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Abstract
Inverse reinforcement learning (IRL) is the problem of learning the preferences of an agent 
from observing its behavior on a task. It inverts RL which focuses on learning an agent’s 
behavior on a task based on the reward signals received. IRL is witnessing sustained atten-
tion due to promising applications in robotics, computer games, and finance, as well as in 
other sectors. Methods for IRL have, for the most part, focused on batch settings where the 
observed agent’s behavioral data has already been collected. However, the related problem 
of online IRL—where observations are incrementally accrued, yet the real-time demands 
of the application often prohibit a full rerun of an IRL method—has received significantly 
less attention. We introduce the first formal framework for online IRL, called incremental 
IRL (I2RL), which can serve as a common ground for online IRL methods. We demon-
strate the usefulness of this framework by casting existing online IRL techniques into this 
framework. Importantly, we present a new method that advances maximum entropy IRL 
with hidden variables to the online setting. Our analysis shows that the new method has 
monotonically improving performance with more demonstration data as well as probabil-
istically bounded error, both under full and partial observability. Simulated and physical 
robot experiments in a multi-robot patrolling application situated in varied-sized worlds, 
which involves learning under high levels of occlusion, show a significantly improved per-
formance of I2RL as compared to both batch IRL and an online imitation learning method.
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1 Introduction

Inverse reinforcement learning (IRL) [26, 32] refers to both the problem and method of 
observing an agent as it performs a task to learn the agent’s preferences or its reward 
function guiding its actions on a task. While reinforcement learning aims to learn a 
behavior that optimizes the rewards received, methods for IRL infer a reward function 
that explains an input behavior; thus, IRL inverts RL. The inverse learning approach 
is appealing to many researchers and practitioners especially because it broadens the 
scope of machine learning to those applications in which a reward function can not be 
easily specified and in which an understanding of the observed task is needed. IRL is 
useful in controlled environments where learning takes place via observing others. For 
example IRL shows promise toward applications in robot learning through demonstra-
tions by human teachers [4], penetrating multirobot patrols [11], imitation learning [27], 
and ad hoc collaboration in sorting tasks [34].

Most IRL methods operate on large batches of observations, and, in a single pass, 
they estimate the expert’s reward function [1, 8, 14, 15, 28]. These methods may be 
satisfactory for the applications mentioned above where the performed task is first 
observed for some time and the gathered data is utilized toward IRL. However, more 
recent applications of IRL impose a different set of requirements. These require the 
learner to continuously observe and repeatedly update its estimate of the learned reward 
function of the observed agent in order to facilitate the learner’s ongoing activities. 
Consider, for example, the task of forecasting a person’s goals in an everyday setting 
from observing her ongoing activities using a body camera – this enables the use of 
assistive robots in households [31], or a robotic learner that is continuously monitor-
ing activities from a given location and learning the patrol pattern for reaching a spe-
cific goal as quickly as possible without being detected [9]. Both of these applications 
include streaming observations and could be improved with interleaving, observing, and 
learning the preferences of the expert. As such, there is a need to generalize IRL toward 
online learning with data provided in mini-batches.

In this article, we first present a formal framework to facilitate new methods for 
online IRL and to conceptually compare them. The framework, labeled as incremental 
IRL (I2RL), establishes the key components of this problem and rigorously defines the 
notion of an incremental variant of IRL. Furthermore, I2RL offers candidate stopping 
criteria that a potential online IRL method could utilize as well as a regret-based metric 
for measuring the performance quality of the method. To demonstrate its usefulness, we 
model three existing methods that perform online IRL [20, 21, 31] using the compo-
nents of this framework. This provides initial evidence that the framework is sufficient 
for modeling online approaches.

Our primary contribution is a new method that advances the recent progress in maxi-
mum entropy IRL from a partially hidden demonstration of data [12] by generalizing it 
to an online setting in the context of the I2RL framework. We establish key theoretical 
properties of this new method, which we call online latent maximum entropy IRL (LME-
I2RL). Specifically, we show that the demonstration data likelihood increases monotoni-
cally for this method as more of the demonstration is seen. Consequently, the method 
shows probabilistic convergence within a desired error of the feature expectations of 
the learned policy (from those of the expert’s true policy) in both fully observed and 
partially occluded contexts. Finally, we prove that with a high confidence the method 
exhibits no-regret learning asymptotically as the number of sessions increases. In other 
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words, the average loss across multiple sessions approaches zero with an increasing 
number of sessions, which is a desirable property for online learning.

We conducted experiments on a previously introduced robotic application of IRL [9] to 
comprehensively evaluate the performance of LME-I2RL. The domain involves the use of 
IRL toward learning the reward functions of one or two independent mobile robots contin-
uously patrolling corridors of varying configurations. A third robot observing the patrollers 
from a vantage point that has a limited view is tasked with penetrating the patrol to reach 
a goal location undetected. It uses the learned reward functions and known motion models 
to predict the patrolling trajectories and to identify, if possible, a path to the goal location 
without being spotted.

The performance of LME-I2RL is compared with the previous batch LME to evalu-
ate the advantage of online IRL in the above mentioned domain in both simulations and 
physical experiments. Our evaluation shows that the incremental method learns the patrol-
ling behaviors equally well as compared to the batch method but faster, which leads to a 
higher success rate. It suffers from far fewer timeouts as compared to the batch method, 
where timeouts result due to failures in completing the inverse learning and forward plan-
ning within a reasonable time limit. Furthermore, we develop an online variant of a well-
known imitation learning method based on generative adversarial networks [20]. LME-
I2RL learns behavior that is significantly more accurate as compared to this method for 
imitation learning.

In our simulation experiments, we vary the degree of occlusion, the number of states in 
the domain, as well as the number of patrollers. Our experiments with physical TurtleBots 
in two environments confirm the performance obtained in simulation with the learner capa-
ble of observing just about 30% and as less as 18% of the patrollers’ trajectories, respec-
tively. As such, the framework and the method presented in this article may be viewed as 
essential first steps toward the emerging problem of online learning of reward function.

The remainder of this article is structured as follows. In the following section, we briefly 
review the concepts that are key to understanding IRL and the known method of maximum 
entropy IRL. We also discuss its generalization to IRL with hidden variables. In Sect. 3, 
we lay out the framework of incremental IRL (I2RL) by defining the components of online 
IRL followed by a discussion of existing online approaches in the context of I2RL. Next, 
we present the details of the LME-I2RL method and the theoretical convergence properties 
of this method. In Sect.  5, we assess the performance advantages of I2RL on both simu-
lated and physical robotic domains, and analyze the convergence properties and experi-
ments. After discussing related work in the prevalent literature, we conclude this article in 
Sect. 7 and introduce some options for future research in this area. The Appendix gives the 
full proofs of the lemmas and theorems stated in Sect. 4.

Some portions  of this article have  been published  previously in a conference  paper 
[6]. This article significantly expands on the conference paper in the following ways: (1) 
We formally introduce regret in the framework of incremental IRL in Sect. 3, (2) we add 
complete proofs of all convergence results in the Appendix, including the new result of 
no-regret learning; and (3) in Sect.  5.4, we offer evidence toward the scalability of our 
method of online learning under occlusion using a new physical robot domain that features 
a larger state space and significantly greater occlusion ( greater than 18% ) for the learner. 
(4) Finally, we have altogether significantly expanded the exposition in nearly all sections 
of the article.
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2  Background on IRL under occlusion

Informally, IRL connotes both the problem and method by which an agent learns goals 
and preferences of another agent that explain the latter’s observed behavior [5, 32]. 
IRL is appealing because the learned preferences are amenable for transfer from the 
observed agent to the subject robot (with minor adjustments) – as Russell [32] strongly 
argues – because both robot and agent will operate in the same environment. The trans-
ferred preferences may be utilized to perform the same task or, as in our domain, they 
are integrated for use in a decision making and planning framework. We briefly review 
the key concepts of IRL in the next subsection, followed by a leading technique for 
IRL in Sect. 2.2. Finally, we review this technique’s generalization toward occlusion in 
Sect. 2.3.

2.1  Inverse RL

The observed agent is often considered an “expert” in the performed task. To model the 
observed agent denoted E, it is assumed that E is executing an optimal policy based on 
a standard MDP defined as ⟨SE,AE, TE,RE⟩ . The learning agent L is assumed to exhibit 
perfect knowledge of the MDP parameters except of the reward function. Therefore, the 
learner’s task is to infer a reward function that best explains the observed behavior of 
the expert under these assumptions. A policy is a function mapping each state to an 
action. It can be deterministic, � ∶ S → A or stochastic � ∶ S → 𝖯𝗋𝗈𝖻(A) . For a policy � , 
value function V� ∶ S → ℝ gives the value of a state s as the long-term expected cumu-
lative reward obtained from the state by following � . The value of a policy � from some 
initial state s0 is,

The problem of IRL is generally ill-posed because for any given behavior there are infi-
nitely-many reward functions which may explain the behavior. The under constrained 
nature of this problem is exacerbated as less data is observed due to occlusion. Ng and 
Russell [26] initially approached the problem with linear programming inferring a reward 
function that maximizes the difference between the value of the expert’s optimal policy 
and the next best policy under the assumption that the expert’s complete policy is avail-
able. Abbeel and Ng [1] relaxed this assumption using an algorithm in which the expert, 
E, provides a demonstration of the task performance instead of its policy. (Demonstrations 
may be seen as composed of simulations of the expert’s optimal policy.) To model the 
reward function, a linear combination of K binary features is used, �k : SE × AE → [0, 1], 
k ∈ {1, 2…K} . Each feature maps a state from the set of states, SE , and an action from the 
expert’s set of actions, AE , to a value in {0,1}. Note that non-binary features can always be 
converted into binary features although there will be more of them. Choosing appropriate 
feature functions is important, and, if these features are not known to the learner, they can 
be learned from the data thereby diminishing the need for feature engineering [25].

(1)V�(s0) = E

[
∞∑

t=0

� tRE(st,�(st))|�, s0

]
.
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The reward function for the expert, E, is then defined as 
RE(s, a) = �

T�(s, a) =
∑K

k=1
�k ⋅ �k(s, a) , where �k are the weights in vector � ; let 

R = ℝ|SE×AE| be the continuous space of reward functions. The learner task is simplified to 
one of completing the reward function by finding an appropriate vector of weights so that 
the demonstrated behavior is optimal. Let ℕ+ be a bounded set of natural numbers. It is per-
tinent to formally define a demonstration here.

Definition 1 (Set of fixed-length trajectories) The set of all trajecto-
ries of finite length T from an MDP attributed to the expert E is defined as, 
𝕏T = {X�X = (⟨s, a⟩1, ⟨s, a⟩2,… , ⟨s, a⟩T ), T ∈ ℕ+},∀s ∈ SE,∀a ∈ AE}.

