the good j ∈ G . We denote by prj = πY(�[t + 1], pricej) 
the price of good j in �[t + 1] and by � = (πY(�[t + 1], trade�,j� ))j�∈G,�∈N the trade in �[t + 1] . 
Recall function v�((p1,… , p�), �) =

∑
j∈G λ�,j ⋅ pj . Similarly, by Rule 10, we have that the 

payment for agent � in �[t + 1] is πY(�[t + 1], payment�) =
∑

j∈G prj ⋅ λ�,j.
We have ��(δ, t) = (p1,… , p�) . Notice ���, pj ∈ I⪰0 by the definition of Ssa . According 

with the action legality (Rule 6), the value of pj can be either zero, the price of j in �[t] or 
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the current price incremented by ��� . For each of the three cases, we show that the part of 
� ’s payment corresponding to j is equal to the part of v�((p1,… , p�), �) corresponding to j:

• If pj = 0 , agent � chosen to not bid for good j . By Rules 5 and 9, 
Msa, 𝛿, t + 1 ⊧ ¬bid�,j ∧ trade�,j = 0 . Thus, we have λ�,j ⋅ pj = prj ⋅ λ�,j = 0.

• If pj = πY(�[t], pricej) , by the definition of L , it must be the case that the good was already 
sold to agent � , that is Msa, 𝛿, t ⊧ trade�,j = 1 ∧ soldj . Since good j is sold, Rule 6 ensure 
other agents can only bid the value 0 for j , and thus, Msa, 𝛿, t + 1 ⊧

⋀
r∈N⧵{�} ¬bidr,j . 

By Rules 4 and 9, we have Msa, 𝛿, t + 1 ⊧ bid�,j ∧ trade�,j = 1 . Since good j is sold, its 
price in �[t] is the same as in �[t] (Rule 8), that is Msa, 𝛿, t ⊧ pricej = pj . Thus, we have 
λ�,j ⋅ pj = prj ⋅ λ�,j = prj.

• Let prevprice = πY(�[t], price) . If pj = prevprice + ��� , then Msa, 𝛿, t + 1 ⊧ bid�,j . 
From the legality definition, it should be the case that j is not sold, that is 
Msa, 𝛿, t ⊧ ¬soldj ∧ pricej = sum(prevpricej, ���) . From Statement 3 of Proposition 2, 
we have Msa, 𝛿, t ⊧ price = pricej . The value of trade�,j depends on the actions of other 
agents in �[t] . From Rules 5 and 4, we have Msa, 𝛿, t + 1 ⊧ trade�,j = 0 ∨ trade�,j = 1 . 
In the first case, λ�,j ⋅ pj = prj ⋅ λ�,j = 0 . Otherwise, the trade has the value 1 and 
λ�,j ⋅ pj = prj ⋅ λ�,j = prj , since pj = prj = prevprice + ���.

It follows that 
Msa, 𝛿, t + 1 ⊧ v�(β, (tradej)j∈G) = payment� and Msa, �, t + 1 ⊧ sub

Msa, 𝛿, t + 1 ⊧ sub(v�(β, (tradej)j∈G), payment�) ≥ 0 . Thus, Msa, 𝛿, t ⊧ ○ir(�).
If δ[t] ∈ T , the loop in the path definition ensures Msa, 𝛿, t ⊧ ○ir(�) if and only if 

Msa, 𝛿, t ⊧ ir(�).

Under the assumption that each stage in Msa is a (direct) mechanism for which the legal-
ity set represents the agents’ preference spaces, the Msa is strategyproof. As it is only legal to 
accept or decline to raise the current price for unsold goods (represented by bidding the value 
0 or price + ��� ), there is no utility improvement if the agent accepts when she would prefer to 
decline (and vice-versa). When a good is sold for an agent, there is only one value that is legal 
to bid for the good bought, and thus the agent cannot strategize.

Proposition 5 Msa is strategyproof.

We conclude the section by discussing variants of non-combinatorial auctions. When the 
number of good types is one (that is, |G| = 1 ), Σsa corresponds to the Japanese-English auc-
tion. For representing the standard variant of the English auction, one should define the legal-
ity rule such that agents are also allowed to bid any price above the current price. Further-
more, the price in the next state should be updated according to the highest bid in the current 
one. The Dutch auction is also similar to Σsa . The key difference is that in the Dutch auction 
the bidding value should be decreased at each round until at least one agent accepts to pay the 
current price. As we saw in this section, with the ADL [FB] description of a given auction, we 
are able to formally analyze it, both in relation to domain-specific properties, well-formedness 
of its protocol and from a mechanism design perspective.



Autonomous Agents and Multi-Agent Systems (2022) 36:20 

1 3

Page 23 of 47 20

6  Representing combinatorial exchange

We now consider two protocols for combinatorial exchange: a one-shot protocol and a 
multi-stage variant. We consider the setting with multiple goods and multiple copies 
of each good. Agents hold an initial allocation of goods and can trade items with each 
other. Remind a trade denotes the number of goods being exchanged among the agents 
in a state. With allocation we refer to the number of goods the agents initially have.

Both protocols use the Tree-Based Bidding Language (TBBL) for defining its action 
set. TBBL [41, 53] is a language designed for Combinatorial Exchange. It allows to 
represent buyers and sellers demands in the same structure. We adopt TBBL as it is a 
highly expressive and compact language. TBBL is general enough to represent any kind 
of utility function (full expressivity), like OR-like bidding languages [9]. It is even more 
expressive in the sense that it is able to mix preferences for buying and selling bundles 
in the same framework. In relation to which kind of utility functions this framework is 
able to represent concisely, [13] compares TBBL with XOR and OR* bidding languages 
with this respect, and shows that TBBL is more compact, in the sense that there are 
valuation functions that admit an exponentially larger representation in these latter lan-
guages than in TBBL.

6.1  Tree‑based bidding language

The bidding language we present in this section, denoted L���� , only differs from the origi-
nal definition of TBBL in the fact that we assume all language components and related 
optimization problems are bounded by I.

Definition 17 A formula in L���� is called a bid-tree (or simply a bid) and is generated by 
the following BNF:

where β̄ ∶∶= β̄, β ∣ β is a nonempty bid list, j ∈ G , z ∈ I , y ≤ x and y, x ∈ I⪰0.

β ∶∶= ⟨z, j, z⟩ ∣ ICx
y
(β̄, z)

Fig. 3  Examples of tree-bids β� and β� reported by agents �  and � , resp
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A bid in the form ⟨�, j, �⟩ is called a leaf and represents that the agent is willing to buy (or 
sell) � units of the good j and pay (or receive) � . The interval-choose (IC) operator defines 
a range on the number of child nodes that must be satisfied. Thus, a bid ICx

y
(β̄, �) indicates 

the agent is willing to pay (or receive) � for the satisfaction of at least y and at most x of the 
children nodes β̄ . The IC operator can express logical connectors. For instance, IC1

1
(β̄, �) 

is equivalent to the XOR operator applied to the bids in the list β̄ . Let � = |β̄| (i.e., the list 
size), IC�

�
(β̄, �) is equivalent to an AND operator and IC1

�
(β̄, �) is equivalent to an OR opera-

tor. For simplicity, we hereafter use the corresponding shortcuts XOR(β̄, �) , AND(β̄, �) and 
OR(β̄, �).

For instance, in Fig. 3, agent � reports her willingness to buy 1 unit of � paying 2€ or 2 
units of � for 5€ or to sell 1 unit of � receiving 2€. Agent � bids an exclusive disjunction 
for either (i) to sell one unit of � and receive 3€; or (ii) to sell 2 units of � receiving 4€ and 
to buy one unit of � paying 2€. The node representing the condition (ii) has an additional 
value of 1.

Hereafter, we introduce some extra notations to characterize solutions and win-
ners. Let β� ∈ L���� be a bid-tree from bidder  � , the set Node(β�) denotes all nodes 
in the tree β� , that is, all its inner bids, including β� itself. Formally, if β� is in the 
form ⟨�, j, �⟩ , then Node(β�) = {β�} . Otherwise, β� is in the form ICx

y
(β̄, ��) and 

Node(β�) = {β�} ∪ Node(β̄1) ∪⋯ ∪ Node(β̄�) , where � = |β̄| and β̄k is the k-th element of β̄.
Let α ∈ Node(β�) , the set Child(α) ⊂ Node(β�) denotes the children of node α . If α is in 

the form ICx
y
(β̄, �) , then Child(α) = {β̄1,… , β̄�} , where � = |β̄| . Otherwise, Child(α) = {} . 

The leaves of a bid-tree β� are denoted by Leaf(β�) = {⟨�, j, �⟩ ∈ Node(β�) ∶ � ∈ I, � ∈ I & 
j ∈ G} . The value specified at node α is denoted by b�(α) ∈ I . If α is in the form ⟨�, j, �⟩ , 
then b�(α) = � . Otherwise, α is in the form ICx

y
(β̄, ��) and b�(α) = �� . Finally, the quantity of 

units of the good j specified at a leaf α = ⟨�, j, �⟩ is denoted by q(α, j) = � . For any other 
j� ≠ j ∈ G , q(β, j�) = 0 . For any node α ∉ Leaf(β�) and j ∈ G , q(α, j) = 0 . If α is not a leaf 
(i.e., α ∈ Node(β�)⧵Leaf(β�) ), then it is in the form ICx

y
(β̄) and we denote by xβ and yβ the 

interval-choose constraints x and y , respec.

