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Abstract
A principal needs to elicit the true value of an object she owns from an agent who has 
a unique ability to compute this information. The principal cannot verify the correctness 
of the information, so she must incentivize the agent to report truthfully. Previous works 
coped with this unverifiability by employing two or more information agents and award-
ing them according to the correlation between their reports. We show that, in a common 
value setting, the principal can elicit the true information even from a single information 
agent, and even when computing the value is costly for the agent. Moreover, the principal’s 
expense is only slightly higher than the cost of computing the value. For this purpose we 
provide three alternative mechanisms, all providing the same above guarantee, highlight-
ing the advantages and disadvantages in each. Extensions of the basic mechanism include 
adaptations for cases such as when the principal and the agent value the object differently, 
when the object is divisible and when the agent’s cost of computation is unknown. Finally, 
we deal with the case where delivering the information to the principal incurs a cost. Here 
we show that substantial savings can be obtained in a multi-object setting.

Keywords  Information disclosure · Mechanism design · Asymmetric information · 
Principal–agent problem
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1  Introduction

Often you own a potentially valuable object, such as an antique, a jewel, a used car or a 
land-plot, but do not know its exact value and cannot calculate it yourself. There are vari-
ous scenarios in which you may need to know the exact object value. For example: (a) You 
intend to sell the object and want to know how much to ask when negotiating with poten-
tial buyers. (b) You want to know how much to invest in an insurance policy covering that 
object. (c) The object is a part of an inheritance you manage in behalf of your co-heirs, and 
you want to prove to them that you manage it appropriately. (d) The object is a land-plot 
that might contain oil, and you want to know whether to invest in developing it. (e) You are 
a firm and required by law to include the value of assets you own in your periodic report. 
(f) You are a government auctioning a public asset, and want to publish an accurate value-
estimate in order to attract more firms to participate in the auction. Moreover, you may be 
required by law (or by political pressure from your voters) to obtain and disclose its true 
value, to avoid accusations of corruption.

A common solution in these situations is to buy the desired information from an agent 
with an expertise in evaluating similar objects [4, 6, 30]. Examples of such agents are: 
antique-shop owners, jewelers, car-dealers, or oil-firms that own nearby land-plots and thus 
can drill and estimate the prospects of finding oil in your plot. The problem is that, in many 
cases, the information is not verifiable: the information buyer (henceforth “the principal”) 
cannot tell if the information received is correct. This results in a strong incentive for the 
agent to provide an arbitrary value whenever the extraction of the true value is costly or 
requires some effort, knowing the principal will not be able to tell the difference. For exam-
ple, if an antique agent gives you a low appraisal for an antique object, and you sell it for 
that low value, you will never know that you were scammed.

Even if the true value can be verified later on (e.g, due to unsuccessful drilling for oil), 
this might be too late—the damage due to using the wrong value might be irreversible and 
the agent might be too far away to be punished. Our goal is thus to—

—develop mechanisms that obtain the true value of an object by incentivizing an 
agent to compute and report it, even when it is costly for the agent, and even when 
the information is unverifiable by the principal.

The literature on information elicitation usually makes one of two assumptions: either the 
information is verifiable by the principal, or there are two or more information agents such 
that reports can be compared with peer reports [14]. We study a more challenging setting 
in which the information is unverifiable, and yet there is only a single agent who can pro-
vide it. At first glance this seems impossible: how can the agent be incentivized to report 
truthfully if there is no other source of information for comparison? We overcome this 
impossibility by allowing, with some small probability, the transfer of the object to the 
agent for some fee, as an alternative means of compensation (instead of directly paying the 
agent for the information). This is applicable as long as the agent gains value from owning 
the object, i.e., it is both capable of evaluating the object and benefiting from owning it. 
This is quite common in real life. For example, both the antique-shop owner and the car-
dealer, who play the role of the agent in the motivating settings above, can provide a true 
valuation for the car/antique based on their expertise, and can also benefit from owning it 
(e.g. for resale). Similarly, the oil-firm who owns nearby sea-plots has access to relevant 
information enabling it to calculate the true value of the plot in question, and will also ben-
efit from owning that plot.
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We use this principle of “selling” (transferring for a fee) the object to the agent with a 
small probability for designing a mechanism for eliciting the required information (Sect. 3). 
Our analysis proves that the mechanism is truthful whenever the information computation 
cost is sufficiently small relative to the object’s expected value; the exact threshold depends 
on the prior distribution of the value. For example, when the object value is distributed 
uniformly, the mechanism is truthful whenever the computation cost is less than 1/4 of the 
expected object value, which is quite a realistic assumption.

While our mechanism allows the principal to learn the true information, this informa-
tion does not come for free: the principal “pays” for it by the risk of selling the object to 
the agent for a price lower than its true value. Our next goal, then, is to minimize the prin-
cipal’s loss subject to the requirement of true information elicitation. We show that our 
mechanism parameters can be tuned such that the principal’s expected loss is only slightly 
more than its computation cost (Sect. 4). This is an optimal guarantee, since the principal 
could not get the information for less than its computation cost even if she had the required 
expertise herself.

We then show how the mechanism can be augmented to handle some extensions of the 
basic model. These include the case where the object is divisible (Sect. 5), when the prin-
cipal and the agent have different valuations for the object (Sect. 6), and when the cost the 
agent incurs when computing the information is unknown to the principal (Sect. 7).

In addition to the mechanism provided in Sect.  3, we present two alternative mecha-
nisms that differ in their privacy considerations, in the sequence of roles of the principal 
and the agent (in the resulting Stackelberg game), and in the nature of the decisions made 
by the different players (Sect. 8). Interestingly, despite their differences, all three mecha-
nisms are equivalent in terms of the guarantees they provide. This leads us to conjecture 
that these guarantees are the best possible.

Finally, we deal with the case where the delivery of information is costly (Sect. 9). Here, 
we show that in a multi-object setting, whenever it suffices for the principal to know merely 
which of the objects has a value greater than some threshold (as in the case of seeking 
the value of opportunities she can either exploit or give up on), substantial savings can be 
obtained by using alternative queries. Previous related work is surveyed in Sect. 10. Dis-
cussion and suggested extensions for future work are given in Sect. 11.

2 � The model

There is a principal who needs to know the true value of o, an object she owns. The mon-
etary value of this object for the principal is denoted by v. While the principal does not 
know v, she has a prior probability distribution on v, denoted by f(v), defined over the inter-
val [vmin, vmax], with vmin < vmax.1

The principal can interact with a single agent. Initially, the agent too does not know v 
and knows only the prior distribution f(v). However, the agent has a unique ability to com-
pute v, by incurring some cost c ≥ 0. Initially we assume that the cost c is common knowl-
edge; in Sect. 7 we relax this assumption.

1  The object may have a negative value which cannot be freely disposed of. For example, a broken car takes 
room in the garage, and movers should be paid in order to get rid of it. Similarly, a company in debt cannot 
be abandoned before its debt is fully paid.
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The principal’s goal is to incentivize the agent to compute and reveal the true v. How-
ever, the principal cannot verify v and has no other sources of information besides the 
agent, so the incentives cannot depend directly on whether v is correct.

Similar to the common value setting studied extensively in auction theory [27], our 
model assumes that the value of the object to both the principal and the agent is the same. 
A realistic example of this setting is when both the principal and the agent are oil firms: the 
principal owns an oil field but does not know its value, while the agent owns nearby fields 
and can gain information about the oil field from its nearby drills. In Sect. 6 we relax this 
assumption and allow the two values to be different.

