
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2022) 36:20
https://doi.org/10.1007/s10458-022-09547-9

1 3

Representing and reasoning about auctions

Munyque Mittelmann1 · Sylvain Bouveret2 · Laurent Perrussel1

Accepted: 1 February 2022 / Published online: 7 March 2022
© Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The goal of this paper is to propose a framework for representing and reasoning about
the rules of auction-based protocols. Such a framework is of interest for building digital
marketplaces based on this type of mechanism. Hence the framework should fulfill two
requirements: (i) it should enable bidders to express their preferences over combinations
of items and (ii) it should allow the mechanism designer to describe the rules governing
the market, namely the legality of bids, the allocative choice, and the payment rule. To do
so, we define a logical language in the spirit of the Game Description Language, namely
Auction Description Language with a set of functions FB (ADL [FB]). ADL [FB] is the first
language for describing auctions in a logical framework. With our approach, each stage
in a protocol is seen as an independent direct revelation mechanism. Our contribution is
three-fold: first, we illustrate the general dimension by representing different kinds of pro-
tocols. Second, we show how this machine-processable language enables reasoning about
auction properties, including playability, termination, and classical conditions from mecha-
nism design (e.g., budget-balance and individual rationality). Finally, we develop a model-
checking algorithm for ADL [FB] , with complexity in PTIME when the functions in FB can
be computed in polynomial time.

Keywords Logics for multi-agents · Game description language · Auction-based markets

 * Munyque Mittelmann
 munyque.mittelmann@irit.fr

 Sylvain Bouveret
 sylvain.bouveret@imag.fr

 Laurent Perrussel
 laurent.perrussel@irit.fr

1 Université de Toulouse, IRIT, Toulouse, France
2 Université Grenoble Alpes - LIG, Grenoble, France

http://orcid.org/0000-0002-4664-8406
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-022-09547-9&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 2 of 47

1 Introduction

Auction-based markets are widely used for automated business transactions. There are
numerous variants depending on the parameters considered, including the number of dis-
tinct items1 and their copies and the number of sellers and buyers [35, 36]. For a fixed set
of parameters, the protocol, i.e., the bidding, payment and allocation rules, may also dif-
fer. Building intelligent agents that can switch between different auctions and process their
rules is a key issue for building automated auction-based marketplaces. In this setting, the
auction designer should at first describe the rules governing the auction and second allow
participants to express their preferences. The aim of this paper is to propose a language
with clear semantics for enabling the representation of auctions as well as the reasoning
about its rules and properties. More precisely, such a language should address the six auc-
tion dimensions introduced by Parkes and Kalagnanam [33]:

1. Resources: the auction protocol may involve a single item or multiple items, with single
or multiple units of each item. The type of the item may also be considered, i.e., the item
may be a multi-attribute commodity;

2. Market structure: the auction may differ on whether it has single or multiple buyers
and/or sellers. In single-sided auctions, there is either a single seller selling resources
to multiple buyers (i.e., forward auctions), or a single buyer sourcing resources from
multiple suppliers (i.e., reverse auctions). In a double auction, there are multiple sup-
pliers selling resources to multiple buyers. Finally, an exchange is a generalization of
double auctions, where the participants trade items;

3. Preference structure: the participants’ preferences define their utilities over different
outcomes (e.g., marginal utility, quasi-linear utility);

4. Bid structure: it refers to the flexibility with which participants can express their prefer-
ences. The bid structure ranges from simple statements of willingness to accept a given
selling price to complex bids that state prices, quantities, bundles, and logical connec-
tives. In single-dimensional auctions, only one attribute is considered in the bid (e.g.,
the price offered for a good). On the other hand, multi-dimensional auctions handle a
number of attributes in the bid (e.g., quality, delivery date) [55];

5. Market clearing: in relation to the method for matching the supply to demand, an auction
may be single-sourcing (i.e., matching pairs of buyers and sellers) or multi-sourcing
(i.e., matching multiple sellers with a single buyer, or vice-versa);

6. Information feedback: auctions may also differ on whether they are direct (i.e., one-stage
protocols without information feedback) or indirect mechanisms (i.e., protocols where
agents can adjust their bids in response to information feedback).

In the spirit of the General Game Playing (GGP) [21] where games are described with the
help of Game Description Language (GDL), we previously introduced a logical language
for describing auctions, denoted Auction Description Language (ADL) [45, 46].

In this paper, we go further and present a new version of ADL, named ADL [FB] , which
is described as Auction Description Language with a set of functions FB . ADL [FB] builds
upon bidding languages, and hence provides a natural way to represent a wide range of
protocols, ranging from single-units auctions to iterative combinatorial exchanges [53]. As

1 Throughout the paper we use the terms “item” and “good” interchangeably.

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 3 of 47 20

for GDL and ADL, we propose a precise semantics based on state-transition models, that
gives a clear meaning to the auction rules. Different bidding languages can be used with
ADL [FB] , including the Tree-Based Bidding Language [53], which generalizes known lan-
guages such as XOR/OR [50] to combinatorial exchange. To the best of our knowledge,
ADL [FB] is the first framework offering a unified perspective on an auction mechanism
and it offers two benefits: (i) with this language, one can represent many kinds of auctions
in a compact way and (ii) the precise state-transition semantics can be used to derive key
properties.

Our motivation for proposing ADL [FB] is twofold. First, to enable automated reasoning
about properties and features of an auction. These include determining whether the pro-
tocol is well-formed, in terms of termination and playability, as well as properties related
to the mechanism itself, such as individual rationality and efficiency. Second, inspired by
General Game Playing, our goal is to implement general players and an auction server to
evaluate their adaptability among different protocols and their ability to learn from other
agents’ behavior. Just like for the GGP, ADL [FB] provides the ground for testing auction
players and creating market-based competitions.

1.1 Contributions

Our main contribution is to provide a general framework for representing auctions. For dis-
cussing the generality of ADL [FB] , we refer again to the six dimensions of auctions [33]:

1. Resources as from ADL, we can represent variants with single and multiple units. ADL
[FB] also considers multiple types of goods;

2. Market structure while ADL is restricted to single-sided auctions, ADL [FB] also rep-
resents double auctions and exchange protocols. However, we cannot represent dynamic
sets of agents and goods;

3. Preference structure as we are concerned with the general representation of auctions,
we focus on how agents can express their preferences rather than on the underlying
structures of their utility functions. Following the literature on mechanism design [54],
we consider agents with quasi-linear utilities. In such a case, the agents’ utilities are
based on a preference function over the outcomes and her payment. For a discussion on
the hierarchy of preference functions, the reader may refer to Feige et al. [19];

4. Bid structure ADL [FB] can be used alongside different bidding languages. We define
requirements for the bidding set and we illustrate how to employ two languages with
different expressiveness in ADL [FB] . This aspect was not previously explored with
ADL;

5. Market clearing as for ADL, we can model single-sourcing auctions. ADL [FB] can
also encode multi-sourcing auctions;

6. Information feedback in ADL [FB] , direct mechanisms are described by a one-stage
protocol and indirect mechanisms are represented by iterative protocols.

Hence, ADL [FB] addresses all these dimensions and is general enough to represent most
settings. Notice that, similar to GDL (Game Description Language), ADL [FB] focuses
on deterministic and perfect information protocols. GDL-II is an extension for handling
imperfect information [64] and may be considered for auctions such as iterative sealed-bid
auctions. These are however less common.

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 4 of 47

Beyond the auction setting, ADL [FB] is also able to represent several kinds of resource
allocation problems: as noticed by Chevaleyre et al. [15], auctions can be seen as a sub-
division of allocation mechanisms. The main characteristics of an auction are (i) central
authority (the auctioneer), (ii) monetary transfer among participants, and (iii) agents’ pref-
erences expressed through bids. All these key features are expressible in ADL [FB].

We also show how ADL [FB] can be used for the automated verification of mechanism
design properties and for automatically checking whether descriptions written in ���[FB]
are well-formed. We illustrate the generality of ADL [FB] by focusing on two auction types:
simultaneous ascending auction (SAA) and combinatorial exchange as we believe they are
representative to demonstrate the expressive power of ADL [FB] . Combinatorial exchange
is a generalization of combinatorial and double-sided auctions, and SAA generalizes the
English auction to multiple items. We evaluate these protocols in terms of the aforemen-
tioned properties. Finally, we show that if functions in FB can be computed in polynomial
time, then the model-checking problem for a ���[FB]-formula belongs to PTIME, that is,
that it can be solved in polynomial time using a deterministic Turing machine.

The paper is organized as follows: in Sect. 2 we discuss the related work. In Sect. 3 we
detail the semantics and syntax of ADL [FB] . In Section 4 we introduce general properties
for evaluating ADL [FB]-based protocols. In Sects. 5 and 6, we show how to represent auc-
tions in ADL [FB] and we demonstrate how to derive properties from their description. In
Sect. 7, we explore the complexity of deciding whether an ADL [FB]-formula is true with
respect to a model and an execution of such model. Finally, Sect. 8 concludes the paper and
discusses future work. The proofs omitted in the main text are presented in the appendix.

2 Related work

Our work is rooted in the key contributions on Auction Theory [36, 50, 51, 72]. All these
works adopt a mechanism design perspective: they focus on designing and evaluating pro-
tocols and bidding languages. Our work has a different purpose. The ADL [FB] language
is intended to represent the auction protocols and to allow a modular definition of actions
sets, which may be characterized by a subset of a bidding language. ADL [FB] can be used
to automatically derive properties for these protocols. ADL [FB] is also a tool for mecha-
nism design, since it is a well suited framework for testing new auctions.

2.1 Auction representation

To the best of our knowledge, almost all contributions on the computational representa-
tion of auctions focus on the implementation of the winner determination problem. For
instance, Baral and Ulyan [4] show how a specific auction, namely combinatorial auctions,
can be encoded in a logic program. A hybrid approach mixing linear programming and
logic programming has been proposed by Lee and Lee [38]: they focus on sealed-bid auc-
tions and show how qualitative reasoning helps to refine the optimal quantitative solutions.
Giovannucci et al. [22] explore a graphical formalism to compactly represent the winner
determination problem for multi-unit combinatorial auctions. Linear Logic has also been
used [57] for modeling combinatorial auctions. The authors explore the representation of
bids and the winner determination. However, there is no temporal operator to allow reason-
ing on iterative auctions.

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 5 of 47 20

The descriptive auction language [59] allows a formal specification of auctions. Agents
can only bid through XOR combinations of items. Although the XOR language is widely
used, the specification approach is more flexible when the bidding language is not fixed for
all protocols. In fact, as stated by Nisan [51], the choice of a bidding language should aim
to find a balance between expressivity (i.e., being able to express every preference func-
tion) and simplicity (i.e., being intuitive and computationally efficient). There are numer-
ous auction protocols that do not require the expressive power of the XOR language and
can be implemented with simpler bidding languages. For instance, in a Dutch auction,
agents may simply say whether they accept the current selling price or not. Our proposal is
intended to be more flexible, as one may use different bidding languages with ADL [FB] for
defining distinct protocols.

A rule-based scripting language for representing single-dimensional auctions have
been proposed by Lochner et al. [39]. Since it is single-dimensional, bids are composed
exclusively by prices. On the other hand, the framework Multiple criteria English Reverse
Auctions (MERA) [7, 8] characterizes bids with vectors of attributes and criteria. MERA
allows to represent English reverse auctions that differ in relation to the aggregation model
of bidders’ preferences and the information feedback provided to the participants.

2.2 Representation of negotiation protocols

A related problem to auction specification is the one of representing negotiation protocols.
As noted by Meyer et al. [43] negotiation is investigated from different perspectives, such
as economics, psychology, computer science and others. Consequently, there is no agree-
ment in relation to its definition and the distinction between negotiation and auctions may
be vague. Although some authors consider auctions as types of negotiation protocols, in
this work we consider them related, but rather distinct, types of allocation procedures.

Following the definition from Chevaleyre et al. [15], by auctions we refer to centralized
mechanisms that specify trades of items and payments based on the bidders’ reported pref-
erences. On the other hand, we consider that in negotiation protocols, allocations emerge
as the result of a sequence of local negotiation steps. That is, they describe the negotiation
over resources in a distributed setting. Another important difference is that negotiation pro-
tocols for exchanging goods may not be dependant on monetary transfer.

In their paper [3], Bădică et al. discuss how rule-based approaches can be used to auto-
mated negotiation. The paper focuses on experimental results for concurrent negotiation
and do not address the generality of their approach. Huder et al. [25] propose a framework
to enable negotiations according to bilateral and multilateral negotiation protocols using a
meta-language to define protocols based on a set of attributes and parameters. In a subse-
quent work [24], the authors propose a language based on Extensible Markup Language
(XML) for meta-negotiating the choice of negotiation protocols and for instantiating and
parameterizing the system used for conducting the chosen protocol. Similarly, rule-markup
languages have also been used for the declarative representation of negotiations [18].

Due to the lack of a precise semantics, the approaches considered up to here are too
poor to enable reasoning. This limitation motivates the use of logic-based languages. In
two papers [70, 71], Wooldridge and Parsons briefly compare the use of different lan-
guages for negotiation, including propositional logic, a language for electronic commerce
and a negotiation meta-language. The problems considered involve simple protocols with
multi-attribute negotiation of single goods. Even in this setting, the problems of determin-
ing if agreement has been reached and determining if a particular protocol will terminate

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 6 of 47

are computationally hard. A basic logical framework for negotiation has also been pro-
posed by Meyer et al. [43]. In the two agents setting, the work explores modes of negotia-
tion from which an agreement over an outcome can be reached when the participants are
rational, cooperative and truthful.

2.3 GDL‑based approaches

The Game Description Language (GDL) is the official language used for the General
Game Playing (GGP) competition [21]. Due to its initial limitations, several extensions
and variants have been successfully proposed, including GDL with imperfect information
(GDL-II) [64] and introspection (GDL-III) [65] for specifying epistemic games. GDL has
also been extend for defining, comparing and combining strategies in [77, 78]. This exten-
sion includes the dual connectives prioritised disjunction and prioritised conjunction for
expressing preferences when combining strategies.

The use of GDL-based languages for describing market-based protocols have also been
studied. De Jonge and Zhang [31] discuss the use of GDL for modeling negotiation. The
main advantage is being able to apply the existing domain-independent techniques from
GGP. For instance, the Monte Carlo Tree Search algorithm has been adapted for negotia-
tions in non-zero-sum games [32]. In another paper [30], they propose the use of GDL as a
unifying language for defining general and complex negotiation domains.

The closest contributions to ours are the Market Specification Language (MSL) [66]
and ADL [45, 46], also based on GDL. Both works focus on representing single item auc-
tions through a set of rules and then interpreting an auction-instance with the help of a
state-based semantics. MSL is limited to single agent perspective while ADL is not. How-
ever, the main limit of both approaches is the lack of a clear link between the language,
the mechanism formalization and the agents’ preferences, which prevents the evaluation of
GDL-based specifications as mechanisms. In this paper, we extend ADL [46] for enabling
the integration with bidding language and going further on the representation of quantita-
tive aspects.

2.4 Formal verification of auctions

To some extent, our work is also related to the literature of formal verification of auc-
tions. Some works explore computed-aided verification [5, 12, 34], where the process is
only assisted by a reasoner. There are also works that focus on a particular variant of an
auction. For instance, model-checking approaches have been proposed for verifying sus-
pect behaviors of bidders in concurrent online auctions [73, 74]. Based on Artifact Sys-
tems techniques, Belardinelli [6] explores the model checking of properties concerning the
evolution of the bidding process in simultaneous ascending auctions. A similar approach
investigates the verification of agent-based English auctions using temporal logic [2]. A
more general concept has also been introduced [56, 69], where the authors advocate the use
of Alternating-time Temporal Logic [1] to reason about economic mechanisms. Strategy
Logic (SL) [14, 47] allows for explicit representation of strategies, which enables captur-
ing solution concepts from Game Theory [52]. In [42], the authors investigate a quantita-
tive version of SL with imperfect information for the automated verification of indirect
mechanisms. However, as SL and ATL cannot model the internal structures of strategies,
these languages are not fitted for reasoning about the actions that were actually executed in

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 7 of 47 20

a moment of the game, which is an important feature to be considered for General Game
Playing.

In this paper, we show how ADL [FB] is suitable for the automated verification of direct
revelation mechanisms. We encode individual rationality, efficiency and budget-balance as
ADL [FB]-formulae. Verifying such properties amounts to model-checking ADL [FB]-for-
mulae, which can be done in PTIME, when functions in FB can be computed in PTIME.
Other properties can be analyzed via meta-reasoning and we exemplify this case with
strategyproofness.

3 Auction description language with a set of functions FB

The Auction Description Language with a set of functions FB (ADL [FB]) is a framework
for specification of auction-based markets and it is composed by a state-transition model
and a logical language. To encode an auction, we first define its signature, which specifies
the participants (the agents), the goods being traded and the propositions and variables
describing each state of the auction:

Definition 1 An auction signature S is a tuple (N,G,B,Φ, Y, I,FB) , where:

– N = {1,… , �} is a nonempty finite set of agents (or bidders);
– G = {1,… ,�} is a finite set of good types;
– B is a nonempty finite set of bids (or actions);
– Φ is a finite set of atomic propositions specifying features of a state;
– Y is a finite set of numerical variables specifying numerical features of a state;
– I ⊂ ℤ is an interval of integer numbers, denoting the value range for any countable

component of the framework. We assume I is equipped with a partial order2 ⪯I , cap-
turing the standard less-than-or-equal relation over its elements. We let zmin, zmax ∈ ℤ
denote the minimum and maximum values in I , that is, zmin ⪯I z and z ⪯I zmax for each
z ∈ I . By convenience, we assume 0 ∈ I and denote I⪰0 = [0, zmax] and I≻0 = (0, zmax]
as the non-negative and positive parts of I , respectively. Similarly, I⪯0 = [zmin, 0] and
I≺0 = [zmin, 0) denote the non-positive and negative parts of I.

– FB ⊆ {f ∶ B
𝖺 × I𝖻 → I ∣ 𝖺, 𝖻 ∈ I⪰0} is a set of state-independent functions of possibly

different arities.

