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Abstract
This paper presents a framework, called VerifCar, devoted to the validation of decision
policies of communicating autonomous vehicles (CAVs). The approach focuses on the formal
modeling of CAVs by means of timed automata, allowing a formal and exhaustive analysis
of the behaviors of vehicles.VerifCar supports a parametric modeling of CAV systems as a
network of timed automata tailored for verification and limiting the well-known state space
explosion. As an illustration,VerifCar is applied to check robustness and efficiency, as well
as to asses the impact of communication delays on the decision algorithms of CAVs, on well
chosen case studies representing real-life critical situations.

Keywords Timed automata · Formal verification · Model checking · Communicating
autonomous vehicles

1 Introduction

Autonomous vehicles are rational sophisticated entities (sometimes called agents) that, as
the term already suggests, act autonomously across open and distributed environments. They
may have different perceptions of the environment because of the information they possess,
and differing interests in terms of the goal to be accomplished. Inter-vehicle communications
affect perceptions and, in turn, individual decisions and behaviors. A system of communicat-
ing autonomous vehicles (CAV system) is then both amulti-agent system [32] and a real-time
system [2]. More precisely, a CAV system is a network of vehicles that communicate with
their neighbors to fulfill a goal as fast as possible while complying to the traffic laws and
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avoiding crashes. Moreover, the correctness of such a system also requires to respect a set of
time constraints.

Through some level of abstraction, computer simulations enable one tomodel the behavior
of vehicles in a chosen environment so that various kinds of scenarios may be studied [6,
27,33]. However, when vehicles present non-deterministic behaviors, simulation tools are
generally not exhaustive since each simulation corresponds to a single path in the graph of
all the possible behaviors. This is especially true in the context of communicating agents,
where agents interact during non-deterministic time intervals, adding a new kind of non-
determinism to the usual one, offering various possible actions at some point. It is therefore
appealing to formally verify the core CAVbehaviors in order to be confident in the integration
of autonomous vehicles into the road traffic.

Formal modeling and verification of CAV systems require not only the definition of both
the vehicle states and the road (the environment) but also a specification of interactions
between vehicles and an expressive query language to check properties. Ideally, the resulting
model of a CAV system should be accurate enough to capture the spatial and time aspects of
the original systemand should also provide a formal basis for the verification of properties like
robustness to faults, effectiveness ofmaneuvers or the impossibility of collisions (safety), and
for the calibration and assessment of decision policies. The language for stating properties
should be expressive enough for the needs and appropriate for applying automatic verification
techniques and tools.

A widely used automatic technique for system verification is model checking [10]. It
provides algorithmicmeans for determiningwhether an abstractmodel—representing a hard-
ware/software/mixed project (in our case a CAV system)—satisfies a formal specification
(property) expressed as a temporal logic formula. Moreover, if the property does not hold,
the method usually identifies a counterexample run that shows the/a source of the problem.

The main objective of this paper is to present a way to perform formal modeling and
model checking of CAV systems, focusing on the impact of various types of communications
on vehicles’ safety and traffic fluidity. More specifically, we present a framework, called
VerifCar, composed of a scalable model of a CAV system optimized for formal verification
together with a method of calculating indicators allowing to evaluate the quality of a given
autonomous vehicle decision policy. The framework is designed in particular to be exhaustive
on the non-determinism induced by the latency, communication delays and concurrency
features. To show the usefulness of our approach, we present various examples of impacts
the communications may have on safety, efficiency or traffic fluidity.

The underlying modeling formalism that we use in VerifCar to specify the behavior of
CAVs is a model of Timed Automata [2], which is a standard supported by several verifica-
tion tools, e.g., the model checker Uppaal[28]. The timed automata formalism is the most
well-established model for the specification and verification of distributed real-time system
designs. Among many advantages, it allows:

– to create a clear and concise abstract model of the considered CAV systems;
– to assess the robustness of a vehicle decision policy through a fault injection; and
– to apply model checking algorithms and tools, in particular the algorithms designed for

timed properties expressed in the temporal logic TCTL [1].

To the best of our knowledge, this kind of formal approach does not seem to have been
exploited up to now, except in our recent conference communication [4], of which the present
paper is an extended and improved version.

The structure of the paper is as follows: Sects. 1 and 2 introduce the motivation and objec-
tives of this paper, and connect them with the related work in the field. Section 3 defines our
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CAV systems at an abstraction level adapted to our issues. Section 4 introduces our frame-
work VerifCar as a parametric network of timed automata synchronizing through broadcast
inter-vehicle communications. Two more elaborate communication schemes (negotiations
and communications via road infrastructure) are also considered. Section 5 recalls briefly
the temporal logic used in our framework and the verification process, including the indica-
tors chosen for the verification purposes and the way they can be computed during model
checking. Section 6 justifies our choices of parameters and variables to describe the system,
together with a discretization required for verification, allowing the reduction of the resulting
state space according to a desired precision. Section 7 shows several examples of how Ver-
ifCarmay be used to study the behavior of autonomous vehicles in presence of inter-vehicle
communications, with or without some forms of negotiation or vehicle-infrastructure com-
munications. It includes a discussion on how a practitioner should use VerifCar. Section 8
concludes the paper by summarizing the contributions and highlights possible extensions
of VerifCar allowing to ease its usage and to tackle more complex problems. Finally, an
Appendix details some algorithm evoked in the text.

2 Related work

The decision policies of CAVs can potentially impact safety, traffic fluidity and energy
consumption. They often rely in practice on trajectory planning algorithms studied in 3D
simulation, often in conjunction with on-road experiments [14,15,17,19,21]. While the reli-
ability of such systems is a key concern of policy-makers [26], the formal verification of
decision policies of CAVs appears to be under-explored.

Among the approaches dealing with formal verification in the context of autonomous
vehicles, some use timedmodels, which seem suitable for studying non-determinism induced
by message delays and latency in vehicles’ communications. This is the case for example in
[13], which aims at verifying the functional layer of mobile robots, i.e., the low-level layer
which interacts directly with sensors and actuators and transmits information to the decision
layer. For this reason, it does not need tomodel several agents evolving in a given environment.
Another example is [16], which addresses the soundness of vehicle platooning (enabling
vehicles to travel as a group on the roads). It focuses on properties of the vehicle platoon, for
instance, correct joining and leaving, and considers the representation of vehicles relatively
to the platoon. Both these approaches focus on specific properties and their optimizedmodels
are not complete enough for our needs.

In [23] hybrid systems are used to model autonomous vehicles. With this formalism, com-
bining both continuous state variables and discrete operating modes, their model achieves a
realistic representation of vehicles physics, similar to those which may be found in simula-
tions (slip angle, yaw rate, etc.). However, such a realism leads to low performances during
the verification phase, as shown in the presented case study. Indeed, for a system with only
two vehicles and a single one applying a decision policy generating limited non-determinism
(n paths for n time steps) and the absence of communications between vehicles, the model
checker dReach [18] already takes a few minutes for a full exploration of the state space.

Another work, concerning train controllers modeled by hybrid systems [24], proposes a
similar representation of agents, taking into account their velocity and acceleration in order
to model a realistic physical movement. Here, communications between trains are possible,
but the state explosion phenomenon is even more present, since a simple case with two trains
takes more than half an hour to give results.
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The closest work to ours seems to be [25], involving robots evolving in a two dimensional
grid and modeled with a formalism based on timed automata. The mobile robots are repre-
sented as agents evolving in a physical environment but at a very high level of abstraction
and only basic actions can be performed (such as moving to an adjacent cell). In particular,
the model does not include velocity or acceleration values, which are crucial for the realism
of vehicles on a road. Furthermore, agents cannot communicate with each other, making it
impossible to study the non-determinism induced by communications on a CAV system.

