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Abstract
We focus on how an agent can exercise autonomy while still dependably fulfilling com-
mitments it has made to another, despite uncertainty about outcomes of its actions and 
how its own objectives might evolve. Our formal semantics treats a probabilistic commit-
ment as constraints on the actions an autonomous agent can take, rather than as promises 
about states of the environment it will achieve. We have developed a family of commit-
ment-constrained (iterative) lookahead algorithms that provably respect the semantics, and 
that support different tradeoffs between computation and plan quality. Our empirical results 
confirm that our algorithms’ ability to balance (selfish) autonomy and (unselfish) depend-
ability outperforms optimizing either alone, that our algorithms can effectively handle 
uncertainty about both what actions do and which states are rewarding, and that our algo-
rithms can solve more computationally-demanding problems through judicious parameter 
choices for how far our algorithms should lookahead and how often they should iterate.

Keywords  Commitment semantics · Model uncertainty · Constrained planning · Sequential 
decision making

1  Introduction

To pursue its assigned objectives in the face of dynamic and unpredictable circumstances, 
an agent needs the autonomy to flexibly adopt different actions as needed. But such auton-
omy risks making the agent more unpredictable to other agents it is cooperating with. Spe-
cifically, to be trustworthy, the agent’s exercise of its autonomy must avoid violating social 
commitments that it has made to others. This balance, between satisfying others’ expecta-
tions by employing autonomy to improve individual effectiveness, versus satisfying others’ 
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expectations by tempering autonomy to adhere to social commitments, is the focus of this 
article.

Most multiagent systems research into social commitments, and trust in agents to meet 
them, investigates constructs and protocols by which agents can express commitments, test 
for commitment satisfaction, and develop models of reputation and trust. Through such 
mechanisms, self-interested agents (or their developers) gain incentive for meeting commit-
ments, as finding gullible agents to exploit by reneging on commitments becomes harder. 
Such a perspective assumes that agents (or their developers) know how to satisfy commit-
ments and earn the trust of others, and need to be incentivized to do so. This perspective 
is sensible, for example, in transactional contexts, where goods, services, and money are 
exchanged.

Our emphasis in this article is different. We assume that agents are cooperative, so 
incentivizing is not the issue. Instead, we do not assume that it is clearcut how autonomous 
agents should satisfy commitments in the inherently uncertain contexts where autonomy is 
needed. An example in human systems is the commitment a surgeon makes when treating a 
patient, where the motives of the surgeon and patient are aligned, but the planned surgical 
procedure might not work, or the surgeon might discover during the surgery an overrid-
ing problem to address instead. The patient is counting on the surgeon to autonomously 
respond to emergent circumstances, within the bounds of standards of practice/care. Even 
though the outcome of the surgery might not be what everyone expected, the surgeon still 
could be deemed as to have merited the trust of the patient in fulfilling the commitment 
made.

For artificial autonomous agents, we seek to distill insights from such human settings 
into computationally operational terms, by defining a clear semantics for what it means to 
achieve a commitment despite inherent uncertainty, and by formulating decision-making 
algorithms for an agent that provably adhere to those semantics. This article provides one 
set of answers to these questions, though others might be possible. The key ideas behind 
our answers include:

•	 A recognition that, in uncertain settings, commitments can only be made to what 
actions an agent will attempt, rather than to what outcomes will result from its actions.

•	 The importance of committing to acting within a space of possible actions/plans, rather 
than to a specific single action/plan, so an agent can retain latitude for exercising auton-
omy.

•	 The ability to succinctly characterize a space of possible actions/plans in terms of a 
probabilistic commitment to reach one of a set of possible states.

•	 A family of algorithms for provably and flexibly achieving probabilistic commitments 
that allow different tradeoffs between computational effort exerted and the optimality of 
autonomous behavior.

We described this general area of research and our early intuitions for solving it in a work-
shop paper that was later included in a published collection of best workshop papers [11]. 
Select technical details have appeared in an unpublished workshop paper [42]. In a con-
ference paper [43], we proposed similar commitment semantics, under Bayesian reward 
uncertainty, to those in this article, but described solution techniques that included a less 
robust iterative method that can violate the prescriptive commitment semantics in sub-
tle ways. The improved iterative method in this article (Sect.  4.4) supersedes the previ-
ous flawed one, providing provable guarantees on fulfilling the prescriptive commitment 
semantics. Versions of the improved methods in this article, but applied to non-Bayesian 
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setting, have appeared in a conference paper [44]. In contrast, this article goes into detail 
about (previously unpublished) Bayesian versions of the improved solution methods, for-
mally proving their adherence to our semantics. It also collects together content that had 
previously appeared only in non-archival forms. Finally, beyond any of our work that has 
appeared elsewhere, this article additionally provides more details and intuitions, and a 
more extensive empirical evaluation.

In the sections that follow, after briefly summarizing past work on commitments in 
agent systems (Sect. 2), we describe the decision-theoretic foundations of our work and the 
formal semantics of a probabilistic commitment (Sect. 3). From there, we describe a fam-
ily of decision-making algorithms that make different computation/optimality tradeoffs, 
with theoretical results proving their adherence to our commitment semantics (Sect.  4), 
along with strategies to solve the problems more efficiently (Sect. 5). Our empirical results 
highlight the effectiveness of our principled approach and the tradeoffs among the different 
algorithms (Sect. 6). Finally, the article finishes with a summary of the contributions, and 
of directions for future work (Sect. 7).

2 � Related work

A comprehensive overview of research into using computational methods to characterize 
and operationalize social commitments in terms of formal (temporal and modal) logic has 
appeared [32], and is based on literature in this field (e.g., [2, 5–7, 19, 31]). These formula-
tions support important objectives like the provable pursuit of mutually agreed-upon goals, 
and codifying conventions and protocols for managing uncertainty (e.g., [16, 38, 40]). As 
an example of a convention, an agent that determines that it will not keep a commitment 
might be obligated to inform dependent agents [16].

There has been substantial work in the field on formal methods for developing protocols, 
with provable properties, for agents who are modeling and communicating about commit-
ments. The focus is on the lifecycle of a commitment, from its initial proposed creation, to 
the mutual agreement to adopt it, to determining whether it has been fulfilled, to whether 
it is time to abandon it. Over the lifecycle, it is important that interacting agents engage in 
a communication protocol that ensures their beliefs about the status of a shared commit-
ment are aligned. Günay et  al. [12, 13] have developed a formal language that provides 
for non-deterministic elements in agents’ beliefs, along with a model-checking algorithm 
for analyzing agents’ compliance with commitments. Sultan et  al. [35] develop another 
model-checking technique for verifying social commitments specified using a modal logi-
cal language for uncertain settings. To improve alignment when an agent suspects another 
might not be conscientious about providing updates, Pereira et al. [24] have developed an 
approach where an agent can use observations of another’s actions to infer when that other 
agent has abandoned its commitment, based on if its current actions do not fit any (known) 
plan to fulfill the commitment. Their work assumes a commitment semantics that requires 
an agent who has adopted a commitment to singlemindedly pursue that commitment. In 
general, this semantics is overly restrictive, because an agent might need to interleave 
actions in the pursuit of multiple commitments, along with its own local goals, at any given 
time.

The above acknowledges that the agents might not achieve outcomes they have commit-
ted to, and focuses on improving awareness across agents as to the status of all their shared 
commitments. But if agents can arbitrarily and unilaterally decide to drop a commitment, 
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the commitment loses predictive value for coordination between the agents. Some of the 
logical formulations above (e.g., [16]) enumerate conditions where an agent is allowed 
to abandon its local component of a mutual goal, where in general these conditions are 
either: (1) when the agent believes it is impossible to achieve its local component; (2) when 
the agent believes the mutual goal is not worth pursuing anymore; or (3) when the agent 
believes one or more of the other agents participating in the mutual goal have abandoned 
their local components of it. These conditions are logically reasonable, but fail to impose 
a prescriptive semantics for the agent to use in making local decisions. For example, to 
satisfy the first condition, is an agent never allowed to take an action that has even a small 
chance of rendering its local component unachievable? What if all of its actions have such 
a chance? For the second condition, if an agent can unilaterally drop a commitment when-
ever its preferred goal changes, then has it really committed in the first place?

To make an agent more predictable, a commitment can be paired with conditions under 
which it is guaranteed to hold [1, 27, 32, 37]. In transactional settings, for example, an 
agent could commit to providing a good or service on the condition that it first receives 
payment. However, if conditions can be over anything, then they can make commitments 
worthless because a commitment might be conditioned simply on no better option coming 
along. Sandholm and Lesser [28] recognized the general impracticality of enumerating all 
the conditions that might affect commitment adherence, and, even if the conditions could 
be specified, in verifying they hold in a distributed setting. Their solution was a contracting 
framework where a decommitment penalty is associated with each commitment, so as to 
accommodate uncertainty but discourage frivolous decommitment. However, even though 
the recipient of a commitment will know it will be compensated if the commitment is 
abandoned, it in general will be unable to know how likely that will be, since it cannot look 
inside the provider of the commitment to discern how likely it is that its actions to achieve 
the commitment will fail, or that it will decide that other goals should take priority.

Therefore, an alternative to a decommitment penalty is for the commitment provider to 
summarize the likelihood that its commitment’s various conditions will jointly hold (e.g., 
a factory’s suppliers will meet deadlines, its workers will not strike, its shippers will fulfill 
orders, etc.) into a summary probability. Hence, a probabilistic commitment [4, 39, 41] is 
a form of conditional commitment where the details of the conditions have been replaced 
by an estimate of the probability that they will hold. Xuan and Lesser [41] have explained 
how probabilistic commitments improve joint planning by allowing agents to find policies 
that are responsive to possible contingencies, including even unlikely ones, and comput-
ing appropriate alternative courses of action as the probabilities for commitments being 
met change. A more myopic (to be more tractable) variation of this approach was devel-
oped for the DARPA Coordinators program [18], where instead of anticipating ways that 
probabilities might change, the recipient would revise its plans only when the commitment 
provider would send an updated probability of the commitment being satisfied. These prior 
approaches however only treat commitment probabilities as predictions about how the pro-
vider’s plan will affect recipients. In contrast, our goal is that probabilistic commitments 
not only provide such predictive information to the recipient, but also impose prescriptive 
semantics on the provider to influence its behavior into a good faith effort towards making 
those predictions come true.