6.1.1  Trade value and valid solutions

Given a bid-tree β� from agent � , the value of a trade � ∈ I�� is defined as the sum of the 
values in all satisfied nodes, where the set of satisfied nodes is chosen to provide the maxi-
mal total value. Let sat�(α) ∈ {0, 1} denote whether a node α ∈ Node(β�) is satisfied and 
sat� = {α ∶ sat�(α) = 1, for all α ∈ Node(β�)} denote the nodes satisfied in a solution.

A solution sat� is valid for a tree β� and trade λ� , written sat� ∈ valid(β�, λ�) if the following 
rules R1 and R2 hold [41]:

Rule R1 ensures that no more and no less than the appropriate number of children are sat-
isfied for any node that is satisfied. Rule R2 requires that the total increase in quantity of 
each item across all satisfied leaves is no greater than the total number of units traded.

(R1)
xβsat�(α) ≤

∑
γ∈Child(α)

sat�(γ) ≤ yβsat�(α)

∀α ∈ Node(β�)⧵Leaf(β�)

(R2)
∑

α∈Leaf(β�)

q�(α, j)sat�(α) ≤ λ�,j,∀j ∈ G
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The total value of trade � ∈ I�� for agent �  , given her bid β� , is defined as the solu-
tion to the following problem:

6.1.2  Winner determination

Given an auction signature, the bid-trees � = (β�)�∈N and an allocation X = (x�,j)j∈G,�∈N , 
where β� ∈ L���� denotes the bid from agent � ∈ N and x�,j ∈ I⪰0 represents how many 
copies of j agent �  initially holds.

Definition 18 The winner determination (WD) defines a pair (�, sat) obtained by the solu-
tion to the following mixed-integer program [41]:

where sat = (sat�)�∈N . Constraint C1 ensures that the trade � is feasible given X , that is, no 
agent sells more items then she initially hold. Constraint C2 provides free disposal and 
allows trades to sell more items than are purchased (but not vice-versa). Constraint C3 
ensures that each trade for an agent � is valid given her bid-tree. Constraint C4 defines the 
range for trades and node satisfaction. We denote by WD�(�,X) a function that obtains the 
trade � in the solution WD(�,X) = (�, sat) . Similarly, WDλ�,j

(�,X) captures the number of 
units of j traded by agent � in WD�(�,X).

If there are two or more solutions for WD(�,X) , the trade WD�(�,X) will be chosen 
w.r.t. some total order among the elements of I�� . This tie-breaking order is omitted to 
avoid overloading the notation. In the examples, we assume this order is compatible 
with the Pareto dominance relation [67].

We denote noop =def ⟨0, j, 0⟩ as the action of not bidding, for some arbitrary j ∈ G.

Lemma 2 For each agent � ∈ N , each bid-tree β ∈ L���� and each � ∈ I�� , v�(noop, �) = 0.

Next, we illustrate how to represent protocols with TBBL in ADL [FB].

v�(β�, �) = max
sat�

∑
β∈Node(β�)

b�(β) ⋅ sat�(β)

s.t. rules R1,R2 hold

(C1)WD(�,X) ∶ max
�,sat

∑
�∈N

∑
β∈Node(β�)

b�(β) ⋅ sat�(β)

(C2)
s.t. λ�,j + x�,j ≥ 0,∀� ∈ N, j ∈ G∑

�∈N

λ�,j ≤ 0,∀j ∈ G

(C3)sat� ∈ valid(β�, λ�),∀� ∈ N

(C4)sat�(β) ∈ {0, 1}, λ�,j ∈ I
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6.2  Vickrey–Clarke–Groves mechanism

Using TBBL to determinate the action set, let us now represent the Vickrey–Clarke–Groves 
(VCG) mechanism in ADL [FB] . This mechanism chooses the outcome maximizing the 
reported preferences [36]. Each agent’s payment corresponds to the damage she causes the 
other players, that is, the difference in the social welfare of others with and without her par-
ticipation [52]. We detail the rules specification and the semantic representation. Then, we 
revisit the conditions from MD and evaluate whether the protocol is well-formed.

To represent a VCG mechanism in the combinatorial exchange setting, we first describe 
its signature, written Svcg = (N,G,B,Φ, Y, I,FB) , where N = {1,… , �} , G = {1,… ,�} , 
B ⊆ L���� , Φ = {bidRound} , Y = {trade�,j , payment� ∶ � ∈ N, j ∈ G} , and I ⊂ ℤ . Finally, 
FB contains the functions v�(β, �) , WD�(�,X) and WDλ�,j

(�,X) described in the previous 
section as well as the functions denoting basic mathematical operations (e.g., sum(z1, z2) ). 
We also assume FB contains the function WD−𝗋

�
∶ B

𝗇 × I𝗇𝗆 → I𝗇𝗆 for any two agents � and 
� . WD−�

�
 is defined exactly like WD� except that the set N in the winner determination (see 

Def. 18) is replaced by N⧵{�} and that the resulting trade for agent � and each good j is 
equal to zero.

Each instance of a VCG is specific and is defined with respect to B , I and the constant 
values �,� ∈ I≻0 (the size of N and G , resp.), and � = (�j)j∈G , where ��,j ∈ I⪰0 , for each 
� ∈ N and j ∈ G . Each constant ��,j represents the number of units of j initially held by 
agent � . The rules of VCG are represented by ADL [FB]-formulae as shown in Fig. 4.

In the initial state, the trade and payment are zero for every agent and good (Rule 1). 
Any state that is not initial is terminal (Rule 2). The proposition bidRound helps to dis-
tinguish the initial state from the terminal state where no trade or payment were assigned 
to any agent (e.g, when all agents bid noop ). Once in a terminal state, players can only do 
noop . Otherwise, they can bid any β ∈ B (Rules 3 and 4). After performing a joint bid, in 
the next state each agent receives a trade for each good, which is assigned by the winner 
determination over the initial allocation and their bids (Rule 5). After a joint bid in the 
initial state, the payment for agent � will be the difference in the others’ welfare with and 
without her participation (Rule 6). Finally, the proposition bidRound is always false in the 
next state (Rule 7).

Notice we could as well represent winner determination explicitly in ADL [FB] by 
capturing the trade maximizing the social welfare among all trades that satisfy con-
straints C1–C4. For instance, constraint C1 can be written in L���[FB]

 as 

Fig. 4  Vickrey–Clarke–Groves mechanism represented by Σvcg
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feasible((𝛌j)j∈G) =def

⋀
�∈N,j∈G sum(λ�,j, x�,j) ≥ 0 . We illustrate VCG with an indirect rep-

resentation of the winner determination for succincteness and clarity of Σvcg.

6.2.1  Representing as a model

Next, we address the model representation. Let Mvcg be the set of ST-models Mvcg 
defined for any B ⊆ L���� , I ⊂ ℤ , and the constants �,� ∈ I≻0 and � = (�j)j∈G , where 
��,j ∈ I⪰0 , for each � ∈ N and j ∈ G . Each Mvcg is defined as follows:

– W = {⟨b, (𝛌j)j∈G, p⟩ ∶ b ∈ {0 , 1} & p�, λ�,j ∈ I & � ∈ N & j ∈ G};
– w̄ = ⟨1, 0,… , 0, 0,… , 0⟩;
– T = W⧵{w̄};
– L = {(w, �, noop) ∶ � ∈ N & w ∈ T} ∪ {(w̄, �, β) ∶ β ∈ B & � ∈ N};
– U is defined as follows: for all w = ⟨b, (𝛌j)j∈G, p⟩ ∈ W and for all d ∈ B

�:

– If w = w̄ , then U(w, d) = ⟨0, (𝛌�
j
)
j∈G

, p�⟩⟩ , where each component is updated as fol-
lows, for each � ∈ N and j ∈ G . The number of units j traded for agent �  is given by the 
winner determination: λ�

�,j
= WDλ�,j

(d,�) . The payment for �  is the difference between 
the social welfare of others with and without �  ’s participation: 

– Otherwise, U(w, d) = w.

– For each w ∈ W , � ∈ N and j ∈ G , πY(w , trade�,j) = λ�,j ; πY(w, payment�) = p� ; and 
πΦ(w) = {bidRound ∶ b = 1}.

Hereafter, we assume an instance of Mvcg ∈ Mvcg and Σvcg for some B ⊆ L���� , I ⊂ ℤ , 
�,� ∈ I≻0 and ��,j ∈ I⪰0 , where � ∈ N , j ∈ G.

p�
�
=

∑
�∈N⧵{�}

v�(d�,WD−�
�
(d,�)) −

∑
�∈N⧵{�}

v�(d�,WD�(d,�))

Fig. 5  A Path in Mvcg , with 2 bidders and 2 goods
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Example 2 Let Mvcg ∈ Mvcg such that the sets of agents and goods are the same from 
Example 1 and the initial allocation is as follows: ��,� = 0 , ��,� = 1 , ��,� = 2 and ��,� = 0 
(i.e., at the beginning of the auction, agent � has 1 unit of � and agent � has 2 units of � ). 
Figure 5 illustrates a path in Mvcg , where the agents perform the bids previously introduced 
in Fig. 3. In state w0 , all the payments and trades are zero. Their joint bid leads to state w1 , 
where the trade obtained by the winner determination is (2,−1,−2, 1) . The tie-breaking 
ensures that the trade is unique. Thus, in w1 agent � has 2 units of � and agent � has 1 unit of 
� . Since w1 is terminal, the agents can only bid noop.

6.2.2  Evaluating the protocol

Let us now evaluate the protocol representing a VCG mechanism. First, Lemma 3 shows 
that Mvcg is a sound representation of Σvcg.

Lemma 3 Mvcg is an ST-model and it is a model of Σvcg.