The mechanism-design space available to the principal includes transferring the object 
to the agent, as well as offering and/or requesting a payment to/from the agent. The prin-
cipal has the power to commit to the mechanism rules, i.e, the principal is assumed to be 
truthful. The challenge is to design a mechanism that will incentivize truthfulness on the 
side of the agent too.

The agent is assumed to be risk-neutral and have quasi-linear utilities. I.e, the utility of 
the agent from getting the object for a certain price is the object’s value minus the price 
paid. If the agent calculates v, then the cost c is subtracted from his utility too. As for the 
the principal, as mentioned above her primary goal is to elicit the exact value v from the 
agent. Subject to this, she wants to minimize her expected loss, defined as the object value 
v (if transferred to the agent) minus the payments received (or plus the payment given).

3 � Truthful value‑elicitation mechanism

The mechanism most commonly used in practice for eliciting information is to pay the 
agent the cost c (plus some profit margin) in money. However, when information is not 
verifiable, monetary payment alone cannot incentivize the agent to actually incur the cost 
of calculation and report the true value.

Instead, in our mechanism, the principal “pays” to the agent by transferring the object to 
the agent with some small probability. The mechanism guarantees the agent’s truthfulness, 
meaning that, under the right conditions (detailed below), a rational agent will choose to 
incur all costs related to computing the correct value, and report it truthfully. The mecha-
nism is presented as Mechanism 1. It is parameterized by a small positive constant �, and a 
probability distribution represented by its cumulative distribution function G.

Mechanism 1 Parameters: 𝜖 > 0 : a constant, G(⋅) : a cdf.

1. The principal secretly selects r at random, distributed in the following way:
         ∙ With probability �, this r is distributed uniformly in [vmin, vmax];
         ∙ With probability 1 − �, this r is distributed like G(r).

2. The agent provides a value b.
3. The principal reveals r and then:

         ∙ If b ≥ r, the principal transfers the object to the agent, and the agent pays r to the principal.
         ∙ If b < r, no transfers nor payments are made.

Note that the payment r may be negative, in which case the the agent is actually receiv-
ing a payment from the principal. This can happen for example when the object has a nega-
tive value (e.g., a company who turns out to be in debt and the agent ends up gaining own-
ership over it, in exchange for a payment received from the principal).
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From the agent’s perspective the strategic situation is equivalent to participating in a 
second-price sealed-bids auction—the value r can be seen as the best bid among those 
placed by all other bidders. If the agent wins, he gains an object of value v while paying r. 
Since bidding in second price auctions is known to be truthful [39], this holds in our case 
too, and thus it is a dominant strategy for the agent to provide b = v. The challenge is to 
show that it is optimal for the agent to actually calculate v. This crucially depends on the 
selection of the cdf G(r). Below we prove a necessary and sufficient condition for the exist-
ence of an appropriate G(r) that guarantees calculation. We assume throughout the analysis 
that � is positive but infinitesimally small (i.e, � → 0 ). Below, E[⋅] denotes the expected 
value of the expression inside the brackets. The notation Ev[⋅] emphasizes that the expecta-
tion is with regards to the prior distribution of v.

Theorem 1  There exists a function G(r) with which Mechanism 1 is truthful, if-and-only-if 
c < Ev[max(0, v − E[v])]. One cdf with which the mechanism is truthful in this case is:

(�r>E[v] is an indicator that equals 1 when r > E[v] and 0 otherwise).

Before proving the theorem, we illustrate its practical applicability with some examples.

Example 1  Assume that v is uniform in [0,  2M] (so vmin = 0 and M =
vmax

2
 ). Then 

Ev[max(0, v − E[v])] = M∕4 so Mechanism 1 is applicable iff c < M∕4—the object’s 
appraisal cost should be less than one quarter of the object’s expected value.

With the function G∗ in (1), Mechanism 1 selects r in the following way: with probabil-
ity �, r is selected uniformly at random from [0, 2M]; with probability 1 − �, r = E[v] = M.

Example 2  Assume that v is uniform in [−2M, 0], i.e., the object’s value is negative. Then 
still E[max(0, v − E[v])] = M∕4, so Mechanism 1 is applicable iff c < M∕4. Here, the 
incentive of the agent for participating in the mechanism is the possibility of receiving a 
payment that will be larger than the object’s negative value.

Example 3  Assume that v has a symmetric triangular distribution in [0,  2M] with mean 
M, i.e, its pdf is f (v) = �0≤v≤M ⋅

v

M2
+ �M≤v≤2M ⋅

2M−v

M2
. Here, Mechanism 1 is applicable iff 

c < M∕6.

The conditions above are realistic, since usually the cost of appraising an object is at 
least one or two orders of magnitude less than the object’s expected value. For example, 
used cars usually cost (often tens of) thousands of dollars and the cost of a pre-purchase car 
inspection generally ranges from $100 to $200.2 Similarly, a used engagement ring typi-
cally costs thousands of dollars, while hourly rates of a diamond ring appraisals range from 
$50 to $150.3

To further examine the applicability of Theorem 1, we consider the application of sell-
ing a used car, based on real data from “Kelley Blue Book” (kbb.com). Here, the principal 
is an individual and the agent is a mechanic. The principal is interested in having the agent 

(1)G∗(r) = �r>E[v]

2  By https​://www.edmun​ds.com/car-buyin​g/inspe​ct-that-used-car-befor​e-buyin​g.html.
3  By http://www.worth​y.com/appra​isal/jewel​ry/cost.

https://www.edmunds.com/car-buying/inspect-that-used-car-before-buying.html
http://www.worthy.com/appraisal/jewelry/cost
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check and report the true condition (from which the worth is derived) of a specific car she 
is interested in selling. For the mapping from condition to worth we use KBB, which speci-
fies four values, each corresponding to a different car condition, as detailed in Table 1.

Based on Theorem  1, there exists a function G(r) with which Mechanism 1 is truth-
ful, if-and-only-if c < Ev[max(0, v − E[v])]. Figure 1 depicts (at the seventh column of the 
table) the maximum car inspection cost at which the latter condition holds for ten differ-
ent (randomly selected) car models, of various years and mileage. Columns 2-6 provide 

Table 1   Probability distribution of car conditions based on kbb.com website. The underlying probability 
function is car-model independent and determined by KBB

Condition Definition Frequency

Excellent Looks new and is
in excellent mechanical condition.

3% of all cars

Very good Has minor cosmetic defects and
is in excellent mechanical condition.

24% of all cars

Good Has some repairable cosmetic defects
and is free of major mechanical problems.

55% of all cars

Fair Has some cosmetic defects that
require repairing and/or replacing.

18% of all cars

Fig. 1   The worth of ten different (randomly selected) car models (of random years and mileage) based on 
the four possible conditions and their probabilities as appear on the ”Kelley Blue Book” website (columns 
2-6); the maximum car inspection cost at which the condition on Theorem 1 holds (column 7); the percent-
age of the maximum c value out of E[v] (column 8)
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the car’s worth based on the four possible conditions and the expected worth, taking into 
account the underlying probability function, respectively. The last column provides the per-
centage of the maximum c value out of E[v].

Note that the probability distribution in Fig.  1 is very different than the uniform dis-
tribution used in Example 1, and accordingly the threshold values (as fractions of E[v]) 
are much smaller. However, the values are still always above $100 and often above $200, 
which are realistic car inspection costs.

