
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2022) 36:19
https://doi.org/10.1007/s10458-021-09542-6

1 3

Formal verification of group and propagated trust
in multi‑agent systems

Nagat Drawel1 · Jamal Bentahar1  · Amine Laarej1 · Gaith Rjoub1

Accepted: 21 December 2021 / Published online: 3 March 2022
© Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
While modeling trust in multi-agent systems provides a fundamental basis for promoting
safe interactions and imitating agents reasoning mechanisms, exploiting model checking
techniques to govern the trust relationships between group of agents and other agents is yet
to be investigated. In this paper, we present a formal framework that allows individual and
group of agents to reason about their trust toward other agents. In particular, we propose
a branching time temporal logic BT which includes operators that express concepts such
as everyone trust, distributed trust and propagated trust. We develop efficient and scalable
reduction algorithms by which model checking BT logic is feasible at design time. We
analyze the satisfiability and model checking problems of this logic. Moreover, we present
in this manuscript BTT, a new BT Transformation tool, which is developed to automate the
verification process. Finally, we demonstrate extensive experimental results, which confirm
the theoretical findings and make our approach practical.

Keywords  Trust · Temporal logic · Formal verification · Model checking · Transformation
tool

1  Introduction

Trust is a crucial basis for the development of effective Multi-Agent System (MAS) appli-
cations. It has been extensively addressed in many research contexts (e.g., peer-to-peer net-
works and grid computing). These researches are mainly placed under two major streams:
trust computational models and logical trust formalization. The former measures the value
of trust to compute the strength level in which an agent trusts other agents in order to estab-
lish future interactions [38, 47, 56]. In this stream, trust was first formalized as a measur-
able concept in [37]. Following this work, a number of trust models have been put forward

 *	 Jamal Bentahar
	 bentahar@ciise.concordia.ca

	 Nagat Drawel
	 n_drawe@encs.concordia.ca

	 Gaith Rjoub
	 g_rjoub@encs.concordia.ca

1	 Concordia University, Montreal, QC, Canada

http://orcid.org/0000-0002-3136-4849
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-021-09542-6&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 2 of 31

and several proposals investigated trust propagation [8, 27]. On the other hand, the latter
deals with how one agent in the system can trust that another agent behaves and will per-
form an action in a certain way [16, 33, 44, 46, 51].

Trust is a complex concept that is hard to be precisely defined. Different meanings
of trust have been given in various domains. In the context of MASs, the authors in [7]
defined trust as mental attitudes of the truster who believes that the trustee is capable to
act and achieve a given goal. From a logical point of view, we can distinguish between two
classes: trust that is considered as a relationship between agents in the form of trust(A, B),
where A and B are two agents, and trust that is related to a content. Because it disregards
the content, the first class has been largely criticised for the problems of transitivity, inten-
tionally and unintentionally untrustworthy transmission, and negative trust multiplication
as discussed in [9, 45]. In the second class, modal logics have been widely used to reason
about cognitive aspects of trust by many researchers. For instance, in [25], the authors pro-
posed a logical framework for the concept of trust where trust is basically expressed as a
combination of different modalities based on the logic of action and time [24] and the BDI
logic [12]. In [33], the authors presented a new dynamic logic called DL-BET for reason-
ing about the interaction between belief, evidence and trust. In [26], the authors considered
the setting of stochastic multi-agent systems, where an automated verification framework
for quantifying and reasoning about cognitive trust is proposed. Moreover, some proposals
have abstracted from the cognitive stance and presented trust as a direct modality. In [16], a
new branching temporal logic of preconditional trust, which extends the Computation Tree
Logic (CTL) is introduced along with its model checking technique. In [51], the author
provided a formal semantics for trust with various logical postulates used to reason about
trust from an architectural perspective. The underlying logic is based on the idea of trust as
a dependence and combines temporal modalities of linear temporal logic (LTL) [43] and a
modality (C) for commitments [49] with a modality (T) for trust. However, most of these
approaches focus solely on individual trust that defines trust as a relationship that only
involves two agents and is not propagated to other agents.

From the formal verification point of view, the technique of model checking [10, 11] has
become one of the most successful approaches widely used for verifying various aspects of
MASs. Different contributions have been proposed to extend model checking techniques
with the aim of verifying extended temporal logics with agent-related modalities. Several
model checker tools based on these proposals have been developed over the past decades.
For instance, model checking is considered in verifying epistemic properties expressed
using logics of knowledge [31, 34, 36, 42], conditional and unconditional commitments
[5, 19, 20, 29], the interaction between knowledge and commitments [2, 52], organizations
[55] and services composition [3, 17]. Recent implementations that support more expres-
sive languages in the context of MAS have been also presented. In [30], model checking
LDLK, a logic that extends Linear Dynamic Logic (LDL) with knowledge modality, has
been studied. In [35], the verification of the logic that combines the epistemic logic with
the strategy alternating-time temporal logic (ATL) has been presented.

In this paper, we are interested in trust that goes beyond individuals where one indi-
vidual agent trusts another agent, toward a group trust where a group of agents trusts a par-
ticular agent. We aim to capture the concepts of everyone trust and distributed trust toward
a particular agent. Everyone trust is when all the members of the group agree on trusting
another agent. Distributed trust is when the trust is distributed among the members of the
group. We are also interested in trust that can propagate through the MAS from one agent
to another. We are considering these two concepts from the logical perspective, in particu-
lar formalization, model checking and satisfiability problems.

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 3 of 31  19

This manuscript builds on our prior research published in [15, 16] where we proposed
TCTL, a branching temporal logic extending CTL to reason about trust and time in MASs.
TCTL is interpreted in a new vector-extended version of interpreted systems that captures
the trust relationship between the interacting agents. Reasoning postulates and new sym-
bolic model checking algorithms are presented to formally specify and automatically verify
the system under consideration against some desirable properties expressed in TCTL. A
new model checker extending MCMAS, called MCMAS-T, dedicated to TCTL, along with
its new input language VISPL (Vector-extended ISPL) have been created. However, TCTL
does not support group and propagated trust. Moreover, we will show in this paper that this
logic cannot be extended to accommodate group and propagated trust because of its limited
expressive power. The logic fails to appropriately represent nested trust formulae. We will
present a branching time temporal logic named BT that refines TCTL while being expres-
sive enough to go beyond individual trust and include operators that express the concepts
of everyone trust, distributed trust and propagated trust. We will also analyze the sound-
ness and completeness with regard to a set of postulates and constraints. Furthermore, we
will investigate the model checking and satisfiability problems of this logic using a sound
reduction technique.

Figure 1 gives an overview of the whole framework, which consists of four parts. The
logical part presents the Branching Time Temporal logic BT to reason about individual
and group trust. In the transformation algorithms part, we reduce the problem of model
checking BT to the problem of model checking CTL so that the use of the NuSMV model
checker is made possible. In the complexity analysis part, we utilize the reduction tech-
nique to analyze the computational complexity of the problem of model checking BT. The
implementation part represents the main core of this paper. We present BTT, the BT Trans-
formation tool that automatically transforms a BT model and formulae into a standard CTL
model and formulae. Moreover, the tool interacts automatically with NuSMV as a model
checker for CTL.

The paper is organized as follows. We first present the syntax and semantics of TCTL
and discuss its limitation in Sect. 2. In Sect. 3, we introduce the Branching Trust Logic
(BT). The model checking and satisfiability problems of BT are addressed using a trans-
formation procedure in Sect. 4. The complexity of these problems is analyzed in Sect. 5.

Verification
Results

BT Model

+

Group Trust
Operators

Reducing BT
Into

Model Checking
CTL

To use:

NuSMV

Model Checker

Logical Part Complexity PartTransformation Algorithms

Computing the
Space

Complexity of
Model Checking

BT

Implementation Part

Fig. 1   A schematic view of our approach

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 4 of 31

In Sect. 6, we present the BTT tool that implements our transformation algorithms and its
architecture. Section 7 reveals the experimental results obtained using the tool on two case
studies. We end by concluding the paper in Sect. 8.

2 � Trust computational temporal logic

2.1 � Preliminaries

The semantics of TCTL formulae is interpreted using a model generated from the extended
interpreted systems formalism we introduced in [16]. This formalism that extends the orig-
inal formalism of interpreted systems proposed in [23] explicitly captures the trust rela-
tionship established between agents engaged in an interaction. The original formalism is
composed of:

–	 A set Agt = {1,… , n} of n agents where each agent i ∈ Agt is described by:

–	 A non-empty set of local states Li , which represents the complete information that
the agent can access at any time;

–	 A set of local actions Acti to model the temporal evolution of the system;
–	 A local protocol �i ∶ Li → 2Acti assigning a list of enabled actions that may be per-

formed by agent i in a given local state li;
–	 A local evolution function �i defined as: �i = Li × Acti → Li , which determines the

transitions for an individual agent i between local states;

–	 A set of global states s ∈ S , where each state represents a snapshot of all agents in the
system at a given time. A global state s is a tuple s = (l1 … ln) . The notation li(s) is used
to represent the local state li of agent i in the global state s.

–	 A set of initial global states of the system I ⊆ S;
–	 The global evolution function of the system defined as follows: � ∶ S × ACT ⟶ S ,

where ACT = Act1 ×… × Actn and each component a ∈ ACT is called a joint action,
which is a tuple of actions;

–	 As in [23], a special agent e is used to model the environment in which the agents oper-
ate. e is modeled using a set of local states Le , a set of actions Acte , a protocol �e , and an
evolution function �e.

In [16], we enriched the formalism of interpreted systems with trust function which associ-
ates to each local state li ∈ Li of each agent i ∈ Agt in the global state s ∈ S the trust vision
of the truster towards other agents in the respective state. This vision is recorded in a vec-
tor-based data structure � as values the truster associates to the other members of the sys-
tem This data structure is part of each local state of every agent in the system. Specifically,
the trust function gives rise to a binary relation between two states which in fact combines
the reachability and compatibility of the local states with respect to the recorded values.

Our motivation behind the use of the notion of agents’ vector � is to account for the
interaction that occurs during the execution of MAS. That is, for all states s, s� ∈ S and
i, j ∈ Agt , a vector of size n, where n is the number of agents, is associated with each
local state li ∈ Li of the n agents. The vector � is used to define the trust accessibil-
ity relation ∼i,j . The idea is, the relation ∼i,j relates the states that are considered to be
trustful from the vision of agent i with regard to agent j. Specifically, this is obtained

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 5 of 31  19

by comparing the element �i(j) in the local state li at the global state s (denoted by
li(s)(�

i(j)) ) with �i(j) in the local state li at the global state s′ (denoted by li(s�)(�i(j)) ).
Thus, the trust accessibility of agent i toward agent j does exist between two global
states only if the element value that we have for agent j in the vector of the local states
of agent i for both global states is the same.