Hereafter, we will fix an auction signature S and all concepts will be based on this sig-
nature, except if stated otherwise. Note that zmin and zmax , in the definition of I , should be
large enough to represent the total supply of goods being traded as well as the cumulative
available money among agents. Through the rest of this paper, we assume that is the case.
Any function value outside I is rounded to the nearest value zmin or zmax . We assume that
FB contains the functions sum(z1, z2) = z1 + z2 , sub(z1, z2) = z1 − z2 , times(z1, z2) = z1 ⋅ z2 ,
denoting the addition, subtraction and multiplication of two integers z1, z2 ∈ I , respectively.
Similarly, we also assume FB contains the functions

2 A partial order is a relation that is reflexive, antisymmetric and transitive.

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 8 of 47

and

capturing the maximum and minimum among two integers z1, z2 ∈ I.
Given a list integers (z�)�∈N ∈ I� and a 2-ary function f ∈ FB such that f ∶ I × I → I , we

will use the following shortcut:

A trade is a tuple (λ�,j)j∈G,�∈N ∈ I�� , where λ�,j denotes the number of units j being traded by
agent � . A trade specifies which items each agent is selling and/or buying. A positive trade
expresses how many units of a good type are purchased and a negative trade represents
how many units are sold. Similarly, a positive payment denotes how much a buyer will pay
and a negative payment expresses how much a seller will receive.

A tuple of objects indexed by agents in N is called a profile. In a profile, we may omit
the index set and we write it in bold, e.g., � for (λ�)�∈N and (𝛌j)j∈G for (λ�,j)j∈G,�∈N . Given a
profile o , we let o� be the component of agent � and o−� be (o�)�≠�.

Let us now present the model and the language’s syntax and semantics.

3.1 Syntax

Let Lz be the set of numerical terms, with each z ∈ Lz defined as follows:

where β ∈ B is an action, x ∈ I is an integer, y ∈ Y is a numerical variable and f ∈ FB is a
function3.

The logical language for ADL [FB] is denoted by L���[FB]
 and a formula � in L���[FB]

 is
defined by the following Backus-Naur Form grammar:

where p ∈ Φ is a proposition, � ∈ N is an agent, β ∈ B is an action and z ∈ Lz is a numeri-
cal term.

Intuitively, initial and terminal specify the initial terminal states, resp.; legal�(β) asserts
that agent � is allowed to take action β at the current state and does�(β) asserts that agent �
takes action β at the current state. The formula ○� means “ � holds at the next state”. The
formula z1 ≤ z2 means that the numerical term z1 is smaller or equal to the numerical term
z2.

We use the standard abbreviations from propositional logic, such as � ∨ � for
¬(¬� ∧ ¬�) , � → � for ¬� ∨ � , and � ↔ � for (� → �) ∧ (� → �) . We take ⊤ to be
an abbreviation for some fixed propositional tautology such as p ∨ ¬p , and let ⊥ be an

max(z1, z2) =

{
z1 if z2 ⪯I z1
z2 otherwise

min(z1, z2) =

{
z1 if z1 ⪯I z2
z2 otherwise

f�∈N(z�) = f (z1, f (z2, f (… , f (z�−1, z�))))

z ∶∶= x ∣ y ∣ f (β,… , β, z,… , z)

� ∶∶= p ∣ initial ∣ terminal ∣ legal�(β) ∣ does�(β) ∣ ¬� ∣ � ∧ � ∣ ○� ∣ z ≤ z

3 Notice f (.) may be 0-ary.

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 9 of 47 20

abbreviation of ¬⊤ . We also use abbreviations for comparison operators, such as z1 = z2
for z1 ≤ z2 ∧ z2 ≤ z1 , z1 < z2 for z1 ≤ z2 ∧ ¬(z1 = z2) , z1 ≠ z2 for ¬(z1 = z2) , z1 ≥ z2 for
z2 ≤ z1 and z1 > z2 for z1 ≥ z2 ∧ z1 ≠ z2 . The extension of the comparison operators to
multiple arguments is straightforward.

Assume the bids � = (β�)�∈N , where β� ∈ B is a bid associated to the agent � ∈ N . The
formula does(�) =def

⋀
�∈N does�(β�) represents that the agents in N perform the joint

action �.

3.2 Semantics

The semantics of ADL [FB] are based on state-transition models, which allows us to
represent the key aspects of an auction, at first the legal bids and the transitions among
states.

Definition 2 A state-transition-model (ST-model for short) M is a tuple (W, w̄, T, L, U, πΦ, πY) ,
where:

– W is a nonempty set of states;
– w̄ ∈ W is the initial state;
– T ⊆ W is a set of terminal states;
– L ⊆ W × N × B is a legality relation, describing the legal actions at each state, we let

L(w, �) = {a ∈ B ∣ (w, �, a) ∈ L} be the set of all legal actions for agent � at state w;
– U ∶ W × B

𝗇 → W is an update function, given d ∈ B
� , let d� be the individual action

for agent � in the joint action d;
– πΦ ∶ W → 2Φ is the valuation function for the state propositions;
– πY ∶ W × Y → I , is the valuation function for the numerical variables.

A path represents a run or execution of an auction protocol. Formally,

Definition 3 Given an ST-model M = (W, w̄, T, L, U, πΦ, πY) , a path is a sequence of

states and joint actions w0

d1

−−→ w1

d2

−−→ …
dt

−→ wt

dt+1

−−−→ … such that for any t ≥ 1 : (i) w0 = w̄ ;
(ii) wt ≠ w0 ; (iii) dt� ∈ L(wt−1, �) for any � ∈ N , (iv) wt = U(wt−1, d

t) ; and (v) if wt−1 ∈ T ,
then wt−1 = wt.

For any path δ , let δ[t] denote the t-th state of δ , θ(δ, t) denote the joint action per-
formed at stage t of δ , θ�(δ, t) denote the action of agent � performed at stage t of δ , and
δ[0, t] denote the finite prefix w̄

d1

−−→ w1

d2

−−→ …
dt

−→ wt . A path δ is complete if δ[e] ∈ T ,
for some e > 0 . After reaching a terminal state δ[e] , for any e′ > e , δ[e�] = δ[e] . Finally,
for a given model M , any state w such that there exists a complete path δ of M such that
w ∈ δ will be called a reachable state of M.

The semantics for ADL [FB] is given in two steps. First, we define function fz to
compute the meaning of numerical terms z ∈ Lz in some specific state. Next, a formula
� ∈ L���[FB]

 is interpreted with respect to a stage in a path.

Definition 4 Given an ST-model M , we define function fz ∶ Lz ×W → I , assigning any
z ∈ Lz and state w ∈ W to a number in I:

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 10 of 47

where n,m ∈ I⪰0.

Definition 5 Let M be an ST-Model. Given a path δ of M , a stage t on δ and a formula
� ∈ L���[FB]

 , we say � is true (or satisfied) at t of δ under M , denoted by M, δ, t ⊧ 𝜑 ,
according to the following definition:

A formula � is globally true through δ , denoted by M, δ ⊧ 𝜑 , if M, δ, t ⊧ 𝜑 for any stage
t of δ . A formula � is globally true in an ST-model M , written M ⊧ 𝜑 , if M, δ ⊧ 𝜑 for all
paths δ in M . Finally, let Σ be a set of formulae in L���[FB]

 , then M is a model of Σ if M ⊧ 𝜑
for all � ∈ Σ.

Similar to Epistemic GDL [29], the following propositions hold:

Proposition 1 Let M be an ST-model, for each agent � ∈ N and each action β ∈ B ,

1. M ⊧ does𝗂(β) → ¬does𝗂(β
�) , for any β� ∈ B such that β� ≠ β

2. M ⊧
⋁

β�∈B does�(β
�)

3. M ⊧ does𝗂(β) → legal𝗂(β)

4. M ⊧ ¬○ initial

5. M ⊧ terminal ∧ 𝜑 → ○𝜑 , for any � ∈ L���[FB]

6. M ⊧ initial → ¬terminal

Statements 1 and 2 specify an agent performs exactly one action in each state. Further-
more, if she does an action, then it must be legal (Statement 3). As a consequence from the
path construction, we have that no state can be followed by the initial one (Statement 4)
and any formula that holds in a terminal state also holds in the subsequent state (Statement
5). Finally, if a state is the initial one then it is not a terminal state (Statement 6).

We also have tautologies related to the partial order ⪯I:
Observation. Let M be an ST-model, � ∈ N be an agent, z = (z1, z2,… , zn) be a list of

numerical terms (i.e., z ∈ L
n
z
) and f ∈ FB be any function such that f ∶ In → I , for some

n ∈ I≻0 ,

1. M ⊧ z1 ℜ z1 , for ℜ ∈ {≤,≥,=}

2. M ⊧ z1 ℜ z2 ∧ z2 ℜ z1 → z1 = z2 , for ℜ ∈ {≤,≥,=}

fz(z, w) =

⎧
⎪⎨⎪⎩

πY(w, z) if z ∈ Y

f (β1,… , βn, fz(z1, w),… , fz(zm, w)) if z = f (β1,… , βn, z1,… , zm)

z if z ∈ I

M, δ, t ⊧ p iff p ∈ πΦ(δ[t])

M, δ, t ⊧ ¬𝜑 iff M, δ, t ̸⊧ 𝜑

M, δ, t ⊧ 𝜑1 ∧ 𝜑2 iff M, δ, t ⊧ 𝜑1 and M, δ, t ⊧ 𝜑2

M, δ, t ⊧ initial iff δ[t] = w̄

M, δ, t ⊧ terminal iff δ[t] ∈ T

M, δ, t ⊧ legal�(β) iff β ∈ L(δ[t], �)

M, δ, t ⊧ does�(β) iff θ�(δ, t) = β

M, δ, t ⊧ ○𝜑 iff M, δ, t + 1 ⊧ 𝜑

M, δ, t ⊧ z1 ≤ z2 iff fz(z1, δ[t]) ⪯I fz(z2, δ[t])

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 11 of 47 20

3. M ⊧ z1 ℜ z2 ∧ z2 ℜ z3 → z1 ℜ z3 , for ℜ ∈ {≤,≥,=}

4. M ⊧ zi = zj ↔ f (zi, z−i) = f (zj, z−i) , for any 1 ≤ i ≤ n

5. M ⊧ z1 = z2 ↔ z2 = z1
6. M ⊧ z1 ℜ z2 → ¬(z2 ℜ z1) , for ℜ ∈ {<,>}

Statements 1, 2 and 3 are a consequence from ⪯I being reflexive, antisymmetric and transi-
tive, respectively. Ceteris paribus, two numerical terms are equal if and only if the value
obtained after applying f is equal for both terms (Statement 4). Statement 5 says that the
equality operator is symmetric and Statement 6 states that the operators representing the
relations smaller-than and greater-than are asymmetric.

Requirements for representing verifiable auctions For verifying a protocol
expressed in ADL [FB] with respect to properties from mechanism design, its signature
S = (N,G,B,Φ, Y, I,FB) must comply with the following requirements:

• FB should include a function v𝗂 ∶ B × I𝗇𝗆 → I for each agent � ∈ N , where v�(β, �)
denotes the value of β given a joint trade � ∈ I�� , i.e., v�(β, �) represents the value
reported for trade � under � ’s bid β;

• There are no duplicate bids in B , that is, there are no two bids β, β� ∈ B , such that
β ≠ β� and v�(β, �) = v�(β

�, �) , for any trade � ∈ I�� and any agent �;
• Each payment and trade should be represented as a numerical variable, that is,

{payment�, trade�,j ∶ � ∈ N, j ∈ G} ⊆ Y . The variables payment� and trade�,j denote the
value in a state of agent � ’s payment and her trade for the good j , respectively.

Other functions may as well be included in FB . For instance, for indirectly representing
market clearing with ADL [FB] , one may encode a winner determination function, such
that it assigns bids and allocations to trades. Such function is not a compulsory requirement
for the bidding language, since we can also directly represent the market clearing through
L���[FB]

-rules.4

4 Evaluating auction‑based protocols

In this section, we explore the general evaluation of auction-based protocols. First, we
recall concepts from mechanism design and present their formulation in ADL [FB] . As for
GDL, we then define well-formulated protocol descriptions.

4.1 Mechanism design

A mechanism aggregates agents’ preferences and decides for an outcome (e.g., an alloca-
tion of goods, a result of an election, etc) [16]. Auctions are a type of mechanism, in which
the outcome is described in terms of trades and monetary transfers among the participants.
According to a given objective, the goal of Mechanism Design (MD) is to design a game
(i.e., the mechanism) such that an outcome with desirable features is reached, despite
the agents’ self interests [62]. The objective of a mechanism can include, for instance,

4 A winner determination function is shown in Sect. 6.1.2 and the protocol presented in Sect. 5 has the
market clearing represented through L���[FB]

-rules.

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 12 of 47

truthfulness of agents (i.e., strategyproofness), maximization of social welfare (i.e., effi-
ciency), voluntary participation (i.e., individual rationality), and so on.

Let us recall concepts from MD and show how to represent some classical but important
objectives (hereafter called properties) in ADL [FB] , namely budget-balance, efficiency,
individual rationality and strategyproofness. As we focus on auctions, we denote the mech-
anism outcome as a pair (�, �) , where 𝛌 = (𝛌j)j∈G is a trade and p� is the payment for agent �
.

The preference of an agent � in N over a trade � is modeled by a preference function
�𝗂 ∶ I𝗇𝗆 → I , where �� ∈ V� and V� is a finite set of possible preference functions for � . We
call V� the preference space of � . We classically assume that the utility of agent � over an
outcome (�, �) is quasi-linear (i.e., the utility’s dependence on the payment is separable and
linear)5, defined as ��(�) − p�.

Since different action sets may have different expressiveness and syntactical structures,
we use the value reported in a bid for a given trade to assess whether the bid represents the
agent’s preference function.

Definition 6 Let B be an action set and V� be the preference space of agent � ∈ N . A bid
β ∈ B represents a preference function �� ∈ V� , denoted by β ∼� �� , iff v�(β, �) = ��(�) , for
all trade � ∈ I��.

Similarly, an action set may represent a preference space. In this case, exactly one bid in
the action set should represent a preference function.

Definition 7 Given a set of actions B and a preference space V� of agent � ∈ N , we say B
represents V� , denoted by B ≈� V� iff for each �� ∈ V� there exists a unique bid β ∈ B such
that β ∼� �� and for each bid β ∈ B there exists a preference function �� ∈ V� such that
β ∼� ��.

If B ≈� V� , for each �� ∈ V� we let β�� denote the bid β ∈ B such that β ∼� �� , that is, β�� is
the bid that represents �� . Given a preference profile � , let �

�
= (β��)�∈N denote the profile

of bids representing �.
Notice not all elements of I are feasible values for trades, for instance in a traditional

English auction, the trade for each agent should be either 0 or 1 while the interval I could
include greater values for encoding the payments. In the following, the possible choices
considered for trades in the mechanism are denoted Λ ⊆ I��.

An indirect mechanism describes the available actions for each agent and an outcome
function that maps vectors of actions (also know as strategies) into outcomes. In a direct
mechanism, each agent’s available action consists on reporting preferences from her prefer-
ence space [26]. Formally, a direct mechanism is defined as follows [52]:

Definition 8 A direct mechanism (�, �) specifies a social choice function 𝗌 ∶
∏

𝗂∈N V𝗂 → Λ
and a profile of payment functions � , where 𝗉𝗂 ∶

∏
𝗂∈N V𝗂 → I denotes the amount agent �

pays (or receives).

5 Quasilinearity of utilities refers to the fact that the utility function is a linear combination of the prefer-
ence valuation function and the price paid by the agent. However, the preference function �� itself can be
general.

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 13 of 47 20

Regardless whether a protocol is multi- or single-stage, we view each step we

de+1

−−−→ we+1
of a path w0

d1

−−→ w1

d2

−−→ …
dt

−→ wt

dt+1

−−−→ … in an ST-model M as a direct mechanism, where
e ≥ 0 and the social choice and payments are encoded by the update and valuation func-
tions in M . Formally,

Definition 9 Given a preference space profile V , an ST-model M and a state w ∈ W
such that L(w, �) ≈� V� for each � ∈ N , and let the set of possible trades be defined as
Λ = {(πY(w

�, trade�,j))�∈N,j∈G ∶ w� = U(w, �
�
) & � ∈

∏
�∈N V�} . Then state w is a direct

mechanism (�, �) , where for each � ∈
∏

�∈N V� , the outcome is denoted by the valuation
of the numerical variables regarding trades and payments in the state w� = U(w,�

�
) . The

social choice function is

where λ�,j = πY(w
�, trade�,j) for each agent � and good j . The payment function for agent � is

The state w� = U(w,�
�
) in the above definition is called an outcome state. Any

reachable state in an ST-model is an outcome state, except the initial state. For the
next subsections, we fix an ST-Model M and a preference space profile V such that
L(w, �) ≈� V� for each agent � and state w ∈ W.

4.1.1 Budget‑balanced mechanisms

A mechanism is strongly budget-balanced (SBB) if the cumulative payment among the
bidders is zero, for every preference they may have [44]. A mechanism where there
is no monetary deficit, that is, where only the designer can earn revenue, is called
weakly budget-balanced (WBB) [44]. This condition is a relaxation from SBB, where
the cumulative payment among the bidders cannot be negative.

Definition 10 A direct mechanism (�, �) is strongly budget-balanced (resp. weakly budget-
balanced) if for each � ∈

∏
�∈N V�,

We denote the condition of a state being SBB by the following ADL [FB]-formula:

The formula wbb is defined similarly, with ≥ instead of = . Remind we consider that each
stage in M represents a direct mechanism. The ST-model M is SBB (resp. WBB) if that is
the case for all outcome states of all paths in M , that is, if M ⊧ ○sbb (resp. M ⊧ ○wbb).

Similarly, we could represent conditions for the balance of trades. Balance of sup-
ply-demand requires the cumulative of trades for each good to be exactly zero [37].
Mechanisms with free disposal allow trades to sell more items than are purchased [54],
that is, the cumulative of trades for each good must be at most zero.

�(�) = (𝛌j)j∈G

��(�) = πY(w
�, payment�)

∑
�∈N

��(�) = 0 (resp.
∑
�∈N

��(�) ≥ 0)

sbb =def sum�∈N(payment�) = 0

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 14 of 47

4.1.2 Strategyproof mechanisms

A mechanism is strategyproof (SP), or incentive compatible, if each agent � prefers reporting
her real preference �� than reporting any other preference �′

�
 , since �� gives her at least the same

utility [52].

Definition 11 A direct mechanism (�, �) is strategyproof if for every agent � ∈ N , every
preference profile � and every ��

�
∈ V�,

Now we reformulate this condition in terms of states from an ST-model. Let V� denote the
preference space for each agent �.

