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Abstract
Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has
led to a dramatic increase in the number of applications and methods. Recent works have
explored learning beyond single-agent scenarios and have considered multiagent learning
(MAL) scenarios. Initial results report successes in complex multiagent domains, although
there are several challenges to be addressed. The primary goal of this article is to provide a
clear overview of current multiagent deep reinforcement learning (MDRL) literature. Addi-
tionally, we complement the overview with a broader analysis: (i) we revisit previous key
components, originally presented inMAL and RL, and highlight how they have been adapted
to multiagent deep reinforcement learning settings. (ii) We provide general guidelines to new
practitioners in the area: describing lessons learned from MDRL works, pointing to recent
benchmarks, and outlining open avenues of research. (iii) We take a more critical tone raising
practical challenges ofMDRL (e.g., implementation and computational demands).We expect
this article will help unify and motivate future research to take advantage of the abundant
literature that exists (e.g., RL and MAL) in a joint effort to promote fruitful research in the
multiagent community.

Keywords Multiagent learning · Multiagent systems · Multiagent reinforcement learning ·
Deep reinforcement learning · Survey

1 Introduction

Almost 20years agoStone andVeloso’s seminal survey [305] laid the groundwork for defining
the area of multiagent systems (MAS) and its open problems in the context of AI. About
10years ago, Shoham et al. [289] noted that the literature on multiagent learning (MAL) was

B Pablo Hernandez-Leal
pablo.hernandez@borealisai.com

Bilal Kartal
bilal.kartal@borealisai.com

Matthew E. Taylor
matthew.taylor@borealisai.com

1 Borealis AI, Edmonton, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-019-09421-1&domain=pdf
http://orcid.org/0000-0002-8530-6775


Autonomous Agents and Multi-Agent Systems (2019) 33:750–797 751

growing and it was not possible to enumerate all relevant articles. Since then, the number of
published MAL works continues to steadily rise, which led to different surveys on the area,
ranging from analyzing the basics of MAL and their challenges [7,55,333], to addressing
specific subareas: game theory and MAL [233,289], cooperative scenarios [213,248], and
evolutionary dynamics of MAL [38]. In just the last couple of years, three surveys related to
MAL have been published: learning in non-stationary environments [141], agents modeling
agents [6], and transfer learning in multiagent RL [290].

The research interest inMAL has been accompanied by successes in artificial intelligence,
first, in single-agent video games [221]; more recently, in two-player games, for example,
playingGo [291,293], poker [50,224], and games of two competing teams, e.g.,DOTA2 [235]
and StarCraft II [339].

While different techniques and algorithms were used in the above scenarios, in gen-
eral, they are all a combination of techniques from two main areas: reinforcement learning
(RL) [315] and deep learning [184,281].

RL is an area ofmachine learningwhere an agent learns by interacting (i.e., taking actions)
within a dynamic environment. However, one of the main challenges to RL, and traditional
machine learning in general, is the need for manually designing quality features on which
to learn. Deep learning enables efficient representation learning, thus allowing the automatic
discovery of features [184,281]. In recent years, deep learning has had successes in differ-
ent areas such as computer vision and natural language processing [184,281]. One of the
key aspects of deep learning is the use of neural networks (NNs) that can find compact
representations in high-dimensional data [13].

In deep reinforcement learning (DRL) [13,101] deepneural networks are trained to approx-
imate the optimal policy and/or the value function. In this way the deep NN, serving as
function approximator, enables powerful generalization. One of the key advantages of DRL
is that it enables RL to scale to problemswith high-dimensional state and action spaces. How-
ever, most existing successful DRL applications so far have been on visual domains (e.g.,
Atari games), and there is still a lot ofwork to be done formore realistic applications [359,364]
with complex dynamics, which are not necessarily vision-based.

DRL has been regarded as an important component in constructing general AI sys-
tems [179] and has been successfully integrated with other techniques, e.g., search [291],
planning [320], and more recently with multiagent systems, with an emerging area of multi-
agent deep reinforcement learning (MDRL) [232,251].1

Learning in multiagent settings is fundamentally more difficult than the single-agent
case due to the presence of multiagent pathologies, e.g., the moving target problem
(non-stationarity) [55,141,289], curse of dimensionality [55,289], multiagent credit assign-
ment [2,355], global exploration [213], and relative overgeneralization [105,247,347].
Despite this complexity, top AI conferences like AAAI, ICML, ICLR, IJCAI and NeurIPS,
and specialized conferences such as AAMAS, have published works reporting successes in
MDRL. In light of these works, we believe it is pertinent to first, have an overview of the
recent MDRL works, and second, understand how these recent works relate to the existing
literature.

This article contributes to the state of the art with a brief survey of the current works
in MDRL in an effort to complement existing surveys on multiagent learning [56,141],
cooperative learning [213,248], agents modeling agents [6], knowledge reuse in multiagent
RL [290], and (single-agent) deep reinforcement learning [13,191].

1 We have noted inconsistency in abbreviations such as: D-MARL, MADRL, deep-multiagent RL and MA-
DRL.
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First, we provide a short review of key algorithms in RL such as Q-learning and REIN-
FORCE (see Sect. 2.1). Second, we review DRL highlighting the challenges in this setting
and reviewing recent works (see Sect. 2.2). Third, we present the multiagent setting and give
an overview of key challenges and results (see Sect. 3.1). Then, we present the identified four
categories to group recent MDRL works (see Fig. 1):

– Analysis of emergent behaviors: evaluate single-agent DRL algorithms in multiagent
scenarios (e.g., Atari games, social dilemmas, 3D competitive games).

– Learning communication: agents learn communication protocols to solve cooperative
tasks.

– Learning cooperation: agents learn to cooperate using only actions and (local) observa-
tions.

– Agents modeling agents: agents reason about others to fulfill a task (e.g., best response
learners).

For each category we provide a description as well as outline the recent works (see
Sect. 3.2 and Tables 1, 2, 3, 4). Then, we take a step back and reflect on how these new
works relate to the existing literature. In that context, first, we present examples on how
methods and algorithms originally introduced in RL andMALwere successfully been scaled
to MDRL (see Sect. 4.1). Second, we provide some pointers for new practitioners in the area
by describing general lessons learned from the existing MDRL works (see Sect. 4.2) and
point to recent multiagent benchmarks (see Sect. 4.3). Third, we take a more critical view
and describe practical challenges inMDRL, such as reproducibility, hyperparameter tunning,
and computational demands (see Sect. 4.4). Then, we outline some open research questions
(see Sect. 4.5). Lastly, we present our conclusions from this work (see Sect. 5).

Our goal is to outline a recent and active area (i.e., MDRL), as well as to motivate future
research to take advantage of the ample and existing literature in multiagent learning. We
aim to enable researchers with experience in either DRL or MAL to gain a common under-
standing about recent works, and open problems in MDRL, and to avoid having scattered
sub-communities with little interaction [6,81,141,289].

2 Single-agent learning

This section presents the formalism of reinforcement learning and its main components
before outlining deep reinforcement learning along with its particular challenges and recent
algorithms. For amore detailed description we refer the reader to excellent books and surveys
on the area [13,101,164,315,353].

2.1 Reinforcement learning

RL formalizes the interaction of an agent with an environment using a Markov decision
process (MDP) [261]. An MDP is defined by the tuple 〈S,A, R, T , γ 〉 where S represents a
finite set of states.A represents a finite set of actions. The transition function T : S×A×S →
[0, 1] determines the probability of a transition from any state s ∈ S to any state s′ ∈ S given
any possible action a ∈ A. The reward function R : S ×A× S → R defines the immediate
and possibly stochastic reward that an agent would receive given that the agent executes
action a while in state s and it is transitioned to state s′, γ ∈ [0, 1] represents the discount
factor that balances the trade-off between immediate rewards and future rewards.
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(a) Analysis of emergent behaviors (b) Learning communication

(c) Learning cooperation (d) Agents modeling agents

Fig. 1 Categories of different MDRL works. a Analysis of emergent behaviors: evaluate single-agent DRL
algorithms in multiagent scenarios. b Learning communication: agents learn with actions and through mes-
sages. c Learning cooperation: agents learn to cooperate using only actions and (local) observations. dAgents
modeling agents: agents reason about others to fulfill a task (e.g., cooperative or competitive). For a more
detailed description see Sects. 3.3–3.6 and Tables 1, 2, 3 and 4

MDPs are adequate models to obtain optimal decisions in single agent fully observable
environments.2 Solving an MDP will yield a policy π : S → A, which is a mapping from
states to actions. An optimal policy π∗ is the one that maximizes the expected discounted
sum of rewards. There are different techniques for solving MDPs assuming a complete
description of all its elements. One of the most common techniques is the value iteration
algorithm [33], which requires a complete and accurate representation of states, actions,
rewards, and transitions. However, this may be difficult to obtain in many domains. For this
reason, RL algorithms often learn from experience interacting with the environment in dis-
crete time steps.

Q-learning One of the most well known algorithms for RL is Q-learning [346]. It has been
devised for stationary, single-agent, fully observable environments with discrete actions. A
Q-learning agent keeps the estimate of its expected payoff starting in state s, taking action
a as Q̂(s, a). Each tabular entry Q̂(s, a) is an estimate of the corresponding optimal Q∗
function that maps state-action pairs to the discounted sum of future rewards starting with
action a at state s and following the optimal policy thereafter. Each time the agent transitions
from a state s to a state s′ via action a receiving payoff r , the Q table is updated as follows:

2 A Partially Observable Markov Decision Process (POMDP) [14,63] explicitly models environments where
the agent no longer sees the true system state and instead receives anobservation (generated from the underlying
system state).
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Q̂(s, a) ← Q̂(s, a) + α[(r + γ max
a′ Q̂(s′, a′)) − Q̂(s, a)] (1)

with the learning rate α ∈ [0, 1]. Q-learning is proven to converge to Q∗ if state and
action spaces are discrete and finite, the sum of the learning rates goes to infinity (so
that each state-action pair is visited infinitely often) and that the sum of the squares of
the learning rates is finite (which is required to show that the convergence is with prob-
ability one) [94,154,168,318,319,329,346]. The convergence of single-step on-policy RL
algorithms, i.e, SARSA (λ = 0), for both decaying exploration (greedy in the limit with
infinite exploration) and persistent exploration (selecting actions probabilistically according
to the ranks of the Q values) was demonstrated by Singh et al. [294]. Furthermore, Van
Seijen [337] has proven convergence for Expected SARSA (see Sect. 3.1 for convergence
results in multiagent domains).

REINFORCE (Monte Carlo policy gradient) In contrast to value-based methods, which do
not try to optimize directly over a policy space [175], policy gradient methods can learn
parameterized policies without using intermediate value estimates.

Policy parameters are learned by following the gradient of some performance measure
with gradient descent [316]. For example, REINFORCE [354] uses estimated return by
Monte Carlo (MC) methods with full episode trajectories to learn policy parameters θ , with
π(a; s, θ) ≈ π(a; s), as follows

θt+1 = θt + αGt
∇π(At ; St , θt )
π(At ; St , θt ) (2)

where Gt represents the return, α is the learning rate, and At ∼ π . A main limitation is that
policy gradient methods can have high variance [175].

