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Abstract
Selecting a subset of candidates with various attributes under fairness constraints has been 
attracting considerable attention from the AI community, with applications ranging from 
school admissions to committee selections. The fairness constraints are usually captured by 
absolute upper bounds and/or lower bounds on the number of selected candidates in spe-
cific attributes. In many scenarios, however, the total number of selected candidates is not 
predetermined. It is, therefore, more natural to express these fairness constraints in terms 
of proportions of the final selection size. In this paper, we study the proportional candidate 
selection problem, where the goal is to select a subset of candidates with maximum cardi-
nality while meeting certain proportional fairness constraints. We first analyze the com-
putational complexity of the problem and show strong inapproximability results. Next, we 
investigate the algorithmic aspects of the problem in two directions. First, by treating the 
proportional fairness constraints as soft constraints, we devise two polynomial-time algo-
rithms that could return (near) optimal solutions with bounded violations on each fairness 
constraint. Second, we design an exact algorithm with a fast running time in practice. Sim-
ulations based on both synthetic and publicly available data confirm the effectiveness and 
efficiency of our proposed algorithms.

Keywords  Multi-winner selections · Proportional fairness constraints · Variable number of 
winners · Soft constraints
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1  Introduction

The problem of selecting a collection of alternatives from a larger pool has a wide 
range of applications in the AI realm, ranging from qualified school admissions [1, 2, 
15, 18, 19, 24, 25] to representative program committee selections  [3, 9, 12, 16, 17, 
26, 31]. To ensure sufficient representation of minorities, a number of recent research 
turn their attention to the issue of fairness. In the literature, the fairness constraints are 
usually defined based on attributes (or types) of candidates [9, 12]. Consider forming 
a program committee for an AI conference, for example. In order to ensure fairness 
among different sub-areas, one may want to diversify the selection and make sure that 
at least a certain number of senior members are selected in each sub-area.

Formally speaking, consider a set of n candidates and a set of m characterization 
attributes such as expertise, gender, or region. Each candidate is associated with some 
attributes. Then the fairness constraints on the selected candidate set S require that 
given non-negative integers lj and uj , S should contain at least lj and/or at most uj candi-
dates for each attribute j ∈ [m].

However, in many scenarios, the fairness constraints expressed using absolute val-
ues are inadequate. Take school enrollment as an example [14]. In 1989, each school 
in the city of White Plains (New York) was required to have the same proportions 
of Blacks, Hispanics, and “Others” (which includes Whites and Asians). The plan 
allowed for a discrepancy among schools of only 5 percent. Translating this require-
ment to fairness upper bound constraints with absolute numbers, it (roughly) means 
that a school of capacity 1,000 can have at most about 350 students from each racial 
category. However, this translation relies on a critical assumption that the school will 
always be fully allocated, which is often not the case in real life. For example, the 
enrollment has dropped from 426,215 in 2000 to about 350,535 in 2013 observed 
by Chicago Public Schools, resulting in almost 50 percent of the schools being half-
empty. If the school of capacity 1,000 ends up only enrolling 500 students, the abso-
lute-valued fairness constraints may lead to a worst-case of 0 students enrolled in a 
specific category! This situation may render the fairness requirement null and void and 
lead to a clearly undesirable situation.

Consider another motivated example where an online streaming platform would 
like to buy a set of movies from a database. Each movie can be described by multiple 
attributes, e.g., genre, country, length, and so on. Due to the limited slots in the plat-
form, the online streaming platform may have an upper bound on the size of selected 
movies. The platform may also impose some fairness (or diversity) requirements on 
different attributes, e.g., at least 40 percent of selected movies are drama. Then the 
platform wants to select a maximum set of movies according to the diversity criteria.

In this paper, we investigate this issue by looking at the proportional candidate 
selection problem, where the goal is to select a subset of candidates while satisfying 
certain proportional fairness constraints. Specifically, the proportional fairness con-
straints require that, for every attribute j ∈ [m] , the selected candidate set S has at least 
�j fraction and at most �j fraction of candidates that possess this attribute. Note that the 
proportional constraints can be trivially satisfied by selecting an empty set. Instead, 
we are interested in finding a feasible set of maximum size under an overall capacity 
constraint.
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1.1 � Our contributions

We present both hardness and algorithmic results for the proportional candidate selec-
tion problem in this paper. In Sect. 3, we first consider the computational complexity of 
the problem. Our first result is a hardness result on finding even a non-empty feasible 
solution.

Theorem 1  (NP-hardness of feasibility) It is NP-hard to check whether there is a nonempty 
feasible solution of the proportional candidate selection problem.

Consequently, this leads to the following strong inapproximability result of the optimi-
zation problem.

Corollary 1  (Inapproximability) The proportional candidate selection problem is NP-hard 
to approximate within any ratio � ≥ 1.

Given the intractability of the proportional candidate selection problem, it naturally 
leads to two algorithmic questions:

–	 Can we devise a polynomial time algorithm if we treat the fairness constraints soft (e.g., 
each proportional fairness constraint can be violated by a small additive/multiplicative 
factor)?

–	 Can we design time-efficient algorithm that runs fast in practice even though the worst-
case running time remains exponential?

In this paper we answer both questions in the affirmative, and our proposed algorithms are 
verified through various experiments in Sect. 5.

Algorithms with Soft Constraints. We first give a randomized rounding algorithm in 
Sect. 4.1:

Theorem 2  (Informal) Under mild conditions, for some 0 < 𝜖 < 1 , with positive probability 
our randomized algorithm produces a solution with size at least 1 − � fraction of the opti-
mum size while each constraint (including the capacity constraint) is violated by at most a 
multiplicative ratio of (1 + �)∕(1 − �).

The algorithm utilizes randomized rounding of the linear programming relaxation, and 
the approximation is guaranteed by the concentration property using Chernoff bounds.

Then, in Sect.  4.2 we give another polynomial time algorithm that returns a solution 
with bounded additive violations on all fairness constraints. More specifically, we have the 
following:

Theorem 3  (Informal) Our deterministic algorithm produces a solution with size at least 
the optimum solution while the capacity constraint is not violated and each fairness con-
straint is violated by at most an additive error of 2� + 1 , where � is the maximum number 
of attributes that a candidate can have.

The algorithm makes use of the iterative method (see [27]) developed for solving many 
combinatorial optimization problems.
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Exact Solution. In the second direction, we focus on exact algorithms to the propor-
tional candidate selection problem in Sect. 4.3. A commonly used method in practice is to 
formulate the NP-hard problem as an Integer Linear Programming (ILP) and directly apply 
an ILP solver to solve it. While in our algorithm, we first enumerate the possible value of 
the optimum solution, and solve a “constant” version of the problem for each of our guess. 
Intuitively, this straightforward decomposition can reduce the number of nonzero coeffi-
cients in the ILP, which leads to faster implementation in practice. Moreover, we propose 
an iterative framework that guesses the optimum solution in a more efficient way, leading 
to fewer iterations of solving the “constant” versions.

1.2 � Related works

Fairness in Computational Social Choice. There is a growing literature in computational 
social choice on fairness issues. In particular, some previous works considered the assign-
ment and matching mechanisms subject to either lower- or upper-bound constraints on dif-
ferent types of objects [1, 2, 4, 7, 8, 13, 15, 18, 19, 24, 25, 28, 30]. Most of these works 
made use of absolute values in their lower- and/or upper-bound covariants, which have dis-
tinct difference with our model where proportional fairness constraints are imposed. The 
only exception is the work by [28] where their model only deals with the special case that 
each candidate only has one attribute. Our model is more general in the sense that we allow 
each candidate to possess multiple attributes.

As a further related topic, fair division in computational social choice deals with fair 
allocations of resources to interested participants. The literatures in this field can be cate-
gorized by the types of resources to be allocated: divisible resources (e.g., [29]), indivisible 
resources (e.g., [10]), and their combination (e.g., [6]).

Variable Winners in Multiwinner Voting Problem. Another related line of research on 
fairness (or diversity) constraints is on the multiwinner voting problem [3, 9, 12, 26]. In the 
standard setting of the multiwinner voting problem, the winning sets are required to have 
exactly a fixed number of k candidates. Thus it is natural to use absolute values, instead 
of proportions, to capture the fairness constraints. Some researchers also noticed that the 
number of winners could be variable in some real-world scenarios [17, 22, 31]. However, 
none of these works addressed the proportional fairness constraints.