Next, we show Σvcg is a well-formed protocol, that is, each path in Mvcg reaches a ter-
minal state and there is a legal action for each agent in all reachable states.

Theorem 3 Σvcg is a well-formed protocol over the ST-model Mvcg.

Proof Since Mvcg is a model of Σvcg (see Lemma 3), we have to show that for each path δ in 
Mvcg and each agent � ∈ N , 

1. δ is a complete path;
2. Mvcg ⊧

⋁
a∈B legal�(a).

Given a path δ in Mvcg and a stage t  of δ . Let us verify Statement 1. We show that 
Mvcg ⊧ initial → ○terminal . Assume Mvcg, δ, t ⊧ initial . Then, δ[t] = w̄ . By the path defi-
nition, for any j ≥ 1 , δ[j] ≠ w̄ . By the construction of T , we have T = W⧵{w̄} . Thus, 
Mvcg, δ, t + 1 ⊧ terminal and Mvcg, δ, t ⊧ ○terminal.

Statement 2 is straightforward from Rules 3 and 4 from Σvcg.

The next lemma shows that if an agent bids noop in an initial state, her payment will 
be zero. Furthermore, if the payment is zero in a terminal state, it will be zero in the 
succeeding state.

Lemma 4 For each agent � ∈ N , Mvcg ⊧ initial ∧ does𝗂(noop) → ○payment𝗂 =

0 ∧
⋀

j∈G trade�,j ≥ 0

We then focus on properties from Mechanism Design, that is budget balance, indi-
vidual rationality, efficiency and strategyprofness. These results for VCG have already 
been proved [36, 52] and here we show how they are rephrased and verified with ADL 
[FB] . First, due to the VCG payments, Mvcg is not budget balanced.

Proposition 6 Mvcg ̸⊧ ○sbb and Mvcg ̸⊧ ○wbb.
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After the agents report their preferences, Mvcg chooses the trade maximizing the social 
welfare (i.e., the cumulative of values for the trade given the agents’ bids).

Proposition 7 Given a joint action � ∈ B
� , Mvcg ⊧ does(�) → ○ef(�)

The VCG mechanism is individually rational when the agents’ preferences over trades 
are non-negative [52].

Proposition 8 Given a joint action � ∈ B
� , if ��(�) ≥ 0 for all � ∈ I�� , �� ∈ V� and � ∈ N , 

then Mvcg ⊧ does(�) → ○ir(�).

The VCG mechanism is also strategyproof [52], because the bid of an agent does not 
influence her payment.

Theorem 4 Mvcg is strategyproof.

Proof Given a path � in Mvcg and a stage t ≥ 0 in � , such that L(�[t], �) ≈� V� . Since 
Mvcg ⊧ initial → ○terminal and δ[t + 1] = δ[t] whenever δ[t] ∈ T , it suffices to show con-
sider the case where t = 0.

Let � ∈
∏

�∈N V� be a preference profile and �
�
 denote a path such that �[0] = �

�
[0] and 

�(�
�
, 0) = �

�
 . We let ��

�
∈ V� denote a preference of agent � , �′ = (��

�
, �−�) and �

�′ be a path 
such that �[0] = �

�′ [0] , ��(��′ , 0) = β��
�
 and ��(��′ , 0) = β�� for each agent � ≠ � . That is, 

Mvcg, 𝛿�, 0 ⊧ does(�
�
) and Mvcg, 𝛿�′ , 0 ⊧ does�(β𝜗�

�
) ∧

⋀
�∈N⧵{�} does�(β𝜗� ).

Let u�� ∈ I such that Mvcg, 𝛿�, 0 ⊧ ○sub(v�(β𝜗� , (tradej)j∈G) , payment�) = u�� holds. As we 
saw in the proof of Proposition 8, agent � ’s utility in �

�
[1] is simply

where 𝛌 = (𝛌j)j∈G denote the trade performed in �
�
[1] with λ�,j = πY(��[1] , 

trade) = WDλ�,j
(�,�) for each good j and agent � , and �−� = WD−�

�
(�,�) is the trade that 

would happen if � did not participate in the auction.
Notice that the bid of � has no impact in 

∑
�∈N⧵{�} v�(β�, �

−�) by the definition of WD−�
�

 . 
Thus, it means that the bid maximizing � ’s utility is the one that maximize

which, by definition, is the case when she bids truthfully. That is, u�� is the maximum utility 
� obtains in the succeeding stages of all paths starting in �[0] . Thus, 
Mvcg, 𝛿�, 0 ⊧ ○sub(v�(β𝜗� , (tradej)j∈G) , payment�) = u�� and for any �′ , 
Mvcg, 𝛿�� , 0 ⊧ ○sub(v�(β𝜗� , (tradej)j∈G), payment�) ≤ u𝜗�.

We conclude the section by discussing variants of combinatorial exchange. In combina-
torial auctions, there are two types of participants: buyers and sellers. The main difference 
to a combinatorial exchange is that buyers can only demand for non-negative quantities and 
prices while sellers can only ask for non-positive quantities and prices. These restrictions 
can be easily encoded in ADL [FB] by including a proposition for denoting the partici-
pants’ types and defining legality rules based on their types. In Sect. 5, we exemplify the 

u�� =
∑
�∈N

v�(β�� , �) −
∑

�∈N⧵{�}

v�(β�� , �
−�)

∑
�∈N

v�(β�, �)
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representation of a single-sided auction. Restricting the number of participants with the 
type buyer (or similarly seller) to one is an alternative way of encoding single-sided auc-
tions. Multi-unit auctions with single items can be represented for different market struc-
tures (e.g., the single-sided setting) by restricting the number of good types to one (that is, 
|G| = 1 ). In the next section, we show how to represent an iterative protocol in ADL [FB] 
using a slightly different version of TBBL.

6.3  Iterative combinatorial exchange

We conclude the section on combinatorial exchange by considering an iterative protocol, 
denoted ICE. The protocol is a simplified and first-price version of the mechanism pre-
sented in [53]. In this auction, bidders report an interval of prices they are willing to pay 
(or receive) for a trade. For ensuring termination, agents need to refine their bids, that is, to 
shrink the value interval reported in their previous bid. For expressing such conditions, we 
consider the TBBL extension with value bounds, denoted L����+ . In this variant proposed 
by Lubin et al. [41], agents report a pair of valuation bounds in each node of their bid. The 
syntax of L����+ is obtained by replacing the value � of a leaf node ⟨�, j, �⟩ by the lower 
bound � ∈ I and upper bound � ∈ I with � ≤ � . The bounds � and � denote the minimum 
and maximum price the bidder considers acceptable to pay (or receive) for � units of j , 
respectively. Bid nodes with IC operators are similarly updated to include value bounds.

Given an agent � ∈ N , a bid β ∈ L����+ and a trade λ ∈ I�� , the functions v
�
(β, λ) , v�(β, λ) , 

b
�
(β) , b�(β) are defined with the same semantics from the functions v� and b� introduced in 

Sect. 6. Since the lower bound is no greater than the upper bound, we have that b
�
(β) ≤ b�(β) 

and v
�
(β, λ) ≤ v�(β, λ) . For representing this ICE protocol with ���[FB] , we first fix a con-

stant � ∈ [0, 1] for estimating the weight of the bounds in the value of a bid given a trade (i.e., 
function v� ). If � = 1 , the bid value is based only on its lower bounds. Likewise, the upper 
bounds determinate the bid value when � = 0 . Next, we describe the auction signature, writ-
ten Sice = (N,G,B, {}, Y, I,FB) , where N = {1,… , �} , G = {1,… ,�} , B ⊆ L����+ , 
Y = {trade�,j , payment� ∶ � ∈ N, j ∈ G} , and I ⊂ ℤ . If ⟨�, j, �, �⟩ is a bid in B , we assume 
⟨�, j, ��, ��⟩ ∈ B for any �′ ≥ � and �′ ≤ � such that �′ ≤ �

′ . Similarly, if ICx
y
(β̄, �, �) ∈ B , we 

assume ICx
y
(β̄, ��, �

�
) ∈ B for any �′ ≥ � and �′ ≤ � such that �′ ≤ �

′ . FB contains the basic 
mathematical operations as well as the following functions: v𝗂 ∶ B × I𝗇𝗆 → I , 
WD�

λ𝗂,j
∶ B

𝗇 × I𝗇𝗆 → I , eq ∶ B × B → [0, 1] and uncert ∶ B → I . We next describe each of 
those functions.

Given an agent � , the value of bid β ∈ L����+ given a trade � ∈ I�� is defined as follows:

Notice the rounding of the terms6 ensure the result will not be smaller than the lower bound 
neither greater than the upper bound.

Assuming a joint bid � ∈ L
�
����+

 and an initial allocation X ∈ I��
⪰0

 , function WD�

λ�,j
(�,X) 

is defined exactly as function WDλ�,j
(�,X) defined in Sect.  6.1.2, except that the winner 

determination is replaced by the following:

v�(β, �) =
⌈
� ⋅ v

�
(β, �)

⌉
+
⌊
(1 − �) ⋅ v�(β, �)

⌋

6 We denote by ⌊x⌋ the greatest integer less than or equal to x ∈ ℝ and ⌈x⌉ the least integer greater than or 
equal to x ∈ ℝ.
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Given two bids β, γ ∈ L����+ , eq(β, γ) denotes whether they are equivalent on structure, in 
the sense of differing only on their valuation bounds, and it is defined as follows:

• If β is in the form ⟨�, j, �, �⟩ and γ = ⟨�, j, ��, ��⟩ for some ��, �� ∈ I , then eq(β, γ) = 1;
• If β is in the form ICx

y
(β̄, �, �) , γ = ICx

y
(β̄�, ��, �

�
) for some ��, �� ∈ I and each β̄k ∽ β̄�

k
 , for 

each 0 < ki ≤ |β̄| , then eq(β, γ) = 1;
• Otherwise, eq(β, γ) = 0.