The policy gradient update can be generalized to include a comparison to an arbitrary
baseline of the state [354]. The baseline, b(s), can be any function, as long as it does not vary
with the action; the baseline leaves the expected value of the update unchanged, but it can
have an effect on its variance [315]. A natural choice for the baseline is a learned state-value
function, this reduces the variance, and it is bias-free if learned byMC.3 Moreover,whenusing
the state-value function for bootstrapping (updating the value estimate for a state from the
estimated values of subsequent states) it assigns credit (reducing the variance but introducing
bias), i.e., criticizes the policy’s action selections. Thus, in actor-critic methods [175], the
actor represents the policy, i.e., action-selection mechanism, whereas a critic is used for
the value function learning. In the case when the critic learns a state-action function (Q
function) and a state value function (V function), an advantage function can be computed
by subtracting state values from the state-action values [283,315]. The advantage function
indicates the relative quality of an action compared to other available actions computed from
the baseline, i.e., state value function.An example of an actor-critic algorithm isDeterministic
Policy Gradient (DPG) [292]. In DPG [292] the critic follows the standard Q-learning and
the actor is updated following the gradient of the policy’s performance [128], DPG was later
extended to DRL (see Sect. 2.2) and MDRL (see Sect. 3.5). For multiagent learning settings
the variance is further increased as all the agents’ rewards depend on the rest of the agents,
and it is formally shown that as the number of agents increase, the probability of taking a
correct gradient direction decreases exponentially [206]. RecentMDRLworks addressed this
high variance issue, e.g., COMA [97] and MADDPG [206] (see Sect. 3.5).

3 Action-dependant baselines had been proposed [117,202], however, a recent study by Tucker et al. [331]
found that in many works the reason of good performance was because of bugs or errors in the code, rather
than the proposed method itself.
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Policy gradient methods have a clear connection with deep reinforcement learning since
the policy might be represented by a neural network whose input is a representation of the
state, whose output are action selection probabilities or values for continuous control [192],
and whose weights are the policy parameters.

2.2 Deep reinforcement learning

While tabular RL methods such as Q-learning are successful in domains that do not suffer
from the curse of dimensionality, there are many limitations: learning in large state spaces
can be prohibitively slow, methods do not generalize (across the state space), and state
representations need to be hand-specified [315]. Function approximators tried to address
those limitations, using for example, decision trees [262], tile coding [314], radial basis
functions [177], and locally weighted regression [46] to approximate the value function.

Similarly, these challenges can be addressed by using deep learning, i.e., neural
networks [46,262] as function approximators. For example, Q(s, a; θ) can be used to approx-
imate the state-action values with θ representing the neural network weights. This has two
advantages, first, deep learning helps to generalize across states improving the sample effi-
ciency for large state-space RL problems. Second, deep learning can be used to reduce (or
eliminate) the need for manually designing features to represent state information [184,281].

However, extending deep learning to RL problems comes with additional challenges
including non-i.i.d. (not independently and identically distributed) data. Many supervised
learning methods assume that training data is from an i.i.d. stationary distribution [36,
269,281]. However, in RL, training data consists of highly correlated sequential agent-
environment interactions, which violates the independence condition. Moreover, RL training
data distribution is non-stationary as the agent actively learns while exploring different parts
of the state space, violating the condition of sampled data being identically distributed [220].

In practice, using function approximators in RL requires making crucial representational
decisions and poor design choices can result in estimates that diverge from the optimal
value function [1,21,46,112,334,351]. In particular, function approximation, bootstrapping,
and off-policy learning are considered the three main properties that when combined, can
make the learning to diverge and are known as the deadly triad [315,334]. Recently, some
works have shown that non-linear (i.e., deep) function approximators poorly estimate the
value function [104,151,331] and another work found problems with Q-learning using
function approximation (over/under-estimation, instability and even divergence) due to the
delusional bias: “delusional bias occurs whenever a backed-up value estimate is derived
from action choices that are not realizable in the underlying policy class”[207]. Addition-
ally, convergence results for reinforcement learning using function approximation are still
scarce [21,92,207,217,330]; in general, stronger convergence guarantees are available for
policy-gradient methods [316] than for value-based methods [315].

Below we mention how the existing DRL methods aim to address these challenges when
briefly reviewing value-based methods, such as DQN [221]; policy gradient methods, like
Proximal Policy Optimization (PPO) [283]; and actor-critic methods like Asynchronous
Advantage Actor-Critic (A3C) [158]. We refer the reader to recent surveys on single-agent
DRL [13,101,191] for a more detailed discussion of the literature.

Value-basedmethodsThemajor breakthroughwork combining deep learningwithQ-learning
was theDeepQ-Network (DQN) [221]. DQNuses a deep neural network for function approx-
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Fig. 2 Deep Q-Network (DQN) [221]: Inputs are four stacked frames; the network is composed of several
layers: Convolutional layers employ filters to learn features from high-dimensional data with a much smaller
number of neurons andDense layers are fully-connected layers. The last layer represents the actions the agent
can take (in this case, 10 possible actions). Deep Recurrent Q-Network (DRQN) [131], which extends DQN
to partially observable domains [63], is identical to this setup except the penultimate layer (1 × 256 Dense
layer) is replaced with a recurrent LSTM layer [147]

imation [268]4 (see Fig. 2) and maintains an experience replay (ER) buffer [193,194] to store
interactions 〈s, a, r , s′〉. DQN keeps an additional copy of neural network parameters, θ−,
for the target network in addition to the θ parameters to stabilize the learning, i.e., to alle-
viate the non-stationary data distribution.5 For each training iteration i , DQN minimizes
the mean-squared error (MSE) between the Q-network and its target network using the loss
function:

Li (θi ) = Es,a,r ,s′ [(r + γmaxa′ Q(s′, a′; θ−
i ) − Q(s, a; θi ))

2] (3)

where target network parameters θ− are set to Q-network parameters θ periodically and
mini-batches of 〈s, a, r , s′〉 tuples are sampled from the ER buffer, as depicted in Fig. 3.

The ER buffer provides stability for learning as random batches sampled from the buffer
helps alleviating the problems caused by the non-i.i.d. data. However, it comeswith disadvan-
tages, such as higher memory requirements and computation per real interaction [219]. The
ER buffer is mainly used for off-policy RLmethods as it can cause amismatch between buffer
content from earlier policy and from the current policy for on-policy methods [219]. Extend-
ing the ER buffer for the multiagent case is not trivial, see Sects. 3.5, 4.1 and 4.2. Recent
works were designed to reduce the problem of catastrophic forgetting (this occurs when the
trained neural network performs poorly on previously learned tasks due to a non-stationary
training distribution [111,214]) and the ER buffer, in DRL [153] and MDRL [246].

DQN has been extended in many ways, for example, by using double estimators [130] to
reduce the overestimation bias with Double DQN [336] (see Sect. 4.1) and by decomposing
the Q-function with a dueling-DQN architecture [345], where two streams are learned, one
estimates state values and another one advantages, those are combined in the final layer to
form Q values (this method improved over Double DQN).

In practice, DQN is trained using an input of four stacked frames (last four frames the
agent has encountered). If a game requires a memory of more than four frames it will appear
non-Markovian to DQN because the future game states (and rewards) do not depend only on
the input (four frames) but rather on the history [132]. Thus, DQN’s performance declines

4 Before DQN, many approaches used neural networks for representing the Q-value function [74], such as
Neural Fitted Q-learning [268] and NEAT+Q [351].
5 Double Q-learning [130] originally proposed keeping two Q functions (estimators) to reduce the overesti-
mation bias in RL, while still keeping the convergence guarantees, later it was extended to DRL in Double
DQN [336] (see Sect. 4.1).
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Fig. 3 Representation of a DQN agent that uses an experience replay buffer [193,194] to keep 〈s, a, r , s′〉
tuples for minibatch updates. The Q-values are parameterized with a NN and a policy is obtained by selecting
(greedily) over those at every timestep

when given incomplete state observations (e.g., one input frame) since DQN assumes full
state observability.

Real-world tasks often feature incomplete and noisy state information resulting from par-
tial observability (see Sect. 2.1). Deep Recurrent Q-Networks (DRQN) [131] proposed using
recurrent neural networks, in particular, Long Short-Term Memory (LSTMs) cells [147] in
DQN, for this setting. Consider the architecture in Fig. 2 with the first dense layer after con-
volution replaced by a layer of LSTM cells. With this addition, DRQN has memory capacity
so that it can even work with only one input frame rather than a stacked input of consecutive
frames. This idea has been extended to MDRL, see Fig. 6 and Sect. 4.2. There are also other
approaches to deal with partial observability such as finite state controllers [218] (where
action selection is performed according to the complete observation history) and using an
initiation set of options conditioned on the previously employed option [302].

Policy gradient methods For many tasks, particularly for physical control, the action space
is continuous and high dimensional where DQN is not suitable. Deep Deterministic Policy
Gradient (DDPG) [192] is a model-free off-policy actor-critic algorithm for such domains,
based on the DPG algorithm [292] (see Sect. 2.1). Additionally, it proposes a new method
for updating the networks, i.e., the target network parameters slowly change (this could also
be applicable to DQN), in contrast to the hard reset (direct weight copy) used in DQN. Given
the off-policy nature, DDPG generates exploratory behavior by adding sampled noise from
some noise processes to its actor policy. The authors also used batch normalization [152] to
ensure generalization acrossmany different taskswithout performingmanual normalizations.
However, note that other works have shown batch normalization can cause divergence in
DRL [274,335].

Asynchronous Advantage Actor-Critic (A3C) [219] is an algorithm that employs a par-
allelized asynchronous training scheme (using multiple CPU threads) for efficiency. It
is an on-policy RL method that does not use an experience replay buffer. A3C allows
multiple workers to simultaneously interact with the environment and compute gradients
locally. All the workers pass their computed local gradients to a global NN which per-
forms the optimization and synchronizes with the workers asynchronously (see Fig. 4).
There is also the Advantage Actor-Critic (A2C) method [234] that combines all the gra-
dients from all the workers to update the global NN synchronously. The loss function for
A3C is composed of two terms: policy loss (actor), Lπ , and value loss (critic), Lv . A3C
parameters are updated using the advantage function A(st , at ; θv) = Q(s, a) − V (s), com-
monly used to reduce variance (see Sect. 2.1). An entropy loss for the policy, H(π), is
also commonly added, which helps to improve exploration by discouraging premature con-
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Fig. 4 Asynchronous Advantage Actor-Critic (A3C) employs multiple (CPUs) workers without needing an
ER buffer. Each worker has its own NN and independently interacts with the environment to compute the
loss and gradients. Workers then pass computed gradients to the global NN that optimizes the parameters
and synchronizes with the worker asynchronously. This distributed system is designed for single-agent deep
RL. Compared to different DQN variants, A3C obtains better performance on a variety of Atari games using
substantially less training time with multiple CPU cores of standard laptops without a GPU [219]. However,
we note that more recent approaches use both multiple CPU cores for more efficient training data generation
and GPUs for more efficient learning

vergence to suboptimal deterministic policies [219]. Thus, the loss function is given by:
LA3C = λvLv + λπLπ − λHEs∼π [H(π(s, ·, θ)] with λv, λπ , and λH , being weighting
terms on the individual loss components. Wang et al. [344] took A3C’s framework but used
off-policy learning to create the Actor-critic with experience replay (ACER) algorithm. Gu et
al. [118] introduced the Interpolated Policy Gradient (IPG) algorithm and showed a connec-
tion between ACER and DDPG: they are a pair of reparametrization terms (they are special
cases of IPG) when they are put under the same stochastic policy setting, and when the policy
is deterministic they collapse into DDPG.

Jaderberg et al. [158] built the Unsupervised Reinforcement and Auxiliary Learning
(UNREAL) framework on top of A3C and introduced unsupervised auxiliary tasks (e.g.,
reward prediction) to speed up the learning process. Auxiliary tasks in general are not used
for anything other than shaping the features of the agent, i.e., facilitating and regularizing the
representation learning process [31,288]; their formalization in RL is related to the concept
of general value functions [315,317]. The UNREAL framework optimizes a combined loss
function LUNREAL ≈ LA3C + ∑

i λATiLATi , that combines the A3C loss, LA3C, together
with auxiliary task losses LATi , where λATi are weight terms (see Sect. 4.1 for use of auxil-
iary tasks in MDRL). In contrast to A3C, UNREAL uses a prioritized ER buffer, in which
transitions with positive reward are given higher probability of being sampled. This approach
can be viewed as a simple form of prioritized replay [278], which was in turn inspired by
model-based RL algorithms like prioritized sweeping [10,223].