There are three research works  [9, 12, 26] that are most closely related to our work 
in this area. First, Lang and Skowron [26] considered the problem of multi-attribute pro-
portional representation where the goal is to look for a set of fixed size that fits as much 
as possible the desired distribution on all attributes according to some criteria, e.g., mini-
mizing the sum of differences between the proportion of the committee and the desired 
distribution. Although they discussed the proportionality issues, in their setting, the size 
of selected set is predefined instead of a variable number, which means those lower and 
upper quotas for attributes can be viewed as absolute numbers. Another major difference 
is that our objective is to maximize the size of selected candidates based on proportional 
fairness constraints while their focus is on minimizing the distribution difference, which 
makes our setting orthogonal to theirs. Bredereck et al. [9] and Celis et al. [12] focused 
on the problem of selecting a committee with maximum score (e.g., a submodular func-
tion over the committee) subject to fairness/diversity constraints on the attributes of the 
candidates, where the fairness/diversity requirements are modeled using absolute values. 
On the other hand, our model study the case when the size of committee is variable and 
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the fairness conditions are proportional to the size of committee. In Sect. 6.1 we provide a 
detailed technical comparison between previous works [9, 12, 26] and ours.

2 � Preliminaries

Consider a set C of n candidates and a set P of m properties (or attributes) where each 
candidate i possesses a set of properties Pi ⊆ P . Moreover, let � be the maximum number 
of properties that a candidate can possess, i.e., � = maxi∈C |Pi| . We use “attributes” and 
“properties” interchangeably in this paper.

We first define the proportional fairness constraints. Denote � = {�1,… , �m} and 
� = {�1,… , �m} where 0 ≤ �j ≤ �j ≤ 1 for all j ∈ [m].

Definition 1  Given candidate set C and �, � , a subset C′ ⊆ C of candidates is said to sat-
isfy the proportional fairness constraints with � and � if for each property j ∈ P , the num-
ber of candidates in C′ that have property j is at least �j|C′| and at most �j|C′| , i.e.,

Now we are ready to define our main problem.

Definition 2  Given a set of candidates C, a set of properties P, fairness parameters �, � 
and the cardinality threshold k, the Proportional Candidate Selection Problem aims to find 
a subset of candidates C′ of maximum size, such that |C′| ≤ k and C′ satisfies all propor-
tional fairness constraints. We denote |C′| ≤ k as the cardinality constraint.

Integer Linear Programming formulation. Let pij = 1 if candidate i has attribute j and 
pij = 0 otherwise. The proportional candidate selection problem can be easily formulated 
as the following ILP:

Here xi is a binary variable that represents whether or not candidate i is selected in the 
solution. The natural linear relaxation of ILP (1-4), which is denoted by LP (1-4), is to 
replace xi = {0, 1} with xi ∈ [0, 1] for each element i ∈ C in Constraint (4). We also denote 
���1−4 and ��1−4 as optimum values of ILP (1-4) and LP (1-4), respectively. It is clear that 
��1−4 ≥ ���1−4 . Similar notations can be defined analogously for other ILPs.

Case Study on University Enrollment Data We provide a case study about student 
enrollment at UC Berkeley. This case study will be used to facilitate a better understanding 

�j|C�| ≤ |{i ∈ C� ∣ j ∈ Pi}| ≤ �j|C�|.

(1)max.
∑

i∈C

xi

(2)s. t. �j
∑

i∈C

xi ≤
∑

i∈C

pijxi ≤ �j
∑

i∈C

xi ∀j ∈ P,

(3)
∑

i∈C

xi ≤ k

(4)xi ∈ {0, 1}∀i ∈ C.
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of our techniques and will be tested against various algorithms in the experimental study 
(Sect. 5.2).

Background: Many universities consider fairness (or diversity) as a priority issue 
in their enrollment process. For example, as stated by UC Berkeley’s Strategic Plan for 
Equity, Inclusion, and Diversity, 1 a goal is to “create a critical mass of talented students 
[...] that will fully represent California’s excellence and diversity.” At present, UC Berkeley 
does not represent the diversity of the state. Part of the work of the Division of Equity and 
Inclusion is to help redress this lack of representation at UC Berkeley.

Data Collection: We collect data based on the international student enrollment report 
(2018) from UC Berkeley  2. Each student is characterized by four categories: Gender, 
Major, Region, and Type. See Table 1 for the data statistics and fairness parameter setting 
(the details are deferred to Sect. 5.2). Note that in this case study, the number of attributes 
m = 17 and the maximum number of attributes that a candidate can possess � = 4.

3 � Hardness results

We investigate the computational complexity of the proportional candidate selection prob-
lem and show hardness results in this section.

Given the NP-hardness of the general candidate selection problem with absolute-
valued constraints [9, 12], it is not surprising that the proportional candidate selection 

Table 1   Dataset characterization 
and parameter setting

Categories Attributes Propor-
tions 
(%)

�j (%) �j (%)

Gender Female 50 48 52
Male 50 48 52

Major Col. Letters and Science 60 59 60
Col. Engineering 21 20 21
Col. Natural Resources 6 5 6
Col. Chemistry 4 4 5
Col. Environmental Design 4 4 5
Sch. Business 5 4 5

Region Africa 2 2 100
East Asia and the Pacific 61 50 60
Europe and Eurasia 13 10 13
Near East 2 2 100
South and Central Asia 11 10 11
Western Hemisphere 11 10 11

Type Undergraduate 51 50 51
Graduate 41 40 41
Transfer 8 7 8

1  https://​diver​sity.​berke​ley.​edu/​repor​ts-​data/​diver​sity-​data-​dashb​oard.
2  https://internationaloffice.berkeley.edu/sites/default/files/student-stats2018.pdf.

https://diversity.berkeley.edu/reports-data/diversity-data-dashboard
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problem is also NP-hard. In the following we show an even stronger claim: We prove 
that it is NP-hard even to decide whether there exists a nonempty feasible solution.

Theorem 1  It is NP-hard to check whether there is a nonempty feasible solution of the pro-
portional candidate selection problem.

Our proof idea is as follows. We will construct a problem instance, in which all the 
feasible solutions are restricted to have value either 0 or a specific nonzero number 
(say, k′ ). Then we will show that, even knowing the value of k′ , it is NP-hard to decide 
whether there exists a feasible solution with value k′ for this instance.

We are ready to prove Theorem 1:

Proof  (Proof of Theorem  1) We reduce the NP-hard problem of Exact Cover by 3-Sets 
(X3C) [21] to our proportional candidate selection problem. Given a set F of 3k1 elements 
and a collection T of k2 triples (i.e., three-element subsets of F), the X3C problem asks 
whether there exists a sub-collection T ′ of T with size k1 such that every element in F 
appears in exactly one triple in T ′.

Given an X3C instance, we construct our proportional candidate selection problem 
instance as follows. For each element and each triple in the X3C problem, we have a cor-
responding property (for an element) j in P and a corresponding candidate (for a triple) i 
that has exactly 3 properties in C. We additionally have a special candidate i∗ and a special 
property j∗ where i∗ only has a single property j∗ and j∗ is only possessed by a single candi-
date i∗ . Thus we have |P| = 3k1 + 1 and |C| = k2 + 1 . Let �j = �j = 1∕(k1 + 1) for all j ∈ P . 
This implies that we require each property is contained in exactly 1∕(k1 + 1) fraction of the 
size of selected candidates (i.e., the inequalities in Constraint (2) become equalities for all 
properties).

Given the construction, we show that every nonempty solution to the proportional can-
didate selection problem must 

1.	 Contain the candidate i∗ with property j∗ ; and
2.	 Have value of k1 + 1.

The reason is as follows. Let C′ be a feasible solution of size k′ > 0 . The correctness 
of part (1) can be easily seen as candidate i∗ is the only candidate with property j∗ and 
𝛼j∗ = 1∕(k1 + 1) > 0.