3 General view of a CAV system

The systems of CAVs we consider are composed of several lanes forming a portion of a
motorway on which several vehicles can move in the same direction, each one realizing some
goal. Each vehicle is defined by a set of constants such as its length or braking capacities. We
assume that the vehicles are provided with various perception sensors allowing to observe the
behavior of their neighbors. As our approach focuses on the impact of communications on
decisions,we assume these sensors are perfect, in the sense that the information obtained from
them is always accurate and immediate. Vehicles are also able to communicate and receive
pieces of information, which are not directly observable, such as the planned lane change
of the other vehicles. These communications are timed in order to realistically represent the
delays between emissions and receptions of data. The behavior of each vehicle consists in
repeating endlessly, at its own constant frequency:

– a computation allowing to make a decision on the immediate action to be performed
(i.e., execution of the decision algorithm) in the form of an acceleration (speed increase,
braking, no change) and a direction (left, right, no change), followed by

– the communication of its intention (in the form of the trajectory it wishes to follow)
to all vehicles able to receive this information. Received information coming from the
other vehicles is stored in the database of the vehicle and used when running the decision
algorithm.

The road In our framework, we consider a road section composed of one or more unidi-
rectional lanes the vehicles move on, and we store at any time the coordinates (position) of
each vehicle on it. The current position (x, y) (as well as the initial one) is expressed as the
distance from the beginning of the road section (x) and from one of the road borders (y). Due
to verification purposes requiring discrete value domains, these distances are expressed using
discrete values, but precise enough to satisfactorily model the vehicle progression on the road
(see Sect. 6 for more details on the discretization aspects). As a consequence, the position
of a vehicle is a point on a two-dimensional orthogonal grid on which the longitudinal and
lateral gaps between adjacent points may be different.
The vehicles Each vehicle is approximated on this orthogonal grid by a rectangle with a
given length and width, centered on its position (x, y) as illustrated in Fig. 1. Its state is thus
described by a record containing its position (the rectangle’s center), its current longitudinal
and lateral speeds, its longitudinal acceleration (in a given range from negative to positive
values) and its knowledge about other vehicles (for example in the form of timed trajectories).
Note that the types1 of these variables are critical and have to be chosen with care as they
directly impact both the size of the state space and the modeling precision. This topic will
be discussed in Sect. 6. Since we are not aiming at checking the control of vehicles (i.e.,

1 A type corresponds here to a range of integers.
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Fig. 1 A portion of a road discretized in x-coordinate with a granularityGranx and in y-coordinate withGrany
with a moving vehicle on position (x, y)

the module responsible for producing a trajectory according to the decision choices), we
abstract from the physical laws involved in a maneuver such as rotation or inertia. Hence, the
rectangle representing the vehicle never rotates and the direction change is applied directly
on the lateral speed value. In other words, turning the steering wheel impacts the speed value
that will make the rectangle move on the y axis, while its longitudinal speed still makes it
move on the x axis.
The decision The vehicle decision algorithm follows a given decision policy. The latter may
define in particular parameters such as safety distances to be respected in function of the
speed. In our experiments, we use a policy common to all vehicles, but this limitation may
easily be dropped. In order to make a decision, the algorithm takes into account its own state
information including what it knows about its neighborhood (for example, a representation
of timed trajectories of other vehicles) as well as its own route (goal). A route of the vehicle
is defined as a sequence of positions the vehicle has to reach. More precisely, we consider a
sequence of sets of positions to be reached, with the requirement to reach at least one position
of each set. These sets may contain several adjacent lateral positions at the same distance
from the origin. Concretely, it allows one to define the route as a parameter that will impact
the decision choices according to the exit the vehicle wants to take.
Environment update At a constant frequency, the longitudinal speed and position of each
vehicle is updated according respectively to the acceleration of the vehicle and longitudinal
and lateral speeds. We call that process the environment update, as it updates the state of all
agents on the system simultaneously. The environment update frequency should be higher
than the frequency of the decision algorithm of each vehicle. This is useful in order to avoid
that there is no update between two decisions of the same vehicle, which would mean the
first one had no impact on the state of the vehicle. In general, in order to represent the actions
of the vehicles in a realistic way, the environment update frequency should be as high as
possible. However, the size of the state space grows exponentially with the increase of this
frequency.
Timed trajectories The decision algorithm aims at predicting future conflicts between vehi-
cles, and choosing the most suitable maneuver regarding their needs. We provide for this
purpose predicted trajectories but other specific algorithms might be used.

The predicted trajectories of vehicles are timed abstractions represented as sequences of
positions the vehicle will reach at some dates up to some time horizon (typically 10 s), as
shown in Fig. 2. They are meant to represent the intention of a vehicle at a given moment and
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Fig. 2 A two lanes road section where a vehicle (dashed rectangle) is centered in (4, 2) and its predicted timed
trajectory (6, 2); (8, 2); (10, 3); (12, 4); (15, 5); (18, 5); (21, 5) for seven next time periods is shown by gray
dots (the progression in x varies in function of the speed)

can be communicated to other vehicles. In order to optimize memory space, these trajectories
are never stored but they are computed on demand from the information of a vehicle and their
neighbors, which has to be as compact as possible. To do so, we encode these trajectories
with two variables with a limited range of possible values:

– The lane the vehicle is currently aiming at.
– The time delay planned by the decision algorithm before starting a lane change (if any).

The latter delay is expressed using a gap and a maximum duration. For instance, a gap of
100ms and a maximum duration of 5 s for the time delay would give 51 possible values
([0.0, 0.1, . . . , 4.9, 5.0]) for the time delay variable. To indicate the next lane change, this
yields 103 possibilities: 51 possibilities for a left change, 51 for a right change and 1 for no
lane change.

In the real life, the predicted trajectories would of course be much more accurate but, as
in our modeling the timed precision of the environment depends on the environment update
frequency, it is of no use to represent states which could never be observed, neither by the
vehicles nor by the environment. As a consequence, we base our timed trajectories on the
environment update frequency.
Cooperation aspects As we aim to model cooperative vehicles, in addition to the vehicle-to-
vehicle information exchange, we propose to study two other forms of communications that
are likely to be used in the future for CAVs: negotiation and infrastructure-based decision.
These aspects are novel with respect to our previous work [4].

Negotiation is modeled as a distributed algorithm in which agents can interact with each
other, each agent trying to impact other agents for its personal benefit. Typically, it can be
the case that a vehicle “requests” another one to wait for some time before doing an action in
order to minimize the negative impact that this action may have on the safety and/or fluidity
of the traffic. The decision algorithms take into account such information using broadcast
communications.

Infrastructure-based decision consists in using terminals along the road, which observe
the moves and intentions of vehicles, compute and send orders to vehicles, controlling traffic
in a centralized way. Here, such terminals are modeled in the same way as the vehicles, i.e.,
as agents which receive data broadcasted by vehicles and compute the orders to be sent at a
given frequency.

Note that we designed a decision algorithm for CAV systems with several variants, with
and without taking into account the above cooperation aspects. We needed them in order
to illustrate our approach, make various experiments, and show how easily our modeling
choices allow to modify the environment of the system. However, it must be understood
that the present paper focuses on the modeling of such systems, to show how to assess the
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robustness of a given decision policy, but does not have any ambition to present and promote
a concrete and efficient decision algorithm.

4 VERIFCAR: a timed automata based framework for CAVs

Communication delays between emission and reception of data might be one of the most
critical and yet unpredictable parameters in the context of CAVs. Our objective is to make
it possible to study the non-determinism induced by such communication delays. The timed
automata formalism provides an efficient way to model such systems, leading to several tools
that have proved their usability for verification, such as Uppaal [28].

We present in this section our framework, called VerifCar, implementing the modeling
ideas introduced in the previous section, using the timed automata formalism. The model
will be expressed as a network (a set) of timed automata synchronizing using broadcast
communications. The states of each automaton are called locations. One may travel between
locations following a timed schedule constrained by the labels of the visited locations and
those of the crossed transitions (arcs). Some locations are urgent, meaning that the time may
not evolve when the corresponding automaton is there. To express timed information, special
variables called clocks evolving with time are introduced. They can be reset and can be used
in Boolean formulas defining invariants on locations or guards on transitions.

The functioning of the automata is as usual, i.e., each automaton starts from its initial
configuration (initial location and all clock values equal to zero), it may stay in a location
when its invariant (a predicate labeling the location) is true, and a transition may occur when
its guard (a predicate labeling the transition) is valid (and so is the invariant of the destination
location).

Invariants and guards may use constants (usually in the form of parameters) and variables,
either being global or specific to an automaton (like a component of a vector indexed for
example by a vehicle i).