Our work, summarized in this article, is the first to develop prescriptive commitment 
semantics under decision-theoretic model uncertainty, along with algorithms that opera-
tionalize this semantics for faithful commitment pursuit. The model uncertainty that we 
consider is a form of partial observability, and thus the algorithms we develop can be 
viewed as extensions of existing techniques for solving (unconstrained) partially-observable 
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Markov decision problems [15, 17, 33]. Our commitment semantics prescribes additional 
constraints to the original planning problem, and we develop algorithms that exactly meet 
the commitment constraints under partial observability. Existing work has developed 
methods for constrained decision-theoretic planning without model uncertainty [3], or has 
solved the constraints only approximately [29, 25]. Others have also developed planning 
approaches for given commitments formulated using formal logic, which mainly rely on 
techniques of heuristic search (e.g., [21, 22, 36]). These approaches usually amount to enu-
merating courses of action in search for conditions that ensure the feasibility of the com-
mitments. For example, Meneguzzi et  al. [21] develop a depth-first search algorithm to 
generate realizable enactments of the commitment. These logic-based planning techniques 
deal with the provider’s uncertainty about the outcomes of its actions, while we also con-
sider the provider’s uncertainty over the rewards and dynamics of its environment.

3 � Problem formulation

3.1 � Markov decision processes

We first provide background on Markov Decision Processes (MDPs), which form the basis 
of the decision-theoretic setting we adopt for the commitment provider. An MDP is for-
mally defined by the tuple M = (S,A,P,R, s0,H) where S is the finite state space, A is the 
finite action space, P ∶ S ×A → �(S) ( �(S) denotes the set of all probability distributions 
over S ) is the transition function, R ∶ S ×A → ℝ is the reward function, H is the finite 
horizon, and s0 is the initial state. The state space is partitioned into disjoint sets by the 
time step, S =

⋃H

t=0
St . By taking action at ∈ A in state st ∈ St , the environment gener-

ates a reward rt+1 = R(st, at) and transits to a new state st+1 ∈ St+1 according to transition 
function P, i.e. st+1 ∼ P(⋅|st, at) meaning that st+1 is stochastically drawn from the transition 
function. Given a policy � ∶ S → �(A) and starting in the initial state, a random sequence 
of transitions ⟨s0, a0, r1, s1,… , sH−1, aH−1, rH , sH⟩ is generated, which records the entire 
history up to the time horizon. The value function of � is V�(s) = E[

∑H

t�=t+1
rt� ��, st = s] 

where t is such that s ∈ St . The optimal policy for M, denoted as �∗ , maximizes V� for all 
s ∈ S.

We give an illustrative example of an MDP shown in Fig. 1. There are four locations 
for each time step, labeled as A, B, C, and D. The time horizon is H = 10 . Thus, the state 
space consists of 44 states, and we let St = {At, Bt, Ct, Dt} . The initial state is A0 . There 
are two actions, � and � , and the transition function is shown in the annotations of the 
edges in Fig. 1. Taking any action in D yields a reward of + 10, and taking action � in the 
other three locations yields a reward of −  1. The rewards of all other state-action pairs 
are zero. We now describe the optimal policy for this MDP. In locations A, C, and D, the 
transition probabilities of both actions are identical, and therefore the optimal policy takes 
action � since it yields reward no smaller than action � . In location B, if it is not the final 
action then the optimal policy takes action � to transit to D which yields reward ( + 10) that 
outweighs the negative reward of taking action � (− 1); otherwise, the optimal policy takes 
action � in B as the final action.

There are several methods for solving an MDP for its optimal policy. We here sum-
marize one based on tabular linear programming (LP) [26], which is also the computa-
tional strategy we adopt for developing algorithms for the provider. For MDP M, each 
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policy � has a corresponding occupancy measure x� for the expected number of times 
action a will be taken in state s over the time horizon H, starting in initial state s0:

where 1E is the indicator function that takes value one if event E occurs and zero otherwise. 
We will use shorthand notation x in place of x� when policy � is clear from the context. 
Policy � can be recovered from its occupancy measure via

Figure 2 is the linear program that solves an MDP M. It introduces the occupancy measure 
as decision variables, and the policy is constructed from the program’s optimal solution. 
Constraints (1b) and (1c) guarantee that x is a valid occupancy measure, where �(s�, s0) is 
the Kronecker delta that returns 1 when s� = s0 and 0 otherwise. The expected cumulative 
reward can be expressed using x in the objective function (1a).

x�(s, a) = E

[
H−1∑
t=0

1{st=s,at=a}|s0,�
]
,

�(a�s) = x(s, a)∑
a�
x(s, a�)

.

Fig. 1   There are four locations for each time step labeled as A, B, C, and D, with A being the initial loca-
tion. The time horizon is H = 10 . Thus, the state space consists of 44 states. There are two actions, � and � , 
and the transition function is shown in the annotations of the edges. Taking any action in D yields a reward 
of + 10, and taking action � in the other three locations yields a reward of − 1. The rewards of all other 
state-action pairs are zero

Fig. 2   The linear program for solving an MDP M 
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3.2 � The decision‑theoretic setting

We consider the setting in which the provider’s true sequential decision-making prob-
lem is one out of K possible MDPs drawn from a known prior distribution, where all 
MDPs share identical state and action spaces but possibly different transition and reward 
functions, and the state and the reward are fully observable during execution. Formally, 
the environment is defined by the tuple E = ⟨S,A, {Pk,Rk}

K
k=1

, s0,�0,H⟩ . We assume 
that the state space S , the action space A , and the time horizon H are finite. Although 
our commitment semantics can be straightforwardly extended beyond this assumption, 
the algorithms that we develop in this article to operationalize the semantics are built 
upon well-established tabular MDP methods that assume finite state and action spaces. 
Implementing our commitment semantics in infinite state and action spaces is a possible 
direction for future research. The MDP that the agent is in is drawn from the known 
prior distribution �0 . If the agent is in MDP k, then by taking action at ∈ A in state 
st ∈ St , it receives a reward Rk(st, at) and the environment transits to st+1 ∼ Pk(⋅|st, at) . 
It will be convenient if we let capitalized St be a random variable indicating the state at 
time step t whose specific realization is denoted st , and capitalized At be a random varia-
ble indicating the action being taken at time step t, whose specific realization is denoted 
at . Because the true MDP is partially observable, we consider history-dependent sto-
chastic policies that map the history up to time step t,

to a probability distribution over the next action. Specifically, we use �(a|h) to denote the 
probability of choosing action a given history h when following policy � . During execu-
tion, the agent can use the information provided by the history so far to update the posterior 
distribution over the MDP it is actually facing. The posterior is a sufficient statistic that 
succinctly summarizes the agent’s knowledge about the uncertain environment by interact-
ing with it up to a certain point.

3.3 � Prescriptive probabilistic commitment semantics

For the agents operating in the uncertain environment described in Sect.  3.2, Defini-
tion 1 formally gives our definition of a probabilistic commitment.

Definition 1  A probabilistic commitment is formally defined as a tuple

where 𝛷 ⊆ S is the commitment state space, T(≤ H) is the commitment time, and � is 
the commitment probability.

At a minimum, a probabilistic commitment in this form represents a prediction about 
how likely the state of the world will be an element of � at time T, based on whatever 
policy the commitment provider is following. As summarized in Sect. 2, however, this 
kind of predictive commitment semantics can fail to match commonsense notions of 
what making a commitment means, since it does not in any way impede a provider from 
unilaterally changing its commitment whenever it chooses to alter its policy.

We therefore define a prescriptive semantics for a probabilistic commitment:

ht = ⟨s0, a0, r1, s1,… , st−1, at−1, rt, st⟩,

(2)c = ⟨�, T , �⟩,
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Definition 2  The prescriptive probabilistic commitment semantics for probabilistic com-
mitment c requires that a commitment provider is constrained to follow a policy � , such 
that

By Eq. (3), our prescriptive probabilistic commitment semantics is clear: knowing that it 
is facing an MDP drawn from the prior distribution �0 over possible MDPs in the environ-
ment ( k ∼ �0 ), the provider is constrained to follow a (in general history-dependent) policy, 
such that, starting at the initial state s0 , the probability of reaching a state in the commit-
ment state space ST ∈ � at the commitment time T is at least the commitment probability 
� . Unlike a predictive semantics, where the probability � of reaching a state in � at time T 
depends on the provider’s choice of policy � , the prescriptive semantics turns the depend-
ency around: the provider’s choice of policy � depends on the committed probability � of 
reaching a state in � at time T.

Our commitment semantics generalizes the classical (logic-based) prescriptive seman-
tics (Sect. 2) to settings where uncertainty precludes finding (even conditional) plans that 
provably reach states in the commitment state space � . Probabilistic commitments account 
for, and probabilistically quantify, the possibility that actions might have irreversible out-
comes from which the commitment state space is unreachable. To satisfy our semantics, a 
provider should only agree to a commitment if it can formulate a policy with a sufficiently 
low probability ( < (1 − 𝜌) ) of such outcomes. If the provider then faithfully follows such 
a policy for the agreed-upon commitment, then by definition (Eq.  3) it has satisfied its 
commitment. Hence, a crucial consequence of our prescriptive probabilistic commitment 
semantics is that, now, meeting a commitment is entirely under the agent’s control 
because satisfying a commitment only requires that the agent follow its policy in the states 
it finds itself in, rather than ensuring that specific states are guaranteed to be reached.1

Let �c be the set of all policies respecting the semantics of commitment c. We say that 
commitment c is feasible if and only if �c is not empty. Let

be the expected cumulative reward starting at state s0 under policy � if the true MDP is 
drawn from �0 . We are interested in finding a policy that maximizes the expected cumula-
tive reward while respecting the semantics of a given feasible probabilistic commitment, 
which is formally formulated as the following problem:

(3)Pr
k∼�0

(ST ∈ �|S0 = s0, k;�) ≥ �.