Then, the set of all trajectories is 𝕏 = 𝕏1 ∪𝕏2 ∪… ∪𝕏|ℕ+| . A demonstration is some 
finite set of trajectories of varying lengths, X = {XT |XT ∈ 𝕏T , T ∈ ℕ+} , and it includes 
the empty set.1 Subsequently, we may define the set of demonstrations.

Definition 2 (Set of demonstrations) The set of demonstrations is the set of all subsets of 
the set of trajectories of varying lengths. Therefore, it is the power set, 2𝕏 = 2𝕏

1∪𝕏2∪…∪𝕏|ℕ+ |
.

Per the definitions above, IRL ascribes an MDP without the reward function to the 
expert, and thus, consists of estimating the reward function, R̂E ∈ R , to provide the best 
explanation of the learner’s observations X ∈ 2� . Therefore, we can view IRL as a func-
tion: 𝜁 (MDP∕RE

,X) = R̂E . This concise formulation of IRL will be utilized later in the 
article.

Abbeel and Ng [1] define feature expectations as the discounted sum of feature values 
computed over the trajectories in a demonstration,

For a linear reward function with a fixed set of weights, feature expectations provide a 
way to obtain the expected value of a policy: V�(s0) =

∑k

i=1
�i ⋅ E�[�] . Therefore, match-

ing the feature expectations of the learned behavior with those for demonstrated behavior 
is equivalent to matching the expected values of the learned policy and the expert’s policy.

As the expert’s policy is unavailable to the learner, the vector of weights is found by 
comparing the feature expectations from the expert’s policy to feature counts empirically 
estimated from the observed trajectories [38]. The expert’s feature expectations are esti-
mated using the discounted average of feature values for all observed trajectories, 
�̂�k =

1

�X�
∑

X∈X

∑
⟨s,a⟩t∈X 𝛾

t �k(⟨s, a⟩t) , where X is a trajectory in the set of all observed tra-
jectories, X  , and � ∈ (0, 1) is a discount factor. The learner completes the expert’s MDP 
using the learned reward function and may solve it to obtain �E . The difference �̂� − 𝜙𝜋E 
provides a gradient with respect to the reward weights for a numerical solver.

(2)�
�E
k

= EX[�k] = E

[
T∑

t=0

� t�k(st, at)|s ∈ SE, a = �E(s) ∈ AE

]

1 Repeated trajectories in a demonstration can usually be excluded for many methods without affecting the 
learning.
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2.2  Maximum entropy IRL

While expected to be useful in some contexts, the max-margin approach of Abeel and Ng 
[1] introduces a bias into the learned reward function. While biases help guide the search 
in ill-posed problems, they may preclude other meaningful solutions. Consequently, this 
motivates methods that make the least assumptions. In this regard, Ziebart et al. [38] finds 
the distribution over all trajectories that exhibits the maximum entropy and is constrained 
to match the observed feature expectations. The following nonlinear program gives this 
distribution.

Here, � is the space of all distributions over the set � of all trajectories, and 
E�[�k] =

∑
X∈� P(X)

∑
⟨s,a⟩t∈X �

t�k(⟨s, a⟩t) . The problem reduces to finding � , which 
parameterizes the exponential distribution that exhibits the highest likelihood:

 As the distribution P(⋅) is parameterized by learned weights � , E�[�k] represents the fea-
ture expectations ��E

k
 . Notice from Eq. 4 that the chances of an expert agent following a 

trajectory is proportional to the cumulative reward incurred along that path. The benefit of 
this approach is that distribution P(X) makes no further assumptions beyond those which 
are needed to match the constraints of (3) and is maximally noncommittal to any one trajec-
tory. As such, it is most generalizable by being the least wrong most often of all alternative 
distributions. Since its introduction, there have been numerous extensions and applications 
of maximum entropy IRL [2, 13, 37, 39]. A disadvantage is that it becomes intractable for 
long trajectories because the set of trajectories grows exponentially with time steps. In this 
regard, another formulation defines the maximum entropy distribution over policies [14], 
the size of which is also large but fixed.

2.3  IRL under occlusion

Our motivating application involves a subject robot that must observe other mobile robots 
from a fixed vantage point. Its local sensors allow it a limited observation area; within this 
area, it can observe the other robots fully, outside this area it cannot observe at all. Previ-
ous methods [9, 10] denote this special case of partial observability where certain states are 
either fully observable or fully hidden as occlusion. Subsequently, the trajectories gathered 
by the learner exhibit missing data associated with time steps where the expert robot is 
in one of the occluded states. The empirical feature expectation of the expert �̂�k will thus 
exclude the occluded states (and actions in those states).

Bogert and Doshi [9], while maximizing entropy over policies [14], limited the calcula-
tion of feature expectations for policies to observable states only. To ensure that the feature 
expectation constraint of IRL methods accounts for the missing data, a recent approach 
[11, 12] improves on this method by taking an expectation over the missing data condi-
tioned on the observations. Completing the missing data in this way allows the use of all 

(3)
max
𝛥

�
−
∑

X∈� P(X) log P(X)
�

subject to
∑

X∈� P(X) = 1

E�[𝜙k] = �̂�k ∀k

(4)P(X;�) ∝ e
∑

⟨s,a⟩∈X �
T�(s,a).
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states in the constraint and with it the Lagrangian dual’s gradient as well. The nonlinear 
program in (3) is modified to account for the hidden data and its expectation.

Let Y be the observed portion of a trajectory, Z is one way of completing the hidden por-
tions of this trajectory, and X = Y ∪ Z . Treating Z as a latent variable and taking its expec-
tation gives a new definition for the expert’s empirical feature expectations:

where ⟨s, a⟩t ∈ Y ∪ Z , Y  is the set of all observed Y, ℤ is the set of all possible hidden Z 
that can complete a trajectory. Note the underlying assumption that the learner is aware that 
a segment of the expert’s trajectory is occluded from its view. The length of this segment 
is variable and need not be pre-determined. The program in (3) is modified by replacing 
�̂�k with �̂�Z|Y

�,k
 , as we show below. Notice that in the case of no occlusion ℤ is empty and 

X = Y  . Therefore �̂�Z|Y
�,k

= �̂�k and this method reduces to (3). Thus, this method generalizes 
the previous maximum entropy IRL method.

However, the program in (6) becomes nonconvex due to the presence of P(Z|Y). As such, 
finding its optima by Lagrangian relaxation is not trivial. Wang et al. [36] suggests a log 
linear approximation to cast the problem of finding the parameters of distribution (feature 
weights) as the likelihood maximization that can be solved within the schema of expec-
tation-maximization [16]. An application of this approach to the problem of IRL under 
occlusion yields the following two steps (with more details in [12]):

E-step This step involves calculating Eq. 5 to arrive at �̂�Z|Y ,(t)
�,k

 , a conditional expectation 
of the K feature functions using the parameter �(t) from the previous iteration. We may ini-
tialize the parameter vector randomly.

M-step In this step, the modified program (6) is optimized by utilizing �̂�Z|Y ,(t)
�,k

 from the 
E-step above as the expert’s constant feature expectations in order to obtain �(t+1) . Now, 
optimizing the relaxed Lagrangian becomes easier. Normalized exponentiated gradient 
descent [24, 33], a version of gradient descent in which the learned parameter is scaled 
using the exponent of the gradient, solves the program. This variant of the gradient descent 
exhibits improved worst-case loss bounds than the standard gradient descent and often 
yields faster convergence.

As EM may converge to local minima, this process is repeated with random initial � and 
the solution with the maximum entropy is chosen as the final one.

3  Incremental IRL (I2RL)

We present a framework for incremental IRL, labeled I2RL, in order to realize IRL 
in online settings. We identify and rigorously define the key concepts integral to online 
inverse learning such as sessions, stopping criteria, incremental learning, and loss. These 
provide a common foundation for researchers interested in developing new techniques for 
online IRL, which facilitates comparing between them conceptually as well as developing 
their theoretical properties.

(5)�̂�
Z�Y
�,k

≜
1

�Y�
�

Y∈Y

�

Z∈ℤ

P(Z�Y;�)
�T

t=1
𝛾 t𝜙k(⟨s, a⟩t)

(6)
max
𝛥

�
−
∑

X∈� P(X) log P(X)
�

subject to
∑

X∈� P(X) = 1

E�[𝜙k] = �̂�
Z�Y
�,k

∀k
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3.1  Framework

To establish the definition of incremental IRL, we must first define a session of I2RL. Let 
R̂0
E
 be an initial estimate of the expert’s reward function. Our definitions reference trajecto-

ries and demonstrations, which were previously defined in Sect. 2.1.

Definition 3 (Session) A session of I2RL, 𝜁i(MDP∕RE
,Xi, R̂

i−1
E

) , i > 0 and i ∈ ℕ , takes as 
input the expert’s MDP sans the reward function, the current ( ith ) demonstration, Xi ∈ 2� , 
and the reward function estimated previously. It yields a revised estimate of the expert’s 
reward function, R̂i

E
.

Note that we may replace the reward function estimates with some parameter suffi-
ciently representing it (e.g., � ). Also, for expedience in formal analysis, we may impose the 
assumption that the trajectories in a session Xi are i.i.d. as the trajectories in the previous 
session.2 When the trajectories in Xi are i.i.d., the demonstrations Xi, i ∈ {1, 2,…} are also 
i.i.d. This assumption enables deriving probabilistic convergence bounds by making it pos-
sible to apply Hoeffding’s inequality, as we demonstrate later in this article.

We can let the sessions run indefinitely. Alternately, we may establish some stopping 
criteria for the incremental learning, which then offer a basis to automatically terminate the 
sessions once the criterion is satisfied. Let LL(R̂i

E
|X1∶i) be the log likelihood of the dem-

onstrations received up to the ith session given the current estimate of the expert’s reward 
function. We may view this likelihood as a measure of how well the learned reward func-
tion explains the observed data. In the context of I2RL, the log likelihood must be com-
puted without storing data from previous sessions. Here onwards, X̂  denotes a sufficient 
statistic that replaces all input trajectories from previous sessions in the computation of log 
likelihood.

Definition 4 (Stopping criterion #1) Terminate the sessions of I2RL when |LL(R̂i
E
|Xi,

�X) 
−LL(R̂i−1

E
|Xi−1,

�X�)| ⩽ 𝜌 , where � is a very small positive number.