All clocks are assumed to progress together. A broadcast channel k has an emitter, denoted
k!, and a receptor, denoted k?, each one associated with at least one transition. When a
transition with an emitter is crossed, all available transitions in the network with a reception
on the same channel must be crossed simultaneously (meaning that no other actions can
happen in between and clocks value cannot change).

4.1 VERIFCAR components and their roles

Let n be the number of agents in our system. Our model thus comprises n + 1 automata: the
environment automaton A0, and the agents automata Ai for 1 ≤ i ≤ n. Agents can be either
communicating vehicles or a communicating infrastructure (typically a set of road side units).
Besides a set of constant parameters, the data structure of the model is encoded as a set of
sub-structures, each of themmodeling the state of a single vehicle. All the variables that must
be known about that particular vehicle (position, speed, knowledge about the environment,
etc.) are members of such a sub-structure. Note that in the timed automata formalism, the
variables need to be integer numbers. Along with this data structure, we define n + 1 clocks
Ci , for 0 ≤ i ≤ n, and a broadcast channel k. We also consider three functions :

– update(), which updates the state of all agents, i.e., their longitudinal and lateral position,
speed and acceleration;
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s0 s1 C0 ≤ S
update()

C0 ≥ S

C0 := 0;update();k!

C0 < S∧C1 ≥ freq1

k!

C0 < S∧ n−1
i=1 Ci < freqi ∧Cn ≥ freqn

k!

..

.

A0

s0 s1

Ci ≤ freqi

s2

Ci ≤ MIN_comm_delayi

Ci := init_clocki Ci ≥ f reqi;k?

Ci := 0;decision(i)

Ci ≥ MAX_comm_delayi

communicate(i)
Ai

Fig. 3 VerifCar: timed automata templates A0 (for the environment) and Ai (for the agent i). The initial
locations are urgent and have double borders

– decision(i), which computes the next acceleration and direction to be applied for agent
i ;

– communicate(i), which sends information about agent i intentions to other agents.

The templates of the VerifCar model are then depicted in Fig. 3.
Agent automaton Ai (for 1 ≤ i ≤ n) is associated with clock Ci . The role of this

automaton is to trigger both the decision of agent i and the communication of this agent
to other agents. It is composed of three locations s0, s1 and s2. Location s0 is the initial
one: it is an urgent location (meaning that it must be left as soon as possible) and has an
outgoing transition to s1, which sets Ci to its initial value (defined as a parameter of the
agent). Location s1 is associated with an invariant Ci ≤ freqi where freqi is a parameter
defining the time interval between two decisions for agent i . There is a transition from s1
to s2 with a guard Ci ≥ freqi , which triggers the function decision(i) and resets Ci . This
allows for the decision to occur exactly every freqi time units. The transition is also associated
with the broadcast channel receptor k?, whose role will be explained later. Location s2 is
associated with an invariant Ci ≤ M I N_comm_delayi and has an outgoing transition to
s1 with a guard Ci ≥ M AX_comm_delayi , which triggers the function communicate(i),
where [M I N_comm_delayi , M AX_comm_delayi ] is the non-deterministic time interval
between data emission and reception by other agents. This model allows to reuse a single
clock for two timed operations (decision and communication). However, it requires that freqi
is greater or equal to M AX_comm_delayi . This should not be an issue since latency delays
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in vehicle-to-vehicle protocols are expected to be less than 100ms [7,8,31] while decision
modules cited in the literature often use a 10Hz frequency [20,29]. Note that the automaton
is the same for vehicles and infrastructures, but the data structure and the actions performed
by decision and communication are different.

Automaton A0 is associated with clock C0. Its role is to update on a regular time basis
(given as parameter S) the state of all agents. It is composed of two locations s0 (initial)
and s1. Location s0 is an urgent location and has an outgoing transition to s1, which triggers
the function update(). This is used to make the first update that initializes the state of all
agents. Location s1 is associated with an invariant C0 ≤ S and has a looping transition with
a guard C0 ≥ S, which triggers the function update() and performs a reset of clock C0. This
allows for the regular update of the system’s state. This transition is also associated with the
broadcast channel emitter k!. As the update emulates the continuous movement of objects, it
should always have priority on all decision transitions available at the same time.2 Otherwise,
it would create paths in the state space, which only exist because of the loss of information
due to the used abstractions. The role of the broadcast channel k is to deal with a form of
irrelevant non-determinism: all transitions triggering the decision process are associated with
a broadcast channel receptor k? so that, in case of concurrency, the update always has to be
triggered first.

Furthermore, thanks to the nature of the broadcast channel we use, all decision processes
available in the same time unitwill be triggered simultaneously, avoiding useless intermediary
states in the system with local non-determinism without any impact on the system. Indeed,
the decision made by an agent i is known by other agents only after i communicates, or by
seeing the behavior change, which occurs after the update following the decision. Therefore,
the order in which competing transitions triggering the decision process are executed is
irrelevant.

These transitionsmust nowwait for k! to be triggered, but are not necessarily synchronized
with the update sampling defined by S. A solution to this issue would be to add on A0 a
looping transition on s1 with a guard C0 < S ∧ ∨n

i=1 Ci ≥ freqi that triggers k!. However,
the disjunction operator

∨
is not supported by the tool we use. To emulate this behavior

without introducing useless non-determinism, we added on A0 one looping transition per
agent (hence n loops), so that for each i ∈ [1, n] there is a transition from s1 to s1 with a
guard C0 < S ∧ ∧i−1

j=1 C j < freq j ∧ Ci ≥ freqi that triggers k!. This particular modeling
can be seen as a binary decision diagram. Indeed, if at least one agent can perform its action,
there exists i ∈ [1, n] such that decision(i) is available and ∀ j ∈ [1, i − 1] decision( j)
is not. Therefore, only one transition in A0 is available at any moment, which induces a
deterministic progression with this automaton.

5 VERIFCAR checking objectives andmethodology

In order to use the chosen model checking tool for the VerifCar model, the queries must
be expressed in the computational tree logic (CTL) [12]. CTL queries are formed of pairs of
path quantifiers A or E (for Always and Exists, respectively) and path operators G or F (for
Globally and Finally, respectively). For instance, formula E F p (respectively AF p) means
that there exists at least one state satisfying property p on at least one path (respectively on all

2 It only occurs for decision transitions, not for communication ones, for which actions are independent of
the vehicles’ state, and therefore of the update function.
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paths) starting from the initial state, where p is an atomic formula or an implementation of a
(even complex) Boolean function. For example, to check if there is a possibility that vehicle i
reaches eventually lane number 2, one may use a query of the form E F vehicle[i].lane = 2.

5.1 Indicators for the analysis

As already mentioned, the goal of VerifCar is to make it possible to assess and compare
decision algorithms for CAVs with respect to properties such as safety, efficiency, comfort or
fairness. Here we provide a set of CTL queries to be used in our experiments, presented in the
next section, and we shall try to generalize them in order to get an automated methodology.

Each of the mentioned aspects will be checked with various indicators. To check the safety
aspect, we propose a Time-to-Collision indicator (TTC), which gives, for a given time t and
two vehicles, the time before collision if both vehicles keep moving at the same constant
speed. TTC is a commonly used indicator in the literature [22,30] when assessing safety for
vehicles on a single lane. Here, we adapt it to a two-dimensional space.

For two moving points on an axis, the instant tmeet when they coincide is given by their
present distance divided by the difference of their speeds. The algorithm computing the TTC
we developed for our framework generalizes this idea for two vehicles of some size moving
without rotation on a two dimensional grid: see Appendix.

Whenavehicle is followedat somedistance by a faster one, for both longitudinal and lateral
directions (i.e., on the x and y axes),wemaydefine a time interval [tmeet , tmeet ] corresponding
to the overlap of the two vehicles: tmeet is the instant where the closest extremities (on the
considered direction) coincide, and tmeet is the same for the most distant extremities. The
TTC is then obtained by comparing the time intervals obtained for both directions:

– If the two resulting time intervals are non-empty and intersect, the left border of this
intersection yields the TTC value. If that TTC value is zero, it means there is a collision
presently occurring between the vehicles.

– If there is no intersection between these intervals, there is no possible collision presently
expected, and by convention the TTC value is considered infinite.

