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Abstract Inthe domain of multi-robot path-planning problems, robots must move from their
start locations to their goal locations while avoiding collisions with each other. The research
problem that we addressed is to find a complete solution for the multi-robot path-planning
problem. Our first contribution is to recognize the solvable instances of the problem with
our solvability test; the theoretical analysis has already been provided to show the validity
of this test. Our second contribution is to solve this problem completely, in polynomial
time, with the Push and Spin (PASp) algorithm. Once the problem was solved, we found
decisions within the complete solution that may improve the performance of the complete
algorithm. Hence, our third contribution is to improve the performance by selecting the best
path from the set of complete paths. We refer to the improved version of our algorithm as the
improved PASp algorithm. In terms of the completeness evaluation, the mathematical proofs
demonstrate that the PASp is a complete algorithm for a wider class of problem instances
than the classes solved by the Push and Swap (PAS), Push and Rotate (PAR), Bibox or
the tractable multi-robot path-planning (MAPP) algorithms. Moreover, PASp solves any
graph recognized to be solvable without any assumptions. In addition, the theoretical proof
of the PASp algorithm showed completive polynomial performance in terms of total-path-
lengths and execution time. In our performance evaluation, the experimental results showed
that the PASp performs competitively, in reasonable execution time, in terms of number of
moves compared to the PAS, PAR, Bibox and MAPP algorithms on a set of benchmark
problems from the video-game industry. In addition, the results showed the scalability and
robustness of PASp in problems that can be solved only by PASp. Such problems require

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10458-018
-9391-2) contains supplementary material, which is available to authorized users.

B Ebtehal Turki Saho Alotaibi
e.t.otaibi @gmail.com; etalotaibi @imamu.edu.sa

Hisham Al-Rawi
h@it-online.org

Computer Science Department, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, SA,
Saudi Arabia

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-018-9391-2&domain=pdf
https://doi.org/10.1007/s10458-018-9391-2

694 Auton Agent Multi-Agent Syst (2018) 32:693-740

high levels of coordination with an efficient number of moves and short execution time. In
grid and bi-connected graphs with too many cycles, PASp required more moves and more
time than the PAS, PAR and Bibox algorithms. However, PASp is the only algorithm capable
of solving such instances with only one unoccupied vertex. Furthermore, adding heuristic
search and smooth operation to the improved PASp showed significant further improvement
by reducing the number of moves for all problem instances. PASp produced the best plans in
a bit higher time. Finally, the PASp algorithm solves a wider class of problems and performs
more completely in very complex/crowded environments than other state-of-art algorithms.
Additionally, the Spin operation introduces a novel swapping technique to exchange two
items and restore others in a graph for industrial applications.

Keywords Multi-robot - Path planning - Algorithms

1 Introduction

Formally, the multi-robot path-planning problem (MPP) has consisted of a graph and a
set of robots. In such problems, each robot must reach its destination in a minimum time
with a minimum number of moves. The MPP is known to be a hard decision problems
solvable in polynomial space (PSPACE hard) where the complexity of the problem increases
exponentially with the size of the configuration space [1]. Because the problem of finding the
shortest path of one robot for any problem is NP-hard [2], Goldreich [3] showed that finding
the shortest sequence of moves to reach one arrangement of robot from another is NP-hard
by reducing 3-Exact-Cover to the MPP. The primary motivations for the multi-robot path-
planning problem are to enable robots to complete the tasks of moving objects or carrying
out specific tasks within a limited free space. These tasks include but are not limited to:

e Transportation [4], in which robots, in the form of unmanned vehicles, are programmed
to follow specific traffic rules.

e Mining [5], in which teams of robots work together to explore unsafe places with the goal
of retrieving minerals.

e Planetary exploration [6], in which teams of robotic rovers would be able to intelligently
investigate extraterrestrial bodies.

e Autonomous warehouse management [7], in which teams of robots cooperate to retrieve
and pack goods in warehouses.

e Search and rescue [8], in which a team of robots work to explore rubble after a disaster
using special sensors to locate and rescue buried victims.

e Monitoring and surveillance [9], in which a set of robots could explore a position, locate
the positions of specific targets and update the position information to aid surveillance.
However, these are not the only motivations. Many tasks in virtual space can also be
considered as problems of path-planning for multiple robots, such as:

e Data transfer [10] at communication nodes with limited buffers.

e Computer games [11] in which robots try to find a collision-free path between their starting
position and an end goal.