Given the ST-model M , a path � in M and a stage t ≥ 0 in � , such that L(�[t], �) ≈� V�
for each � . For any preference profile � , let �

�
 denote a path such that �[0, t] = �

�
[0, t] and

�(�
�
, t) = �

�
 (i.e., M, 𝛿

�
, t ⊧ does(�

�
)). In other words, �

�
 is a path with the same prefix as � ,

but one in which agents report the preferences � in �
�
[t] instead of the actions they perform in

�[t].
We say that �[t] is strategyproof if for every � ∈ N , every preference profile � and every

��
�
∈ V� , we have that, for some x ∈ I,

and

M is strategyproof if each stage t ≥ 0 of each path � in M is strategyproof.

4.1.3 Efficient mechanisms

A mechanism is efficient (EF) if the social choice function maximizes the (utilitarian) social
welfare [54], i.e., the cumulative preference among the agents.

Definition 12 A direct mechanism (�, �) is efficient if for every preference profile �,

Let us express this condition in terms of an ST-model M . The following formula deter-
mines whether the current trade maximizes the social welfare:

We say M is EF if, after performing a joint action, the trade in the outcome state maximizes
agents’ preferences, that is M ⊧ does(�) → ○ef(�) , for every � ∈ B

�.

��(�(�)) − ��(�) ≥ ��(�(�
�
�
, �−�)) − ��(�

�
�
, �−�)

M, 𝛿
�
, t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G), payment�) = x

M, 𝛿(𝜗�
�
,𝜗−�)

, t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G), payment�) ≤ x

∑
�∈N

��(�(�)) = max
�∈Λ

∑
�∈N

��(�)

ef(𝛃) =def

(
sum�∈N(v�(β�, (tradej)j∈G)) = max

𝛌∈Λ
(sum�∈N(v�(β�, 𝛌)))

)

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 15 of 47 20

4.1.4 Individually rational mechanisms

A mechanism is (ex-post) individually rational (IR), if agents always get non-negative util-
ity [52]. Given a reported preference, in an IR mechanism, the agent’s utility when par-
ticipating is at least as good as if she did not participate (assuming the utility of non-par-
ticipation is zero). Individual rationality is also known as voluntary participation since it
expresses the idea that agents are not forced to participate in the mechanism [54].

Definition 13 A direct mechanism (�, �) is individually rational if for every agent � ∈ N ,
every � ∈

∏
�∈N V�,

We use the following ADL [FB]-formula to denote whether an state is IR:

The ST-model M is IR if performing a joint action leads to an individually rational state,
that is, M ⊧ does(�) → ○ir(�) , for every � ∈ B

�.
The properties described in this section are classical in mechanism design, since they

describe desirable features of the outcome. The objective of a mechanism may include a
combination of different properties. However, well-known impossibility results restrict the
feasible combination of such properties: no mechanism can be efficient, strongly budget-
balanced and individual-rational [49] and no mechanism can be efficient, incentive com-
patible and strongly budget-balanced [23].

In this paper, we verify ST-models by considering that each stage is a direct mechanism,
that is, an iterative protocol is treated as a sequence of (independent) direct mechanisms.
The revelation principle [52] states that any indirect mechanism that implements a function
in dominant strategies can be converted into a strategyproof direct mechanism. For this
reason, considering direct mechanisms is of first interest.

If we want to verify an ST-model M as an (unique) indirect mechanism, we need to
evaluate properties considering the final outcome, that is, on the terminal states of each
path. The classical approach in mechanism design requires properties to hold in strategic
equilibrium rather than for all possible outcomes. As ADL [FB] does not involve quantifica-
tion over strategies, we need meta-reasoning to capture the strategic equilibrium for a given
solution concept (such as Nash or dominant strategy equilibrium). The reader may refer to
[52] for a discussion on the problem of finding strategic equilibria.

In the next subsection, we will focus on properties that ensure well-formed descriptions
in ���[FB] . This properties are not related to the mechanism outcome but require proto-
cols to be playable and eventually end.

4.2 Characterizing well‑formed protocols

Love et al. [40] introduced constraints for games used in General Game Playing. This con-
straints constitute desirable features of games described in GDL by ensuring their descrip-
tions to be meaningful (or well-formed), in the sense that games are playable, eventually
terminate and are weakly winnable by any player.

��(�(�)) − �(�) ≥ 0

ir(𝛃) =def

⋀
�∈N

sub(v�(β�, (tradej)j∈G), payment�) ≥ 0

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 16 of 47

We rephrase the constraints for termination and playability in terms of ST-models. First,
termination refers to whether each path from an ST-model reaches a terminal state.

Definition 14 An ST-model M terminates if each path � in M is complete, that is, �[t] ∈ T ,
for some t > 0.

Playability means there is a legal action for each agent to take in each moment of the
auction.

Definition 15 An ST-model M is playable if L(w, �) ≠ � for each reachable state w ∈ W
and agent � ∈ N.

Weak winnability means that, for each agent, there is a sequence of joint actions that
leads to a terminal state where the goal value is maximal. In the logical formulations of
GDL, weak winnability means that every player has a chance to win [60, 75], that is, there
exists a path to a winning state. In ADL [FB] , weak winnability follows from our assump-
tion that each stage represents a direct mechanism. Since we understand the agent’s prefer-
ences as represented by legal actions, there exists a joint action in each stage leading to a
state that maximizes her utility among the possible outcomes. Hence, we do not focus on
weak winnability for determining whether a protocol is well-formed.

A well-formed protocol is a set of rules in ADL [FB] whose model is an ST-model that
satisfies both termination and playability.

Definition 16 Given an ST-Model M and a finite set of ADL [FB]-formulae Σ ⊂ L���[FB]
 ,

Σ is a well-formed protocol over M if M is a model of Σ , M terminates and it is playable.

It is possible to have different descriptions that are well-formed with respect to the same
model (e.g., due to redundancy). In fact, a given auction description may also be sound in
respect to several models. Investigating minimal descriptions is an interesting non trivial
open question. A potential path is to characterize the minimum equivalent of an original
ST-model, that is, the canonical model. This problem was explored for GDL [27], where
they use the notion of bisimulation equivalence between ST-models. In a recent paper,
Zhang [76] investigates the equivalence of two GDL-descriptions when they describe
games behaviourally the same.

Similar to ADL [FB] , the semantics of GDL is based on fixed paths. Thus, the con-
straints for well-formed descriptions cannot be encoded through formulae using the stand-
ard formulation of GDL. Zhang [75] proposes a GDL-based modal logic to enable rea-
soning over game descriptions, with which one can express conditions such as playability,
termination and winnability. However, the work does not investigate the complexity of
verifying formulae in this modal logic. Ruan et al. [60] use ATL [1] to reason about GDL-
specified games. They prove that the problem of interpreting ATL formulae over proposi-
tional GDL descriptions is EXPTIME-complete and show how to use ATL for the verifi-
cation of well-formedness conditions, which might or might not hold on various games.
Deciding whether a GDL description [40] is well-formed is undecidable in general, since
deciding whether a description leads to games that always terminates would solve the halt-
ing problem for a Turing machine [61].

���[FB] is useful for representing the rules of an auction as well as for verifying a number
of properties. As we discussed above, we can encode different properties of direct mechanisms

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 17 of 47 20

as ���[FB]-formulae (e.g., individual rationality and budget balance). Although we can-
not represent strategyproofness and the constraints for well-formed descriptions entirely
as ���[FB]-formulae, we are still able to infer them by meta-reasoning over the model
specification.

Other logical languages are suitable for encoding properties. Termination and playability,
for instance, can be written as ATL-formulae [1]. As SL [14] includes quantification over
strategies, it allows the evaluation of games in strategic equilibria. Therefore, it can be used to
encode properties for indirect mechanisms as logical formulae, as proposed in [42]. However,
the expressivity of such languages brings a computational cost. The model-checking problem
for ATL* with perfect information is in PSPACE in the memoryless case and deterministic
double exponential time with perfect recall [63]. As for SL, the model-checking is Non Ele-
mentary with respect to the size of the specification. More specifically, it is k-EXPSPACE-
hard in the alternation number k of quantifications in the specification [48]. As we shall see
in Sect. 7, the model-checking for ���[FB] is in PTIME in the size of the formula. For this
reason, we believe ���[FB] provides a reasonable cost-benefit for expressing and evaluating
general auctions. As a drawback for ATL, SL and ADL [FB] , representing auctions as concur-
rent game structures or state-transition models may require exponential size.

In the next sections, we illustrate the use of ADL [FB] for specification of different although
representative types of auctions: a simultaneous ascending auction, a Vickrey–Clarke–Groves
mechanism and an iterative combinatorial exchange.

5 Representing a simultaneous ascending auction

Let us now consider the simultaneous ascending auction (SAA), which is a single-side and
single-unit auction similar to the traditional English auction, except that several goods are sold
at the same time, and that the participants simultaneously bid for any number of goods they
want. According to Cramton [17]:

“The simultaneous ascending auction (and its variants) will remain the best method for
auctioning many related items in a wide range of circumstances, even settings where
some of the goods are complements for some bidders.”

To represent a SAA with � types of goods and � agents, we first describe the auction sig-
nature, written Ssa = (N,G,B,Φ, Y, I,FB) , where N = {1,… ,�} , G = {1,… , �} ,
Φ = {soldj, bid�,j ∶ j ∈ G & � ∈ N} , Y = {price, pricej, trade�,j, paymenti ∶ j ∈ G &
� ∈ N} and I ⊂ ℕ . The propositions soldj and bid�,j represent whether the good j was sold
and whether � is bidding for j , resp. The variables price and pricej specify the current
price for any unsold good and the selling price for j , resp. Agents may specify the value
they are willing to pay for each good in a given state. The action set is defined as follows:
B = {(p1,… , p�) ∶ pj ∈ I⪰0, 1 ≤ j ≤ �} , where pj denotes the price for good j.

FB includes the functions previously introduced (e.g., sum(z1, z2) , max(z1, z2)). It also con-
tains the function v𝗂 ∶ B × I𝗇𝗆 → I , for each agent � ∈ N . This function is defined as follows:

for a trade � ∈ I�� and a bid (p1,… , p�) ∈ B.
Each instance of a SAA is specific and defined with respect to B , I and the constant

values ���,�, � ∈ I≻0 and ����� ∈ I⪰0 , representing the quantity of agents and types of

v�((p1,… , p�), �) =
∑
j∈G

λ�,j ⋅ pj

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 18 of 47

goods, the bid increment, and the starting price, respectively. Then, the rules of an SAA
are formulated by ADL [FB]-formulae as shown in Fig. 1.

In the initial state, no agent is bidding, no trade is performed and the prices have the
value ����� (Rule 1). A good is sold if it is traded to some agent (Rule 2). In a terminal
state, all the goods are either sold or no one is bidding for them (Rule 3). A good will
be traded to an agent in the next state if she is currently the only active bidder for this
item, otherwise there is no trade (Rules 4–5). For each good, an agent can either bid the
value 0, an increment on the current price (for unsold goods) or repeat her winning bid
for this good (Rule 6). In a non-terminal state, the propositions and numerical variables
are updated as follows: (i) the current price increases, (ii) the selling price increases for
unsold goods, and (iii) the active bidders for each good are updated with respect to their
bids (Rules 7–9). The payment for an agent is the cumulative value of the selling price
for her traded goods (Rule 10). Let Σsa be the set of Rules 1–10.

5.1 Representing as a model

Next, we address the model representation of SAA. Let Msa be the set of ST-models
Msa defined for any constant values ����� ∈ I⪰0 and ���, �,� ∈ I≻0 . Each Msa is defined as
follows:

– W = {⟨(bj)j∈G, (𝛌j)j∈G, p, (pj)j∈G⟩ ∶ b�,j, λ�,j ∈ {0, 1} & p, pj ∈ I⪰0 & � ∈ N & j ∈ G} ,
where b�,j denotes whether agent � is bidding for good j , λ�,j specifies the number of
goods with type j traded for agent � , p denotes the current price and pj represents the
selling price for j;

– w̄ = ⟨0,… , 0, 0,… , 0, �����, �����,… , �����⟩ , in the initial state, there is no trade or
active agent and the prices are �����;

Fig. 1 Simultaneous Ascending Auction represented by Σsa

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 19 of 47 20

– T = {w ∶ w = ⟨(bj)j∈G, (𝛌j)j∈G , p, (pj)j∈G⟩ ∈ W⧵{w̄} & for all j ∈ G , either (i) λ�,j = 1
for some � ∈ N or (ii) bid�,j = 0 , for all � ∈ N} , the terminal states are the ones where
every good was sold or there is no bidder interested on purchasing it;

– L = {(w, �, (prj)j∈G) ∶ � ∈ N & w = ⟨(bj)j∈G, (𝛌j)j∈G, p, (pj)j∈G⟩ ∈ W & for all j ∈ G , and
all 0 ≤ prj < zmax − ��� such that either (i) prj = 0 & λ�,j = 0 or (ii) prj = p + ��� &
λ�,j ≠ 1 , for all � ∈ N or (iii) prj = pj & λ�,j = 1} , that is, agents can choose to raise their
bid or to give up of unsold goods, if an agent bought a good, she must keep her bid for
it;

– For every w = ⟨(bj)j∈G, (𝛌j)j∈G, p, (pj)j∈G⟩ in W and all d ∈ B
� , U is defined as follows:

if w ∈ T then U(w, d) = w . Otherwise, U(w, d) = ⟨(b�
j
)
j∈G

, (𝛌�
j
)
j∈G

 , p�, (𝛌j)j∈G⟩ , where
for every � ∈ N and j ∈ G each component is updated as follows,

 (i) b�
�,j
= 1 iff di ≠ 0 ; and b�

�,j
= 0 otherwise;

 (ii) λ�
�,j
= 1 iff b�

�,j
= 1 and for all � ∈ N⧵{i}, b�

�,j
≠ 1 ; and λ�

�,j
= 0 otherwise;

 (iii) p� = p + ���;
 (iv) p�

j
= pj + ��� iff λ�

r,j
= 0 for all � ∈ N ; and p�

j
= pj otherwise.

– For each w = ⟨(bj)j∈G, (𝛌j)j∈G, p, (pj)j∈G⟩ in W , � ∈ N and j ∈ G ,

Fig. 2 A Path in Msa , with 2 bidders and 2 goods

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 20 of 47

 (i) πY(w, trade�,j) = λ�,j;
 (ii) πY(w, price) = p;
 (iii) πY(w, pricej) = pj;
 (iv) πY(w, payment�) =

∑
j∈G pj ⋅ λ�,j

– For each w ∈ W , πΦ(w) = {soldj ∶ λ�,j = 1 & j ∈ G & � ∈ N} ∪ {bid�,j ∶ b�,j = 1 &
j ∈ G & � ∈ N}.

Hereafter, we assume an instance of Msa ∈ Msa and Σsa for some ����� ∈ I⪰0 and
���, �,� ∈ I≻0.

Example 1 Let Msa ∈ Msa , such that ����� = 1 and ��� = 1 . We assume there are two agents
in N , denoted by � and � , and two types of goods in G , denoted by � and � . Figure 2 illus-
trates a path in Msa , showing the value of the numerical variables and the propositions that
hold in each state. For convenience, we omit the numerical variables when their value is 0.
In state w0 , agents � and � bid for good � , but only agent � bids for good � . In state w1 , since
� is the only bidder for � , it is sold to her. Agent � cannot change her bid for � and � can no
longer bid for it. In w1 , only agent � accepts to increase her bid for � . In state w2 , � is sold to
� . Since all the goods were sold, this state is terminal.

5.2 Evaluating the protocol

Let us now evaluate the protocol. First, we show that Σsa is a sound representation of Msa.

Lemma 1 Msa is an ST-model and it is a model of Σsa.

Next, we show that no good can be bought by two different agents, i.e., given any two
agents and a good, one of them will have her trade equal to zero. When a good is sold, it
will still be sold in the next state.

Proposition 2 For each j ∈ G and each �, � ∈ N such that � ≠ � ,

1. Msa ⊧ trade�,j = 0 ∨ trade�,j = 0

2. Msa ⊧ soldj → ○soldj
3. Msa ⊧ ¬soldj → price = pricej

Each path in Msa reaches a terminal state, and thus the protocol satisfies the termination
condition. Furthermore, Msa satisfies playability, that is, there is always a legal action for
each agent to take. Thus, Σsa is well-formed over Msa.

Theorem 1 Σsa is a well-formed protocol over the ST-model Msa.

Proof Since Msa is a model of Σsa (see Lemma 1), we have to show that for each path δ in
Msa and each agent � ∈ N ,

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 21 of 47 20

1. δ is a complete path;
2. Msa ⊧

⋁
a∈B legal�(a).

Let us start by verifying Statement 1. Remind ����� ∈ I⪰0 and ��� ∈ I≻0 . Let δ be a path in
Msa . In δ[0] , πY(δ[0], price) = ����� . By the update function, for any stage t , if δ[t] ∉ T ,
then πY(δ[t + 1], price) = πY(δ[t], price) + ���.

For the sake of contradiction, let us assume δ is not complete. Let � ∈ N be an
agent. By the definition of L , (p1,… , p�) ∈ L(δ[t], �) , for all 0 ≤ pj < zmax − ��� and
j ∈ G , such that either (i) pj = 0 & πY(δ[t] , trade�,j) = 0 , or (ii) pj = price + ��� &
πY(δ[t], trader,j) = 0 for all r ∈ N , or (iii) pj = pricej & πY(δ[t], trader,j) = 0 . Since
πY(δ[t + 1], price) > πY(δ[t], price) , there will be a stage e ≥ 0 in δ , where the condi-
tion (ii) will not be true for any 0 ≤ pj < zmax − ��� . Thus, for each good j , it will be the
case that � bids 0 for it or the good was assigned to her (i.e., πY(δ[e], trade�,j) = 1). From
Rules 3 and 9 in Σsa , it follows that δ[e + 1] ∈ T . Thus, δ is a complete path, which is a
contradiction.

We now consider Statement 2. Given a path δ in Msa and a stage t in δ , we show that
there is a legal action for agent � in δ[t] . For each j ∈ G , let pj = 0 if πY(δ[t], trade�,j) = 1 .
Otherwise, let pj = πY(δ[t], pricej) . By L definition, we have (p1,… , p�) ∈ L(δ[t], �) . Thus,
Msa, δ, t ⊧

⋁
a∈B legal�(a).

From being a single-side auction where all agents are buyers, it follows that there is
no monetary deficit in Msa , but it is not strongly budget-balanced.

Proposition 3 Msa ⊧ ○wbb and Msa ̸⊧ ○sbb

The simultaneous ascending auction is only efficient on states preceding the terminal
one.

Proposition 4 Given a joint action � ∈ B
� ,

1. Msa ⊧ does(�) → ○ef(�)

2. Msa ⊧ does(�) → ○(terminal → ef(�))

The auction described by Msa is individually rational, since agents pay at most their
bids.