As an example, consider the situation shown in Fig. 4. Initially, vehicle A is in position
(3, 6) with a longitudinal speed value of 5 and a lateral speed value of − 2, while vehicle
B is in position (4, 2) with a longitudinal speed value of 3 and a lateral speed value of 0.
The vehicles lengths and widths have a value of 2 units. The time overlap on the x-axis is
[−0.5, 1.5] while the time overlap on the y-axis is [1, 3]. The intersection of these intervals
([1, 1.5]) is the time window where vehicles overlap on the two dimensional environment,
see Fig. 5. The left border value gives the TTC (in this case TTC = 1).

When one considers a whole trajectory, one can compute the smallest TTC, and when
considering all the trajectories, one gets a minimal and a maximal value for this smallest
TTC. The complexity of that computation is in constant time, which is very interesting with
respect to our concern to reduce the computation time.

Efficiency, comfort or fairness can be checked through indicators such as travel time,
deceleration or waiting time. One can chose to check either extrema, mean value, or covari-
ance between agents for such indicators. In general, it is possible to use in our framework
any of the usual indicators used in the literature, such as the ones depicted in [9] (e.g. waiting
time, fuel consumption, loss time, etc.).
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Fig. 4 Illustration of overlaps for x-axis (top) and y-axis (bottom). Faster vehicle A is in dark gray while
vehicle B is in light gray. The positions of the vehicles are shown at some chosen dates, indicated in top left
corner for A and top right corner for B. Dashed areas corresponds to the overlap zones

Fig. 5 Illustration of TTC computation based on longitudinal and lateral time intervals

5.2 Analysis methodology

Sincewe study complex scenarios involving non-determinism, different executionswill often
lead to different states. Therefore, we should not consider a single value for a given indicator
but a set of possible values.

For each execution, there is a smallest value for some indicator indic. We call indicmin

the set of those smallest values (each for one execution). Let k
df= inf(indicmin) and k′ df=

sup(indicmin), then k is the smallest possible value that satisfies

QE F
min(k)

df= E F indic ≤ k

and k′ is the smallest possible value that satisfies

Q AF
min(k′) df= AF indic ≤ k′.

It means E F indic ≤ k − 1 and AF indic ≤ k′ − 1 must be false.
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Similarly, we call indicmax the set of the greatest values of indic for the various possible
executions. Let k

df= inf(indicmax ) and k′ df= sup(indicmax ), then n is the smallest possible
value that satisfies

Q AF
max (k)

df= AF indic ≥ k

and m is the greatest possible value that satisfies

QE F
max (k

′) df= E F indic ≥ k′.

It means AF indic ≥ k + 1 and E F indic ≥ k′ + 1 must be false.
To find these extrema, we use the classical dichotomy algorithm in conjunctionwithmodel

checking queries. Let Q(n) be either QE F
min(n) or Q AF

min(n) and [i, j] be the range of possible
values for n. Algorithm 1 describes the procedure to determine the smallest possible value
that satisfies Q(n). The maximal number of queries needed to find this value is log2( j − i).

If Q(n) is either QE F
max (n) or Q AF

max (n), we use the same algorithmwhile adding a negation
to the condition: if (¬ Q( u+v

2 )) and return u instead of v.

Algorithm 1 Computation of the minimal value of indicator indic for which Q(n) is true.
[i, j] is the range of possible values for n, with i < j . It is assumed that Q is monotonic,
that Q( j) is true and Q(i) is not.

u ← i
v ← j
while u 	= v − 1 do

if Q( u+v
2 ) then

v ← u+v
2

else
u ← u+v

2
end if

end while
return v

In addition to these numerical indicators, arrival orders of vehicles can give additional
information on their behaviors. We define a Boolean function denoted before(x, y) taking
two vehicles x and y as arguments and evaluating to true on a state if x has reached the end
of the road and y has not. To find all the possible arrival orders, we check for every pair of
vehicles A and B the following queries: E F before(A, B) and E F before(B, A). For each
pair we have three possible results on the couple of queries:

– Both are true, A arrives first in some executions and B arrives first in others.
– Only one query is true, the order never changes for the pair in all possible executions.
– None is true, both vehicles always reach the end of the road at the same time unit.

Thanks to these simple reachability queries, we manage to have a picture of the possi-
ble behaviors that may occur. In some cases of highly non-deterministic behaviors, further
investigation might be useful to check arrival orders between more than two vehicles. This
case will be illustrated in Sect. 7.3.
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6 Modeling choices, calibration and precision

In order the framework to be usable in practice, it is necessary to maintain a balance between
the realism of the representation and the efficiency of the model checking. That implies
having the smallest possible state space while losing the least amount of information. Since
the available tools that are able to formally verify such systems can only handle integer data
structures (basically: parameters, variables and arrays), we have to propose a satisfactory
discretization for the various physical quantities describing the vehicles’ behaviors. Indeed,
the complexity of the verification procedures rapidly increases with the range of these integer
variables, while the accuracy of the models requests an adequate granularity.

Our discrete representation of the state of vehicles will thus be encoded with the following
discrete variables:

– its (longitudinal and lateral) positions x and y,
– its forward speed v with the corresponding forward acceleration a,
– and the direction of the vehicle D ∈ {−1, 0, 1}, corresponding respectively to a lateral

move to the right, no change and to the left.

With the exception of D, we will denote by Grana, Granv, Granx , Grany the granularity of
these quantities, i.e., the gap between two consecutive values (this allows to normalize the
data as integers), and by N (with the corresponding subscripts) the size of the needed data
structure, called a range.

The updates of the forward speed and position values after a period are expressed by the
usual formulas. However, as our objective is to be able to efficiently performmodel checking,
we need our modeling to be parametric, making it possible to preserve an adequate balance
between the size of the state space to be analyzed and the desired level of realism. The latter
directly depends on the period at which the system is observed, called the sample. Thus, the
following parameters and constants will be used to describe the system:

– S is the sample period, in seconds (written as s);
– L is the length and R is the width of the road segment, in meters (written as m);
– Vmin is the min and Vmax is the max value of (longitudinal) speed expressed in meters

per second (written as m/s);
– Amin is the min and Amax is the max value of acceleration expressed in meters per second

squared (written as m/s2);
– Grana is the granularity of the acceleration expressed in meters per second squared;
– W is the lateral speed during a lane change, expressed in meters per second.

As a consequence, the acceleration range is thenNa = 1+(Amax−Amin)/Grana, assuming
that 0 is one of the possible accelerations and that Amax/Grana as well as Amin/Grana are
integers. The acceleration is then expressed as a = A · Grana, the longitudinal speed as
v = V · Granv, the longitudinal position as x = X · Granx , and the lateral position as
y = Y · Grany , where A, V , X , Y are integers (normalized variables without dimensions).
The interest of introducing those dimensionless variables will be to simplify the formulas for
state updatings, when granularities are chosen adequately.

Then, the granularities and ranges for the longitudinal and lateral positions and speeds
may be computed, as well as their normalized updates after one sample S:

For the longitudinal speed, the update after one sample is

v′ = v + a · S.
In normalized variables this gives V ′ = V + (A · S · Grana)/Granv for a given granularity
Granv, and V ′ = V + A if we take the granularity Granv = Grana · S. The main advantage
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of the latter is that it does not introduce new losses and simplifies the formula. The resulting
range is Nv = 1+ (Vmax − Vmin)/(Grana · S), where we use a ceiling function if the division
does not provide an integer.

For the longitudinal position, the update after one sample is

x ′ = x + v · S + a · S2/2.
For a given granularity Gx , this leads in normalized variables to X ′ = X + ((V ·S ·Granv)+
(A·S2/2·Grana))/Gx = X+(2·V +A)(Grana ·S2/2)/Gx . In order to avoid additional losses,
we should choose the granularity Gx = Grana · S2/2, which yields X ′ = X + 2 · V + A.
However this granularity will usually be uselessly small (for instance, if Grana = 1 and
S = 10−1, we get a granularity of 5 mm), leading to a huge range. In order to avoid a state
space explosion during the verification process, we shall thus approximate x with a precision
of Granx = p · Gx , with an adequate parameter p. Hence, the normalized update of x
becomes X ′ = X + (2V + A)/p (rounded) and the corresponding range isNx = L/Granx . In
order to choose a suitable p, we may observe that Granx is the maximal longitudinal loss of
precision we may face during a sample. Hence, we may introduce the normalized maximal
loss of precision3 during one second Normx = Granx/S = p ·Granv/2. The value of Normx

may be fixed independently from the constants of the system and we get the corresponding
Granx = Normx · S and p = 2 · Normx/Granv.