Definition 4 reflects the fact that additional sessions are not improving the learning per-
formance significantly. On the other hand, a more effective stopping criterion is possible if 
we know the expert’s true policy. We utilize the inverse learning error [15] in this crite-
rion, which gives the loss of value if learner uses the learned policy on the task instead of 
the expert’s: ILE(�∗

E
,�E) = ||V�∗

E − V�E ||1 . Here, V�∗
E is the optimal value function of E’s 

MDP and V�E is the value function due to utilizing the policy �E (obtained from solving the 
MDP with the learned reward function) in E’s true MDP. The norm is needed as the value 
functions are vectors over the states. Notice that when the learned reward function results 
in an optimal policy identical to E’s true policy, �∗

E
= �E , ILE will be zero; it increases 

monotonically as the two policies increasingly diverge in value. Instead of using an abso-
lute difference, our experiments use a normalized difference, ILE(�∗

E
,�E) =

||V�∗
E−V�E ||1

||V�∗
E ||1

.

2 This assumption holds when each session starts from the same state and the trajectories are produced by 
the expert’s fixed policy. In case of occlusion, even though inferring the hidden portion Z of a trajectory 
X ∈ X

i
 , is influenced by the visible portion, Y, this does not make the trajectories necessarily dependent on 

each other.
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Let �i
E
 be the optimal policy obtained from solving the expert’s MDP with the reward 

function R̂i
E
 learned in session i. Another stopping criterion is then defined as given below.

Definition 5 (Stopping criterion #2) Terminate the sessions of I2RL when ILE(�∗
E
,�i−1

E
) 

−ILE(�∗
E
,�i

E
) ⩽ � , where � is a very small positive error and is given.

Obviously, prior knowledge of the expert’s policy is not common in practice. There-
fore, we view this criterion as being more useful during the formative evaluation of I2RL 
methods.

Utilizing Definitions 3, 4, and 5, we formally define I2RL next.

Definition 6 (I2RL) Incremental IRL is a sequence of learning sessions {�1(MDP∕RE
, 

X1, R̂
0
E
), 𝜁2(MDP∕RE

,X2, R̂
1
E
), �3 (MDP∕RE

,X3, R̂2
E
),… , } , which continue infinitely or until 

a stopping criterion assessing convergence is met (criterion #1 or #2 depending on which 
one is chosen a’priori).

The previous reward function estimate in each session may be replaced with some 
parameter(s) sufficiently representing it.

Regret is a common performance measure for online learning methods. It is often 
defined based on an expected value of cumulative loss or gain. For example, in the context 
of online learning in the multi-arm bandit problem [7], external regret is defined as the dif-
ference between the expected value of total loss from method M, and the total loss from the 
best decision in hindsight.

where l(⋅, ⋅) is a loss function, st is the situation at round t, and aM
t

 is the decision that 
method M makes in situation st . If the distribution over {st|t ∈ {1, 2,… T}} is unknown, it 
may be estimated as

 We may model the sessions of I2RL as the iterations of an adversarial iterative game with 
the learner as a player, and the IRL hypotheses {R̂i

E
} as the decisions made by the player. 

Note that the best possible hypothesis for R̂i
E
 is the true reward function RE of the expert. 

Thus, on the one hand the true minimum loss achievable relative to RE is 0; on the other 
hand the loss from decision R̂i

E
 can be measured in terms of the log likelihood loss (

LL(RE|Xi,
�X) − LL(R̂i−1

E
|Xi−1,

�X�)
)
 . Plugging these choices into Eq. 7, we get the fol-

lowing definition of average regret:

Definition 7 (Average Regret in I2RL) With 
(
LL(RE|Xi,

�X) − LL(R̂i−1
E

|Xi−1,
�X�)

)
 as the 

loss incurred in session i by the learning algorithm MI2RL , average regret after T sessions is 
given by:

RegretT (M) = E{st|t∈{1,2,…T}}

[
�T

t=1
l(st, a

M
t
) −min

a∈A
�T

t=1
l(st, a)

]

(7)RegretT (M) =
1

T

[
�T

t=1
l(st, a

M
t
) −min

a∈A
�T

t=1
l(st, a)

]
.

RegretT (MI2RL) =
1

T
𝛴T

i=1

(
LL(RE|Xi,

�X) − LL(R̂i−1
E

|Xi−1,
�X�)

)
.
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While somewhat straightforward, these rigorous definitions for I2RL allow us to con-
ceptually situate the few existing online IRL techniques, and to introduce online IRL with 
hidden variables, as we see next.

3.2  Existing methods in I2RL

One of our objectives in developing I2RL is to facilitate a portfolio of online methods 
under the framework of I2RL each with its own appealing properties. This will enable 
online IRL in various applications. We may easily present the method by Jin et  al. [21] 
within the framework of I2RL. A session of this method 𝜁i(MDP∕RE

,Xi, R̂
i−1
E

) is realized as 
follows: Each Xi is a single state-action pair ⟨s, a⟩ and initial reward function R̂0

E
=

1√
�SE�

 . 
For i > 0, R̂i

E
= R̂i−1

E
+ 𝛼 ⋅ vi , where vi is the difference in the expected value of the 

observed action a at state s and the (predicted) optimal action obtained by solving the MDP 
with the reward function R̂i−1

E
 , and � is the learning rate. While no explicit stopping crite-

rion is specified, the incremental method terminates when it runs out of observed state-
action pairs.

Another I2RL method is the DARKO algorithm, used for first person activity fore-
casting [31]. Casting the method to the framework of I2RL, a session of this method is 
�i(MDP∕RE

,Xi,�
i−1) , which yields �i . When the person wearing a camera stops the current 

activity, the stoppage is perceived as reaching a goal state in MDP. Input demonstration for 
the session, Xi , comprises all the activity trajectories observed since the end of the previ-
ous goal until the next goal is reached. The session IRL finds the reward weights �i that 
minimize the margin E�[𝜙|𝜋∗

E
] − �̂� using gradient descent. Here, the expert’s policy �∗

E
 is 

obtained by using soft value iteration for solving the complete MDP that includes a reward 
function estimate obtained using previous weights �i−1 . No stopping criterion is utilized for 
the online learning, thereby emphasizing its continuity.

GAIL [20] is a state-of-the-art offline policy learning method cast in the schema of gen-
erative adversarial networks. In GAIL, learning happens by training the generator G� rep-
resenting the learned parameterized policy �� while the discriminator D

�
 represents the 

learned reward function.
We modified GAIL to be online and cast it under the I2RL framework. A session of 

online GAIL is �i(MDP∕RE
,Xi,D�

i−1 ,G�i−1 ) , with (D
�
i ,G�i ) as outputs of inference. Each 

session involves two steps: a gradient ascent on � , which increases the entropy-regularized 
occupancy-measure loss w.r.t. D

�
 , and a TRPO step on � , which decreases the loss w.r.t. 

G� . As there is no stopping criteria specified, the learning continues until the input demon-
strations stop.

Table 1  A conceptual comparison of the existing online methods cast in the I2RL framework along with 
the new method presented in this article

Method Session definition Session output Stopping criterion

LP-I2RL (MDP∕R
E

,X
i
, R̂i−1

E
) R̂

i

E
None (until no more data)

DARKO (MDP∕R
E

,X
i
,�

i−1) �
i None (until no more data)

Online-GAIL (MDP∕R
E

,X
i
,D

�
i−1 ,G�i−1 ) (D

�
i ,G�i ) None (until no more data)

LME-I2RL (MDP∕R
E

,Y
i
, |Y1∶i−1|, �̂�

Z|Y ,1∶i−1
�
i−1

,�
i−1) (�i

, |Y1∶i|, �̂�
Z|Y ,1∶i
�
i

) Likelihood not improved (Defini-
tion 4)
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Table 1 provides a quick conceptual comparison between the three online IRL methods 
discussed in this subsection as well as the new method, which we present next.

4  Incremental latent MaxEnt

We present a new method for online IRL under the I2RL framework, which modifies the 
latent maximum entropy (LME) optimization reviewed in the Background section. It offers 
the capability to perform online IRL in contexts where portions of the observed trajectory 
may be occluded.

For differentiation, we refer to the original method as the batch version. Recall the kth fea-
ture expectation of the expert computed in Eq. 5 as part of the E-step. �̂�Z|Y ,i

�
i,k

 is the expectation 
of kth feature for the demonstration obtained in ith session, �̂�Z|Y ,1∶i

�
i,k

 is the expectation computed 
for all demonstrations obtained until the ith session, we may rewrite Eq. 5 for feature k as:

A session of incremental LME takes as input the expert’s MDP sans the reward function, 
the current session’s trajectories, the number of trajectories observed until the previous ses-
sion, the expert’s empirical feature expectation and reward weights from previous session. 
More concisely, each session is denoted by �i(MDP∕RE

, Yi, |Y1∶i−1|, �̂�
Z|Y ,1∶i−1
�
i−1

,�i−1) . The 
sufficient statistic X̂ for the session comprises (|Y1∶i−1|, �̂�

Z|Y ,1∶i−1
�
i−1

) . In each session, the fea-
ture expectations using that session’s observed trajectories are computed, and the output 
feature expectations �̂�Z|Y ,1∶i

�
i,k

 are obtained by including these as shown above in Eq. 8, which 
is then used in the M-step. The equation shows how computing sufficient statistic replaces 
the need for storing the data input in previous sessions. Of course, each session may involve 
several iterations of the E- and M-steps until the converged reward weights �i are obtained 
thereby giving the corresponding reward function estimate. We refer to this method as 
LME I2RL.

Wang et al. [35] shows that if the distribution over the trajectories in (6) is log linear, then the 
reward function that maximizes the entropy of the distribution over trajectories also maximizes 

(8)

�̂�
Z�Y ,1∶i
�
i,k

≜
1

�Y1∶i�
�

Y∈Y1∶i

�

Z∈ℤ

P(Z�Y;�)
T(i)�

t=1

𝛾 t𝜙k(⟨s, a⟩t)

=
1

�Y1∶i�
�

Y∈(Y1∶i−1∪Yi)

�

Z∈ℤ

P(Z�Y;�)
T(i)�

t=1

𝛾 t𝜙k(⟨s, a⟩t)

=
1

�Y1∶i�

� �

Y∈Y1∶i−1

�

Z∈ℤ

P(Z�Y;�)
T(i)�

t=1

𝛾 t𝜙k(⟨s, a⟩t)+

�

Y∈Yi

�

Z∈ℤ

P(Z�Y;�i)

T(i)�

t=1

𝛾 t𝜙k(⟨s, a⟩t)
�

=
1

�Y1∶i−1� + �Yi�

�
�Y1∶i−1� �̂�

Z�Y ,1∶i−1
�
i−1,k

+ �Yi� �̂�
Z�Y ,i
�
i ,k

�

(Using Eq. 5 and �Y1∶i� = �Y1∶i−1� + �Yi�)

=
�Y1∶i−1�

�Y1∶i−1� + �Yi�
�̂�
Z�Y ,1∶i−1
�,k

+
�Yi�

�Y1∶i−1� + �Yi�
�̂�
Z�Y ,i
�,k
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the log likelihood of the observed portions of the trajectories. Given this linkage with log likeli-
hood, the stopping criterion #1 as given in Definition 4 can be utilized. As shown in Algorithm 1, 
the sessions will terminate when,  |LL(�i|Yi, |Y1∶i−1|, �̂�

Z|Y ,1∶i−1
�
i−1

,�i−1) − LL(�i−1|Yi−1, |Y1∶i−2|, 
�̂�
Z|Y ,1∶i−2
�
i−2

,�i−2)| ≤ 𝜌 , where �i fully parameterizes the reward function estimate for the ith session 
and � is a given acceptable difference. 