Definition 1  (Model of TCTL) Mt = (S, I,R, {∼i,j |(i, j) ∈ Agt2},V) is a model of trust
where: S is a non-empty set of reachable global states for the system; I ⊆ S is a set of
initial global states for the system; R ⊆ S × S is the transition relation; ∼i,j ⊆ S × S is the
direct trust accessibility relation for each truster-trustee pair of agents (i, j) ∈ Agt2 defined
by ∼i,j iff: (1) li(s)(�i(j)) = li(s

�)(�i(j)) and (2) s′ is reachable from s using transitions from
the transition relation R; V ∶ S → 2AP is a labeling function, where AP is a set of atomic
propositions.

Figure 2 depicts an example of a trust accessibility relation between two states s and s′ .
In this example, the solid line represents the transition relation from R, and the dashed line
represents the direct trust accessibility relation ∼i,j between these two states. The state s′
is compatible with s with regard to the trust the agent i has towards agent j. In the figure,
we assign a vector to each agent’s local states as follows: �i and �j are the vectors of i and j
agents respectively. The agent i compares the element of its vector with regard to the agent
j at global states s and s′ . The particular element value of the agent i is the same in both
global states (i.e., �i(j)(s) = �i(j)(s�) = 3).

Definition 2  (Syntax of TCTL) The syntax of TCTL is defined recursively as follows:

The CTL fragment formulae are defined as usual (see [21]). The formula T(i, j,�) called
trust formula is read as “agent i trusts agent j to bring about �”.

Definition 3  (Semantics of TCTL)
Given the model Mt , the satisfaction of a TCTL formula � in a global state s, denoted as

(Mt, s) ⊧ 𝜑 , is recursively defined. The semantics of the CTL fragment is as usual [21]. The
semantics of the operator T is as follows:

(Mt, s) ⊧ T(i, j,𝜑) iff s ⊧ ¬𝜑 and ∀s� ≠ s such that s ∼i,j s
� we have (Mt, s

�) ⊧ 𝜑.

�∶∶ = p | ¬� | � ∨ � | EX� | EG� | E(�U�) | T(i, j,�)

Fig. 2   An example of trust accessibility relation ∼i,j

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 6 of 31

The state formula T(i, j,�) is satisfied in the model Mt at s iff � does not hold in s and
all the trust accessible states s′ that are different from the current state satisfy the content �.

2.2 � Discussion

Although TCTL has been presented with interesting reasoning postulates [15, 16], a deep
analysis of this logic reveals a major paradox resulted from the underlying assumption that
complies with the first postulate in [51] stating that “when the content holds, the trust in
this content is completed and is, therefore, no longer active”. Formally, the postulate is a as
follows:

Indeed, enforcing the condition ¬� to be satisfied in the current state s for the trust to take
place yields the following paradoxical postulate:

which means if there is trust in a content, then there is no trust in this trust. The proof is
straightforward since all accessible states satisfy ¬T(i, j,�) because of the satisfaction of �
in these states and the current state satisfies T(i, j,�).

Therefore, this logic is not suitable to reason about trust properties that need nested trust
formulae to hold. We present then a refined logic that does not have this postulate, so it can
express nested formulae needed for propagated trust, everyone trust and distributed trust.

However, removing the condition that the current state holds ¬� entails that all tautolo-
gies are trusted. Although bringing about tautologies is counter-intuitive, as in the BIAT
logic [54], in practical scenarios and applications, nested trust properties are of capital
importance. For instance, we should be able to express that a patient Pat can trust the trust
judgement that her physician Phy has on a radiologist Rad about recommending biopsies
BiopsyRecomm. This property cannot be expressed in TCTL. In BT, it can be expressed as
follows:

Other examples of propagated trust, everyone trust and distributed trust are discussed in
Sect. 7.

The trust accessibility relation in both TCTL and BT are transitive and not reflexive.
The fact that the trust accessibility relation is not reflexive entails that if an agent i trusts
an agent j about a content � , this content doesn’t necessarily hold in the current state. For-
mally, T(i, j,�) ⇒ � is not a valid formula in both TCTL and BT. However, T(i, j,�) ⇒ ¬�
is a valid formula in TCTL.

3 � Branching trust logic (BT)

3.1 � Syntax, semantics and reasoning postulates

In this section, we start by introducing the syntax and semantics of BT, along with a set
of reasoning postulates. Thereafter, we use the correspondence theory for modal logic to
prove the soundness and completeness of the logic with respect to a certain constraints.

� ⇒ ¬T(i, j,�)

T(i, j,�) ⇒ T(i, j,¬T(i, j,�))

T(Pat,Phy, T(Phy,Rad,BiopsyRecomm))

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 7 of 31  19

Definition 4  (Syntax of BT)
Let G ⊆ Agt be a group of agents, APb a set of atomic propositions, and p an atomic

proposition from the set APb . The syntax of BT is defined recursively as follows:

The formula T represents trust and three notions of group and propagated trust:
ET , DT , and PG

T
 . The formula ET refers to “Everyone trusts” and means that every-

one in the group G trusts agent j to bring about � . Technically, “Everyone trusts” can
be seen as the conjunction of the individual trust of each agent in the group. More-
over, DT denotes “Distributed trust”. That is, the group G has its trust distributed
among its member agents. Propagated trust PG

T
 indicates that a new trust relation-

ship can be derived from preexisting agent’s trust through an ordered sequence (or
chain) of agents G . BT formulae are evaluated over an extended Interpreted System
Mb = (Sb, Ib,Rb, {∼i,j |(i, j) ∈ Agt2},Vb) , which is the same as Mt.

The semantics of group and propagated trust is defined using new accessibility rela-
tions derived from the trust accessibility relation as follows.

Definition 5  (Group/propagation accessibility relations) The group and propagation
accessibility relations are:

–	 ∼E
G,j
=
⋃

i∈G ∼i,j , i.e., the union of the trust accessibility relations between every agent
of the group G and the agent j.

–	 ∼D
G,j
=
⋂

i∈G ∼i,j , i.e., is the intersection of the trust accessibility relations between
every agent in the group G and the agent j.

–	 s ∼
P{i1,…,in−1}

i,j
s� iff there is a chain of states s1,… , sn−1 s.t.

s∼i,i1
s1, s1∼i1,i2

s2,… , sn−1∼in−1,j
s� where {i1,… , in−1} is an ordered sequence (or chain)

of agents.

Definition 6  (Satisfaction) Given the model Mb , the semantics of trust and group trust
operators is recursively defined as follows:

(Mb, s) ⊧ T(i, j,𝜑) iff ∀s� ≠ s such that s ∼i,j s
� , we have (Mb, s

�) ⊧ 𝜑.
(Mb, s) ⊧ ET (G, j,𝜑) iff ∀s� ≠ s such that s ∼E

G,j
s� , we have (Mb, s

�) ⊧ 𝜑.
(Mb, s) ⊧ DT (G, j,𝜑) iff ∀s� ≠ s such that s ∼D

G,j
s� , we have (Mb, s

�) ⊧ 𝜑.
(Mb, s) ⊧ PG

T
(i, j,𝜑) iff ∀s� ≠ s such that s ∼PG

i,j
s� , we have (Mb, s

�) ⊧ 𝜑.

According to the semantics of the propagated trust, a propagated trust formula about
a content � does not hold iff there is an accessible state that does not satisfy � . This
would happen iff there is at least an agent in the propagation chain that cannot be trusted
to bring about �.

Adding an agent j1 at the tail of an ordered sequence of agents G results in an ordered
sequence denoted by G ∪ {j1} . In the same way, adding j1 at the head of G results in an
ordered sequence denoted by {j1} ∪ G . G ∪ G≃ denotes the ordered sequence obtained
by concatenating the elements of the ordered sequence G≃ to the tail of the ordered
sequence G . The following reasoning postulates hold in BT:

�∶∶ =p | ¬� | � ∨ � | EX� | EG� | E(�U�) | T
T∶∶ =T(i, j,�) | ET (G, j,�) | DT (G, j,�) | PG

T
(i, j,�)

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 8 of 31

	P1.	 T(i, j1, T(j1, j2,�)) ⇒ P
{j1}

T
(i, j2,�)

	P2.	 PG

T
(i, j1, T(j1, j2,�)) ⇒ P

G∪{j1}

T
(i, j2,�)

	P3.	 T(i, j1,P
G

T
(j1, j2,�)) ⇒ P

{j1}∪G

T
(i, j2,�)

	P4.	 PG

T
(i, j1,P

G≃

T
(j1, j2,�)) ⇒ P

G∪{j1}∪G≃

T
(i, j2,�)

	P5.	 T(i1, j,�) ∧ T(i2, j,� ⇒ �) ⇒ DT ({i1, i2}, j,�)

	P6.	
⋁
i∈G

T(i, j,�) ⇒ DT (G, j,�)

	P7.	 ET (G, j,�) ⇔
⋀
i∈G

T(i, j,�)

The first four postulates ( P1 − P4 ) capture the trust propagation among agents in one
step (1st postulate) or many steps. Thus, P1 states that if there is a trust from i to j1 about
the trust that j1 has on j2 about � , then there is a propagated trust from i to j2 through
j1 about the same content � . P2 states that if there is a propagated trust from i to j1
through the chain G about the trust j1 has on j2 , then there is a propagated trust from i to
j2 through the chain G augmented with the new element j1 as last element. P3 states that
if there is a trust from i to j1 about a propagated trust from j1 to j2 through the chain G ,
then there is a propagated trust from i to j2 through the chain G augmented by adding j1
as first element. P4 can be explained in the same way. 5th and 6th postulates ( P5 − P6 )
capture the properties of the distributed trust among the group members. Thus, P5 states
that there is a distributed trust from a group of agents towards an agent j about � if some
members of the group have trust about � and others about � ⇒ � . Consequently, even
if no member has trust on j about � , as a group they can build this trust. P6 states that
a distributed trust from a group towards an agent j emerges if at least one agent in the
group has trust on that agent. The 7th postulate (P7) shows the everyone trust property:
the group has trust on j about � iff every member of the group has this trust.