For the lateral position update after one sample we have

y′ = y + W · S · D

with a corresponding granularity Grany = W · S since W is a constant (the lateral speed
when there is a lateral move) and the direction of the vehicle D ∈ {−1, 0, 1}, corresponding
respectively to a lateral move to the right, no change and to the left. The range of the direction
is thus ND = 3, while the range of the lateral position is Ny = R/Grany . In the normalized
variables, this becomes Y ′ = Y + D.

The size of the state space due to the variables is then obtained bymultiplying all the above
ranges, for each vehicle, hence it behaves likeO(αn), where n is the number of vehicles and
α = Na ∗ Nv ∗ Nx ∗ ND ∗ Ny . Clocks also take part to the state space, so that the size of
the full state space is obtained by multiplying the above by an additional exponential, which
relies in an intricate way on the number of intersections and differences of the various time
intervals (some may be reduced to a single value) occurring in the guards and invariants of
the system, as detailed in [3].

Fortunately, the formal tools do not necessarily construct the whole state space to analyze
such systems. Of course, the complexity of the verification procedures also depends on the
degree of non-determinism present in the specification and the difficulty to solve the queries.

7 Analysis of CAV systems with VERIFCAR

In this section, we will illustrate the process of studying the decisions of CAVs with Ver-
ifCar. We focus on two non-deterministic scenarios, which are well suited to exhibit how
communication parameters (and especially temporal ones) are involved in the behavior of
the vehicles. First, we point out the impact of communication delays on the non-determinism
of the system, i.e., delays between the broadcast and the reception. Then, by injecting faults
in the operation of emitters and receptors, we study the robustness of a given decision policy

3 Actually twice the loss of precision, thanks to rounding.
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facing such failures. Finally, we compare three decision policies: using only vehicle-to-
vehicle communications, using negotiation and using communications via intelligent road
infrastructures, for safety and efficiency, i.e., the time that the vehicles need to reach their
goal.

The results of our experiments, obtained using the queries introduced in Sect. 5, are
reported in the tables below with the following meaning:

– The arrival order between two vehicles tells which one arrives first. In case of non-
determinism, this may give a better insight on the vehicles behaviors than travel times
alone, as this shows if a vehicle is able or not to overtake another one.

– The travel times of a vehicle (i.e., the instant when the vehicle leaves the road portion)
show the minimal and maximal possible values for all the possible scenarios.

– Theworst TTC for two vehicles is theminimal time-to-collision value for some trace. For
all the possible traces starting from the same initial state, a minimal and a maximal value
of the worst TTC are computed. The minimal one corresponds to the most dangerous
scenario and the maximal one to the safest scenario.

The scenarios we use in the experiments involve three vehicles evolving on a three-lane
motorway section of L = 500 m long and R = 10.5 m large with two lanes (left and right)
and a junction lane which starts at the beginning of the section, joins the right lane after 200
m and ends 200 m later. The constraints defining the velocity of the vehicles are Vmin = 0
m/s and Vmax = 40 m/s (= 144 km/h); Amin = −5 m/s2 and Amax = 3 m/s2, and W = 1
m/s. We fix Grana = 1 m/s2 and the environment sample S = 0.1 s (10 Hz). Such an S
allows to monitor the system’s behavior in a satisfactory way and such a Grana yields a
sufficient number of acceleration choices for the decision algorithms of vehicles. One may
notice that it is a wise choice as it also leads to good integer divisions in the formulas we
expressed in Sect. 6. With such parameters and the granularity guaranteeing no further loss
of information, i.e., Gx = 0.005 m, the complexity of the data structure per vehicle is of the
order of 1011 and it becomes (1011)3 for our 3 cars scenario, which might be problematic for
the verification tools.We then fix a reasonable normalized accuracyNormx = 1 (meaning the
loss of precision on the longitudinal position of the vehicle in one second is always less than
1 meter, down to 0.5 meters thanks to rounding) and get p = 2 · q/Granv = 20. Therefore,
the granularity on x becomes Granx = p · Gx = 0.1 m and this approximation allows to
divide the state space by p3 = 8000 while not significantly impacting the behavior of the
model.

7.1 Decision algorithm

The objective of our decision algorithm is that a vehicle follows its route as fast as possible
while complying to the code rules and avoiding collisions with other vehicles. The decision
algorithm is local (i.e., each vehicle runs its decision on its own) and takes as an input the
global knowledge the vehicle possesses on itself and on other vehicles. It computes timed
trajectories of its neighbors, allowing in turn to compute as an output its own new acceleration
and direction. The algorithmhas to avoid future collisionswith vehicles in front of the vehicle,
but not behind it as long as there is no immediate danger (the vehicles in front have priority
with respect to the ones behind). The expected emergent behavior is that vehicles adapt to
the actions of those who precede them.

Algorithm 2 proposes a high level version of the main decision function where
[MinAcc, MaxAcc] are all possible acceleration values, [1, NbLanes] are all possible lanes
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and [0, MaxDelay] are all possible delay values. The decision function tries to find a suitable
trajectory with the following objectives (by order of priority):

– going as fast as possible,
– being as close as possible to the lane defined by its route,
– delaying as little as possible its direction changes

Intuitively, a non-zero delay means that the vehicle needs to change lane, but its best option
is to do it later: the decision is thus to go straight until the next decision is taken.

The full implementation, together with all source material, can be found at https://forge.
ibisc.univ-evry.fr/jarcile/VerifCar/. This algorithm has been implemented for the case studies
and is given for a better understanding of the present section, but should not be considered
as one of our main contributions: our goal is to illustrate the methodology, not to promote a
clever decision making algorithm.

Algorithm 2 High level pseudo-code for the decision function
Compute the set of timed trajectories of vehicles in front
Define the lane L to reach w.r.t. the route
for Acceleration ← MaxAcc to MinAcc do

for Lane ∈ [1, NbLanes], starting from L and exploring the neighborhood of L do
for Delay ← 0 to MaxDelay do

if Chosen behavior does not generate conflict with vehicles in front then
if Delay = 0 (Waiting not needed) then

Define Direction w.r.t. the chosen Lane
else

Direction ← 0 (Vehicle goes straight because it is waiting)
end if
Return new Acceleration and Direction values

end if
end for

end for
end for
Emergency behavior

7.2 Impact of vehicle-to-vehicle communication on the behavior of CAVs

In this section, we focus on a decision process not involving cooperation (without negotiation
nor infrastructure). Thus, each vehicle broadcasts its planned trajectory without trying to
impact explicitly the behaviors of the other vehicles.Of course, it also receives the information
from its neighbors and uses it in its decision process.

We use Scenario 1, in which initially vehicle A is on the right lane at position 50 m with a
speed of 20 m/s, vehicle B is on right lane at position 0m with a speed of 35 m/s and vehicle
C is on the junction lane at position 20 m with a speed of 28.2 m/s. All the vehicles aim to
reach the right lane at the end of the road portion, cf. Fig. 6.