The difference among the bounds of a node represents its uncertainty. That is, the 
higher the bound difference, the less precise the node is about the agents’ prefer-
ence. The actual willingness-to-pay (or receive), is unknown except when the lower 
and upper bounds are the same [53]. We define function uncert(⟨�, j, �, �⟩) = � − � and 
uncert(ICx

y
(β̄, �, �)) = � − � +

∑
0<k≤�β̄� uncert(β̄k) for capturing the uncertainty of bid in 

L����+.
Each instance of ICE is specific and is defined with respect to B , I and the constant values 

� ∈ [0, 1] , �,� ∈ I≻0 (the size of N and G , resp.), and � = (�j)j∈G , where ��,j ∈ I⪰0 , for each 
� ∈ N and j ∈ G . The rules of a ICE are represented by ADL [FB]-formulae as shown in Fig. 6.

In the initial state, there is no payment or trade for any agent (Rule 1) and agents can 
report any bid (Rule 2). After performing a bid, an agent is allowed to report any bid that 
has the same structure and less uncertainty than her last bid. When the bid has no uncer-
tainty (i.e., for each node, its lower and upper bounds are the same), the agent must repeat 
her bid in the next turn (Rules 3 and 4). When there is no uncertainty in all bids performed 
in a state, the next state is terminal (Rule 5). The agents pay their reported values accord-
ing to their trade in a given state (Rule 6). Finally, the agents’ trades are computed in each 
round using the winner determination given their bids and their initial allocation (Rule 7).

6.3.1  Representing as a model

Next, we address the model representation. Let Mice be the set of ST-models Mice defined 
for any B ⊆ L����+ , I ⊂ ℤ , and the constants �,� ∈ I≻0 and � = (�j)j∈G , where ��,j ∈ I⪰0 , 
for each � ∈ N and j ∈ G . Each Mice is defined as follows:

WD�(�,X) ∶ argmax
�,sat

∑
�∈N

∑
β∈Node(β�)

(
⌈
�b

�
(β) ⋅ sat�(β)

⌉
+
⌊
(1 − �)b�(β) ⋅ sat�(β)

⌋
)

s.t. Constraints C1 − C4 hold (see Def. 18)

Fig. 6  An Iterative Combinatorial Exchange represented by Σ
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• W = {⟨(𝛌j)j∈G, p, lastbid⟩ ∶ lastbid� ∈ B & p�, λ�,j ∈ I & � ∈ N & j ∈ G};
• w̄ = ⟨0,… , 0, 0,… , 0, noop,… , noop⟩;
• T = {⟨(𝛌j)j∈G, p, lastbid⟩ ∶ uncert(lastbid�) = 0 & lastbid� ∈ B & p�, λ�,j ∈ I & � ∈ N & 

j ∈ G}};
• L = {(w̄, �, β) ∶ � ∈ N & β ∈ B} ∪ {(⟨(𝛌j)j∈G, p, lastbid⟩, �, β) ∶ eq(β, lastbid�) & 

uncert(β) < uncert(lastbid�) & β, lastbid� ∈ B & p�, λ�,j ∈ I & �, � ∈ N & j ∈ G};
• U is defined as follows: for all w = ⟨(𝛌j)j∈G, p, lastbid⟩ ∈ W and for all d ∈ B

�:

– If w ∉ T , then U(w, d) = ⟨(𝛌�
j
)
j∈G

, p�, d⟩⟩ , where each component is updated as 
follows, for each � ∈ N and j ∈ G : λ�

�,j
= WD�

λ�,j
(d,�) and p�

�
= v�(d�, (𝛌

�

j
)
j∈G

).
– Otherwise, U(w, d) = w.

• For each w ∈ W , � ∈ N and j ∈ G , the valuation of numerical variables is as follows: 
πY(w , trade�,j) = λ�,j and πY(w, payment�) = p�.

Hereafter, we assume an instance of Mice ∈ Mice and Σice for some B ⊆ L����+ , I ⊂ ℤ , 
�,� ∈ I≻0 and ��,j ∈ I⪰0 , where � ∈ N , j ∈ G.

Example 3 Let Mice ∈ Mice , where (i) there are only two agents, denoted by � and � , (ii) 
there is only one good type, denoted by � , and (iii) ��,� = 1 and ��,� = 0 , i.e, agent � holds 
1 unit of � and agent � has none. Figure 5 illustrates a path in Mice . In the initial state w0 , 
agent � says she wants to sell � for a price between 10€ and 20€ and agent � reports her 
willingness to buy it for a price between 15€ and 25€. In state w1 , the agents are informed 
of the provisional trade and payments. Agent � changes her bid to specify she is willing to 
receive exactly 15€ for selling � . By her turn, agent � specifies a value range 18€ to 20€ for 
buying � . In w2 , only � can change her bid, since there is no uncertainty in � ’s bid. Then, � 
reports her willingness to pay exactly 18€. State w3 is terminal because there was no uncer-
tainty in the bids reported on w2 . The good is traded and the agents pay (and receive) their 
asking prices.

6.3.2  Evaluating the protocol

Now we focus on the evaluation of Σice and Mice . First, Lemma 5 shows the soundness of 
Σice over Mice.

Lemma 5 Mice is an ST-model and it is a model of Σ.

Since Mice is playable and terminates, Σice is well-formed.

Theorem 5 Σice is a well-formed protocol over Mice.

Proof Since Mice is a model of Σice , we show that for each path δ in Mice , each stage t ≥ 0 in 
� and each agent � ∈ N , 

1. δ is a complete path;
2. Mice, 𝛿, t ⊧

⋁
β∈B legal�(β).
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First, we consider Statement 2. By the definition of L����+ , uncert(β) ≥ 0 for each bid 
β ∈ B . According to the legality definition, uncert(𝜃�(𝛿, t)) < uncert(𝜃�(𝛿, t − 1)) or 
uncert(��(�, t)) = 0 . That is, either the bid reported by � in �[t] has less uncertainty than 
the one she reported in �[t − 1] or it has no uncertainty. In the case of no uncertainty, 
��(�, t) = ��(�, e) for each e ≥ t . Since the uncertainty decreases in each turn until being 
equal to zero, there exists a stage e ≥ 0 such that Mice, 𝛿, e ⊧ does�(β) ∧ uncert(β) = 0 
for each agent � . By Rule 5, it follows that the next stage in � is terminal, that is, 
Mice, 𝛿, e ⊧ ○terminal.

We now verify Statement 2. If 𝛿[t] = w̄ , then Mice, 𝛿, t ⊧ legal�(β) for each β ∈ B 
(Rule 2). Otherwise, t > 0 and Mice, 𝛿, t − 1 ⊧ does�(β) for some β ∈ B . By the definition 
of L����+ , uncert(β) ≥ 0 . If uncert(β) = 0 , then Mice, 𝛿, t ⊧ legal�(β) (Rule 4). Finally, 
if uncert(β) < 0 , by the definition of B , there must exist a bid γ such that eq(β, γ) and 
uncert(γ) < uncert(β) . According to Rule 3 of Σice , Mice, 𝛿, t ⊧ legal�(γ).

The cumulative of payments cannot be smaller than zero. However the auction may 
have positive transfers.

Proposition 9 Mice ̸⊧ ○sbb and Mice ⊧ ○wbb.

ICE is individually rational, since agents pay their reported preferences.

Proposition 10 Given a joint action � ∈ B
� , Mice ⊧ does(�) → ○ir(�).

The protocol is efficient since the winner determination maximizes the social welfare 
given the reported bids.

Proposition 11 Given a joint action � ∈ B
� , Mice ⊧ does(�) → ○ef(�)

Since the players’ bids influence their payments, they can manipulate the price and the 
auction is not strategyproof.

Proposition 12 Mice is not strategyproof.

The automated verification of strategyproofness and termination requires meta-reason-
ing over the possible paths of a ST-Model. However, for a number properties (such as effi-
ciency and individual rationality), the problem of analysing a stage as a direct mechanism 
boils down to model-checking ADL [FB]-formulae.

7  Model checking

Now we examine the complexity of the problem of deciding whether an ADL [FB] formula 
is true with respect to a model, a path and a stage in the path.

Definition 19 The model checking problem for ADL [FB] is the following: Given an ST-
Model M , a path δ in M , a stage t ≥ 0 in δ and a formula � ∈ ���[FB] , determine whether 
M, δ, t ⊧ 𝜑 or not.
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In the next sections, we show that the model checking problem for ADL [FB] is decidable 
in polynomial-time deterministic Turing machine (PTIME) when functions in FB can be com-
puted in polynomial time.

7.1  Upper bound

Let � ∈ be a formula and M be an ST-Model over S . We say that � is a subformula of � if 
either (i) � = � ; (ii) � is of the form ¬� , or ○� and � is a subformula of � ; or (iii) � is of the 
form � ∧ �� and � is a subformula of either � or �′ . We denote Subformula(�) as the set of all 
subformulae of �.

Theorem 6 Assuming that functions in FB can be computed in polynomial time, the model 
checking problem for ADL [FB] is in PTIME.