Let us assume the model depicted in Fig. 3 as an example. The state s0 is labeled with
the trust formula from i1 to i2 to bring about � since the unique accessible state s1 via
∼i1,i2

 is labeled with � . As s2 is accessible from s1 via ∼i2,i3
 and labeled with � , the trust

from i2 to i3 about � holds in s1 . Thus, T(i1, i2, T(i2, i3,�)) holds in s0 . Consequently, the
propagated trust P{i2}

T
 from i1 to i3 about � holds in s0 . Notice that s2 is accessible from s0

through ∼P{i2}

i1,i3
 because there is a chain of states s0, s1 , and s2 and chain of agents i1, i2 ,

and i3 linking those states through individual accessibility relations ∼i1,i2
 and ∼i2,i3

.

Fig. 3   Example (a) of a BT model

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 9 of 31  19

Another example of a BT model is illustrated in Fig. 4. The state s0 is labeled with the
trust formulae from i1 to j and from i2 to j to bring about � respectively. From the figure, the
set of states that are accessible from s0 via ∼i1,j

 is {s1} , and the set of states that are accessi-
ble from s0 using ∼i2,j

 is {s1, s2} , so the intersection is {s1} . As a result, {s1} is the only acces-
sible state from s0 using the accessibility relation ∼D

{i1,i2},j
 . Because s1 satisfies � , s0 satisfies

DT ({i1, i2}, j,�) . Further, the everyone trust ET from {i1, i2} to j about � holds in s0 since the
states s1 and s2 are accessible from state s0 via both ∼i1,j

 and ∼i2,j
 , and labeled with �.

3.2 � Soundness and completeness

BT extends the CTL logic. The soundness and completeness of the CTL fragment of
BT derives then from the soundness and completeness of CTL. To prove the soundness
and completeness of the trust fragment of BT with respect to the postulates introduced
in Sect. 3.1, we use the correspondence theory for modal logic introduced by Benthem
[6]. According to this theory, a postulate P corresponds to a constraint C iff P is satisfied
in precisely those models that respect C. Each constraint C represents in fact a class of
models. Thus, correspondence identifies the relationship between the semantics and the
reasoning [50]. Proving the existence of the correspondence between a given set of postu-
lates and associated constraints (i.e., related classes of models) provides the soundness and
completeness for the logic under consideration with respect to any subset of the postulates
[1, 50].

The following constraints define a set of model classes:

	C1.	 s1 ∼i,j1
s2 and s2 ∼j1,j2

s3 iff s1 ∼
P{j1}

i,j2
s3

	C2.	 s1 ∼
PG

i,j1
s2 and s2 ∼j1,j2

s3 iff s1 ∼
PG∪{j1}

i,j2
s3

	C3.	 s1 ∼i,j1
s2 and s2 ∼

PG

j1,j2
s3 iff s1 ∼

P{j1}∪G

i,j2
s3

	C4.	 s1 ∼
PG

i,j1
s2 and s2 ∼

PG≃

j1,j2
s3 iff s1 ∼

PG∪{j1}∪G≃

i,j2
s3

	C5.	 s1 ∼i1,j
s2 and s1 ∼i2,j

s2 iff s1 ∼D
{i1,i2},j

s2

	C6.	
⋀
i∈G

s1 ∼i,j s2 iff s1 ∼D
G,j

s2

Fig. 4   Example (b) of a BT model

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 10 of 31

	C7.	
⋁
i∈G

s1 ∼i,j s2 iff s1 ∼E
G,j

s2

The constraints C1 to C4 define classes of transitive models with respect to a combina-
tion of direct and propagation trust accessibility relations. Thus, C1 defines the class
of models where a direct trust accessibility relation between s1 and s2 and another one
between s2 and s3 yield a propagation accessibility relation between s1 and s3 . C2 and
C3 can be explained in the same way where a propagation accessibility relation is com-
bined with a direct accessibility relation. C4 defines the class of transitive models with
respect to propagation accessibility relations. C5 and C6 define the classes of distrib-
uted models with respect to a group G. In these models, a distributed trust accessibility
relation with respect to G between s1 and s2 exists when the two states are linked by a
direct accessibility relation per agent in the group G. Although the constraint C6 is a
generalization of the constraint C5, we keep both of them to make the correspondence
between the constraints and postulates systematic: the Constraint Ci corresponds to the
Postulate Pi. Finally, the constraint C7 defines the class of models where a group acces-
sibility relation ∼E

G,j
 exists between two states s1 and s2 when a direct accessibility rela-

tion does exist between the two states for at least one agent from the group G.
For each correspondence between a postulate Pi and a constraint Ci, we prove the

two directions: ⇒ , i.e., from the postulate to the constraint; and ⇐ , i.e., from the con-
straint to the postulate.

1. C1 corresponds to P1

Proof  ⇒ . This direction is straightforward from the definition of the propagation accessi-
bility relation (Definition 5) since p ⇒ q is equivalent to ¬p ∨ q.

⇐ . Assume the constraint holds. Then, the states that are accessible from a state s1
through the propagation accessibility relation ∼P{j1}

i,j2
 are exactly those obtained through the

chain composed of the two accessibility relations ∼i,j1
 and ∼j1,j2

 . Consequently, states that
satisfy T(i, j1, T(j1, j2,�) see all the states that satisfy � and accessible through the combi-
nation ∼i,j1

 and then ∼j1,j2
 . These states satisfy � because they are accessible from the states

that satisfy T(j1, j2,�) through ∼j1,j2
 . Thus, any state that satisfies T(i, j1, T(j1, j2,�) satisfies

P
{j1}

T
(i, j2,�) as well, so the result. 	� ◻

2. C2 corresponds to P2

Proof  ⇒ . This direction is straightforward from the definition of the propagation accessi-
bility relation (Definition 5).

⇐ . Assume the constraint holds. Then, (Mb, s1) ⊧ PG

T
(i, j1, T(j1, j2,𝜑)) iff ∀s2 and s3 such

that s1 ≠ s2 ≠ s3 , s1 ∼
PG

i,j1
s2 and s2 ∼j1,j2

s3 , we have (Mb, s3) ⊧ 𝜑 . From the constraint we
obtain (Mb, s1) ⊧ P

G∪{j1}

T
(i, j2,𝜑) , so we are done. 	� ◻

3. C3 corresponds to P3

Proof  ⇒ . This part is direct from Definition 5.
⇐ . Assume the constraint holds. Then, (Mb, s1) ⊧ T(i, j1,P

G

T
(j1, j2,𝜑)) iff ∀s2 such that

s1 ≠ s2 , s1 ∼i,j1
s2 , we have (Mb, s2) ⊧ PG

T
(j1, j2,𝜑) . This equals to ∀s3 such that s2 ≠ s3 ,

s2 ∼
PG

j1,j2
s3 , we have (Mb, s3) ⊧ 𝜑 . Consequently, from the constraint,

(Mb, s1) ⊧ P
{j1}∪G

T
(i, j2,𝜑) follows, so the result. 	� ◻

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 11 of 31  19

4. C4 corresponds to P4

Proof  ⇒ . This part is direct from Definition 5.
⇐ . Assume the constraint holds. Then, (Mb, s1) ⊧ PG

T
(i, j1,P

G≃

T
(j1, j2,𝜑)) iff ∀s2 and s3

such that s1 ≠ s2 ≠ s3 , s1 ∼
PG

i,j1
s2 and s2 ∼

PG≃

j1,j2
s3 , we have (Mb, s3) ⊧ 𝜑 . Consequently,

(Mb, s1) ⊧ P
G∪{j1}∪G≃

T
(i, j2,𝜑) follows from the constraint, so the result. 	� ◻

5. C5 corresponds to P5

Proof  ⇒ . This part is direct from Definition 5.
⇐ . Assume the constraint holds. Then, (Mb, s1) ⊧ T(i1, j,𝜑) ∧ T(i2, j,𝜑 ⇒ 𝜓) iff ∀s2 such

that s1 ≠ s2 and s1 ∼i1,j
s2 , we have (Mb, s2) ⊧ 𝜑 , and ∀s2 such that s1 ≠ s2 and s1 ∼i2,j

s2 ,
we have (Mb, s2) ⊧ 𝜑 ⇒ 𝜓 . This implies, ∀s2 such that s1 ≠ s2 , s1 ∼i1,j

s2 and s1 ∼i2,j
s2 , we

have (Mb, s2) ⊧ 𝜑 ∧ 𝜑 ⇒ 𝜓 , so, (Mb, s2) ⊧ 𝜓 . Consequently, from the constraint we obtain
(Mb, s2) ⊧ DT ({i1, i2}, j,𝜓) , so we are done. 	� ◻

6. C6 corresponds to P6

Proof  ⇒ . This part follows from Definition 5.
⇐ . Assume the constraint holds. Then, (Mb, s1) ⊧

⋁
i∈G

T(i, j,𝜑) iff ∃i1 ∈ G such that ∀s2

such that s1 ≠ s2 and s1 ∼i1,j
s2 , we have (Mb, s2) ⊧ 𝜑 . This implies, ∀s2 such that s1 ≠ s2 , ⋀

i∈G

s1 ∼i,j s2 , we have (Mb, s2) ⊧ 𝜑 . Consequently, from the constraint we obtain

(Mb, s2) ⊧ DT (G, j,𝜑) , so the result. 	� ◻

7. C7 corresponds to P7

Proof  ⇒ . This part follows from Definition 5.
⇐ . Assume the constraint holds. Then, (Mb, s1) ⊧

⋀
i∈G

T(i, j,𝜑) iff ∀i ∈ G and ∀s2 such

that s1 ≠ s2 and s1 ∼i,j s2 , we have (Mb, s2) ⊧ 𝜑 . This holds iff,
⋁
i∈G

s1 ∼i,j s2 , we have

(Mb, s2) ⊧ 𝜑 . Consequently, from the constraint we obtain (Mb, s2) ⊧ ET (G, j,𝜑) , so the
result. 	� ◻

The existence of the previous correspondences proves the following theorem:

Theorem 1  (Soundness and completeness) The logic generated by any subset of postu-
lates P1 − P7 is sound and complete with respect to models that satisfy the corresponding
constraints: C1 − C7.