Given the importance of the multi-robot path-planning problem and its applications, it
is not surprising that many powerful algorithms have been devised. Kornhauser et al. [12]
have provided a complete centralized procedure to solve all MPP problems in a bi-connected
graph, in other form of the problem known as Pebble Motion in Graph (PMG). In the same
paper, a feasibility test was proposed for polygons and a graph containing a bridge, showing
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that it is impossible for robots to swap their locations if they are separated by a bridge longer
than the number of unoccupied vertices minus two. The Push and Rotate (PAR) algorithm
[13] is a complete version of the Push And Swap (PAS) algorithm [14]. The PAS algorithm
is intended to be a complete algorithm for problems with at least two unoccupied vertices.
For each robot r, the PAS algorithm finds the shortest path linking the start location to its
goal location. When another robot s is detected on a vertex v in r’s path, r has the ability
to push s away if s has a lower priority. If s has a higher priority, PAS will switch to the
swap algorithm. Finally, each of the two robots is affected by the swap algorithm, which is
resolved by moving them back to their previous locations. There have been some reported
failure cases of PAS, and PAR was modified accordingly. In addition, PAR introduces the
rotate algorithm to resolve cascade moves. The rotate algorithm is invoked to move robots
forward in a cycle. The Bibox algorithm [15] solves bi-connected graphs completely. Initially,
Bibox decomposes the problem into many handles and one original cycle. Then, robots with
goal locations at the outer handles are solved earlier and locked (excluded from the search
space). This results in a smaller problem. The PAS and PAR algorithms appear to be the
most suitable in the problem domain because they do not impose as many restrictions on the
roadmap. Therefore, our contribution in this work is to:

1. Define a feasibility test for all instances allowing a parallelism level defined with at least
simultaneous rotations,

2. Designacomplete polynomial algorithm solving any solvable graph with no assumptions,

3. Provide an empirical evaluation of our algorithm, including comparisons with the Push
and Swap [14], Push and Rotate [13], Bibox [15], and MAPP [16] algorithms, and

4. Provide a brief exploration of the possibilities to improve solution quality times through
the use of smooth post-processes and heuristics namely in the area of selecting which
path each agent should choose.

The first and part of the second contribution have appeared in a conference paper [17],
namely, the main algorithm and a shallow explanation of its execution in figures. The complete
listing of relevant algorithms and proofs, as well as the algorithm improvements and the
complete evaluations, are new to this paper.

This paper is organized as follows: after this brief introduction, in Sect. 2, the details of
closely related work are described. In Sect. 3, the multi robot path-planning problem is defined
from the literature. In Sect. 4, the feasibility test and its proof are introduced. In Sect. 5, the
Push and Spin algorithm is discussed in detail, followed by Sect. 6 with a discussion of its
completeness, solution quality and time analysis. In Sect. 7, the post-process and heuristic
searches are discussed. In Sect. 8, the experiments are introduced with a comparative analysis
of the selected methods on different types of instances. Finally, conclusions and future work
are presented in Sect. 9.

2 Background

Kornhauser et al. [12] has provided a complete centralized procedure to solve all MPP
problems in a bi-connected graph. The solutions he has created have upper and lower bounds
of O(n?) moves for graphs with n vertices and require O(r>) time. However, there is no single
algorithmic description of the Kornhauser procedure in the literature. Instead, some work
focuses onimplementing and improving Kornhauser’s ideas. Additionally, Kornhauser proves
a feasibility test of the problem instance in the form of a tree of bi-connected (non-separable)
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Fig. 2 Solvable, unrecognized instance by Kornhauser

components that are linked by chains of vertices with degree two (called isthmuses). The test
is:

It is impossible for agents to swap if they are separated by an isthmus longer than the
number of empty vertices minus two.