V�

�0
(s0) = Ek∼�0

[
H−1∑
t=0

Rk(St,At)|S0 = s0;k,�

]

1  For completeness, we should note that our semantics is also the probabalistic analogue of logic-based 
semantics for conditional commitments (Sect. 2). A conditional commitment asserts that a state in � will 
provably be reached in worlds where the specified conditions hold, but makes no promises when those con-
ditions do not hold. As long as the agent’s actions reach a state in � when the conditions hold, the com-
mitment is satisfied. Analogously, a probabilistic commitment asserts that a state in � will be assuredly 
be reached whenever one out of the “good” subset of possible histories hold (where the probability of that 
occurring given the policy � is no less than � ), but makes no promises otherwise. So, again analogously, as 
long as the agent takes actions prescribed by � , the commitment is met regardless of whether a state in � is 
reached in a specific episode.
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Solving problem (4) involves two main challenges. First, it is non-trivial to characterize 
�c in a computationally-efficient manner that eases the policy optimization step. Second, 
under Bayesian uncertainty, finding the optimal policy (even without the constraint pre-
scribed by the commitment semantics) requires planning with evolving posterior distri-
butions. This imposes additional computational difficulty, since the number of posteriors 
grows exponentially with the time horizon. We propose methods in Sect.  4 that address 
these challenges.

4 � Methods

In this section, we describe several methods for constructing policies with different trade-
offs between solution quality and computational cost, while all the constructed policies 
are guaranteed to be in �c to respect the semantics of a given commitment c. In order to 
achieve high expected cumulative reward, the agent has to plan not only with fully observ-
able states but also with the most recent knowledge about the true MDP it is in. Our first 
method, Commitment Constrained Full Lookahead (CCFL), finds the optimal policy in set 
�c by generating beforehand all possible posterior distributions over possible MDPs up to 
the finite time horizon. As a downside, since the number of posterior distributions gener-
ally grows exponentially as the time horizon grows, planning with all possible posterior 
distributions can make CCFL computationally infeasible. To this end, our Commitment 
Constrained Lookahead (CCL) method, generalizes CCFL by taking as input an integer 
parameter, L, as the number of time steps for posterior lookahead. Our Commitment Con-
strained No-Lookahead (CCNL) method can be treated as a special case of CCL, in which 
L = 0 , and therefore actions are chosen only based on the initial conditions and ignoring 
posterior distributions. A small L often saves a lot of computational time compared to full 
lookahead, but by being more myopic decreases the expected cumulative reward. To par-
tially mitigate this shortcoming of CCL (at the cost of a more modest increase in computa-
tion), we have created an iterative version of it called Commitment Constrained Iterative 
Lookahead (CCIL) that reapplies the CCL method in the midst of execution, where the 
posterior lookahead of successive applications of CCL reach closer to the time horizon.

4.1 � Commitment constrained full lookahead

During execution, the agent can use the knowledge provided by the history so far to infer 
which MDP is more/less likely to be the true MDP it is facing. Formally, one can summa-
rize current history h into a belief, b ∶= ⟨s,�⟩ , where s is the agent’s current physical state, 
and � is the posterior distribution over all possible MDPs given h. We use Bt to denote the 
random variable indicating the belief at time step t, and bt to denote the belief given his-
tory ht . The agent can find the optimal history-dependent policy by planning in the belief 
MDP defined as the tuple ⟨B,A, b0, P̃, R̃⟩ , where B is the set of all beliefs reachable from 
initial belief b0 = ⟨s0,�0⟩ , which is finite because every possible true MDP k is finite and 
the time horizon is finite. P̃ and R̃ are belief transition and reward functions, respectively. 
Specifically, if we let b|(a, r, s�) be the belief after taking action a in belief state b, receiv-
ing reward r and transiting to state s′ , then the probability of transiting to any belief b� ∈ B 
after taking action a in belief state b can be expressed as

(4)argmax
�∈�c

V�

�0
(s0).



	 Autonomous Agents and Multi-Agent Systems (2020) 34:19

1 3

19  Page 10 of 35

where Pr(r, s�|b, a) is the probability of receiving reward r and transiting to state s′ after 
taking action a in belief b and can be expressed using {Pk,Rk}

K
k=1

 as

In words, given any belief b� ∈ B , P̃(b�|b, a) sums up probabilities over transitions (r, s�) 
which update the belief to b′ . Similarly, the belief reward function can be defined as

Our Commitment Constrained Full Lookahead (CCFL) method finds an optimal policy in 
�c among all belief-based policies, i.e., policies that choose actions as a function of the 
current belief, while respecting the commitment semantics. Note since a belief is a func-
tion of the history, then a belief-based policy also gives action probabilities as a function 
of the history. For MDP k, each policy � has a corresponding occupancy measure y�

k
 for the 

expected number of times action a will be taken in belief-state b over the time horizon H:

We will use shorthand notation yk in place of y�
k
 when policy � is clear from the context. If 

� is a belief-based policy, it can be recovered from its belief-action occupancy measure in 
any MDP k via

CCFL solves the mathematical program shown in Fig. 3, which introduces as decision vari-
ables the belief-action occupancy measure for all possible MDPs, and constructs the policy 
via Eq. (5) using the program’s optimal solution. The CCFL program is a straightforward 

P̃(b�|b, a) = ∑
{r,s�∶b|(a,r,s�)=b�}

Pr(r, s�|b, a),

Pr(r, s��b, a) = Pr(r, s��⟨s,�⟩, a) =
K�
k=1

�kPk(s
��s, a)1{r=Rk(s,a)}

.

R̃(b, a) = R̃(⟨s,𝜇⟩, a) =
K�
k=1

𝜇kRk(s, a).

y�
k
(b, a) = E

[
H−1∑
t=0

1{Bt=b,At=a}
|B0 = b0;k,�

]
.

(5)�(a�b) = yk(b, a)∑
a� yk(b, a

�)
.

Fig. 3   CCFL program
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adaptation of the linear program in Fig. 2 that solves an MDP. Constraints (6b) and (6c), 
which are the counterparts of constraints (1b) and (1c) in Fig. 2, guarantee that y is a valid 
occupancy measure with the initial belief being b0 and the transition function being P̃ . The 
expected cumulative reward is expressed using y in the objective function (6a), which is the 
counterpart of objective (1a). The commitment semantics of Eq. (3) imposes an additional 
constraint (6d), which ensures the resulting policy is in �c.

Because the belief is a sufficient statistic (i.e. it provides as much information for predicting 
the future as the history does), the CCFL program is feasible if the commitment is feasible, 
and the policy constructed by CCFL is optimal among all history-dependent policies respect-
ing the commitment semantics, as formally stated in Theorem 1.

Theorem 1  If commitment c is feasible, meaning �c ≠ ∅ , then the CCFL program in Fig. 3 
is also feasible. Let y∗ be an optimal solution to the CCFL program. The policy constructed 
via Eq. (5) using y∗ is optimal with respect to the problem in Eq. (4).

The proofs of theorems in this article are presented in the “Appendix”.

4.2 � Commitment constrained no‑lookahead

Planning with all possible posterior distributions makes CCFL computationally infeasible, as 
confirmed by our empirical results in Sect. 6. To counter this, we now consider policies that 
ignore this posterior knowledge and only depend on the current state to choose actions. We 
refer to them as Markov policies and let �0 be the set of all Markov policies. If commitment c 
is feasible for Markov policies, i.e., �c ∩�0 ≠ � , our Commitment Constrained No-Looka-
head (CCNL) method will find an optimal Markov policy that maximizes expected cumulative 
reward respecting the commitment semantics, which is a solution to the following problem:

Note that �0 is a subset of all history-dependent policies. When, as would generally be the 
case, �0 is a much smaller policy set, the computational cost of CCNL would be much 
less than that of CCFL, but the solution policy of CCNL is only an approximation of the 
optimal commitment semantics-respecting policy yielded by CCFL, as will be confirmed 
empirically in Sect. 6.

Similar to the belief-action occupancy measure, for MDP k, any policy � has a correspond-
ing occupancy measure x�

k
 of state-action pairs:

We will use shorthand notation xk in place of x�
k
 when policy � is clear from the context. If 

� is a Markov policy, it can be recovered from its state-action occupancy measure in any 
MDP k via

(7)argmax
�∈�c∩�0

V�

�0
(s0).

x�
k
(s, a) = E

[
H−1∑
t=0

1{St=s,At=a}
|S0 = s0;k,�

]
.

(8)�(a�s) = xk(s, a)∑
a� xk(s, a

�)
.
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CCNL constructs the policy by solving the mathematical program shown in Fig. 4. It intro-
duces as decision variables the state-action occupancy measure for all possible MDPs. 
Constraints (9b) and (9c), as counterparts of constraints (1b) and (1c), guarantee that xk is 
a valid occupancy measure with the initial state being s0 and the transition function being 
Pk . The commitment semantics of Eq. (3) is explicitly expressed in constraint (9e). The 
expected cumulative reward is expressed using x in the objective function (9a), where �0,k 
is the probability that the true MDP is k according to �0 . The corresponding Markov policy 
can be derived via Eq. (8). Unlike CCFL, the CCNL program is no longer a straightforward 
adaptation of the linear program in Fig. 2 because a challenging problem here is to ensure 
that these K sets of occupancy measures all derive the same Markov policy. To this end, 
we use constraint (9d) to enforce alignment across all K sets of occupancy measures. The 
constraints in Fig. 4 are feasible if and only if �c ∩�0 ≠ �.

4.3 � Commitment constrained lookahead

CCFL pre-plans for every possible revision to the agent’s posterior knowledge about the 
true MDP it might be in, which guarantees optimality but possibly at a huge computa-
tional cost. At the other extreme, CCNL only considers Markov policies that ignore this 
evolving posterior knowledge. Here we consider the general case where the agent plans 
its first L ∈ [0,H] actions as a function of the evolving belief, and thereafter plans actions 
based on the evolving state but with the belief (including both the state and the posterior 
distribution) the agent was in at time L. We refer to this parameter, L, as the belief-update 
lookahead boundary, which tells the planner how far beyond the current time to look ahead 
about states and posterior distributions. The resulting L-updates policy takes the form:

where bt is the belief consistent with ht , and bL is the belief consistent with hL when t ≥ L . 
Note that a 0-update policy is the same as a Markov policy and an H-update policy is a full 

𝜋(a|ht) =
{

𝜋(a|bt) t < L

𝜋(a|st, bL) t ≥ L

Fig. 4   CCNL program
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width belief-based policy. Therefore, belief-update lookahead boundary L defines a con-
tinuum between CCNL and CCFL.