Next we prove part (2) using the counting argument. We focus on the properties 
in P ⧵ {j∗} . Since each candidate except i∗ has exactly 3 properties by construction and 
i∗ ∈ C� by part (1), all candidates in C� ⧵ {i∗} will have 3(|C�| − 1) = 3(k� − 1) proper-
ties (counting multiplicity) in total. On the other hand, since �j = �j = 1∕(k1 + 1) for all 
j ∈ P , every property in P ⧵ {j∗} must be possessed by exactly k�∕(k1 + 1) candidates in 
C� ⧵ {i∗} . Therefore the total number of properties (counting multiplicity) possessed by 
all candidates in C� ⧵ {i∗} is (|P| − 1) ⋅ k�∕(k1 + 1) = 3k1 ⋅ k

�∕(k1 + 1) . Thus we have 
3(k� − 1) = 3k1 ⋅ k

�∕(k1 + 1) , which implies that k� = k1 + 1.
Since each property in this feasible solution is possessed by exactly k�∕(k1 + 1) = 1 can-

didate in C′ . A nonempty solution C′ to the proportional candidate selection problem thus 
implies an exact cover C� ⧵ {i∗} of X3C.
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On the other hand, given an exact cover T ′ for an instance of X3C, it is easy to see that 
T � ∪ {i∗} is a feasible solution to the corresponding instance of the proportional candidate 
selection problem. This concludes the reduction and the proof of this theorem. 	�  ◻

Furthermore, we have the following inapproximability result for proportional candidate 
selection problem, which can be directly derived from Theorem 1.

Corollary 1  (Inapproximability) The proportional candidate selection problem is NP-hard 
to approximate within any ratio � ≥ 1.

Proof  Suppose that we have a �-approximate algorithm A for some � ≥ 1 . It is easy to see 
that we can utilize A to distinguish whether there exists a nonempty feasible solution for 
any instance: Report ‘yes’ if A returns a nonempty solution and ‘no’ otherwise. This con-
tradicts Theorem 1 and completes our proof. 	�  ◻

FPT-Algorithm with respect to m. We remark that the number of properties m is a varia-
ble in the hardness proof of Theorem 1. When m is fixed, the proportional candidate selec-
tion problem admits a fixed-parameter tractable (FPT) algorithm with respect to m. Spe-
cifically, given a problem instance, we can guess the optimum value from n to 0, and with 
each guess transform the problem into another problem with constant fairness constraints, 
i.e., lower- and upper-bound covariants that correspond to fairness constraints are absolute 
numbers. For this “constant” version of the problem, Bredereck et al. [9] (Theorem 10 in 
their work) showed an FPT-algorithm with respect to m via solving a mixed ILP with 2m 
integer variables. However, the algorithm has m as the exponent in its time complexity. 
With m as large as 6 in our experiments in Sect. 5, the algorithm cannot terminate in rea-
sonable time for most instances. Thus we do not find such an FPT-algorithm applicable in 
real-world scenarios and view it more of theoretical interest.

4 � Algorithms

In this section we present our algorithmic results. We devise two polynomial time approxi-
mation algorithms in Sects. 4.1 and 4.2, at the expense of having bounded multiplicative 
and additive violations on proportional fairness constraints respectively. Then Sect.  4.3 
gives an algorithm based on the “guess-and-verify” strategy to solve the problem exactly.

4.1 � Randomized algorithm

Our randomized algorithm RandRounding follows the classic methodology of randomized 
rounding. In particular, the algorithm consists of two major steps. In the first step, Ran-
dRounding  solves LP (1-4) and obtains an optimal fractional solution x∗ with optimum 
value ��1−4 . The second step applies standard randomized rounding to round x∗ to an inte-
gral solution x̂ , i.e., for each i, we set x̂i = 1 with probability x∗

i
 ; 0 with probability 1 − x∗

i
 . 

Let the size of x̂ be ��� . For convenience, we use �� and ��� to denote ��1−4 and ���1−4 
in this subsection, respectively.

In the following we show that the rounded integral solution x̂ is close to the actual opti-
mal solution with high probability. We restate the result of Theorem 2 in a formal way:
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Theorem 4  For any 
√

3 ln(2m+3)

minj 𝛼j���
< 𝜖 < 1 , with probability of 1 − (2m + 3) exp

(
−𝜖2 minj 𝛼j��

3

)
> 0 , 

the output of Algorithm RandRounding satisfies 

1.	 ��� ≥ (1 − �)���,
2.	 the cardinality constraint |C′| ≤ k is violated by a multiplicative ratio of no more than 

(1 + �) , and
3.	 each proportional fairness constraint is violated by a multiplicative ratio of no more 

than (1 + �)∕(1 − �) , i.e., 𝛼j
1−𝜖

1+𝜖
��� ≤

∑
i pijx̂i ≤ 𝛽j

1+𝜖

1−𝜖
��� for all j ∈ P.

Before we prove Theorem 4, we interpret this theorem using our case study (Sect. 2) 
as an example. In this case study, when we choose 𝜖 > 0.23 , the success probability of 
Theorem 4 is positive since m = 17 and minj �j��� ≈ 200 (See Table 2 for the success 
probabilities with different values of � ). In addition, we can boost this success prob-
ability by repeating the rounding step multiple times and returning the one with the best 
solution. For example, by repeating O(log(m)∕�2) times, we can obtain a constant suc-
cess probability. In our experiments (Sect. 5), the rounding process of Algorithm Ran-
dRounding is performed only once and this shows the algorithm has strong performance 
comparing to the theoretical bounds established in Theorem 4.

Proof  (Proof of Theorem 4) Because �[���] = �� , by Chernoff bounds, we have

and

Next we check the constraint violation of ILP (1-4) due to the randomized rounding pro-
cess. We first look at the cardinality constraint |C′| ≤ k . Again by Chernoff bounds, we 
have

Next we look at the proportional fairness constraints. Let Ej be the event that ∑
i∈C∣j∈Pi

x̂i ≥ (1 + 𝜖)𝛽j�� . We apply Chernoff bounds again to show that, for each con-
straint j ∈ P,

(5)Pr[��� < (1 − 𝜖)��] ≤ exp

(
−𝜖2��

3

)
,

(6)Pr[��� > (1 + 𝜖)��] ≤ exp

(
−𝜖2��

3

)
.

(7)
Pr[��� > (1 + 𝜖)k] ≤ exp

(
−𝜖2k

3

)

≤ exp

(
−𝜖2��

3

)
.

Table 2   The success probabilities in Theorem 4 for different values of � based on the parameters in the case 
study

� 0.25 0.275 0.3 0.325 0.35
success probability 0.43 0.76 0.91 0.97 0.99
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Since we have m fairness constraints in total, by a union bound (a.k.a., Boole’s inequality), 
we obtain the probability bound:

Similarly, let Fj be the event that 
∑

i∈C∣j∈Pi
x̂i ≤ (1 − 𝜖)𝛼j�� , and we have:

Combining Inequalities (5-9), we know that any of the bad events ��� < (1 − 𝜖)��

,��� > (1 + 𝜖)�� , ��� > (1 + 𝜖)k , and Ej and Fj for all j will happen with probability at 
most (2m + 3) exp

(
−�2 minj �j��

3

)
 . In other words, given the assumption that √

3 ln(2m + 3)∕minj 𝛼j�� < 𝜖 < 1 , we have the probability of 

1 − (2m + 3) exp
(

−�2 minj �j��

3

)
 is less than 1. Also we have �� ≥ ��� . This completes the 

proof of this theorem. 	�  ◻

We note that in real-world applications, the violation factor � is usually rather small, 
since there are usually very few number of properties to consider, i.e. m is usually a 
very small number, and the number of candidates (and potentially the value of ��� ) is 
often relatively large.

Small violations on the cardinality constraints.
Note that RandRounding  considers soft constraints and may select more candi-

dates than the cardinality constraint. This is a feasible assumption in many applica-
tions, e.g., the school admission, which could tolerate a small violation on the total 
number of selected candidates. When the application requires hard cardinality con-
straint, we can randomly remove a few candidates from the selected set to meet the 
requirement. Because the violation is guaranteed to be small, these removals will 
not affect other constraints significantly. In particular, from Theorem 4, we know the 
number of removed candidates is at most �k if we violate the hard cardinality con-
straint. For the upper-bound fairness constraint, in the worst case, the removed can-
didates do not hold the corresponding property while the total number of selected 
decreases. This means the violation for the upper-bound fairness would be enlarge. 
On the other hand, for the lower-bound counterpart, the worst case means the removed 
candidates all have the corresponding property. By simple calculations, we can get that 
(𝛼j

1−𝜖

1+𝜖
− 𝜖)����

≤
∑

i pijx̂
�
i
≤ (𝛽j

1+𝜖

1−𝜖
+ 𝜖)���� for all j ∈ P where x̂′ is the solution and 

���
′ ( = k ) is the corresponding value of the solution after we randomly remove some 

candidates if we violate the hard cardinality constraint.

Pr[Ej] ≤ exp

(
−�2�j��

3

)
.