4.1  Convergence bounds

LME I2RL admits some significant convergence guarantees with a confidence of meeting 
the specified error on the demonstration likelihood. To establish the guarantees of LME 
I2RL, we first focus on the full observability setting. For a desired relaxed bound �∕(1 − �) 
on the feature matching constraint (see line 18 in Algorithm 1) for session i, the confidence 
is bounded as follows:

Theorem 1 (Confidence for ME I2RL) Given X1∶i as the (fully observed) demonstration 
until session i, �E ∈ [0, 1]K is the expert’s weights, and �i is the converged weight vector 
for session i for ME I2RL, we have,

with probability at least max(0, 1 − �) , where � = 2K exp(−2|X1∶i|�2).

The proof of this theorem is given in the Appendix.

LL(�E|X1∶i) − LL(�i|Xi, |Xi−1|, �̂�1∶i−1,�i−1) ⩽
2K𝜀

(1 − 𝛾)
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Note that sufficient statistic X̂ for the full-observability scenario is ( |Xi−1|, �̂�1∶i−1 ). The-
orem 1 also holds for the online method by Rhinehart et al. [31] because it uses incremen-
tal (full-observability) maximum entropy IRL. As the method implements online learning 
without an incremental update of feature expectations of the expert, we set �̂�1∶i = �̂�i ; an 
absence of sufficient statistic means that |Xi−1| = 0 , and set �̂�1∶i−1

k
= 0,∀k in Theorem 1. 

This demonstrates the benefit of Theorem 1 to relevant methods.
Relaxing the full observability assumption, the following lemma, whose proof is 

available in the Appendix, proves that LME I2RL converges monotonically.

Lemma 1 (Monotonicity) LME I2RL increases the demonstration likelihood monotonically 
with each new session, LL(�i|Yi, |Y1∶i−1|, �̂�

Z|Y ,1∶i−1
�
i−1

,�i−1) − LL(�i−1|Yi−1, 
|Y1∶i−2|, �̂�

Z|Y ,1∶i−2
�
i−2

, �i−2) ⩾ 0 , when |Y1∶i−1| ≫ |Yi|.

While Lemma  1 suggests that the log likelihood of the demonstration can only 
improve from session to session after learner has accumulated a significant amount of 
observations, a stronger result illuminates the confidence with which LME I2RL 
approaches, over a sequence of sessions, the log likelihood of the expert’s true weights 
�E . As a step toward such a result, we first consider the error in approximating the fea-
ture expectations of the unobserved portions of the data, accumulated from the first to 
the current session of I2RL. Notice that �̂�Z|Y ,1∶i

�
i,k

 given by Eq. 8 is an approximation of 
the full-observability expectation �̂�1∶i

k
 , computed by sampling the hidden Z from 

P(Z|Y ,�i−1) [12]. The following lemma, whose proof is given in Appendix, relates the 
error due to this sampling-based approximation, i.e., |||�̂�

1∶i
k

− �̂�
Z|Y ,1∶i
�
i,k

||| , to the difference 
between feature expectations for learned policy and that estimated for the expert’s true 
policy.

Lemma 2 (Constraint Bounds for LME I2RL) Suppose X1∶i has portions of trajectories in 
ℤ1∶i = {Z|(Y , Z) ∈ X1∶i} occluded from the learner. Let �s be a given bound on the error 
||�̂�1∶i

k
− �̂�Z|Y ,1∶i

�
i,k

||1, k ∈ {1, 2…K} after ns samples for approximation. Then, with probability 
at least max(0, 1 − (� + �s)) , the following holds:

where �, � are as defined in Theorem 1, and �s = 2K exp( −2ns�2s ).

LME I2RL computes �i by an optimization process using the result �Z|Y ,i of the E step 
(sampling of occluded data) of current session along with other inputs (feature expecta-
tions and � computed from previous session) which, in turn, depend on the sampling pro-
cess in previous sessions. Theorem 1 and Lemma 2 allow us to probabilistically bound the 
error in log likelihood for LME I2RL:

Theorem 2 (Confidence for LME I2RL) Let Y1∶i = {Y|(Y , Z) ∈ X1∶i} be the observed por-
tions of the demonstration until session i. � and �s are inputs as defined in Lemma 2, and �i 
is the solution of session i for LME I2RL. Then

|||(1 − 𝛾)
(
E𝕏[𝜙k] − �̂�

Z|Y ,1∶i
�
i,k

)|||1 ⩽ 𝜀 + 𝜀s, k ∈ {1, 2…K}

LL(�E|Y1∶i) − LL(�i|Yi, |Yi−1|, �̂�
Z|Y ,1∶i−1
�
i−1

,�i−1) ≤
4K𝜀l
(1 − 𝛾)
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with confidence at least max(0, 1 − �l) , where �l =
�+�s
2

 , and �l = � + �s.

The proof of this theorem is given in Appendix.
Given �, �s,N and the total number of input partial-trajectories, |Y1∶i| , Theorem 2 gives the 

confidence 1 − �l for I2RL under occlusion. Equivalently, the number of observed trajectories 
|Y1∶i| can be derived using desired error bounds and confidence. As a boundary case of LME 
I2RL, if learner ignores occluded data (no sampling or ns = 0 for E-step ), the confidence for 
convergence becomes zero because �s becomes larger than 1.

A desirable feature is for an online learning algorithm to be no-regret, i.e., where the aver-
age regret vanishes in the limit. In the context of ME I2RL, we follow our definition of aver-
age regret (Definition 7) up to session i = T as

This is the regret that I2RL experiences in hindsight, in terms of log-likelihood loss, for 
returning �i instead of �E after session i, i = 1,… , T  , averaged over the T sessions. Theo-
rem 1 implies that with a high confidence, the above expression for average regret is con-
stant bounded, specifically by 2K�∕(1 − �) . However, by setting a diminishing (variable) 
threshold in line 18 of Algorithm 1, the total regret can be made to grow slower than T, 
so that the average regret vanishes in the limit (as T → ∞ ). One such choice (by no means 
unique) for a variable � for line 18 of Alg. 1 is

where c is some constant and i is the session index. This choice ensures that with a high 
confidence, RegretT (MMEI2RL) is O(logT)∕T  , which indeed vanishes in the limit. We for-
malize this intuition for the fully observable setting (i.e., in the context of Theorem 1; a 
similar result follows in the context of Theorem 2 as well) in the following theorem.

Theorem 3 (No Regret Learning) There exist choices for a variable threshold bound on the 
feature matching constraint, �i as a function of session i, such that with probability at least 
max(0,

∏i=T

i=1
(1 − �i)) , where �i = 2K exp(−2|X1∶i|�2i ),

thus approaching 0 as T → ∞.

Note that the above theorem assumes that line 18 of Alg. 1 exits in every session. If this 
does not occur in some session, for instance if the algorithm gets stuck in a local optima which 
becomes increasingly likely as the threshold in Eq. 9 tightens, then the theorem does not apply. 
The proof of this theorem is given in the Appendix.

In contrast with Theorem 1 (and Theorem 2 in the partially observable case), Theorem 3 
assesses the asymptotic behavior of the log likelihood loss when accumulated over multiple 
sessions. This takes a long term view of the learner’s performance, and the theorem itself 
demands a gradually improving performance by this measure, while Theorem  1 merely 
improves the confidence ( � ) on the learner’s performance with accumulating sessions, without 
similarly demanding an improved performance (e.g., by reducing the log likelihood loss). The 
price for demanding greater long term accuracy is the diminishing schedule of � , which may 
become increasingly harder to meet.

RegretT (MMEI2RL) =
1

T

T∑

i=1

LL(�E|X1∶i) −
1

T

T∑

i=1

LL(�i|Xi, |Xi−1|, �̂�1∶i−1,�i−1)

(9)�i∕(1 − �) = c∕i

RegretT (MMEI2RL) = o(T)∕T ,
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5  Experiments

We evaluate the performance of I2RL on three instances of the previously introduced 
patrolling domain [9], where an observing robot is tasked with penetrating a perimeter 
patrol on a grid undetected. In the following sections, we first explain the domain and 
the particular instances used in our experiments. In Sect.  5.2, we show how this task is 
modeled as an MDP. Next, we evaluate the performance of LME I2RL on experiments in 
the domain both in simulation and on physical robots. Section 5.3 compares LME I2RL 
with the batch method in simulations of two instances of the domain. None of the existing 
online IRL methods discussed in Sect. 3.2 are easily amenable to learning under occlusion, 
except for GAIL which we include in our comparisons. For example, Jin et al. [21] utilize a 
single state-action pair in each session. If this state-action pair is occluded, there is no input 
and the reward function is not updated. After simulations, in Sect. 5.4 we show a similar 
comparison on physical robots on two instances of the domain, one of which is signifi-
cantly larger than the other.

5.1  Domain: observing and penetrating cyclic patrols

Bogert and Doshi [9] introduced the domain of robot patrolling for evaluating IRL under 
occlusion and simulated it in ROS-based Player Stage [18]. It involves a robotic learner 
observing patrollers from a vantage point with a limited view continuously navigate a hall-
way in cyclic trajectories. The learner is tasked with reaching a goal location without being 
spotted by any of the patrollers in a given amount of time. Each patroller can see up to three 
grid cells in front. This domain differs from the usual applications of IRL toward imitation 
learning. In particular, the learner must solve its own distinct decision-making problem 
(modeled as another MDP), which is dependent on correctly predicting the patrols. The 
latter can be estimated from inferring each patroller’s preferences given that the learner 
knows their dynamics.