4 � Transformation procedure

To address the model checking and satisfiability problems of BT, we introduce a trans-
formation procedure [19] that allows us to leverage the model checking and satisfiability
procedures of CTL [21, 22]. Our technique consists of applying certain reduction rules
in order to transform the problem at hand to an existing model checking problem. In fact,
transformation has been acknowledged as an alternative mechanism for verifying various

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 12 of 31

MASs aspects. The main advantage of this technique is that it enables the designers of
MASs applications to get benefit from powerful and already tested model checkers [2,
20, 36]. Indeed, we have attempted a transformation from TCTL model checking to CTL
model checking in [14]. However, this approach does not capture the alignments between
source and target models, which results in unsound transformations. Technically, the trans-
formation algorithms for both the model and formulae overlook some critical cases. More
precisely, the technique provided for the model consists of adding transitions to represent
the accessibility relations, and so, it does not distinguish between original transitions in
the original TCTL model and the transitions added in the CTL model. It turns out that
some formulae with temporal operators EX and U become true in the transformed CTL
model while they are false in the original example model. As a concrete example, consider
the original model on the left-hand side of Fig. 5 and suppose that a proposition p is true
in s2 (and only in s2 ). As a consequence, EXp is false in s0 of that model. However, the
translated model on the right-hand side contains a temporal transition from s0 to s2 resulted
from transforming the accessibility relation between these two states in the original model.
This transition makes the formula EXp true in the state s0 of the transformed model, which
should not be the case. �i�j are fresh atomic propositions that are added in accessible states
to recognize the accessibility relations is the transformed model.

Our new procedure avoids these problems by capturing accessibility relations through
distinguishable states and transitions using atomic propositions added in the transformed
CTL formulae.

4.1 � From BT model to CTL model

In this section, we start by recalling the definition of the CTL model needed for the trans-
formation algorithm.

Definition 7  (Model of CTL) A CTL formula is interpreted over a Kripke structure
Mc = (Sc,Rc, Ic,Vc) , where: Sc is a non-empty set of states for the system; Rc ⊆ Sc × Sc is
the transition relation; Ic ⊆ Sc is a set of possible initial global states for the system; and
Vc ∶ Sc → 2APc is a labeling function that maps each state to the set of CTL propositional
variables APc holding in it.

Having presented the CTL model, the next step is to establish our transformation pro-
cedure. Given a BT model Mb = (Sb,Rb, Ib, {∼i,j |(i, j) ∈ Agt2},Vb) , Algorithm 1 shows
how this model, taken as input, is transformed into a CTL model Mc = (Sc,Rc, Ic,Vc) as
output. Initially, the output model Mc has the same set of system states, initial states,
transitions and valuation function as Mb (i.e., Sc = Sb ; Ic = Ib ; Rc = Rb ; and Vc = Vb ).
Thus, at the beginning, the states of Mc are labeled with the same atomic propositions

Fig. 5   An example of the transformation Algorithm presented in [14]

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 13 of 31  19

as the states in Mb . We define a new set of fresh atomic propositions Prop for the CTL
logic needed to represent the trust accessibility relations to capture the semantics of
trust operators. Moreover, we define a new atomic proposition � for CTL that will be
used to preserve the actual temporal transition relation by distinguishing the added
states and transitions from the original ones in Mb . The set APc is then defined as the set
APb augmented with � and the atomic propositions �ij, �EGj, �DGj , and �PGij for the indi-
vidual, group, and propagated trust accessibility relations for all the agents i, j, groups
G and chains G . These atomic propositions are metavariables for the trust formulas. The
algorithm proceeds to transform the trust accessibility relations for all the agents. First,
it checks if there is an accessibility relation between each pair of distinct states s and s′ .
Based on the type of all the possible accessibility relations, it assigns a specific atomic
proposition to the set Prop. A new state s′′ is added to the set of system states Sc along
with new transitions from s to s′′ and from s′′ to s′ in Rc . The idea behind adding a new
state along with the transitions is to capture the accessibility relations in Mb through
new distinguishable states, transitions and atomic propositions in the transformed
CTL formulae. Thus, the trust formula T(i, j,�) for instance will be transformed into
AX(�ij

⇒ AXf (�)) . The two next operators AX reflect the added state and the two added
transitions, and the antecedent �ij in the implication is to insure that we are considering
a new added state, which is labeled by the atomic proposition �ij . Further, the new state
s′′ is labeled with � and the atomic propositions in the set Prop in order to distinguish
the states that are accessible from any other next state that satisfies the trust formulae
without having accessibility to the current state. However, to avoid adding many states
for different accessibility relations between the same two states, the algorithm checks if
s′′ is already added for another accessibility relation. If s′′ already exists, the algorithm
will only add the atomic propositions Prop to mark the accessible state for any other
interacting agents.

Finally, the algorithm returns the transformed model Mc after iterating over all the
transitions.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 14 of 31

Proposition 1  (Boundedness of model transformation) Let Mc be the model obtained
from Mb using Algorithm 1 and |Mc| and |Mb| be the size of Mc and Mb respectively.
|Mc| < 3|Mb|

Proof  Let |Ab| be the number of accessibility relations in Mb , i.e.,
|Ab| = |{∼i,j |(i, j) ∈ Agt2}| . We have: |Mc| = |Sc| + |Rc| and |Mb| = |Sb| + |Rb| + |Ab| . In
the worst case, each pair of distinct states (s, s�) ∈ Rb is connected by exactly one accessibil-
ity relation. Since each accessibility relation is translated into one state and two transitions
in Mc , we obtain: |Mc| = |Sb| + |Rb| + 3|Ab| . In the general case, more than one accessible
state might exist between each pair of states. Since the other accessibility relations benefit
from the already added states and transitions, we obtain: |Mc| ≤ |Sb| + |Rb| + 3|Ab| . The
result then follows. 	� ◻

4.2 � From BT formulae to CTL formulae

Algorithm 2 illustrates the formulae transformation function defined over the structure of
the original BT formula. The function is recursive with the propositional variables of APb
being the base case ( APb ⊂ APc ). For the temporal operators, we need to make sure that the
transformation does not affect the CTL semantics. That is, since a new state and new transi-
tions are added to the corresponding model Mc , we have to make sure that the path through
which a formula is satisfied in the original model Mb is still satisfied in the corresponding
path of the translated model Mc . Indeed, this is the main reason behind the conjunction of
¬� for the temporal operators. This allows us to exclude the additional state and transitions
when we consider the satisfaction of the formulae. For instance, the formula EX� is trans-
formed into a CTL formula stating that there exist a path in the next state where the transfor-
mation of � and the negation of the atomic proposition � (added to represent the temporal
transition) is true in this state. For the trust, group trust, and propagated trust modalities,
each formula is transformed inductively into CTL according to the defined semantics as
follows: along each path, if the next state on that path satisfies the corresponding atomic
proposition (from the set Prop), then the next state of the added state also satisfies the trans-
formation of the trust content � . The state that satisfies the fresh propositional variable is the
added state to capture the corresponding accessibility, which explains the double use of AX.

In Fig. 6, an example illustrating the transformation of a BT model is demonstrated. On

the left side of the figure (part a), the model Mb consists of three global states s0 , s1 , and s2 .
The state s2 is accessible from s0 via the accessibility relation ∼i,j . Furthermore, T(i, j, p)

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 15 of 31  19

holds in s0 while the formula EXp does not hold. Using the proposed transformation tech-
nique, the model Mb is transformed into the CTL model Mc of the right side (part b) as fol-
lows: the temporal transitions in Mb are transformed into transition relations in Mc . Further,
the accessibility relation in Mb is transformed in Mc as follows: new state s02 is added to the
set of states in Mc (i.e., s02 ∈ Sc ) along with two new transitions : (s0, s02) and (s02, s2) . The
atomic propositions �ij and � are also added to represent the accessibility relation. Moreo-
ver, each state formula in BT is transformed into a CTL formula using the transformation
function f. It is easy to see that the formula EXp does not hold in Mc as desired. Moreover,
the formula T(i, j, p) is transformed into f(T(i, j, p) in state s0 . The transformed formula
AX(�ij

⇒ AXp) holds in s0 thanks to the added state and transitions as desired.

Proposition 2  (Boundedness of formula transformation) Let � be a BT formula and f
the transformation function defined in Algorithm 2. There exists a constant k such that
|f (𝜑)| < k|𝜑|, where |�| is the length of �.

Proof  The proof is by induction on the structure of the formula.

–	 The result holds for the base case (atomic propositions).
–	 For the formula � = ¬� , we have |f (�)| = |f (�)| + 1 . Therefore, by assumption that the

proposition holds for the formula � , ∃k1 such that |f (𝜙)| < k1|𝜑| + 1 . Since |𝜑| < |𝜙| ,
and |𝜙| > 1 , we get |f (𝜙)| < (k1 + 1)|𝜙| , so the proposition.

–	 For the formula � = EX� , we have |f (�)| = |f (�)| + 4 . Therefore, by assumption
that the proposition holds for the formula � , ∃k1 such that |f (𝜙)| < k1|𝜑| + 4 . Since
|𝜑| < |𝜙| , and |𝜙| > 1 , we get |f (𝜙)| < (k1 + 4)|𝜙| , so the proposition. The proof for
EG� is similar.

–	 For the formula � = E(� ∪ �) , we have |f (�)| = |f (�)| + |f (�)| + 7 . Thus. by
assumption that the proposition holds for the formulae � and � , ∃k1, k2 such that
|f (𝜙)| < k1|𝜑| + k2|𝜓| + 7 . Because |𝜑| < |𝜙| , |𝜓| < |𝜙| , and |𝜙| > 1 , we obtain
|f (𝜙)| < (k1 + k2 + 7)|𝜙| . The proof for � ∨ � is similar ( k = k1 + k2 + 1).

–	 For the formula � = T(i, j,�) , we have f (T(i, j,�)) = AX(�ij
⇒ AXf (�)) . Thus,

|f (�)| = |f (�)| + 4 , and by assumption that the proposition holds for the formula � , ∃k1
such that |f (𝜙)| < k1|𝜑| + 4 . Since |𝜑| < |𝜙| , and |𝜙| > 1 , we get |f (𝜙)| < (k1 + 4)|𝜙| ,
so the proposition. The proof is similar for the group and propagated trust formulae
ET ,DT , and PG

T
.

	� ◻

(a) (b)

Fig. 6   An example of the BT transformation Algorithm

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 16 of 31

4.2.1 � Model checking

Given a BT model Mb representing a MAS and a BT formula � describing the property
that the model Mb has to satisfy, the problem of model checking BT is the problem of veri-
fying whether or not Mb ⊧ 𝜑 . The introduced transformation procedure provides a solution
to this problem, by simply calling the model checking procedures of CTL as stated by the
following theorem.