Theorem 2 Given a joint action � ∈ B
� , Msa ⊧ does(�) → ○ir(�)

Proof Given a path δ in Msa and a stage t , assume Msa, δ, t ⊧ does(�) for some � ∈ B
� . We con-

sider first the case where δ[t] ∉ T . Let � ∈ N be an agent and (p1,… , p�) denote the bid of �
in the joint action � . Let us consider the good j ∈ G . We denote by prj = πY(�[t + 1], pricej)
the price of good j in �[t + 1] and by � = (πY(�[t + 1], trade�,j�))j�∈G,�∈N the trade in �[t + 1] .
Recall function v�((p1,… , p�), �) =

∑
j∈G λ�,j ⋅ pj . Similarly, by Rule 10, we have that the

payment for agent � in �[t + 1] is πY(�[t + 1], payment�) =
∑

j∈G prj ⋅ λ�,j.
We have ��(δ, t) = (p1,… , p�) . Notice ���, pj ∈ I⪰0 by the definition of Ssa . According

with the action legality (Rule 6), the value of pj can be either zero, the price of j in �[t] or

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 22 of 47

the current price incremented by ��� . For each of the three cases, we show that the part of
� ’s payment corresponding to j is equal to the part of v�((p1,… , p�), �) corresponding to j:

• If pj = 0 , agent � chosen to not bid for good j . By Rules 5 and 9,
Msa, 𝛿, t + 1 ⊧ ¬bid�,j ∧ trade�,j = 0 . Thus, we have λ�,j ⋅ pj = prj ⋅ λ�,j = 0.

• If pj = πY(�[t], pricej) , by the definition of L , it must be the case that the good was already
sold to agent � , that is Msa, 𝛿, t ⊧ trade�,j = 1 ∧ soldj . Since good j is sold, Rule 6 ensure
other agents can only bid the value 0 for j , and thus, Msa, 𝛿, t + 1 ⊧

⋀
r∈N⧵{�} ¬bidr,j .

By Rules 4 and 9, we have Msa, 𝛿, t + 1 ⊧ bid�,j ∧ trade�,j = 1 . Since good j is sold, its
price in �[t] is the same as in �[t] (Rule 8), that is Msa, 𝛿, t ⊧ pricej = pj . Thus, we have
λ�,j ⋅ pj = prj ⋅ λ�,j = prj.

• Let prevprice = πY(�[t], price) . If pj = prevprice + ��� , then Msa, 𝛿, t + 1 ⊧ bid�,j .
From the legality definition, it should be the case that j is not sold, that is
Msa, 𝛿, t ⊧ ¬soldj ∧ pricej = sum(prevpricej, ���) . From Statement 3 of Proposition 2,
we have Msa, 𝛿, t ⊧ price = pricej . The value of trade�,j depends on the actions of other
agents in �[t] . From Rules 5 and 4, we have Msa, 𝛿, t + 1 ⊧ trade�,j = 0 ∨ trade�,j = 1 .
In the first case, λ�,j ⋅ pj = prj ⋅ λ�,j = 0 . Otherwise, the trade has the value 1 and
λ�,j ⋅ pj = prj ⋅ λ�,j = prj , since pj = prj = prevprice + ���.

It follows that
Msa, 𝛿, t + 1 ⊧ v�(β, (tradej)j∈G) = payment� and Msa, �, t + 1 ⊧ sub

Msa, 𝛿, t + 1 ⊧ sub(v�(β, (tradej)j∈G), payment�) ≥ 0 . Thus, Msa, 𝛿, t ⊧ ○ir(�).
If δ[t] ∈ T , the loop in the path definition ensures Msa, 𝛿, t ⊧ ○ir(�) if and only if

Msa, 𝛿, t ⊧ ir(�).

Under the assumption that each stage in Msa is a (direct) mechanism for which the legal-
ity set represents the agents’ preference spaces, the Msa is strategyproof. As it is only legal to
accept or decline to raise the current price for unsold goods (represented by bidding the value
0 or price + ���), there is no utility improvement if the agent accepts when she would prefer to
decline (and vice-versa). When a good is sold for an agent, there is only one value that is legal
to bid for the good bought, and thus the agent cannot strategize.

Proposition 5 Msa is strategyproof.

We conclude the section by discussing variants of non-combinatorial auctions. When the
number of good types is one (that is, |G| = 1), Σsa corresponds to the Japanese-English auc-
tion. For representing the standard variant of the English auction, one should define the legal-
ity rule such that agents are also allowed to bid any price above the current price. Further-
more, the price in the next state should be updated according to the highest bid in the current
one. The Dutch auction is also similar to Σsa . The key difference is that in the Dutch auction
the bidding value should be decreased at each round until at least one agent accepts to pay the
current price. As we saw in this section, with the ADL [FB] description of a given auction, we
are able to formally analyze it, both in relation to domain-specific properties, well-formedness
of its protocol and from a mechanism design perspective.

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 23 of 47 20

6 Representing combinatorial exchange

We now consider two protocols for combinatorial exchange: a one-shot protocol and a
multi-stage variant. We consider the setting with multiple goods and multiple copies
of each good. Agents hold an initial allocation of goods and can trade items with each
other. Remind a trade denotes the number of goods being exchanged among the agents
in a state. With allocation we refer to the number of goods the agents initially have.

Both protocols use the Tree-Based Bidding Language (TBBL) for defining its action
set. TBBL [41, 53] is a language designed for Combinatorial Exchange. It allows to
represent buyers and sellers demands in the same structure. We adopt TBBL as it is a
highly expressive and compact language. TBBL is general enough to represent any kind
of utility function (full expressivity), like OR-like bidding languages [9]. It is even more
expressive in the sense that it is able to mix preferences for buying and selling bundles
in the same framework. In relation to which kind of utility functions this framework is
able to represent concisely, [13] compares TBBL with XOR and OR* bidding languages
with this respect, and shows that TBBL is more compact, in the sense that there are
valuation functions that admit an exponentially larger representation in these latter lan-
guages than in TBBL.

6.1 Tree‑based bidding language

The bidding language we present in this section, denoted L���� , only differs from the origi-
nal definition of TBBL in the fact that we assume all language components and related
optimization problems are bounded by I.

Definition 17 A formula in L���� is called a bid-tree (or simply a bid) and is generated by
the following BNF:

where β̄ ∶∶= β̄, β ∣ β is a nonempty bid list, j ∈ G , z ∈ I , y ≤ x and y, x ∈ I⪰0.

β ∶∶= ⟨z, j, z⟩ ∣ ICx
y
(β̄, z)

Fig. 3 Examples of tree-bids β� and β� reported by agents � and � , resp

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 24 of 47

A bid in the form ⟨�, j, �⟩ is called a leaf and represents that the agent is willing to buy (or
sell) � units of the good j and pay (or receive) � . The interval-choose (IC) operator defines
a range on the number of child nodes that must be satisfied. Thus, a bid ICx

y
(β̄, �) indicates

the agent is willing to pay (or receive) � for the satisfaction of at least y and at most x of the
children nodes β̄ . The IC operator can express logical connectors. For instance, IC1

1
(β̄, �)

is equivalent to the XOR operator applied to the bids in the list β̄ . Let � = |β̄| (i.e., the list
size), IC�

�
(β̄, �) is equivalent to an AND operator and IC1

�
(β̄, �) is equivalent to an OR opera-

tor. For simplicity, we hereafter use the corresponding shortcuts XOR(β̄, �) , AND(β̄, �) and
OR(β̄, �).

For instance, in Fig. 3, agent � reports her willingness to buy 1 unit of � paying 2€ or 2
units of � for 5€ or to sell 1 unit of � receiving 2€. Agent � bids an exclusive disjunction
for either (i) to sell one unit of � and receive 3€; or (ii) to sell 2 units of � receiving 4€ and
to buy one unit of � paying 2€. The node representing the condition (ii) has an additional
value of 1.

Hereafter, we introduce some extra notations to characterize solutions and win-
ners. Let β� ∈ L���� be a bid-tree from bidder � , the set Node(β�) denotes all nodes
in the tree β� , that is, all its inner bids, including β� itself. Formally, if β� is in the
form ⟨�, j, �⟩ , then Node(β�) = {β�} . Otherwise, β� is in the form ICx

y
(β̄, ��) and

Node(β�) = {β�} ∪ Node(β̄1) ∪⋯ ∪ Node(β̄�) , where � = |β̄| and β̄k is the k-th element of β̄.
Let α ∈ Node(β�) , the set Child(α) ⊂ Node(β�) denotes the children of node α . If α is in

the form ICx
y
(β̄, �) , then Child(α) = {β̄1,… , β̄�} , where � = |β̄| . Otherwise, Child(α) = {} .

The leaves of a bid-tree β� are denoted by Leaf(β�) = {⟨�, j, �⟩ ∈ Node(β�) ∶ � ∈ I, � ∈ I &
j ∈ G} . The value specified at node α is denoted by b�(α) ∈ I . If α is in the form ⟨�, j, �⟩ ,
then b�(α) = � . Otherwise, α is in the form ICx

y
(β̄, ��) and b�(α) = �� . Finally, the quantity of

units of the good j specified at a leaf α = ⟨�, j, �⟩ is denoted by q(α, j) = � . For any other
j� ≠ j ∈ G , q(β, j�) = 0 . For any node α ∉ Leaf(β�) and j ∈ G , q(α, j) = 0 . If α is not a leaf
(i.e., α ∈ Node(β�)⧵Leaf(β�)), then it is in the form ICx

y
(β̄) and we denote by xβ and yβ the

interval-choose constraints x and y , respec.

6.1.1 Trade value and valid solutions

Given a bid-tree β� from agent � , the value of a trade � ∈ I�� is defined as the sum of the
values in all satisfied nodes, where the set of satisfied nodes is chosen to provide the maxi-
mal total value. Let sat�(α) ∈ {0, 1} denote whether a node α ∈ Node(β�) is satisfied and
sat� = {α ∶ sat�(α) = 1, for all α ∈ Node(β�)} denote the nodes satisfied in a solution.

A solution sat� is valid for a tree β� and trade λ� , written sat� ∈ valid(β�, λ�) if the following
rules R1 and R2 hold [41]:

Rule R1 ensures that no more and no less than the appropriate number of children are sat-
isfied for any node that is satisfied. Rule R2 requires that the total increase in quantity of
each item across all satisfied leaves is no greater than the total number of units traded.

(R1)
xβsat�(α) ≤

∑
γ∈Child(α)

sat�(γ) ≤ yβsat�(α)

∀α ∈ Node(β�)⧵Leaf(β�)

(R2)
∑

α∈Leaf(β�)

q�(α, j)sat�(α) ≤ λ�,j,∀j ∈ G

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 25 of 47 20

The total value of trade � ∈ I�� for agent � , given her bid β� , is defined as the solu-
tion to the following problem:

6.1.2 Winner determination

Given an auction signature, the bid-trees � = (β�)�∈N and an allocation X = (x�,j)j∈G,�∈N ,
where β� ∈ L���� denotes the bid from agent � ∈ N and x�,j ∈ I⪰0 represents how many
copies of j agent � initially holds.

Definition 18 The winner determination (WD) defines a pair (�, sat) obtained by the solu-
tion to the following mixed-integer program [41]:

where sat = (sat�)�∈N . Constraint C1 ensures that the trade � is feasible given X , that is, no
agent sells more items then she initially hold. Constraint C2 provides free disposal and
allows trades to sell more items than are purchased (but not vice-versa). Constraint C3
ensures that each trade for an agent � is valid given her bid-tree. Constraint C4 defines the
range for trades and node satisfaction. We denote by WD�(�,X) a function that obtains the
trade � in the solution WD(�,X) = (�, sat) . Similarly, WDλ�,j

(�,X) captures the number of
units of j traded by agent � in WD�(�,X).

If there are two or more solutions for WD(�,X) , the trade WD�(�,X) will be chosen
w.r.t. some total order among the elements of I�� . This tie-breaking order is omitted to
avoid overloading the notation. In the examples, we assume this order is compatible
with the Pareto dominance relation [67].

We denote noop =def ⟨0, j, 0⟩ as the action of not bidding, for some arbitrary j ∈ G.

Lemma 2 For each agent � ∈ N , each bid-tree β ∈ L���� and each � ∈ I�� , v�(noop, �) = 0.

Next, we illustrate how to represent protocols with TBBL in ADL [FB].

v�(β�, �) = max
sat�

∑
β∈Node(β�)

b�(β) ⋅ sat�(β)

s.t. rules R1,R2 hold

(C1)WD(�,X) ∶ max
�,sat

∑
�∈N

∑
β∈Node(β�)

b�(β) ⋅ sat�(β)

(C2)
s.t. λ�,j + x�,j ≥ 0,∀� ∈ N, j ∈ G∑

�∈N

λ�,j ≤ 0,∀j ∈ G

(C3)sat� ∈ valid(β�, λ�),∀� ∈ N

(C4)sat�(β) ∈ {0, 1}, λ�,j ∈ I

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 26 of 47

6.2 Vickrey–Clarke–Groves mechanism

Using TBBL to determinate the action set, let us now represent the Vickrey–Clarke–Groves
(VCG) mechanism in ADL [FB] . This mechanism chooses the outcome maximizing the
reported preferences [36]. Each agent’s payment corresponds to the damage she causes the
other players, that is, the difference in the social welfare of others with and without her par-
ticipation [52]. We detail the rules specification and the semantic representation. Then, we
revisit the conditions from MD and evaluate whether the protocol is well-formed.

To represent a VCG mechanism in the combinatorial exchange setting, we first describe
its signature, written Svcg = (N,G,B,Φ, Y, I,FB) , where N = {1,… , �} , G = {1,… ,�} ,
B ⊆ L���� , Φ = {bidRound} , Y = {trade�,j , payment� ∶ � ∈ N, j ∈ G} , and I ⊂ ℤ . Finally,
FB contains the functions v�(β, �) , WD�(�,X) and WDλ�,j

(�,X) described in the previous
section as well as the functions denoting basic mathematical operations (e.g., sum(z1, z2)).
We also assume FB contains the function WD−𝗋

�
∶ B

𝗇 × I𝗇𝗆 → I𝗇𝗆 for any two agents � and
� . WD−�

�
 is defined exactly like WD� except that the set N in the winner determination (see

Def. 18) is replaced by N⧵{�} and that the resulting trade for agent � and each good j is
equal to zero.

Each instance of a VCG is specific and is defined with respect to B , I and the constant
values �,� ∈ I≻0 (the size of N and G , resp.), and � = (�j)j∈G , where ��,j ∈ I⪰0 , for each
� ∈ N and j ∈ G . Each constant ��,j represents the number of units of j initially held by
agent � . The rules of VCG are represented by ADL [FB]-formulae as shown in Fig. 4.

In the initial state, the trade and payment are zero for every agent and good (Rule 1).
Any state that is not initial is terminal (Rule 2). The proposition bidRound helps to dis-
tinguish the initial state from the terminal state where no trade or payment were assigned
to any agent (e.g, when all agents bid noop). Once in a terminal state, players can only do
noop . Otherwise, they can bid any β ∈ B (Rules 3 and 4). After performing a joint bid, in
the next state each agent receives a trade for each good, which is assigned by the winner
determination over the initial allocation and their bids (Rule 5). After a joint bid in the
initial state, the payment for agent � will be the difference in the others’ welfare with and
without her participation (Rule 6). Finally, the proposition bidRound is always false in the
next state (Rule 7).

Notice we could as well represent winner determination explicitly in ADL [FB] by
capturing the trade maximizing the social welfare among all trades that satisfy con-
straints C1–C4. For instance, constraint C1 can be written in L���[FB]

 as

Fig. 4 Vickrey–Clarke–Groves mechanism represented by Σvcg

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 27 of 47 20

feasible((𝛌j)j∈G) =def

⋀
�∈N,j∈G sum(λ�,j, x�,j) ≥ 0 . We illustrate VCG with an indirect rep-

resentation of the winner determination for succincteness and clarity of Σvcg.

6.2.1 Representing as a model

Next, we address the model representation. Let Mvcg be the set of ST-models Mvcg
defined for any B ⊆ L���� , I ⊂ ℤ , and the constants �,� ∈ I≻0 and � = (�j)j∈G , where
��,j ∈ I⪰0 , for each � ∈ N and j ∈ G . Each Mvcg is defined as follows:

– W = {⟨b, (𝛌j)j∈G, p⟩ ∶ b ∈ {0 , 1} & p�, λ�,j ∈ I & � ∈ N & j ∈ G};
– w̄ = ⟨1, 0,… , 0, 0,… , 0⟩;
– T = W⧵{w̄};
– L = {(w, �, noop) ∶ � ∈ N & w ∈ T} ∪ {(w̄, �, β) ∶ β ∈ B & � ∈ N};
– U is defined as follows: for all w = ⟨b, (𝛌j)j∈G, p⟩ ∈ W and for all d ∈ B

�:

– If w = w̄ , then U(w, d) = ⟨0, (𝛌�
j
)
j∈G

, p�⟩⟩ , where each component is updated as fol-
lows, for each � ∈ N and j ∈ G . The number of units j traded for agent � is given by the
winner determination: λ�

�,j
= WDλ�,j

(d,�) . The payment for � is the difference between
the social welfare of others with and without � ’s participation:

– Otherwise, U(w, d) = w.

– For each w ∈ W , � ∈ N and j ∈ G , πY(w , trade�,j) = λ�,j ; πY(w, payment�) = p� ; and
πΦ(w) = {bidRound ∶ b = 1}.

Hereafter, we assume an instance of Mvcg ∈ Mvcg and Σvcg for some B ⊆ L���� , I ⊂ ℤ ,
�,� ∈ I≻0 and ��,j ∈ I⪰0 , where � ∈ N , j ∈ G.

p�
�
=

∑
�∈N⧵{�}

v�(d�,WD−�
�
(d,�)) −

∑
�∈N⧵{�}

v�(d�,WD�(d,�))

Fig. 5 A Path in Mvcg , with 2 bidders and 2 goods

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 28 of 47

Example 2 Let Mvcg ∈ Mvcg such that the sets of agents and goods are the same from
Example 1 and the initial allocation is as follows: ��,� = 0 , ��,� = 1 , ��,� = 2 and ��,� = 0
(i.e., at the beginning of the auction, agent � has 1 unit of � and agent � has 2 units of �).
Figure 5 illustrates a path in Mvcg , where the agents perform the bids previously introduced
in Fig. 3. In state w0 , all the payments and trades are zero. Their joint bid leads to state w1 ,
where the trade obtained by the winner determination is (2,−1,−2, 1) . The tie-breaking
ensures that the trade is unique. Thus, in w1 agent � has 2 units of � and agent � has 1 unit of
� . Since w1 is terminal, the agents can only bid noop.