(8)Pr[∃j,Ej] ≤ m exp

(
−�2 minj �j��

3

)
.

(9)Pr[∃j,Fj] ≤ m exp

(
−�2 minj �j��

3

)
.
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4.2 � Iterative algorithm

We now present another algorithm, denoted by Iterative  , with soft constraints which 
returns a solution with bounded additive violations on each fairness constraint.

We restate the result of Theorem 3 in a formal way:

Theorem  5  Algorithm Iterative  returns a solution with value ��� for the proportional 
candidate selection problem such that 

1.	 ��� ≥ ���1−4 , and
2.	 each proportional fairness constraint is violated by an additive factor of no more than 

2� + 1.

Recall that � is defined as the maximum number of properties that a candidate can pos-
sess. In real-world application, � would be small. For example, we have � = 4 in our case 
study in Sect. 2.

The general idea of our approach is as follows. We first transform ILP (1-4) to another 
ILP formulation and show that a “good” solution to the new formulation is also a “good” 
one to ILP (1-4). Then we solve the new ILP formulation using the iterative method [23, 
27].

4.2.1 � Step 1: Transformation

Let x∗ be a solution that corresponds to ��1−4 . We also let fj = ⌊�j
∑

i∈C x
∗
i
⌋ and 

gj = ⌈�j
∑

i∈C x
∗
i
⌉ for each j ∈ P , and let f0 = ⌊∑i∈C x

∗
i
⌋ and g0 = ⌈∑i∈C x

∗
i
⌉.

Note that in this transformed ILP, we replace the cardinality constraint, i.e., Constraint (3), 
in ILP (1-4) with Constraint (12) which will be useful for our analysis later.

We next show a relation between ILP (1-4) and ILP (10-13).

Lemma 1  Suppose we have an algorithm A that returns an integral solution y for ILP (10-
13) such that: 

	 P1.	
∑

i∈C yi ≥ ��10−13,

(10)max.
∑

i∈C

xi

(11)s. t. fj ≤
∑

i∈C

pijxi ≤ gj ∀j ∈ P,

(12)f0 ≤
∑

i∈C

xi ≤ g0

(13)xi ∈ {0, 1} ∀i ∈ C.
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	 P2.	 f0 ≤
∑

i∈C yi ≤ g0 , and
	 P3.	there is an additive violation of at most s on the fairness constraints (Constraint 

(11)), i.e., 

Then the integral solution y produced by A is a solution to ILP (1-4) satisfying: 

	 Q1.	
∑

i∈C yi ≥ ���1−4,
	 Q2.	⌊∑i∈C x

∗
i
⌋ ≤ ∑

i∈C yi ≤ ⌈∑i∈C x
∗
i
⌉ ≤ k , and

	 Q3.	there is an additive violation of at most s + 2 on the fairness constraints (Constraint 
(2)), i.e., 

Proof  The property Q1 is straightforward since it is obvious to see that x∗ (an optimal solu-
tion to ��1−4 ) is a feasible solution for ��10−13 . Moreover, the property Q2 is a direct conse-
quence of the property P2 of Algorithm A and the fact that g0 = ⌈∑i∈C x

∗
i
⌉ ≤ k (since x∗ is 

a fractional solution satisfying 
∑

i∈C x
∗
i
≤ k).

We focus on proving Q3. Fix a property j ∈ P . By Algorithm A , we have

where the fourth inequality follows as �j ≤ 1 and the last inequality is due to the fact 
that f0 = ⌊∑i∈C x

∗
i
⌋ and the property P2 of Algorithm A . Similarly, we also have ∑

i∈C pijyi ≥ �j
∑

i∈C yi − s − 2 , which completes the proof of Lemma 1. 	�  ◻

4.2.2 � Step 2: Iterative method

Guided by the relation explored in Lemma  1, we now focus on solving ILP (10-13). 
Before showing the algorithm, we first give a characterization of extreme point solutions 
of LP (10-13). We next present an important lemma which is the core of the iterative 
method [27]:

fj − s ≤
∑

i∈C

pijyi ≤ gj + s ∀j ∈ P.

�j
∑

i∈C

yi − s − 2 ≤
∑

i∈C

pijyi ≤ �j
∑

i∈C

yi + s + 2 ∀j ∈ P.

�

i∈C

pijyi ≤ ⌈�j
�

i∈C

x∗
i
⌉ + s

≤ �j
�

i∈C

x∗
i
+ s + 1

≤ �j

�
⌊
�

i∈C

x∗
i
⌋ + 1

�
+ s + 1

≤ �j⌊
�

i∈C

x∗
i
⌋ + s + 2

≤ �j
�

i∈C

yi + s + 2,
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Lemma 2  (Rank Lemma [27]) Let P = {x ∣ Ax ≥ b, x ≥ 0} and let x be an extreme point 
solution of P such that xi > 0 for each i. Then any maximal number of linearly independent 
tight constraints of the form Aix = bi for some row i of A equals the number of variables.

Let j∀ be a special property such that all candidates have this property j∀ , where the 
corresponding constraint is shown as Constraint (12). The following lemma is then a direct 
application of the Rank Lemma (Lemma 2) which gives the characterization of extreme 
point solutions of LP (10-13):

Lemma 3  For any extreme point solution x to LP (10-13) with 0 < xi < 1 for each i ∈ C , 
there exists W ⊆ P ∪ {j∀} such that 

1.	 each constraint that corresponds to W is tight, i.e.,

–	 if j ∈ W ∩ P , 
∑

i∈C pijxi equals either fj or gj;
–	 otherwise, i.e., j = j∀ , 

∑
i∈C xi equals either f0 or g0.

2.	 The constraints corresponding to W are linearly independent3.
3.	 |W| = |C|.

Now we are ready to present Iterative (Algorithm 1) where the corresponding result is 
shown in Lemma 4.

Lemma 4  Algorithm Iterative returns a solution y for ILP (10-13) such that:

–	
∑

i∈C yi ≥ ��10−13,
–	 ⌊∑i∈C x

∗
i
⌋ ≤ ∑

i∈C yi ≤ ⌈∑i∈C x
∗
i
⌉ , and

3  A sequence of vectors (v
1
, v

2
,… , v

k
) is said to be linearly independent if the equation 

a1v1 + a2v2 +…+ akvk = 0 can only be satisfied by ai = 0 for i = 1,… , k.
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–	 there is an additive violation of at most 2� − 1 on the fairness constraints (Constraint 
(11)), i.e., ∀j ∈ p,

Proof  Algorithm Iterative processes in iterations where we get a (strictly) smaller LP after 
each iteration. In the following we will show that in each iteration, either we can set some 
variables to 0 or 1 in the original LP, or at least one constraint can be removed.

First we show that this theorem holds if Iterative terminates successfully. First, observe 
that we update the linear program in Steps 4-5 according to whether xi = 0 or 1 such that 
the residual linear programming solution (current LP solution restricted to those xi ’s with 
value in the range of (0, 1)) remains a feasible solution for the modified linear program in 
the next iteration. This implies that the size of the current solution y plus the size of the 
LP solution, i.e., 

∑
i∈C yi + xi is always feasible with respect to f0 and g0 in the original 

LP during the algorithm. Also, in Step 6 when we remove a fairness constraint, the cur-
rent LP solution remains a feasible solution. Therefore the size of the current solution y, 
i.e., 

∑
i∈C yi plus the size of the LP solution does not decrease in any iteration, so at the 

final step the size of y is at least the cost of the first LP solution, which is at least ��10−13 . 
Moreover, since we only remove a fairness constraint of a property when it is possessed by 
at most 2� − 1 candidates, the fairness constraints are violated by at most 2� − 1.

Thus it remains to show that Algorithm 1 always terminates successfully. That is, it can 
always either find a candidate i with xi = 0 in Step 4 or xi = 1 in Step 5, or finds a property 
j such that there are at most 2� − 1 candidates with property j in the current candidate set, 
i.e., |{i ∈ C ∣ j ∈ Pi}| ≤ 2� − 1 , in Step 6.

Suppose by contradiction that none of the above conditions holds. Then we have 
0 < xi < 1 for each i ∈ C and |{i ∈ C ∣ j ∈ Pi}| ≥ 2� for each j ∈ P . We show the contra-
diction via a counting argument. We assign 2� tokens to each candidate i ∈ C for a total of 
2�|C| tokens. For each candidate i, we redistribute one token to each property j ∈ Pi , and 
� tokens to property j∀ . This can be done because each candidate has at most � properties. 
Next, we will show that the constraints in W can collect 2�|W| tokens in total while there 
are still some tokens left. This would imply |C| > |W| which contradicts to Lemma 3.