We assume that vehicle-to-vehicle communications in the default case take between 30ms
and 40ms. All the decisions of vehicles have an activation frequency of 10 Hz. In order to
avoid unrealistic synchronous behaviors of vehicles, the clocks of agents A, B and C are
initialized respectively to 0ms, 30ms and 70ms. This kind of lag between clocks (which is a
real life situation where vehicles do not synchronize their clocks) induces non-determinism
as a vehicle might take a decision after or before receiving a critical information. Note that
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Fig. 6 Initial position and possible trajectories of CAVs in Scenario 1

Table 1 Comparison of arrival order, travel time and TTC in Scenario 1 for three variants of communication
delay intervals

Indicator Variant of communication delay

[30, 40]ms [40, 40]ms [0, 90]ms

Arrival order

A vs B B B B

A vs C C C C

B vs C B|C B B|C
Travel time (s)

A (13.1, 13.2) (13.1, 13.1) (13.0, 13.2)

B (12.7, 13.0) (12.7, 12.7) (12.7, 13.0)

C (12.6, 12.8) (12.8, 12.8) (12.6, 12.8)

Worst TTC (s)

A and B (1.03, 2.90) (2.90, 2.90) (1.03, 2.90)

A and C (∞, ∞) (∞, ∞) (2.80, ∞)

B and C (1.50,∞) (∞, ∞) (1.50,∞)

Full state space exploration (s) 11 4 53

For arrival order, X versus Y in column 2 indicates that we check who between X and Y is faster, while the
winner is indicated in columns 3–5. For travel time and TTC, the pairs in columns 3–5 correspond to the
resulting inf and sup values

since all vehicles have the same decision activation frequency, a scenario where clocks would
be initialized with the same value would have a deterministic behavior, as the reception of
data would always happen between two given decisions, no matter the moment it happened
in the communication delay interval.
Impact of communication delays In Table 1, one can see the differences on Scenario 1 when
using various time intervals for the communication delays. The full state space exploration
indicates the time corresponding to build and fully explore the state space once, i.e., for a
single Uppaal run. Some indicators such as Travel time or Worst TTC require dichotomy
searches, and so several Uppaal runs, however the number of such runs does not rely on the
size of the state space and is generally small. Furthermore, the state space is memorized and
not all runs need to fully explore it. For example, the computation of the travel time (which
is the most costly of the indicators we considered, in terms of computation time) takes about
45 s to obtain the inf and sup values of the travel time when the full exploration time equals
11 s; similarly, it is about 180 s when the full exploration time equals 53 s, corresponding
roughly to the same magnitude (factor 4).
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The default case, where the communication delay is in [30,40]ms, illustrates a non-
deterministic behavior since several indicators show different possible values, meaning there
exists different paths leading to different results. By comparing the travel time values, we can
see that travel time for A is always longer than for B or C, meaning it will always be behind
the other two at the end of the road. This is confirmed by the arrival order indicator. The inf
Travel time value for B is between the inf and sup travel time values of C. However, the inf
and sup values for B are greater than respectively the inf and sup values for C. Therefore, it
could be the case that B is always behind C. This can be checked thanks to the arrival order
between B and C, which indicates that there exist paths where B is before C at the end of the
road and some paths where it is the opposite. Finally the worst TTC value gives us indications
about safety (an ∞ value means there was never any danger of collision, otherwise a low
value means we were close to a collision). It is useful when analyzing the impact of decision
parameters, or comparing decision policies.

Here, in addition to the default case, we check two variants of the communication delays:
one where we reduce the interval to [40, 40]ms (deterministic delays), and one where we
extend it to [0, 90]ms. As expected, all the inf and sup values obtained when we reduce the
interval are bounded by the values for the default case, whereas when we extend the interval,
all the values for the default case are bounded by the new inf and sup values. This is consistent
with the time needed to fully explore the resulting state space, which increases proportionally
to the interval, as indicated by the last row. More precisely, the [40, 40]ms interval seems to
result on a deterministic scenario with only one path. It is worth to be mentioned that using
a single possible delay value greatly reduces the non-determinism, but does not necessarily
suppress it. Actually, there might still be states where there is concurrency between actions.
For instance, if both a communication and a decision are available at the same time, the order
in which the actions are performed may lead to different states.

7.2.1 Assessing robustness of decision through fault injection

Tables 2 and 3 show the results of model checking with fault injection, by disabling the
receptor or the emitter, respectively, on one of the vehicles. Note that the vehicle sensors are
still working, meaning the vehicle gets all other perceptible information (such as position,
speed, acceleration, etc...) of other vehicles. The non-perceptible information concerns the
intention of the vehicles (their planned trajectories).

When we disable the receptor on vehicle A, the behavior seems deterministic, with C
always being first at the end of the road. When we disable the receptor on vehicle B, the
behavior is close to the default case; however one can observe that the worst TTC between
A and B becomes 0.0 s meaning that there is a collision between these two vehicles. Also, a
state where worst TTC between B and C is 0.15 s can be reached, indicating a serious danger.
It may be due to the lack of information vehicle B has on other vehicles intention when doing
its overtaking. To force B to be more careful, we increase the lateral safety distance (LSD)
in the decision process (initially at 0.5m) to 1m. This is intended to increase safety at the
expense of efficiency. In the case of the disabled receptor on vehicle A, one can indeed see
there is a slight loss of efficiency (vehicle A now takes slightly longer to reach the end of the
road). In the case of the disabled receptor on vehicle B, we do not observe a loss of efficiency,
but an overall increase of the minimal worst TTC value, including the null ones.

The same checks are performed while disabling the data emitter instead of the receptor.
When disabling the emitter on vehicle A, we observe a collision between vehicles A and B,
which no longer occurs with the LSD of 1 m. When disabling the emitter on vehicle B, we
get a worst TTC of (0.00,∞), meaning there is both a path leading to a collision between
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Table 2 Comparisonof arrival order, travel time andTTConScenario 1with disabled communication receptors
and variations of lateral safety distance (LSD)

Indicator A’s receptor disabled B’s receptor disabled

L SD = 0.5m L SD = 1m L SD = 0.5m L SD = 1m

Arrival order

A vs B B B B B

A vs C C C C C

B vs C C C B|C B|C
Travel time (s)

A (13.3, 13.3) (13.4, 13.4) (13.3, 13.3) (13.3, 13.3)

B (13.0, 13.0) (13.0, 13.0) (12.7, 12.9) (12.7, 12.9)

C (12.6, 12.6) (12.6, 12.6) (12.6, 13.0) (12.6, 13.0)

Worst TTC (s)

A and B (3.00, 3.00) (3.00, 3.00) (0.00, 0.00) (2.80, 2.80)

A and C (∞, ∞) (∞, ∞) (2.86,∞) (5.04,∞)

B and C (1.50, 1.50) (1.50, 1.50) (0.15, ∞) (0.40, 1.35)

Full state space exploration (s) 5 5 10 11

The other notations are as in Table 1

Table 3 Comparison of arrival order, travel time and TTC on Scenario 1with disabled communication emitters
and variations on the length of lateral safety distance (LSD)

Indicator A’s emitter disabled B’s emitter disabled

LSD = 0.5 m LSD = 1 m LSD = 0.5 m LSD = 1 m LSD = 1.6 m

Arrival order

A vs B B B B B A

A vs C A A C C A

B vs C B B B|C B|C B

Travel time (s)

A (13.3, 13.3) (13.3, 13.3) (13.4, 13.4) (13.4, 13.4) (13.0, 13.0)

B (12.7, 12.7) (12.7, 12.7) (12.7, 13.1) (12.7, 13.1) (13.1, 13.1)

C (13.5, 13.5) (13.5, 13.5) (12.6, 12.8) (12.6, 12.8) (13.4, 13.4)

Worst TTC (s)

A and B (0.00, 0.00) (2.80, 2.80) (0.30, 0.30) (2.09, 3.00) (1.50,1.50)

A and C (2.06,2.06) (2.06,2.06) (∞, ∞) (∞, ∞) (2.22,2.22)

B and C (∞, ∞) (∞, ∞) (0.00,∞) (0.00, ∞) (4.30,4.30)

Full state space exploration (s) 6 6 12 12 10

The notations are as in Table 1

vehicles B and C, and another one without any danger. The increase of LSD to 1 m does
not prevent the collision. This motivates us to search the minimal increase of LSD needed to
deal with this collision. To do so we proceeded by dichotomy, like for other indicators. As a
result we obtained that we need a minimum LSD of 1.6m, which does avoid collision but at
the cost of a great loss of efficiency. Indeed, in that scenario, one can observe that none of the
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vehicles can now overtake vehicle A (the slow one), leading to the worst overall efficiency
in our results.

7.3 Impact of cooperation on the behavior of vehicles

In this section, we study the decision policy implementing the forms of cooperation defined
in Sect. 3, namely negotiation and infrastructure. We first describe how they have been
implemented.