6.2.2 Evaluating the protocol

Let us now evaluate the protocol representing a VCG mechanism. First, Lemma 3 shows
that Mvcg is a sound representation of Σvcg.

Lemma 3 Mvcg is an ST-model and it is a model of Σvcg.

Next, we show Σvcg is a well-formed protocol, that is, each path in Mvcg reaches a ter-
minal state and there is a legal action for each agent in all reachable states.

Theorem 3 Σvcg is a well-formed protocol over the ST-model Mvcg.

Proof Since Mvcg is a model of Σvcg (see Lemma 3), we have to show that for each path δ in
Mvcg and each agent � ∈ N ,

1. δ is a complete path;
2. Mvcg ⊧

⋁
a∈B legal�(a).

Given a path δ in Mvcg and a stage t of δ . Let us verify Statement 1. We show that
Mvcg ⊧ initial → ○terminal . Assume Mvcg, δ, t ⊧ initial . Then, δ[t] = w̄ . By the path defi-
nition, for any j ≥ 1 , δ[j] ≠ w̄ . By the construction of T , we have T = W⧵{w̄} . Thus,
Mvcg, δ, t + 1 ⊧ terminal and Mvcg, δ, t ⊧ ○terminal.

Statement 2 is straightforward from Rules 3 and 4 from Σvcg.

The next lemma shows that if an agent bids noop in an initial state, her payment will
be zero. Furthermore, if the payment is zero in a terminal state, it will be zero in the
succeeding state.

Lemma 4 For each agent � ∈ N , Mvcg ⊧ initial ∧ does𝗂(noop) → ○payment𝗂 =

0 ∧
⋀

j∈G trade�,j ≥ 0

We then focus on properties from Mechanism Design, that is budget balance, indi-
vidual rationality, efficiency and strategyprofness. These results for VCG have already
been proved [36, 52] and here we show how they are rephrased and verified with ADL
[FB] . First, due to the VCG payments, Mvcg is not budget balanced.

Proposition 6 Mvcg ̸⊧ ○sbb and Mvcg ̸⊧ ○wbb.

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 29 of 47 20

After the agents report their preferences, Mvcg chooses the trade maximizing the social
welfare (i.e., the cumulative of values for the trade given the agents’ bids).

Proposition 7 Given a joint action � ∈ B
� , Mvcg ⊧ does(�) → ○ef(�)

The VCG mechanism is individually rational when the agents’ preferences over trades
are non-negative [52].

Proposition 8 Given a joint action � ∈ B
� , if ��(�) ≥ 0 for all � ∈ I�� , �� ∈ V� and � ∈ N ,

then Mvcg ⊧ does(�) → ○ir(�).

The VCG mechanism is also strategyproof [52], because the bid of an agent does not
influence her payment.

Theorem 4 Mvcg is strategyproof.

Proof Given a path � in Mvcg and a stage t ≥ 0 in � , such that L(�[t], �) ≈� V� . Since
Mvcg ⊧ initial → ○terminal and δ[t + 1] = δ[t] whenever δ[t] ∈ T , it suffices to show con-
sider the case where t = 0.

Let � ∈
∏

�∈N V� be a preference profile and �
�
 denote a path such that �[0] = �

�
[0] and

�(�
�
, 0) = �

�
 . We let ��

�
∈ V� denote a preference of agent � , �′ = (��

�
, �−�) and �

�′ be a path
such that �[0] = �

�′ [0] , ��(��′ , 0) = β��
�
 and ��(��′ , 0) = β�� for each agent � ≠ � . That is,

Mvcg, 𝛿�, 0 ⊧ does(�
�
) and Mvcg, 𝛿�′ , 0 ⊧ does�(β𝜗�

�
) ∧

⋀
�∈N⧵{�} does�(β𝜗�).

Let u�� ∈ I such that Mvcg, 𝛿�, 0 ⊧ ○sub(v�(β𝜗� , (tradej)j∈G) , payment�) = u�� holds. As we
saw in the proof of Proposition 8, agent � ’s utility in �

�
[1] is simply

where 𝛌 = (𝛌j)j∈G denote the trade performed in �
�
[1] with λ�,j = πY(��[1] ,

trade) = WDλ�,j
(�,�) for each good j and agent � , and �−� = WD−�

�
(�,�) is the trade that

would happen if � did not participate in the auction.
Notice that the bid of � has no impact in

∑
�∈N⧵{�} v�(β�, �

−�) by the definition of WD−�
�

 .
Thus, it means that the bid maximizing � ’s utility is the one that maximize

which, by definition, is the case when she bids truthfully. That is, u�� is the maximum utility
� obtains in the succeeding stages of all paths starting in �[0] . Thus,
Mvcg, 𝛿�, 0 ⊧ ○sub(v�(β𝜗� , (tradej)j∈G) , payment�) = u�� and for any �′ ,
Mvcg, 𝛿�� , 0 ⊧ ○sub(v�(β𝜗� , (tradej)j∈G), payment�) ≤ u𝜗�.

We conclude the section by discussing variants of combinatorial exchange. In combina-
torial auctions, there are two types of participants: buyers and sellers. The main difference
to a combinatorial exchange is that buyers can only demand for non-negative quantities and
prices while sellers can only ask for non-positive quantities and prices. These restrictions
can be easily encoded in ADL [FB] by including a proposition for denoting the partici-
pants’ types and defining legality rules based on their types. In Sect. 5, we exemplify the

u�� =
∑
�∈N

v�(β�� , �) −
∑

�∈N⧵{�}

v�(β�� , �
−�)

∑
�∈N

v�(β�, �)

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 30 of 47

representation of a single-sided auction. Restricting the number of participants with the
type buyer (or similarly seller) to one is an alternative way of encoding single-sided auc-
tions. Multi-unit auctions with single items can be represented for different market struc-
tures (e.g., the single-sided setting) by restricting the number of good types to one (that is,
|G| = 1). In the next section, we show how to represent an iterative protocol in ADL [FB]
using a slightly different version of TBBL.

6.3 Iterative combinatorial exchange

We conclude the section on combinatorial exchange by considering an iterative protocol,
denoted ICE. The protocol is a simplified and first-price version of the mechanism pre-
sented in [53]. In this auction, bidders report an interval of prices they are willing to pay
(or receive) for a trade. For ensuring termination, agents need to refine their bids, that is, to
shrink the value interval reported in their previous bid. For expressing such conditions, we
consider the TBBL extension with value bounds, denoted L����+ . In this variant proposed
by Lubin et al. [41], agents report a pair of valuation bounds in each node of their bid. The
syntax of L����+ is obtained by replacing the value � of a leaf node ⟨�, j, �⟩ by the lower
bound � ∈ I and upper bound � ∈ I with � ≤ � . The bounds � and � denote the minimum
and maximum price the bidder considers acceptable to pay (or receive) for � units of j ,
respectively. Bid nodes with IC operators are similarly updated to include value bounds.

Given an agent � ∈ N , a bid β ∈ L����+ and a trade λ ∈ I�� , the functions v
�
(β, λ) , v�(β, λ) ,

b
�
(β) , b�(β) are defined with the same semantics from the functions v� and b� introduced in

Sect. 6. Since the lower bound is no greater than the upper bound, we have that b
�
(β) ≤ b�(β)

and v
�
(β, λ) ≤ v�(β, λ) . For representing this ICE protocol with ���[FB] , we first fix a con-

stant � ∈ [0, 1] for estimating the weight of the bounds in the value of a bid given a trade (i.e.,
function v�). If � = 1 , the bid value is based only on its lower bounds. Likewise, the upper
bounds determinate the bid value when � = 0 . Next, we describe the auction signature, writ-
ten Sice = (N,G,B, {}, Y, I,FB) , where N = {1,… , �} , G = {1,… ,�} , B ⊆ L����+ ,
Y = {trade�,j , payment� ∶ � ∈ N, j ∈ G} , and I ⊂ ℤ . If ⟨�, j, �, �⟩ is a bid in B , we assume
⟨�, j, ��, ��⟩ ∈ B for any �′ ≥ � and �′ ≤ � such that �′ ≤ �

′ . Similarly, if ICx
y
(β̄, �, �) ∈ B , we

assume ICx
y
(β̄, ��, �

�
) ∈ B for any �′ ≥ � and �′ ≤ � such that �′ ≤ �

′ . FB contains the basic
mathematical operations as well as the following functions: v𝗂 ∶ B × I𝗇𝗆 → I ,
WD�

λ𝗂,j
∶ B

𝗇 × I𝗇𝗆 → I , eq ∶ B × B → [0, 1] and uncert ∶ B → I . We next describe each of
those functions.

Given an agent � , the value of bid β ∈ L����+ given a trade � ∈ I�� is defined as follows:

Notice the rounding of the terms6 ensure the result will not be smaller than the lower bound
neither greater than the upper bound.

Assuming a joint bid � ∈ L
�
����+

 and an initial allocation X ∈ I��
⪰0

 , function WD�

λ�,j
(�,X)

is defined exactly as function WDλ�,j
(�,X) defined in Sect. 6.1.2, except that the winner

determination is replaced by the following:

v�(β, �) =
⌈
� ⋅ v

�
(β, �)

⌉
+
⌊
(1 − �) ⋅ v�(β, �)

⌋

6 We denote by ⌊x⌋ the greatest integer less than or equal to x ∈ ℝ and ⌈x⌉ the least integer greater than or
equal to x ∈ ℝ.

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 31 of 47 20

Given two bids β, γ ∈ L����+ , eq(β, γ) denotes whether they are equivalent on structure, in
the sense of differing only on their valuation bounds, and it is defined as follows:

• If β is in the form ⟨�, j, �, �⟩ and γ = ⟨�, j, ��, ��⟩ for some ��, �� ∈ I , then eq(β, γ) = 1;
• If β is in the form ICx

y
(β̄, �, �) , γ = ICx

y
(β̄�, ��, �

�
) for some ��, �� ∈ I and each β̄k ∽ β̄�

k
 , for

each 0 < ki ≤ |β̄| , then eq(β, γ) = 1;
• Otherwise, eq(β, γ) = 0.

The difference among the bounds of a node represents its uncertainty. That is, the
higher the bound difference, the less precise the node is about the agents’ prefer-
ence. The actual willingness-to-pay (or receive), is unknown except when the lower
and upper bounds are the same [53]. We define function uncert(⟨�, j, �, �⟩) = � − � and
uncert(ICx

y
(β̄, �, �)) = � − � +

∑
0<k≤�β̄� uncert(β̄k) for capturing the uncertainty of bid in

L����+.
Each instance of ICE is specific and is defined with respect to B , I and the constant values

� ∈ [0, 1] , �,� ∈ I≻0 (the size of N and G , resp.), and � = (�j)j∈G , where ��,j ∈ I⪰0 , for each
� ∈ N and j ∈ G . The rules of a ICE are represented by ADL [FB]-formulae as shown in Fig. 6.

In the initial state, there is no payment or trade for any agent (Rule 1) and agents can
report any bid (Rule 2). After performing a bid, an agent is allowed to report any bid that
has the same structure and less uncertainty than her last bid. When the bid has no uncer-
tainty (i.e., for each node, its lower and upper bounds are the same), the agent must repeat
her bid in the next turn (Rules 3 and 4). When there is no uncertainty in all bids performed
in a state, the next state is terminal (Rule 5). The agents pay their reported values accord-
ing to their trade in a given state (Rule 6). Finally, the agents’ trades are computed in each
round using the winner determination given their bids and their initial allocation (Rule 7).

6.3.1 Representing as a model

Next, we address the model representation. Let Mice be the set of ST-models Mice defined
for any B ⊆ L����+ , I ⊂ ℤ , and the constants �,� ∈ I≻0 and � = (�j)j∈G , where ��,j ∈ I⪰0 ,
for each � ∈ N and j ∈ G . Each Mice is defined as follows:

WD�(�,X) ∶ argmax
�,sat

∑
�∈N

∑
β∈Node(β�)

(
⌈
�b

�
(β) ⋅ sat�(β)

⌉
+
⌊
(1 − �)b�(β) ⋅ sat�(β)

⌋
)

s.t. Constraints C1 − C4 hold (see Def. 18)

Fig. 6 An Iterative Combinatorial Exchange represented by Σ

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 32 of 47

• W = {⟨(𝛌j)j∈G, p, lastbid⟩ ∶ lastbid� ∈ B & p�, λ�,j ∈ I & � ∈ N & j ∈ G};
• w̄ = ⟨0,… , 0, 0,… , 0, noop,… , noop⟩;
• T = {⟨(𝛌j)j∈G, p, lastbid⟩ ∶ uncert(lastbid�) = 0 & lastbid� ∈ B & p�, λ�,j ∈ I & � ∈ N &

j ∈ G}};
• L = {(w̄, �, β) ∶ � ∈ N & β ∈ B} ∪ {(⟨(𝛌j)j∈G, p, lastbid⟩, �, β) ∶ eq(β, lastbid�) &

uncert(β) < uncert(lastbid�) & β, lastbid� ∈ B & p�, λ�,j ∈ I & �, � ∈ N & j ∈ G};
• U is defined as follows: for all w = ⟨(𝛌j)j∈G, p, lastbid⟩ ∈ W and for all d ∈ B

�:

– If w ∉ T , then U(w, d) = ⟨(𝛌�
j
)
j∈G

, p�, d⟩⟩ , where each component is updated as
follows, for each � ∈ N and j ∈ G : λ�

�,j
= WD�

λ�,j
(d,�) and p�

�
= v�(d�, (𝛌

�

j
)
j∈G

).
– Otherwise, U(w, d) = w.

• For each w ∈ W , � ∈ N and j ∈ G , the valuation of numerical variables is as follows:
πY(w , trade�,j) = λ�,j and πY(w, payment�) = p�.

Hereafter, we assume an instance of Mice ∈ Mice and Σice for some B ⊆ L����+ , I ⊂ ℤ ,
�,� ∈ I≻0 and ��,j ∈ I⪰0 , where � ∈ N , j ∈ G.

Example 3 Let Mice ∈ Mice , where (i) there are only two agents, denoted by � and � , (ii)
there is only one good type, denoted by � , and (iii) ��,� = 1 and ��,� = 0 , i.e, agent � holds
1 unit of � and agent � has none. Figure 5 illustrates a path in Mice . In the initial state w0 ,
agent � says she wants to sell � for a price between 10€ and 20€ and agent � reports her
willingness to buy it for a price between 15€ and 25€. In state w1 , the agents are informed
of the provisional trade and payments. Agent � changes her bid to specify she is willing to
receive exactly 15€ for selling � . By her turn, agent � specifies a value range 18€ to 20€ for
buying � . In w2 , only � can change her bid, since there is no uncertainty in � ’s bid. Then, �
reports her willingness to pay exactly 18€. State w3 is terminal because there was no uncer-
tainty in the bids reported on w2 . The good is traded and the agents pay (and receive) their
asking prices.

6.3.2 Evaluating the protocol

Now we focus on the evaluation of Σice and Mice . First, Lemma 5 shows the soundness of
Σice over Mice.

Lemma 5 Mice is an ST-model and it is a model of Σ.

Since Mice is playable and terminates, Σice is well-formed.

Theorem 5 Σice is a well-formed protocol over Mice.

Proof Since Mice is a model of Σice , we show that for each path δ in Mice , each stage t ≥ 0 in
� and each agent � ∈ N ,

1. δ is a complete path;
2. Mice, 𝛿, t ⊧

⋁
β∈B legal�(β).

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 33 of 47 20

First, we consider Statement 2. By the definition of L����+ , uncert(β) ≥ 0 for each bid
β ∈ B . According to the legality definition, uncert(𝜃�(𝛿, t)) < uncert(𝜃�(𝛿, t − 1)) or
uncert(��(�, t)) = 0 . That is, either the bid reported by � in �[t] has less uncertainty than
the one she reported in �[t − 1] or it has no uncertainty. In the case of no uncertainty,
��(�, t) = ��(�, e) for each e ≥ t . Since the uncertainty decreases in each turn until being
equal to zero, there exists a stage e ≥ 0 such that Mice, 𝛿, e ⊧ does�(β) ∧ uncert(β) = 0
for each agent � . By Rule 5, it follows that the next stage in � is terminal, that is,
Mice, 𝛿, e ⊧ ○terminal.

We now verify Statement 2. If 𝛿[t] = w̄ , then Mice, 𝛿, t ⊧ legal�(β) for each β ∈ B
(Rule 2). Otherwise, t > 0 and Mice, 𝛿, t − 1 ⊧ does�(β) for some β ∈ B . By the definition
of L����+ , uncert(β) ≥ 0 . If uncert(β) = 0 , then Mice, 𝛿, t ⊧ legal�(β) (Rule 4). Finally,
if uncert(β) < 0 , by the definition of B , there must exist a bid γ such that eq(β, γ) and
uncert(γ) < uncert(β) . According to Rule 3 of Σice , Mice, 𝛿, t ⊧ legal�(γ).

The cumulative of payments cannot be smaller than zero. However the auction may
have positive transfers.

Proposition 9 Mice ̸⊧ ○sbb and Mice ⊧ ○wbb.

ICE is individually rational, since agents pay their reported preferences.

Proposition 10 Given a joint action � ∈ B
� , Mice ⊧ does(�) → ○ir(�).

The protocol is efficient since the winner determination maximizes the social welfare
given the reported bids.

Proposition 11 Given a joint action � ∈ B
� , Mice ⊧ does(�) → ○ef(�)

Since the players’ bids influence their payments, they can manipulate the price and the
auction is not strategyproof.

Proposition 12 Mice is not strategyproof.

The automated verification of strategyproofness and termination requires meta-reason-
ing over the possible paths of a ST-Model. However, for a number properties (such as effi-
ciency and individual rationality), the problem of analysing a stage as a direct mechanism
boils down to model-checking ADL [FB]-formulae.

7 Model checking

Now we examine the complexity of the problem of deciding whether an ADL [FB] formula
is true with respect to a model, a path and a stage in the path.

Definition 19 The model checking problem for ADL [FB] is the following: Given an ST-
Model M , a path δ in M , a stage t ≥ 0 in δ and a formula � ∈ ���[FB] , determine whether
M, δ, t ⊧ 𝜑 or not.

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 34 of 47

In the next sections, we show that the model checking problem for ADL [FB] is decidable
in polynomial-time deterministic Turing machine (PTIME) when functions in FB can be com-
puted in polynomial time.