We evaluate the performance of LME I2RL on three instances of the patrolling domain. 
The first instance, shown in Fig. 1a, involves a single patroller covering fully four hallways 
protruding from a common corridor in a loop. The learner is able to see a portion of just 
the corridor (shown shaded) from its vantage point leading to about 70% of the patroller’s 
trajectory being occluded from its view. We utilize this first instance to evaluate the accu-
racy of learning only. Figure 1b shows a second instance of the patrolling domain, also 
utilized by Bogert and Doshi previously. The map for this instance pertains to a portion of 
the fifth floor of the Boyd building on the University of Georgia campus. Two patrollers 
execute, independently for the most part, a cyclic trajectory with the learner able to view 
just 32% of the trajectory from its vantage point in the physical instance. The patrollers 
engage in coordinated motion when they pass by each other to avoid collisions. The learner 
is tasked with reaching the cell location marked ’G’ without being spotted by any of the 
patrollers in a given amount of time. Consequently, this instance requires the learner to 
utilize the learned behaviors of the patrollers in its own planning problem and execute its 
plan.

The final instance of the domain, shown in Fig. 1c, involves two patrollers executing 
cyclic trajectories in a significantly larger space (also on Boyd’s fifth floor) with the learner 
located in a room and viewing outside. Both patrollers and the learner can also enter two 
rooms whose entrances lie in the two hallways. The learner is able to view just 18% of the 
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patrolling trajectory from its vantage point, and is tasked with reaching one of two possible 
goal locations without being detected by any patroller. Consequently, this instance uses a 
map that is significantly larger than the previous ones, potentially more complex trajecto-
ries and planning, and significantly greater occlusion.

5.2  Model setup

LME I2RL, as with most other IRL methods, ascribes an MDP sans the reward function to 
model the expert’s task behavior. In all instances of the domain, each patroller’s behavior 
is modeled using an MDP. The state of each patroller in the MDP has three dimensions 
⟨x, y, �⟩ , which gives the x and y coordinates of the cell decomposition of the corridors and 
hallways, and � is the orientation of the patroller. Each patroller executes one of four pos-
sible actions: move-forward, turn left or turn right 90 degrees, and stop. The motion model 
of the patroller, modeled as the transition function in the MDP, is stochastic. The MDP for 

(a)
(b)

(c)

Fig. 1  We use three differently-sized instances of the patrolling domain [9] for evaluating the performance 
of LME I2RL. The learner is unaware of where each patroller turns around, their speed, and navigation 
capabilities
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instance 1 of the domain has 192 states, instance 2 has 124 states while the MDP for the 
third instance has 184 states.

All reward functions are sufficiently modeled as a weighted combination of pre-deter-
mined feature functions where the weights are unknown. The reward function of the single 
patroller in Fig. 1a utilizes four feature functions. Each function activates when the patrol-
ler reaches the end of the previously numbered hallway and remains activated until the end 
of the target hallway is reached, thereby enabling clockwise patrolling. To continue moving 
out of the hallways and in the vertical corridor (not a part of any hallway), the state in this 
domain instance additionally includes the recently visited hallway. A hallway is deemed to 
have been visited when the navigating agent has reached its end. The four binary feature 
functions are:

– SwitchToHallway1(s,a) returns 1 when action a in state s makes the patroller move 
from hallway 4 to hallway 1 in s′ , otherwise 0;

– SwitchToHallway2(s,a) returns 1 when action a in state s makes the patroller move 
from hallway 1 to 2;

– SwitchToHallway3(s,a) returns 1 when action a in state s makes the patroller move 
from hallway 2 to 3; and

– SwitchToHallway4(s,a) returns 1 when action a in state s makes the patroller move 
from hallway 3 to 4.

If equal weights are given to each of the above features, the MDP policy then guides the 
patroller to cycle through the four hallways in a clockwise manner.

The reward function for each patroller in the second instance of the domain utilizes six 
binary state-action feature functions, which divide the grid broadly into five regions as 
shown in Fig. 1b.

– HasMoved(s,a) returns 1 if action a at state s makes the patroller change its grid cell, 0 
otherwise;

– Turn1(s,a) returns 1 if action a in state s makes the patroller turn (left or right) in the 
region of the hallway shaded orange in Fig 1b;

– Turn2(s,a) returns 1 if action a in state s makes the patroller turn in the region of the 
hallway shaded yellow in Fig. 1b;

– Turn3(s,a) returns 1 if action a in state s makes the patroller turn in the region of the 
hallway shaded green in Fig. 1b;

– Turn4(s,a) returns 1 if action a in state s makes the patroller turn in the region of the 
hallway shaded blue in Fig. 1b;

– Turn5(s,a) returns 1 if action a in state s makes the patroller turn in the region of the 
hallway shaded magenta in Fig. 1b.

A weight vector �E for these features such as ⟨.57, 0, 0, 0, .43, 0⟩ makes each of the two 
patrollers constantly execute cyclic trajectory that involves turning around in the region 
shaded blue of the top and bottom hallway.

For the third instance of the domain (Fig. 1c), the reward function is composed of the 
following five feature functions.

– HasMoved(s,a) returns 1 if action a at state s makes the patroller change its grid cell, 0 
otherwise;

– InRoom(s,a) returns 1 if the patroller in state s is inside a room, 0 otherwise;
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– Turn(s,a) returns 1 if action a in state s makes the patroller turn in a hallway;
– EnterRoom(s,a) returns 1 if action a at state s makes the patroller enter a room from one 

of the hallways;
– LeaveRoom(s,a) returns 1 if action a at state s makes the patroller enter a hallway from 

one of the rooms.

A weight vector of ⟨1,−1, .1, 0, 0⟩ gives the highest preference to constantly moving, some 
preference to turning around in the hallways, and the least preference to being in a room. 
No reward is given for entering or leaving the rooms. As a result, the patrollers keep patrol-
ling the hallways and turn around just before the hallways end.

For the second and third instances, after learning the reward function, the learner com-
putes the policies for both patrollers. LME I2RL can utilize both finite- and infinite-horizon 
look aheads in the MDPs. It uses the policies and recently observed locations to predict the 
future locations of the two patrollers. The learner’s own MDP has the same state space as 
the patroller’s and additionally includes a discrete timestep as a fourth dimension of its 
state. As the patrollers are constantly moving and the learner incurs a penalty for being 
spotted, the timestep allows the learner to represent the map with the patrollers’ current 
location included. The learner solves its MDP over a finite horizon to obtain a policy that 
guides its actions to reach the goal location. On seeing both patrollers, it waits until a state 
with a positive value occurs before moving.

5.3  Performance evaluation in simulation

As the learner’s vantage point limits its observability, the patrolling domain requires IRL 
but under occlusion. To establish the benefit of I2RL for LME, we compare the perfor-
mances of both its batch and incremental variants. Efficacy of the methods is compared 
using the following metrics:

– Learned behavior accuracy (LBA) is the proportion of all states at which the actions 
prescribed by the inversely learned policies of both patrollers coincide with their actual 
actions;

– Inverse learning error (ILE), as previously defined in Sect. 3.1, is the value loss due to 
using the learned policy in the expert’s MDP; and

– Success rate is the percentage of runs where the learner reaches the goal state unde-
tected by the patrollers, which is the culmination of learning the patrollers’ trajectories 
accurately, planning, and navigating to the goal location.

Note that when the learned behavior accuracy is high, the ILE is expected to be low. How-
ever, as MDPs admit multiple optimal policies, a low ILE need not translate into a high 
behavior accuracy. As such, these two metrics are not strictly correlated.

We report the LBA, ILE, and the computation time for the learning process (learning 
duration in seconds) of the inverse learning for both batch and incremental LME. The same 
data was input to both methods in order to achieve a fair comparison. Each data point is the 
mean of 100 trials for a fixed degree of observability and a fixed number of trajectories in 
a demonstration X  . While the entire demonstration was given as input to the batch variant, 
the Xi for each session of I2RL had one trajectory composed of five state-action pairs. As 
sessions arbitrarily segment the trajectory of state-actions pairs, the sessions may not be 
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i.i.d. The incremental learning stops when there are no more trajectories remaining to be 
processed.

If the sessions are i.i.d., Theorem 2 allows us to derive an upper bound on the number of 
state-action pairs needed across all sessions to meet the given log likelihood error, which 
signals convergence. Table 2 shows this relation between the acceptable error �l , which is a 
function of � and �s , and the number of trajectories for a 80% confidence level. In our simu-
lations, we choose � = 0.05 and �s = 0.05 , which yields �l =

�+�s
2

= 0.075 . Setting 
�s = 0.05 yields the maximum number of MCMC samples required in each E-step as 
N = −

1

2�2
s

ln
�s
2K

= 957 . For a �l of 0.075 for our experiments, Table 2 shows that at most 
239 trajectories would be needed. Table 3 shows that, for the chosen value of �l , the confi-
dence of convergence increases with more sessions as we should expect. 

In the single-patroller instance, LME I2RL shows a learning accuracy that remains 
close to that of batch LME with the accuracy increasing as the number of observed trajec-
tories increase (Fig. 2). Importantly, LME I2RL processes the trajectories and achieves the 
eventual learning accuracy in significantly less time. Furthermore, it shows slow growth in 
its cumulative learning duration as we provide more trajectories.

Next, we report the LBA, ILE, and learning durations for the second domain instance 
involving two patrollers. As these experiments are simulations, we may vary the learner’s 
observability, and Fig.  3a shows the results under a 30% degree of observability while 
Fig. 3b is for 70% degree of observability. To better understand the differentiations in per-
formance, we introduce a third variant that implements each session as, 
𝜁i(MDP∕RE

,Yi, |Yi∶i−1|, �̂�
Z|Y ,1∶i−1
�
i

) . Notice that this incremental variant does not utilize the 
previous session’s reward weights; instead, it initializes them randomly in each session. We 
label it as LME I2RL with random weights.

We empirically verify that convergence is indeed achieved within 239 sessions (each 
having one trajectory). As the size of demonstration increases, both batch and incremental 
variants exhibit a similar quality of learning although initially the incremental performs 
slightly worse. Due to the higher standard deviations exhibited by the incremental vari-
ant with random weights, we find the performances of the two incremental variants to be 

Table 2  Number of trajectories at 
most needed for �

l
 convergence 

in the second patrolling 
domain ( K = 6, � = 0.99 ) 
with confidence 1 − �

l
= 

1 − (� + �
s
) = 1 − (0.1 + 0.1) = 0.8

We use �
s
= 0.075 for both 30% and 70% observability

�
l
(�, �

s
) |Y1∶i|

0.125 (0.2, 0.05) 60
0.075 (0.1, 0.05) 239
0.05 (0.05, 0.05) 957
0.045 (0.04, 0.05) 1496

Table 3  Confidence of 
convergence increases with more 
trajectories (from more sessions) 
with �

l
= 0.075

max

|Y1∶i| (0, 1 − �
l
)

115 0
135 0.19
200 0.78
375 0.99
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similar despite slight differences in the means. More importantly, LME I2RL achieves 
these learning accuracies in significantly less time compared to the batch method, with the 
speed up ratio increasing to four as |X| grows. On the other hand, the batch method gener-
ally fails to converge in the total time taken by the incremental variant. Between the two 
degrees of observability, less observability exhibits a longer learning duration because of 
the need for increased inference that is time consuming. Notice that a random initialization 
of weights in each session, performed in LME I2RL with random weights, leads to higher 
learning durations as expected. The video of a simulation is available at https ://youtu .be/
B3wA6 z111w s.