To clarify the Kornhauser result, consider sequential moves only. Figure 1 illustrates
an instance containing both solvable and unsolvable instances based on the Kornhauser
condition. Note that it is possible for any two of the robots in Al ={al..., a6} to swap their
positions. The same is true for the robots in A2 = {a7, a8} because they too can exchange
their positions. For example, robots 5 and 6 can swap their positions and robots 7 and 8 can
swap their positions. The condition to be met is that no robot from A1 can exchange positions
with any robot in A2. To understand this, again referring to Fig. 1, if robot 7 wants to swap its
position with robot 6, it is possible only if they move either to the component at the left side
of the vertex occupied by robot 6 or to the component at the right side to execute the swap
operation. This swapping would invariably fail because during the swapping, robots passing
the bridge to the left component would stack all robots on it. Hence, after this, there will be
essentially no possibility to swap unless there are at least enough free nodes to accommodate
all opponent robots on the bridge as well as the two swapping robots. The same thing would
occur if the swapping robots pass the bridge to the right component.

Even though the Kornhauser procedure provides a complete solution for a wide class of
problems, its feasibility test doesn’t distinguish solvable instances from unsolvable ones.
This is because it considers sequential moves only. Hence, it forces us to the conclusion that
there exists a wider class of solvable instances not unrecognized by Kornhauser. We can see it
vividly in the instance containing a number of unoccupied nodes equal to the maximum bridge
length, and the problem allows simultaneous moves. In that case, the instance is solvable.
However, as the bridge length increases, the number of unrecognized solvable instances
increases. For example, the Chain-of-Cycles instance described in Fig. 2 is a solvable instance
in the simultaneous moves boundaries even though the number of unoccupied nodes equals
the maximum bridge.
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Fig. 3 Push operator: robot a faces b through its p*, and b has lower priority than a, robot a pushes b away
from its p*

The anomaly is that a wide range of solvable instances with one unoccupied vertex still
exists that is excluded from the work for the same class of instance described above. It
is understandable that the problem is solvable even if there is one unoccupied node. The
feasibility test in Sect. 4 covers these instances.

In the following context, we will review three powerful algorithms. We selected the Push
and Swap and Push and Rotate algorithms because they provide complete solutions with few
assumptions about the graph to be solved. The Bibox algorithm was selected also because it
provides complete solutions with a proven minimum number of moves.

2.1 Push and Swap

The Push And Swap (PAS) algorithm [14] provides a complete MPP algorithm for problem
instances with at least two unoccupied vertices. However, it considers the priorities of the
robots, which can cause a limitation, and was solved later in another publication [18]. For
each robot a, the PAS algorithm finds the shortest path p* linking the start location of a to
its goal location and advances the robot through p* with Push And Swap algorithms. PAS
solves the problem of n vertices and k robots in O(n*) time.

2.1.1 Push

If the next vertex in the shortest path p* of robot a is unoccupied, the Push algorithm will
advance robot a; if another robot b is detected on vertex v in a’s path, a has the ability to
push it away if it has a lower priority (Fig. 3). If b has a higher priority, the push operator
fails; then, PAS will switch to the swap operator.