7.1 Upper bound

Let � ∈ be a formula and M be an ST-Model over S . We say that � is a subformula of � if
either (i) � = � ; (ii) � is of the form ¬� , or ○� and � is a subformula of � ; or (iii) � is of the
form � ∧ �� and � is a subformula of either � or �′ . We denote Subformula(�) as the set of all
subformulae of �.

Theorem 6 Assuming that functions in FB can be computed in polynomial time, the model
checking problem for ADL [FB] is in PTIME.

Proof Assume the functions in FB can be computed in polynomial time. Algorithm mod-
elCheck works in the following way: first it gets all subformulae of � and orders them in
a vector S by ascending length. Thus, S(|�|) = � , i.e., the position |�| in S corresponds to
the formula � itself, and if �i is a subformula of �j then i < j . An induction on S labels each
subformula �i depending on whether or not �i is true in �[j] under M . Since functions in FB
can be computed in polynomial time, if �i does not have any subformula, its truth value is
obtained directly from the model. Since S is ordered by formulae length, if �i is either of
the form �� ∧ ��� or ¬�� the algorithm labels �i according to the label assigned to �′ and/or
�′′ . If �i is of the form ○�′ then its label is recursively defined according to �′ truth value
in the stage t + 1 . As Algorithm modelCheck visits each subformula at most once, and the
number of subformulas is not greater than the size of � , the algorithm can clearly be imple-
mented in a polynomial-time deterministic Turing machine with PTIME.

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 35 of 47 20

7.2 Lower bound

Now let us characterize a lower bound of the complexity of model-checking ADL
[FB] . To do so, we reduce the model checking problem for GDL, which is known to be
PTIME (consequence of Lemma 2 by Jiang et al. [29]).

Theorem 7 The model checking problem for ADL [FB] is PTIME.

Proof First, we recall GDL definitions. By convenience, we refer to the GDL formaliza-
tion presented in [27]. Let SGDL = (N,B,Φ) be a game signature, where Φ is a proposi-
tional set, N is a set of agents, and B is the action set. Let MGDL = (W, w̄, T, L, U, g, πΦ)
be a GDL model over SGDL , where W , w̄ , T , L and πΦ are defined in the same way as in
a ADL [FB] model (see Definition 2), U ∶ W × B

|N| → W⧵{w̄} is the update function and
g ∶ N → 2W is the goal function.

A path δ in MGDL is an infinite sequence of states and joint actions, defined in the same
way as Definition 3. Let δ be a path in MGDL , a formula � in LGDL is defined by the follow-
ing BNF:

where p ∈ Φ , � ∈ N and a ∈ B.
For any stage t ≥ 0 and formula � ∈ LGDL , the semantics of LGDL are similar to Defini-

tion 5, except by the following case: MGDL, δ, t ⊧ wins(�) iff δ[t] ∈ g(�).
Given a stage t > 0 and a formula � ∈ LGDL , we show how to construct an ADL [FB]

model M���[FB]
 , such that M, 𝛿, t ⊧ 𝜑 iff MGDL, δ, t ⊧ 𝜑.

Let S���[FB]
= (N, �,A,Φ�

, �, [0, 0], �) be the auction signature,
where Φ� = Φ ∪ {wins(�) ∶ � ∈ N} . We define the ADL [FB] model
M���[FB]

= (W, w̄, T, L, U, π�
Φ
, �) , where W, w̄, T and U are the same as in

MGDL . The valuation function for state propositions is defined as follows:
π�
Φ
(w) = πΦ(w) ∪ {wins(�) ∶ w ∈ g(�) & � ∈ N} , for each w ∈ W.
Since U(w, d) ∈ W , for each w ∈ W and d ∈ B

|N| , we have that U is an update function
in accordance with Definition 2. Furthermore, if δ is a path in MGDL then it is a path in
M���[FB]

 . Since {wins(�) ∶ � ∈ N} ⊆ Φ� , we have that LGDL ⊆ L���[FB]
.

Given � ∈ LGDL , if � is not in the form wins(�) , then it is straightforward that
MGDL, 𝛿, t ⊧ 𝜑 iff M���[FB]

, 𝛿, t ⊧ 𝜑 . Now we consider the case were � ∈ LGDL is
in the form wins(�) , for some � ∈ N . Assume MGDL, 𝛿, t ⊧ wins(�) iff �[t] ∈ g(�) iff
wins(�) ∈ Φ�(�[t]) iff M���[FB]

, 𝛿, t ⊧ wins(�).

Theorem 7 shows that Algorithm modelCheck is optimal when the functions in FB
can be computed in polynomial time. As for GDL, the ST-model may have exponential
size.

Since Algorithm modelCheck calls the functions in FB in a polynomial number of
times (according to on the formula length), the complexity of computing functions in
FB will affect its complexity. For instance, the winner determination problem for com-
binatorial auctions is NP-hard, which is then the complexity of computing the winner
determination functions for TBBL [41]. In that case, the model checking problem for
ADL [FB] is in ΔP

2
 , since modelCheck consults a NP-oracle a polynomial number of

times.

� ∶∶= p ∣ initial ∣ terminal ∣ legal�(a) ∣ wins(�) ∣ does�(a) ∣ ¬� ∣ � ∧ � ∣ ○�

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 36 of 47

8 Conclusion

In this paper, we have presented ADL [FB] , a unified framework for representing auction
protocols. Our work is at the frontier of auction theory and knowledge representation.
We illustrated the usefulness of our approach by showing how to represent a number of
representative auctions, which include features from single and multi-stage protocols,
multiple items, multiple copies of those items and exchange protocols (which generalize
double-sided auctions).

ADL [FB] provides tools for automated verification of properties from mechanism
design. We showed how stages in an ADL [FB] ST-model may represent direct mecha-
nisms and be evaluated as such. The majority of properties that we considered (noting
that at the evaluating a stage in an ST-model essentially comes down to model-checking
ADL [FB]-formulae) can be checked in PTIME when the functions in FB can be com-
puted in polynomial time. Thus, ADL [FB] enables reasoning about important aspects
for designing and playing auctions, while having a reasonable complexity cost.

The main limitation of ADL [FB] is due to having a semantics based on fixed paths,
that is, non-alternating executions of an auction. This means it is not possible to encode
through ADL [FB]-formulae conditions that compare the effect of different strategic
behaviour. An example of such condition is strategyproofness, where one should con-
trast the agents’ utility after truthfully reporting her preference and after lying. Here,
we demonstrated the use of meta-reasoning over the state-transition model for compar-
ing alternative executions of an auction. Furthermore, evaluating indirect mechanisms
requires capturing the terminal outcomes (that is, the final trades and payments) in stra-
tegic equilibrium. Complex solution concepts, such as Nash and dominant strategy equi-
librium, cannot be encoded through ADL [FB]-formulae. Logics focused on strategic
reasoning are more suitable for considering this problem (e.g., ATL with Strategy Con-
texts [10] and Strategy Logic (SL) [14]). Finding a balance between expressivity and
complexity is an open question, as such expressive languages face decidability issues
and high complexity for model-checking (e.g., the satisfiability problem of SL is unde-
cidable and its complexity for model-checking is Non Elementary).

ADL [FB] definitely puts the emphasis on the auctioneer and mechanism designer.
Our next direction is to design a ADL [FB]-based General Auction Player (GAP) that
can interpret and reason about the rules of an auction-based market. The key difference,
when the player perspective is considered, is the epistemic and strategic aspects: players
have to reason about other players’ behavior and may have imperfect information. Addi-
tionally, search optimization techniques used for GGP (see, for instance [20, 68]) may
be adapted for considering utility optimization in auctions. Another future direction is
to explore the synthesis of state-transition models based on a ADL [FB]-description of
an auction. This problem entails considering the satisfiability problem for the language.

Last but not least, we intend to develop the axiomatic system for ADL [FB] and prove
its soundness and completeness with respect to the semantics based on the state transi-
tion model. It would require a combination of techniques used for Epistemic GDL [28],
first-order logic with dependent types [58] and finite algebras [11].

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 37 of 47 20

Appendix A: Technical Proof

Proposition 1 Let M be an ST-model, for each agent � ∈ N and each action β ∈ B ,

1. M ⊧ does𝗂(β) → ¬does𝗂(β
�) , for any β� ∈ B such that β� ≠ β

2. M ⊧
⋁

β�∈B does�(β
�)

3. M ⊧ does𝗂(β) → legal𝗂(β)

4. M ⊧ ¬○ initial

5. M ⊧ terminal ∧ 𝜑 → ○𝜑 , for any � ∈ L���[FB]

6. M ⊧ initial → ¬terminal

Proof Let M be an ST-model, δ be a path, t ≥ 0 be an stage in δ , � ∈ N be an agent and
β ∈ B be an action. For Statement 1, assume M, δ, t ⊧ does�(β) iff θ�(δ, t) = β . Then for any
β� ∈ B such that β� ≠ β , θ�(δ, t) ≠ β� and M, δ, t ⊧ ¬does�(β

�).
Statement 2 follows from the definition of δ , since ��(δ, t) ∈ L(�[t], �) and L(𝛿[t], �) ⊆ B ,

we have M, 𝛿, t ⊧
⋁

β�∈B does�(β
�).

Let us verify Statement 3. Assume M, δ, t ⊧ does�(β) , then θ�(δ, t) = β and by the defini-
tion of δ , β ∈ L(δ[t], �) and M, δ, t ⊧ legal�(β).

We consider Statement 4. By the path definition, for all t > 0 , 𝛿[t] ≠ w̄ . Thus,
𝛿[t + 1] ≠ w̄ and M, 𝛿, t + 1 ⊧ ¬initial . It follows that M, 𝛿, t ⊧ ¬○ initial.

We now verify Statement 5. Assume M ⊧ terminal ∧ 𝜑 , for some � ∈ L���[FB]
 . Then

δ[t] ∈ T and �[t + 1] = �[t] . Thus, M, 𝛿, t + 1 ⊧ 𝜑 and M, 𝛿, t ⊧ ○𝜑.
Finally, we consider Statement 6. Assume for the sake of contradiction that

M, δ, t ⊧ initial ∧ terminal . Then, δ[t] = w̄ and δ[t] ∈ T . By the path definition, it should
be the case that t = 0 . Due to the loop on terminal states, it follows that w0 = w1 , which is a
contradiction with the path requirement wt′ ≠ w0 , for any t′ ≥ 1.

Lemma 1 Msa is an ST-model and it is a model of Σsa.

Proof (Sketch) It is routine to check that Msa is actually an ST-model. Given a path
δ , any stage t of δ in Msa , we need to show that Msa, δ, t ⊧ 𝜑 , for each � ∈ Σsa . Let us
verify Rule 1. Assume Msa, δ, t ⊧ initial iff δ[t] = w̄ . By the definition of w̄ , πΦ and πY ,
we have πY(w̄, price) = ����� , πY(w̄, pricej) = ����� , bid�,j ∉ πΦ(w̄) and trade�,j = 0 , for
all � ∈ N and j ∈ G . Thus, Msa, δ, t ⊧ initial iff Msa, δ, t ⊧ price = ����� ∧

⋀
j∈G(pricej =

����� ∧
⋀

�∈N(¬bid�,j ∧ trade�,j = 0)).
Now we verify Rule 2. Let j ∈ G be a good type. Assume Msa, δ, t ⊧ soldj iff

soldj ∈ πΦ(δ[t]) iff πY(δ[t], trade�,j) = 1 for some j ∈ G iff Msa, δ, t ⊧
⋁

�∈N trade�,j = 1.
Next, we consider Rule 3. Assume Msa, δ, t ⊧ terminal iff δ[t] ≠ w̄ and for all j ∈ G ,

either Msa, δ, t ⊧ trader,j = 1 for some � ∈ N or Msa, δ, t ⊧ ¬bid�,j for all � ∈ N . By Rule 2,
Msa, δ, t ⊧ terminal iff Msa, δ, t ⊧ ¬initial ∧

⋀
j∈G(soldj ∨

⋀
j∈G ¬bid�,j).

Now we verify Rule 9. Let � ∈ N and j ∈ G . Assume
Msa, δ, t ⊧ (does�(p1,… , p�) ∧ pj ≠ 0) ∨ (bid�,j ∧ terminal) , for some p1,… , p� ∈ I⪰0 . We
next prove for the two cases. First, assume Msa, δ, t ⊧ bid�,j ∧ terminal . Then bid�,j ∈ πΦ(δ[t])
and δ[t] ∈ T . By the update function, δ[t + 1] = δ[t] and Msa, δ, t + 1 ⊧ bid�,j , i.e.,
Msa, δ, t ⊧ ○bid�,j . In the second case, assume does�(p1,… , p�) ∧ pj ≠ 0 . By the update
function, bid�,j ∈ πΦ(δ[t + 1]) and thus Msa, δ, t ⊧ ○bid�,j.

The remaining rules are verified in a similar way.

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 38 of 47

Proposition 2 For each j ∈ G and each �, � ∈ N such that � ≠ � ,

1. Msa ⊧ trade�,j = 0 ∨ trade�,j = 0

2. Msa ⊧ soldj → ○soldj
3. Msa ⊧ ¬soldj → price = pricej

Proof Given a path δ in Msa , any stage t of δ and a good type j ∈ G , let �, � ∈ N , such that
� ≠ � . Let us consider Statement 1. If δ[t] = w̄ , then Msa, δ, t ⊧ trade�,j = 0 ∧ trade�,j = 0
(see Rule 1). Otherwise, by the path definition, δ[j] = U(δ[t − 1], θ(δ, t − 1)) . Let us sup-
pose for the sake of contradiction that Msa, δ, t ̸⊧ trade�,j = 0 ∨ trade�,j = 0 . Since W con-
struction defines trade�,j, trade�,j ∈ {0, 1} , we have Msa, δ, t ⊧ trade�,j = 1 ∧ trade�,j = 1 .
Thus, Msa, δ, t − 1 ⊧ ○trade�,j . By Rule 4, Msa, δ, t − 1 ⊧ ○(bid�,j ∧

⋀
�∈N⧵{�} ¬bid�,j) .

Thereby, Msa, δ, t − 1 ̸⊧ ○(bid�,j ∧
⋀

�∈N⧵{�} ¬bid�,j) and Msa, δ , t − 1 ̸⊧ ○trade�,j=1 . Thus,
Msa, δ, t ̸⊧ trade�,j = 1 , which is a contradiction.

For Statement 2. Assume Msa, 𝛿, t ⊧ soldj . Then, Msa, 𝛿, t ⊧ trade�,j = 1 for
some agent � ∈ N . From Rule 6, ��(�, t) = (p1,… , p�) with pj = πY(�[t], pricej)
and ��(�, t) = (p�

1
,… , p�

�
) with p�

j
= 0 , for all agent � ≠ � . By Rule 9, we have

Msa, 𝛿, t ⊧ bid�,j ∧
⋀

�∈N⧵{�} ¬bid�,j . Thus, it follows from Rules 2 and 4 that
Msa, 𝛿, t ⊧ ○trade�,j = 1 and Msa, 𝛿, t ⊧ ○soldj.

For Statement 3, notice all prices in the initial state have the same value (Rule 1) and the
current price and the price for unsold items are increased by the same amount in each turn
(Rule 7 and 8). Assume Msa, 𝛿, t ⊧ ¬soldj . Since Msa ⊧ soldj → ○soldj , there is no stage
t′ < t such that Msa, 𝛿, t

′ ⊧ soldj and thus Msa, 𝛿, t ⊧ price = pricej.

Proposition 3 Msa ⊧ ○wbb and Msa ̸⊧ ○sbb

Proof Suppose a path δ in Msa and a stage t in δ . Note that each trade can be either
0 or 1 and the price for a good is at least 0, i.e., πY(δ[t], trade�,j) ∈ {0, 1} and
πY(δ[t], pricej) ∈ I⪰0 . It follows from Rule 10 that Msa, δ, t ⊧ payment� ≥ 0 for each agent �
and Msa, δ, t ⊧ sum�∈N(payment�) ≥ 0 . Thus, Msa ⊧ ○wbb.

We will prove Msa is not strongly budget-balanced with a counter-example. Given an
agent � , let δ be a path in Msa such that ��(δ, 0) = (�����, 0,… , 0) and ��(δ, 0) = (0,… , 0) for
each agent � ≠ � . Since (�����, 0,… , 0) ∈ L(δ[0], �) and (0,… , 0) ∈ L(w, �) , there exists such
path in Msa . Since δ[0] ∉ T , πY(δ[0], price) = πY(δ[0], pricej) = ����� and soldj ∉ πΦ(δ[0])
for each j , it follows from Rules 7 and 8, that all prices are increased by the con-
stant ��� > 0 , that is Msa, δ, 1 ⊧ price = sum(�����, ���) ∧

⋀
j∈G pricej = sum(�����, ���) .

By Rule 9, we have that agent � is only bidding for the good 1, that is,
Msa, δ, 1 ⊧ bid�,1 ∧

⋀
j∈G⧵{1} ¬bid�,j . All other agents are not bidding for any

good, i.e., Msa, δ, 1 ⊧
⋀

j∈G ¬bid�,j , for each � ≠ � . From Rules 4 and 10, we have
Msa, δ, 1 ⊧ trade�,1 = 1 ∧ payment� = price1 ∧

⋀
�∈N⧵{�} p� = 0 . Since πY(δ[1], price1) > 0 ,

we have Msa, δ, 1 ̸⊧ sum�∈N(payment�) = 0 and Msa ̸⊧ ○sbb.

Proposition 4 Given a joint action � ∈ B
� ,

1. Msa ⊧ does(�) → ○ef(�)

2. Msa ⊧ does(�) → ○(terminal → ef(�))

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 39 of 47 20

Proof Given a path � in Msa , we first consider Statement 1. We prove Msa is not efficient
with a counter-example. Our purpose is to show that there exists a joint action � such that
Msa, 𝛿, 0 ⊧ does(�) ∧ ¬○ ef(�) . That is, Msa, 𝛿, 0 ⊧ does(𝛃) ∧ ¬○ sum�∈N(v�(β�, (tradej)j∈G))

= max�∈Λ(sum�∈N(v�(β�, �)))
.

As we consider the initial state of � ,
Msa, 𝛿, 0 ⊧ price = ����� ∧

⋀
j∈G pricej = ����� ∧

⋀
�∈N(¬bid�,j ∧ trade�,j = 0) . Thus, no good

was sold, that is, Msa, 𝛿, 0 ⊧
⋀

j∈G ¬soldj . Let � and � be two distinct agents in N with � ≠ � .
From the definition of L , L(�[0], �) = L(�[0], �) and (p1,… , p�) ∈ L(�[0], �) if pj = 0 or
pj = sum(�����, ���) for each good j.