We move on to proving Theorem 1.

Proof of Theorem 1  The agent has two main strategies. We call them, following Faltings 
and Radanovic [14], “cooperative” and “heuristic”:

•	 In the cooperative strategy, the agent computes v and uses the result to determine b as a 
function of v.

•	 In the heuristic strategy, the agent does not compute v, and determines b based only on 
the prior f(v).

The agent will use the cooperative strategy iff its expected utility is larger than the expected 
utility of the heuristic strategy by more than c. Therefore in the following paragraphs we 
calculate the expected utility of the agent in each strategy, showing that under the condi-
tion given in the theorem there always exists a cdf G for which the above holds and other-
wise the condition cannot hold. For the formal analysis we denote by Ĝ the integral of G: 
Ĝ(v) ∶= ∫ v

r=0
G(r)dr.

By the cooperative strategy, the agent gets the object iff r ≤ b(v), and then his utility is 
v − r. Therefore his expected utility is4:

The integrand is positive iff r < v. Therefore the expression is maximized when b(v) = v, 
and hence it is a strictly dominant strategy for the agent to provide b = v. In this case, his 
utility is (1 − �) ∫ v

r=0
G�(r)(v − r)dr +

�

vmax−vmin
∫ v

r=0
(v − r)dr. We assume that � → 0,5 so that 

the gain is approximately ∫ v

r=0
G�(r)(v − r)dr. By integrating by parts, one can see that this 

expression equals Ĝ(v). Hence, before knowing v, the expected utility of the agent from the 
cooperative strategy, denoted Ucoop(G), is:

∫
b(v)

r=0

[(1 − �)G�(r) +
�

vmax − vmin
](v − r)dr

Ucoop(G) = E[Ĝ(v)]

4  We consider only cdfs G that are continuous and differentiable almost everywhere, so G′ is well-defined 
almost everywhere. In points in which G is discontinuous (i.e., has a jump), G′ can be defined using Dirac’s 
delta function.
5  If � = 0, then reporting the true v is only a weakly-dominant strategy: the agent never gains from report-
ing a false value, but may be indifferent between false and true value. For example, if the true value is 2 and 
the cdf is uniform in [3, 5] and zero elsewhere, then the agent is indifferent between reporting 1 and report-
ing 2, since in both cases he loses the object with probability 1. Making � even slightly above 0 prevents 
this indifference and makes reporting v strictly better than any other strategy.
  However, to attain this strict-truthfulness, it is sufficient to have � arbitrarily small. Hence, in the following 
analysis we assume for simplicity that � → 0.
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where E denotes expectation taken over the prior f(v).
By the heuristic strategy, the agent’s expected utility as a function of b is:

The integrand is positive iff r < E[v], so it is a strictly dominant strategy for the agent to 
provide b = E[v]. In this case, his gain when � → 0, denoted Uheur(G), is:

The net utility of the agent from being cooperative rather than heuristic is the difference:

 The mechanism is truthful iff Unet(G) > c, i.e, the net utility of the agent from being coop-
erative is larger than the cost of being cooperative. Therefore, it remains to show that there 
is a cdf G satisfying c < Unet(G), iff c < Ev[max(0, v − E[v])]. This is equivalent to show-
ing that Ev[max(0, v − E[v])] is the maximum possible value of Unet(G), over all cdfs G. 
This is a non-trivial maximization problem since we have to maximize over a set of func-
tions. We first present an intuitive solution and then a formal solution.

Intuitively, to maximize E[Ĝ(v)] − Ĝ(E[v]) we have to make Ĝ(E[v]) as small as pos-
sible, and subject to that, make Ĝ as large as possible. The smallest possible value of Ĝ is 
0, so we let Ĝ(E[v]) = 0. Therefore we must have G(r) = 0 for all r ≤ E[v]. Now, to make Ĝ 
as large as possible, we must let it increase at the largest possible speed from E[v] onwards; 
therefore we must make its derivative G as large as possible, so we let G(r) = 1 for all 
r > E[v] (1 is the largest possible value of a cdf). All in all, the optimal G is the step func-
tion: G∗(r) = �r>E[v], which gives Unet(G

∗) = E[max(0, v − E[v])] as claimed.
To prove this formally, we use mathematical tools that have been previously used in the 

analysis of revenue-maximizing mechanisms [22, 29]. In particular, we use Bauer’s maxi-
mization principle:

In a convex and compact set, every linear function has a maximum value, and it is 
attained in an extreme point of the set—a point that is not the midpoint of any inter-
val contained in the set.

Denote by G the set of all cumulative distribution functions with support contained in 
[vmin, vmax]. G is a convex set, since any convex combination of cdfs is also a cdf. Moreover, 
it is compact with respect to the sup-norm topology, as shown by Manelli and Vincent [29]. 
The objective function Unet(⋅) is linear, so in particular it is convex. Therefore, to find its 
maximum value it is sufficient to consider the extreme points of the set G. We claim that the 
only extreme points of G are 0-1 step functions—functions G for which G(r) ∈ {0, 1} for all 
r. Indeed, suppose that G is not a step function, so there is some r0 for which 0 < G(r0) < 1. 
Then the following two functions are different elements of G (see Fig. 2):

G is the midpoint of the segment G1–G2, so G is not an extreme point of G.

E

[
∫

b

r=0

[
(1 − �)G�(r) +

�

vmax − vmin

]
(v − r)dr

]

= ∫
b

r=0

[
(1 − �)G�(r) +

�

vmax − vmin

]
(E[v] − r)dr.

Uheur(G) = Ĝ(E[v])

(2)Unet(G) ∶= Ucoop(G) − Uheur(G) = E[Ĝ(v)] − Ĝ(E[v])

G1(r) = min(1, 2G(r))

G2(r) = max(0, 2G(r) − 1)



Autonomous Agents and Multi-Agent Systems (2020) 34:46	

1 3

Page 9 of 25  46

Therefore, it is sufficient to maximize Unet on cdfs of the following form, for some 
parameter t ∈ [vmin, vmax]:

Integrating Gt(r) yields Ĝt(v) = max(0, v − t), so by (2):

To find the t that maximizes Unet(Gt), we take its derivative with respect to t:

•	 The derivative of the leftmost term is − ∫ vmax

v=t
f (v)dv = −Pr[v ≥ t], which is always 

between 0 and −1.
•	 The derivative of the rightmost term is 1 when t < E[v] and 0 when t > E[v].

Therefore, Unet(Gt) is increasing when t < E[v] and decreasing when t > E[v]. Therefore its 
maximum is attained for t = E[v] and it is E[max(0, v − E[v])] as claimed. 	�  ◻

Gt(r) = �r>t

Unet(Gt) = E[max(0, v − t)] −max(0,E[v] − t)

= ∫
vmax

v=t

(v − t)f (v)dv +min(0, t − E[v])

Fig. 2   The cdf denoted by G is 
not an extreme point of the set 
G, since it is the midpoint of two 
different elements of G, namely 
the cdfs G1 and G2
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4 � Minimizing the principal’s loss

The function G∗ from Theorem 1 allows the principal to elicit true information for a large 
range of costs. However, the information does not come for free: the principal “pays” for 
the information by the risk of giving away the object for less than its value.6 As stated ear-
lier, obtaining the information is mandatory. Hence, the principal naturally seeks to mini-
mize the loss resulting from giving away the object. In other words, from the set of all cdfs 
with which Mechanism 1 is truthful, the principal would like to choose a single cdf G (pos-
sibly different than G∗ ) which minimizes her loss.