Theorem 2  (BT model checking) Let Mb and � be respectively a BT model and formula
and let f (Mb) and f (�) be the CTL model and formula obtained via Algorithms 1 and 2 .
We have (Mb, s) ⊧ 𝜑 iff (f (Mb), s) ⊧ f (𝜑).

Proof  We prove this theorem by induction on the structure of the formula �.

–	 For the propositional variables from the set APb , the result is straightforward (notice
that APb ⊂ APc ). The result is also direct for the negation and disjunction cases.

–	 For the formula � = EX� , we have (Mb, s) ⊧ EX𝜑 iff there exists an immediate succes-
sor to s where � holds. Consequently, from the definition of f (Mb) and f (�) , we obtain
(Mb, s) ⊧ EX𝜑 iff (Mc, s) ⊧ EX(f (𝜑) ∧ ¬𝜒) . That is, we are excluding the new added
path as this path will never be considered because next state (the added state) has � and
we are forcing ¬�.

–	 For the formula � = E(� ∪ �) , and from the definition of f, (f (�) ∧ ¬�) ∪ (f (�) ∧ ¬�)
captures the semantics of Until in CTL which states the existence of a path starting in
the current state that satisfies (� ∧ ¬�) until reaching a state in which (� ∧ ¬�) holds,
where only original temporal transitions are considered.

–	 The trust formula: T(i, j,�) . AX(�ij
⇒ AXf (�)) captures the semantics of the trust for-

mula where all accessible states (those satisfying �ij in Mc ) should satisfy � . The proof
is similar for the group and propagated trust formulae.

	� ◻

4.2.2 � Satisfiability

Given a BT formula � , the satisfiability of BT is the problem of deciding if there exists a
model Mb such that Mb ⊧ 𝜑 . As for model checking problem, the transformation procedure
provides also a solution for the BT satisfiability problem.

Theorem 3  (BT satisfiability) Let � be a BT formula and f (�) the CTL formula obtained
via Algorithm 2. We have � is satisfiable iff f (�) is satisfiable.

Proof  The right implication is direct from Theorem 2 because if there is a model Mb sat-
isfying � , then f (Mb) that satisfies f (�) does exist. For the left implication, we can prove
by induction on the structure of the formula that if there is a model Mc that satisfies f (�) ,
we can always find a model M′

c
 that satisfies the same formula where states satisfying fresh

propositional variables from APc ⧵ APb do not satisfy any other non-fresh propositional
variable from APb . From M′

c
 we can construct a model Mb s.t. f (Mb) = M�

c
 . 	� ◻

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 17 of 31  19

5 � Complexity analysis

In this section, we will first analyze the time complexity of model checking BT with
regard to the size of the explicit model Mb and length of the formula to be checked.
Since we are using symbolic model checking of CTL, we will also analyze the space
complexity of model checking BT for concurrent programs [32] with respect to the
size of the components of these programs and length of the formula. The complexity of
the BT satisfiability problem will end this section.

A concurrent program P as introduced in [32], is composed of n concurrent pro-
cesses Pi (modules, protocols, or agents). Each process is described by a transi-
tion system Di defined as follows: Di = (APi,ACi, Si,�i, s

0
i
, Li) where APi is a set

of local atomic propositions, ACi is a local action alphabet, Si is a finite set of local
states, 𝛥i ⊆ Si × ACi × Si is a local transition relation, s0

i
∈ Si is an initial state, and

Li ∶ Si → 2APi is a local state labeling function.
A concurrent behavior of these processes is obtained by their product which can be

described using a global transition system D. The transition actions that appear in sev-
eral processes are synchronized by common actions. The transition system D is defined
as follows: D = (AP,AC, S,�, s0, L) where:

–	 AP =
⋃n

i=1
APi;

–	 AC =
⋃n

i=1
ACi;

–	 S =
∏n

i=1
Si . The ith component of a state s ∈ S is denoted by s[i];

–	 (s, a, s�) ∈ � iff:

1.	 for all 1 ≤ i ≤ n such that a ∈ ACi we have(s[i], a, s�[i]) ∈ �i , and
2.	 for all 1 ≤ i ≤ n such that a ∉ ACi we have s[i] = s�[i];

–	 s0 = (s0
1
, s0

2
, s0

3
,… , s0

n
);

–	 L(s) =
∏n

i=1
Li(s[i]) for every s ∈ S.

As our approach is transformation-based, we start by analyzing the time complexity
of transforming the BT model and formula with respect to explicit models, where all
states and transitions are enumerated. Specifically, we prove that these two transforma-
tions are linear with respect to both the input BT model and the formula. The linear
complexity of these two transformations entails the P-completeness of the BT model
checking problem in explicit models. Given that, we proceed to analyze the space com-
plexity of the BT model checking problem and prove its PSPACE-completeness with
respect to concurrent programs where the model has the form of a synchronized prod-
uct of agent programs. Indeed, our motivation behind considering the complexity of
our model checking procedure for concurrent programs that provide compact represen-
tations of the systems to be checked is that in practice, existing model checking tools
(e.g., MCMAS and NuSMV) do not support explicit representations where states and
transitions are listed explicitly (as Kripke-like structures). In fact, only local states and
transitions of each component are represented. Therefore, the actual system can still be
represented by combining local states and transitions to build reachable states.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 18 of 31

5.1 � Model checking time complexity

In this subsection, we will prove that model checking BT in explicit models is P-complete,
so it can be done in a polynomial running time with respect to the size of the model and
length of the formula.

Theorem 4  (Explicit BT model checking: upper bound) The BT model checking problem
can be solved in time O(|Mb| × |�|).

Proof  BT can be reduced to CTL, and it is known from [11] that CTL model checking
can be done in a linear time with respect to the size of the CTL model and formula, i.e.,
O(|f (Mb)| × |f (�)|) . From Proposition 1, |f (Mb)| < 3|Mb| , i.e., the size of f (Mb) is linear
with the size of Mb . Moreover, from Proposition 2, the length of f (�) is linear with the
length of � . Indeed, Algorithm 2 takes the BT formula � as input and writes recursively the
corresponding CTL formula according to the structure of � . The time complexity of trans-
forming the BT formula is linear with respect to the length of the input formula � . This
follows from the fact that (1) the length of the recursion is bounded by the size of the input
formula � , and (2) the size of f (�) is bounded by the size of � , so the theorem. 	� ◻

Theorem 5  (Explicit BT model checking: completeness) The BT model checking problem
is P-complete.

Proof  Membership (i.e., upper bound) in P follows from Theorem 4. Hardness (i.e., lower
bound) in P is a result of the polynomial reduction from model checking CTL proved to be
P-complete [48]. 	� ◻

5.2 � Model checking space complexity

In this subsection, we will prove that the complexity of BT model checking for concurrent
programs is PSPACE-complete. This result means that there is an algorithm solving the
problem in polynomial space in the size of the components constituting concurrent pro-
grams and the length of the formula being model checked.

Theorem 6  (Polynomial reduction of BT model checking: upper bound) Let ⊑psr denote
the polynomial-space reduction. The problem of model checking BT can be reduced into
the problem of model checking CTL in a polynomial space, i.e., MC(BT) ⊑psr MC(CTL).

Proof  The transformation of the BT model and BT formula into the corresponding CTL
model and formula could be computed by a deterministic Turing Machine (TM) in space
O(log n) where n is the size of the input BT model, and polynomial space w.r.t. the length
of the BT formula. For the model, TM reads in the input tape a model of BT and produces
in the output tape, one-by-one, the same states including the initial ones and the same valu-
ations. Then, for the transitions (s, s�) in the input model, it writes one-by-one, the transi-
tions in the set Rc . It also reads the accessibility relations ∼i,j between two given states
in the input model one-by-one and for each one, it adds an intermediate state to the set
Sc labeled with two fresh propositional variables: 1) �ij that depends on the accessibility
relation, and 2) � , along with two transitions if such a state does not already exist; other-
wise, only the propositional variable �ij is added. The group and propagated accessibility

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 19 of 31  19

relations are done in the same way. All these writing operations are clearly logarithmic in
space because this transformation is done on-the-fly, step-by-step. Moreover, we showed
in Proposition 2 that any BT formula is transformable into a CTL formula whose length is
linearly bounded by the length of the input formula. All these recursive transformations are
clearly polynomial space in the length of the input formula, so the theorem. 	� ◻

Theorem 7  (rmBT Model Checking for Concurrent Programs: Completeness) The space
complexity of the BT model checking for concurrent programs is PSPACE-complete with
respect to the size of the components of these programs and the length of the formula.

Proof  Since model checking CTL is PSPACE-complete for concurrent programs [48], the
lower bound of model checking BT is PSPACE as well. In fact, BT subsumes CTL as it
integrates the CTL modalities and the trust modalities. The upper bound in PSPACE fol-
lows from Theorem 6, so the result. 	� ◻

5.3 � Satisfiability complexity

Theorem 8  (BT satisfiability: completeness) The BT satisfiability problem is
EXPTIME-complete.

Proof  Membership. Using the result of Theorem 3, we can imagine an EXPTIME algo-
rithm that solves the BT satisfiability problem as follows: (1) Transform the input BT for-
mula � to the CTL formula f (�) using Algorithm 2. As mentioned in the proof of Theo-
rem 4, this can be done in a linear time; (2) Call the algorithm to solve the satisfiability of
f (�) which can be done in EXPTIME [22]. Hardness. The hardness follows from the fact
that BT subsumes CTL proven to be EXPTIME-complete [22]. 	� ◻

6 � Implementation

6.1 � General overview of the tool

To exemplify the theoretical complexity results and check the effectiveness and scalabil-
ity of our transformation techniques, we implemented the transformation procedures and
developed the BTT tool1that automatically: (i) transforms a given BT model and formulae
to a corresponding CTL model and formulae; and (ii) interacts with the NuSMV model
checker in order to perform the verification process. BTT consists of modules implement-
ing the proposed transformation algorithms (Algorithms 1 and 2). Broadly speaking, BTT
takes as input a BT model and automatically generates the required SMV modules based
on the given interacting agents. Then, the tool uses the NuSMV model checker engine
as a core component to perform the verification process. Moreover, the tool is explicitly
designed to compute the different sorts of accessibility relation and accessible states. That
is, considering the various types of group and propagation accessibility relations (described
in Definition 5) results in different computations and implementations by the tool.