Given a specific value of L, let �L be the set of all L-updates policies. If commitment c is 
feasible for belief-update lookahead boundary L, i.e., �c ∩�L ≠ � , our Commitment Con-
strained Lookahead (CCL) method will find an optimal L-updates policy that maximizes 
expected cumulative reward respecting the commitment semantics, which is a solution to the 
following problem:

CCL constructs the policy by solving the mathematical program shown in Fig. 5, which is 
a novel and carefully-crafted combination of the techniques in CCFL and CCNL. The pro-
gram introduces as decision variables y and x, where y is the belief-action occupancy meas-
ure (as defined for CCFL) for those beliefs reachable within the first L time steps of the 
plan, and x is the state-action occupancy measures (as defined for CCNL) for the remaining 
time steps to the horizon. We use Bb

l
 to denote the set of reachable beliefs after executing 

exactly l actions from belief b, and Bb
≤l

=
⋃l�

l=0
B
b
l�
 to denote the set of reachable beliefs 

from b by executing at most l actions starting from b. Because time is a state feature, Bb
l
 

and Bb
l′
 are disjoint if l ≠ l′ . CCL generates beforehand all reachable beliefs from initial 

belief b(t=)0 within L actions, Bb(t=)0

≤L
 . The belief-action and state-action measures enable us 

(10)argmax
�∈�c∩�L

V�

�0
(s0).

Fig. 5   CCL program
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to express the expected cumulative reward very conveniently in the objective (12a) where 
the first term sums up the reward of the first L time steps, and the second term the remain-
ing time steps to the horizon. The occupancy measures also enable us to express com-
mitment semantics conveniently: if the lookahead does not reach the commitment time T, 
then the commitment semantics can be expressed in terms of the belief-action occupancy 
measure via constraint (12h); otherwise, the commitment constraint can be expressed in 
terms of those state-action occupancy measures via constraint (12i). Constraints (12b) and 
(12c) on y are the counterparts of (6b) and (6c) in the CCFL program of Fig. 3. Similarly, 
constraints (12e), (12f), and (12g) on x are the counterparts of (9b), (9c), and (9d) in the 
CCNL program of Fig. 4, which means the CCL program is considerably more sophisti-
cated than the original linear program of Fig. 2. These constraints are feasible if and only 
if �c ∩�L ≠ � . Any L-updates policy �L that respects the commitment semantics can be 
derived from a feasible solution to the program in Fig. 5 via:

Theorem 2 states that CCL using belief-update lookahead boundary L finds an optimal 
policy in �c ∩�L.

Theorem 2  If �c ∩�L ≠ � holds for commitment c, then the program in Fig. 5 is feasible. 
Let x∗, y∗ be its optimal solution, then the policy derived via Eq. (11) with x∗, y∗ is the opti-
mal policy in �c ∩�L.

Intuitively, a belief-update lookahead boundary greater than zero enables the agent to 
plan actions not only based on the states it will visit, but also based on how its actions 
can provide information to improve its posteriors about what its true MDP is. Sacrifices 
in short-term reward may ultimately improve long-term performance. Theorem  3 says 
the expected cumulative reward of the policy derived by CCL using any L > 0 is lower 
bounded by that of the policy derived by CCNL. This is because, by definition, for any L 
and any Markov policy, there exists an L-updates policy that behaves exactly the same as 
the Markov policy, i.e. 𝛱0 ⊆ 𝛱L.

Theorem  3  If �c ∩�0 ≠ � holds for commitment c, then for any integer L ∈ [0,H] the 
CCL program in Fig. 5 is feasible, and we have

where �∗
L
 and �∗

0
 are the policies derived by CCL using belief-update lookahead boundary 

L and zero, respectively.

However, one has to be careful in using deeper boundaries because the performance of 
CCL is guaranteed to be monotonically non-decreasing in L only when MDPs vary solely 
in reward functions, but this monotonicity cannot be guaranteed in general, as stated in 
Theorems 4 and 5.

(11)𝜋L(a�ht) =

⎧
⎪⎪⎨⎪⎪⎩

𝜋L(a�bt) =
y(bt, a)∑
a� y(bt, a

�)
t < L

𝜋L(a�st, bL) =
xbL ,k(st, a)∑
a� xbL ,k(st, a

�)
t ≥ L

.

V
�∗
L

�0
(s0) ≥ V

�∗
0

�0
(s0)
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Theorem  4  If MDPs vary in reward functions and not in transition dynamics, i.e. 
∀k, k�,Pk = Pk� , and �c ∩�L ≠ � for boundary L, then for any L′ > L we have 
�c ∩�L� ≠ � , and

where �∗
L
 and �∗

L�
 are the policies derived by CCL using boundaries L and L′ , respectively.

Theorem 5  There exists an environment, a commitment c, and boundaries 0 < L < L′ < H 
satisfying �c ∩�L ≠ � and �c ∩�L� ≠ � , such that

where �∗
L
 and �∗

L�
 are the policies derived by CCL using belief-updates boundaries L and L′ , 

respectively.

These theoretical results provide some insights when choosing L. If the transition 
dynamics do not vary across MDPs, as suggested by Theorem  4, �L is monotonically 
increasing in L. One should use the largest affordable L because a larger L is likely to 
include more policies in �c and improve the value. A commitment that is infeasible for a 
smaller L could be feasible for a larger L. In general, though, the transition dynamics can 
vary across MDPs, and �L is not guaranteed to be monotonically increasing in L. One 
should use CCFL if it is affordable. CCFL considers all policies in �c if it is non-empty 
and therefore it yields optimal value. When CCFL is not affordable, then as suggested by 
Theorem 3 we can check the feasibility of a commitment with CCNL because a commit-
ment feasible to CCNL (i.e. �c ∩�0 ≠ � ) is also feasible for any L. For our empirical 
results in Sect. 6, we experiment with several candidate values of L. Our experience sug-
gests that L can best be chosen with problem-specific knowledge.

4.4 � Commitment constrained iterative lookahead

At each time step during execution, the agent observes the state transition that occurs and 
reward received to update its posterior � about the true MDP it is in. One might think 
it would be a good idea for the agent to construct and follow an updated policy from its 
current state, substituting its updated belief state for the initial belief. However, the agent 
cannot shift from one policy to another without considering its commitment. Clearly, if the 
agent can find a plan that achieves the original commitment probability conditioned on the 
current belief, then shifting to such a plan will certainly respect the commitment semantics. 
Observation 1 says this re-planning is not always feasible.

Observation 1  There exists an environment, a feasible commitment c, a policy � ∈ �c , 
and a history ht induced by � , such that

where ⟨st,�t⟩ is the belief consistent with ht.

The example shown in Fig. 6 verifies Observation 1. Starting in state A, the agent can 
feasibly commit to reaching the absorbing state D at time step 2 with at least probability .8. 

V
�∗
L

�0
(s0) ≤ V

�∗

L�

�0
(s0)

V
𝜋∗
L

𝜇0
(s0) > V

𝜋∗

L�

𝜇0
(s0)

∀𝜋� Pr
k∼𝜇t

(ST ∈ 𝛷|St = st, k;𝜋
�) < 𝜌,



	 Autonomous Agents and Multi-Agent Systems (2020) 34:19

1 3

19  Page 16 of 35

If the agent stochastically reached state C at time step 1, there is no plan that reaches state 
D from state C with probability at least .8, and this verifies Observation 1.

Our Commitment Constrained Iterative Lookahead (CCIL) method instead updates 
the commitment probability in a way that guarantees feasible re-planning, and iteratively 
applies CCL with that updated commitment probability during execution. The idea is that, 
when re-planning, respecting the commitment semantics does not require meeting the orig-
inal probabilistic commitment, but instead to fulfill the commitment probability that had 
originally been associated with the physical-state history traversed so far.2 Here we for-
mally describe CCIL’s first iterative application of CCL after having executed one or more 
actions. Suppose the agent now has belief bt = ⟨st,�t⟩ at time step t ≤ L after following 
policy �∗

L
 derived from the initial optimal solution to the CCL program with belief-update 

lookahead boundary L. Now the agent re-plans from st using its updated posterior bt , with 
the commitment probability that its previous policy �∗

L
 ascribed to meeting the commit-

ment if state st were reached:

Specifically, the agent constructs and follows a new L-updates policy, beginning from the 
current belief, by reusing the CCL program in Fig. 5 with the following modifications: 

1.	 Start from current belief bt = ⟨st,�t⟩ instead of b0 = ⟨s0,�0⟩.
2.	 Let L ← min(L,H − t) to ensure that the lookahead from the current time step is bounded 

by the time horizon, i.e. t + L ≤ H.
3.	 If the agent has not reached the commitment time, i.e. t < T , plan with the updated com-

mitment probability by replacing � with �t calculated as in Eq. (13) in constraint (12h) 
if T < t + L or in constraint (12i) if T ≥ t + L ; otherwise, discard constraints (12h) and 
(12i) (e.g., let �t = 0).

(13)�t = Pr
k∼�t

(ST ∈ �|St = st, k;�
∗
L
).