2.1.2 Swap

When another robot b is detected on a vertex v in a’s path and b has higher priority than
a, both robots will advance to the nearest vertex u whose degree is equal to or greater than
three. If the vertex u has fewer than two unoccupied neighbor vertices, two occupied vertices
should be cleared regardless of the occupying robots’ priorities (Fig. 4). Treating robots a
and b as obstacles, then, robot a will swap with robot b (Fig. 5). Finally, each robot is affected
by the clear operation, which will be resolved by returning it to its previous location.
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Fig. 4 Robots a and b are advanced to vertex u to achieve swap operation, vertex « contains only one unoccupied
neighbor, therefore, it should clear the other neighbor. To do it, it should not move a, b or the unoccupied
neighbor, hence, all those vertices will be considered as obstacles for the cleared robots

(@—®

a(b) g(a) a(b) g(a)
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a(b) g(a) g(b) g(a)

Fig. 5 Swap operator: Robot a faces b through its SP and b has higher priority than a, robot a and b are moved
to vertex u with degree more than two and swap

2.2 Push and Rotate

The Push and Rotate (PAR) algorithm [13] is a complete version of the PAS algorithm. It
solves the problem of n vertices and k robots with O(k.n3) moves in O(k.n°) time. It solves
any solvable instance recognized by the Kornahuser procedure as instances with a number
of unoccupied vertices greater than the number of the bridge length minus two. PAR has
addressed four issues contradicting PAS claims. These contradictions will be described in
this section exactly as it was presented there.

1. Push and rotate proved that the multi-robot path-planning problem can be solvable when
Swap fails. The Polygon graph with two unoccupied vertices is a graph conforming to
Push and Swap requirements. However, the MPP problem is solvable in the polygon even
though Swap fails due to the absence of a vertex of degree higher than two (Fig. 6).

The isthmus graph is another example proving that the problem can be solved when Swap
fails. When a graph satisfies Push and Swap requirements, under some configuration of robot
ordering, the isthmus contains a vertex of degree equal to or greater than three; it is solvable
but Swap fails (Fig. 7).

2. Push and rotate proved that there are some possibilities that the Clear operation doesn’t
consider.

3. The Resolve algorithm in PAS executes recursively to return each robot affected by the
Swap operator to its previous location, which may lead to a swap with another robot. In
this case, the Resolve algorithm will turn to the swapped robot to resolve it. This will
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Fig. 6 Polygon graph satisfies Push and Swap requirements (two unoccupied vertices), robot s pushes robot r
to reach its goal position through its p*, then, s is finished robot, r tries to push s to reach its goal through its p*
and it fails, swap operator will fail also since there is no vertex with degree more than two in Polygon (right),
hence, this graph will be unsolvable in Push and Swap context while it is solvable if there is an alternative
path for the robot to follow it (left)

Fig. 7 Graph with isthmus is
solvable in Push and Swap o
context if robot s has lower ~ (q)
priority among others only O 7\ s

_/

(@) (e) ()

Fig. 8 Rotate operator execution, in the worst case, all vertices in the cycle are occupied

also change the last robot’s locations, resulting in moving the robots two steps away from
their location. This possibility is not considered by the Resolve algorithm.

4. Push and Rotate proved that new redundant moves result after executing the Smooth
operator in PAS that may require executing Smooth again.

In addition, PAR introduces the rotate operator to resolve cascade moves. The rotate
operator is called to move robots forward in a cycle. To do so, one vertex is cleared by
swapping it with a neighboring vertex. Then, all the robots are rotated clockwise so that any
robot affected by the clear operator will be resolved. Figure 8 describes rotation procedure.

@ Springer



700 Auton Agent Multi-Agent Syst (2018) 32:693-740

Fig. 9 Decomposing biconnected
graph to i handles (H;) and
original cycle (Cq)

2.3 Bibox

The Bibox algorithm [15] solves bi-connected graphs completely. Initially, Bibox decom-
poses the problem into many handles and one original cycle (Fig. 9). Then, robots with goal
locations at the outer handles are solved first, then locked and excluded from the search
space. This results in a smaller problem; now, the original cycle will be solved in different
ways. Bibox solves the problem of n vertices in O(1?) time and O(n®) moves. However,
Bibox always solves the graph considering the worst scenario. If there are more than two free
vertices, it fills those vertices with dummy robots, solves them, and removes their solutions
from the final solution. This permits the algorithm to utilize additional free vertices and hence
allows improvements.