Let us assume Msa, 𝛿, 0 ⊧ does(�) for � ∈ B
� such that β� = β� = (����� + ���, 0,… , 0)

and β� = (0,… , 0) for each � ∈ N⧵{�, �} . Since β� ∈ L(�[0], �) , β� ∈ L(�[0], �) and
β� ∈ L(�[0], �) , there exists such path in Msa . Thus, Msa, 𝛿, 1 ⊧ bid�,1 ∧ bid�,1 . Notice bid�′,j
does not hold in �[1] for any other pair (��, j) ≠ (�, 1) and (��, j) ≠ (�, 1) . From Rules 4 and 5,
we have Msa, 𝛿, 1 ⊧

⋀
��∈N,j∈G trade�� ,j = 0.

Recall the valuation of each agent �′ is v�
�
((p1,… , p�), �) =

∑
j∈G λ��,j ⋅ pj for a trade

� ∈ I�� and a bid (p1,… , p�) ∈ B . Since each trade has the value 0 in �[1] , it follows that
Msa, 𝛿, 1 ⊧ sum�∈N(v�(β�, (tradej)j∈G)) = 0.

However, let � ∈ I�� be a trade such that λ�,1 = 1 and λ��,j = 0 for all other pair
(��, j) ≠ (�, 1) . It is easy to see that � ∈ Λ . The value of this trade for � is v�(β�, �) = ����� + ���
and v�

�
(β�

�
, �) = 0 for each �′ ≠ � . Thus, we have

∑
�∈N(v�(β�, �)) = ����� + ��� ,

Msa, 𝛿, 1 ⊧ ¬sum�∈N(v�(β�, (tradej)j∈G)) = max𝛌∈Λ(sum�∈N(v�(β� , �))) and
Msa, 𝛿, 0 ⊧ ¬○ ef(�).

For Statement 2, let � ∈ B
� be a joint action and t ≥ 0 be a stage of � . From

the definition of Msa we have that each trade can be only 0 or 1. That is, if � ∈ Λ
then λ�,j ∈ {0, 1} for each agent � and good j . Assume Msa ⊧ does(�) and
Msa, 𝛿, t ⊧ ○terminal . We intend to show that Msa ⊧ ○ef(�) , i.e.,
Msa, 𝛿, t ⊧ ○sum�∈N(v�(β�, (tradej)j∈G)) = max𝛌∈Λ(sum�∈N(v�(β�, 𝛌)))).

We focus on the case where �[t] ∉ T . Let � be an agent in N and let (p1,… , p�) denote
� ’s action in � . Recall function v�((p1,… , p�), �) =

∑
j∈G pj ⋅ λ�,j , for a trade � ∈ I�� . Since

the value for each good in v� depends only on its reported value in � ’s bid and its trade for
� , we show that the part of v�((p1,… , p�), �) corresponding to each good j (i.e., pj ⋅ λ�,j) is
maximized when λ�,j = πY(�[t], trade�,j).

From the definition of B , we have that the reported value for j in � ’s bid is at least zero,
i.e., pj ≥ 0 . We check for two cases:

1. If pj = 0 , then λ�j ⋅ pj = 0 , for any trade � ∈ Λ . Thus, Msa, 𝛿, t + 1 ⊧ times(pj, trade�,j)

= max(times(pj, 0), times(pj, 1));
2. If pj > 0 , then Msa, 𝛿, t + 1 ⊧ bid�,j . Since �[t + 1] ∈ T , it should be the case that

Msa, 𝛿, t + 1 ⊧ soldj . From Rule 2, we know the trade for good j is one for some agent, i.e.,
Msa, 𝛿, t + 1 ⊧

⋁
�∈N trade�,j = 1 . Because Msa, 𝛿, t + 1 ⊧ bid�,j , it should be the case that

the agent who have a trade for j is � (see Rules 4 and 5), that is, Msa, 𝛿, t + 1 ⊧ trade�,j = 1 .
Hence, Msa, 𝛿, t + 1 ⊧ times(pj, 1) = max(times(pj, 0), times(pj, 1)).

It follows that

or simply, Msa, 𝛿, t ⊧ ○ef (�).

Msa, 𝛿, t + 1 ⊧ sum�∈N(v�(β�, (tradej)j∈G)) = max
𝛌∈Λ

(sum�∈N(v�(β�, 𝛌))))

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 40 of 47

The case where �[t] ∈ T , follows from the loop on the path definition.

Proposition 5 Msa is strategyproof.

Proof Given a path � in Msa and a stage t ≥ 0 in � , such that L(�[t], �) ≈� V� . Let � ∈
∏

�∈N V�
be a preference profile and �

�
 denote a path such that �[0, t] = �

�
[0, t] and �(�

�
, t) = �

�
 .

We let ��
�
∈ V� denote a preference of agent � , �′ = (��

�
, �−�) and �

�′ be a path such that
�[0, t] = �

�′ [0, t] , ��(��′ , t) = β��
�
 and ��(��′ , t) = β�� for each agent � ≠ �.

In the stage t of �
�
 , the agents report their (truthful) preferences � , i.e.,

Msa, 𝛿�, t ⊧ does(�
�
) . On the other hand, in the stage t of �

�′ , the agent � reports her
(untruthful) preference �′

�
 and each agent � ≠ � reports �� , i.e., ∧

⋀
�∈N⧵{�} does�(β��)

Msa, 𝛿�′ , t ⊧ does�(β𝜗�
�
).

For some x ∈ I , we have to show Msa, 𝛿�, t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G) , payment�) = x
and Msa, 𝛿�� , t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G), payment�) ≤ x.

That is, agent � ’s utility in �
�′ is not better than in �

�
 . Remind the legal actions in �[t]

represent her preference space, i.e., L(�[t], �) ≈� V� . Notice the value of a bid (p1,… , p�)
given a trade � is v�((p1,… , p�), �) =

∑
j∈G λ�,j ⋅ pj . Similarly, the payment in �[t] is

πY(�[t], payment�) =
∑

j∈G πY(�[t], trade�,j) ⋅ πY(�[t], pricej) . Since there is no dependence
among goods in v� and in � ’s payment, we consider the part of � ’s utility corresponding to j
in �

�
 and �

�′ . Thus, we need to show that

 (i) Msa, 𝛿�, t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = xj
 (ii) Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) ≤ xj

for some xj ∈ I and each good j ∈ G.
We denote β�� = (p1,… , p�) and β��

�
= (p�

1
,… , p�

�
) . According to the legality definition,

the values of pj and p′
j
 can be either the price of j in �[t] , zero, or the price in �[t] incre-

mented by ��� > 0 . Let us consider each case:

• Assume pj = πY(�[t], pricej) iff Msa, 𝛿, t ⊧ trade�,j = 1 (w.r.t the definition of L). That
is, pj = πY(�[t], pricej) when good j was already bought by agent � . Thus, it is not
legal for � to bid any other value for j , i.e., (p�

1
,… , p�

j
) ∈ L(�[t], �) iff pj = p�

j
 . Thereby,

it is easy to see that Msa, 𝛿�, t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = pj and
also Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = pj.

• Assume agent � declines to raise her bid for good j , that is,
pj = 0 . By Rules 5 and 9, we have Msa, 𝛿�, t ⊧ ○trade�,j = 0 and
Msa, 𝛿�, t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = 0 . By the legal-
ity definition, it should be the case that Msa, 𝛿, t ⊧ ¬trade�,j = 0 and p′

j
 is either

0 or πΦ(�[t], price) + ��� . If p�
j
= 0 , then Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j, pj) ,

times(trade�,j, pricej)) = 0 . Otherwise, the value of trade�,j in �
�′ [t + 1] will be either 0

or 1, depending on the joint bid �
�′.

– If
Msa, 𝛿�′ , t ⊧ ○trade�,j = 1

 , then Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j , pj) , times(trade�,j , pricej)) = sub(0, pricej) .
Since π

Y

(�
�′ [t + 1], pricej) ≥ 0

 , we have sub(times(trade�,j, pj) , times(trade�,j, pricej)) ≤ 0.
– Otherwise, the trade for good j is zero (i.e., Msa, 𝛿�′ , t ⊧ ○trade�,j = 0) and

Msa, 𝛿�′ , t ⊧ ○sub(times(trade�,j, pj), times(trade�,j, pricej)) = 0.

• The proof for the case pj = πY(�[t], price) + ��� is similar to the previous case.

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 41 of 47 20

It follows that Msa, 𝛿�, t ⊧ ○sub(v�(β𝜗� , (tradej)j∈G) , payment�) = x and Msa, 𝛿�′ , t ⊧ ○sub(v�(β𝜗� ,

(tradej)j∈G), payment�) ≤ x , where x ∈ I.
Lemma 2 For each agent � ∈ N , each bid-tree β ∈ L���� and each � ∈ I�� , v�(noop, �) = 0.

Proof Remind noop denotes a leaf bid ⟨0, j, 0⟩ , where j ∈ G . Thus, b�(noop) = 0 . Let
� ∈ I�� . The value of � given noop , i.e., v�(noop, �) , is the maximal sum of b�(β) ⋅ sat�(β) in
a solution sat� , for all β ∈ Node(noop) . Since Node(noop) = {noop} and b�(noop) = 0 , for
any solution sat� , v�(noop, �) = 0.

Lemma 3 Mvcg is an ST-model and it is a model of Σvcg.

Proof (Sketch) It is routine to check that Mvcg is actually an ST-model. Given a path δ in
Mvcg and a stage t of δ , we need to show that Mvcg, δ, t ⊧ 𝜑 , for each � ∈ Σvcg.

Let us verify Rule 1. Assume Mvcg, δ, t ⊧ initial , then δ[t] = w̄ , i.e.,
δ[t] = ⟨1, 0,… , 0, 0,… , 0⟩ . By the definitions of πY and πΦ , πΦ(w̄) = {bidRound} ,
πY(w̄, payment�) = 0 and πY(w̄, trade�,j) = 0 for all � ∈ N and j ∈ G . Thus,
Mvcg, δ, t ⊧ bidRound ∧

⋀
�∈N payment� = 0 ∧

⋀
j∈G trade�,j = 0.

Now we verify Rule 4. Assume Mvcg, δ, t ⊧ initial , then δ[t] = w̄ and for all � ∈ N and
β ∈ B , (w̄, i, β) ∈ L . Thus, Mvcg, δ, t ⊧ legal�(β).

Then we consider Rule 5. Mvcg, δ, t ⊧ does(�) ∧ initial , for � ∈ B
� , i.e.,

Mvcg, δ, t ⊧
⋀

�∈N does(β�) and Mvcg, δ, t ⊧ initial . Thus, θ�(δ, t) = β� for all � ∈ N . The
update function U defines δ[t + 1] such that πY(δ[t + 1], trade�,j) = WDλ�,j

(�,�) , for each
� ∈ N and j ∈ G . Thus,

Mvcg, δ, t + 1 ⊧
⋀

�∈N,j∈G trade�,j = WDλ�,j
(�,�) and also

Mvcg, δ, t ⊧ ○(
⋀

�∈N,j∈G trade�,j = WDλ�,j
(�,�)) . Using the abbreviation, Mvcg, δ ,

t ⊧ ○(
⋀

�∈N trade� = WDλ�
(� , �)).

The remaining rules are verified in a similar way.

Lemma 4 For each agent � ∈ N , Mvcg ⊧ initial ∧ does𝗂(noop) → ○payment𝗂 = 0 ∧
⋀

j∈G trade𝗂,j ≥ 0

Proof Straightforward from Lemma 2, Rule 6 from Σvcg and Rule R2 from the definition
of b�.

Proposition 6 Mvcg ̸⊧ ○sbb and Mvcg ̸⊧ ○wbb.

Proof We show Mvcg ̸⊧ ○wbb and Mvcg ̸⊧ ○sbb by showing a counter example. Given two
distinct agents �, � in N and a good j in G , let δ be a path in Mvcg such that ��(�, 0) = ⟨1, j, 5⟩
and ��(�, 0) = ⟨−1, j,−3⟩ . For any other agent � ∈ N⧵{�, �} , ��(�, 0) = noop . Since this
actions are legal in the initial state �[0] , there exists such path.

By Rule 5 and the definition of function WD� , we have that
Mvcg, 𝛿, 1 ⊧ (trade�,j = 1 ∧ trade�,j = −1) and Mvcg, 𝛿, 1 ⊧ trade�,j� = 0 for all pairs
(�, j�) ≠ (�, j) and (�, j�) ≠ (�, j) . That is, the good j is sold by � and bought by � . The social
welfare of all agents other than � is −3 and the social welfare of all agents other than �
is 5. If either � or � did not participate, there would be no trade and the social welfare
would be zero. Thus, by Rule 6, the payments for � and � are 3 and −5 , resp., that is,
Mvcg, 𝛿, 1 ⊧ payment� = 3 ∧ payment� = −5 . The other agents’ do not have payments on
�[1] , i.e., Mvcg, 𝛿, 1 ⊧

⋀
�∈N⧵{�,�} payment� = 0 . Then, Mvcg, 𝛿, 1 ⊧ sum�∈N(payment�) < 0 .

Thus we have that Mvcg, 𝛿, 0 ̸⊧ ○sbb and Mvcg, 𝛿, 0 ̸⊧ ○wbb.

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 42 of 47

Proposition 7 Given a joint action � ∈ B
� , Mvcg ⊧ does(�) → ○ef(�)

Proof (Sketch) Since Mvcg ⊧ initial → ○terminal and δ[t + 1] = δ[t] whenever δ[t] ∈ T , it
suffices to show that Mvcg, 𝛿, 0 ⊧ does(�) → ○ef(�) , for any joint action � ∈ B

� . Assume
Mvcg, 𝛿, 0 ⊧ does(�) , by Rule 5 we have that Mvcg, 𝛿, 1 ⊧

⋀
�∈N,j∈G trade�,j = WDλ�,j

(�,�) . By
the definition of the winner determination function WD�(�,�) (and consequently function
WDλ�,j

 for each agent � and good j), we have that the trade (πY(�[1], trade�,j))j∈G,�∈N maxi-
mizes the cumulative value among the agents. That is, Mvcg, 𝛿, 1 ⊧ sum�∈N(v�(β� ,
(tradej)j∈G)) = max𝛌∈Λ(sum�∈N(v�(β�, 𝛌))) and Mvcg, 𝛿, 0 ⊧ does(�) → ○ef(�).

Proposition 8 Given a joint action � ∈ B
� , if ��(�) ≥ 0 for all � ∈ I�� , �� ∈ V� and � ∈ N ,

then Mvcg ⊧ does(�) → ○ir(�).

Proof Let � ∈ B
� be a joint action and � be a path in Mvcg . Since

Mvcg ⊧ initial → ○terminal and
δ[t + 1] = δ[t] whenever δ[t] ∈ T , it suffices to show that Mvcg, 𝛿, 0 ⊧ does(�) → ○ir(�) .
Assume Mvcg, 𝛿, 0 ⊧ does(�) and that the preferences represented by L(�[1], �) are non-
negative for every agent and possible trade. That is, v�(β, �) ≥ 0 for any bid β , trade � and
agent �.

Let 𝛌 = (𝛌j)j∈G denote the trade performed after the agents report � , where
λ�,j = πY(�[1], trade�,j) = WDλ�,j

(�,�) for each good j and agent � . We denote by
�−� = WD−�

�
(�,�) the trade that would happen if � did not participate.

The utility of agent � in �[1] is u� = v(β�, �) − πY(�[1], payment�) . According to the pay-
ment definition (Rule 6), agent � ’s utility in �[1] is

or

or simply

Thus, agent � ’s utility is non-negative if

Assume for contradiction that this is not the case, that is,

Since v�(β�, �
−�) ≥ 0 , then we have

u� = v�(β�, �) −
(∑
�∈N⧵{�}

v�(β�, �
−�) −

∑
�∈N⧵{�}

v�(β�, �)
)

u� = v�(β�, �) −
∑

�∈N⧵{�}

v�(β�, �
−�) +

∑
�∈N⧵{�}

v�(β�, �)

u� =
∑
�∈N

v�(β�, �) −
∑

�∈N⧵{�}

v�(β�, �
−�)

∑
�∈N⧵{�}

v�(β�, �) ≥
∑
�∈N

v�(β�, �
−�)

∑
�∈N⧵{�}

v�(β�, �
−�) >

∑
�∈N⧵{�}

v�(β�, �)

∑
�∈N

v�(β�, �
−�) ≥

∑
�∈N⧵{�}

v�(β�, �
−�) >

∑
�∈N⧵{�}

v�(β�, �)

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 43 of 47 20

Fig. 7 A path in Mice where two agents trade a good

which is a contradiction since � is the efficient trade (see Proposition 7). Thus,
Mvcg, 𝛿, 1 ⊧

⋀
�∈N sub(v�(β�, (tradej)j∈G), payment�) ≥ 0 and Mvcg, 𝛿, 0 ⊧ ○ir(�).

Lemma 5 Mice is an ST-model and it is a model of Σ.

Proof The proof is similar to those for Lemmas 1 and 3.

Proposition 9 Mice ̸⊧ ○sbb and Mice ⊧ ○wbb.

Proof (Sketch) Considering strong budget-balance, notice the path � illustrated at Fig. 7 is
a counterexample. For instance, in the last stage we have Mice, 𝛿, 3 ⊧ sum�∈N(payment�) = 3
and thus Mice ⊧ ○sum�∈N(payment�) = 0 and Mice ̸⊧ ○sbb.

Now we consider weak budget-balance. Let � be a path in Mice , t ≥ 0 a stage in � and
� ∈ N . By the definition of v� , we have that an empty trade is valuated zero, i.e.,

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 44 of 47

v�(��(�, 0), (0,… , 0)) = 0 . Thus,
∑

�∈N v�(��(�, 0), (0,… , 0)) = 0 . Notice the empty trade
(0,⋯ , 0) satisfies Constraints C1–C4 from the winner determination. Among the trades
satisfying those constraints, WD� selects the trade (𝛌j)j∈G that maximizes the cumulative
value among all agents, Thus, the cumulative value cannot be smaller than zero. Since the
agents’ pay the value of their bids, it follows that Mice, 𝛿, t ⊧ ○sub�∈N(payment�) ≥ 0.

Proposition 10 Given a joint action � ∈ B
� , Mice ⊧ does(�) → ○ir(�).

Proof The proof is straightforward since Mice ⊧ does𝗂(β𝗂) → ○payment𝗂 = v𝗂(β𝗂 ,
(tradej)j∈G) , for each � ∈ N and β� ∈ B.

Proposition 11 Given a joint action � ∈ B
� , Mice ⊧ does(�) → ○ef(�)

Proof (Sketch) The proof is similar to the proof for Proposition 11.