Another distributed architecture is the Importance Weighted Actor-Learner Architecture
(IMPALA) [93]. Unlike A3C or UNREAL, IMPALA actors communicate trajectories of
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experience (sequences of states, actions, and rewards) to a centralized learner, thus IMPALA
decouples acting from learning.

Trust Region Policy Optimization (TRPO) [283] and Proximal Policy Optimization
(PPO) [284] are recently proposed policy gradient algorithms where the latter represents
the state-of-the art with advantages such as being simpler to implement and having better
empirical sample complexity. Interestingly, a recent work [151] studying PPO and TRPO
arrived at the surprising conclusion that these methods often deviate from what the theoreti-
cal framework would predict: gradient estimates are poorly correlated with the true gradient
and value networks tend to produce inaccurate predictions for the true value function. Com-
pared to vanilla policy gradient algorithms, PPO prevents abrupt changes in policies during
training through the loss function, similar to early work by Kakade [166]. Another advantage
of PPO is that it can be used in a distributed fashion, i.e, Distributed PPO (DPPO) [134].
Note that distributed approaches like DPPO or A3C use parallelization only to improve the
learning by more efficient training data generation through multiple CPU cores for single
agent DRL and they should not be considered multiagent approaches (except for recent work
which tries to exploit this parallelization in a multiagent environment [19]).

Lastly, there’s a connection between policy gradient algorithms and Q-learning [282]
within the framework of entropy-regularized reinforcement learning [126] where the value
and Q functions are slightly altered to consider the entropy of the policy. In this vein, Soft
Actor-Critic (SAC) [127] is a recent algorithm that concurrently learns a stochastic policy,
two Q-functions (taking inspiration from Double Q-learning) and a value function. SAC
alternates between collecting experience with the current policy and updating from batches
sampled from the ER buffer.

We have reviewed recent algorithms in DRL, while the list is not exhaustive, it provides
an overview of the different state-of-art techniques and algorithms which will become useful
while describing the MDRL techniques in the next section.

3 Multiagent deep reinforcement learning (MDRL)

First, we briefly introduce the general framework on multiagent learning and then we dive
into the categories and the research on MDRL.

3.1 Multiagent learning

Learning in a multiagent environment is inherently more complex than in the single-agent
case, as agents interact at the same timewith environment and potentiallywith each other [55].
The independent learners, a.k.a. decentralized learners approach [323] directly uses single-
agent algorithms in the multi-agent setting despite the underlying assumptions of these
algorithms being violated (each agent independently learns its own policy, treating other
agents as part of the environment). In particular the Markov property (the future dynamics,
transitions, and rewards depend only on the current state) becomes invalid since the envi-
ronment is no longer stationary [182,233,333]. This approach ignores the multiagent nature
of the setting entirely and it can fail when an opponent adapts or learns, for example, based
on the past history of interactions [289]. Despite the lack of guarantees, independent learn-
ers have been used in practice, providing advantages with regards to scalability while often
achieving good results [213].
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To understandwhymultiagent domains are non-stationary from agents’ local perspectives,
consider a simple stochastic (also known as Markov) game (S,N ,A, T ,R), which can be
seen as an extension of an MDP to multiple agents [198,200]. One key distinction is that the
transition, T , and reward function,R, depend on the actions A = A1 × · · · × AN of all,N ,
agents, this means, R = R1 × · · · × RN and T = S × A1 × · · · × AN .

Given a learning agent i and using the common shorthand notation −i = N \ {i} for the
set of opponents, the value function now depends on the joint action a = (ai , a−i ), and the
joint policy π(s, a) = ∏

j π j (s, a j )
6:

V π
i (s) =

∑

a∈A
π(s, a)

∑

s′∈S
T (s, ai , a−i , s

′)[Ri (s, ai , a−i , s
′) + γ Vi (s

′)]. (4)

Consequently, the optimal policy is dependent on the other agents’ policies,

π∗
i (s, ai ,π−i ) = argmax

πi

V (πi ,π−i )
i (s)

= argmax
πi

∑

a∈A
πi (s, ai )π−i (s, a−i )

∑

s′∈S
T (s, ai , a−i , s

′)[Ri (s, ai , a−i , s
′)

+ γ V (πi ,π−i )
i (s′)].

(5)
Specifically, the opponents’ joint policy π−i (s, a−i ) can be non-stationary, i.e., changes as
the opponents’ policies change over time, for example with learning opponents.

Convergence results Littman [200] studied convergence properties of reinforcement learning
joint action agents [70] inMarkov games with the following conclusions: in adversarial envi-
ronments (zero-sum games) an optimal play can be guaranteed against an arbitrary opponent,
i.e., Minimax Q-learning [198]. In coordination environments (e.g., in cooperative games all
agents share the same reward function), strong assumptions need be made about other agents
to guarantee convergence to optimal behavior [200], e.g., Nash Q-learning [149] and Friend-
or-Foe Q-learning [199]. In other types of environments no value-based RL algorithms with
guaranteed convergence properties are known [200].

Recent work on MDRL have addressed scalability and have focused significantly less
on convergence guarantees, with few exceptions [22,40,255,297]. One notable work has
shown a connection between update rules for actor-critic algorithms for multiagent partially
observable settings and (counterfactual) regretminimization7: the advantage values are scaled
counterfactual regrets. This lead to new convergence properties of independent RL algorithms
in zero-sum games with imperfect information [300]. The result is also used to support policy
gradient optimization against worst-case opponents, in a new algorithm called Exploitability
Descent [204].8

We refer the interested reader to seminal works about convergence in multiagent
domains [23,41,42,45,113,165,167,277,295,357,367]. Note that instead of convergence,

6 In this setting each agent independently executes a policy, however, there are other cases where this does
not hold, for example when agents have a coordinated exploration strategy.
7 Counterfactual regretminimization is a technique for solving large games based on regretminimization [230,
368] due to a well-known connection between regret and Nash equilibria [39]. It has been one of the reasons
of successes in Poker [50,224].
8 This algorithm is similar to CFR-BR [159] and has the main advantage that the current policy convergences
rather than the average policy, so there is no need to learn the average strategy, which requires large reservoir
buffers or many past networks.
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some MAL algorithms have proved learning a best response against classes of oppo-
nents [66,326,349].

There are other common problems in MAL, including action shadowing [105,347], the
curse of dimensionality [55], and multiagent credit assignment [2]. Describing each prob-
lem is out of the scope of this survey. However, we refer the interested reader to excellent
resources on general MAL [209,333,350], as well as surveys in specific areas: game theory
and multiagent reinforcement learning [55,233], cooperative scenarios [213,248], evolution-
ary dynamics of multiagent learning [38], learning in non-stationary environments [141],
agents modeling agents [6], and transfer learning in multiagent RL [290].

3.2 MDRL categorization

In Sect. 2.2 we outlined some recent works in single-agent DRL since an exhaustive list is out
of the scope of this article. This explosion of works has led DRL to be extended and combined
with other techniques [13,191,251]. One natural extension to DRL is to test whether these
approaches could be applied in a multiagent environment.

We analyzed themost recent works (that are not covered by previousMAL surveys [6,141]
and we do not consider genetic algorithms or swarm intelligence in this survey) that have a
clear connection with MDRL. We propose 4 categories which take inspiration from previous
surveys [6,55,248,305] and that conveniently describe and represent current works. Note
that some of these works fit into more than one category (they are not mutually exclusive),
therefore their summaries are presented in all applicable Tables 1, 2, 3 and 4, however, for
the ease of exposition when describing them in the text we only do so in one category.
Additionally, for each work we present its learning type, either a value-based method (e.g.,
DQN) or a policy gradient method (e.g., actor-critic); also, we mention if the setting is
evaluated in a fully cooperative, fully competitive or mixed environment (both cooperative
and competitive).

– Analysis of emergent behaviors These works, in general, do not propose learn-
ing algorithms—their main focus is to analyze and evaluate DRL algorithms, e.g.,
DQN [188,264,322], PPO [24,264] and others [187,225,264], in a multiagent environ-
ment. In this categorywe foundworkswhich analyze behaviors in the threemajor settings:
cooperative, competitive and mixed scenarios; see Sect. 3.3 and Table 1.

– Learning communication [96,183,225,253,256,312]. These works explore a sub-area in
which agents can share information with communication protocols, for example through
direct messages [96] or via a shared memory [256]. This area is attracting attention and
it had not been explored much in the MAL literature. See Sect. 3.4 and Table 2.

– Learning cooperation While learning to communicate is an emerging area, fostering
cooperation in learning agents has a long history of research in MAL [213,248]. In
this category the analyzed works are evaluated in either cooperative or mixed settings.
Some works in this category take inspiration from MAL (e.g., leniency, hysteresis, and
difference rewards concepts) and extend them to the MDRL setting [98,244,247]. A
notable exception [99] takes a key component from RL (i.e., experience replay buffer)
and adapts it for MDRL. See Sect. 3.5 and Table 3.

– Agents modeling agents Albrecht and Stone [6] presented a thorough survey in this topic
and we have found many works that fit into this category in the MDRL setting, some
taking inspiration fromDRL [133,148,265], and others fromMAL[97,136,180,263,358].
Modeling agents is helpful not only to cooperate, but also for modeling opponents [133,
136,148,180], inferring goals [265], and accounting for the learning behavior of other

123



762 Autonomous Agents and Multi-Agent Systems (2019) 33:750–797

Table 1 These papers analyze emergent behaviors in MDRL

Work Summary Learning Setting

Tampuu et al. [322] Train DQN agents to play Pong. VB CO and CMP

Leibo et al. [188] Train DQN agents to play sequential
social dilemmas.

VB Mixed

Lerer and Peysakhovich [189] Propose DRL agents able to
cooperate in social dilemmas.

VB Mixed

Leibo et al. [187] Propose Malthusian reinforcement
learning which extends self-play to
population dynamics.

VB Mixed

Bansal et al. [24] Train PPO agents in competitive
MuJoCo scenarios.

PG CMP

Raghu et al. [264] Train PPO, A3C, and DQN agents in
attacker-defender games.

VB, PG CMP

Lazaridou et al. [183] Train agents represented with NN to
learn a communication language.

PG CO

Mordatch and Abbeel [225] Learn communication with an
end-to-end differentiable model to
train with backpropagation.

PG CO

Learning type is either value-based (VB) or policy gradient (PG). Setting where experiments were performed:
cooperative (CO), competitive (CMP) or mixed. A detailed description is given in Sect. 3.3

agents [97]. In this category the analyzed algorithms present their results in either a
competitive setting or a mixed one (cooperative and competitive). See Sect. 3.6 and
Table 4.

In the rest of this section we describe each category along with the summaries of related
works.

3.3 Emergent behaviors

Some recent works have analyzed the previously mentioned independent DRL agents (see
Sect. 3.1) from the perspective of types of emerging behaviors (e.g., cooperative or compet-
itive).

One of the earliest MDRL works is by Tampuu et al. [322], which had two independent
DQN learning agents to play the Atari Pong game. Their focus was to adapt the reward
function for the learning agents, which resulted in either cooperative or competitive emergent
behaviors.