The principal loses utility whenever the agent gets the object, i.e., whenever v > r. In 
this case, the principal’s net loss is v − r. Therefore, the expected loss of the principal 
(when � → 0 ), denoted Lnet(G), is:

A simple calculation shows that this expression equals Ev[Ĝ(v)], which is exactly Ucoop(G)

—the utility of the agent from playing the cooperative strategy. This is not surprising as the 
agent and the principal are playing a zero-sum game.

To induce cooperative behavior, Ucoop(G) must equal c′, for some c′ > c. Therefore the 
principal’s loss must be c′ too. Fortunately, the principal can attain this loss even for c′ arbi-
trarily close to c. We define:

With this Gc′ , Mechanism 1 selects r as follows. With probability pc′ , r is selected using 
the function G∗ from (1), which guarantees the agent a utility of Ev[max(0, v − E[v])]. With 
probability 1 − pc� , the principal chooses r so large that the agent never gets the object. 
Therefore the expected utility of the agent is pc� ⋅ Ev[max(0, v − E[v])] = c�. Consequently 
the loss of the principal is c′ too. When c′ → c, the principal’s loss approaches the theoretic 
lower bound—she obtains the information for only slightly more than its computation cost.

The probability that the principal has to give away the object is quite low in realistic 
settings. For example, consider the case mentioned in Example 1 where v is uniform in 
[0, 2M]. Suppose the object is a car. Typical values are c = $200 and M = $40, 000. Here 
pc = c∕(M∕4) = 0.02. So the information is computed and delivered truthfully with prob-
ability 1, whereas with probability 98% the principal keeps the car (and incurs no loss), and 
with probability 2% the principal sells the car for its expected value of $40,000 (and loses 
the difference v − $40, 000).

An interesting special case is c = 0, i.e., the agent already knows v. In this case, the 
principal does not need to know the prior distribution f(v) and can simply use

Lnet(G) ∶= Ev

[
∫

v

r=0

G�(r)(v − r)dr

]

(3)
pc� ∶=

c�

Ev[max(0, v − E[v])]

Gc� (r) ∶= pc� ⋅ �r>E[v] + (1 − pc� ) ⋅ �r=vmax

(4)G0(r) ∶= � + (1 − �) ⋅ �r=vmax

6  If the object value is negative, then the risk for the principal is paying too much for getting rid of the 
object.
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If 𝛿 > 0, the agent’s net utility is positive so the mechanism is truthful; when � → 0, the 
principal’s loss approaches 0.

5 � Divisible objects

So far we assumed the object is indivisible, so it is either transferred entirely to the 
agent or not at all. In general the object may be divisible. For example, it may be pos-
sible to transfer only a part of an oil field, or only transfer shares in the field’s future 
profits. In this case, instead of using the function Gc� (r) of (3), we can run Mechanism 1 
using the function G∗(r), but if the object needs to be transferred in step 3—only a frac-
tion pc′ of it is actually transferred. The analysis of this mechanism is the same—coop-
eration is still a dominant strategy for the agent whenever c < c′, and the principal’s loss 
is still c′. The advantage is that a risk-averse agent may prefer to get a fraction pc′ of the 
object with certainty, than to get the entire object with probability pc′ . Moreover, a risk-
averse principal may prefer to keep a fraction 1 − pc� of the object with certainty, than to 
risk losing the entire object with probability pc′ .

6 � Different values

So far we assumed that the object’s value is the same for the principal and the agent. In 
general the values might be different. For example, suppose the principal is the owner of 
a used car and the agent is a car dealer. While the dealer certainly has a positive value 
for owning the car, it may be lower (in case the dealer already has several cars of the 
same model) or higher (in case the dealer can fix and make improvements in the car at a 
reduced cost) than its value for the car owner.

Let vp be the object’s value for the principal and va its value for the agent. The agent’s 
utility is calculated as before, using va instead of v:

Therefore, if the condition of Theorem 1 holds on va, i.e.:

then, using the cdf G∗(r) ∶= �r>E[va]
, Mechanism 1 is still “truthful” in that it induces the 

agent to reveal the true va. Obviously the mechanism does not reveal the true vp, and indeed 
no one else can directly tell the principal what her value of the object should be. However, 
in the common case in which va and vp are correlated, the principal can use the knowledge 
of va to gain some knowledge about vp.

In contrast to the common-value setting, however, the game here is no longer zero-
sum—the principal’s loss does not equal the agent’s utility, so it may be larger or 
smaller than c. The principal’s expected loss is now:

(5)
Ucoop(G) = E[Ĝ(va)] Uheur(G) = Ĝ(E[va])

Unet(G) = E[Ĝ(va)] − Ĝ(E[va])

c < E[max(0, va − E[va])
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So, when vp > va the principal’s loss is larger than the agent’s utility, and when vp < va it is 
smaller.

Suppose we want the agent’s net utility to be at least c′, for some c′ > c. Then, the 
principal’s minimization problem is:

This is still a problem of minimizing a linear objective function over a convex set of 
functions, so the minimum is still attained in the extreme points of the set. However, 
finding the extreme points and minimizing G over that points is much harder. So far, 
the best we could do with this problem is simplify it in the special case in which vp ≥ va 
with probability 1. This is a realistic case: an oil field is usually worth more to its owner 
than to a geologist, and a car is usually worth more to its owner than to an appraiser. We 
prove below that the principal’s minimization problem can be simplified to:

Lemma 1  If vp ≥ va with probability 1, then the minimization problems (7) and (8) have the 
same solutions.

Proof  First, note that in (8), the minimization goal can be written equivalently as 
E[Ĝ(va)] + E[(vp − va) ⋅ G(va)], since in that problem the leftmost term is the constant c′. 
So the minimization goals in both problems are identical. The problems differ only in the 
constraints: the constraints of (8) are stricter. Therefore it is sufficient to prove that, for 
every cdf satisfying the constraints of (7), there exists a cdf satisfying the stricter con-
straints of (8), which attains a weakly-smaller loss. The construction proceeds in two steps.

Step 1 Let G0 be a cdf satisfying the constraints of (7). Define a new cdf G1 as follows:

Since G1(r) ≤ G0(r) for all r, and vp − va ≥ 0 always, this G1 has a weakly smaller loss than 
G0.

The integral of G1 satisfies:

Hence, G1 satisfies stricter constraints than G0:

(6)

Lnet(G) ∶= E

[
∫

va

r=0

G�(r)(vp − r)dr

]

= E[Ĝ(va) + (vp − va) ⋅ G(va)]

= Ucoop(G) + E[(vp − va) ⋅ G(va)]

(7)
minimize E[Ĝ(va)] + E[(vp − va) ⋅ G(va)]

subject to G ∈ G and E[Ĝ(va)] − Ĝ(E[va]) ≥ c�

(8)
minimize E[(vp − va) ⋅ G(va)]

such that G ∈ G and E[Ĝ(va)] = c� and Ĝ(E[va]) = 0

G1(r) ∶=

{
0 r ≤ E[va]

G0(r) r > E[va]

�G1(v) = �
v

r=0

G1(r)dr =

{
0 v ≤ E[va]
�G0(v) − �G0(E[va]) v > E[va]
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•	 Ĝ1(E[va]) = 0 is clearly satisfied;
•	 E[Ĝ1(va)] ≥ c� is satisfied since, for all v, Ĝ1(v) ≥ Ĝ0(v) − Ĝ0(E[va]). Therefore, 

E[Ĝ1(v)] ≥ E[Ĝ0(v)] − Ĝ0(E[va]).