Proof Assume the functions in FB can be computed in polynomial time. Algorithm mod-
elCheck works in the following way: first it gets all subformulae of � and orders them in 
a vector S by ascending length. Thus, S(|�|) = � , i.e., the position |�| in S corresponds to 
the formula � itself, and if �i is a subformula of �j then i < j . An induction on S labels each 
subformula �i depending on whether or not �i is true in �[j] under M . Since functions in FB 
can be computed in polynomial time, if �i does not have any subformula, its truth value is 
obtained directly from the model. Since S is ordered by formulae length, if �i is either of 
the form �� ∧ ��� or ¬�� the algorithm labels �i according to the label assigned to �′ and/or 
�′′ . If �i is of the form ○�′ then its label is recursively defined according to �′ truth value 
in the stage t + 1 . As Algorithm modelCheck visits each subformula at most once, and the 
number of subformulas is not greater than the size of � , the algorithm can clearly be imple-
mented in a polynomial-time deterministic Turing machine with PTIME.
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7.2  Lower bound

Now let us characterize a lower bound of the complexity of model-checking ADL 
[FB] . To do so, we reduce the model checking problem for GDL, which is known to be 
PTIME (consequence of Lemma 2 by Jiang et al. [29]).

Theorem 7 The model checking problem for ADL [FB] is PTIME.

Proof First, we recall GDL definitions. By convenience, we refer to the GDL formaliza-
tion presented in [27]. Let SGDL = (N,B,Φ) be a game signature, where Φ is a proposi-
tional set, N is a set of agents, and B is the action set. Let MGDL = (W, w̄, T, L, U, g, πΦ) 
be a GDL model over SGDL , where W , w̄ , T , L and πΦ are defined in the same way as in 
a ADL [FB] model (see Definition 2), U ∶ W × B

|N| → W⧵{w̄} is the update function and 
g ∶ N → 2W is the goal function.

A path δ in MGDL is an infinite sequence of states and joint actions, defined in the same 
way as Definition 3. Let δ be a path in MGDL , a formula � in LGDL is defined by the follow-
ing BNF:

where p ∈ Φ , � ∈ N and a ∈ B.
For any stage t ≥ 0 and formula � ∈ LGDL , the semantics of LGDL are similar to Defini-

tion 5, except by the following case: MGDL, δ, t ⊧ wins(�) iff δ[t] ∈ g(�).
Given a stage t > 0 and a formula � ∈ LGDL , we show how to construct an ADL [FB] 

model M���[FB]
 , such that M, 𝛿, t ⊧ 𝜑 iff MGDL, δ, t ⊧ 𝜑.

Let S���[FB]
= (N, �,A,Φ�

, �, [0, 0], �) be the auction signature, 
where Φ� = Φ ∪ {wins(�) ∶ � ∈ N} . We define the ADL [FB] model 
M���[FB]

= (W, w̄, T, L, U, π�
Φ
, �) , where W, w̄, T and U are the same as in 

MGDL . The valuation function for state propositions is defined as follows: 
π�
Φ
(w) = πΦ(w) ∪ {wins(�) ∶ w ∈ g(�) & � ∈ N} , for each w ∈ W.
Since U(w, d) ∈ W , for each w ∈ W and d ∈ B

|N| , we have that U is an update function 
in accordance with Definition 2. Furthermore, if δ is a path in MGDL then it is a path in 
M���[FB]

 . Since {wins(�) ∶ � ∈ N} ⊆ Φ� , we have that LGDL ⊆ L���[FB]
.

Given � ∈ LGDL , if � is not in the form wins(�) , then it is straightforward that 
MGDL, 𝛿, t ⊧ 𝜑 iff M���[FB]

, 𝛿, t ⊧ 𝜑 . Now we consider the case were � ∈ LGDL is 
in the form wins(�) , for some � ∈ N . Assume MGDL, 𝛿, t ⊧ wins(�) iff �[t] ∈ g(�) iff 
wins(�) ∈ Φ�(�[t]) iff M���[FB]

, 𝛿, t ⊧ wins(�).

Theorem 7 shows that Algorithm modelCheck is optimal when the functions in FB 
can be computed in polynomial time. As for GDL, the ST-model may have exponential 
size.

Since Algorithm modelCheck calls the functions in FB in a polynomial number of 
times (according to on the formula length), the complexity of computing functions in 
FB will affect its complexity. For instance, the winner determination problem for com-
binatorial auctions is NP-hard, which is then the complexity of computing the winner 
determination functions for TBBL [41]. In that case, the model checking problem for 
ADL [FB] is in ΔP

2
 , since modelCheck consults a NP-oracle a polynomial number of 

times.

� ∶∶= p ∣ initial ∣ terminal ∣ legal�(a) ∣ wins(�) ∣ does�(a) ∣ ¬� ∣ � ∧ � ∣ ○�
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8  Conclusion

In this paper, we have presented ADL [FB] , a unified framework for representing auction 
protocols. Our work is at the frontier of auction theory and knowledge representation. 
We illustrated the usefulness of our approach by showing how to represent a number of 
representative auctions, which include features from single and multi-stage protocols, 
multiple items, multiple copies of those items and exchange protocols (which generalize 
double-sided auctions).

ADL [FB] provides tools for automated verification of properties from mechanism 
design. We showed how stages in an ADL [FB] ST-model may represent direct mecha-
nisms and be evaluated as such. The majority of properties that we considered (noting 
that at the evaluating a stage in an ST-model essentially comes down to model-checking 
ADL [FB]-formulae) can be checked in PTIME when the functions in FB can be com-
puted in polynomial time. Thus, ADL [FB] enables reasoning about important aspects 
for designing and playing auctions, while having a reasonable complexity cost.

The main limitation of ADL [FB] is due to having a semantics based on fixed paths, 
that is, non-alternating executions of an auction. This means it is not possible to encode 
through ADL [FB]-formulae conditions that compare the effect of different strategic 
behaviour. An example of such condition is strategyproofness, where one should con-
trast the agents’ utility after truthfully reporting her preference and after lying. Here, 
we demonstrated the use of meta-reasoning over the state-transition model for compar-
ing alternative executions of an auction. Furthermore, evaluating indirect mechanisms 
requires capturing the terminal outcomes (that is, the final trades and payments) in stra-
tegic equilibrium. Complex solution concepts, such as Nash and dominant strategy equi-
librium, cannot be encoded through ADL [FB]-formulae. Logics focused on strategic 
reasoning are more suitable for considering this problem (e.g., ATL with Strategy Con-
texts [10] and Strategy Logic (SL) [14]). Finding a balance between expressivity and 
complexity is an open question, as such expressive languages face decidability issues 
and high complexity for model-checking (e.g., the satisfiability problem of SL is unde-
cidable and its complexity for model-checking is Non Elementary).

ADL [FB] definitely puts the emphasis on the auctioneer and mechanism designer. 
Our next direction is to design a ADL [FB]-based General Auction Player (GAP) that 
can interpret and reason about the rules of an auction-based market. The key difference, 
when the player perspective is considered, is the epistemic and strategic aspects: players 
have to reason about other players’ behavior and may have imperfect information. Addi-
tionally, search optimization techniques used for GGP (see, for instance [20, 68]) may 
be adapted for considering utility optimization in auctions. Another future direction is 
to explore the synthesis of state-transition models based on a ADL [FB]-description of 
an auction. This problem entails considering the satisfiability problem for the language.

Last but not least, we intend to develop the axiomatic system for ADL [FB] and prove 
its soundness and completeness with respect to the semantics based on the state transi-
tion model. It would require a combination of techniques used for Epistemic GDL [28], 
first-order logic with dependent types [58] and finite algebras [11].
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Appendix A: Technical Proof

Proposition 1 Let M be an ST-model, for each agent � ∈ N and each action β ∈ B , 

1. M ⊧ does𝗂(β) → ¬does𝗂(β
�) , for any β� ∈ B such that β� ≠ β

2. M ⊧
⋁

β�∈B does�(β
�)

3. M ⊧ does𝗂(β) → legal𝗂(β)

4. M ⊧ ¬○ initial

5. M ⊧ terminal ∧ 𝜑 → ○𝜑 , for any � ∈ L���[FB]

6. M ⊧ initial → ¬terminal

Proof Let M be an ST-model, δ be a path, t ≥ 0 be an stage in δ , � ∈ N be an agent and 
β ∈ B be an action. For Statement 1, assume M, δ, t ⊧ does�(β) iff θ�(δ, t) = β . Then for any 
β� ∈ B such that β� ≠ β , θ�(δ, t) ≠ β� and M, δ, t ⊧ ¬does�(β

�).
Statement 2 follows from the definition of δ , since ��(δ, t) ∈ L(�[t], �) and L(𝛿[t], �) ⊆ B , 

we have M, 𝛿, t ⊧
⋁

β�∈B does�(β
�).

Let us verify Statement 3. Assume M, δ, t ⊧ does�(β) , then θ�(δ, t) = β and by the defini-
tion of δ , β ∈ L(δ[t], �) and M, δ, t ⊧ legal�(β).

We consider Statement 4. By the path definition, for all t > 0 , 𝛿[t] ≠ w̄ . Thus, 
𝛿[t + 1] ≠ w̄ and M, 𝛿, t + 1 ⊧ ¬initial . It follows that M, 𝛿, t ⊧ ¬○ initial.

We now verify Statement 5. Assume M ⊧ terminal ∧ 𝜑 , for some � ∈ L���[FB]
 . Then 

δ[t] ∈ T and �[t + 1] = �[t] . Thus, M, 𝛿, t + 1 ⊧ 𝜑 and M, 𝛿, t ⊧ ○𝜑.
Finally, we consider Statement 6. Assume for the sake of contradiction that 

M, δ, t ⊧ initial ∧ terminal . Then, δ[t] = w̄ and δ[t] ∈ T . By the path definition, it should 
be the case that t = 0 . Due to the loop on terminal states, it follows that w0 = w1 , which is a 
contradiction with the path requirement wt′ ≠ w0 , for any t′ ≥ 1.