For each constraint j ∈ W ∩ P , it collects at least 2� tokens since |{i ∈ C ∣ j ∈ Pi}| ≥ 2� . 
On the other hand, property j∀ collects �|C| tokens. We then consider two cases:

Case (1). W ⊆ P . In this case, we know that W collects at least 2�|W| tokens and prop-
erty j∀ collects �|C| tokens. Since we have at most 2�|C| tokens in total, this contradicts 
Part 3 of Lemma 3.

Case (2). |W ∩ P| = |W| − 1 . We know that W ∩ P collects at least 
2�|W ∩ P| = 2�(|W| − 1) tokens and property j∀ collects �|C| tokens.

–	 If |C| > 2 , this contradicts to Part 3 of Lemma 3.
–	 If |C| < 2 , we note that |C| ≠ 0 since the current LP (10-13) is not empty as in line 2. 

Hence |C| = 1 . By assumption we have 0 < xi < 1 for each i ∈ C , and f0, g0 are inte-

⌊�j
�

i∈C

x∗
i
⌋ − 2� + 1 ≤

�

i∈C

pijyi ≤ ⌈�j
�

i∈C

x∗
i
⌉ + 2� − 1.
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gers, this contradicts Part 1 of Lemma 3 where 
∑

i∈C xi should be equal to either f0 or 
g0.

–	 If |C| = 2 , this means that each candidate in C has exactly � properties. This is 
because otherwise we know that (1) the total number of tokens assigned to prop-
erty j ∈ Pi for all i ∈ C is strictly less than �|C| = 2� and (2) W ∩ P collects at least 
2�|W ∩ P| = 2�(|W| − 1) tokens. These two facts directly imply that |W| < 2 = |C| 
and we already have the contradiction to Part 3 of Lemma 3.

	   Then it is easy to see that for each i ∈ C , we have 
∑

j∈W∩P pij = � which implies that ∑
i∈C

∑
j∈W∩P pij = � ⋅ �C� . This directly shows linear dependence4 to Constraint (12) 

as the corresponding vector 
∑

i∈C 1 = �C� . Hence, we have the desired contradiction to 
Part 2 of Lemma 3.

This completes the proof of this theorem. 	�  ◻

By Lemma 4 and Lemma 1, we complete the proof of Theorem 5.

4.2.3 � Iterative Algorithm with Only Upper‑Bound Fairness Constraints

In this subsection, we consider the case when there are only upper-bound fairness con-
straints, i.e., �j = 0 for all j ∈ P . First we note that Theorem 5 can be applied to solve this 
special case with additive violation of 2� + 1 for each proportional fairness constraint. In 
the following, we propose another iterative algorithm (with different algorithmic handling 
and analysis) to solve this special with a better (i.e., smaller) additive violation of � + 1 
for each proportional fairness constraint. After the proof of our main result in this sub-
section, we also discuss whether one can utilize the new iterative algorithm to solve the 
general case (with both lower and upper-bounds fairness constraints) with the improved 
performance.

The result is shown as follows.

Theorem 6  There exists an algorithm that returns a solution with value ��� for the pro-
portional candidate selection problem with only upper-bound fairness constraints ( �j = 0 
for all j ∈ P ) such that 

1.	 ��� ≥ ���1−4 , and
2.	 each proportional fairness constraint is violated by an additive factor of no more than 

� + 1.

Again, recall that � is defined as the maximum number of properties that a candidate 
can possess. The value of � is normally small, e.g., � = 4 in our case study in Sect. 2.

The proof of the above theorem shares the same idea as in Theorem 5, except for we 
modify the iterative method (Algorithm 1) and its corresponding analysis. The result for 
Step 2 (in parallel to Lemma 4) is the following.

4  A sequence of vectors (v
1
, v

2
,… , v

k
) is said to be linearly dependent if there exits a1, a2,… , ak , not all 

zero, such that a1v1 + a2v2 +…+ akvk = 0.
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Lemma 5  There exists an algorithm that returns a solution y for ILP (10-13) with �j = 0 
for all j ∈ P such that:

–	
∑

i∈C yi ≥ ��10−13,
–	 ⌊∑i∈C x

∗
i
⌋ ≤ ∑

i∈C yi ≤ ⌈∑i∈C x
∗
i
⌉ , and

–	 there is an additive violation with � − 1 on fairness constraints (Constraint (11)), i.e., 

Theorem 6 is directly implied by Lemma 5 and Lemma 1. Next we show the proof of 
Lemma 5.

Proof  (Proof of Lemma  5) The algorithm is identical to Algorithm  1, except that we 
replace the Step 6 of Algorithm 1 with:

“For each property j, delete j from P if the current number of candidates that have prop-
erty j is at most gj + � − 1 , i.e., |{i ∈ C ∣ j ∈ Pi}| ≤ gj + � − 1 . Update LP (10-13).”

Following the proof of Theorem 5, we know that the theorem holds if the algorithm ter-
minates successfully. Then it remains to show that the algorithm always terminates. In other 
words, we want to show that it can always find a candidate i with xi = 0 in Step 4, or a can-
didate i with xi = 1 in Step 5, or a property j such that with there are at most gj + � − 1 can-
didates that has property j in the current candidate set, i.e. |{i ∈ C ∣ j ∈ Pi}| ≤ gj + � − 1 , 
in Step 6. The remaining proof is similar to that of Theorem 5 with some modifications. 
We present it as following for completeness.

Assume by contradiction that none of the conditions holds. Then we have 0 < xi < 1 for 
each i ∈ C and |{i ∈ C ∣ j ∈ Pi}| ≥ gj + � for each j ∈ P . We show the contradiction via a 
counting argument. We assign � tokens to each candidate i ∈ C for a total of � ⋅ |C| tokens. 
For each candidate i, we redistribute 1 − xi token to each property that i has, i.e., j ∈ Pi , 
and � ⋅ xi token to property j∀ . This is valid as each candidate has at most � properties. 
Next, we will show that each constraint in W can collect � tokens, and there are still some 
tokens left. This would imply |C| > |W| which contradicts to Lemma 3.

For each constraint j ∈ W ∩ P , it collects

where the second equality follows as the constraint that corresponds to j is tight, and the 
last inequality is due to the condition that |{i ∈ C ∣ j ∈ Pi}| ≥ gj + � for each j ∈ P . On the 
other hand, it is easy to see that property j∀ collects � ⋅

∑
i∈C xi tokens.

We will consider two cases in the following.
Case (1). W ⊆ P . In this case, we know that W collects at least �|W| tokens and property 

j∀ collects � ⋅
∑

i∈C xi tokens. As we assume xi > 0 for all i in this extreme point solution, 

�

i∈C

pijyi ≤ ⌈�j
�

i∈C

x∗
i
⌉ + � − 1 ∀j ∈ P.

∑

i∈C∣j∈Pi

1 − xi = |{i ∈ C ∣ j ∈ Pi}| −
∑

i∈C∣j∈Pi

xi

= |{i ∈ C ∣ j ∈ Pi}| − gj

≥ �,
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we know that 
∑

i∈C xi > 0 . Moreover, we have at most �|C| tokens to be distributed in total, 
this contradicts Part 3 of Lemma 3.

Case (2). |W ∩ P| = |W| − 1 . We know that W ∩ P collects at least 
� ⋅ |W ∩ P| = � ⋅ (|W| − 1) tokens and property j∀ collects � ⋅

∑
i∈C xi tokens. By assump-

tion we have 0 < xi < 1 for each i ∈ C and 
∑

i∈C xi should be equal to either f0 or g0 (accord-
ing to Part 1 of Lemma 3). As f0, g0 are integers, we know 

∑
i∈C xi ≥ 1 which implies that 

property j∀ collects � ⋅
∑

i∈C xi ≥ � tokens. This means that each candidate in C has exactly 
� properties since otherwise we already have the contradiction to Part 3 of Lemma 3. Then 
it is easy to see that for each i, we have 

∑
j∈W∩P pij = � ⋅ 1 which shows linear dependence 

to Constraint (12).5 Hence, we have the desired contradiction to Part 2 of Lemma 3.
This completes the proof of this theorem. 	�  ◻

Discussion on Solving General Instances. We first observe that an instance with both 
lower-bound and upper-bound proportional fairness constraints can be translated to an 
equivalent instance with only upper-bound constraints. (The detailed transformation can be 
found in Sect. 4.3.) Intuitively, a constraint that “at least 40 percent of selected candidates 
are female” can be translated to “at most 60 percent of students are non-female”, where 
non-female is a new property introduced.