Leibo et al. [188] meanwhile studied independent DQNs in the context of sequential
social dilemmas: a Markov game that satisfies certain inequalities [188]. The focus of this
work was to highlight that cooperative or competitive behaviors exist not only as discrete
(atomic) actions, but they are temporally extended (over policies). In the related setting of one
shot Markov social dilemmas, Lerer and Peysakhovich [189] extended the famous Tit-for-
Tat (TFT)9 strategy [15] for DRL (using function approximators) and showed (theoretically
and experimentally) that such agents can maintain cooperation. To construct the agents they
used self-play and two reward schemes: selfish and cooperative. Previously, different MAL

9 TFT originated in an iterated prisoner’s dilemma tournament and later inspired different strategies in
MAL [258], its generalization, Godfather, is a representative of leader strategies [201].
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Table 2 These papers propose algorithms for learning communication

Algorithm Summary Learning Setting

Lazaridou et al. [183] Train agents represented with NN to
learn a communication language.

PG CO

Mordatch and Abbeel [225] Learn communication with an
end-to-end differentiable model to
train with backpropagation.

PG CO

RIAL [96] Use a single network (parameter
sharing) to train agents that take
environmental and communication
actions.

VB CO

DIAL [96] Use gradient sharing during learning
and communication actions during
execution.

VB CO

CommNet [312] Use a continuous vector channel for
communication on a single
network.

PG CO

BiCNet [253] Use the actor-critic paradigm where
communication occurs in the latent
space.

PG Mixed

MD-MADDPG [256] Use of a shared memory as a means
to multiagent communication.

PG CO

MADDPG-MD [173] Extend dropout technique to
robustify communication when
applied in multiagent scenarios
with direct communication.

PG CO

Learning type is either value-based (VB) or policy gradient (PG). Setting were experiments were performed:
cooperative (CO) or mixed. A more detailed description is given in Sect. 3.4

algorithmswere designed to foster cooperation in social dilemmaswithQ-learning agents [77,
303].

Self-play is a useful concept for learning algorithms (e.g., fictitious play [49]) since under
certain classes of games it can guarantee convergence10 and it has been used as a standard
technique in previous RL andMALworks [43,291,325]. Despite its common usage self-play
can be brittle to forgetting past knowledge [180,186,275] (see Sect. 4.5 for a note on the role of
self-play as an open question in MDRL). To overcome this issue, Leibo et al. [187] proposed
Malthusian reinforcement learning as an extension of self-play to population dynamics. The
approach can be thought of as community coevolution and has been shown to produce better
results (avoiding local optima) than independent agents with intrinsic motivation [30]. A
limitation of this work is that it does not place itself within the state of the art in evolutionary
and genetic algorithms. Evolutionary strategies have been employed for solving reinforce-
ment learning problems [226] and for evolving function approximators [351]. Similarly, they
have been used multiagent scenarios to compute approximate Nash equilibria [238] and as
metaheuristic optimization algorithms [53,54,150,248].

Bansal et al. [24] explored the emergent behaviors in competitive scenarios using the
MuJoCo simulator [327]. They trained independent learning agents with PPO and incorpo-
rated two main modifications to deal with the MAL nature of the problem. First, they used

10 The average strategy profile of fictitious players converges to a Nash equilibrium in certain classes of
games, e.g., two-player zero-sum and potential games [222].
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Table 3 These papers aim to learn cooperation

Algorithm Summary Learning Setting

Lerer and Peysakhovich [189] Propose DRL agents able to cooperate in
social dilemmas

VB Mixed

MD-MADDPG [256] Use of a shared memory as a means to
multiagent communication

PG CO

MADDPG-MD [173] Extend dropout technique to robustify
communication when applied in multiagent
scenarios with direct communication

PG CO

RIAL [96] Use a single network (parameter sharing) to
train agents that take environmental and
communication actions

VB CO

DIAL [96] Use gradient sharing during learning and
communication actions during execution

VB CO

DCH/PSRO [180] Policies can overfit to opponents: better
compute approximate best responses to a
mixture of policies

VB CO and CMP

Fingerprints [99] Deal with ER problems in MDRL by
conditioning the value function on a
fingerprint that disambiguates the age of
the sampled data

VB CO

Lenient-DQN [247] Achieve cooperation by leniency, optimism
in the value function by forgiving
suboptimal (low-rewards) actions

VB CO

Hysteretic-DRQN [244] Achieve cooperation by using two learning
rates, depending on the updated values
together with multitask learning via policy
distillation

VB CO

WDDQN [365] Achieve cooperation by leniency, weighted
double estimators, and a modified
prioritized experience replay buffer

VB CO

FTW [156] Agents act in a mixed environment
(composed of teammates and opponents),
it proposes a two-level architecture and
population-based learning

PG Mixed

VDN [313] Decompose the team action-value function
into pieces across agents, where the pieces
can be easily added

VB Mixed

QMIX [266] Decompose the team action-value function
together with a mixing network that can
recombine them

VB Mixed

COMA [98] Use a centralized critic and a counter-factual
advantage function based on solving the
multiagent credit assignment

PG Mixed

PS-DQN, PS-TRPO, PS-A3C [123] Propose parameter sharing for learning
cooperative tasks

VB, PG CO

MADDPG [206] Use an actor-critic approach where the critic
is augmented with information from other
agents, the actions of all agents

PG Mixed

Learning type is either value-based (VB) or policy gradient (PG). Setting where experiments were performed:
cooperative (CO), competitive (CMP) or mixed. A more detailed description is given in Sect. 3.5
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Table 4 These papers consider agents modeling agents

Algorithm Summary Learning Setting

MADDPG [206] Use an actor-critic approach where the critic
is augmented with information from other
agents, the actions of all agents.

PG Mixed

DRON [133] Have a network to infer the opponent
behavior together with the standard DQN
architecture.

VB Mixed

DPIQN, DPIRQN [148] Learn policy features from raw observations
that represent high-level opponent
behaviors via auxiliary tasks.

VB Mixed

SOM [265] Assume the reward function depends on a
hidden goal of both agents and then use an
agent’s own policy to infer the goal of the
other agent.

PG Mixed

NFSP [136] Compute approximate Nash equilibria via
self-play and two neural networks.

VB CMP

PSRO/DCH [180] Policies can overfit to opponents: better
compute approximate best responses to a
mixture of policies.

PG CO and CMP

M3DDPG [190] Extend MADDPG with minimax objective
to robustify the learned policy.

PG Mixed

LOLA [97] Use a learning rule where the agent accounts
for the parameter update of other agents to
maximize its own reward.

PG Mixed

ToMnet [263] Use an architecture for end-to-end learning
and inference of diverse opponent types.

PG Mixed

Deep Bayes-ToMoP [358] Best respond to opponents using Bayesian
policy reuse, theory of mind, and deep
networks.

VB CMP

Deep BPR+[366] Bayesian policy reuse and policy distillation
to quickly best respond to opponents.

VB CO and CMP

Learning type is either value-based (VB) or policy gradient (PG). Setting where experiments were performed:
cooperative (CO), competitive (CMP) or mixed. A more detailed description is given in Sect. 3.6

exploration rewards [122] which are dense rewards that allow agents to learn basic (non-
competitive) behaviors—this type of reward is annealed through time giving more weight
to the environmental (competitive) reward. Exploration rewards come from early work in
robotics [212] and single-agent RL [176], and their goal is to provide dense feedback for
the learning algorithm to improve sample efficiency (Ng et al. [231] studied the theoretical
conditions under which modifications of the reward function of anMDP preserve the optimal
policy). For multiagent scenarios, these dense rewards help agents in the beginning phase of
the training to learn basic non-competitive skills, increasing the probability of random actions
from the agent yielding a positive reward. The second contribution was opponent sampling
which maintains a pool of older versions of the opponent to sample from, in contrast to using
the most recent version.

Raghu et al. [264] investigated how DRL algorithms (DQN, A2C, and PPO) performed
in a family of two-player zero-sum games with tunable complexity, called Erdos-Selfridge-
Spencer games [91,299]. Their reasoning is threefold: (i) these games provide a parameterized
family of environments where (ii) optimal behavior can be completely characterized, and (iii)
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support multiagent play. Their work showed that algorithms can exhibit wide variation in
performance as the algorithms are tuned to the game’s difficulty.

Lazaridou et al. [183] proposed a framework for language learning that relies onmultiagent
communication. The agents, represented by (feed-forward) neural networks, need to develop
an emergent language to solve a task. The task is formalized as a signaling game [103] in
which two agents, a sender and a receiver, obtain a pair of images. The sender is told one of
them is the target and is allowed to send a message (from a fixed vocabulary) to the receiver.
Only when the receiver identifies the target image do both agents receive a positive reward.
The results show that agents can coordinate for the experimented visual-based domain. To
analyze the semantic properties11 of the learned communication protocol they lookedwhether
symbol usage reflects the semantics of the visual space, and that despite some variation, many
high level objects groups correspond to the same learned symbols using a t-SNE [210] based
analysis (t-SNE is a visualization technique for high-dimensional data and it has also been
used to better understand the behavior of trained DRL agents [29,362]). A key objective of
this work was to determine if the agent’s language could be human-interpretable. To achieve
this, learned symbols were grounded with natural language by extending the signaling game
with a supervised image labelling task (the sender will be encouraged to use conventional
names, making communication more transparent to humans). To measure the interpretability
of the extended game, a crowdsourced survey was performed, and in essence, the trained
agent receiver was replaced with a human. The results showed that 68% of the cases, human
participants picked the correct image.

Similarly,Mordatch andAbbeel [225] investigated the emergence of languagewith the dif-
ference that in their setting there were no explicit roles for the agents (i.e., sender or receiver).
To learn, they proposed an end-to-end differentiable model of all agent and environment state
dynamics over time to calculate the gradient of the return with backpropagation.

3.4 Learning communication

As we discussed in the previous section, one of the desired emergent behaviors of multiagent
interaction is the emergence of communication [183,225]. This setting usually considers a
set of cooperative agents in a partially observable environment (see Sect. 2.2) where agents
need to maximize their shared utility by means of communicating information.

Reinforced Inter-Agent Learning (RIAL) andDifferentiable Inter-Agent Learning (DIAL)
are twomethods using deep networks to learn to communicate [96]. Bothmethods use a neural
net that outputs the agent’s Q values (as done in standard DRL algorithms) and a message
to communicate to other agents in the next timestep. RIAL is based on DRQN and also uses
the concept of parameter sharing, i.e., using a single network whose parameters are shared
among all agents. In contrast, DIAL directly passes gradients via the communication channel
during learning, andmessages are discretized andmapped to the set of communication actions
during execution.

Memory-driven (MD) communication was proposed on top of the Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) [206] method. In MD-MADDPG [256], the
agents use a shared memory as a communication channel: before taking an action, the agent
first reads the memory, then writes a response. In this case the agent’s policy becomes depen-
dent on its private observation and its interpretation of the collective memory. Experiments
were performed with two agents in cooperative scenarios. The results highlighted the fact

11 The vocabulary that agents use was arbitrary and had no initial meaning. To understand its emerging
semantics they looked at the relationship between symbols and the sets of images they referred to [183].
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that the communication channel was used differently in each environment, e.g., in simpler
tasks agents significantly decrease their memory activity near the end of the task as there are
no more changes in the environment; in more complex environments, the changes in memory
usage appear at a much higher frequency due to the presence of many sub-tasks.

Dropout [301] is a technique to prevent overfitting (in supervised learning this happens
when the learning algorithm achieves good performance only on a specific data set and
fails to generalize) in neural networks which is based on randomly dropping units and their
connections during training time. Inspired by dropout, Kim et al. [173] proposed a simi-
lar approach in multiagent environments where direct communication through messages is
allowed. In this case, the messages of other agents are dropped out at training time, thus the
authors proposed theMessage-Dropout MADDPG algorithm [173]. This method is expected
towork in fully or limited communication environments. The empirical results show that with
properly chosen message dropout rate, the proposed method both significantly improves the
training speed and the robustness of learned policies (by introducing communication errors)
during execution time. This capability is important as MDRL agents trained in simulated or
controlled environments will be less fragile when transferred to more realistic environments.