Lemma 1 Msa is an ST-model and it is a model of Σsa.

Proof (Sketch) It is routine to check that Msa is actually an ST-model. Given a path 
δ , any stage t of δ in Msa , we need to show that Msa, δ, t ⊧ 𝜑 , for each � ∈ Σsa . Let us 
verify Rule 1. Assume Msa, δ, t ⊧ initial iff δ[t] = w̄ . By the definition of w̄ , πΦ and πY , 
we have πY(w̄, price) = ����� , πY(w̄, pricej) = ����� , bid�,j ∉ πΦ(w̄) and trade�,j = 0 , for 
all � ∈ N and j ∈ G . Thus, Msa, δ, t ⊧ initial iff Msa, δ, t ⊧ price = ����� ∧

⋀
j∈G(pricej = 

����� ∧
⋀

�∈N(¬bid�,j ∧ trade�,j = 0)).
Now we verify Rule 2. Let j ∈ G be a good type. Assume Msa, δ, t ⊧ soldj iff 

soldj ∈ πΦ(δ[t]) iff πY(δ[t], trade�,j) = 1 for some j ∈ G iff Msa, δ, t ⊧
⋁

�∈N trade�,j = 1.
Next, we consider Rule 3. Assume Msa, δ, t ⊧ terminal iff δ[t] ≠ w̄ and for all j ∈ G , 

either Msa, δ, t ⊧ trader,j = 1 for some � ∈ N or Msa, δ, t ⊧ ¬bid�,j for all � ∈ N . By Rule 2, 
Msa, δ, t ⊧ terminal iff Msa, δ, t ⊧ ¬initial ∧

⋀
j∈G(soldj ∨

⋀
j∈G ¬bid�,j).

Now we verify Rule 9. Let � ∈ N and j ∈ G . Assume 
Msa, δ, t ⊧ (does�(p1,… , p�) ∧ pj ≠ 0) ∨ (bid�,j ∧ terminal) , for some p1,… , p� ∈ I⪰0 . We 
next prove for the two cases. First, assume Msa, δ, t ⊧ bid�,j ∧ terminal . Then bid�,j ∈ πΦ(δ[t]) 
and δ[t] ∈ T . By the update function, δ[t + 1] = δ[t] and Msa, δ, t + 1 ⊧ bid�,j , i.e., 
Msa, δ, t ⊧ ○bid�,j . In the second case, assume does�(p1,… , p�) ∧ pj ≠ 0 . By the update 
function, bid�,j ∈ πΦ(δ[t + 1]) and thus Msa, δ, t ⊧ ○bid�,j.

The remaining rules are verified in a similar way.
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Proposition 2 For each j ∈ G and each �, � ∈ N such that � ≠ � , 

1. Msa ⊧ trade�,j = 0 ∨ trade�,j = 0

2. Msa ⊧ soldj → ○soldj
3. Msa ⊧ ¬soldj → price = pricej

Proof Given a path δ in Msa , any stage t of δ and a good type j ∈ G , let �, � ∈ N , such that 
� ≠ � . Let us consider Statement 1. If δ[t] = w̄ , then Msa, δ, t ⊧ trade�,j = 0 ∧ trade�,j = 0 
(see Rule 1). Otherwise, by the path definition, δ[j] = U(δ[t − 1], θ(δ, t − 1)) . Let us sup-
pose for the sake of contradiction that Msa, δ, t ̸⊧ trade�,j = 0 ∨ trade�,j = 0 . Since W con-
struction defines trade�,j, trade�,j ∈ {0, 1} , we have Msa, δ, t ⊧ trade�,j = 1 ∧ trade�,j = 1 . 
Thus, Msa, δ, t − 1 ⊧ ○trade�,j . By Rule 4, Msa, δ, t − 1 ⊧ ○(bid�,j ∧

⋀
�∈N⧵{�} ¬bid�,j) . 

Thereby, Msa, δ, t − 1 ̸⊧ ○(bid�,j ∧
⋀

�∈N⧵{�} ¬bid�,j) and Msa, δ , t − 1 ̸⊧ ○trade�,j=1 . Thus, 
Msa, δ, t ̸⊧ trade�,j = 1 , which is a contradiction.

For Statement 2. Assume Msa, 𝛿, t ⊧ soldj . Then, Msa, 𝛿, t ⊧ trade�,j = 1 for 
some agent � ∈ N . From Rule 6, ��(�, t) = (p1,… , p�) with pj = πY(�[t], pricej) 
and ��(�, t) = (p�

1
,… , p�

�
) with p�

j
= 0 , for all agent � ≠ � . By Rule 9, we have 

Msa, 𝛿, t ⊧ bid�,j ∧
⋀

�∈N⧵{�} ¬bid�,j . Thus, it follows from Rules 2 and 4 that 
Msa, 𝛿, t ⊧ ○trade�,j = 1 and Msa, 𝛿, t ⊧ ○soldj.

For Statement 3, notice all prices in the initial state have the same value (Rule 1) and the 
current price and the price for unsold items are increased by the same amount in each turn 
(Rule 7 and 8). Assume Msa, 𝛿, t ⊧ ¬soldj . Since Msa ⊧ soldj → ○soldj , there is no stage 
t′ < t such that Msa, 𝛿, t

′ ⊧ soldj and thus Msa, 𝛿, t ⊧ price = pricej.

Proposition 3 Msa ⊧ ○wbb and Msa ̸⊧ ○sbb

Proof Suppose a path δ in Msa and a stage t in δ . Note that each trade can be either 
0 or 1 and the price for a good is at least 0, i.e., πY(δ[t], trade�,j) ∈ {0, 1} and 
πY(δ[t], pricej) ∈ I⪰0 . It follows from Rule 10 that Msa, δ, t ⊧ payment� ≥ 0 for each agent � 
and Msa, δ, t ⊧ sum�∈N(payment�) ≥ 0 . Thus, Msa ⊧ ○wbb.

We will prove Msa is not strongly budget-balanced with a counter-example. Given an 
agent � , let δ be a path in Msa such that ��(δ, 0) = (�����, 0,… , 0) and ��(δ, 0) = (0,… , 0) for 
each agent � ≠ � . Since (�����, 0,… , 0) ∈ L(δ[0], �) and (0,… , 0) ∈ L(w, �) , there exists such 
path in Msa . Since δ[0] ∉ T , πY(δ[0], price) = πY(δ[0], pricej) = ����� and soldj ∉ πΦ(δ[0]) 
for each j , it follows from Rules 7 and 8, that all prices are increased by the con-
stant ��� > 0 , that is Msa, δ, 1 ⊧ price = sum(�����, ���) ∧

⋀
j∈G pricej = sum(�����, ���) . 

By Rule 9, we have that agent � is only bidding for the good 1, that is, 
Msa, δ, 1 ⊧ bid�,1 ∧

⋀
j∈G⧵{1} ¬bid�,j . All other agents are not bidding for any 

good, i.e., Msa, δ, 1 ⊧
⋀

j∈G ¬bid�,j , for each � ≠ � . From Rules 4 and 10, we have 
Msa, δ, 1 ⊧ trade�,1 = 1 ∧ payment� = price1 ∧

⋀
�∈N⧵{�} p� = 0 . Since πY(δ[1], price1) > 0 , 

we have Msa, δ, 1 ̸⊧ sum�∈N(payment�) = 0 and Msa ̸⊧ ○sbb.

Proposition 4 Given a joint action � ∈ B
� , 

1. Msa  ⊧ does(�) → ○ef(�)

2. Msa ⊧ does(�) → ○(terminal → ef(�))
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Proof Given a path � in Msa , we first consider Statement 1. We prove Msa is not efficient 
with a counter-example. Our purpose is to show that there exists a joint action � such that 
Msa, 𝛿, 0 ⊧ does(�) ∧ ¬○ ef(�) . That is, Msa, 𝛿, 0 ⊧ does(𝛃) ∧ ¬○ sum�∈N(v�(β�, (tradej)j∈G))

= max�∈Λ(sum�∈N(v�(β�, �)))
.

As we consider the initial state of � , 
Msa, 𝛿, 0 ⊧ price = ����� ∧

⋀
j∈G pricej = ����� ∧

⋀
�∈N(¬bid�,j ∧ trade�,j = 0) . Thus, no good 

was sold, that is, Msa, 𝛿, 0 ⊧
⋀

j∈G ¬soldj . Let � and � be two distinct agents in N with � ≠ � . 
From the definition of L , L(�[0], �) = L(�[0], �) and (p1,… , p�) ∈ L(�[0], �) if pj = 0 or 
pj = sum(�����, ���) for each good j.

Let us assume Msa, 𝛿, 0 ⊧ does(�) for � ∈ B
� such that β� = β� = (����� + ���, 0,… , 0) 

and β� = (0,… , 0) for each � ∈ N⧵{�, �} . Since β� ∈ L(�[0], �) , β� ∈ L(�[0], �) and 
β� ∈ L(�[0], �) , there exists such path in Msa . Thus, Msa, 𝛿, 1 ⊧ bid�,1 ∧ bid�,1 . Notice bid�′,j 
does not hold in �[1] for any other pair (��, j) ≠ (�, 1) and (��, j) ≠ (�, 1) . From Rules 4 and 5, 
we have Msa, 𝛿, 1 ⊧

⋀
��∈N,j∈G trade�� ,j = 0.