	   The latter expression is at least c′, by the assumption that G0 satisfies the constraints 
of (7).

Step 2 Let y ∶= c�∕E[Ĝ1(va)] and note that y ≤ 1. Define:

Since y ≤ 1, G2 has a weakly smaller loss than G1. Moreover, G2 satisfies the constraints of 
(8) since:

	�  ◻

We could not find a general solution to (8); we leave it for future work.7

Open problem 1  Solve the minimization problem (8).

7 � Unknown cost of computation

So far, we assumed that the principal knows the costs incurred by the agent when comput-
ing the true value of the object. This assumption is realistic in many cases. For example, 
when the object is a car, the mechanic can reveal its condition by running a set of standard 
checks that consume a known amount of time, so their cost can be reasonably estimated. 
However, in some cases the cost might be known only to the agent. In this section we 
assume that the principal only knows a prior distribution on c, given by pdf h and cdf 
H, with support [cmin, cmax]. For simplicity we consider here the common value setting, 
vp = va = v. We assume that the object’s value v and the cost c of computing that value are 
independent random variables.

If the principal must get the information at all costs (e.g., due to regulatory require-
ments), then she can simply run Mechanism 1 with the cdf Gc′ of (3), taking c� = cmax. 
This ensures that the agent calculates and reports the true information whenever 
cmax < E[max(0, v − E[v])], and the principal’s loss is ≈ cmax.

However, in some cases the principal might think that cmax is too much to pay for the infor-
mation. In this case, it may be useful for the principal to determine a utility of obtaining the 
information. We denote the principal’s utility from knowing the information by u, and assume 

G2(r) ∶= y ⋅ G1(r)

Ĝ2(E[va]) = y ⋅ Ĝ1(E[va]) = 0

E[Ĝ2(va)] = y ⋅ E[Ĝ1(va)] = c�.

7  To get an idea of the magnitude of the principal’s loss, consider a special case in which va = a ⋅ vp for 
some constant a. Suppose also, for the sake of the example, that vp is distributed uniformly in [0, 2M]. Sup-
pose the principal uses Mechanism 1 with the Gc′ of (3). Then, using the expressions in the text body, we 
find that the principal’s loss is at most (3∕a − 2) ⋅ c�. So when a = 1 the principal’s loss is exactly c′ (which 
may be very near c), but when a < 1 the loss is more than c′, as can be expected. It is interesting that the 
loss (when a is fixed) is linear function of c′. We do not know if this is true in general.
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that it is measured in the same monetary units as the function Lnet of Sect. 4. In other words, 
the principal’s loss is:

•	 Lnet(G) when she elicits the true value using Mechanism 1 with cdf G;
•	 u when she does not elicit the true value.

If u < cmax, it is definitely not optimal for the principal to use Mechanism 1 with the cdf Gc′ 
taking c� = cmax. What should the principal do in this case?

To gain insight on this situation, we compare it to bilateral trading. In standard bilateral 
trading, a single consumer wants to buy a physical product from a single producer; in our set-
ting, the principal is the consumer, the agent is the producer, and the “product” is information. 
This is like bilateral trading, with the additional difficulty that the consumer cannot verify the 
“product” received.

The case when the production cost c is unknown in bilateral trading was studied by Baron 
and Myerson [9]. They define the virtual cost function of the producer by:

(it is analogous to the virtual valuation function used in Myerson’s optimal auction the-
ory). By Myerson’s theorem, the expected loss of the consumer in any truthful mechanism 
equals the expected virtual cost of the producer in that mechanism, Ec[z(c)]. The “loss” of 
the consumer from not buying the product is her utility from having this product, which we 
denote by u. Therefore, to minimize her expected loss, the consumer should buy the prod-
uct if-and-only-if z(c) < u.

Under standard regularity assumptions on h, the virtual cost function z(c) is increasing with 
c. In that case, the optimal mechanism for the consumer is to make a take-it-or-leave-it offer to 
buy the product for a price of:

With this mechanism, the producer agrees to sell the product iff c < Rz,u, which occurs iff 
z(c) < u.

We now return to our original setting, in which the “product” is the information about an 
object’s value. We emphasize that there are two values: the value for both agents of the object 
itself, which we denoted by v, and the value for the principal of knowing v, which we denote 
here by u.

Similarly to the setting of Baron and Myerson [9], the principal has to ensure that the agent 
sells the information iff z(c) < u, which happens iff c < Rz,u. Analogously to equations (3), we 
define:

The principal can then execute Mechanism 1 using Gz,u as the cdf. As explained after 
equation (3), this gives the agent an expected net utility of Rz,u, so the agent will agree to 

z(c) ∶= c +
H(c)

h(c)
(c ∈ [cmin, cmax])

(9)Rz,u =

⎧
⎪⎨⎪⎩

0 if u < z(cmin)

z−1(u) if z(cmin) ≤ u ≤ z(cmax)

cmax if z(cmax) < u

pz,u =
Rz,u

Ev[max(0, v − E[v])]

Gz,u(r) = pz,u ⋅ �r>E[v] + (1 − pz,u) ⋅ �r=vmax
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participate in the mechanism iff c < Rz,u. This decision rule of the agent is in fact the one 
that maximizes the expected utility of the principal.

Example 4  Suppose the cost c is distributed uniformly in [0, cmax]. Then, the virtual cost 
function is z(c) = 2c, so z−1(u) = u∕2 and Rz,u = min(cmax, u∕2).

Consider first a physical product. If u > 2cmax, then the consumer offers cmax, the pro-
ducer always sells, and the consumer’s loss is cmax. If u < 2cmax, then the consumer offers 
u/2 and the producer sells only if the cost is less than u/2. This happens with probability 
u

2cmax
, so the consumer’s expected loss is u

2cmax
⋅

u

2
+ (1 −

u

2cmax
) ⋅ u = u ⋅ (1 −

u

4cmax
), which is 

less than cmax.

Now suppose that the “product” is information about an object’s value. Suppose that, 
a priori, the object’s value is distributed uniformly in [0, 2M]. As calculated in Example 1, 
in this case E[max(0, v − E[v])] = M∕4. We make the realistic assumption that cmax < M∕4 
(the maximum possible cost for appraising an object is less than a quarter of the expected 
value of the object). Therefore the following expression defines a valid probability:

The principal should run Mechanism 1 with the cdf Gz,u(r) = pz,u ⋅ �r>E[v] + (1 − pz,u)⋅

�r=vmax . The expected net utility of the agent from participating is Unet(Gz,u) = min(cmax, u∕2).

If u > 2cmax, then Unet(Gz,u) = cmax, so the agent always participates, and the principal 
always obtains the information for an expected loss of cmax.

If u < 2cmax, then Unet(Gz,u) = u∕2 and it might be higher or lower than the actual cost 
c. If c < u∕2 then the agent participates and the principal obtains the information for an 
expected loss of u/2; if c > u∕2 then the agent refuses to participate and the principal 
does not obtain the information, so her loss is u. All in all, the principal’s expected loss is 
u

2cmax
⋅

u

2
+ (1 −

u

2cmax
) ⋅ u = u ⋅ (1 −

u

4cmax
), which is less than cmax.