7.3.1 Implementation of negotiations

In this case, each vehicle will try to negotiate whenever its wished trajectory is in conflict with
the predicted trajectory of some other vehicle and whenever that vehicle is changing lane.
Basically, it happens when a slower vehicle changes lane in front of another one. To keep the
state space as small as possible, the request for negotiation (or its absence) is simply indicated
by broadcasting a Boolean variable. When the targeted vehicle receives the information, it
delays its intention (stopping its maneuver for a while) if this delay does not impact the
maneuver it is actually performing and allows the faster vehicle to overtake it. The objective
is that none of the vehicles should slow down. And indeed, if we consider Algorithm 2, the
vehicle initiates the negotiation after getting new acceleration and direction values, while
the target vehicle computes the decision regarding the request, after having found a safe
trajectory for itself.

7.3.2 Implementation of infrastructures

The road terminal in our infrastructure-based decision performs the following actions at
a fixed frequency: First, it computes the predicted and wished trajectories for all vehicles,
using the information received from the broadcasted data. Then, it identifies conflicts between
vehicles, i.e., situations where the predicted timed trajectory of a vehicle is in conflict with
the wished trajectory of another one. Then, it decides which actions should be applied to each
vehicle in order to maximize the sum of the accelerations of the vehicles. Finally, the terminal
sends to each chosen vehicle the corresponding orders. The impact on Algorithm 2 is that,
instead of trying to be as close as possible to the maximal acceleration and to the direction
matching the route of the vehicle, it now tries to be as close as possible to the acceleration
and direction values sent by the terminal.

7.3.3 Testing scenario

Our aim is to compare the above decision policies, namely:

– the base variant of decision without negotiation nor infrastructure (and without fault),
– the variant using negotiation;
– the variant using an intelligent road infrastructure.

We will use for that the Scenario 2 (cf. Fig. 7) which is as follows. Initially, vehicle A is on
the right lane at position 0 m with a speed of 30 m/s, vehicle B is on the left lane at position
30 m with a speed of 15 m/s and vehicle C is on the junction lane at position 40 m with a
speed of 20 m/s. They all aim to be on the right lane at the end of the road portion.
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Fig. 7 Initial position and possible trajectories of CAVs in Scenario 2

Table 4 Comparison of arrival order, travel time and TTC for default case decision, decision with negotiation
and decision with infrastructure on the two initialization variants of Scenario 2

Scenario Init. variant 1 Init. variant 2

Base Negotiation Infrastructure Default case Negotiation Infrastructure

Arrival order

A vs B B A|B A B A A

A vs C C A|C A C A|C A

B vs C C C C C C C

Travel time

A (14.6, 14.6) (13.0, 15.9) (13.2, 13.3) (14.6, 14.6) (13.0, 13.6) (13.2, 13.4)

B (14.4, 14.4) (14.4, 14.4) (14.4, 14.4) (14.4, 14.4) (14.4, 14.4) (14.4, 14.4)

C (13.2, 13.2) (13.2, 13.2) (13.8, 13.8) (13.2, 13.2) (13.2, 13.2) (13.8, 13.8)

Worst TTC

A and B (0.90, 0.90) (0.00, 1.56) (1.40, 1.44) (0.95, 0.95) (0.60,∞) (1.36,1.41)

A and C (∞, ∞) (1.14,∞) (∞, ∞) (∞, ∞) (1.14,∞) (∞, ∞)

B and C (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

Full state space
exploration (s)

5 379 27 3 299 36

We assume that communications from the terminal to other agents take between 50 and
100ms and communications from vehicles to other agents take between 30 and 40ms. The
terminal decision has an activation frequency of 2 Hz and its clock is initialized at 0ms.
The decision of each vehicle has an activation frequency of 10 Hz. We also consider two
variants, where the agent clocks are given different initial values. In initialization variant 1,
clocks of agents A, B and C are initialized respectively after 70ms, 30ms and 0ms, while in
initialization variant 2, clocks of agents A, B and C are initialized respectively at 0ms, 30ms
and 70ms.

Table 4 shows the results obtained for Scenario 2. First, let us consider initialization
variant 1. Our default case decision policy seems to lead to a deterministic behavior, where
C manages to reach the right lane ahead of vehicle B while A has to brake to avoid a collision
with vehicle B. This can be confirmed by looking at the worst TTC between A and B, which
is less than 1 second. When adding the negotiation aspect, one can observe a change in
the behavior, which is now non-deterministic. While the travel times for B and C have not
changed and are all the same (a unique value) for all possibles executions, this is no longer
the case for A, for which the minimal travel time is now shorter than for other vehicles while
its maximal travel time has increased. The arrival orders give us the information that vehicle
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A can sometimes arrive ahead of B (respectively C), sometimes not. This information is
not sufficient to get a perfect picture of the possible scenarios. As C always arrives before
B, one can be sure that arrival orders, where A arrives as the first or the last are possible.
However, to know if A can arrive between B and C one should check the following property:
before(C, A) → before(B, A), which means4 that when A is not first, it must be last, and
therefore a case where it arrives between the two other vehicles is not possible. Here, the
above property is false, and the model checker is able to give us traces where vehicle A
arrives between C and B.

Concerning safety, one can see that the worst TTC between A and B can be zero, meaning
that there are possible scenarios. with a collision between these two vehicles. The potential
gain in overall travel time is thus paid here by a lack of safety.

Finally, when using an infrastructure-based decision policy, one can observe that vehicle
A always arrives first and vehicle C manages to reach the right lane ahead of vehicle B, as
previously. The comparison between the travel times shows us that with the infrastructure,
the efficiency is not as good as with negotiation in the best case (vehicle A and C being
slower), however the non-determinism is not significant (unlike with negotiation where there
exists a possibility of collision) and the worst TTC is even better than for the default case
decision policy.

Looking at the results obtained with initialization variant 2, one can see there are almost
no differences for default case and infrastructure based decision policies. However, in this
scenario, the negotiation does not lead to collision anymore. Vehicle B now always arrives
as the last, vehicle A and C being either first or second. The worst TTC is smaller than for
the default case but we gain in overall efficiency.

Considering the state space exploration time, one can see that the non-determinism induced
by negotiation in this particular example can lead to a huge time increase (about a hundred
times longer) when compared to our default case. Note that this is not due to the negotiation
itself but to the non-determinism. Finally, infrastructure-based decision, despite showing
a deterministic behavior, takes longer than the default case for the state space exploration
(about 10 times longer). This is due to the fact that the road infrastructure is implemented
as yet another agent, which impacts the size of the resulting state space. As one can see, the
time needed to perform the verification process is however maintained quite short thanks to
our modeling choices.

7.4 Limitations and parameter management

Through several additional experiments, we also evaluated the impact of ourmain parameters
on the computation time of Uppaal. To study this impact, we measured the full exploration
time while varying several scenarios with non-deterministic behaviors. Overall results are
given in Table 5. The environmental parameters, such as the length of the road portion, the
size of the variables used for timed trajectories or to represent vehicles behaviors, show a
linear impact on the computation time, even with complex scenarios. This is also true for
the normalized maximal loss of precision Normx . For instance, for a scenario with a full
exploration time of more than 20min when no further approximation is performed5 the use
of a value Normx=1 m/s allows to reduce this time to about 6min. These results indicate that
we can increase the accuracy of the modeled environment with limited cost.

4 The operator →, called “leads to”, supported by the UPPAAL model checker is equivalent to
AG (¬ before(C, A) ∨ AF before(B, A)).
5 i.e., when Normx = Granv/2: in this example Normx = 0.05m/s.
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Table 6 Full exploration time for Scenario 1 and variant 1 of Scenario 2 using negotiation, while vehicles are
added with random initial position and speed values

Scenario 1 Scenario 2 (negotiation) Init. variant 1

Number of added vehicles 1 2 3 4 5 1 2

Smallest time (s) 13 24 30 40 52 347 505

Longest time (s) 17 50 151 142 167 817 1798

A few random initializations are performed each time and the smallest and longest observed exploration times
are given

In contrast, we are limited in the degree of realism, especially for scenarios involving a lot
of non-determinism, where variations on the sampling period S and decision frequency show
an exponential impact on the computation time. In particular, since the frequency induced
by the sampling period is required to be smaller than or equal to any other frequency in
the system, the use of a given decision frequency implies to scale accordingly the sampling
period. Therefore, increasing the decision frequency of vehicles in a system can lead to a state
space explosion. However, it is still possible to manage to go up to 20 Hz with a reasonable
computation time (a few hours) for complex scenarios involving a lot of non determinism,
which as discussed in Sect. 4 is enough for decision modules mentioned in the literature. For
simpler scenarios, however, a higher decision frequency can be used.