Recall the valuation of each agent �′ is v�
�
((p1,… , p�), �) =

∑
j∈G λ��,j ⋅ pj for a trade 

� ∈ I�� and a bid (p1,… , p�) ∈ B . Since each trade has the value 0 in �[1] , it follows that 
Msa, 𝛿, 1 ⊧ sum�∈N(v�(β�, (tradej)j∈G)) = 0.

However, let � ∈ I�� be a trade such that λ�,1 = 1 and λ��,j = 0 for all other pair 
(��, j) ≠ (�, 1) . It is easy to see that � ∈ Λ . The value of this trade for � is v�(β�, �) = ����� + ��� 
and v�

�
(β�

�
, �) = 0 for each �′ ≠ � . Thus, we have 

∑
�∈N(v�(β�, �)) = ����� + ��� , 

Msa, 𝛿, 1 ⊧ ¬sum�∈N(v�(β�, (tradej)j∈G)) = max𝛌∈Λ(sum�∈N(v�(β� , �))) and 
Msa, 𝛿, 0 ⊧ ¬○ ef(�).

For Statement 2, let � ∈ B
� be a joint action and t ≥ 0 be a stage of � . From  

the definition of Msa we have that each trade can be only 0 or 1. That is, if � ∈ Λ  
then λ�,j ∈ {0, 1} for each agent � and good j . Assume Msa ⊧ does(�) and 
Msa, 𝛿, t ⊧ ○terminal . We intend to show that Msa ⊧ ○ef(�) , i.e., 
Msa, 𝛿, t ⊧ ○sum�∈N(v�(β�, (tradej)j∈G)) = max𝛌∈Λ(sum�∈N(v�(β�, 𝛌)))).

We focus on the case where �[t] ∉ T . Let � be an agent in N and let (p1,… , p�) denote 
� ’s action in � . Recall function v�((p1,… , p�), �) =

∑
j∈G pj ⋅ λ�,j , for a trade � ∈ I�� . Since 

the value for each good in v� depends only on its reported value in � ’s bid and its trade for 
� , we show that the part of v�((p1,… , p�), �) corresponding to each good j (i.e., pj ⋅ λ�,j ) is 
maximized when λ�,j = πY(�[t], trade�,j).

From the definition of B , we have that the reported value for j in � ’s bid is at least zero, 
i.e., pj ≥ 0 . We check for two cases: 

1. If pj = 0 , then λ�j ⋅ pj = 0 , for any trade � ∈ Λ . Thus, Msa, 𝛿, t + 1 ⊧ times(pj, trade�,j)

= max(times(pj, 0), times(pj, 1));
2. If pj > 0 , then Msa, 𝛿, t + 1 ⊧ bid�,j . Since �[t + 1] ∈ T , it should be the case that 

Msa, 𝛿, t + 1 ⊧ soldj . From Rule 2, we know the trade for good j is one for some agent, i.e., 
Msa, 𝛿, t + 1 ⊧

⋁
�∈N trade�,j = 1 . Because Msa, 𝛿, t + 1 ⊧ bid�,j , it should be the case that 

the agent who have a trade for j is � (see Rules 4 and 5), that is, Msa, 𝛿, t + 1 ⊧ trade�,j = 1 . 
Hence, Msa, 𝛿, t + 1 ⊧ times(pj, 1) = max(times(pj, 0), times(pj, 1)).

It follows that

or simply, Msa, 𝛿, t ⊧ ○ef (�).

Msa, 𝛿, t + 1 ⊧ sum�∈N(v�(β�, (tradej)j∈G)) = max
𝛌∈Λ

(sum�∈N(v�(β�, 𝛌))))
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The case where �[t] ∈ T , follows from the loop on the path definition.

Proposition 5 Msa is strategyproof.

Proof Given a path � in Msa and a stage t ≥ 0 in � , such that L(�[t], �) ≈� V� . Let � ∈
∏

�∈N V� 
be a preference profile and �

�
 denote a path such that �[0, t] = �

�
[0, t] and �(�

�
, t) = �

�
 . 

We let ��
�
∈ V� denote a preference of agent � , �′ = (��

�
, �−�) and �

�′ be a path such that 
�[0, t] = �

�′ [0, t] , ��(��′ , t) = β��
�
 and ��(��′ , t) = β�� for each agent � ≠ �.

In the stage t of �
�
 , the agents report their (truthful) preferences � , i.e., 

Msa, 𝛿�, t ⊧ does(�
�
) . On the other hand, in the stage t of �

�′ , the agent � reports her 
(untruthful) preference �′

�
 and each agent � ≠ � reports �� , i.e., ∧

⋀
�∈N⧵{�} does�(β�� )

Msa, 𝛿�′ , t ⊧ does�(β𝜗�
�
).

For some x ∈ I , we have to show Msa, 𝛿�, t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G) , payment�) = x 
and Msa, 𝛿�� , t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G), payment�) ≤ x.

That is, agent � ’s utility in �
�′ is not better than in �

�
 . Remind the legal actions in �[t] 

represent her preference space, i.e., L(�[t], �) ≈� V� . Notice the value of a bid (p1,… , p�) 
given a trade � is v�((p1,… , p�), �) =

∑
j∈G λ�,j ⋅ pj . Similarly, the payment in �[t] is 

πY(�[t], payment�) =
∑

j∈G πY(�[t], trade�,j) ⋅ πY(�[t], pricej) . Since there is no dependence 
among goods in v� and in � ’s payment, we consider the part of � ’s utility corresponding to j 
in �

�
 and �

�′ . Thus, we need to show that 

 (i) Msa, 𝛿�, t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = xj
 (ii) Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) ≤ xj

for some xj ∈ I and each good j ∈ G.
We denote β�� = (p1,… , p�) and β��

�
= (p�

1
,… , p�

�
) . According to the legality definition, 

the values of pj and p′
j
 can be either the price of j in �[t] , zero, or the price in �[t] incre-

mented by ��� > 0 . Let us consider each case:

• Assume pj = πY(�[t], pricej) iff Msa, 𝛿, t ⊧ trade�,j = 1 (w.r.t the definition of L ). That 
is, pj = πY(�[t], pricej) when good j was already bought by agent �  . Thus, it is not 
legal for �  to bid any other value for j , i.e., (p�

1
,… , p�

j
) ∈ L(�[t], �) iff pj = p�

j
 . Thereby, 

it is easy to see that Msa, 𝛿�, t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = pj and 
also Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = pj.

• Assume agent �  declines to raise her bid for good j , that is, 
pj = 0 . By Rules 5 and 9, we have Msa, 𝛿�, t ⊧ ○trade�,j = 0 and 
Msa, 𝛿�, t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = 0 . By the legal-
ity definition, it should be the case that Msa, 𝛿, t ⊧ ¬trade�,j = 0 and p′

j
 is either 

0 or πΦ(�[t], price) + ��� . If p�
j
= 0 , then Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j, pj) , 

times(trade�,j, pricej)) = 0 . Otherwise, the value of trade�,j in �
�′ [t + 1] will be either 0 

or 1, depending on the joint bid �
�′.

– If 
Msa, 𝛿�′ , t ⊧ ○trade�,j = 1

 , then Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j , pj) , times(trade�,j , pricej)) = sub(0, pricej) . 
Since π

Y

(�
�′ [t + 1], pricej) ≥ 0

 , we have sub(times(trade�,j, pj) , times(trade�,j, pricej)) ≤ 0.
– Otherwise, the trade for good j is zero (i.e., Msa, 𝛿�′ , t ⊧ ○trade�,j = 0 ) and 

Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = 0.

• The proof for the case pj = πY(�[t], price) + ��� is similar to the previous case.
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It follows that Msa, 𝛿�, t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G) , payment�) = x and Msa, 𝛿�′ , t ⊧ ○sub(v�(β𝜗� ,

(tradej)j∈G), payment�) ≤ x , where x ∈ I.
Lemma 2 For each agent � ∈ N , each bid-tree β ∈ L���� and each � ∈ I�� , v�(noop, �) = 0.

Proof Remind noop denotes a leaf bid ⟨0, j, 0⟩ , where j ∈ G . Thus, b�(noop) = 0 . Let 
� ∈ I�� . The value of � given noop , i.e., v�(noop, �) , is the maximal sum of b�(β) ⋅ sat�(β) in 
a solution sat� , for all β ∈ Node(noop) . Since Node(noop) = {noop} and b�(noop) = 0 , for 
any solution sat� , v�(noop, �) = 0.

Lemma 3 Mvcg is an ST-model and it is a model of Σvcg.

Proof (Sketch) It is routine to check that Mvcg is actually an ST-model. Given a path δ in 
Mvcg and a stage t of δ , we need to show that Mvcg, δ, t ⊧ 𝜑 , for each � ∈ Σvcg.

Let us verify Rule 1. Assume Mvcg, δ, t ⊧ initial , then δ[t] = w̄ , i.e., 
δ[t] = ⟨1, 0,… , 0, 0,… , 0⟩ . By the definitions of πY and πΦ , πΦ(w̄) = {bidRound} , 
πY(w̄, payment�) = 0 and πY(w̄, trade�,j) = 0 for all � ∈ N and j ∈ G . Thus, 
Mvcg, δ, t ⊧ bidRound ∧

⋀
�∈N payment� = 0 ∧

⋀
j∈G trade�,j = 0.

Now we verify Rule 4. Assume Mvcg, δ, t ⊧ initial , then δ[t] = w̄ and for all � ∈ N and 
β ∈ B , (w̄, i, β) ∈ L . Thus, Mvcg, δ, t ⊧ legal�(β).