A general instance I  can then be translated to an equivalent instance I≃ with only 
upper-bound proportional fairness constraints. However, we observe that in I≃ , the maxi-
mum number of properties that a candidate can possess, i.e., �′ , is now equal to m, which is 
the number of properties in I  , since each candidate either possesses property A or property 
non-A in I≃ . Thus applying Theorem 6 on instance I≃ will give a solution with additive 
violation of �� + 1 = m + 1 which is better than directly using Theorem 5 on instance I  
only if 𝛥 > m∕2 . We also note that the value of � is normally small compared with m, e.g., 
� = 4 and m = 17 in our case study in Sect. 2.

4.3 � Exact solution

Besides algorithms with soft constraints, we also investigate exponential-time exact algo-
rithms that run fast in practice.

We first consider an equivalent ILP formulation (see ILP (14-18)) with only upper-
bound fairness constraints. The transformation is shown as follows. For each property j, we 
introduce a corresponding property j′ that is possessed by those candidates that do not have 
j (i.e., j� ∈ Pi if and only if j ∉ Pi for each i ∈ C ). We collect these new property j′ ’s as P′ 
and set �j� = 1 − �j . For example, a requirement that “at least 40 percent of selected can-
didates are female” can be translated to “at most 60 percent of students are non-female”, 
where non-female is a new attribute introduced. It is easy to check that ILP (14-18) with 
only upper-bound constraints is equivalent to the original one (ILP (1-4)).

(14)max.
∑

i∈C

xi

(15)s. t.
∑

i∈C

pijxi ≤ �j
∑

i∈C

xi∀j ∈ P,

5  A similar argument is detailed in the proof of Lemma 4.
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Here pij = 1 if candidate i does not have attribute j, i.e., pij = 0 , and pij = 0 otherwise.
For our exact algorithm, we make use of a “guess-and-verify” strategy, in which the 

following ILP is solved for different values of guess s:

For convenience, we use �� and ��� to denote ��1−4 and ���1−4 below, respec-
tively. The algorithm goes in iterations (lines 3-9) as follows. For the p-th iteration, 
we first guess an upper bound sp on ��� . To guarantee s1 is an initial upper bound, 
we set s1 ← ⌊𝖫𝖯⌋ in line 1 since we know ⌊��⌋ ≥ ��� . Then we issue an ILP (19-23) 
with s = sp to obtain the optimum solution yp (line 4). We next consider the value of yp . 
If yp ≥ sp in lines 5-6, we immediately return xp as the optimum solution ��� . Other-
wise, i.e., 0 ≤ yp < sp , in lines 7-9 we derive another guess sp+1 ← yp for the (p + 1)-st 

(16)
∑

i∈C

pijxi ≤ (1 − �j)
∑

i∈C

xi ∀j ∈ P,

(17)
∑

i∈C

xi ≤ k

(18)xi ∈ {0, 1} ∀i ∈ C.

(19)max.
∑

i∈C

xi

(20)s. t.
∑

i∈C

pijxi ≤ �j ⋅ s ∀j ∈ P,

(21)
∑

i∈C

pijxi ≤ (1 − �j) ⋅ s ∀j ∈ P,

(22)
∑

i∈C

xi ≤ k

(23)xi ∈ {0, 1} ∀i ∈ C.
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iteration. Note that the case of yp ≥ sp in line 5 coincides with case one of yp = sp , i.e., 
the case of yp > sp will not happen.

We note that one cannot simply adopt a binary search approach for finding ��� , 
because the solution space is not monotone. That is, a feasible solution with value s 
does not imply there exists feasible solution with value s′ < s.

We now claim the while loop of Algorithm  2 is processed in finite number of 
iterations:

Lemma 6  The while loop (lines 3-9 of Algorithm 2) will terminate in O(n) iterations.

Proof  Suppose that the while loop terminates after the t-th iteration, i.e., ��� = yt . In 
other words, t is the first iteration that satisfies yt ≥ st in lines 5-6. For all 1 < p < t , we will 
prove that sp−1 > sp.

Consider a fixed iteration p such that 1 < p < t . Assume, to the contrary, that sp−1 ≤ sp . 
We have sp = yp−1 by line 8 of Algorithm  GuessAndVerify  . Thus sp−1 ≤ yp−1 , which 
means that the algorithm should terminate in the (p − 1)-st iteration due to lines 5-6, a con-
tradiction. Thus we know the sequence of {si} is strictly decreasing.

We also know that there exists a trivial solution with value 0 of ILP (14-18). Suppose 
the q-th guess is sq = 0 , then we have yq = sq = 0 which implies st ≥ 0 . This also means 
that Algorithm 2 can always return a feasible solution. Moreover, we have s1 = k , where 
k = O(n) , as shown in line 1. Thus we complete our proof. 	�  ◻

We next prove the correctness of Algorithm GuessAndVerify .

Lemma 7  Algorithm GuessAndVerify solves the proportional candidate selection problem 
correctly.

Proof  Let st be the first guess such that st = yt . In other words, Algorithm 2 returns yt as 
the optimum solution ��� in line 6. We will show yt = ��� in the following.

Suppose that yt > ��� . Since st = yt , we know that yt corresponds to a feasible solution 
for the problem which contradicts the optimality of ���.

Suppose that yt < ��� . Note that this case cannot happen with ��� = 0 since yt ≥ 0 . 
From the proof of Lemma 6, we have s1 > s2 > ⋯ > st−1 > st ≥ 0 . Thus there must exist 
a guess sj such that sj ≥ ��� > sj+1 ≥ st where 1 ≤ j ≤ t − 1 . We observe that a larger 
guess implies a larger optimum value for ILP (19-23), i.e., sa ≥ sb implies ya ≥ yb . Since 
sj ≥ ��� , we have yj ≥ y′

opt
 where y′

opt
 is the optimum value of ILP (19-23) with guess 

��� . Then we conclude that y′
opt

≥ ��� since, otherwise, it would violate the fact that 
��� is a feasible (and optimum) solution to the proportional candidate selection problem. 
Moreover, according to our algorithm, we have sj+1 = yj . Thus, sj+1 = yj ≥ y�

opt
≥ ��� 

which contradicts the assumption that ��� > sj+1 . The lemma follows. 	�  ◻

We remark that this framework is capable of solving the proportional candidate selec-
tion problem as long as we have an exact solution, either in polynomial or exponential 
time, to solve ILP (19-23) at hand.
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5 � Experiments

In this section we conduct empirical evaluations of our proposed algorithms. Our experi-
ments are partitioned into two parts based on the data generation settings: the first one aims 
to test the sensitivities of our algorithms under different parameter settings through the ran-
domly generated data, and the other evaluates the performance of our algorithms via a case 
study based on the real-world data.

Experiment setups. We compare RandRounding (Sect. 4.1), Iterative (Sect. 4.2), and 
GuessAndVerify  (Sect. 4.3) with the baseline method ILP-Generic, i.e., the ILP (1-4) is 
solved by a standard ILP solver directly. All experiments ran on a computer with Intel 
Xeon E5-2630v4 @2.2 GHz CPU and 64 GB RAM. Programs were coded in Python 3.7, 
and all the ILPs and LPs were solved by the Gurobi Optimizer (version 8.1.0). For all the 
tests, we perform 100 repeated runs per experiment and show the averages.

5.1 � Sensitivity analysis over synthetic data

First we evaluate the above four algorithms using the synthetic data. Here we use the run-
ning time to assess the performance of our four algorithms and use the violation to evaluate 
the performance of our two approximation algorithms. What’s more, we use the percent-
age of the output size to show how the parameters will affect our instance. To be clear, 
the output size is not related to the usability of our algorithms, but related to the effect of 
the parameters on the instances. In this experiment, for each attribute j, we first randomly 
generate a probability pj and assign each candidate with this attribute with probability pj 
independently.