Is there a benefit due to the reduced learning time? Figure 3c shows the success rates 
of the learner when each of the three methods are utilized for IRL. LME I2RL begins to 
demonstrate comparatively better success rates under 30% observability, which further 
improves when the observability is at 70%, as we should expect. While the batch LME’s 
success rate does not exceed 40%, the incremental variant succeeds in reaching the goal 
location undetected in about 65% of the runs under full observability (the last data point). 
A deeper analysis in order to understand these differences in success rates between batch 
and the incremental generalization of LME reveals that batch LME suffers from a large 
percentage of timeouts while incremental LME suffers from very few timeouts. A timeout 
occurs when IRL fails to converge to a reward estimate in a reasonable amount of time for 
each run. We set the threshold for a timeout as the total time taken for perception of tra-
jectories, learning, and two rounds of patrolling averaged over many trials. This gives both 
batch IRL and I2RL at least two chances for penetrating the patrol. Notice that as the per-
ception and learning times increase with the size of input data, so does the corresponding 
timeout threshold. The batch method shows a small 10% timeout rate for the full observa-
bility case which increases to more than a 50% timeout rate for low observability; whereas, 
the rate for incremental method stays below 4% throughout. LME with low observability 
requires more time due to the larger portion of the trajectory being hidden, which requires 
sampling a larger trajectory for computing the expectation. The longer learning durations 
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Fig. 2  Performances of batch and incremental LME in the first domain instance of Fig. 1a. All simulations 
were run on a Ubuntu 14 LTS system with an Intel i5 2.8 GHz CPU core and 8GB RAM. The error bars 
denote one standard deviation

https://youtu.be/B3wA6z111ws
https://youtu.be/B3wA6z111ws
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of the batch and I2RL methods in comparison to the no-learning random policy leads to 
more time outs, which negatively impacts their success rates for the low observability set-
tings. However, performance of the random policy is significantly worse than the I2RL 
methods for better observability. Of course, other factors play secondary roles in the suc-
cess rate as well.

We compared the performance of LME I2RL with that of an online GAIL. We experi-
mented with various simulation settings for GAIL and eventually settled on one that 
seemed most appropriate for our domain (500 iterations of TRPO with an adversary-batch-
size of 1000, two hidden-layer [ 64 × 8 ] network for both generator and adversary, 5 epochs 
for adversary, and batch-size 150 for generator). We obtained a maximum LBA of 52% 
for the fully observable simulations (note that fully observable trajectories still may not 
yield all possible state-action pairs). As this absolute performance was rather low, we ana-
lyzed the relative impact of occlusion in our scenario on the performance of GAIL. The 
rightmost chart in Fig. 3c shows that while both LME I2RL and online GAIL demonstrate 
the same relative difference initially, GAIL requires significantly more trajectories before it 

(a)

(b)

(c)

Fig. 3  Various metrics for comparing the performances of batch and incremental LME on the second 
instance of the patrolling domain (Fig. 1b)
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catches up with its full-observability performance, for both the 30% and 70% observability 
cases.3 As such, online GAIL appears to be more impacted by occlusion than LME I2RL.

5.4  Performance evaluation on physical robots

Physical TurtleBots were then engaged in the perimeter patrol experiment on the sec-
ond and third instances of the domain both of which exhibit less than 30% observabil-
ity. The TurtleBots acting as both the patrollers and the learner are each equipped with a 
Kinect-360 RGB-D camera and an ASUS laptop. Differently colored boxes are placed on 
top of each as markers (see Fig. 4). The learner uses the ROS stacks for TurtleBot and and 
CMVision to perceive the centroid, the width, and the height of the colored boxes on the 
two patrollers to track them. Utilizing this data about the patrollers, the dimensions of the 
known floor map, and the learner’s own position retrieved via Monte Carlo localization, 
the learner tracks the state (x,y, orientation) from its observations of each of the two patrol-
lers. We utilize aggregated observations over a duration of 2 seconds to recognize the state. 
The aggregation involved taking the average of the x and y locations and the mode for the 
orientation. Having recognized the states in this way, the action of a patroller is inferred by 
using the states before and after its motion for 2 seconds. The computation of the timeout 
threshold is same as that for simulations.

For each data point in the physical experiments, we conducted 50 trials with the 
number of trajectories and the number of state-action pairs per trajectory being the 

Fig. 4  (top-left) Patrollers (in pink and red) in the longer hallway of instance 2 of the domain. (top-right) 
Learner’s (green) perspective as it observes the patrollers from its vantage point. (bottom) Learner pen-
etrating the patrol to reach the goal undetected (first door on its right). The learner perceives the location 
and the orientation of each patroller by using the depth and the bounding box for the color blob detected via 
CMVision.

3 As more trajectory data is provided to GAIL, the accuracy of the expert’s estimated occupancy measure 
for the occluded state-action pairs improves. This helps GAIL in achieving its objective of minimizing the 
regularized cost.
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same as those in simulations. As the degree of observability cannot be changed in 
our physical setup, we varied the number of input trajectories in order to observe the 
change in success rate and timeout rate. Figure  5 shows the results of a comparison 
between the performances of batch LME and LME I2RL deployed on the TurtleBot. 
We do not include GAIL in these experiments because of its poor performance in the 
simulations (as is evident from Fig.  3c) and the fact that the observability in these 
experiments is lower than 30%, which will clearly further degrade its performance. 
Despite the low observability, the success rate for LME I2RL is consistently higher 
than that for batch LME (reaching close to 40%), thereby showing consistency with the 
results in simulations. The timeout rate while higher than those in simulations remains 
much lower for LME I2RL compared to its batch counterpart.

We also ran physical robot experiments on the larger third instance of the patrolling 
domain whose map is shown in Fig. 1c. Snapshots of the location of the attacker, the 
patrollers, and the hallways navigated by the patrollers are shown in Fig. 6. A video 
of a run in this instance is available here: https ://youtu .be/xTmXU I5P76 g. Note that 
the theoretical convergence analysis performed previously in Sect. 5.3 for the second 
domain instance may also apply to the third instance because the number of MCMC 
samples in the E-step remain the same except that the number of features K is 5 for 
the third domain. Following the same sample complexity calculations as before, LME 
I2RL must converge to �l = 0.075 with probability (1 − �l) = 0.8 in about 230 input tra-
jectories. Indeed, it achieves convergence within this prescribed size of the input data.

Despite very low observability and a larger state space, I2RL has a success rate 
going up to 35% as shown in Fig.  7, which is 10% higher than that for the batch 
method. Interestingly, that success rate is reached by observing about 22 trajectories 
only, i.e. 110 state-action pairs. The timeout rate for I2RL stays below 10% while that 
of batch LME crosses 40%. Clearly, faster convergence helps the attacker to succeed 
more often. Observe that for the initial data points, despite both methods exhibiting a 
similar LBA, the success rate of I2RL is increasing but that of batch LME stays con-
stant followed by a slight increase. This occurs in part because I2RL shows less time-
outs for those data points and also learns patroller behaviors whose accuracy improves 
with more data.

To summarize, experiments conducted on multiple configurations of the patrolling 
domain in both simulation and on physical robots demonstrate the significant improve-
ment in task performance brought about by online IRL. This is predominantly due to 
the incremental learning that leverages the learned outcomes from previous sessions 
while keeping the learning problem in each session small.
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https://youtu.be/xTmXUI5P76g
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Fig. 6  (top) The learner (green) observes the two patroller (pink and yellow). (bottom-right) Patrol-
lers navigating the hallway at the top of the map. (bottom-left) The learner penetrates the patrol moving 
through the hallway on the right side of the map (reaching the goal marked G2 in the grid)
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Fig. 7  Comparative performance of batch LME and LME I2RL in the third instance of the patrolling 
domain using physical robots. We assumed knowledge of the patrollers’ true polices in order to obtain the 
LBA and ILE metrics but note that such information is typically unavailable to the learner in practice
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6  Related work

As the field of online IRL is relatively new, the research literature is in the nascent stages of 
progress. An early method for online IRL [21] modifies Ng and Russell’s linear program [26]. 
It takes as input a single trajectory (instead of the policy) and replaces the linear program 
with an incremental update of the reward function. In particular, for each new observation, 
the learner updates the reward weights every time the observed action differs from the pre-
dicted action of the expert. Apart from the algorithm for this method, the authors provide error 
bounds as well.

Activity forecasting is one of the newer applications of IRL. Researchers have focused on 
learning human behavior models from observations, and predicting latent goals [23]. A recent 
method called DARKO [31] performs online IRL for activity forecasting. By tracking short 
term location goals of a person wearing a camera, DARKO uses IRL to learn a reward func-
tion based on the types of locations and objects in the environment. Based on the inferred 
model, it predicts a subset of possible future goals from a given finite set of goals. DARKO 
builds the states, actions, and the transitions during execution. However, occlusion of some 
states and actions would lead to an inaccurate model thereby severely deteriorating its IRL 
performance. Indeed, its not immediately clear how the online model building can be general-
ized to account for occlusion. Herman et al. [19] present a solution to the problem of (online) 
learning socially acceptable navigation behavior. By using an input demonstration labeled 
with acceptability, this method incrementally adapts a learned reward function according to 
recent changes in the navigation behavior of the observed humans. As observed behavior can 
continuously change, there is no concept of a stopping criterion for the method. While the 
approach assumes that the trajectories are fully observed, the method is classic MaxEnt, which 
can be replaced with incremental LME to generalize this technique to occlusion.

There are some learning approaches in imitation learning that can be modified and adapted 
to the context of online IRL. One of these is our online version of GAIL [20], which we used 
as a baseline in our experiments. GAIL uses the generative adversarial network architecture 
for learning the policy from observations. It aims to minimize a regularized loss computed as 
a function of the difference between the estimated occupancy measure of the expert’s policy 
and the occupancy measure for learned policy. The former occupancy measure is analogous 
to the distribution of data input to GAN and the latter occupancy measure is data distribution 
generated by a generator G� . The batch algorithm of maximum margin planning (MMP) [30] 
is a method for imitation learning, evaluated on path planning domains. In that paper, Ratliff 
et al. also provide an extension of MMP to online MMP, and prove that the algorithm admits 
a sub-linear regret bound. A separate paper [29] presents an application of the technique to 
the problem of online structured prediction, but focused primarily on classification domains. 
Other relevant methods admit online learning given deliberate teaching from a human [3, 22], 
but we focus on the class of methods with passive observations by the learner without any 
intentional teaching on the part of the demonstrator.