Then we consider Rule 5. Mvcg, δ, t ⊧ does(�) ∧ initial , for � ∈ B
� , i.e., 

Mvcg, δ, t ⊧
⋀

�∈N does(β�) and Mvcg, δ, t ⊧ initial . Thus, θ�(δ, t) = β� for all � ∈ N . The  
update function U defines δ[t + 1] such that πY(δ[t + 1], trade�,j) = WDλ�,j

(�,�) , for each 
� ∈ N and j ∈ G . Thus, 

Mvcg, δ, t + 1 ⊧
⋀

�∈N,j∈G trade�,j = WDλ�,j
(�,�) and also 

Mvcg, δ, t ⊧ ○(
⋀

�∈N,j∈G trade�,j = WDλ�,j
(�,�)) . Using the abbreviation, Mvcg, δ , 

t ⊧ ○(
⋀

�∈N trade� = WDλ�
(� , �)).

The remaining rules are verified in a similar way.

Lemma 4 For each agent � ∈ N , Mvcg ⊧ initial ∧ does𝗂(noop) → ○payment𝗂 = 0 ∧
⋀

j∈G trade𝗂,j ≥ 0

Proof Straightforward from Lemma 2, Rule 6 from Σvcg and Rule R2 from the definition  
of b�.

Proposition 6 Mvcg ̸⊧ ○sbb and Mvcg ̸⊧ ○wbb.

Proof We show Mvcg ̸⊧ ○wbb and Mvcg ̸⊧ ○sbb by showing a counter example. Given two 
distinct agents �, � in N and a good j in G , let δ be a path in Mvcg such that ��(�, 0) = ⟨1, j, 5⟩ 
and ��(�, 0) = ⟨−1, j,−3⟩ . For any other agent � ∈ N⧵{�, �} , ��(�, 0) = noop . Since this 
actions are legal in the initial state �[0] , there exists such path.

By Rule 5 and the definition of function WD� , we have that 
Mvcg, 𝛿, 1 ⊧ (trade�,j = 1 ∧ trade�,j = −1) and Mvcg, 𝛿, 1 ⊧ trade�,j� = 0 for all pairs 
(�, j�) ≠ (�, j) and (�, j�) ≠ (�, j) . That is, the good j is sold by � and bought by � . The social 
welfare of all agents other than � is −3 and the social welfare of all agents other than � 
is 5. If either � or � did not participate, there would be no trade and the social welfare 
would be zero. Thus, by Rule 6, the payments for � and � are 3 and −5 , resp., that is, 
Mvcg, 𝛿, 1 ⊧ payment� = 3 ∧ payment� = −5 . The other agents’ do not have payments on 
�[1] , i.e., Mvcg, 𝛿, 1 ⊧

⋀
�∈N⧵{�,�} payment� = 0 . Then, Mvcg, 𝛿, 1 ⊧ sum�∈N(payment�) < 0 . 

Thus we have that Mvcg, 𝛿, 0 ̸⊧ ○sbb and Mvcg, 𝛿, 0 ̸⊧ ○wbb.
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Proposition 7 Given a joint action � ∈ B
� , Mvcg ⊧ does(�) → ○ef(�)

Proof (Sketch) Since Mvcg ⊧ initial → ○terminal and δ[t + 1] = δ[t] whenever δ[t] ∈ T , it 
suffices to show that Mvcg, 𝛿, 0 ⊧ does(�) → ○ef(�) , for any joint action � ∈ B

� . Assume 
Mvcg, 𝛿, 0 ⊧ does(�) , by Rule 5 we have that Mvcg, 𝛿, 1 ⊧

⋀
�∈N,j∈G trade�,j = WDλ�,j

(�,�) . By 
the definition of the winner determination function WD�(�,�) (and consequently function 
WDλ�,j

 for each agent � and good j ), we have that the trade (πY(�[1], trade�,j))j∈G,�∈N maxi-
mizes the cumulative value among the agents. That is, Mvcg, 𝛿, 1 ⊧ sum�∈N(v�(β� , 
(tradej)j∈G)) = max𝛌∈Λ(sum�∈N(v�(β�, 𝛌))) and Mvcg, 𝛿, 0 ⊧ does(�) → ○ef(�).

Proposition 8 Given a joint action � ∈ B
� , if ��(�) ≥ 0 for all � ∈ I�� , �� ∈ V� and � ∈ N , 

then Mvcg ⊧ does(�) → ○ir(�).

Proof Let � ∈ B
� be a joint action and � be a path in Mvcg . Since 

Mvcg ⊧ initial → ○terminal and 
δ[t + 1] = δ[t] whenever δ[t] ∈ T , it suffices to show that Mvcg, 𝛿, 0 ⊧ does(�) → ○ir(�) . 
Assume Mvcg, 𝛿, 0 ⊧ does(�) and that the preferences represented by L(�[1], �) are non-
negative for every agent and possible trade. That is, v�(β, �) ≥ 0 for any bid β , trade � and  
agent �.

Let 𝛌 = (𝛌j)j∈G denote the trade performed after the agents report � , where 
λ�,j = πY(�[1], trade�,j) = WDλ�,j

(�,�) for each good j and agent � . We denote by 
�−� = WD−�

�
(�,�) the trade that would happen if � did not participate.

The utility of agent � in �[1] is u� = v(β�, �) − πY(�[1], payment�) . According to the pay-
ment definition (Rule 6), agent � ’s utility in �[1] is

or

or simply

Thus, agent � ’s utility is non-negative if

Assume for contradiction that this is not the case, that is,

Since v�(β�, �
−�) ≥ 0 , then we have

u� = v�(β�, �) −
( ∑
�∈N⧵{�}

v�(β�, �
−�) −

∑
�∈N⧵{�}

v�(β�, �)
)

u� = v�(β�, �) −
∑

�∈N⧵{�}

v�(β�, �
−�) +

∑
�∈N⧵{�}

v�(β�, �)

u� =
∑
�∈N

v�(β�, �) −
∑

�∈N⧵{�}

v�(β�, �
−�)

∑
�∈N⧵{�}

v�(β�, �) ≥
∑
�∈N

v�(β�, �
−�)

∑
�∈N⧵{�}

v�(β�, �
−�) >

∑
�∈N⧵{�}

v�(β�, �)

∑
�∈N

v�(β�, �
−�) ≥

∑
�∈N⧵{�}

v�(β�, �
−�) >

∑
�∈N⧵{�}

v�(β�, �)
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Fig. 7  A path in Mice where two agents trade a good

which is a contradiction since � is the efficient trade (see Proposition 7). Thus, 
Mvcg, 𝛿, 1 ⊧

⋀
�∈N sub(v�(β�, (tradej)j∈G), payment�) ≥ 0 and Mvcg, 𝛿, 0 ⊧ ○ir(�).

Lemma 5 Mice is an ST-model and it is a model of Σ.

Proof The proof is similar to those for Lemmas 1 and 3.

Proposition 9 Mice ̸⊧ ○sbb and Mice ⊧ ○wbb.

Proof (Sketch) Considering strong budget-balance, notice the path � illustrated at Fig. 7 is 
a counterexample. For instance, in the last stage we have Mice, 𝛿, 3 ⊧ sum�∈N(payment�) = 3 
and thus Mice  ⊧ ○sum�∈N(payment�) = 0 and Mice ̸⊧ ○sbb.

Now we consider weak budget-balance. Let � be a path in Mice , t ≥ 0 a stage in � and 
� ∈ N . By the definition of v� , we have that an empty trade is valuated zero, i.e., 
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v�(��(�, 0), (0,… , 0)) = 0 . Thus, 
∑

�∈N v�(��(�, 0), (0,… , 0)) = 0 . Notice the empty trade 
(0,⋯ , 0) satisfies Constraints C1–C4 from the winner determination. Among the trades 
satisfying those constraints, WD� selects the trade (𝛌j)j∈G that maximizes the cumulative 
value among all agents, Thus, the cumulative value cannot be smaller than zero. Since the 
agents’ pay the value of their bids, it follows that Mice, 𝛿, t ⊧ ○sub�∈N(payment�) ≥ 0.

Proposition 10 Given a joint action � ∈ B
� , Mice ⊧ does(�) → ○ir(�).

Proof The proof is straightforward since Mice ⊧ does𝗂(β𝗂) → ○payment𝗂 = v𝗂(β𝗂 , 
(tradej)j∈G) , for each � ∈ N and β� ∈ B.

Proposition 11 Given a joint action � ∈ B
� , Mice ⊧ does(�) → ○ef(�)

Proof (Sketch) The proof is similar to the proof for Proposition 11.

Proposition 12 Mice is not strategyproof.

Proof (Sketch) We show Mice is not strategyproof with a counterexample. Assume the path 
� illustrated in Fig.  7 and consider stage 2. We have ��(�, 2) = ⟨1, �, 18, 18⟩ . Since the 
agents pay their reported valuation, in �[3] , the utility of agent � given her bid is zero, i.e., 
Mice, 𝛿, 3 ⊧ sub(v�(⟨1, �, 18, 18⟩, (tradej)j∈G), payment�) = 0 . Let �′ be a path in Mice defined 
exactly like � , except by the actions performed by � in each stage t ≥ 2 , which is defined as 
��(�, t) = ⟨1, �, 16, 16⟩ . Then, M, 𝛿�, 3 ⊧ ○sub(v�(⟨1, �, 18, 18⟩, (tradej)j∈G), payment�) = 2 
and M, 𝛿�, 3 ̸⊧ ○sub(v�(⟨1, �, 18, 18⟩, (tradej)j∈G), payment�) ≤ 0.
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