While RIAL and DIAL used a discrete communication channel, CommNet [312] used a
continuous vector channel. Through this channel agents receive the summed transmissions
of other agents. The authors assume full cooperation and train a single network for all the
agents. There are two distinctive characteristics of CommNet from previous works: it allows
multiple communication cycles at each timestep and a dynamic variation of agents at run
time, i.e., agents come and go in the environment.

In contrast to previous approaches, in Multiagent Bidirectionally Coordinated Network
(BiCNet) [253], communication takes place in the latent space (i.e., in the hidden layers).
It also uses parameter sharing, however, it proposes bidirectional recurrent neural net-
works [285] to model the actor and critic networks of their model. Note that in BiCNet
agents do not explicitly share a message and thus it can be considered a method for learning
cooperation.

Learning communication is an active area in MDRL with many open questions, in this
context, we refer the interested reader to a recent work by Lowe et al. [205] where it discusses
common pitfalls (and recommendations to avoid those) while measuring communication in
multiagent environments.

3.5 Learning cooperation

Although explicit communication is a new emerging trend in MDRL, there has already been
a large amount of work in MAL for cooperative settings12 that do not involve communica-
tion [213,248]. Therefore, it was a natural starting point for many recent MDRL works.

Foerster et al. [99] studied the simple scenario of cooperationwith independentQ-learning
agents (see Sect. 3.1), where the agents use the standard DQN architecture of neural networks
and an experience replay buffer (see Fig. 3). However, for the ER towork, the data distribution
needs to follow certain assumptions (see Sect. 2.2) which are no loger valid due to the
multiagent nature of the world: the dynamics that generated the data in the ER no longer
reflect the current dynamics, making the experience obsolete [99,194]. Their solution is
to add information to the experience tuple that can help to disambiguate the age of the

12 There is a large body of research on coordinating multiagent teams by specifying communication proto-
cols [115,321]: these expect agents to know the team’s goal as well as the tasks required to accomplish the
goal.
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sampled data from the replaymemory. Two approacheswere proposed. Thefirst isMultiagent
ImportanceSamplingwhich adds the probability of the joint action so an importance sampling
correction [36,260] can computed when the tuple is later sampled for training. This was
similar to previous works in adaptive importance sampling [4,102] and off-environment
RL [68]. The second approach is Multiagent Fingerprints which adds the estimate (i.e.,
fingerprint) of other agents’ policies (loosely inspired by Hyper-Q [326], see Sect. 4.1).
For the practical implementation, good results were obtained by using the training iteration
number and exploration rate as the fingerprint.

Gupta et al. [123] tackled cooperative environments in partially observable domains with-
out explicit communication. They proposed parameter sharing (PS) as a way to improve
learning in homogeneous multiagent environments (where agents have the same set of
actions). The idea is to have one globally shared learning network that can still behave
differently in execution time, i.e., because its inputs (individual agent observation and agent
index) will be different. They tested three variations of this approach with parameter sharing:
PS-DQN, PS-DDPG and PS-TRPO, which extended single-agent DQN, DDPG and TRPO
algorithms, respectively. The results showed that PS-TRPO outperformed the other two. Note
that Foerster et al. [96] concurrently proposed a similar concept, see Sect. 3.4.

Lenient-DQN (LDQN) [247] took the leniency concept [37] (originally presented inMAL)
and extended their use to MDRL. The purpose of leniency is to overcome a pathology
called relative overgeneralization [249,250,347]. Similar to other approaches designed to
overcome relative overgeneralization (e.g., distributed Q-learning [181] and hysteretic Q-
learning [213]) lenient learners initially maintain an optimistic disposition to mitigate the
noise from transitions resulting in miscoordination, preventing agents from being drawn
towards sub-optimal but wide peaks in the reward search space [246]. However, similar to
other MDRL works [99], the LDQN authors experienced problems with the ER buffer and
arrived at a similar solution: adding information to the experience tuple, in their case, the
leniency value. When sampling from the ER buffer, this value is used to determine a leniency
condition; if the condition is not met then the sample is ignored.

In a similar vein, Decentralized-Hysteretic Deep Recurrent Q-Networks (DEC-HDRQNs)
[244] were proposed for fostering cooperation among independent learners. The motivation
is similar to LDQN, making an optimistic value update, however, their solution is different.
Here, the authors took inspiration from Hysteretic Q-learning [213], originally presented in
MAL,where two learning rates were used. A difference between lenient agents and hysteretic
Q-learning is that lenient agents are only initially forgiving towards teammates. Lenient
learners over time apply less leniency towards updates that would lower utility values, taking
into account how frequently observation-action pairs have been encountered. The idea being
that the transition from optimistic to average reward learner will help make lenient learners
more robust towards misleading stochastic rewards [37]. Additionally, in DEC-HDRQNs the
ERbuffer is also extended into concurrent experience replay trajectories,which are composed
of three dimensions: agent index, the episode, and the timestep; when training, the sampled
traces have the same starting timesteps.Moreover, to improve on generalization over different
tasks, i.e., multi-task learning[62], DEC-HDRQNs make use of policy distillation [146,273]
(see Sect. 4.1). In contrast to other approaches, DEC-HDRQNS are fully decentralized during
learning and execution.

WeightedDoubleDeepQ-Network (WDDQN) [365] is basedonhavingdouble estimators.
This idea was originally introduced in Double Q-learning [130] and aims to remove the
existing overestimation bias caused by using the maximum action value as an approximation
for the maximum expected action value (see Sect. 4.1). It also uses a lenient reward [37] to
be optimistic during initial phase of coordination and proposes a scheduled replay strategy in
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Fig. 5 A schematic view of the architecture used in FTW (For the Win) [156]: two unrolled recurrent neural
networks (RNNs) operate at different time-scales, the idea is that the Slow RNN helps with long term temporal
correlations. Observations are latent space output of some convolutional neural network to learn non-linear
features. Feudal Networks [338] is another work in single-agent DRL that also maintains a multi-time scale
hierarchywhere the slower network sets the goal, and the faster network tries to achieve them. Fedual Networks
were in turn, inspired by early work in RL which proposed a hierarchy of Q-learners [82,296]

which samples closer to the terminal states are heuristically given higher priority; this strategy
might not be applicable for any domain. For other works extending the ER to multiagent
settings see MADDPG [206], Sects. 4.1 and 4.2.

While previous approaches were mostly inspired by how MAL algorithms could be
extended to MDRL, other works take as base the results by single-agent DRL. One exam-
ple is the For The Win (FTW) [156] agent which is based on the actor-learner structure of
IMPALA[93] (seeSect. 2.2). The authors test FTWin a gamewhere twoopposing teams com-
pete to capture each other’s flags [57]. To deal with the MAL problem they propose two main
additions: a hierarchical two-level representation with recurrent neural networks operating
at different timescales, as depicted in Fig. 5, and a population based training [157,185,271]
where 30 agents were trained in parallel together with a stochastic matchmaking scheme
that biases agents to be of similar skills. The Elo rating system [90] was originally devised
to rate chess player skills,13 TrueSkill [138] extended Elo by tracking uncertainty in skill
rating, supporting draws, and matches beyond 1 vs 1; α−Rank is a more recent alternative
to ELO [243]. FTW did not use TrueSkill but a simpler extension of Elo for n vs n games
(by adding individual agent ratings to compute the team skill). Hierarchical approaches were
previously proposed in RL, e.g., Feudal RL [82,296], and were later extended to DRL in
Feudal networks [338]; population based training can be considered analogous to evolution-
ary strategies that employ self-adaptive hyperparameter tuning to modify how the genetic
algorithm itself operates [20,85,185]. An interesting result from FTW is that the population-
based training obtained better results than training via self-play [325], which was a standard
concept in previous works [43,291]. FTW used heavy compute resources, it used 30 agents

13 Elo uses a normal distribution for each player skill, and after each match, both players’ distributions are
updated based on measure of surprise, i.e., if a user with previously lower (predicted) skill beats a high skilled
one, the low-skilled player is significantly increased.
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(processes) in parallel where every training game lasted 4500 agent steps (≈5min) and agents
were trained for two billion steps (≈ 450K games).

Lowe et al. [206] noted that using standard policy gradient methods (see Sect. 2.1) on
multiagent environments yields high variance and performs poorly. This occurs because the
variance is further increased as all the agents’ rewards depend on the rest of the agents, and it
is formally shown that as the number of agents increase, the probability of taking a correct gra-
dient direction decreases exponentially [206]. Therefore, to overcome this issue Lowe et al.
proposed the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [206], building
on DDPG [192] (see Sect. 2.2), to train a centralized critic per agent that is given all agents’
policies during training to reduce the variance by removing the non-stationarity caused by the
concurrently learning agents. Here, the actor only has local information (turning the method
into a centralized training with decentralized execution) and the ER buffer records experi-
ences of all agents. MADDPG was tested in both cooperative and competitive scenarios,
experimental results show that it performs better than several decentralized methods (such
as DQN, DDPG, and TRPO). The authors mention that traditional RL methods do not pro-
duce consistent gradient signals. This is exemplified in a challenging competitive scenarios
where agents continuously adapt to each other causing the learned best-response policies
oscillate—for such a domain, MADDPG is shown to learn more robustly than DDPG.

Another approach based on policy gradients is the Counterfactual Multi-Agent Policy
Gradients (COMA) [98]. COMAwas designed for the fully centralized setting and themulti-
agent credit assignment problem [332], i.e., how the agents should deduce their contributions
when learning in a cooperative setting in the presence of only global rewards. Their proposal
is to compute a counterfactual baseline, that is, marginalize out the action of the agent while
keeping the rest of the other agents’ actions fixed. Then, an advantage function can be com-
puted comparing the current Q value to the counterfactual. This counterfactual baseline has
its roots in difference rewards, which is a method for obtaining the individual contribution
of an agent in a cooperative multiagent team [332]. In particular, the aristocrat utility aims
to measure the difference between an agent’s actual action and the average action [355]. The
intention would be equivalent to sideline the agent by having the agent perform an action
where the reward does not depend on the agent’s actions, i.e., to consider the reward that
would have arisen assuming a world without that agent having ever existed (see Sect. 4.2).

On the one hand, fully centralized approaches (e.g., COMA) do not suffer from non-
stationarity but have constrained scalability. On the other hand, independent learning
agents are better suited to scale but suffer from non-stationarity issues. There are some
hybrid approaches that learn a centralized but factored Q value function [119,174]. Value
Decomposition Networks (VDNs) [313] decompose a team value function into an additive
decomposition of the individual value functions. Similarly, QMIX [266] relies on the idea
of factorizing, however, instead of sum, QMIX assumes a mixing network that combines
the local values in a non-linear way, which can represent monotonic action-value functions.
While the mentioned approaches have obtained good empirical results, the factorization of
value-functions in multiagent scenarios using function approximators (MDRL) is an ongo-
ing research topic, with open questions such as how well factorizations capture complex
coordination problems and how to learn those factorizations [64] (see Sect. 4.4).