1  The BT Transformation (BTT) tool is available at: https://​users.​encs.​conco​rdia.​ca/​~benta​har/​BTTra​nsfor​
matio​nTool.​zip

https://users.encs.concordia.ca/%7ebentahar/BTTransformationTool.zip
https://users.encs.concordia.ca/%7ebentahar/BTTransformationTool.zip

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 20 of 31

The tool is implemented as a transformation platform that integrates the transforma-
tion algorithms and the NuSMV verification engine, with the goal of making it robust,
well structured and flexible. BTT provides an integrated API (Application Programming
Interface) environment organized into a set of different modules and includes several
phases. Each module is responsible for a task and entirely independent of the rest to
allow for more natural changes and possible extensions in the future, ranging from the
underlying model checker, to the delivery mechanism (website instead of desktop appli-
cation), to the supported languages. The implementation process of Algorithm 1 relies
on an API that produces the target model from the input one. The challenging part of
the API is the computation of the accessibility relations from the input model using the
conditions in Definition 1. The API then loops over all the accessibilities calculated
from the model and adds the corresponding transitions.

The implementation of Algorithm 2 is particularly challenging as it requires the
design and implementation of an adequate parser. We have implemented a parser that
checks the legality of the BT syntax and generates the intended transformed formulae.
The parser also supports other capabilities, such as displaying error messages if the
input file does not comply with the defined BT grammar. To do so, we used the provided
ANother Tool for Language Recognition (ANTLR), integrated capabilities. ANTLR is a
powerful parser generator that can process and translate structured text. It takes as input
a simple grammar file describing the language and automatically generates a lexer and
a parser that can construct parse-trees. BTT provides an extensible CTL ANTLR gram-
mar file augmented with the definitions of the trust modalities and other modalities can
be easily added. Our framework then uses the grammar files to construct a parser that
would recognize these rules and apply them to the referenced language. Moreover, the
ANTLR generated lexer is responsible for tokenizing the input stream. The parser then
recognizes the defined rules and generates abstract syntax trees so that a tree-walker
artifact can be used to browse the nodes and produce the desired application-specific
behavior.

6.2 � BTT architecture

The main component of BTT is the core framework, which is the back-end portion of
the tool. Figure 7 gives a high level description of the BTT architecture. The core frame-
work has three primary modules:

–	 Transformation Module: is responsible for all the parsing and transformation from the
BT logic into the CTL logic. It is also responsible for generating the SMV output file
to be used with NuSMV. From a functional point of view, it consists of two different
libraries: the Transformation API and the Transformation Engine. Technically, the API
exposes a set of abstract classes and interfaces to allow the user to implement transfor-
mations of both the model and the formulae. The engine, on the other hand, is responsi-
ble for the actual transformation process and is made flexible so that other use-defined
transformations can be integrated. Broadly specking, the engine supports ANTLR (Ver-
sion 4) generated parsers, lexers, and tree-walkers. We designed the engine to support
these artifacts by fully taking into account the ANTLR generation scheme meta-model.
This tool also offers the added benefit of allowing the engine to support any LL(*)
grammar, as well as adaptive LL(*) grammars [39–41].

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 21 of 31  19

–	 Accessibility Engine: offers an API for the users to define their accessibility rela-
tionships. It then uses the said definitions to calculate the accessibility relations
automatically from the model.

–	 NuSMV Bridge Interface: communicates natively with NuSMV and offers the tool
the capabilities to interact with NuSMV. It bypasses the NuSMV interactive shell by
directly making calls to the core NuSMV API.

Figure 8 illustrates the main interface after invoking the BTT tool. This GUI window
provides graphical access to the BT model description. BTT is designed to process
models written in the VISPL language [16], the extended version of the ISPL language.
It offers scalability mode that allows the designers to use a VISPL file description of
the design as an input to the tool. This mode allows for the processing of large systems
of multiple agents. That is, the interface enables designers to upload the BT behavioral
model by selecting the Upload BT Model button. The scrolling window in the figure
specifically depicts the uploaded original model description.

Core Framework
Transformation Module

Transformation Engine

Transformation API

AP
I M

od
ul

es

ANTLR Generated Parser

Lexer

Parser

NuSMV Bridge Interface

Listener

Tokens

Abstract Syntax Tree

Rule Nodes

Accessibility Engine

Ba
se

 L
ib

ra
rie

s

NuSMV Model Checker

Fig. 7   General architecture of the BTT tool

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 22 of 31

Once the BT model is successfully uploaded and parsed, the designers can automatically
generate the corresponding SMV modules by pressing the Generate SMV Model button.

Figure 9 reports the second window where the transformation process of the model
and formula is taking place. That is, the input behavioral model is processed by the tool
where it configures its states, transition relations between the expected states, and the
required atomic propositions and formulae. Notice from the figure that the left panel
displays the generated SMV encoding modules, which constitute a CTL model. The
generated model is obtained from the input encoding model using the transformation
procedures presented in Algorithms 1 and 2 through the following steps:

–	 The set of interacting agents are extracted as a set of SMV modules instantiated in the
main module using the VAR keyword along with local states and vector variables.

–	 Local actions in the Actions section of the BT model are transformed into input vari-
ables in the SMV module using the IVAR statement.

Fig. 8   A snapshot of the BTT GUI startup window

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 23 of 31  19

–	 The local transitions between local states are transformed using the keywords TRANS, and
use the next and case expressions to define transitions by means of propositional formulae.

–	 The initial states of each agent in the BT model are transformed to the corresponding
ones under the INIT expression.

–	 The DEFINE keyword declares the atomic propositions extracted from the BT model.
–	 Each BT formula is transformed into the corresponding CTL formula using the SPEC

keyword.

To verify the constructed CTL model and temporal logic formulae, the generated model is
executed using the NuSMV model checker by clicking the button Launch NuSMV. The
tool provides full access to all the NuSMV features. For instance, the verification results in
the right panel of the figure display the number of reachable states and total time in mil-
liseconds. The total time is the sum of the time of transforming the behavioral model, the
time of transforming the formulae, and the verification time. Furthermore, Time/For-
mula button gives the user an information dialog box about the transformation time of
each individual formula (Fig. 10).

It is wroth mentioning that the framework is coded mainly in the JAVA programming
language and its related technologies.

7 � Evaluation and experimental results

In this section, we test the performance of the BTT tool in two application domains along
with a set of experiments. In particular, we consider the computation of the set of reachable
states, the time for constructing the CTL model and formulae, and the model checking pro-
cessing time. Our aim is to show the capabilities of BTT in transforming, analyzing, and
verifying the presented protocols.

Fig. 9   A snapshot of the generated SMV modules and verification results

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 24 of 31

7.1 � First case study: ordering protocol

We used the well-known ordering protocol that regulates the interaction between seller and
buyer agents introduced in [13] and was modelled by various authors [18, 20]. The protocol
starts with the buyer requesting the price quote for one or more items from the seller, which
replies with an offer. Once the former accepts the offer and the agreed payment is received,
the seller starts the delivery. Trusting that the seller will deliver the items as expected (in terms
of delivery time, quality of the received items, etc.) and allowing a group of buyers to work
together to order complex and large items are important aspects that we consider in this paper.
Our motivation is to formalize the protocol requirements using a BT model and express a set of
properties using the BT logic. We also aim to check the scalability aspect of our technique.

We started by encoding two interacting agents: seller and buyer and the environment agent
that facilitates the communication among these agents. We incremented gradually the num-
ber of agents to have more complicated scenarios. We encoded each agent using the VISPL
input language of the MCMAS-T model checker introduced in [16]. We described each agent
in the system by declaring its main components such as its local states including agent’s vector,
declared by means of variables that cannot be observed by other agents to represent the acces-
sibility relations between agents. In fact, considering the accessibility relations between agents
by encoding the vector variables allows us to give a group of agents the possibility to establish
the trust towards other agents. We also encoded the local actions that are performed in accord-
ance with a local protocol, local transitions, and initial states for each agent. We have considered
a certain modeling interleaved technique where each agent in the system is paired with other
agents and all the resulting agents move in a parallel way. We used the Explicit inter-
active mode feature in the MCMAS-T tool that runs the system in interactive mode to vali-
date our modeling and check if it functions as intended. Thereafter, we used our transformation
tool to transform the VISPL-like language model and BT formulae into a standard SMV model
and CTL formulae in order to start the verification process using the NuSMV model checker.

Fig. 10   A snapshot of the information dialog box

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 25 of 31  19

To verify the correctness of the protocol scenario at design time, we have to express a set
of properties. We used the safety (something bad will never happen) and liveness (some-
thing good will eventually occur) properties along with some reachability properties. All
these properties express relevant and desirable business logic properties. These classes of
properties have been widely investigated in different contexts, see for instance [16, 20, 28].
Formally, the safety property �1 expresses the negation of a bad situation where 1) there
is trust from everyone in the group Gr of buyers (e.g., Gr = {Buyer1,Buyer2,Buyer3} )
towards the seller with regard to deliver the requested goods as expected; and 2) the pay-
ment is fulfilled, but the delivery as expected never happened.

The liveness property �2 states that in all paths globally, it is always the case that if there is
distributed trust from the group Gr to the seller about a complex delivery together with the
global payment that has been received, then the complex delivery as expected by the group
would eventually happen in all possible executions. In this property, we can imagine that
each buyer in the group may have different trust information towards the seller about some
particular delivery aspects Deliveri of the complex delivery CompDeliver, but no buyer,
individually, has the full trust information of the seller about the entire delivery process.

where:

We also checked some reachability properties such as:

For example, the formula �3 checks whether or not there exists a possibility that every
member in the group trusts the seller for delivering the requested goods as expected. The
properties �4 and �5 are similar. The properties that involve group trust are intuitive and
desirable in many business scenarios where organizations, such as coalitions, are in place.
Table 1 reports the results of 15 experiments about the verification of the order protocol
against the system properties. In the table, the number of reachable states (States#) and the
total transformation time of model and formulae along with the execution time in millisec-
onds are functions of the number of agents (Agents#).