Fig. 6   This example is adapted from Fig. 1. There are two possible reward functions R1 and R2 shown above 
with 50–50 prior. In both reward functions, the reward only depends on the action. There are two actions, � 
and � , and the transition dynamics is shown in the annotations of the edges. Starting in A, the agent com-
mits to reaching the absorbing location D at time step two with at least probability .8. If the agent happens 
to be in C at time step one, there is no plan that reaches D from C with probability at least .8 (verifying 
Observation 1). Even though re-planning from C does not yield a plan that leads to D with probability 0.8, 
the new plan will nonetheless yield more reward because at time step one we will know which reward func-
tion applies and can therefore choose the more rewarding action in C

2  We should point out that our earlier paper [43] that considered this Bayesian setting did not impose this 
constraint, instead insisting that whatever policy adopted from this point on, appended to the policy taken 
so far, would satisfy the commitment semantics if followed from the initial state. While that weaker con-
straint generally performed correctly, we identified corner cases where a dishonest commitment provider 
could exploit that constraint to increase its local reward. The constraint we provide here (also used in our 
more recent non-Bayesian paper [44]) closes this loophole.
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Revisiting the example in Fig. 6, the initial policy could meet the commitment probability 
(0.8) by committing to take action � with probability 1 if B is reached at time 1, and oth-
erwise the agent is unconstrained. After taking action � (or � ) at time 0, then at time 1 the 
agent is either in B or C, and from the reward it just received knows the true reward func-
tion. Using CCIL, the agent re-plans. If it is in B, then since the original policy attributed 
probability 1 to meeting the commitment down this path, its new policy is constrained to 
take action � (whatever the true reward is), and afterwards take the better action. If it is in 
C, the updated commitment probability is zero (the original policy did not count at all on 
possibly meeting the commitment down this path), so the new policy can optimize reward 
without constraints.

In principle, the agent can iteratively apply the above procedure at any time during exe-
cution. We will evaluate empirically a version of CCIL that takes as input a pair of inte-
gers, (L, I), such that it iteratively uses L as the belief-update lookahead boundary to update 
the policy every I ≤ L steps. This procedure is outlined in Algorithm 1, and Theorem 6 
proves that it respects our commitment semantics.

Theorem  6  Let �IL be the history-dependent policy defined as in Algorithm  1. We have 
�IL ∈ �c.
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5 � Dealing with the quadratic equality constraint

The CCFL program in Fig.  3 is a linear program straightforwardly adapted from the 
program in Fig.  2 and thus can be solved by standard linear programming algorithms. 
The CCL program in Fig. 5, however, is no longer a straightforward adaptation of Fig. 2 
because it introduces a quadratic equality constraint (12g) to ensure that the action selec-
tion rules derived from occupancy measures in all possible MDPs are identical. Simi-
larly, the CCNL program in Fig. 4 also introduces such a quadratic equality constraint 
(9d). These quadratic constraints makes the mathematical programs non-convex and hard 
to solve. In practice, many math-programming solvers are unable to handle programs 
with quadratic equality constraints (e.g., [8, 14]). Although some solvers can deal with 
such programs (e.g., [20, 23]), they often need to take as input a feasible solution as the 
starting point, but finding an initial feasible solution by itself might be difficult, and the 
final solutions are usually sensitive to starting points. Here we introduce two variant for-
mulations of the CCL program in Fig. 5 that avoid quadratic equality constraints.

Deterministic CCL The policy derived from the program in Fig. 5 via Eq. (11) is in 
general stochastic. To enforce deterministic policies, Dolgov and Durfee [9, 10] intro-
duced binary indicators in the linear programs for solving MDPs. Inspired by their work, 
we propose a novel formulation that avoids quadratic equality constraints by introducing 
binary indicators that force the action selection to be deterministic after belief-update 
lookahead boundary L. Specifically, we introduce indicators � as additional decision 
variables into the CCL program in Fig. 5 with the following constraints replacing the 
quadratic equality constraint (12g):

This reformulation yields a Mixed Integer Linear Program (MILP) which is well studied 
with many available solvers (e.g., [8, 14, 20, 23]). Any feasible solution with the above 
constraints replacing constraints (12g) of the program in Fig. 5 yields a policy with deter-
ministic action selection at time steps after belief-update lookahead boundary L via Eq. 
(11), which can be alternatively expressed using the indicator variables:

Reward uncertainty only Quadratic equality constraint (12g) can be avoided when the 
transition dynamics does not vary across possible MDPs, i.e. ∀k, k�,Pk = Pk�.3 In this case, 
for the action selection at time step t ∈ [H − L,H] , without loss of optimality, the agent 

∀bL ∈ B
b0
L
, s, a �bL

(s, a) ∈ {0, 1};

∀bL ∈ B
b0
L
, s

∑
a

�bL
(s, a) ≤ 1;

∀bL ∈ B
b0
L
, k, s, a xbL ,k(s, a) ≤ �bL

(s, a).

(14)𝜋L(a�ht) =
⎧
⎪⎨⎪⎩

𝜋L(a�bt) =
y(bt, a)∑
a� y(bt, a

�)
t < L

𝜋L(a�st, bL) = 1{𝛥bL
(st ,a)=1}

t ≥ L

.

3  Our earlier work limited to reward uncertainty exploited this [43].
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needs only to plan for the Bayes-optimal Markov policy w.r.t. the mean reward R�L
 accord-

ing to the belief it ended up in at time step L:

The resulting mathematical program is shown in Fig. 7. The main difference from the orig-
inal CCL program in Fig. 5 is that it only introduces one occupancy measure xbL for each 
reachable belief bL at time step L, instead of K sets of occupancy measures {xbL,k}

K
k=1

 in the 
original CCL program. The derived policy can be expressed via:

6 � Empirical results

As we summarized in Sect. 2, our work is the first to define a prescriptive semantics for 
probabilistic commitments, and develop algorithms that respect these semantics. Hence, 
in the empirical studies that follow, we predominantly focus on developing a deeper under-
standing of the strengths and limitations of different flavors of our algorithms. However, 
in an effort to illustrate empirically the difference between our approach and prior work, 
in our first study in the illustrative Windy L-Maze domain (Sect. 6.1), we compare to the 
closest related work we could identify: a non-prescriptive semantics for probabilistic com-
mitments, and a prescriptive semantics for non-probabilistic commitments. We show how 
our prescriptive probabilistic commitment semantics allows agents to outperform either of 
these others because with it agents can balance selfish and unselfish behavior.

In Sect. 6.2, we use a small size Food-or-Fire domain to show how our CCL performs 
in an environment with both transition and reward uncertainty, and under various choices 
of belief-update lookahead boundary. In the subsequent two domains of RockSample 
(Sect. 6.3) and Change Detection (Sect. 6.4), the number of possible posterior distributions 
can grow so quickly with the time horizon that CCFL becomes computationally infeasible. 
In RockSample, we show how the iterative version of CCL, CCIL, is able to improve per-
formance over CCL with modest additional computational cost. In Change Detection, we 
perform a detailed case study on the effects of the belief-update lookahead boundary and 
how it should be chosen with domain-specific knowledge, along with results reconfirming 
the improvement of CCIL over CCL.

6.1 � Windy L‑maze

The purpose of the experiments in this domain is to illustrate how our prescriptive prob-
abilistic commitment semantics can improve multi-agent planning compared to alterna-
tive semantics. The domain consists of an L-maze occupied by a commitment provider 
and a recipient, as shown in Fig. 8.

R�L
(s, a) =

∑
k

�L,kRk(s, a)

𝜋L(a�ht) =

⎧
⎪⎪⎨⎪⎪⎩

𝜋L(a�bt) =
y(bt, a)∑
a� y(bt, a

�)
t < L

𝜋L(a�st, bL) =
xbL (st, a)∑
a� xbL (st, a

�)
t ≥ L
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The provider starts in the cell labeled a and can only move in the vertical corridor, 
and the recipient starts in the cell labeled b and can only move in the horizontal cor-
ridor. It is admissible that both agents occupy the cell labeled c at the same time step. 
Let dp, dr be the distance, measured by number of cells, between cell c and the provider, 
the recipient, respectively. For the provider, there are three possible reward functions as 
functions of dp , {Rp

k
}3
k=1

 , with a uniform prior:

Fig. 7   CCL program in the reward uncertainty only case, i.e. ∀k, k� P = Pk = Pk�

Fig. 8   Windy L-maze. The provider starts in the cell labeled a and can only move in the vertical corridor, 
and the recipient starts in the cell labeled b and can only move in the horizontal corridor. It is admissible 
that both agents occupy the cell labeled c at the same time step. The table on the right specifies the reward 
functions, where d is the distance, measured by number of cells, between cell c and the provider/the recipi-
ent. For the provider, there are three possible reward functions {Rp

k
}3
k=1

 . The recipient’s reward, Rr (bottom 
row), is known for certain
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The recipient’s reward, Rr , is known as a function of dr : Rr(dr) = 0.1 if dr = 3 ; Rr(dr) = 3 
if dr = 0 ; Rr(dr) = 0 for other values of dr . The provider can move up, down, or stay in 
the current cell, and its moves succeed with probability one. The recipient can move left, 
right, or stay in the current cell. Initially, a door located in cell c is open with a strong wind 
blowing in such that the recipient’s moves to the left only succeed with probability 0.1, and 
its other moves succeed with probability one. By occupying cell c, the provider can perma-
nently close the door, in which case the wind stops and all the recipient’s moves succeed 
with probability one. The two agents aim to maximize the joint expected reward up to the 
time horizon H = 10.

Because the recipient will get a significantly larger reward in cell c than in cell b, 
it is beneficial for the recipient if the provider could move to cell c to close the door. 
However, under reward functions Rp

1
 and Rp

2
 , traveling down the corridor to cell c will 

yield less reward for the provider than staying in the starting cell a. Therefore, effective 
coordination between the two agents is crucial to achieving high expected joint reward, 
where (as we shall see) the uncertain rewards of the provider make an “all-or-nothing” 
commitment suboptimal compared to a probabilistic commitment.