Finally, it must be observed that the number of vehicles does not necessarily impact the
computation time: it is the resulting non-determinism of the evolutions that does, much more
than the increased number of variables. This is illustrated in Table 6, where vehicles have
been added to the previously studied cases, with various random position and speed values.
A look at the smallest exploration times indicates that the increasing size of the data structure
seems to have a linear impact on the system. On the other hand, one can see that the generated
state space can be drastically different between systems with the same number of vehicles
but with different initial parameters.

Note that the maximum reasonable number of vehicles is therefore mainly case-related.
Indeed, adding vehicles can sometimes reduce the non-determinism of the system and some-
times increase it. This result in particular indicates that our framework could hardly support
erratic human-like drivers (i.e. decision algorithm with random choices) but is well suited for
checking interaction behaviors between autonomous vehicles characterized by well-defined
decision protocols.

To study the behavior resulting from the use of a given decision algorithm, one should
implement it within theUppaal language, which only supports discrete variables. Therefore,
scaling variables and the use of rounding on divisions is recommended to avoid or at least
reduce error accumulations. Also, if there are variables needed for the decision or commu-
nication protocol, they should be added in the data structure. Their ranges must be defined,
and it is recommended to keep those ranges as small as possible. The main limitation arises
from “time-sensible” parameters, mainly the frequency of decisionmaking, which can hardly
exceed 20 Hz. However, as mentioned previously in Sect. 4, this limitation seems fair enough
to model most of the decision protocols described in the literature. Concerning calibration,
we need to find a balance between the precision on the longitudinal position (i.e., the nor-
malized maximal loss of precision parameter, Normx ) and the frequency of the updates. The
former allows to decrease the computation times at a cost in precision and the latter to gain
accuracy on the system’s monitoring at the cost of increasing computation times. In order to
estimate an acceptable loss of precision, one may first proceed by simulation, which can also
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be done with Uppaal. One may study a given indicator using several Normx values, then
compare them to the result obtained with the Normx that guarantees no loss of information
(i.e., with p = 1 if we refer to Sect. 6). The user has to choose the greatest Normx for which
the observed error is still acceptable (this may require an expertise in the domain).

Finally, we summarize all the assumptions and abstractions that are inherent toVerifCar:

– Sensors are perfect (accurate and immediate);
– Decision is taken on a constant accurate frequency;
– Communication latency occurs in a defined and finite time interval;
– Frequency of decision for a given vehicle is greater or equal to the maximal communi-

cation latency for the same vehicle;
– Physical laws are simplified (rotation, friction, inertia do not exist);
– Environment is flat (only two dimensions are considered).

8 Conclusion

We presented VerifCar, a framework based on timed automata and dedicated to modeling
and verifying CAVs. VerifCar is suitable for studying the behavior of CAVs at a rather
high level of abstraction and addresses questions of safety, efficiency and robustness with a
specific focus on the impact of latencies, communication delays and failures on the behavior
of CAVs. It is particularly well adapted for the exhaustive analysis of critical situations
involving a few number of vehicles, such as overtaking, insertion lanes, crossroads or traffic
roundabouts.

VerifCar builds on general concepts borrowed from [4] to model such systems of CAVs
but brings several novel ideas and improvements. First, it implements a totally different
timed automatamodel, using broadcast synchronizations instead of handshake, which greatly
simplifies the automata and contributes to speed up the verification processes. Thanks to
suitable discretization and approximations, the exhaustive techniques of model checking can
be used while limiting the state explosion phenomena. Next, it supports two additional forms
of cooperation: negotiations between CAVs and communications with an intelligent road
infrastructure. Finally, it provides pertinent indicators for the analysis of behaviors, together
with a computation methodology using model checking. As shown in a companion paper
[5], this method can be used jointly with simulations, contributing to give more insight on
the studied systems.

As an illustration, we applied VerifCar to assess and compare decision policies for
CAV systems on well chosen scenarios. To do so we implemented decision algorithms
(including negotiations and infrastructure), computed the associated indicators and discussed
the obtained results. We also checked the robustness through faulty environments, pointing
out vulnerabilities and thus illustrating how VerifCar could be used to detect and thwart
those vulnerabilities.All sourcematerial is available at https://forge.ibisc.univ-evry.fr/jarcile/
VerifCar/.

As a future work, we plan to implement interfaces for VerifCar in order to allow an
automated generation of models and indicators. Also, in order to verify more complex situ-
ations (with more vehicles, more complex road configurations, more involved interactions,
etc) while facing successfully the classical explosion problems, we could consider abstrac-
tion techniques (like in [11]) and dedicated verification algorithms to reduce the computation
time.
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Finally, we plan to check if the techniques we developed to perform efficient modeling
and model checking may be transposed to other application domains, different from CAV
systems.

Appendix: TTC Algorithm

Algorithm 3 formalizes the computation of the TTC value used in our experiments. pxi

(respectively pyi ) is the longitudinal (respectively lateral) position of vehicle i , and Long
(respectivelyLat) is the longitudinal (respectively lateral) gap belowwhich there is a collision.
Similarly, vxi (respectively vyi ) is the longitudinal speed (respectively lateral speed) value
of vehicle i . Long and Lat depend on each vehicle length and width: typically, as the position
is centered on the vehicle, Long will be the mean of the length of the two vehicles, while Lat
will be the mean of the width of the two vehicles.

This algorithm consists in computing the starting time Xin and the ending time Xout of
the longitudinal time overlap (respectively Yin and Yout for the lateral time overlap). If no
overlapping (either longitudinal or lateral) is ever going to occur, the starting time will be
given the value ∞ and the ending time will be set to 0. Afterwards, the computation of TTC
is performed by returning the smallest value in the intersection between longitudinal and
lateral time overlaps.
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Algorithm 3 Computes TTC between vehicles A and B
{Computation of Xin}

if (pxb ≥ pxa and vxb < vxa) or (pxa ≥ pxb and vxa < vxb) then
Xin = |pxb−pxa |−Long

|vxa−vxb | {A and B getting closer to each other}
else if |pxb − pxa | < Long then

Xin = 0 {Already overlapping}
else

Xin = ∞ {Will never overlap}
end if

{Computation of Xout}
if (pxb ≥ pxa and vxb < vxa) or (pxa ≥ pxb and vxa < vxb) then

Xout = |pxb−pxa |+Long
|vxa−vxb | {A and B getting closer to each other}

else if vxa 	= vxb then
Xout = ||pxb−pxa |−Long|

|vxa−vxb | {A and B moving away from each other}
else if |pxb − pxa | < Long then

Xout = ∞ {Already overlapping}
else

Xout = 0 {Will never overlap}
end if

{Computation of Yin}
if pyb ≥ pya and vyb < vya then

Yin = pyb−pya−Lat
vya−vyb

{B on the left of A, getting closer to each other}
else if pya ≥ pyb and vya < vyb then

Yin = pya−pyb−Lat
vyb−vya

{A on the left of B, getting closer to each other}
else if |pyb − pya | < Lat then

Yin = 0 {Already overlapping}
else

Yin = ∞ {Will never overlap}
end if

{Computation of Yout}
if pyb ≥ pya and vyb < vya then

Yout = pyb−pya+Lat
vya−vyb

{B on the left of A, getting closer to each other}
else if pyb ≥ pya and vya 	= vyb then

Yout = pyb−pya−Lat
vya−vyb

{B on the left of A, moving away from each other}
else if pya ≥ pyb and vya < vyb then

Yout = pya−pyb+Lat
vyb−vya

{A on the left of B, getting closer to each other}
else if vya 	= vyb then

Yout = pya−pyb−Lat
vyb−vya

{A on the left of B, moving away from each other}
else if |pyb − pya | < Lat then

Yout = ∞ {Already overlapping}
else

Yout = 0 {Will never overlap}
end if

{Computation of TTC}
if Xin ≤ Yin and Yin ≤ Xout then

return Yin {Lateral time overlap starting during longitudinal time overlap}
else if Yin ≤ Xin and Xin ≤ Yout then

return Xin {Longitudinal time overlap starting during lateral time overlap}
else

return ∞ {No intersection between time overlaps}
end if
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