7.2 � Second case study: breast cancer diagnosis and treatment

Our second case study is the Breast Cancer Diagnosis and Treatment (BCDT)2 pro-
tocol as an illustrative application example to show how our model checking technique
can efficiently be applied on a medical health care platform to check trust and group trust

�1 = AG ¬(ET (Gr, Seller, AF DeliverGood) ∧ Payment ∧ AG ¬DeliverGood)

�2 =AG(DT (Gr, Seller, AF CompDeliver) ∧ Payment ⇒ AF CompDeliver)

CompDeliver =

n⋀

i=1

Deliveri

�3 =EF ET (Gr, Seller, AF DeliverGood)

�4 =EF T(Seller, Buyer, AF Payment)

�5 =EF DT (Gr, Seller, AF CompDeliver)

2  Available at: http://​aspe.​hhs.​gov/​sp/​repor​ts/​2010/​PathR​ad/​index.​shtml

http://aspe.hhs.gov/sp/reports/2010/PathRad/index.shtml

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 26 of 31

properties. The BCDT protocol is introduced by the Assistant Secretary for Planning and
Evaluation (ASPE) project to be used for regulating the interaction between five partici-
pating parties involved in the cancer diagnosis process. These parties are: patient (Pat),
physician (Phy), pathologist (Path), radiologist (Rad), and registrar. In [29, 53], the
authors formalized this scenario in terms of commitments, identifying the contractual busi-
ness relationships among the parties involved. Indeed, such relationships can be founded
as a basic of defining trust specifications as requirements for engineering contracts among
parties.

The process of the BCDT protocol starts with diagnosing the patient. If a suspicious
mass is detected, the patient is immediately directed by the physician to the radiology
department to do a mammography. Based on the patients’ diagnosis result, a notification
is sent to the physician to recommend a biopsy if the radiologist detects calcification in the
image. The physician requests then the radiologist to carry out a biopsy. The radiologist
collects a tissue specimen from the patient and then sends it to the laboratory along with
pertinent clinical information for further analysis by the pathologist. This latter analyzes
the tissue specimen through imaging studies and determines whether a malignant disease
is present or not. Both the radiologist and pathologist generate a report of their collec-
tive findings. Finally, the physician reviews the complete report with the patient to decide
about a treatment plan. At the same time, the pathologist forwards the report to the regis-
trar whose role is to insert the patient information into the cancer registry.

According to this protocol, five parties are involved in the cancer diagnosis process
along with an environment agent e added to the system to model the BCDT process. In
this scenario, the trust relationships between the participating parties express the sys-
tem requirements that regulate the interacting agents. These requirements are specified
using our BT logic. Indeed, trust relationships among parties evolve with interactions,
and the following atomic propositions represent potential states in the evolution of these
relationships: SuspMassDetected for suspicious mass detected, MammoRefer for
mammography referral, CalcDetected for calcification detected, BiopsyRecomm
for biopsy recommended, TissueAnaly for tissue analysis, BiopsyPerform for

Table 1   Verification results of ordering protocol

Exp.# Agents# States# Model time (ms) Formulae time (ms) Total time (ms)

1 3 8 0.1903 48.0540 275
2 6 64 0.2472 136.2960 15840
3 9 512 0.4707 299.7260 34695
4 12 4096 0.8608 458.3440 60840
5 15 32768 1.2175 812.1500 94275
6 18 262144 1.4408 1021.1440 135000
7 21 2097152 2.0307 1385.3260 183015
8 24 16777216 2.7872 1604.6960 238320
.
.
.
13 39 5.49756E+11 6.3687 4829.3660 1141358
14 42 4.39805E+12 7.3248 5479.8640 1323705
15 45 3.51844E+13 8.3475 6285.5500 1519560

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 27 of 31  19

perform a biopsy, and SpecialTissueAnaly for a special (advanced) tissue analysis.
The involved parties must have the possibility of reaching states in which some of these
propositions hold. Thus, the trust relationships are instantiated and help prospective agents
decide how should they trust other agents. Considering the same criteria of the first case
study results, we report nine experiments in Table 2 for BCDT.

The following protocol properties are expressed in the BT logic to check the correctness
of the process model.

These formulae express reachability and liveness properties. For example, the formula
�1 encodes the fact that there exists a state reachable from the initial state, such that the
patient trusts the physician to refer her to do a mammography upon the detection of a sus-
picious mass. The formula �2 expresses the possibility where every physician in the group
GrP of physicians trusts the radiologist to recommend a biopsy for further clinical assess-
ment when suspicious calcification is being detected. The formula �3 states a case where
the physician trusts the pathologist through a radiologist (i.e., propagated trust) to analyze
the sample tissue if an appropriate biopsy is recommended. The property �4 encodes a
case where we have different radiologists in the system and a chain of trust R exists among
them about the abilities to perform a biopsy. This trust is propagated to the physician. The
property �5 states the case where the trust is distributed in the group GrR of radiologists
towards the pathologist about the capability of the pathologist laboratory to perform an
advanced tissue analysis. We can imagine the case where one of the radiologists in the
group trusts the pathologist laboratory about the capability of performing this special
analysis on the condition that the laboratory is equipped with some state of the art facili-
ties, and another radiologist trusts that the pathologist laboratory has recently obtained this
advanced facilities.

�1 = EF T(Pat, Phy, SuspMassDetected ⇒ AF MammoRefer)

�2 = EF ET (GrP, Rad, CalcDetected ⇒ AF BiopsyRecomm)

�3 = EF P
{Rad}

T
(Phy, Path, BiopsyRecomm ⇒ AF TissueAnaly)

�4 = EF PR

T
(Phy, Rad, EF BiopsyPerform)

�5 = EF DT (GrR, Path, AF SpecialTissueAnaly)

Table 2   Verification results of the BCDT protocol

Exp.# Agents# States# Model time (ms) Formulae time (ms) Total time (ms)

1 6 45 0.8567 14.1657 3046
2 12 2025 1.2939 106.9290 22084
3 18 91125 1.9741 353.6423 71969
4 24 4100625 2.9122 829.6642 167552
5 30 184528125 4.1003 1610.3535 323688
6 36 8303765625 5.5384 2771.0689 555228
8 48 1.68151E+13 9.1153 6534.0135 1303936
9 54 7.56681E+14 11.3528 9286.9601 1850810

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 28 of 31

7.3 � Performance evaluation

The experimental results in Tables 1 & 2 are intended to give a comprehensive perfor-
mance evaluation of the BT transformation tool. The testbed of these experiments is run-
ning on a machine Intel(R) Core(TM) i7-6700 CPU - 3.40GHZ with 16 GB memory. We
considered different number of agents. Our motivation to do so is to achieve different lev-
els of scalability that makes the problem complex enough to observe significant results.
For each case study, we report the number of agents (Agent#), the number of reachable
states (States#), the model transformation time that denotes the construction time needed
for transforming the model in milliseconds, the formulae transformation time in millisec-
onds, and the total time calculated based on the transformations and verification times. The
experiments revealed that all the tested formulae are satisfied. By increasing the number of
agents in each experiment, we can observe that the number of reachable states are growing
exponentially as we expected. However, the tool shows a significant performance in terms
of verification time in each experiment for both case studies when the number of inter-
acting agents are increased. For instance, for the standard ordering protocol scenario, we
tested the satisfaction of various temporal formulae within a BT model having a large state-
space of 3.51844E+13 states and aggregated from 45 agents in 1519.56 seconds execution
time (i.e., the transformation time of both the models and formulae, and the time of the
verification process). We were also able to check the BCDT scenario with up to 54 agents
with state-space achieving 7.56681E+14 in only 1850.81 seconds. This has been achieved
thanks to the high efficiency of the CTL model checking to which the model checking of
BT is transformed. It is clear that the transformation times of both the models and formu-
lae increase only logarithmically with regard to the number of states. Moreover, in both
case studies, the total time shows a clear polynomial increase. Although the increase rate
is much higher when the number of agents increases, it is still polynomial with the number
of states. In fact, we are unable to provide a full comparison of these results to other imple-
mentations as, to the best of our knowledge, there is no model checker tool that can be used
to verify properties of group and propagated trust as we do in this work.

8 � Conclusion

In this paper, we presented a formal framework that allows individual and group of agents
to reason about their trust toward other agents. In particular, we proposed a branching time
temporal logic BT which includes operators that express concepts such as everyone trust,
distributed trust and propagated trust. We analyzed the satisfiability and model checking
problems of this logic using a reduction technique. We have presented a software tool
developed in JAVA for the automatic transformation from BT model checking to CTL
model checking. Two multi-agent systems scenarios have been encoded and experimen-
tal results have been presented confirming the effectiveness of our approach. For future
work, we plan to continue improving the developed BT tool by adding some key features
to enable designers to: (1) design the local system of each agent by graphically drawing the
required local states, transitions, and the desirable properties; and (2) automate the analysis
of counter-examples to identify and indicate the source of errors. Moreover, we plan to
analyze the interaction between group commitment and trust, including quantitative group
trust [4] from both, specification and model checking standpoints.

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 29 of 31  19

References

	 1.	 Al-Saqqar, F., Bentahar, J., & Sultan, K. (2016). On the soundness, completeness and applicability of
the logic of knowledge and communicative commitments in multi-agent systems. Expert Systems with
Applications, 43, 223–236.

	 2.	 Al-Saqqar, F., Bentahar, J., Sultan, K., Wan, W., & Asl, E. K. (2015). Model checking temporal knowl-
edge and commitments in multi-agent systems using reduction. Simulation Modelling Practice and
Theory, 51, 45–68.

	 3.	 Bataineh, A. S., Bentahar, J., El Menshawy, M., & Dssouli, R. (2017). Specifying and verifying con-
tract-driven service compositions using commitments and model checking. Expert Systems with Appli-
cations, 74, 151–184.

	 4.	 Bentahar, J., Drawel, N., & Sadiki, A. (2022). Quantitative group trust: A two-stage verification
approach. In The International Conference on Autonomous Agents and Multiagent Systems, (pp.
20–20).

	 5.	 Bentahar, J., El-Menshawy, M., Qu, H., & Dssouli, R. (2012). Communicative commitments: Model
checking and complexity analysis. Knowledge-Based Systems, 35, 21–34.

	 6.	 Benthem, J. (1984). Correspondence theory. In D. Gabbay & F. Guenthner (Eds.), Handbook of Philo-
sophical Logic (Vol. 2, pp. 167–247). Springer.

	 7.	 Castelfranchi, C., & Falcone, R. (1998). Principles of trust for MAS: cognitive anatomy, social impor-
tance, and quantification. In The Third International Conference on Multiagent Systems, ICMAS, (pp.
72–79).

	 8.	 Chakraborty, P. S., & Karform, S. (2012). Designing trust propagation algorithms based on simple
multiplicative strategy for social networks. Procedia Technology, 6, 534–539.