We compare the following three commitment semantics:

Non-Prescriptive Probabilistic Semantics In this case, a probabilistic commitment 
only represents a prediction of the provider’s behavior [18, 41], rather than a prescrip-
tion for how it will act. The provider computes and follows its history-dependent policy 
maximizing just its own local reward. It informs the recipient of the probability, � , that 
the door will be closed at time step T ≥ 4 under the provider’s policy, and the recipient 
then computes and follows its own locally-optimal policy with respect to � by stand-
ard methods of solving MDPs. We refer to this semantics as selfish and no-commitment 
because the provider makes no effort to consider the preferences of the recipient when 
computing and executing its policy.
Prescriptive Non-Probabilistic Semantics This semantics is the logic-based semantics 
alluded to in work on detecting commitment abandonment [24], where a commitment 
provider will drop all else and single-mindedly pursue a commitment. In this case, the 
provider computes and follows its history-dependent policy that achieves the highest 
probability, � , of closing the door at the earliest possible time step which is T = 4 . The 
recipient uses � to compute and follow its optimal policy assuming maximum help from 
the provider. We refer to this semantics as unselfish and full-commitment because the 
provider prioritizes satisfying the preferences of the recipient over its own rewards.
Prescriptive Probabilistic Commitment This is the semantics we advocate in this 
paper. The provider makes a probabilistic commitment: it commits to closing the door at 
time step T = 4 with at least probability � . It uses the CCFL algorithm to compute and 
follow its locally-optimal policy that respects the commitment semantics. The recipient 
trusts this commitment, and computes and follows its optimal policy assuming the door 
will be closed at time step T ≥ 4 with probability �.

The performance of each of the three different semantics (with a few choices of � for 
our prescriptive probabilistic semantics) is shown in Table 1. Notice that even when the 
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provider is acting entirely selfishly (the non-prescriptive probabilistic case), it predicts that 
it will nevertheless close the door with probability � = 1∕3 . This is because its optimal pol-
icy is to move down the corridor one step, observe the reward signal to know exactly what 
the true reward function is, and then either go immediately back to a, or, with probability 
1/3, it will learn that the reward function is Rp

3
 and continue on to c. Following the prescrip-

tive non-probabilistic semantics, the unselfish provider will follow a policy guaranteed to 
close the door ( � = 1.0 ), because its moves succeed with certainty. With the prescriptive 
probabilistic commitment semantics, the agents can choose a probability of closing the 
door � ∈ [0, 1] that balances selfishness and unselfishness in the provider to attain a higher 
joint reward. As � increases, the provider’s value monotonically decreases and the recipi-
ent’s value monotonically increases. As shown in Table 1, both � = 0.6 and � = 0.8 achieve 
higher joint reward than � and � , and � = 0.7 is even better than � = 0.6 and � = 0.8.

These results confirm that our semantics for probabilistic commitments, coupled with 
algorithms for agent decision-making that respect these semantics, can lead to better joint 
performance than treating commitments either as inflexible logical constraints on the pro-
vider’s plan (such that it must provably satisfy the commitment) or as non-binding pre-
dictions about the likelihood the agent’s plan will happen to satisfy the commitment. Our 
semantics enable agents to strike a compromise between these extremes.

6.2 � Food‑or‑Fire

The purpose of the experiment in this domain is twofold: 1) it is used to simply illustrate 
that CCL works well in an environment with both transition and reward uncertainty to 
construct policies respecting the semantics of a given probabilistic commitment, and 2) 
it is small enough that we can show the effect of the belief-update lookahead boundary by 
experimenting with all possible choices for the boundary from zero to the time horizon.

The environment is a simple two by three grid maze with K = 3 possible scenarios, as 
shown in Fig. 9, where solid black lines indicate impassable walls. The prior over the three 
scenarios is a uniform distribution. In the “empty” scenario, the agent can move freely in 
four directions within the maze, and no reward signal occurs. In the “food” scenario, there 
are two sections of impassable wall, and food associated with a reward of + 1 exists in the 
mid-left cell between the walls. The “fire” scenario is the same as the second except that 
food is replaced with fire associated with a reward of − 1. The agent, starting in the bottom 

Table 1   Evaluation of non-prescriptive semantics, prescriptive non-probabilistic semantics, and prescrip-
tive probabilistic commitment on the windy L-maze domain

The columns represent the cumulative rewards for the provider individually, the recipient individually, and 
both agents jointly

Semantics Provider Recipient Provider + 
recipient

Non-prescriptive probabilistic ( � = 1∕3) 9.17 4.33 13.50
Prescriptive non-probabilistic ( � = 1.0) 4.90 10.61 15.51
Prescriptive probabilistic ( � = 0.6) 9.06 6.84 15.90
Prescriptive probabilistic ( � = 0.7) 8.62 7.79 16.41
Prescriptive probabilistic ( � = 0.8) 7.38 8.73 15.61
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left cell, commits to reach the top left cell (Exit) at the time horizon, i.e. T = H, with at 
least probability � . The agent can fully observe its current location but can only detect a 
wall by trying (and failing) to move between two adjacent cells.

Because the transition dynamics vary across the three scenarios, we only implemented 
deterministic CCL described in Sect.  5. Figure 10 plots the expected cumulative reward 
against all possible belief-update boundaries using deterministic CCL under various 
choices of T and � . According to Theorem 5, the monotonic performance in belief-update 
lookahead boundary L cannot be guaranteed, but it turns out the expected cumulative 
reward using deterministic CCL is monotonically non-decreasing with L for all choices of 
T and � we tried. Thus, anecdotally, it is not hard to find cases in which a larger L yields 
higher value, even though by Theorem 5 it is not guaranteed. Moreover, when L increases 
from two to three, we observe that the expected cumulative reward increases significantly 
for most choices of T and � . This is because a belief-update lookahead boundary L of three 
is just sufficient to identify which scenario the agent is actually facing by moving to the 
middle-left cell using three actions and reasoning about the observed reward signal of food, 
fire, or neither. Not surprisingly, with lower commitment probabilities, the agent is able to 
achieve higher expected reward. An interesting observation is that, compared with � = 0.8 , 
we see the the expected cumulative reward is more like a step function at L = 3 for � = 0.5 
and � = 1.0 . When � = 1.0 , the agent has to reach the Exit at time T in all three scenarios, 
so it suffices to determine the optimal behavior as soon as the agent figures out at time 
L = 3 which scenario it is facing. When � = 0.5 , the agent would certainly reach the Exit in 
the “empty” scenario and the “fire” scenario. With the uniform prior, these two scenarios 
already contribute to 2∕3 ≥ � = 0.5 probability of fulfilling the commitment, and therefore 
in the “food” scenario the agent would stay in the cell with food for the + 1 reward and 
never exit. To achieve this behavior when � = 0.5 , it suffices to use L = 3 . For � = 0.8 , it is 
more complicated in the sense that the agent also needs to reach the Exit with some posi-
tive probability in the second (food) scenario, and our results show that, with deterministic 
CCL, using L larger than 3 is able to improve the value.

Fig. 9   Food-or-fire. Left: the “empty” scenario. Middle: the “food” scenario. Right: the “fire” scenario
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6.3 � RockSample

The size of the Food-or-Fire domain is small enough for us to afford computing belief-
update boundaries up to the time horizon. In this RockSample domain and the following 
Change Detection domain, the number of posterior distributions grows so quickly as the 
time horizon grows that CCFL becomes computationally infeasible. Our results show that 
using the iterative version of CCL, CCIL, can improve the performance significantly with 
moderate additional computational cost.

RockSample [34] is a classic POMDP problem that models a rover exploring an 
unknown environment. In an instance of RockSample (n, s), the rover can move in an 
n × n grid containing s rocks. When n and s become large, a large belief-update lookahead 
boundary becomes computationally infeasible. The locations of the rocks are known. Only 
some of the rocks have scientific value and are of type Good; the others are of type Bad. 
The type of each rock is uniformly random. The task is to determine which rocks are valu-
able, approach and take samples of valuable rocks, and leave the map by moving off the 
right-hand edge of the map. Each time step, the rover can select from s + 5 actions: {North, 
East, South, West, Sample, Check1,… ,Checks }. Each Checki action directs the rover’s sen-
sor to rock i, returning a noisy observation from {Good, Bad}. The noise in the observa-
tions received by executing each Checki action is determined by the Manhattan distance 

Fig. 10   Expected cumulative reward in Food-or-Fire domain as a function of the commitment and the 
belief-update lookahead boundary
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between the rover and the rock being checked: the probability of receiving a correct obser-
vation is 0.9, 0.7, and 0.5 when the the Manhattan distance is 0, 1, and at least 2, respec-
tively. In an instance of RockSample (n, s), s rocks could have 2s possible combinations of 
type assignments. We treat them as K = 2s possible MDPs that only differ in reward, and 
solve the program in Fig.  7 to construct CCL and CCIL policies. During execution, the 
observations from Checki actions are model-informative, suggesting which MDP is more 
likely.

In the original RockSample problem, the rover chooses actions to execute until it moves 
off the map and receives a positive reward. We adapted it to incorporate the probabilistic 
commitment: the rover does not receive any reward by moving off the map, but it has to 
move off the map by the time horizon, i.e. T = H , with at least the commitment prob-
ability � . We scale the reward to the range of [−1, 1] : the rover receives a reward of 1.0 for 
sampling a rock of type Good, a reward of − 1.0 for sampling a rock of type Bad, and no 
reward occurs for re-sampling the same rock.

We evaluated CCL and CCIL on instances of RockSample (2, 2) and RockSample (4, 
4) (Fig. 11). Table 2 contains the results of expected reward and run time in RockSam-
ple (2, 2) for commitment time T = 10 and commitment probability � = 1.0 with various 
choices of L and I. The run time for CCIL is the sum of the CPU times for each itera-
tion. Note that because 1) the rover can get pretty accurate observations since it is always 
close to the rocks, 2) the types of rocks are uniformly random, and 3) time horizon 10 
is large enough, the optimal behavior can collect in expectation one good rock, yielding 
an expected cumulative reward close to 1.0. For CCL, the results in Table 2 indicate that 
a larger belief-update lookahead boundary indeed improves the expected reward, but the 
computational time also increases dramatically. We can see that CCIL can achieve com-
parable expected reward with much less computational time than CCL. Although CCIL 
( L = 3, I = 1 ), CCIL ( L = 4, I = 4 ), and CCL ( L = 8 ) all achieve near-optimal expected 
reward, CCIL ( L = 3, I = 1 ) and CCIL ( L = 4, I = 4 ) use much less computational time 
than CCL ( L = 8).