8 � Alternative mechanisms

In addition to Mechanism 1, we developed two alternative mechanisms for solving the 
same problem—eliciting a true value from a single information agent.

In Mechanism 2, the price of the object is not determined by the principal but rather cal-
culated as a function of the agent’s reported value, similarly to a first-price auction. 

Mechanism 2 Parameters: 𝜖 > 0 : a constant, G(r): a cdf.

1. The agent provides b ∈ [vmin, vmax].

2. With probability G(b), the agent receives the object and pays:

b − Ĝ(b)∕G(b)

where Ĝ is the integral of
G: Ĝ(b) ∶= ∫ b

r=vmin G(r)dr.

In Mechanism 3, the principal publicly posts a price and the agent decides whether to 
buy the object at this price or not. 

pz,u =
min(cmax, u∕2)

M∕4
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Mechanism 3 Parameters: t > 0 —a constant, p ∈ [0, 1] —a probability.

1. The principal publicly posts the price t.
2. The principal asks the agent whether or not he wants to pay t for the object.
3. If the agent says “yes”, then with probability p he receives the object and pays t. Otherwise the princi-

pal keeps the object to herself.
4. If in step 3 the principal keeps the object, then she runs Mechanism 1 with the function G0 of Eq. (4).

The three mechanisms are apparently different in various aspects such as the role 
of the different players in the underlying Stackelberg game (leader vs. follower), and 
whether or not there is a requirement for secrecy (Mechanism 1 requires to keep r secret 
while Mechanism 2 need no secrecy). Interestingly, they are equivalent in the conditions 
they impose on the cost c and the principal’s loss. We present a proof below.

Note that we consider the general case of different valuations of the agent and the 
principal (as in Sect. 6)—the agent’s value is va and the principal’s value is vp.

In Mechanism 2, the agent’s expected utility for reporting b is:

A higher b means a higher probability G(b) of receiving the object but also a higher pur-
chase price. The agent calculates the optimal b by solving an optimization problem. The 
derivative w.r.t. b is:

Since G is an increasing function, G′ is positive, so this expression is positive when b < va 
and negative when b > va, so the expected utility of the agent is maximized when b = va. 
Then his expected utility is:

Similarly, when the agent does not compute va, his utility is maximized when b = E[va], 
which gives him a utility of:

These utilities are exactly as in Mechanism 1 and Equation (5).
Therefore, Theorem 1 is valid as-is for Mechanism 2, and the mechanism is applica-

ble iff c < E[max(0, va − E[va])], using the same cdf G∗ of (1).
Moreover, the principal’s loss Lnet is exactly as in equation (6). Therefore the prin-

cipal has to solve the problem (8) for minimizing her loss, and the minimal loss is the 
same. In particular, in the common value setting va = vp, the principal’s loss can be 
made arbitrarily close to the computation cost c.

In Mechanism 3, in step 2, the agent has to decide whether or not to receive the 
object for a payment of t. Calculating va may help him decide:

•	 If the agent calculates va, it is optimal for him to say “yes” iff va > t, so his utility is 
E[p ⋅max(0, va − t)].

G(b) ⋅ (va − b + Ĝ(b)∕G(b))

G�
⋅ (va − b + Ĝ∕G) + G ⋅ (−1 + (G2 − ĜG�)∕(G2))

= G�
⋅ (va − b)

Ucoop(G) = E[G(va) ⋅ (va − va + Ĝ(va)∕G(va))] = E[Ĝ(va)]

Uheur(G) = Ĝ(E[va])
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•	 Otherwise, it is optimal for the agent to say “yes” iff E[va] > t, so his expected utility is 
p ⋅max(0,E[va] − t).

In case the agent decides to calculate va, in step 4 the situation is similar to the c = 0 case 
mentioned at the end of Sect. 4—the agent already knows the information so the cost for 
calculating it now is 0. Therefore, at step 4 the principal elicits the true information for 
almost zero additional loss. Define the following functions (depending on the mechanism 
parameters p, t):

With these definitions, the agent’s utilities when computing / not computing va are exactly 
as in equation (5), and the principal’s loss in step 2 is the same as in equation (6). So Theo-
rem  1 is valid, and the mechanism is truthful iff c < E[max(0, va − E[va])], by taking 
t = E[va] and p >

c

E[max(0,va−E[va])]
.

Additionally, Mechanism 1 itself can be extended by adding a probability of sale—
before actually selling the object to the agent for r, the principal tosses a biased coin with 
probability p of success (where p is a fixed parameter), and makes the sale only in case of 
success. This extension is actually already supported by the current mechanism: for any cdf 
G and parameter p, we can create a new cdf Gp by putting a probability mass of 1 − p on 
values larger than vmax and a probability mass of p on the original G. This attains exactly 
the same effect as a sale with probability p, since with probability 1 − p, the value r will be 
so high that the object will never be sold. Hence, Theorem 1 applies to this extension too, 
so even with this generalization, the mechanism works iff c < E[max(0, v − E[v])].

The fact that several different mechanisms lead to the same applicability conditions and 
loss expressions lead us to conjecture that these results are valid universally.

Conjecture 1  (a) There exists a mechanism for truthfully eliciting a single agent’s value 
va, if-and-only-if:

(b) In any mechanism for truthfully eliciting va from a single agent, the principal’s loss is 
at least:

where the minimization is over all cumulative distribution functions satisfying E[Ĝ(va)] = c 
and Ĝ(E[va]) = 0.

Remark 1  While our main goal in showing three inherently different mechanisms is pri-
marily theoretic (supporting the conjecture), there are some practical advantages for prefer-
ring the use of some of them in specific cases. For example, an advantage of Mechanism 2 
is that it does not require a mediator. Mechanism 1 requires a mediator to keep the reserva-
tion value r secret and reveal it only after the agent’s report (and this recurs in Mechanism 
3 as it requires the principal to run also Mechanism 1 entirely). A dishonest mediator might 
collude with the agent and reveal the reservation value to him before the report, allowing 
him to report r + � and win the object without giving any information. The mediator might 

G(r) ∶= p ⋅ �r>t

�G(v) ∶= ∫
v

r=0

G(r)dr = p ⋅max(0, v − t)

c < E[max(0, va − E[va])].

c + min
G∈Gc

E[(vp − va) ⋅ G(va)],
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also collude with the principal and reveal a false reservation value b − � after hearing the 
report b. In Mechanism 2 no such problems arise.

Additionally, Mechanism 1 requires the agent to believe that the principal really draws 
r from the advertised distribution (or alternatively, use a third-party for doing the lottery). 
In Mechanism 2 the lottery is much simpler: a probability p = G(b) is calculated in a trans-
parent manner, and the object is sold with probability p. Such lottery can be carried out 
transparently in front of the agent, so no trust is required.

On the other hand, Mechanism 1 has the advantage that the optimal strategy of provid-
ing b = v is more intuitive. In Mechanism 2, once the agent knows v, he needs to solve a 
complex optimization problem in order to calculate the optimal b and realize that it equals 
v. In contrast, in Mechanism 1, once the agent knows v, it is easy to realize that it is optimal 
to report b = v : by reporting b > v he might buy the object at a price higher than its value, 
and by reporting b < v he might miss buying the object at a price lower than its value.

9 � Cost of information delivery

So far we assumed that the information production is costly, but once the information is 
available—its delivery is free. In general, the information delivery too might be costly. For 
example, the agent might have to write a detailed report about how v was calculated, and 
have the report signed by the firm’s accountants. Throughout this section, we denote the 
cost of delivery by cd and assume that it is common knowledge. We also assume that the 
agent incurs the same cost cd whether the delivered information is true or false.