	 9.	 Christianson, B., & Harbison, W.S. (1996). Why isn’t trust transitive? In International Workshop on
Security Protocols, (pp. 171–176). Springer.

	10.	 Clarke, E. M., Emerson, A., & Sifakis, J. (2009). Model checking: Algorithmic verification and debug-
ging. Communications of the ACM, 52(11), 74–84.

	11.	 Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model Checking. MIT Press.
	12.	 Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence,

42(2–3), 213–261.
	13.	 Desai, N., Mallya, A. U., Chopra, A. K., & Singh, M. P. (2005). Interaction protocols as design abstrac-

tions for business processes. IEEE Transactions on Software Engineering, 31(12), 1015–1027.
	14.	 Drawel, N., Bentahar, J., El-Menshawy, M., & Laarej, A. (2018). Verifying temporal trust logic using

CTL model checking. In The 20th International Trust Workshop co-located with AAMAS/IJCAI/ECAI/
ICML, (pp. 62–74).

	15.	 Drawel, N., Bentahar, J., & Shakshuki, E. (2017). Reasoning about trust and time in a system of agents.
In The 8th International Conference on Ambient Systems, Networks and Technologies (ANT),Procedia
Computer Science, (Vol. 109, pp. 632–639).

	16.	 Drawel, N., Qu, H., Bentahar, J., & Shakshuki, E. M. (2020). Specification and automatic verification
of trust-based multi-agent systems. Future Generation Computer Systems, 107, 1047–1060.

	17.	 El Kholy, W., Bentahar, J., El Menshawy, M., Qu, H., & Dssouli, R. (2014). Modeling and verify-
ing choreographed multi-agent-based web service compositions regulated by commitment protocols.
Expert Systems with Applications, 41(16), 7478–7494.

	18.	 El Kholy, W., Bentahar, J., El Menshawy, M., Qu, H., & Dssouli, R. (2017). SMC4AC: A new sym-
bolic model checker for intelligent agent communication. Fundamenta Informaticae, 152(3), 223–271.

	19.	 El-Menshawy, M., Bentahar, J., & Dssouli, R. (2010). Symbolic model checking commitment proto-
cols using reduction. In The 8th International Workshop on Declarative Agent Languages and Tech-
nologies VIII, DALT. Lecture Notes in Computer Science, (Vol. 6619, pp. 185–203).

	20.	 El Menshawy, M., Bentahar, J., El Kholy, W., & Laarej, A. (2018). Model checking real-time condi-
tional commitment logic using transformation. Journal of Systems and Software, 138, 189–205.

	21.	 Emerson, A. (1990). Temporal and modal logic. In: Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Sematics, (pp. 995–1072). MIT Press.

	22.	 Emerson, A., & Halpern, J. Y. (1985). Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and System Sciences, 30(1), 1–24.

	23.	 Fagin, R., Halpern, J. Y., Vardi, M. Y., & Moses, Y. (1995). Reasoning about knowledge. MIT
Press.

	24.	 Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. MIT Press.
	25.	 Herzig, A., Lorini, E., & Moisan, F. (2012). A simple logic of trust based on propositional assign-

ments. In F. Paglieri, L. Tummolini, & R. Falcone (Eds.), The Goals of Cognition. Essays in Hon-
our of Cristiano Castelfranchi, Tributes (pp. 407–419). College Publications.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:19

1 3

19  Page 30 of 31

	26.	 Huang, X., Kwiatkowska, M., & Olejnik, M. (2019). Reasoning about cognitive trust in stochastic
multiagent systems. ACM Transactions on Computational Logic, 20(4), 21:1-21:64.

	27.	 Jamali, M., & Ester, M. (2010). A matrix factorization technique with trust propagation for recom-
mendation in social networks. In The ACM Conference on Recommender Systems, RecSys, (pp.
135–142). ACM.

	28.	 Kafalı, O., Ajmeri, N., & Singh, M.P. (2017). Kont: Computing tradeoffs in normative multiagent
systems. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, (pp. 3006–
3012). AAAI’17.

	29.	 Kholy, W. E., Bentahar, J., Menshawy, M. E., Qu, H., & Dssouli, R. (2014). Conditional commit-
ments: Reasoning and model checking. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 24(2), 1–49.

	30.	 Kong, J., & Lomuscio, A. (2017). Model checking multi-agent systems against LDLK specifica-
tions. In IJCAI, pp. 1138–1144.

	31.	 Kouvaros, P., Lomuscio, A., Pirovano, E., & Punchihewa, H. (2019). Formal verification of open
multi-agent systems. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, (pp. 179–187).

	32.	 Kupferman, O., Vardi, M. Y., & Wolper, P. (2000). An automata-theoretic approach to branching-
time model checking. Journal of the ACM, 47(2), 312–360.

	33.	 Liu, F., & Lorini, E. (2017). Reasoning about belief, evidence and trust in a multi-agent setting. In
International Conference on Principles and Practice of Multi-agent Systems, (pp. 71–89)

	34.	 Lomuscio, A., & Michaliszyn, J. (2016). Model checking multi-agent systems against epistemic HS
specifications with regular expressions. In Fifteenth International Conference on the Principles of
Knowledge Representation and Reasoning

	35.	 Lomuscio, A., & Michaliszyn, J. (2016). Verification of multi-agent systems via predicate abstrac-
tion against ATLK specifications. In AAMAS

	36.	 Lomuscio, A., Pecheur, C., & Raimondi, F. (2007). Automatic verification of knowledge and time
with NuSMV. In Proceedings of the Twentieth International Joint Conference on Artificial Intel-
ligence, (pp. 1384–1389). IJCAI/AAAI Press.

	37.	 Marsh, S. (1994). Formalising trust as a computational concept. Ph.D. thesis, University of Stirling
	38.	 Nayak, A., Chhogyal, K., Ghose, A., & Hoa, D. (2019). A value based trust assessment model for

multi-agent systems. In 28th International Joint Conference on Artificial Intelligence, IJCAI.
	39.	 Parr, T. (2013). The Definitive ANTLR 4 Reference (1st ed.). The Pragmatic Programmers: The

Pragmatic Bookshelf.
	40.	 Parr, T., & Fisher, K. (2011). LL(*): The foundation of the ANTLR parser generator. In: M.W. Hall,

D.A. Padua (eds.) In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, June 4–8, 2011, (pp. 425–436). ACM

	41.	 Parr, T., Harwell, S., & Fisher, K. (2014). Adaptive LL(*) parsing: The power of dynamic analy-
sis. In: A.P. Black, T.D. Millstein (eds.) In: Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland October 20–24, 2014, (pp. 579–598). ACM

	42.	 Penczek, W., & Lomuscio, A. (2003). Verifying epistemic properties of multi-agent systems via
bounded model checking. Fundamenta Informaticae, 55(2), 167–185.

	43.	 Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, (pp. 46–57)

	44.	 Primiero, G. (2016). A calculus for distrust and mistrust. In: Trust Management X-10th IFIP WG
11.11 International Conference, IFIPTM. IFIP Advances in Information and Communication Tech-
nology, (Vol. 473, pp. 183–190).

	45.	 Primiero, G. (2020). A logic of negative trust. Journal of Applied Non-Classical Logics, 30(3),
193–222.

	46.	 Primiero, G., & Raimondi, F. (2014). A typed natural deduction calculus to reason about secure
trust. In Twelfth Annual International Conference on Privacy, Security and Trust, (pp. 379–382).
IEEE Computer Society.

	47.	 Sardana, N., Cohen, R., Zhang, J., & Chen, S. (2018). A Bayesian multiagent trust model for social
networks. IEEE Transactions on Computational Social Systems, 5(4), 995–1008.

	48.	 Schnoebelen, P. (2002). The complexity of temporal logic model checking. In: The 4th conference on
Advances in Modal Logic, (pp. 393–436).

	49.	 Singh, M. P. (2008). Semantical considerations on dialectical and practical commitments. In: AAAI
(Vol. 8, pp. 176–181).

Autonomous Agents and Multi-Agent Systems (2022) 36:19	

1 3

Page 31 of 31  19

	50.	 Singh, M.P. (2008). Semantical considerations on dialectical and practical commitments. In: D. Fox,
C.P. Gomes (eds.) In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
AAAI, Chicago, July 13–17, (pp. 176–181). AAAI Press.

	51.	 Singh, M.P. (2011). Trust as dependence: A logical approach. In: The 10th International Conference
on Autonomous Agents and Multiagent Systems, (pp. 863–870)

	52.	 Sultan, K., Bentahar, J., Wan, W., & Al-Saqqar, F. (2014). Modeling and verifying probabilistic multi-
agent systems using knowledge and social commitments. Expert Systems with Applications, 41(14),
6291–6304.

	53.	 Telang, P. R., Kalia, A. K., & Singh, M. P. (2015). Modeling healthcare processes using commitments:
An empirical evaluation. PLoS ONE, 10(11), e0141202.

	54.	 Troquard, N. (2014). Reasoning about coalitional agency and ability in the logics of “bringing-it-
about’’. Autonomous Agents and Multi-agent Systems, 28(3), 381–407.

	55.	 Viganò, F., & Colombetti, M. (2009). Verifying organizations regulated by institutions. In V. Dignum
(ed.) Handbook of Research on Multi-Agent Systems-Semantics and Dynamics of Organizational
Models, (pp. 367–396). IGI Global.

	56.	 Wahab, O. A., Bentahar, J., Otrok, H., & Mourad, A. (2018). Towards trustworthy multi-cloud services
communities: A trust-based hedonic coalitional game. IEEE Transactions on Services Computing,
11(1), 184–201.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Formal verification of group and propagated trust in multi-agent systems
	Abstract
	1 Introduction
	2 Trust computational temporal logic
	2.1 Preliminaries
	2.2 Discussion

	3 Branching trust logic (BT)
	3.1 Syntax, semantics and reasoning postulates
	3.2 Soundness and completeness

	4 Transformation procedure
	4.1 From BT model to CTL model
	4.2 From BT formulae to CTL formulae
	4.2.1 Model checking
	4.2.2 Satisfiability

	5 Complexity analysis
	5.1 Model checking time complexity
	5.2 Model checking space complexity
	5.3 Satisfiability complexity

	6 Implementation
	6.1 General overview of the tool
	6.2 BTT architecture

	7 Evaluation and experimental results
	7.1 First case study: ordering protocol
	7.2 Second case study: breast cancer diagnosis and treatment
	7.3 Performance evaluation

	8 Conclusion
	References