Table  3 contains the results in RockSample (4, 4) for commitment time T = 15 and 
probability � = 1.0 . With T = 15 , the time is just enough for the rover to correctly detect 3 
rocks, sample the good rocks, and move off the map. Since a rock is good with probability 
.5, the expected cumulative reward of the optimal behavior is close to 1.5. For RockSample 
(4, 4), we can see that CCL can only scale to relatively small belief-update boundaries. 
The computational time grows dramatically, and we run out of memory when L = 5 . CCL 
achieves an expected cumulative reward of 0.9 for L = 4 , which means that a larger L is 
needed to find the near-optimal behavior. CCIL performs much better than CCL because 
it iteratively re-plans during the execution. The performance of CCIL ( L = 1, I = 1 ) is 
between that of CCL ( L = 3 ) and CCL ( L = 4 ). CCIL ( L = 2, I = 2 ), CCIL ( L = 2, I = 1 ), 
and CCIL ( L = 3, I = 3 ) all achieve behavior with expected cumulative reward close to 1.3, 
which cannot be achieved by CCL using a moderate amount of computational time. These 
three choices of (L, I) achieve comparable expected reward (no statistically significant dif-
ference), with CCIL ( L = 2, I = 2 ) being the fastest because its iterative lookahead is less 
frequent than CCIL ( L = 2, I = 1 ) and shallower than CCIL ( L = 3, I = 3).

6.4 � Change detection

In Change Detection, we perform a detailed case study on the effects of the belief-update 
lookahead boundary, where time horizon H is short enough so that we can experiment with 
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every L ≤ H for CCL. We also experiment with a larger H for which CCFL is computa-
tionally infeasible, to develop further intuitions about balancing lookahead with iteration to 
achieve good performance with reasonable computation.

Change Detection is a classic constrained POMDP problem [30]. The agent can partially 
observe the environment, and at some point the environment will transit into a state where 
the alarm should be sounded by the agent. The agent aims to minimize the delay in alert-
ing (sounding the alarm) after the transition, and the probability of a false alarm should be 
lower than a given threshold which is referred to as the false alarm (F.A.) tolerance. For-
mally, the state space and action space are S={PreChange, PostChange, PostAlarm, Fal-
seAlarm}, A={NoAlarm, Alarm}, respectively. The environment starts in PreChange, and 
transits to PostChange at a random time step if the agent has not performed action Alarm. 
Specifically, the problem has a geometric change time parameter � , such that at every time 
step, if the state is still PreChange, it will transit to PostChange with probability � . Once 
the agent performs action Alarm, the state transits to PostAlarm from PostChange with a 
positive reward, or to FalseAlarm from PreChange with no reward. The commitment is to 

Fig. 11   RockSample instances: a RockSample (2,2), b RockSample (4,4)

Table 2   Results on RockSample 
(2,2), |S| = 177, |A| = 7, |O| = 4 
with T = 10 , � = 1.0

1000 s run time limit

L I Expected reward Time (s)

0 n.a. 0.00 0.30
1 n.a. 0.20 0.54
2 n.a. 0.40 1.07
3 n.a. 0.60 3.05
4 n.a. 0.64 7.53
6 n.a. 0.82 45
8 n.a. 0.90 710
10 n.a. n.a. > 1000
1 1 0.53 ± 0.02 4.83 ± 0.28
3 1 1.01 ± 0.02 33.89 ± 1.67
3 3 0.81 ± 0.02 7.73 ± 0.13
4 1 0.97 ± 0.02 133.11 ± 10.67
4 4 0.92 ± 0.02 17.55 ± 0.30
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not reach FalseAlarm with at least a given probability. To encourage early detection, the 
agent receives a reward of + 1.0 if it executes action Alarm immediately after transiting to 
PostChange, with the reward discounted each subsequent time step. The states are not fully 
observable. Instead, the agent makes an observation o every time step from the observation 
space O , suggesting if the environment has changed or not. The probability of making a 
specific observation is determined by probability mass functions f0, f1 ∶ O ↦ [0, 1] when 
the environment is in PreChange, and PostChange, respectively. In our experiments, the 
agent can make an observation every time step from a set of size |O| = 3 . The reward dis-
count factor is set to � = 0.8 . The PreChange and PostChange observation distributions are

Parameter � provides the agent with the prior distribution of the change time. After making 
observations, the agent can use Bayes’ rule to calculate the posterior distributions.

We consider the finite horizon decision problem, with the commitment time T = H 
being equal to the time horizon, and define the state of the Change Detection problem as 
s = ⟨t,Alarmed⟩ where Alarmed is a Boolean that takes the value of true when the agent 
executed action Alarmed in any time step before t, or false otherwise. The current time 
step t and Boolean Alarmed are both fully observable to the agent. We define belief as 
b = ⟨s,�⟩ , where state s is augmented by probability mass function � that gives the prob-
ability of all possible change times up to the horizon.

Figure 12 contains the results when experimenting with CCL on a Change Detection 
instance with horizon H = T = 10 , where CCFL is computationally feasible. We have 
experimented with two choices of the geometric change time parameter, � = 0.1, 0.2 , and 
four choices of the false alarm (F.A.) tolerance. When F.A. tolerance is 0.0, the agent is for-
bidden to execute Alarm actions if there is any possiblity of false alarm, and therefore the 
expected cumulative reward is 0 for any choice of the belief-update lookahead boundary L. 
Otherwise, the expected cumulative reward is monotonically increasing with L. Moreover, 
choosing a large L is most helpful when the geometric change time parameter � is small 
(Fig.  12left). For � = 0.1 (Fig.  12left), the expected reward rises anywhere from about 
3-fold (for tolerance=0.2) to 7-fold (for tolerance=0.05), while for � = 0.2 (Fig. 12right) 
it is anywhere from about 1.5-fold (for tolerance = 0.2) to 3.5-fold (for tolerance = 0.05). 

f0(o1) = 0.6, f0(o2) = 0.3, f0(o3) = 0.1,

f1(o1) = 0.2, f1(o2) = 0.4, f1(o3) = 0.4.

Table 3   Results on 
RockSample (4, 4), 
|S| = 4097, |A| = 9, |O| = 8 , 
with T = 15 , � = 1.0

1000 s run time limit

L I Expected reward Time (s)

0 n.a. 0.00 4.33
1 n.a. 0.30 5.11
2 n.a. 0.30 8.71
3 n.a. 0.60 23.36
4 n.a. 0.90 113
5 n.a. Out of memory n.a.
1 1 0.74 ± 0.02 83.06 ± 0.55
2 1 1.32 ± 0.02 482.30 ± 31.53
2 2 1.31 ± 0.02 132.17 ± 3.73
3 1 n.a. > 1000
3 3 1.34 ±0.02 634.27 ± 67.37
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So for the same tolerance, lookahead makes twice the impact when � = 0.1 than � = 0.2 . 
Small � suggests that the change is more likely to happen later, and therefore a large L 
is more likely to envision it. For both choices of � , as lookahead L increases, the rela-
tive increase in expected reward is smaller when F.A. tolerance is larger. This is because 
larger tolerance inherently gets more reward regardless of lookahead, and hence there is 
less reward for lookahead to recoup. These results suggest that, more generally, the value 
of L should be chosen based at least upon: (1) how far into the future the most meaningful 
changes to the belief state will occur (as captured by � in this case), (2) how sensitive the 
agent’s reward is to making a more informed decision (as captured by F.A. tolerance in this 
case), and (3) how dramatically computation costs rise with farther lookahead (where in 
this case the branching factor of 2 (change or no change) is fairly low).

We have also experimented with a larger horizon, H = T = 50 , where CCFL is not com-
putationally affordable. The geometric change time parameter is � = 0.04 . As we just saw, a 
low value like this makes the change more likely to happen later and thus emphasizes farther 
lookahead. The F.A. tolerance is set to 0.2. Table 4 contains the results of expected reward 
and run time for CCL and CCIL with various choices of L, and of I when applicable. The 
run time of CCL grows dramatically with L. The expected reward, though, grows relatively 
slowly, because these lookaheads are still very short for such a small � that requires large look-
ahead. This can be inferred from Fig. 12(left), where � = 1.0 is larger and we still see a steep 
increase in reward at L = H∕2 . Nevertheless, there is still a 3-fold increase in reward when we 
increase L for CCL until the computation budget is reached. For CCIL, we experiment with 
L = 2, 4, 6 and I = 1, L∕2, L . Unsurprisingly, with more frequent iterative lookahead (smaller 
I), both the expected reward and the run time increase. CCIL ( L = 4, I = 1 ) achieves reward 
that is higher than any CCL within the computation budget. Both CCIL ( L = 6, I = 1 ) and 
CCIL ( L = 6, I = 3 ) double the reward of CCL ( L = 10 ), the largest L within the computa-
tion budget, yet use much less computation. These results verify again the effectiveness of 
the iterative lookahead strategy in CCIL. Recall that, in RockSample, setting I = L achieves 
significantly larger reward than CCL with the same L. However, in Change Detection, I = L 
achieves no higher reward than CCL for the values of L we consider. We conjecture that this 
is because the belief changes frequently in Change Detection (every time step) and perhaps in 
a way that is critical for the agent’s future decisions, making it necessary to perform frequent 
iterative lookahead, while it might take several steps in RockSample to experience a change 
(after taking the Checki action). From the results of L = 4, 6 and I = 1, L∕2 , we observe that 

Fig. 12   Results of CCL on change detection with T = 10, � = 0.8



Autonomous Agents and Multi-Agent Systems (2020) 34:19	

1 3

Page 29 of 35  19

with larger L, the agent can use larger I without sacrificing too much reward. Overall, CCIL 
( L = 4, I = 1 ) and CCIL ( L = 6, I = 3 ) achieve the best compromise for a wide range of 
tradeoffs between solution quality and computational cost.