3.6 Agents modeling agents

An important ability for agents to have is to reason about the behaviors of other agents by
constructing models that make predictions about the modeled agents [6]. An early work for
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Fig. 6 a Deep policy inference Q-network: receives four stacked frames as input (similar to DQN, see Fig. 2).
b Deep Policy Inference Recurrent Q-Network: receives one frame as input and has an LSTM layer instead of
a fully connected layer (FC). Both approaches [148] condition the QM value outputs on the policy features,
hP I , which are also used to learn the opponent policy πo

modeling agents while using deep neural networks was the Deep Reinforcement Opponent
Network (DRON) [133]. The idea is to have two networks: one which evaluates Q-values
and a second one that learns a representation of the opponent’s policy. Moreover, the authors
proposed to have several expert networks to combine their predictions to get the estimated Q
value, the idea being that each expert network captures one type of opponent strategy [109].
This is related to previous works in type-based reasoning from game theory [129,167] later
applied in AI [6,26,109]. The mixture of experts idea was presented in supervised learning
where each expert handled a subset of the data (a subtask), and then a gating network decided
which of the experts should be used [155].

DRONuses hand-crafted features to define the opponent network. In contrast, Deep Policy
InferenceQ-Network (DPIQN) and its recurrent version, DPIRQN [148] learn policy features
directly from raw observations of the other agents. The way to learn these policy features is
bymeans of auxiliary tasks [158,317] (see Sects. 2.2 and 4.1) that provide additional learning
goals, in this case, the auxiliary task is to learn the opponents’ policies. This auxiliary task
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modifies the loss function by computing an auxiliary loss: the cross entropy loss between the
inferred opponent policy and the ground truth (one-hot action vector) of the opponent. Then,
the Q value function of the learning agent is conditioned on the opponent’s policy features
(see Fig. 6), which aims to reduce the non-stationarity of the environment. The authors used
an adaptive training procedure to adjust the attention (a weight on the loss function) to either
emphasize learning the policy features (of the opponent) or the respective Q values of the
agent. An advantage of these approaches is that modeling the agents can work for both
opponents and teammates [148].

In many previous works an opponent model is learned from observations. Self Other
Modeling (SOM) [265] proposed a different approach, this is, using the agent’s own policy
as ameans to predict the opponent’s actions. SOMcan be used in cooperative and competitive
settings (with an arbitrary number of agents) and infers other agents’ goals. This is important
because in the evaluated domains, the reward function depends on the goal of the agents. SOM
uses two networks, one used for computing the agents’ own policy, and a second one used
to infer the opponent’s goal. The idea is that these networks have the same input parameters
but with different values (the agent’s or the opponent’s). In contrast to previous approaches,
SOM is not focused on learning the opponent policy, i.e., a probability distribution over next
actions, but rather on estimating the opponent’s goal. SOM is expected to work best when
agents share a set of goals from which each agent gets assigned one at the beginning of
the episode and the reward structure depends on both of their assigned goals. Despite its
simplicity, training takes longer as an additional optimization step is performed given the
other agent’s observed actions.

There is a long-standing history of combining game theory and MAL [43,233,289]. From
that context, some approaches were inspired by influential game theory approaches. Neural
Fictitious Self-Play (NFSP) [136] builds on fictitious (self-) play [49,135], together with two
deep networks to find approximate Nash equilibria14 in two-player imperfect information
games [341] (for example, consider Poker: when it is an agent’s turn to move it does not
have access to all information about the world). One network learns an approximate best
response (ε−greedy over Q values) to the historical behavior of other agents and the second
one (called the average network) learns to imitate its own past best response behaviour using
supervised classification. The agent behaves using a mixture of the average and the best
response networks depending on the probability of an anticipatory parameter [287]. Com-
parisons with DQN in Leduc Hold’em Poker revealed that DQN’s deterministic strategy is
highly exploitable. Such strategies are sufficient to behave optimally in single-agent domains,
i.e., MDPs for which DQN was designed. However, imperfect-information games generally
require stochastic strategies to achieve optimal behaviour [136]. DQN learning experiences
are both highly correlated over time, and highly focused on a narrow state distribution. In
contrast to NFSP agents whose experience varies more smoothly, resulting in a more stable
data distribution, more stable neural networks and better performance.

The (N)FSP concept was further generalized in Policy-Space Response Oracles (PSRO)
[180], where it was shown that fictitious play is one specific meta-strategy distribution over a
set of previous (approximate) best responses (summarized by ameta-gameobtained by empir-
ical game theoretic analysis [342]), but there are a wide variety to choose from. One reason to
use mixed meta-strategies is that it prevents overfitting15 the responses to one specific policy,

14 Nash equilibrium [229] is a solution concept in game theory in which no agent would choose to deviate
from its strategy (they are a best response to others’ strategies). This concept has been explored in seminal
MAL algorithms like Nash-Q learning [149] and Minimax-Q learning [198,199].
15 Johanson et al. [160] also found “overfitting” when solving large extensive games (e.g., poker)—the
performance in an abstract game improved but it was worse in the full game.
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and hence provides a form of opponent/teammate regularization. An approximate scalable
version of the algorithm leads to a graph of agents best-responding independently called
Deep Cognitive Hierarchies (DCHs) [180] due to its similarity to behavioral game-theoretic
models [59,72].

Minimax is a paramount concept in game theory that is roughly described as minimizing
the worst case scenario (maximum loss) [341]. Li et al. [190] took the minimax idea as an
approach to robustify learning in multiagent environments so that the learned robust policy
should be able to behave well even with strategies not seen during training. They extended
the MADDPG algorithm [206] to Minimax Multiagent Deep Deterministic Policy Gradients
(M3DDPG), which updates policies considering a worst-case scenario: assuming that all
other agents act adversarially. This yields a minimax learning objective which is computa-
tionally intractable to directly optimize. They address this issue by taking ideas from robust
reinforcement learning [227] which implicitly adopts the minimax idea by using the worst
noise concept [257]. In MAL different approaches were proposed to assess the robustness of
an algorithm, e.g., guarantees of safety [66,259], security [73] or exploitability [80,161,215].

Previous approaches usually learned a model of the other agents as a way to predict their
behavior. However, they do not explicitly account for anticipated learning of the other agents,
which is the objective of Learning with Opponent-Learning Awareness (LOLA) [97]. LOLA
optimizes the expected return after the opponent updates its policy one step. Therefore, a
LOLA agent directly shapes the policy updates of other agents to maximize its own reward.
One of LOLA’s assumptions is having access to opponents’ policy parameters. LOLA builds
on previous ideas by Zhang and Lesser [363] where the learning agent predicts the opponent’s
policy parameter update but only uses it to learn a best response (to the anticipated updated
parameters).

Theory of mind is part of a group of recursive reasoning approaches[60,61,109,110] in
which agents have explicit beliefs about the mental states of other agents. The mental states
of other agents may, in turn, also contain beliefs and mental states of other agents, leading
to a nesting of beliefs [6]. Theory of Mind Network (ToMnet) [263] starts with a simple
premise: when encountering a novel opponent, the agent should already have a strong and
rich prior about how the opponent should behave. ToMnet has an architecture composed of
three networks: (i) a character network that learns from historical information, (ii) a mental
state network that takes the character output and the recent trajectory, and (iii) the prediction
network that takes the current state as well as the outputs of the other networks as its input.
The output of the architecture is open for different problems but in general its goal is to
predict the opponent’s next action. A main advantage of ToMnet is that it can predict general
behavior, for all agents; or specific, for a particular agent.

Deep Bayesian Theory of Mind Policy (Bayes-ToMoP) [358] is another algorithm that
takes inspiration from theory of mind [76]. The algorithm assumes the opponent has different
stationary strategies to act and changes among them over time [140]. Earlier work in MAL
dealt with this setting, e.g., BPR+ [143] extends the Bayesian policy reuse16 framework [272]
to multiagent settings (BPR assumes a single-agent environment; BPR+ aims to best respond
to the opponent in a multiagent game). A limitation of BPR+ is that it behaves poorly against
itself (self-play), thus, Deep Bayes-ToMoP uses theory of mind to provide a higher-level
reasoning strategy which provides an optimal behavior against BPR+ agents.

Deep BPR+ [366] is another work inspired by BPR+ which uses neural networks as
value-function approximators. It not only uses the environment reward but also uses the

16 Bayesian policy reuse assumes an agent with prior experience in the form of a library of policies. When a
novel task instance occurs, the objective is to reuse a policy from its library based on observed signals which
correlate to policy performance [272].
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online learned opponent model [139,144] to construct a rectified belief over the opponent
strategy. Additionally, it leverages ideas from policy distillation [146,273] and extends them
to the multiagent case to create a distilled policy network. In this case, whenever a new
acting policy is learned, distillation is applied to consolidate the new updated library which
improves in terms of storage and generalization (over opponents).

4 Bridging RL, MAL andMDRL

This section aims to provide directions to promote fruitful cooperations between sub-
communities. First, we address the pitfall of deep learning amnesia, roughly described as
missing citations to the original works and not exploiting the advancements that have been
made in the past. We present examples on how ideas originated earlier, for example in RL
and MAL, were successfully extended to MDRL (see Sect. 4.1). Second, we outline lessons
learned from the works analyzed in this survey (see Sect. 4.2). Then we point the readers
to recent benchmarks for MDRL (see Sect. 4.3) and we discuss the practical challenges that
arise in MDRL like high computational demands and reproducibility (see Sect. 4.4). Lastly,
we pose some open research challenges and reflect on their relation with previous open
questions in MAL [6] (see Sect. 4.5).

4.1 Avoiding deep learning amnesia: examples in MDRL

This survey focuses on recent deep works, however, in previous sections, when describing
recent algorithms, we also point to original works that inspired them. Schmidhuber said
“Machine learning is the science of credit assignment. The machine learning community
itself profits from proper credit assignment to its members” [280]. In this context, we want to
avoid committing the pitfall of not giving credit to original ideas that were proposed earlier,
a.k.a. deep learning amnesia. Here, we provide some specific examples of research mile-
stones that were studied earlier, e.g., RL or MAL, and that now became highly relevant for
MDRL. Our purpose is to highlight that existent literature contains pertinent ideas and algo-
rithms that should not be ignored. On the contrary, they should be examined and cited [58,79]
to understand recent developments [343].

Dealing with non-stationarity in independent learners It is well known that using indepen-
dent learners makes the environment non-stationary from the agent’s point of view [182,333].
Many MAL algorithms tried to solve this problem in different ways [141]. One example is
Hyper-Q [326]which accounts for the (values ofmixed) strategies of other agents and includes
that information in the state representation, which effectively turns the learning problem into
a stationary one. Note that in this way it is possible to even consider adaptive agents. Foer-
ster et al. [96] make use of this insight to propose their fingerprint algorithm in an MDRL
problem (see Sect. 3.5). Other examples include the leniency concept [37] and Hysteretic
Q-learning [213] originally presented in MAL, which now have their “deep” counterparts,
LDQNs [247] and DEC-HDRQNs[244], see Sect. 3.5.

Multiagent credit assignment In cooperative multiagent scenarios, it is common to use either
local rewards, unique for each agent, or global rewards, which represent the entire group’s
performance [3]. However, local rewards are usually harder to obtain, therefore, it is common
to rely only on the global ones. This raises the problem of credit assignment: how does a
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single agent’s actions contribute to a system that involves the actions of many agents [2]. A
solution that came fromMAL research that has proven successful in many scenarios is differ-
ence rewards [3,86,332], which aims to capture an agent’s contribution to the system’s global
performance. In particular the aristocrat utility aims to measure the difference between an
agent’s actual action and the average action [355], however, it has a self-consistency problem
and in practice it is more common to compute the wonderful life utility [355,356], which
proposes to use a clamping operation that would be equivalent to removing that player from
the team. COMA [98] builds on these concepts to propose an advantage function based on
the contribution of the agent, which can be efficiently computed with deep neural networks
(see Sect. 3.5).