7  Concluding remarks

This article contributes to the nascent problem of online IRL by offering a formal frame-
work, I2RL, to help analyze the class of methods for online IRL. I2RL facilitates a con-
ceptual comparison of various online IRL techniques, and facilitates establishing the theo-
retical properties of online methods. In particular, it provides a common ground for the 
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definition of sessions, stopping criteria, and an evaluation metric among researchers inter-
ested in developing techniques for online IRL.

We presented a new method within the I2RL framework that generalizes recent 
advances in maximum entropy IRL to online settings. Casting this method to the context 
of I2RL allowed us to establish key theoretical properties of maximum entropy I2RL and 
LME I2RL under full and partial observability by ensuring the desired monotonic pro-
gress in learning toward convergence with a given confidence. With more training trajec-
tories or better observability |Y1∶i| , likelihood loss LL(�E|Y1∶i) − LL(�i|Yi) for I2RL gets 
smaller and the learned weights �i get closer to the true weights or their equivalent. The 
confidence of convergence 1 − � increases with more training (greater |Y1∶i| ), more room 
for error (higher � and �s ), and less features (lower K). For LME, one way to look at the 
theoretical results is that Lemma 2 uses � and �s to bound the absolute value of the gradient 
( �̂� − EX[𝜙] ) used in a likelihood-maximization process. And, bounding the gradient also 
restricts the difference between the value of a learned policy and the value of the expert’s 
policy. Exploiting that information from Lemma 2, Theorem 2 bounds the probability of 
error in maximization. To complete the formal analysis of our online method, we intro-
duced the notion of regret for I2RL and we proved that the average regret for LME I2RL 
approaches zero as the number of learning sessions increase. However, one limitation of 
our theoretical results is that the no-regret learning property of LME I2RL is limited to 
fully-observable settings only.

Our comprehensive experiments show that the new I2RL method is better than the 
state-of-the-art batch method in time-limited domains; it generally reproduces the batch 
method’s accuracy but in significantly less time. In particular, we showed that given the 
practical constraints on computation time exhibited by an online IRL application, the new 
method is able to solve the problem with a higher success rate. This IRL generalization 
also suffers less from occlusion than a popular imitation learning method that directly 
learns the policy or behavior. We showed that LME I2RL continues to perform better than 
batch IRL on a larger state space and under lower observability. This offers evidence that 
the I2RL method is scalable to more complex domains.

While the method presented in this article has shown advances in the area of online IRL 
there remain multiple avenues for future research. One path is to focus on understanding 
how methods in the I2RL framework can learn without prior knowledge of the dynamics of 
experts. Another avenue is to explore the usage of LME I2RL in other applications. Notice 
that our empirical results are limited to the domain of learning the patrolling trajectories 
of multiple robots by observing them. Additional evaluations in other domains will help 
toward demonstrating further benefit and robustness of I2RL. For example, Rhinehart et. 
al.’s domain of activity forecasting. Yet another possibility for further research is to extend 
the proposed approach to the case of online learning of multiple reward functions.
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Appendix

� is the space of all possible trajectories. The expected value of any feature 
�k ∈ [0, 1], k ∈ {1, 2…K} for trajectory X is given by function fi ∶ 𝕏 → ℝ defined as 
fk(X) =

∑
⟨s,a⟩t∈X �

t�k(⟨s, a⟩t) . Although a trajectory in a non-terminating MDP can be infi-
nitely long, we derive range of fk first for bounded-length trajectories and extend it later by 
applying infinity limit. Let Tmax be the maximum length of any trajectory, 0 ≤ |X| ≤ Tmax.

Then,

Applying limit Tmax → ∞ gives us

Extending the definition to all k features, we introduce function f ∶ 𝕏 → ℝk as 
f (X) =

∑
⟨s,a⟩t∈X �

t�(⟨s, a⟩t).
Note that learned feature expectations can be expressed in terms of fk as

The sessions for latent and full-observation MAXENT IRL updates estimated feature 
expectations of expert as follows.

From definitions of feature-expectations and Eq. 10, E�[�k], �̂�1∶i
k
, �̂�

Z|Y ,1∶i
�
i,k

∈
[
0,

1

(1−𝛾)

]
.

We give below the proofs of the theorems and lemmas stated in the main exposition of 
the article.

Proof of Theorem 1 We use the notation:

0�

t=0

� t0 ≤
�

⟨s,a⟩t∈X
� t�k(⟨s, a⟩t) ≤

Tmax�

t=0

� t

0 ≤ fk(X) ≤ (1 − �Tmax )∕(1 − �)

(10)0 ≤ fk(X) ≤
1

1 − �

E�[�k] ≜
∑

X∈�
Pr(X) fk(X), k = 1…K

(11)

�̂�
Z�Y ,1∶i
�
i,k

≜
1

�Y1∶i�
�

Y∈Y1∶i

�

Z∈ℤ

Pr(Z�Y;�)

�

⟨s,a⟩t∈Y∪Z
𝛾 t𝜙k(⟨s, a⟩t)

=
�Y1∶i−1�

�Y1∶i−1� + �Yi�
�̂�
Z�Y ,1∶i−1
�
i−1,k

+
�Yi�

�Y1∶i−1� + �Yi�
�̂�
Z�Y ,i
�
i,k

(12)

�̂�1∶i
k

≜
1

�Y1∶i�
�

Y∈Y1∶i

�

Z∈ℤ

Pr(Z�Y;�)
�

⟨s,a⟩t∈Y∪Z
𝛾 t𝜙k(⟨s, a⟩t)

=
�Y1∶i−1�

�Y1∶i−1� + �Yi�
�̂�1∶i−1
k

+
�Yi�

�Y1∶i−1� + �Yi�
�̂�i
k

E�[�k] ≜
�

X∈�

Pr(X)
�

⟨s,a⟩∈X
�k(s, a), k = 1…K
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By allowing a relaxation in the constraints of maximum entropy estimation problem, [17] 
derived sample complexity bounds for the problem.

Here � full ∈ ℝK is a vector of upper bounds on the differences between E�[�k] and �̂�1∶i
k

.
Following proofs by Dudik et  al., relaxed constraints maximum entropy IRL prob-

lem is same as min
�
(−

∑
X∈X1∶i

P̃r(X) log Pr(X��) +∑
k �

full

k
|�k|) = min

�
(−LL(�| 

Xi, |Xi−1|, �̂�1∶i−1, �i−1) +
∑

k 𝛽
full

k
�𝜃k�) = min

�
NLL𝛽 full (��Xi, �Xi−1�, �̂�1∶i−1 ,�i−1) (say).

The proof here is partially inspired from Corollary 1 in [17]. Let 
�
full

k
= �

full
c = �∕(1 − �) for all k ∈ {1…K} , where � fullc  is constant because � is fixed 

input. For normalized exponentiated gradient descent used here for computing maxi-
mum, 

∑K

1
��k� = 1 . Then, NLL𝛽 full (�|Xi, |Xi−1|, �̂�1∶i−1, �i−1) = (−LL(�|Xi, |Xi−1|, �̂�1∶i−1, 

�
i−1) + �

full
c

∑k

1
��k�) = (−LL(��Xi, �Xi−1�, �̂�1∶i−1,�i−1) + 𝛽

full
c ) . Assume that �i minimizes 

NLL� full (�| Xi, |Xi−1|, �̂�1∶i−1,�i−1) , a solution maximizing LL(�|Xi, |Xi−1|, �̂�1∶i−1,�i−1).
Since E�[�k] ∈

[
0,

1

(1−�)

]
 , we get (1 − �)E�[�k] ∈ [0, 1] . We multiply the relaxed con-

straint with (1 − �) and define the negation of constraint as following event: 
A ∶

|||(1 − 𝛾)E�[𝜙k] − (1 − 𝛾)�̂�1∶i
k

||| > (1 − 𝛾)𝛽
full
c = 𝜀 for some k ∈ {1…K} . A can be 

decomposed into following feature specific events

where k ∈ {1, 2…K} . We divide this constraint on absolute value further in two signed 
events:

Then event A is same as logical disjunction (A1)1 ∨ (A1)2 ∨ (A2)1 ….
Applying Hoeffding’s inequality, the upper bound of probability of each signed event is 

given by: P((Ak)1) ≤ exp(−2�2 |X1∶i|) =
�

2K
(say),P((Ak)2) ≤

�

2K
.

Applying aforesaid bounds to events for each of the K features, we get 2K events with 
exactly same upper bound �

2K
 on their respective probabilities. We use Fretchet’s inequality 

to derive an upper bound for the disjunction:

As each of the probabilities in RHS are bounded from above by �

2K
 , their sum is bounded 

as:

Reverting to the negation of A, the probability that |||(1 − 𝛾)E�[𝜙k] − (1 − 𝛾)�̂�1∶i
k

||| 
≤ � ∀k ∈ {1…K} is at least 1 −min(1, �) = max(0, 1 − �).

(13)

max
𝛥

�
−
∑

X∈� Pr(X) log Pr(X)
�

subject to
∑

X∈� Pr(X) = 1
���E�[𝜙k] − �̂�1∶i

k

��� ≤ 𝛽
full

k
∀k ∈ {1…K}

Ak ∶ (1 − 𝛾)
|||E�[𝜙k] − �̂�1∶i

k

||| > 𝜀,

(Ak)1 ∶ (1 − 𝛾)E�[𝜙k] − (1 − 𝛾)�̂�1∶i
k

> 𝜀

(Ak)2 ∶ −(1 − 𝛾)E�[𝜙k] + (1 − 𝛾)�̂�1∶i
k

> 𝜀

P(A) = P((A1)1 ∨ (A1)2 ∨ (A2)1 …) ≤ min(1,P((A1)1) + P((A1)2) + P((A2)1)…)

P(A) ≤ min

(
1,

2K∑

1

�

2K

)
= min(1, �)
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To keep reward value bounded, IRL assumes ||�∗||1 ≤ 1 for all �∗ . Using the assumption 
and Theorem 1 in [17], we get error bound:

For every �
∗ ∈ [0, 1]K , NLL𝛽 full (�

i|Xi, |Xi−1|, �̂�1∶i−1,�i−1) −NLL� full (�
∗|Xi, 

�Xi−1�, �̂�1∶i−1,�i−1) ≤ 2
∑K

1
𝛽
full
c = 2K � fullc =

2K�

(1−�)
 with probability at least max(0, 1 − �) , 

where � = 2K exp
(
− 2 �2|X1∶i|

)
.

We modify the bound in the form of positive log-likelihood of expert’s policy, by using 
relation NLL� full (�

∗|X1∶i) = (−LL(�∗| X1∶i) +
∑K

1
�
full

k
��k�) and �∗ = �E.