Then for the proportional constraints, for each attribute j we randomly generate a pair 
of parameters �j and �j such that their gap � = �j − �j is fixed and 

∑
j

�j+�j

2
= 1 . We let the 

value of � vary from 0 to 0.2 instead of varying from 0 to 1. This is because according 
to our method to generate �j and �j , the central value, i.e., �j+�j

2
 , will most likely be less 

than 0.2. Large value of � will make the proportional fairness constraints meaningless.
The cardinality threshold is set as the total number of candidates. That is, we do not 

consider the cardinality constraint in these experiments. This is because: (1) it simpli-
fies the experiments as we already have several dimensions of the parameters to con-
sider; (2) according to our previous study, determining a suitable value of cardinality 
threshold k is dataset-specific: when k is too small, the number of selected candidates 
always reaches k; when k is too large, imposing the cardinality constraint does not affect 
the current result.

We test our algorithms on a number of different problem instances generated by vary-
ing the number of candidates (i.e., {2, 000, 4, 000,… , 10, 000} ), the number of attrib-
utes (i.e., {3, 4,… , 7} ), as well as the gap � between �j and �j for each attribute j (i.e., 
{0.04, 0.08,… , 0.2} ). In this analysis, we focus on looking at the running time, the output 
size ( % ) and the number of violations where the output size ( % ) is mainly used to describe 
the effect of different parameters. As for the relation between the size of candidates and the 
running time, our numerical test for the sensitivity analysis shows the same trend as our 
real data experiment (in Sect. 5.2), which is omitted in the experiments for the synthetic 
data.
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5.1.1 � Experiment results

Figures 1 and 2 respectively show the running times and output sizes in percentage (i.e., 
the output size over the problem size) of different algorithms when the number of attrib-
utes varies from 3 to 7. Note that we consider all the problem instances with the num-
ber of candidates from 2,000 to 10,000, and we show the relation between the running 
time (averaged over all these instances with different problem sizes) and the number of 
attributes. The same strategy applies to the following experiments in this subsection. 
One can see clear trends that when the number of attributes increases, the running time 
increases while the output size decreases. This is because the problem becomes harder 
to solve if we have more attributes to deal with.

Figures 3 and 4 show how the running time and output size in percentage (i.e., the 
output size over the problem size) of the algorithm change with regard to the gap � . 
One can first see in Fig. 3 that the running times of Iterative  , GuessAndVerify  and 
RandRounding are insensitive to � , while the running time of ILP-Genericdecreases as 
� increases. From Fig. 4 we see that when � increases, the fairness constraints become 
easier to satisfy, which is reflected by the larger output size of all algorithms.

We also plot the running time and the output size of our algorithms with regard to the 
�1-distance between pj and center of [�j, �j] , as shown in Figs. 6 and 5 respectively. One 
can see in Fig. 5 that when this distance grows larger, all algorithms select a significantly 
smaller fraction of the candidates into the solution set. An interesting observation from 
Fig. 6 is that the problem becomes hard for ILP-Genericwhen the range of �1 distance is in 
the center, say around [0.4 − 0.6] . A possible explanation of this phenomenon is that when 
the range of �1 distance is small (resp., large), many (resp., few) candidates can be selected 
in the solution which makes the problem easier for ILP-Generic. On the other hand, the 
performances of other algorithms remain stable with respect to different �1 distances.

Note that in Figs. 2 and 5, the (average) output size of ILP-Genericis smaller than that 
of GuessAndVerify  . It is because in the synthetic dataset, there exist “hard” instances 
for which ILP-Genericdoes not return any (non-trivial) feasible solution within the cut-off 
time (set as 30 seconds in our experiments). In such situation, we simply use 0 (which is 
a trivial feasible solution) as the size of the selected set, which clearly makes the average 
output size smaller. On the other hand, our GuessAndVerify can finish all instances within 
the cut-off time of 30 seconds.

Fig. 1   Running time with differ-
ent number of attributes

3 4 5 6 7
0

5

10

15

20

25

Number of Attributes

R
un
ni
ng

T
im

e
(s
ec
on

ds
)

ILP-GENERIC

ITERATIVE

GUESSANDVERIFY

RANDROUNDING



	 Autonomous Agents and Multi-Agent Systems (2022) 36:5

1 3

5  Page 22 of 32

Fig. 2   Output size (%) with dif-
ferent number of attributes
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Fig. 3   Running time with differ-
ent gap �
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Fig. 4   Output size (%) with dif-
ferent gap �
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Finally, because RandRounding and Iterative are approximation algorithms, their out-
puts may have violations over the fairness constraints. We also summarize the average vio-
lation size of each constraint of both algorithms in Figs. 7 and 8. One can see that with 
synthetic data, RandRounding  actually has a smaller average violation than Iterative  . 
But more importantly, both algorithms are able to find solutions with very small violations 
compared to the problem size. For example, with as many as 10,000 candidates, the largest 
violation of a single constraint for both algorithms is only 5.

We also test our proposed algorithms (except for ILP-Generic) on a large instance in 
which the number of candidates is 30,000. We fix the gap � as 0.04 and vary the number of 
attributes. From Fig. 9, we can see that the output sizes (in percentage) of our three algo-
rithms are almost identical. We can also observe that the output size decreases as the num-
ber of attributes increases, which presents a similar trend as in Fig. 2. Another observation 
of Fig. 9 is that there exist bumps in the curve. One possible explanation of this issue is 
due to the randomness of the generation of the problem instances which results in some 
instances have larger output size even these instances have larger number of attributes. 
Moreover, when the number of attributes is 14, the output size drops to a very small value, 
e.g., less than 3% , which is the reason that we set the maximum number of attributes as 13 

Fig. 5   Output size (%) with dif-
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in this group of experiments. Fig. 10 shows the running times of different algorithms. In 
particular, RandRounding runs the fastest among all the cases while GuessAndVerify per-
forms better than Iterative when the number of attributes is at most 8. A possible reason 

Fig. 7   Violation with different 
number of attributes
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Fig. 9   Output size ( % ) with dif-
ferent number of attributes in a 
large instance
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is that when the number of attributes increases, the problem becomes harder to solve and 
GuessAndVerify  requires more time to solve ILPs (as in Algorithm 2). Finally, we also 
look at the violations between Iterative  and RandRounding  in Fig.  11. Clearly, Ran-
dRounding can always have smaller number of violations than Iterative .

5.1.2 � Extensions to weighted and correlated cases

In this part, we consider the extensions to weighted and correlated cases. In particular, in 
the weighted case, each candidate is associated with a weight and we want to maximize the 
sum of weights of selected candidates subject to the proportional fairness constraints. For 
the correlated case, we study the situation in which the generated attributes are correlated 
rather than independent.

Specifically, in the weighted case, we randomly assign a weight from 1 to 100 to 
each candidate while in the correlated case, we randomly assign a probability to each 
possible combination of attributes such that the sum of probabilities is equal to 1. For 
example, if we have 5 attributes and there are 2 choices (e.g., yes or no) for each attrib-
ute, we have 25 = 32 different combinations of attributes. We focus on the performance 

Fig. 10   Running time with dif-
ferent number of attributes in a 
large instance
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Fig. 11   Violation with different 
number of attributes in a large 
instance
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of our proposed approximation algorithms since (1) GuessAndVerify cannot be effec-
tively adapted to the weighted case, and (2) the exact algorithms for the correlated case 
perform similar to the previous results. Moreover, the only change to the algorithms 
for the weighted case is the objective function and the rest of algorithms remain the 
same. The gap is fixed as 0.04 in the following experiments.

Figures 12 and 13 show the running time with different number of attributes when 
the number of candidates is 10,000 and with different numbers of candidates when 
the number of attributes is 5 for the weighted case, respectively. It is clear that Ran-
dRounding  runs faster than Iterative  . Moreover, the averaged numbers of violations 
(for each constraint) is about 0.47 and 1.4 for RandRounding  and Iterative  (when 
we vary the number of attributes) and 0.44 and 1.11 for RandRounding  and Itera-
tive  (when we vary the number of candidates). However, Iterative  can always out-
put a solution with better (i.e., around 1% larger) objective value than the solution 
of ILP-Genericwhile RandRounding  achieves almost the same objective value as 
ILP-Generic.

For the correlated case, the experimental results show the identical phenomenon as 
in the case when the generation of the attributes is independent. For example, Figs. 14 

Fig. 12   Running time with dif-
ferent number of attributes in the 
weighted case

3 4 5 6 7
0

1

2

3

4

5

Number of Attributes
R
un

ni
ng

T
im

e
(s
ec
on

ds
)

ITERATIVE

RANDROUNDING

Fig. 13   Running time with differ-
ent number of candidates in the 
weighted case
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and  15 verify that RandRounding  is more efficient than Iterative  across different 
parameter settings. Similar findings also apply to the output size and the number of 
violations as we show in Sect. 5.1.1. This may indicate that our proposed algorithms 
are stable whether the attributes are correlated or not.