Multitask learning In the context of RL,multitask learning [62] is an area that develops agents
that can act in several related tasks rather than just in a single one [324].Distillation, roughly
defined as transferring the knowledge from a large model to a small model, was a concept
originally introduced for supervised learning and model compression [52,146]. Inspired by
those works, Policy distillation [273] was extended to the DRL realm. Policy distillation was
used to train a much smaller network and to merge several task-specific policies into a single
policy, i.e., for multitask learning. In theMDRL setting, Omidshafiei et al. [244] successfully
adapted policy distillation within Dec-HDRQNs to obtain a more general multitask multia-
gent network (see Sect. 3.5). Another example is Deep BPR+ [366] which uses distillation
to generalize over multiple opponents (see Sect. 3.6).

Auxiliary tasks Jaderberg et al. [158] introduced the term auxiliary task with the insight
that (single-agent) environments contain a variety of possible training signals (e.g., pixel
changes). These tasks are naturally implemented in DRL in which the last layer is split into
multiple parts (heads), each working on a different task. All heads propagate errors into the
same shared preceding part of the network, which would then try to form representations,
in its next-to-last layer, to support all the heads [315]. However, the idea of multiple predic-
tions about arbitrary signals was originally suggested for RL, in the context of general value
functions [315,317] and there still open problems, for example, better theoretical understand-
ing [31,88]. In the context of neural networks, early work proposed hints that improved the
network performance and learning time. Suddarth and Kergosien [311] presented a minimal
example of a small neural networkwhere itwas shown that adding an auxiliary task effectively
removed local minima. One could think of extending these auxiliary tasks to modeling other
agents’ behaviors [142,225], which is one of the key ideas that DPIQN and DRPIQN [148]
proposed in MDRL settings (see Sect. 3.6).

Experience replay Lin [193,194] proposed the concept of experience replay to speed up the
credit assignment propagation process in single agent RL. This concept became central to
many DRL works [220] (see Sect. 2.2). However, Lin stated that a condition for the ER to be
useful is that “the environment should not change over time because this makes past experi-
ences irrelevant or even harmful” [194]. This is a problem in domains where many agents are
learning since the environment becomes non-stationary from the point of view of each agent.
Since DRL relies heavily on experience replay, this is an issue inMDRL: the non-stationarity
introduced means that the dynamics that generated the data in the agent’s replay memory no
longer reflect the current dynamics in which it is learning [96]. To overcome this problem
different methods have been proposed [99,244,247,365], see Sect. 4.2.
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Double estimators Double Q-learning [130] proposed to reduce the overestimation of action
values in Q-learning, this is caused by using the maximum action value as an approximation
for themaximumexpected action value.DoubleQ-learningworks by keeping twoQ functions
and was proven to convergence to the optimal policy [130]. Later this idea was applied to
arbitrary function approximators, including deep neural networks, i.e., Double DQN [336],
which were naturally applied since two networks were already used in DQN (see Sect. 2.2).
These ideas have also been recently applied to MDRL [365].

4.2 Lessons learned

We have exemplified howRL andMAL can be extended forMDRL settings. Now, we outline
general best practices learned from the works analyzed throughout this paper.

– Experience replay buffer in MDRL While some works removed the ER buffer in
MDRL [96] it is an important component in many DRL and MDRL algorithms. How-
ever, using the standard buffer (i.e., keeping 〈s, a, r , s′〉) will probably fail due to a lack
of theoretical guarantees under this setting, see Sects. 2.2 and 4.1. Adding information
in the experience tuple that can help disambiguate the sample is the solution adopted
in many works, whether a value based method [99,244,247,365] or a policy gradient
method [206]. In this regard, it is an open question to consider how new DRL ideas could
be best integrated into the ER [11,83,153,196,278] and how those ideas would fare in a
MDRL setting.

– Centralized learning with decentralized execution Many MAL works were either fully
centralized or fully decentralized approaches. However, inspired by decentralized par-
tially observable Markov decison processes (DEC-POMDPs) [34,237],17 in MDRL this
new mixed paradigm has been commonly used [98,99,180,206,247,266] (a notable
exception are DEC-HDRQNs [244] which perform learning and execution in a decen-
tralizedmanner, see Sect. 3.5). Note that not all real-world problems fit into this paradigm
and it ismore common for robotics or gameswhere a simulator is generally available [96].
The main benefit is that during learning additional information can be used (e.g., global
state, action, or rewards) and during execution this information is removed.

– Parameter sharing Another frequent component in many MDRL works is the idea of
sharing parameters, i.e., training a single network in which agents share their weights.
Note that, since agents could receive different observations (e.g., in partially observable
scenarios), they can still behave differently. This method was proposed concurrently in
different works [96,124] and later it has been successfully applied in many others [99,
253,266,312,313].

– Recurrent networks Recurrent neural networks (RNNs) enhanced neural networks with
a memory capability, however, they suffer from the vanishing gradient problem, which
renders them inefficient for long-term dependencies [252]. However, RNN variants such
as LSTMs [114,147] and GRUs (Gated Recurrent Unit) [67] addressed this challenge. In
single-agent DRL, DRQN [131] initially proposed idea of using recurrent networks in
single-agent partially observable environments. Then, Feudal Networks [338] proposed
a hierarchical approach [82], multiple LSTM networks with different time-scales, i.e.,
the observation input schedule is different for each LSTM network, to create a temporal
hierarchy so that it can better address the long-term credit assignment challenge for
RL problems. Recently, the use of recurrent networks has been extended to MDRL to

17 Centralized planning and decentralized execution is also a standard paradigm formultiagent planning [239].
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address the challenge of partially observability [24,96,148,244,253,263,265,266,313] for
example, in FTW [156], depicted in Fig. 5 and DRPIRQN [148] depicted in Fig. 6. See
Sect. 4.4 for practical challenges (e.g., training issues) of recurrent networks in MDRL.

– Overfitting in MAL In single-agent RL, agents can overfit to the environment [352].
A similar problem can occur in multiagent settings [160], agents can overfit, i.e., an
agent’s policy can easily get stuck in a local optima and the learned policy may be only
locally optimal to other agents’ current policies [190]. This has the effect of limiting the
generalization of the learned policies [180]. To reduce this problem, a solution is to have
a set of policies (an ensemble) and learn from them or best respond to the mixture of
them [133,180,206]. Another solution has been to robustify algorithms—a robust policy
should be able to behave well even with strategies different from its training (better
generalization) [190].

4.3 Benchmarks for MDRL

Standardized environments such as the Arcade Learning Environment (ALE) [32,211] and
OpenAIGym [48] have allowed single-agent RL tomove beyond toy domains. ForDRL there
are open-source frameworks that provide compact and reliable implementations of some
state-of-the-art DRL algorithms [65]. Even though MDRL is a recent area, there are now
a number of open sourced simulators and benchmarks to use with different characteristics,
which we describe below.

– Fully Cooperative Multiagent Object Transporation Problems (CMOTPs)18 were orig-
inally presented by Busoniu et al. [56] as a simple two-agent coordination problem in
MAL. Palmer et al. [247] proposed two pixel-based extensions to the original setting
which include narrow passages that test the agents’ ability to master fully-cooperative
sub-tasks, stochastic rewards and noisy observations, see Fig. 7a.

– The Apprentice Firemen Game19 (inspired by the classic climb game [70]) is another
two-agent pixel-based environment that simultaneously confronts learners with four
pathologies in MAL: relative overgeneralization, stochasticity, the moving target prob-
lem, and alter exploration problem [246].

– Pommerman [267] is a multiagent benchmark useful for testing cooperative, competitive
and mixed (cooperative and competitive) scenarios. It supports partial observability and
communication among agents, see Fig. 7b. Pommerman is a very challenging domain
from the exploration perspective as the rewards are very sparse and delayed [107]. A
recent competition was held during NeurIPS-201820 and the top agents from that com-
petition are available for training purposes.

– Starcraft Multiagent Challenge [276] is based on the real-time strategy game StarCraft II
and focuses onmicromanagement challenges,21 that is, fine-grained control of individual
units, where each unit is controlled by an independent agent that must act based on
local observations. It is accompanied by a MDRL framework including state-of-the-art
algorithms (e.g., QMIX and COMA).22

18 https://github.com/gjp1203/nui_in_madrl.
19 https://github.com/gjp1203/nui_in_madrl.
20 https://www.pommerman.com/.
21 https://github.com/oxwhirl/smac.
22 https://github.com/oxwhirl/pymarl.
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(a) Multiagent object transportation (b) Pommerman

Fig. 7 a A fully cooperative benchmark with two agents, Multiagent Object Trasportation. b A mixed
cooperative-competitive domain with four agents, Pommerman. For more MDRL benchmarks see Sect. 4.3

– The Multi-Agent Reinforcement Learning in Malmö (MARLÖ) competition [254] is
another multiagent challenge with multiple cooperative 3D games23 within Minecraft.
The scenarios were created with the open sourceMalmö platform [162], providing exam-
ples of how a wider range of multiagent cooperative, competitive and mixed scenarios
can be experimented on within Minecraft.

– Hanabi is a cooperative multiplayer card game (two to five players). The main character-
istic of the game is that players do not observe their own cards but other players can reveal
information about them. This makes an interesting challenge for learning algorithms in
particular in the context of self-play learning and ad-hoc teams [5,44,304]. The Hanabi
Learning Environment [25] was recently released24 and it is accompanied with a baseline
(deep RL) agent [145].

– Arena [298] is platform for multiagent research25 based on the Unity engine [163]. It
has 35 multiagent games (e.g., social dilemmas) and supports communication among
agents. It has basseline implementations of recent DRL algorithms such as independent
PPO learners.

– MuJoCo Multiagent Soccer [203] uses the MuJoCo physics engine [327]. The environ-
ment simulates a 2 vs. 2 soccer game with agents having a 3-dimensional action space.26

– Neural MMO [308] is a research platform27 inspired by the human game genre of Mas-
sively Multiplayer Online (MMO) Role-Playing Games. These games involve a large,
variable number of players competing to survive.

23 https://github.com/crowdAI/marlo-single-agent-starter-kit/.
24 https://github.com/deepmind/hanabi-learning-environment.
25 https://github.com/YuhangSong/Arena-BuildingToolkit.
26 https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion/soccer.
27 https://github.com/openai/neural-mmo.
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4.4 Practical challenges in MDRL

In this section we take a more critical view with respect to MDRL and highlight different
practical challenges that already happen in DRL and that are likely to occur inMDRL such as
reproducibility, hyperparameter tuning, the need of computational resources and conflation of
results. We provide pointers on howwe think those challenges could be (partially) addressed.

Reproducibility, troubling trends and negative results Reproducibility is a challenge in RL
which is only aggravated in DRL due to different sources of stochasticity: baselines, hyper-
parameters, architectures [137,228] and random seeds [69]. Moreover, DRL does not have
common practices for statistical testing [100] which has led to bad practices such as only
reporting the results when algorithms performwell, sometimes referred as cherry picking [16]
(Azizzadenesheli also describes cherry planting as adapting an environment to a specific
algorithm [16]). We believe that together with following the advice on how to design exper-
iments and report results [197], the community would also benefit from reporting negative
results [100,108,270,286] for carefully designed hypothesis and experiments.28 However,
we found very few papers with this characteristic[17,170,208] — we note that this is not
encouraged in the ML community; moreover, negative results reduce the chance of paper
acceptance [197]. In this regard, we ask the community to reflect on these practices and find
ways to remove these obstacles.