7 � Conclusion

In this article, we argue in favor of an operational semantics we defined for a commitment 
provider that is operating under model uncertainty. Our semantics is based on what a commit-
ment provider can control—its own actions. Specifically, we considered a decision-theoretic 
setting where the agent is making sequential decisions in one out of several MDPs with a 
known prior. Fulfilling a commitment corresponds to pursuing a course of action, beginning 
at the time the commitment was made and over the known prior, that has sufficient likeli-
hood of achieving the intended state at a certain time prescribed by the commitment. In this 
semantics, the agent fulfills its commitment by following a commitment-constrained policy 
even if, due to bad luck, the desired outcome was not realized. Based on this semantics, we 
developed Commitment Constrained Lookahead (CCL), a novel algorithm parameterized by 
the belief-update lookahead boundary, that constructs semantics-respecting policies offline for 
the provider. We empirically compared our new semantics, operationalized in CCL, with prior 
logical and predictive semantics concepts, to illustrate where and why our semantics is supe-
rior. We also analytically and empirically investigated the impact of the belief-update looka-
head boundary that makes an explicit tradeoff between the computation cost and performance 
of the computed policy. We have further extended CCL to Commitment Constrained Iterative 
Lookahead (CCIL) that iteratively adjusts the policy online according to the evolving posterior 
distribution about the true environment, while still respecting the commitment semantics. Our 
empirical results show that CCIL can achieve the same performance as CCL with much less 
computation overhead.

Table 4   Results on change 
detection with F.A. tolerance of 
0.2, T = 50, � = 0.04, � = 0.8

1000 s run time limit

L I Expected reward Time (s)

1 n.a. 0.05 0.02
2 n.a. 0.06 0.05
3 n.a. 0.07 0.16
4 n.a. 0.09 0.46
6 n.a. 0.11 4.23
9 n.a. 0.15 125
10 n.a. 0.16 761
11 n.a. n.a. > 1000
2 1 0.06 ± 0.02 1.62 ± 0.08
2 2 0.04 ± 0.02 0.99 ± 0.04
4 1 0.28 ± 0.04 16.33 ± 0.98
4 2 0.17 ± 0.04 9.85 ± 0.78
4 4 0.09 ± 0.03 4.04 ± 0.30
6 1 0.32 ± 0.03 117.11 ± 7.84
6 3 0.31 ± 0.04 33.01 ± 2.56
6 6 0.13 ± 0.04 28.41 ± 1.98
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There are a number of interesting directions for future work. As we have mentioned, 
developing algorithms that incorporate our commitment semantics in infinite state and action 
spaces is a possible direction for future work. Moreover, our emphasis in this article has been 
on how the provider should constrain its behaviors for trustworthy commitment achievement. 
In open systems where trust needs to be earned, interesting questions arise as to how easy it 
would be to verify if an agent has acted in good faith on the commitment, where the outcomes 
of the decisions are observable but the decisions themselves are not. With the provider’s trust-
worthy achievement, to make the commitment useful we also need to answer the question of 
how the recipient should properly model the commitment and plan accordingly. Finally, with 
semantics and mechanisms for representing, pursuing, and modeling a given commitment, we 
are prepared to answer the question of what commitment cooperating agents should agree to 
make.
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Appendix

Here we present all the technical proofs of the theorems in this article.

Proof of Theorem 1  Note that the belief is a sufficient statistic: given history ht at time step t 
and the corresponding belief bt consistent with ht , one does not need any other information 
in ht besides bt to predict the future state transitions and reward after time step t. Therefore, 
solving problem (4) is equivalent to solving a constrained MDP, where the MDP is the 
belief MDP defined as the tuple ⟨B,A, b0, P̃, R̃⟩ with finite state space of beliefs, and the 
constraint comes from the semantics of commitment c. Our CCFL method can be viewed 
as a standard linear programming approach to solving a finite state constrained MDP. 	
� ◻

Proof of Theorem 2  It is sufficient to show (1) any policy in �c ∩�L can be derived from 
a feasible solution to the program in Fig. 5, and (2) any feasible solution to the program 
derives a policy in �c ∩�L.

To show (1), for any policy � ∈ �c ∩�L , we are going to define vectors m� and n� such 
that with m� treated as x and n� treated as y, m� and n� satisfy the constraints of the pro-
gram in Fig. 5, and the L-updates policy � can be derived via Eq. (11). Specifically, given 
any policy � ∈ �c ∩�L , let n� be its belief-action occupancy measure for beliefs in Bb0

≤L
 , 

and m� be its state-action occupancy measure for states from time step L on:

where t is the time of belief b, and

where t is the time of state s. Then, with m� treated as x and n� treated as y, m� and n� sat-
isfy the constraints of the program in Fig. 5, and the L-updates policy � can be derived via 
Eq. (11).

∀b ∈ B
b0
≤L
, a n�(b, a) = Pr(Bt = b,At = a|B0 = b0;�)

∀s, a m𝜋

bL ,k
(s, a) =

{
Pr(St = s,At = a,BL = bL, k|B0 = b0;𝜋) t ≥ L

0 t < L
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To show (2), given a feasible solution x, y to the program, let policy � be the derived 
policy via (11). Then � is in �L by definition. Further we have 
m�

bL ,k
(s, a) = xbL ,k(s, a), n

�(b, a) = y(b, a) , where m� and n� are defined as above. Therefore 
� is also in �c because x satisfies commitment constraints (12i), (12h). 	�  ◻

Proof of Theorem  3  By Theorem  2, CCL with boundary L finds the optimal policy in 
�c ∩�L . Therefore, it is sufficient to show

This holds because given any Markov policy �0 ∈ �0 we can define an L-updates policy 
�L ∈ �L that is equivalent to �0:

Thus, we know that �0 ∈ �L . 	�  ◻

Proof of Theorem 4  It is sufficient to show that the statement holds when L� = L + 1 . We 
next show that when Pk = Pk� ∀k, k

� , given any policy �L ∈ �L , there exists an (L + 1)

-updates policy, �L+1 , that mimics �L , and therefore V�∗
L

�0
(s0) ≤ V

�∗
L+1

�0
(s0).

For the first L actions, an (L + 1)-updates policy can map the current belief to a distribu-
tion of the next actions identical to �L , and the action that is going to be taken at time step 
L by �L can also be recovered by an (L + 1)-updates policy, which gives

Under any L-updates policy �L , and conditioned on being in belief bL+1 at time step 
L + 1 , the agent thereafter selects actions according to �L(⋅|st, bL) with probability that 
the agent was in belief bL at time step L: Pr(bL|bL+1;�L) . If the transition dynamics does 
not vary across MDPs in the environment, it is well known [26] that a Markov policy 
�bL+1 (⋅|st), t ≥ L + 1 is sufficient to recover the state occupancy measure of �L starting at 
belief bL+1 . Then �L+1 can also recover �L for t ≥ L + 1 by demonstrating that �bL+1 satisfies

This concludes the proof. 	�  ◻

Proof of Theorem 5  In the proof of Theorem 4, we have shown that for any L-updates pol-
icy �L there exists an (L + 1)-update policy that is able to mimic �L up to time step L + 1 . 
Provided that Pk = Pk� ∀k, k

� , one can find a Markov policy that mimics �L starting at any 
belief at time step L + 1 . When Pk = Pk� ∀k, k

� does not hold, however, this Markov pol-
icy in general does not exist, and therefore no (L + 1)-update policy is able to mimic �L . 
Inspired by this, we next give an example as a formal constructive proof.

Consider the example shown in Fig. 13. The environment has 10 locations {0, 1,… , 9} , 
action space {up, down} , time horizon T = 4 , and K = 2 possible MDPs. The agent starts in 
location 0 at time step t = 0 with a prior probability of 0.8 for MDP k = 1 and a prior prob-
ability of 0.2 for MDP k = 2 . In MDP k = 1 , no matter which action the agent takes, it tran-
sits to location 1 or 2 uniformly at random at time step t = 1 , and then to location 3 with 

∀L > 0,𝛱0 ⊆ 𝛱L.

𝜋L(a|ht) =
{

𝜋L(a|bt) = 𝜋0(a|st) t < L

𝜋L(a|st, bL) = 𝜋0(a|st) t ≥ L
.

𝜋L+1(a|ht) =
{

𝜋L+1(a|bt) = 𝜋L(a|bt) t < L

𝜋L+1(a|bL) = 𝜋L(a|sL, bL) t = L
.

�L+1(a|ht) = �L+1(a|st, bL+1) = �bL+1 (a|st) for t ≥ L + 1.
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probability one at time step t = 2 . Starting from location 3, on taking action up (down) 
the agent transits to the upper (lower) location to the right. The transition dynamics of 
MDP k = 2 is the same as MDP k = 1 until the agent reaches location 3, and thereafter the 
transition is flipped: starting from location 3, on taking action up (down) the agent transits 
to the lower (upper) location to the right. In both MDPs, the agent will receive large nega-
tive reward ( −∞ ) in location 7 and 8. In MDP k = 1 , the agent will receive + 1 reward if it 
reaches location 6. There is no reward elsewhere. The agent commits to reaching location 
9 with probability 0.5. Consider the following (L =)1-updates policy: if the agent was in 
location 1 at time step t = 1 , always choose action up; if the agent was in location 2 at time 
step t = 1 , always choose action down. Under this (L =)1-updates policy the probability of 
reaching the commitment location 9 is 0.5 and the expected reward is 0.8 × 0.5 × 1 = 0.4 . 
Now consider (L =)2-updates policies. Because the agent is in location 3 with probability 
one at time step t = 2 . An (L =)2-updates policy amounts to a Markov policy for time steps 
t ≥ 2 . Further the agent should minimize the probability of reaching location 7 and 8 that 
yields large negative reward. One can verify that the only Markov policy for time steps 
t ≥ 2 that avoids reaching location 7 and 8 while respecting the commitment semantics is 
to always choose action down, whose expected reward is 0, smaller than that of the (L =)1

-updates policy. 	�  ◻

Proof of Theorem 6  We need to show �IL satisfies Eq. (3), i.e.,

Let �L be the CCL L-updates policy derived from the program in Fig. 5. The above ine-
quality holds because:

Pr
k∼�0

(ST ∈ �|S0 = s0, k;�IL) ≥ �.

Fig. 13   Example as a proof of Theorem 5
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The first inequality holds because CCIL iteratively applies L-step lookahead with the com-
mitment probability achieved by the policy of the previous iteration. This concludes the 
proof. 	�  ◻
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