In settings where information delivery is costly, the principal can still naively guaran-
tee the calculation of the value and its true delivery by promising the agent a payment 
of cd for participating in Mechanism 1. This makes the strategic situation of the agent 
identical to the situation analyzed in Sect.  3. Mechanism 1 is still truthful whenever 
c < Ev[max(0, v − E[v])]. The principal’s loss is the sum of the production and delivery 
costs, which is the smallest loss possible since the agent’s expenses must be covered.

However, the naive method may not always be the most beneficial for the principal. In 
particular, if the principal needs to know the exact object value only when it is above a cer-
tain threshold T, as otherwise knowing the exact value is useless, it may be more beneficial 
to use a mechanism where the value is delivered only if it is above T.8

This can be attained by using Mechanism 4, which is essentially Mechanism 3 adapted 
to include the delivery cost. 

Mechanism 4 Parameters: T > 0 —a constant, p ∈ [0, 1] —a probability.

The agent is asked to choose between the following two options.
Option A:
1. With probability p, the agent pays T to the principal and the principal transfers the object to the agent.
2. Otherwise (with probability 1 − p ), the agent does not pay nor get the object. The agent reveals the 

value v to the principal and receives cd as reimbursement of the delivery cost.
Option B: nothing happens: the agent does not reveal v nor pays nor receives the object.

8  Notice such saving is only possible with the delivery cost, as with the calculation cost c the agent will 
first need to calculate the exact value in order to determine if it is above or below the threshold.
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If the agent calculates v, then it is optimal for him to choose option A iff v > T  : option 
A gives him an expected utility of p ⋅ (v − T), while with option B his utility is 0. In this 
case, revealing the true value requires no additional cost for the agent, so we can assume 
he indeed reveals the true v in step 2 (alternatively, Mechanism 1 can be used with the 
function G0 to elicit the true v). The expected utility of the agent after calculating v is 
p ⋅ E[max(0, v − T)].

If the agent does not calculate v, then it is best for him to choose option A (and deliver 
some random value in step 2) iff E[v] > T . Hence his expected utility is p ⋅max(0,E[v] − T). 
Therefore, the agent calculates v iff p ⋅ (E[max(v − T , 0)] −max(E[v] − T , 0)) > c. Set-
ting p = c∕(E[max(0, v − T)] −max(0,E[v] − T)), Mechanism 3 is valid as long as 
c < E[max(0, v − T)] −max(0,E[v] − T), as otherwise the probability p becomes greater 
than 1.

As a practical use-case for Mechanism 3, suppose the object under consideration is in 
fact an opportunity which the principal can either exploit or give up on. Exploiting the 
opportunity requires the principal to incur an exploitation cost, which we denote by ce. For 
example, the principal holds an option to buy a jewel or a stock at price ce. Or, the princi-
pal holds an oil field that requires an investment of ce in order to become operational. We 
assume that, in order to exploit the opportunity, the principal also needs a report regarding 
its exact value, which costs cd to deliver. Therefore, it is optimal for the principal to use 
Mechanism 3 with a threshold of T = cd + ce, since then she will pay the delivery cost only 
when she intends to exploit the opportunity.

Indeed, if T < cd + ce, then whenever T < v < cd + ce, the agent will choose option A 
and the principal will have (with probability (1 − p) ) to pay him cd, but then the princi-
pal’s net gain from exploiting the opportunity will be v − cd − ce < 0. On the other hand, if 
T > cd + ce, then whenever T > v > cd + ce, the agent will choose option B and the princi-
pal will be unable to exploit the opportunity, although exploiting it in this case could yield 
her a net gain of v − cd − ce > 0.

Proposition 1  Given an opportunity with an exploitation cost ce, i.e., the principal only 
needs to know whether the value v is above or below ce in order to decide whether to 
exploit it, the strategy maximizing the principal’s expected utility is to use Mechanism 4 if 
and only if

where T = ce + cd is the threshold.

Proof  Consider using a threshold T > ce + cd. Here, any opportunity with value 
v ∈ (ce + cd, T) will no longer be returned to the principal, yet the principal will benefit 
from receiving such information as even after reimbursing the agent cd the value of the 
opportunity is greater than its exploitation cost. Similarly, if using a threshold T < ce + cd, 
then any opportunity with value T < v < ce + cd delivered to the principal will be either 
exploited (if v > ce ) or discarded (otherwise), resulting either in a loss cd or v − ce − cd < 0, 
respectively. Hence T = ce + cd.

The condition E[max(0, v − T)] −max(0,E[v] − T) > c that should hold in order to 
request the valuation in the first place simply captures the expected gain from having the 
information (left hand side) compared to the expected loss due to the transfer of the item 
(which is exactly c, as explained above). 	�  ◻

E[max(0, v − T)] −max(0,E[v] − T) > c
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The above is illustrated in Fig. 3. The two graphs in the figure demonstrate the princi-
pal’s expected profit as a function of the threshold used. In the left graph, the value of the 
opportunity is distributed according to a normal distribution with � = 2 and � = 1, and 
in the right graph, the value is distributed according to a uniform distribution between 0 
to 2. The calculation of the principal’s expected profit with each corresponding threshold 
(on the horizontal axis) was carried out by drawing random opportunity values from the 
relevant distribution (uniform/normal). If the value chosen was above the threshold, the 
principal receives this information from the agent and therefore will have to pay both c 
and cd. Additionally, if the drawn value is above its exploitation value ( ce ) then the prin-
cipal will be interested in exploiting this opportunity thus will have to pay also the cost 
of exploiting it, ce, in addition to cd and ce. If however, the value drawn is lower than the 
threshold, the principal will not be interested in knowing the true value and will only 
need to pay for the extraction of the value by the agent. This was repeated one million 
times for each threshold, and the data points in the graphs are the average values over all 
runs for each threshold.9 In both graphs it is quite clear that no matter what the value of 
c is, the maximal value for the principal’s profit is being received at T = ce + cd, as in 
Proposition 1.

10 � Related work

Mechanisms by which an uninformed agent tries to elicit information from an informed 
agent are as old as King Solomon’s judgment (I Kings:3). About two centuries ago, the 
German poet Goethe invented a mechanism for eliciting the value of his new book from his 
publisher [30], but without considering the computation cost.

Various new mechanisms for truthful information elicitation have been studied in recent 
years, including mechanisms based on proper scoring rules [7, 26], the Bayesian truth 

Fig. 3   An illustration of the principal’s expected profit as a function of the threshold used for both the case 
where the value of the opportunity is distributed according to a normal distribution (left graph) and accord-
ing to a uniform distribution (right graph)

9  The Matlab code used is downloadable from https​://tinyu​rl.com/rl3rn​w9.

https://tinyurl.com/rl3rnw9
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serum [10, 35, 41], and its variants [32, 44], the peer truth serum [36], the ESP game, 
credit-based mechanisms [20], and similar output agreement mechanisms [40]. See also 
[28] for a recent unifying framework for several different kinds of mechanisms. Faltings 
and Radanovic [14] provide a comprehensive survey of such mechanisms in the computer 
science literature. They classify them into two categories:

The principle underlying all truthful mechanisms is to reward reports according to 
consistency with a reference. (1) In the case of verifiable information, this reference 
is taken from the ground truth as it will eventually be available. (2) In the case of 
unverifiable information, it will be constructed from peer reports provided by other 
agents.