Implementation challenges and hyperparameter tuningOne problem is that canonical imple-
mentations of DRL algorithms often contain additional non-trivial optimizations—these are
sometimes necessary for the algorithms to achieve good performance [151]. A recent study
by Tucker et al. [331] found that several published works on action-dependant baselines
contained bugs and errors—those were the real reason of the high performance in the exper-
imental results, not the proposed method. Melis et al. [216] compared a series of works with
increasing innovations in network architectures and the vanilla LSTMs [147] (originally pro-
posed in 1997). The results showed that, when properly tuned, LSTMs outperformed the
more recent models. In this context, Lipton and Steinhardt noted that the community may
have benefited more by learning the details of the hyperparameter tuning [197]. A partial rea-
son for this surprising result might be that this type of networks are known for being difficult
to train [252] and there are recent works in DRL that report problems when using recur-
rent networks [78,95,106,123]. Another known complication is catastrophic forgetting (see
Sect. 2.2) with recent examples in DRL [264,336]—we expect that these issues would likely
occur in MDRL. The effects of hyperparameter tuning were analyzed in more detail in DRL
by Henderson et al. [137], who arrived at the conclusion that hyperparameters can have sig-
nificantly different effects across algorithms (they tested TRPO, DDPG, PPO and ACKTR)
and environments since there is an intricate interplay among them [137]. The authors urge
the community to report all parameters used in the experimental evaluations for accurate
comparison—we encourage a similar behavior for MDRL. Note that hyperparameter tuning
is related to the troubling trend of cherry picking in that it can show a carefully picked set of

28 This idea was initially inspired by the Workshop “Critiquing and Correcting Trends in Machine Learning”
at NeurIPS 2018 where it was possible to submit Negative results papers: “Papers which show failure modes
of existing algorithms or suggest new approaches which one might expect to perform well but which do not.
The aim is to provide a venue for work which might otherwise go unpublished but which is still of interest to
the community.” https://ml-critique-correct.github.io/.
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parameters that make an algorithm work (see previous challenge). Lastly, note that hyperpa-
rameter tuning is computationally very expensive, which relates to the connection with the
following challenge of computational demands.

Computational resources Deep RL usually requires millions of interactions for an agent to
learn [9], i.e., low sample efficiency [361], which highlights the need for large computational
infrastructure in general. The original A3C implementation [219] uses 16 CPU workers for
4 days to learn to play an Atari game with a total of 200M training frames29 (results are
reported for 57 Atari games). Distributed PPO used 64 workers (presumably one CPU per
worker, although this is not clearly stated in the paper) for 100 hours (more than 4days)
to learn locomotion tasks [134]. In MDRL, for example, the Atari Pong game, agents were
trained for 50 epochs, 250k time steps each, for a total of 1.25M training frames [322].
The FTW agent [156] uses 30 agents (processes) in parallel and every training game lasts for
5min; FTW agents were trained for approximately 450K games≈4.2 years. These examples
highlight the computational demands sometimes needed within DRL and MDRL.

Recent works have reduced the learning of an Atari game to minutes (Stooke and
Abbeel [306] trained DRL agents in less than one hour with hardware consisting of 8 GPUs
and 40 cores). However, this is (for now) the exception and computational infrastructure is a
major bottleneck for doing DRL andMDRL, especially for those who do not have such large
compute power (e.g.,most companies andmost academic research groups) [29,286].30 Within
this context we propose two ways to address this problem. (1) Raising awareness: For DRL
we found few works that study the computational demands of recent algorithms [9,18]. For
MDRLmost published works do not provide information regarding computational resources
used such as CPU/GPU usage, memory demands, and wall-clock computation. Therefore,
the first way to tackle this issue is by raising awareness and encouraging authors to report
metrics about computational demands for accurately comparison and evaluation. (2) Delve
into algorithmic contributions. Another way to address these issues is to prioritize the algo-
rithmic contribution for the new MDRL algorithms rather than the computational resources
spent. Indeed, for this to work, it needs to be accompanied with high-quality reviewers.

We have argued to raise awareness on the computational demands and report results,
however, there is still the open question on how andwhat to measure/report. There are several
dimensions to measure efficiency: sample efficiency is commonly measured by counting
state-action pairs used for training; computational efficiency could be measured by number
of CPUs/GPUs and days used for training. How dowemeasure the impact of other resources,
such as external data sources or annotations?31 Similarly, do we need to differentiate the
computational needs of the algorithm itself versus the environment it is run in? We do not
have the answers, however, we point out that current standard metrics might not be entirely
comprehensive.

In the end, we believe that high compute based methods act as a frontier to showcase
benchmarks [235,339], i.e., they show what results are possible as data and compute is
scaled up (e.g., OpenAI Five generates 180 years of gameplay data each day using 128,000

29 It is sometimes unclear in the literature what is the meaning of frame due to the “frame skip” technique. It
is therefore suggested to refer to “game frames” and “training frames” [310].
30 One recent effort by Beeching et al. [29] proposes to use only “mid-range hardware” (8 CPUs and 1 GPU)
to train deep RL agents.
31 NeurIPS 2019 hosts the “MineRL Competition on Sample Efficient Reinforcement Learning using Human
Priors” where the primary goal of the competition is to foster the development of algorithms which can effi-
ciently leverage human demonstrations to drastically reduce the number of samples needed to solve complex,
hierarchical, and sparse environments [125].
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CPU cores and 256 GPUs [235]; AlphaStar uses 200 years of Starcraft II gameplay [339]);
however, lighter compute based algorithmic methods can also yield significant contributions
to better tackle real-world problems.

Occam’s razor and ablative analysis Finding the simplest context that exposes the innova-
tive research idea remains challenging, and if ignored it leads to a conflation of fundamental
research (working principles in the most abstract setting) and applied research (working
systems as complete as possible). In particular, some deep learning papers are presented as
learning from pixels without further explanation, while object-level representations would
have already exposed the algorithmic contribution. This still makes sense to remain compara-
ble with established benchmarks (e.g., OpenAI Gym [48]), but less so if custom simulations
are written without open source access, as it introduces unnecessary variance in pixel-level
representations and artificially inflates computational resources (see previous point about
computational resources).32 In this context there are some notable exceptions where the
algorithmic contribution is presented in a minimal setting and then results are scaled into
complex settings: LOLA [97] first presented a minimalist setting with a two-player two-
action game and then with a more complex variant; similarly, QMIX [266] presented its
results in a two-step (matrix) game and then in the more involved Starcraft II micromanage-
ment domain [276].

4.5 Open questions

Finally, here we present some open questions for MDRL and point to suggestions on how
to approach them. We believe that there are solid ideas in earlier literature and we refer the
reader to Sect. 4.1 to avoid deep learning amnesia.

– On the challenge of sparse and delayed rewards.
Recent MDRL competitions and environments have complex scenarios where many
actions are taken before a reward signal is available (see Sect. 4.3). This sparseness
is already a challenge for RL [89,315] where approaches such as count-based explo-
ration/intrinsic motivation [27,30,47,279,307] and hierarchical learning [87,178,278]
have been proposed to address it—in MDRL this is even more problematic since the
agents not only need to learn basic behaviors (like in DRL), but also to learn the strategic
element (e.g., competitive/collaborative) embedded in the multiagent setting. To address
this issue, recent MDRL approaches applied dense rewards [176,212,231] (a concept
originated in RL) at each step to allow the agents to learn basic motor skills and then
decrease these dense rewards over time in favor of the environmental reward [24], see
Sect. 3.3. Recent works like OpenAI Five [235] uses hand-crafted intermediate rewards
to accelerate the learning and FTW [156] lets the agents learn their internal rewards by
a hierarchical two-tier optimization. In single agent domains, RUDDER [12] has been
recently proposed for such delayed sparse reward problems. RUDDER generates a new
MDP withmore intermediate rewards whose optimal solution is still an optimal solution
to the original MDP. This is achieved by using LSTM networks to redistribute the origi-
nal sparse reward to earlier state-action pairs and automatically provide reward shaping.
How to best extend RUDDER to multiagent domains is an open avenue of research.

– On the role of self-play.
Self-play is a cornerstone in MAL with impressive results [42,45,71,113,149]. While

32 Cuccu, Togelius and Cudré-Mauroux achieved state-of-the-art policy learning in Atari games with only 6
to 18 neurons [75]. The main idea was to decouple image processing from decision-making.
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notable results had also been shown in MDRL [43,136], recent works have also shown
that plain self-play does not yield the best results. However, adding diversity, i.e.,
evolutionary methods [20,85,185,271] or sampling-based methods, have shown good
results [24,156,187]. A drawback of these solutions is the additional computational
requirements since they need either parallel training (more CPU computation) ormemory
requirements. Then, it is still an open problem to improve the computational efficiency
of these previously proposed successful methods, i.e., achieving similar training stability
with smaller population sizes that uses fewer CPU workers in MAL and MDRL (see
Sect. 4.4 and Albrecht et al. [6, Section 5.5]).

– On the challenge of the combinatorial nature of MDRL.
Monte Carlo tree search (MCTS) [51] has been the backbone of the major breakthroughs
behind AlphaGo [291] and AlphaGo Zero [293] that combined search and DRL. A recent
work [340] has outlined how search and RL can be better combined for potentially new
methods. However, for multiagent scenarios, there is an additional challenge of the expo-
nential growth of all the agents’ action spaces for centralized methods [169]. One way
to tackle this challenge within multiagent scenarios is the use of search paralleliza-
tion [35,171]. Given more scalable planners, there is room for research in combining
these techniques in MDRL settings.
To learn complex multiagent interactions some type of abstraction [84] is often needed,
for example, factored value functions [8,119–121,174,236] (see QMIX and VDN in
Sect. 3.5 for recent work in MDRL) try to exploit independence among agents through
(factored) structure; however, in MDRL there are still open questions such as under-
standing their representational power [64] (e.g., the accuracy of the learned Q-function
approximations) and how to learn those factorizations, where ideas from transfer plan-
ning techniques could be useful [240,335]. In transfer planning the idea is to define a
simpler “source problem” (e.g., with fewer agents), in which the agent(s) can plan [240]
or learn [335]; since it is less complex than the real multiagent problem, issues such as
the non-stationarity of the environment can be reduced/removed. Lastly, another related
idea are influence abstractions [28,141,241], where instead of learning a complex multi-
agent model, these methods try to build smaller models based on the influence agents can
exert on one another. While this has not been sufficiently explored in actual multiagent
settings, there is some evidence that these ideas can lead to effective inductive biases,
improving effectiveness of DRL in such local abstractions [309].

5 Conclusions

Deep reinforcement learning has shown recent success on many fronts [221,224,291] and a
natural next step is to testmultiagent scenarios.However, learning inmultiagent environments
is fundamentally more difficult due to non-stationarity, the increase of dimensionality, and
the credit-assignment problem, among other factors [45,55,141,246,305,332,348].

This survey provides a broad overview of recent works in the emerging area of Multiagent
Deep Reinforcement Learning (MDRL). First, we categorized recent works into four differ-
ent topics: emergent behaviors, learning communication, learning cooperation, and agents
modeling agents. Then, we exemplified how key components (e.g., experience replay and
difference rewards) originated in RL andMAL need to be adapted to work inMDRL.We pro-
vided general lessons learned applicable to MDRL, pointed to recent multiagent benchmarks
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and highlighted some open research problems. Finally, we also reflected on the practical
challenges such as computational demands and reproducibility in MDRL.

Our conclusions of this work are that while the number of works in DRL and MDRL are
notable and represent important milestones for AI, at the same time we acknowledge there
are also open questions in both (deep) single-agent learning [81,151,211,328] and multia-
gent learning [116,172,195,242,245,360]. Our view is that there are practical issues within
MDRL that hinder its scientific progress: the necessity of high compute power, complicated
reproducibility (e.g., hyperparameter tuning), and the lack of sufficient encouragement for
publishing negative results. However, we remain highly optimistic of the multiagent commu-
nity and hope this work serves to raise those issues, encounter good solutions, and ultimately
take advantage of the existing literature and resources available to move the area in the right
direction.
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