Then, with X1∶i as input, with probability at least max(0, 1 − �),

  ◻

Proof of Lemma 1 Log-likelihood of demonstrated behavior can be split as

Here P̃r is distribution of trajectories in observed training data ( 
∑
X∈X

P̃r(X)[⋅] and 1

�X�
∑
X∈X

[⋅] 

can be used interchangeably). EM method maximizes the log-likelihood by maximizing 
only Q value over � ; and � = �

i maximizes Q(Yi, |Yi−1|, �̂�
Z|Y ,1∶i−1
�
i−1

,�,�i−1) ([36]). After all 
the EM iterations for current session i, the final Q value is Q(Yi, |Yi−1|, �̂�

Z|Y ,1∶i−1
�
i−1

, �i,�i) . 
Therefore, the difference in the likelihoods achieved by weights learned in consecutive ses-
sions can be expressed as a difference in Q values. Note that LME IRL learns reward 
weights by inferring the maximum entropy distribution Pr(X;�) = exp(

∑
k �kfk(X))

�X
�

 , where 
�X

�
=
∑

X∈� exp(
∑

k �kfk(X)) and X = (Y , Z) . Expand Q value as Q(Yi, |Yi−1|, �̂�
Z|Y ,1∶i−1
�
i−1

,�i, 

�
i) =

∑
Y∈Y1∶i

P̃r(Y)
∑
Z∈ℤ

Pr(Z� Y;�i) log
�

exp(
∑

k �
i
k
fk((Y ,Z)))

�
(Y ,Z)

�i

�
 =

∑
k 𝜃

i
k
⋅

∑
Y∈Y1∶i

P̃r(Y)
∑
Z∈ℤ

   Pr(Z| 

Y;�i)fk((Y ,Z)) − log 𝛺
(Y ,Z)

�
i

=
∑

k 𝜃
i
k
⋅ �̂�

Z�Y ,1∶i
�
i,k

− log 𝛺
(Y ,Z)

�
i

.
Therefore the improvement in log likelihood over session i is

NLL𝛽 full (�
i|Xi, |Xi−1|, �̂�1∶i−1,�i−1) − NLL𝛽 full (�E|X1∶i)

= LL(�E|X1∶i) − LL(�i|Xi, |Xi−1|, �̂�1∶i−1,�i−1) ≤
2K𝜀

(1 − 𝛾)
.

LL(�i|Y1∶i) = LL(�i|Yi, |Yi−1|, �̂�
Z|Y ,1∶i−1
�
i−1

,�i−1)

=
∑

Y∈Y1∶i

P̃r(Y) log Pr(Y;�)

=
∑

Y∈Y1∶i

P̃r(Y)
∑

Z∈ℤ

Pr(Z|Y;�i) log Pr(Y , Z;�)

+

(
−

∑

Y∈Y1∶i

P̃r(Y)
∑

Z∈ℤ

Pr(Z|Y;�i) log Pr(Z|Y;�)
)

= Q(Yi, |Yi−1|, �̂�
Z|Y ,1∶i−1
�
i−1

,�,�i−1) + C(Y1∶i,�,�
i)
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The final expression is minimized only for �i = �
i−1 when |Y1∶i−1| ≫ |Yi| , i.e., when a sig-

nificant amount of training data has been accumulated. The expression is also concave in 
parameter �

i . Therefore, LL(�i|Yi, |Yi−1|, �̂�
Z|Y ,1∶i−1
�
i−1

,�i−1) − LL(�i−1|Yi−1, 
|Yi−2|, �̂�

Z|Y ,1∶i−2
�
i−2

,�i−2) ≥ 0 for consecutive sessions thereafter. Hence, the LME I2RL is 
proved to converge over sequence of sessions, yielding a feasible log-linear solution to 
latent-MAXENT and corresponding weights solving IRL.  ◻

Proof of Lemma 2 We define the event Ak ∶ (1 − �)||E�[�k] −�̂�1∶i
k
|| > 𝜀, k ∈ {1, 2…K}.

Applying Hoeffding’s inequality for Ak , we get P(Ak) ≤ 2 exp(−2�2|X1∶i|) ≤
�

K
 for any 

k ∈ {1, 2…K} , and for the same �, � as in Theorem 1. Similarly, for partial observation, 
given �s as the bound on the error in sampling based approximation of �̂�1∶i

l
 as �̂�Z|Y ,1∶i

�
i,l

 , and 
ns samples, let us define the event

Similar to procedure for P(Ak) , applying Hoeffding bound gives us 
P(Bl) <

𝛿s
K
, 𝛿s = 2K exp(−2(𝜀s)

2ns).
Applying Fretchets inequality over both sets A and B of events gives us:

That is, P
(
∃k, l, s.t.Ak ∨ Bl

)
< min(1, 𝛿 + 𝛿s) . Taking complement, 

P
(
∀k, l,Ak ∧ Bl

)
≥ max(0, 1 − � − �s) . But ∀k, l,Ak ∧ Bl implies that ∀k:

Calling (� + �s) = 2�l , and (� + �s) = �l we get

LL(�i|Yi, |Yi−1|, �̂�
Z|Y ,1∶i−1
�
i−1

,�i−1) − LL(�i−1|Yi−1, |

Yi−2|, �̂�
Z|Y ,1∶i−2
�
i−2

,�i−2)

= Q(Yi, |Yi−1|, �̂�
Z|Y ,1∶i−1
�
i−1

,�i,�i) − Q(Yi−1, |

Yi−2|, �̂�
Z|Y ,1∶i−2
�
i−2

,�i−1,�i−1)

=
∑

k

𝜃i
k
�̂�
Z|Y ,1∶i
�
i ,k

− log 𝛺
(Y ,Z)

�
i

−
∑

k

𝜃i−1
k

�̂�
Z|Y ,1∶i−1
�
i−1,k

+

log 𝛺
(Y ,Z)

�
i−1

= log
𝛺

(Y ,Z)

�
i−1

𝛺
(Y ,Z)

�
i

+
∑

k

(
𝜃i
k

|Y1∶i−1|
|Yi| + |Y1∶i−1|

− 𝜃i−1
k

)
�̂�
Z|Y ,1∶i−1
�
i−1,k

+
∑

k

(
𝜃i
k

1

|Yi| + |Y1∶i−1|
�̂�
Z|Y ,i
�
i,k

)

(substitute �̂�
Z|Y ,1∶i
�
i,k

using Eq.8 and simplifying)

Bl ∶ (1 − 𝛾)
|||�̂�

1∶i
l

− �̂�
Z|Y ,1∶i
�
i ,l

||| > 𝜀s, l ∈ {1, 2…K}.

P
(
(∪kAk) ∨ (∪lBl)

)
< min

(
1,

K∑

k=1

𝛿

K
+

K∑

l=1

𝛿s
K

)
= min(1, 𝛿 + 𝛿s).

(1 − 𝛾)(
|||E�[𝜙k] − �̂�1∶i

k

||| +
|||�̂�

1∶i
k

− �̂�
Z|Y ,1∶i
�
i,k

|||) ≤ 𝜀 + 𝜀s
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Using inequality |||E�[𝜙k] − �̂�
Z|Y ,1∶i
�
i,k

||| ≤
||E�[𝜙k] − �̂�1∶i

k
|| + ||�̂�1∶i

k
− �̂�

Z|Y ,1∶i
�
i,k

|| , we get:

  ◻

Proof of Theorem  2 Latent maximum entropy IRL problem is equivalent to 
max

�

∑
Y∈Y1∶i

P̃r(Y) logPr(Y��) (Sect. 3.3, [12]) or max
�
LL(�i|Yi, |Yi−1|, �̂�

Z|Y ,1∶i−1
�
i−1

 ,�i−1).
Relaxed constraint latent maximum entropy IRL is:

Here � ∈ ℝK is an estimate of vector of upper bounds on the differences between E�[�k] 
and �̂�Z|Y ,1∶i

�
i,k

.
The form of relaxed latent maximum entropy problem and the likelihood for that prob-

lem is no different than those for relaxed maximum entropy. Starting from results in 
Lemma 2, assuming �k = �c = 2�l∕(1 − �) for all k ∈ {1…K} and using steps similar to 
the proof of Theorem  1, we get LL(�E|Y1∶i) − LL(�i|Yi, |Yi−1|, �̂�

Z|Y ,1∶i−1
�
i−1

,�i−1) ≤
4K𝜀l
(1−𝛾)

 
with probbility at least max(0, 1 − �l) .   ◻

Proof of Theorem  3 The log-loss after ith session is 
LL(�E|X1∶i) − LL(�i|Xi, |Xi−1|, �̂�1∶i−1,�i−1) . Let the regret after i = T  be 
1

T

∑T

i=1
LL(�E�X1∶i) −

1

T

∑T

i=1
LL(�i�Xi, �Xi−1�, �̂�1∶i−1,�i−1).

According to Theorem  1, LL(�E|X1∶i) − LL(�i|Xi, |Xi−1|, �̂�1∶i−1,�i−1) ≤ 𝛽 ⋅ 𝜀l with 
probbility at least max(0, 1 − �) , where � =

2K

(1−�)
 . As � is user specified, let � =

c

i
 . Then, the 

inequality becomes LL(�E|X1∶i) − LL(�i|Xi, |Xi−1|, �̂�1∶i−1,�i−1) ≤ 𝛽 c

i
 . Summing the 

result over i ∈ {1, 2,… T} and dividing by T, we get

The RHS above is bounded as � 1

T

∑T

i=1

c

i
≤ � 1

T
c log T = �c

logT

T
 . As T → ∞ , �c logT

T
→ 0 . 

Therefore, as sessions progress, regret is guaranteed to vanish.   ◻

P
(
∀k, (1 − 𝛾)

(|||E�[𝜙k] − �̂�1∶i
k

||| +
|||�̂�

1∶i
k

− �̂�
Z|Y ,1∶i
�
i,k

|||
)

≤ 2�l
)
≥ max(0, 1 − 𝛿l).

P

(
∀k, (1 − 𝛾)

(|||E�[𝜙k] − �̂�
Z|Y ,1∶i
�
i,k

|||
)
≤ 2�l

)
≥ max(0, 1 − 𝛿l).

(14)

max
𝛥

�
−
∑

X∈� Pr(X) log Pr(X)
�

subject to
∑

X∈� Pr(X) = 1
���E�[𝜙k] − �̂�

Z�Y ,1∶i
�
i,k

��� ≤ 𝛽k ∀k ∈ {1…K}

1

T

T∑

i=1

LL(�E|X1∶i) −
1

T

T∑

i=1

LL(�i|Xi, |Xi−1|, �̂�1∶i−1,�i−1) ≤ 𝛽
1

T

T∑

i=1

c

i
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