5.2 � Case study on university enrollment data

This case study follows the description of the student enrollment at UC Berkeley in 
Sect. 2. In our experiment, for each student, we randomly assign him/her an attribute 
in each category using the attribute distribution of that category. For proportional fair-
ness constraints, we set each fairness parameter �j , �j that is similar to the percentage 
of this attribute in the corresponding category. We also omit the fairness constraints 
for attributes that have small percentages in the dataset and relax the lower-bounds 
in fairness constraints for some attribute that has large proportion in its category. The 
cardinality threshold in this experiment is simply set as the total number of candidates. 
See Table 1 (in Sect. 2) for the data statistics and fairness parameter setting.

Fig. 15   Running time with differ-
ent number of candidates in the 
correlated case
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Fig. 14   Running time with dif-
ferent number of attributes in the 
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5.2.1 � Experiment results

Figure  16 shows the running times of different algorithms with number of students 
ranging from 6,000 to 20,000. One can see that all other three algorithms outperform 
the benchmark ILP-Genericalgorithm by a clear margin. Both being exact algorithms, 
and with 20,000 students, GuessAndVerify  is 3-times faster than the generic ILP-
Genericalgorithm. At the expense of violating some fairness constraints, both Ran-
dRounding and Iterative run very fast in practice.

Moreover, the average number of LPs sovled by Iterative  (as described in Algo-
rithm 2 of Sect. 4.2) ranges from 13 to 15, which is very small compared to the number 
of candidates. From the figure, one can also observe an inconsistency of the running 
times for ILP-Genericwith different problem sizes. The reason to this phenomenon is 
that the running time of “hard” problem instances, i.e., the one that make ILP-Generi-
crun out of time (we set 300s for the ILP solver as the cut-off time), dominate the aver-
age running time of ILP-Generic. For each problem size, ILP-Generictimeouts for at 
least 29 and at most 46 (out of 100) instances. For a visual explanation, Fig. 17 gives 
a detailed running time analysis for ILP-Generic. The two curves in this figure are very 
similar, which indicates a clear dependence between the running time of ILP-Genericand 
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the number of time-out instances in our experiment. On the other hand, the other three 
algorithms can finish every problem instance within the cut-off time of 300s.

For the output size ( % ), all the algorithms can return a solution with around 80% 
students selected from all the candidates. The maximum difference for the ratios of 
the output size of different algorithms is about 0.6% in terms of the total number of 
candidates. This shows that both RandRounding  and Iterative  can return a solution 
with almost optimum size, and the output size ( % ) is insensitive to the number of can-
didates in this setting. We also look at the maximum violations of RandRounding and 
Iterative of each fairness constraint. With 20,000 students, the maximum violations of 
Iterative and RandRounding are 5 and 3 respectively, both of which are rather small 
compared to the theoretical bounds we derived in the paper.

6 � Discussions and conclusions

6.1 � Discussions

In Sect. 1.2, we showed the relation to the most closely related works [9, 12, 26]. In gen-
eral, these three works considered the problem which (1) needs to output a committee 
with fixed size and (2) requires fairness/diversity constraints using absolute numbers. In 
particular, Bredereck et al. [9] showed that there exist a polynomial-time algorithm when 
the attributes form special structure and a fixed-parameter tractable (FPT) algorithm when 
the number of attributes m is small. Celis et al. [12] gave a randomized polynomial-time 
algorithm that computes a committee with bounded violations on lower- and upper-bound 
fairness constraints. In contrast, our model studies the problem with a variable number of 
committee satisfying the proportional fairness constraints. As discussed in Sect. 4.3, our 
problem can be transformed into a series of problems where the fairness constraints are 
based on absolute values. This implies that we can apply previous algorithms (e.g., algo-
rithms proposed in [9, 12, 26]) to solve our problem: We try out all the possible values of 
the solution, e.g., k� ∈ {1,… , |C|} , and return the maximum value that admits a feasible 
solution. The technical comparisons between the methods from ([9, 12, 26])) and ours are 
as follows.

–	 Bredereck et al. [9] focused on algorithms dealing with attributes of special structure. 
The only exception is a fixed-parameter tractable (FPT) algorithm when the number of 
attributes m is small. Based on this FPT algorithm and the adaptation described above, 
in Sect. 3 we showed a FPT algorithm with respect to m for our problem, and discussed 
the applicability of this adapted algorithm in real-world scenario. In short, this algo-
rithm requires solving a mixed ILP with 2m integer variables, and has a much larger 
running time both in theory and in our experiments.

–	 Celis et al. [12] gave a randomized polynomial-time algorithm that computes a commit-
tee with bounded violations on (constant) lower- and upper-bound fairness constraints. 
Their algorithm makes use of the continuous greedy algorithm  [11] which requires a 
time complexity of Õ(n8).6 In addition, the adaptation needs to call the algorithm for 
the fairness constraints with absolute numbers once for each k� ∈ {1,… , n} . Thus, the 

6  The notion Õ is used to hide logO(1)(n) factor.
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overall time complexity of the adapted algorithm is Õ(n9) . On the other hand, Ran-
dRounding  is required to solve LP only once and Iterative  performs at most n LPs, 
where the current best LP solver (due to  [20]) runs in (roughly) O∗(nw) with the fast 
exponent of matrix multiplication w ≈ 2.37.7 It is then easy to see that both Ran-
dRounding  and Iterative have better time complexities than the adaptation using the 
algorithm in [12]. We also note that in our case study (Sect. 5.2), the average number of 
LPs solved by Iterative is at most 15 when the number of candidates n is from 6,000 to 
20,000. This implies that Iterative solves a much smaller number of LPs than the worst 
case of n LPs.

–	 Lang and Skowron [26] provided a randomized polynomial-time local search algorithm 
(denoted by the LS algorithm) that outputs a committee with a bounded total variance 
between the fairness constraints and the real fraction of each attribute. The LS algo-
rithm is equipped with a parameter � indicating the number of elements that will be 
changed in each round of local search. If � = 1 , the adapted LS algorithm (the above 
described adaptation with the LS algorithm) runs in 

∑n

k=1
O(nm2k2) = O(n4m2) where 

O(nm2k2) is the time complexity for the LS algorithm (when � = 1 ) with committee 
size k. Similarly, for � = 2 , the time complexity of the adapted LS algorithm is ∑n

k=1
O(n2m2k3) = O(n6m2) where O(n2m2k3) is the time complexity for the LS algo-

rithm (when � = 2 ) with committee size k. As demonstrated above, our proposed algo-
rithms RandRounding  and Iterative  have much smaller time complexities than the 
adapted LS algorithms. Furthermore, the LS algorithms, with � = 1 and � = 2 , provide 
an output with an average (among all categories) error of 1 and ln(k∕2)

2 ln(k∕2)−1
(1 +

6

k
) (which 

is around 1
2
 ), respectively. In other words, when � = 1 , the additive violation for each 

attribute could be as large as n/2 (e.g., for a category with two attributes, the target dis-
tribution is (1/2, 1/2) and the output distribution is (0, 1)). On the other hand, both Ran-
dRounding  and Iterative  have better performances in terms of violations (See 
Theorems 4 and 5 for comparison).

Based on these discussions, we see that simple adaptations of the existing algorithms might 
not be practical for real-world applications. On the other hand, our proposed randomized 
and iterative algorithms can solve these problems in much shorter time.

6.2 � Conclusions

In this paper, we study the proportional candidate selection problem in which the fairness 
constraints are captured by the proportions in terms of the final selection size. We provide 
both hardness and algorithmic results for this problem. We also conduct experiments over 
synthetic and real-world data to evaluate the performances of our proposed algorithms.

A natural generalization of this problem considers the weighted case where each can-
didate has a weight and one wants to maximize the total weights of selected candidates. 
We remark that both RandRounding and Iterative can be easily modified to address this 
variation (as discussed and tests in the experiments) while we leave the design of efficient 
exact algorithms for the weighted case as an future work. Another interesting future direc-
tion is to consider the incentives of the candidates to reveal their true attributes in order to 

7  The notion O∗ is used to hide no(1) and logO(1)(1∕�) factors where � is the relative accuracy.
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increase their chances to be selected. In addition, a standard scenario of our problem set-
ting is the enrollment for a single school. In future research, it would be interesting to look 
at assignment problems with proportional fairness constraints for multiple schools.
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