The present paper provides a third category: the information is unverifiable, and yet there is 
a single agent to elicit it from.10

Interactions between an informed agent and an uninformed principal have also been 
studied extensively in economics. A typical setting is that the agent is a seller holding an 
object and the principal is a buyer wanting that object (contrary to our setting, where the 
principal is the object owner). In some settings, the agent is a manager of a firm and the 
principal is a potential investor. Common to all cases is that the agent holds information 
that may affect the utility of the principal, and the question is if and how the agent can be 
induced to disclose this information.

The seminal work of Akerlof [1] shows that, when information is not verifiable and is 
not guaranteed to be correct (as in our setting), the incentive of the agent to provide false 
information might lead to complete market failure. In contrast, if the information is ex-post 
verifiable (i.e, the agent can hide information but cannot present false information), then 
market forces may be sufficient to push the agent to voluntarily disclose his information 
[17–19]. Mechanisms for information elicitation have been developed for settings where 
the information is verifiable [21], partially verifiable [15, 16] or verifiable at a cost [11, 13, 
31, 43].

An additional line of research assumes that the information is unverifiable, however, if 
it is purchased, it is always correct. Moreover, their goal is to maximize the agent’s revenue 
rather than minimize the principal’s loss [2, 3, 5, 8, 37].

Our work is also related to contract theory [12], in which a principal tries to incentiv-
ize an agent to choose an action that is favorable to the principal. There, while the princi-
pal cannot observe the agent’s action, she can observe the (probabilistic) outcome of his 
action. In contrast, in our setting the principal has no way of knowing whether or not the 
agent calculated the true information.

Our work is motivated by government auctions for oil and gas fields. A lease for min-
ing oil/gas is put to a first-price sealed-bid auction. One of the participating firms owns a 
nearby plot and can, by drilling in its own plot, compute relevant information about the 
potential value of the auctioned plot. Hendricks et al. [25] show that, in equilibrium, the 
informed firm underbids and gains information rent, while the uninformed firms have zero 

10  When there are many agents, the problem becomes easier. For example, with three or more agents the 
following mechanism is possible: (a) Offer each agent to provide you the information for c′, for some c′ > c. 
(b) Collect the reports of all agreeing agents. (c) If one report is not identical to at least one other report, 
then file a complaint against this agent and send her to jail. This creates a coordination game where the 
focal point is to reveal the true value, similarly to the famous ESP game. In our setting there is a single 
agent, so this trick is not possible.
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expected value. Porter [34] provides empirical evidence supporting this conclusion from 
almost 40 years of auctions by the US government. It indicates that information asymmetry 
causes the government to lose about 30% of the potential revenue. As a solution, Hendricks 
et al. [24] suggest to exclude the agent from the auction and induce him to reveal the infor-
mation by promising him a fixed percentage of the auction revenues. However, they note 
that in practice it may be impossible to exclude a firm from a government auction. The pre-
sent paper provides a different solution: the government (the principal) can use our Mecha-
nism 1 to elicit the information from the informed firm (the agent). Then it can release the 
information to the other firms and by this remove the information asymmetry.

The decision rule in our Theorem 1 is similar to the ones used in optimal stopping prob-
lems, e.g., the one derived by Weitzman [42] for Pandora’s Box problem. While the lat-
ter considers a single player and has no strategic aspect, our model considers a strategic 
setting. Still the essence of the decision is somewhat similar as it considers the marginal 
expected profit from knowing the true value (as opposed to acting based on the best value 
found so far in Pandora’s problem, or the expected value in our case).

Mechanism 1 uses the reservation-price concept, which can be found in literature on 
auctions where agents have to incur a cost for learning their own value. For example, 
Hausch and Li [23] discuss an auction for a single item with a common value. Each bidder 
incurs a cost for participating in the auction, and additional cost for estimating the value of 
the item. Persico [33] discusses an extended model where the bidders can pay to make their 
estimate of the value more informative.

11 � Discussion and future work

Information-providers are now ubiquitous, enabling people and agents to acquire infor-
mation of various sorts. As self-interested agents, information providers typically seek 
to maximize their revenue. This is where the failure of direct payment becomes apparent, 
especially when the information provided is non-verifiable. The importance of the mecha-
nisms provided and analyzed in the paper is therefore in their guarantee for truthfulness in 
the information elicitation process.

An important challenge for future work is to study the theoretic limitations of the setting 
studied in this paper—a single information-agent and unverifiable information. In particu-
lar, we conjecture that any truthful mechanism for this setting must sell the object with 
a positive probability, although we do not know how to prove this formally. Solving the 
minimization problem in Sect. 6 and settling the conjecture in Sect. 8 are interesting chal-
lenges too. Some other directions for future work are:

Unknown distribution of value Mechanism 1 requires to calculate Ev[max(0, v − E[v])], 
which requires knowledge of the prior distribution of v. When the distribution is not 
known, truthfulness can be guaranteed only when c = 0, since in this case G can be chosen 
independently of the distribution (see end of Sect. 4). It is interesting whether true informa-
tion can be elicited by a prior-free mechanism also for c > 0.

Risk-averse agents The current model assumes that the agent is risk-neutral, so that his 
utility from a random mechanism is the expectation of the value. It is interesting to check 
what happens in the common case in which the agent is risk-averse.

Suppose there is an increasing function u ∶ ℝ → ℝ that maps the value of the agent 
to his utility. So u(0) = 0 (no value means no utility) and u�(x) > 0 for all x (more value 
always means more utility). When the agent is risk-neutral (as we assumed so far), u′ is 
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constant; when the agent is risk-averse, u′ is decreasing. Then, when the agent is coopera-
tive and computes v, he gets the object iff r ≤ b(v), and then his utility is u(v − r). Therefore 
his expected utility is:

Since u(v − r) is positive iff v − r is positive, the integrand is positive iff r < v. Therefore 
the expression is maximized when b(v) = v, and hence it is still a strictly dominant strategy 
for the agent to bid b = v. This is encouraging, since it means that at least the second part 
of Mechanism 1 (revealing the value after it is computed) remains truthful regardless of the 
agent’s risk attitude. However, computing the agent’s utility in the cooperative vs. the heu-
ristic strategy is much harder. Similarly, Mechanisms 2 and 3 may behave differently when 
the agent is risk-averse.

Different effort levels In our setting, the agent has only two options: either calculate the 
accurate value, or not calculate it at all. When c > Ev[max(0, v − E[v])], it is optimal for 
the agent to not calculate the value at all. Then, it is optimal for the agent to bid E[v]. It is 
never optimal for the agent to bid an inaccurate value.

In more realistic settings, the agent may have three or more options. For example, it 
is possible that the agent can, by incurring a cost c0 < c, get an inaccurate estimate of v 
(e.g., the agent learns some value v0 such that the true value is distributed uniformly in 
[v0 − d, v0 + d], where d is the inaccuracy parameter). Then, the analysis of the agent’s 
behavior becomes more complex since there are more paths in which the agent may decide 
to calculate the true value: he may decide to incur the cost c already from the start, or incur 
only the cost c0, and after observing the results—decide whether to incur an additional cost 
of c. The principal’s goal is to learn the true value at the end—regardless of how many 
intermediate calculations are done by the agent. It is interesting to characterize the mecha-
nisms that let the principal attain this goal.
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