Proposition 12 Mice is not strategyproof.

Proof (Sketch) We show Mice is not strategyproof with a counterexample. Assume the path
� illustrated in Fig. 7 and consider stage 2. We have ��(�, 2) = ⟨1, �, 18, 18⟩ . Since the
agents pay their reported valuation, in �[3] , the utility of agent � given her bid is zero, i.e.,
Mice, 𝛿, 3 ⊧ sub(v�(⟨1, �, 18, 18⟩, (tradej)j∈G), payment�) = 0 . Let �′ be a path in Mice defined
exactly like � , except by the actions performed by � in each stage t ≥ 2 , which is defined as
��(�, t) = ⟨1, �, 16, 16⟩ . Then, M, 𝛿�, 3 ⊧ ○sub(v�(⟨1, �, 18, 18⟩, (tradej)j∈G), payment�) = 2
and M, 𝛿�, 3 ̸⊧ ○sub(v�(⟨1, �, 18, 18⟩, (tradej)j∈G), payment�) ≤ 0.

Acknowledgements This research is supported by the ANR Project AGAPE ANR-18-CE23-0013. The
authors would like to thank the reviewers for carefully reading of the manuscript and for providing insight-
ful comments.

References

 1. Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of the
ACM, 49(5), 672–713.

 2. Badica, A., & Badica, C. (2010). Specification and verification of an agent-based auction service. In
G. A. Papadopoulos, W. Wojtkowski, G. Wojtkowski, S. Wrycza, & J. Zupancic (Eds.), Information
systems development: Towards a service provision society (pp. 239–248). Boston: Springer.

 3. Bădică, C., Ganzha, M., & Paprzycki, M. (2006). Rule-based automated price negotiation: Overview
and experiment. In L. Rutkowski, R. Tadeusiewicz, L. A. Zadeh, & J. M. Żurada (Eds.), Artificial
intelligence and soft computing—ICAISC 2006 (pp. 1050–1059). Berlin, Heidelberg: Springer Berlin
Heidelberg.

 4. Baral, C., & Uyan, C. (2001). Declarative specification and solution of combinatorial auctions using
logic programming. In T. Eiter, W. Faber, & M. I. Truszczyński (Eds.), Logic programming and non-
motonic reasoning (pp. 186–199). Berlin: Springer Berlin Heidelberg.

 5. Barthe, G., Gaboardi, M., Arias, E., Hsu, J., Roth, A., & Strub, P. Y. (2016). Computer-aided verifica-
tion for mechanism design. In Conference on web and internet economics.

 6. Belardinelli, F. (2014). Model checking auctions as artifact systems: Decidability via finite abstraction.
In Proceedings of the European conference on artificial intelligence (ECAI’14) (pp. 81–86).

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 45 of 47 20

 7. Bellosta, M.., Kornman, S., & Vanderpooten, D. (2005). A framework for multiple criteria English
reverse auctions. In IEEE/WIC/ACM international conference on intelligent agent technology (pp.
633–639).

 8. Bellosta, M. J., Kornman, S., & Vanderpooten, D. (2008). A unified framework for multiple criteria
auction mechanisms. Web Intelligence and Agent Systems, 6(4), 401–419.

 9. Boutilier, C., & Hoos, H. H. (2001). Bidding languages for combinatorial auctions. In B. Nebel (Ed.),
Proceedings of the 7th international joint conference on artificial intelligence (IJCAI-01) (pp. 1211–
1217). Seattle, Washington: Morgan Kaufmann.

 10. Brihaye, T., Da Costa, A., Laroussinie, F., & Markey, N. (2009). Atl with strategy contexts and
bounded memory. In International symposium on logical foundations of computer science (pp.
92–106). Springer.

 11. Burghardt, J. (2002). Axiomatization of finite algebras. In Annual conference on artificial intelligence
(pp. 222–234). Springer.

 12. Caminati, M., Kerber, M., Lange, C., & Rowat, C. (2015). Sound auction specification and implemen-
tation. In ACM conference on economics and computation.

 13. Cavallo, R., Parkes, D. C., Juda, A. I., Kirsch, A., Kulesza, A., Lahaie, S., Lubin, B., Michael, L., &
Shneidman, J. (2005). TBBL: A tree-based bidding language for iterative combinatorial exchanges. In
Multidisciplinary workshop on advances in preference handling, Edinburgh.

 14. Chatterjee, K., Henzinger, T. A., & Piterman, N. (2010). Strategy logic. Information and Computation,
208(6), 677–693.

 15. Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaître, M., Maudet, N., et al. (2006). Issues in
multiagent resource allocation. Informatica, 30(1), 3–31.

 16. Conitzer, V., & Sandholm, T. (2002). Complexity of mechanism design. In A. Darwiche, N. Friedman
(Eds.), UAI’02, proceedings of the 18th conferences in uncertainty in artificial intelligence, University
of Alberta, Edmonton, Alberta, Canada, August 1-4, 2002 (pp. 103–110). Morgan Kaufmann.

 17. Cramton, P. (2011). Simultaneous ascending auctions, chap. 4. American Cancer Society.
 18. Dobriceanu, A., Biscu, L., & Badica, C. (2007). Adding a declarative representation of negotiation

mechanisms to an agent-based negotiation service. In 2007 IEEE/WIC/ACM international conferences
on web intelligence and intelligent agent technology—workshops (pp. 471–474).

 19. Feige, U., Feldman, M., Immorlica, N., Izsak, R., Lucier, B., & Syrgkanis, V. (2015). A unifying hier-
archy of valuations with complements and substitutes. In Proceeding of the AAAI conference on artifi-
cial intelligence, vol. 29(1).

 20. Finnsson, H. (2012). Generalized Monte-Carlo tree search extensions for general game playing. In
Twenty-sixth AAAI conference on artificial intelligence.

 21. Genesereth, M., & Thielscher, M. (2014). General game playing. Synthesis lectures on artificial intel-
ligence and machine learning. Morgan & Claypool Publishers.

 22. Giovannucci, A., Cerquides, J., Endriss, U., & Rodríguez-Aguilar, J. A. (2010). A graphical formal-
ism for mixed multi-unit combinatorial auctions. Autonomous Agents and Multi-Agent Systems, 20(3),
342–368.

 23. Green, J., & Laffont, J. J. (1979). Incentives in public decision-making. North-Holland: Elsevier.
 24. Hudert, S., Eymann, T., Ludwig, H., & Wirtz, G. (2009). A negotiation protocol description language

for automated service level agreement negotiations. In 2009 IEEE conference on commerce and enter-
prise computing, CEC 2009 (pp. 162–169).

 25. Hudert, S., Ludwig, H., & Wirtz, G. (2009). Negotiating SLAs—An approach for a generic negotiation
framework for WS-agreement. Journal of Grid Computing, 7(2), 225–246.

 26. Jackson, M. O. (2009). Optimization and operations research -Volume III, chap. Mechanism Theory.
EOLSS Publications.

 27. Jiang, G., Perrussel, L., Zhang, D., Zhang, H., & Zhang, Y. (2019). Game equivalence and bisimula-
tion for game description language. In A. C. Nayak & A. Sharma (Eds.), PRICAI 2019: Trends in arti-
ficial intelligence—16th Pacific Rim international conference on artificial intelligence (Vol. 11670, pp.
583–596). Berlin: Springer.

 28. Jiang, G., Zhang, D., Perrussel, L., & Zhang, H. (2016). Epistemic GDL: A logic for representing and
reasoning about imperfect information games. In IJCAI International Joint Conference on Artificial
Intelligence.

 29. Jiang, G., Zhang, D., Perrussel, L., & Zhang, H. (2021). Epistemic GDL: A logic for representing and
reasoning about imperfect information games. Artificial Intelligence, 294, 103453.

 30. de Jonge, D., & Zhang, D. (2021). GDL as a unifying domain description language for declarative
automated negotiation. Autonomous Agents and Multi-Agent Systems, 35(1), 13.

 31. Jonge, D. D., & Zhang, D. (2016). Using GDL to represent domain knowledge for automated nego-
tiations. In N. Osman, C. Sierra (Eds.), Autonomous agents and multiagent systems: AAMAS 2016

 Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

20 Page 46 of 47

workshops, visionary papers, Singapore, Singapore, May 9-10, 2016, Revised Selected Papers (pp.
134–153). Cham: Springer.

 32. Jonge, D. D., & Zhang, D. (2017). Automated negotiations for general game playing. In K. Larson,
M. Winikoff, S. Das, E. Durfee (Eds.), Proceedings of the 16th conference on autonomous agents
and multiAgent systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017 (pp. 371–379). ACM.

 33. Kalagnanam, J., & Parkes, D. C. (2004). Auctions, bidding and exchange design. In D. Simchi-
Levi, S. D. Wu, & Z. J. Shen (Eds.), Handbook of quantitative supply chain analysis: Modeling in
the e-business era (pp. 143–212). Boston: Springer.

 34. Kerber, M., Lange, C., & Rowat, C. (2016). An introduction to mechanized reasoning. Journal of
Mathematical Economics, 66, 26–39.

 35. Klemperer, P. (1999). Auction theory: A guide to the literature. Journal of Economic Surveys,
13(3), 227–286.

 36. Krishna, V. (2009). Auction theory. London: Academic Press.
 37. Larsen, G. K. H., van Foreest, N. D., & Scherpen, J. M. A. (2013). Distributed control of the power

supply-demand balance. IEEE Transactions on Smart Grid, 4(2), 828–836.
 38. Lee, H. G., & Lee, R. (1997). A hybrid approach of linear programming and logic modeling for the

market core of sealed bid auctions. Annals of Operations Research, 75, 1997.
 39. Lochner, K. M., & Wellman, M. P. (2004). Rule-based specification of auction mechanisms. In Pro-

ceedings of the third international joint conference on autonomous agents and multiagent systems,
AAMAS 20042, 818–825.

 40. Love, N., Genesereth, M., & Hinrichs, T. (2006). General game playing: Game description lan-
guage specification. Technical Report, LG-2006-01, Stanford University, Stanford, CA.

 41. Lubin, B., Juda, A. I., Cavallo, R., Lahaie, S., Shneidman, J., & Parkes, D. C. (2008). Ice: An
expressive iterative combinatorial exchange. Journal of Artificial Intelligence Research, 33, 33–77.

 42. Maubert, B., Mittelmann, M., Murano, A., & Perrussel, L. (2021). Strategic reasoning in automated
mechanism design. In Proceedings of the eighteen conference on principles of knowledge represen-
tation and reasoning.

 43. Meyer, T., Foo, N., Kwok, R., & Zhang, D. (2004). Logical foundations of negotiation: Outcome,
concession and adaptation. Proceedings of the national conference on artificial intelligence (pp.
293–298).

 44. Mishra, D., & Sharma, T. (2018). A simple budget-balanced mechanism. Social Choice and Wel-
fare, 50(1), 147–170.

 45. Mittelmann, M., Bouveret, S., & Perrussel, L. (2021). A general framework for the logical repre-
sentation of combinatorial exchange protocols. In F. Dignum, A. Lomuscio, U. Endriss, A. Nowé,
A. (Eds.), AAMAS’21: 20th international conference on autonomous agents and multiagent systems
(pp. 1602–1604). ACM.

 46. Mittelmann, M., & Perrussel, L. (2020). Auction description language (ADL): A general frame-
work for representing auction-based markets. In G. de Giacomo (Eds.), ECAI 2020. Santiago de
Compostela: IOS Press.

 47. Mogavero, F., Murano, A., Perelli, G., & Vardi, M. (2014). Reasoning about strategies: On the
model-checking problem. ACM Transactions on Computational Logic, 15(4), 2014.

 48. Mogavero, F., Murano, A., Perelli, G., & Vardi, M. Y. (2014). Reasoning about strategies: On the
model-checking problem. ACM Transaction on Computational Logic (TOCL), 15(4), 1–47.

 49. Myerson, R. B., & Satterthwaite, M. A. (1983). Efficient mechanisms for bilateral trading. Journal
of Economic Theory, 29(2), 265–281.

 50. Nisan, N. (2000). Bidding and allocation in combinatorial auctions. In ACM conference on elec-
tronic commerce (pp. 1–12).

 51. Nisan, N. (2004). Bidding languages. Combinatorial Auctions (pp. 1–19).
 52. Nisan, N., Roughgarden, T., Tardos, É., & Vazirani, V. (2007). Algorithmic game theory. Cam-

bridge: Cambridge University Press.
 53. Parkes, D. C., Cavallo, R., Elprin, N., Juda, A., Lahaie, S., Lubin, B., Michael, L., Shneidman, J.,

& Sultan, H. (2005). ICE: An Iterative Combinatorial Exchange. In Proceedings of the 6th ACM
conference on electronic commerce, EC’05 (pp. 249–258). Association for Computing Machinery,
New York, NY, USA.

 54. Parkes, D. C., & Ungar, L. H. (2001). Iterative combinatorial auctions: Achieving economic and
computational efficiency. Philadelphia, PA: University of Pennsylvania.

 55. Parsons, S., Rodriguez-Aguilar, J. A., & Klein, M. (2011). Auctions and bidding: A guide for computer
scientists. ACM Computing Surveys, 43(2), 2011.

 56. Pauly, M., & Wooldridge, M. (2003). Logic for mechanism design—A manifesto. In Workshop on
game theory and decision theory in agent systems (GTDT).

Autonomous Agents and Multi-Agent Systems (2022) 36:20

1 3

Page 47 of 47 20

 57. Porello, D., & Endriss, U. (2010). Modelling combinatorial auctions in linear logic. In Proceedings of
the twelfth international conference on principles of knowledge representation and reasoning, KR’10
(pp. 71–78). AAAI Press.

 58. Rabe, F. (2006) First-order logic with dependent types. In International joint conference on automated
reasoning (pp. 377–391). Springer.

 59. Rolli, D., Luckner, S., Gimpel, H., & Weinhardt, C. (2006). A descriptive auction language. Electronic
Markets, 16(1), 51–62.

 60. Ruan, J., Van Der Hoek, W., & Wooldridge, M. (2009). Verification of games in the game description
language. Journal of Logic and Computation, 19(6), 1127–1156.

 61. Saffidine, A. (2014). The game description language is turing complete. IEEE Transactions on Compu-
tational Intelligence and AI in Games, 6(4), 320–324.

 62. Sandholm, T. (2003). Automated mechanism design: A new application area for search algorithms.
In F. Rossi (Ed.), Principles and Practice of Constraint Programming - CP 2003 (pp. 19–36). Berlin,
Heidelberg: Springer Berlin Heidelberg.

 63. Schobbens, P. Y. (2004). Alternating-time logic with imperfect recall. Electronic Notes in Theoretical
Computer Science, 85(2), 82–93.

 64. Thielscher, M. (2011). GDL-II. KI - Künstliche Intelligenz, 25(1), 63–66.
 65. Thielscher, M. (2017). GDL-III: A description language for epistemic general game playing. In IJCAI

international joint conference on artificial intelligence (pp. 1276–1282).
 66. Thielscher, M., & Zhang, D. (2010). From general game descriptions to a market specification lan-

guage for general trading agents (pp. 259–274). Springer Berlin Heidelberg.
 67. Voorneveld, M. (2003). Characterization of pareto dominance. Operations Research Letters, 31(1),

7–11.
 68. Wang, H., Tang, Y., Liu, J., & Chen, W. (2018). A search optimization method for rule learning in

board games. In Pacific Rim international conference on artificial intelligence (pp. 174–181). Springer.
 69. Wooldridge, M., Ågotnes, T., Dunne, P., & Van der Hoek, W. (2007). Logic for automated mechanism

design-a progress report. In Proceedings of AAAI conference on artificial intelligence.
 70. Wooldridge, M., & Parsons, S. (2000). Languages for negotiation. In Proceedings of the 14th Euro-

pean conference on artificial intelligence, ECAI’00 (pp. 393–397). IOS Press, NLD.
 71. Wooldridge, M., & Parsons, S. (2000). On the use of logic in negotiation. In Proceedings of the auton-

omous agents workshop on agent communication languages and conversation protocols.
 72. Xia, M., Stallaert, J., & Whinston, A. B. (2005). Solving the combinatorial double auction problem.

European Journal of Operational Research, 164(1), 239–251.
 73. Xu, H., Bates, C., & Shatz, S. (2009). Real-time model checking for shill detection in live online auc-

tions. In Software engineering research and practice (pp. 134–140).
 74. Xu, H., & Cheng, Y. T. (2007). Model checking bidding behaviors in internet concurrent auctions.

International Journal of Computer Systems Science & Engineering, 22(4), 179–191.
 75. Zhang, D. (2018). A logic for reasoning about game descriptions. In T. Mitrovic, B. Xue, & X. Li

(Eds.), AI 2018: Advances in artificial intelligence (pp. 38–50). Cham: Springer.
 76. Zhang, D. (2020). Behavioural equivalence of game descriptions. In Australasian joint conference on

artificial intelligence (pp. 307–319). Springer.
 77. Zhang, D., & Thielscher, M. (2015). A logic for reasoning about game strategies. In B. Bonet,

S. Koenig (Eds.), Proceedings of the twenty-Ninth AAAI conference on artificial intelligence, January
25-30, 2015, Austin, Texas, USA (pp. 1671–1677). AAAI Press.

 78. Zhang, D., & Thielscher, M. (2015). Representing and reasoning about game strategies. Journal of
Philosophical Logic, 44(2), 203–236.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Representing and reasoning about auctions
	Abstract
	1 Introduction
	1.1 Contributions

	2 Related work
	2.1 Auction representation
	2.2 Representation of negotiation protocols
	2.3 GDL-based approaches
	2.4 Formal verification of auctions

	3 Auction description language with a set of functions
	3.1 Syntax
	3.2 Semantics

	4 Evaluating auction-based protocols
	4.1 Mechanism design
	4.1.1 Budget-balanced mechanisms
	4.1.2 Strategyproof mechanisms
	4.1.3 Efficient mechanisms
	4.1.4 Individually rational mechanisms

	4.2 Characterizing well-formed protocols

	5 Representing a simultaneous ascending auction
	5.1 Representing as a model
	5.2 Evaluating the protocol

	6 Representing combinatorial exchange
	6.1 Tree-based bidding language
	6.1.1 Trade value and valid solutions
	6.1.2 Winner determination

	6.2 Vickrey–Clarke–Groves mechanism
	6.2.1 Representing as a model
	6.2.2 Evaluating the protocol

	6.3 Iterative combinatorial exchange
	6.3.1 Representing as a model
	6.3.2 Evaluating the protocol

	7 Model checking
	7.1 Upper bound
	7.2 Lower bound

	8 Conclusion
	Acknowledgements
	References