2.3.1 Solve handle

Solving a handle means starting from the vertex at the beginning of the handle and bringing
the robots whose goal vertex is the handle into the handle one by one until all vertices in the
handle are finished. If a robot is located outside the handle, bring it to the entering vertex,
u, lock the handle to protect the finished vertices from any arbitrary moves, move it to its
goal with the rotate operator, and unlock the handle. The idea is that the handle keeps the
finished vertices at the beginning, which means they will be rotated and reverse rotated to
ensure their robots are back in their locations (Fig. 10). If a robot is located in the handle,
rotate the completed vertices until the robot reaches the entering vertex. Advance the robot
to any free outer vertex, rotate it in the reverse direction along the path previously traversed
to protect finished vertices, and continue with the robot as in the outer robot case (Fig. 11).

2.3.2 Solve original cycle

The original cycle will be solved at the end, when the problem consists of a cycle with two
unoccupied entering vertices and all robots inside have their goals inside also. For each two
robots that want to swap, rotate them to the entering vertex, exchange their locations, and
reverse rotate to restore the previous locations (Fig. 12).

In conclusion, we have presented an exhaustive literature review and explained the modal-
ities of the major algorithms critical to the working of our proposed technique. With such
solid work already existing, it is not sensible to propose our entire contribution from scratch
(reinventing the wheel). Rather, our proposed work builds on Kornhauser’s work. In addi-
tion, the Push and Swap and Push and Rotate algorithms appear most favorable for our work
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Fig. 10 SolveHandle Case 1, if
the robot outside the handle

Fig. 11 SolveHandle Case 2, if
the robot inside the handle

Fig. 12 Solve original cycle
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because they impose fewer restrictions on the roadmap. Furthermore, the Bibox algorithm is
also suitable because it is powerful for a smaller class of instances, with higher performance
in term of execution time and path length produced. Despite the fact that these algorithms
seem most appropriate for working with our proposed model, they have their own issues that
we intent to resolve with our work as our major contribution based on those algorithms. The
major limitations that we attempt to resolve are:

e Kornhauser does not recognize a wide set of instances solvable by simultaneous rotation.

e Push and Rotate reported four failure cases contradicting Push and Swap completeness.

e The Push and Swap algorithm failed to solve the class of instances in which the maxi-
mum bridge length equals the number of unoccupied vertices even though it contains two
unoccupied nodes.

e Because Push and Rotate is limited to the solvable instances recognized by Kornhauser,
it failed to solve a solvable instance with the number of unoccupied nodes equal to the
bridge length.

e Push and Rotate produces infinite resolution if there is no ordering of robots.

e All of the moves generated by the Push and Swap and Push and Rotate algorithms are
reversed at the end except the moves generated by exchanging the swapping robots.

e Bibox is limited in application because it provides a complete solution for only a bi-
connected graph with two free nodes.

e Bibox always solves the graph considering the worst scenario. If there are more than two
free nodes, it fills those nodes with dummy robots, solves them, and removes their solutions
from the final solution. This permits the algorithm to utilize additional free nodes and hence
permits any improvement.

e There is a wide class of solvable instances with only one unoccupied node, which is
excluded from the Push and Swap, Push and Rotate and Bibox assumptions.

This is a long list of issues that can be resolved for further optimization. Our work focuses
on overcoming these limitations with a new technique to be explained in the next section.
There, we define a feasibility test to evaluate the possible solvability of the earlier instance.
In addition, we introduce a Push and Spin algorithm that remains based on the principle
of pushing and swapping robots but incorporates our proposed suggestions. We will prove
through analysis and experimental validation that this new algorithm is complete for any of
the class of instances passing the feasibility test.

3 Problem statement

Wilson [19] proposed an efficient decision procedure to solve 15-puzzles, 14-pebbles with
one unoccupied vertex, without considering the number of moves. Therefore, his solution
requires exponentially many moves. Kornhauser et al. [12] generalized Wilson’s solution
to solve the Pebble Motion on Graph (PMG) problem with -1 pebbles in O(n?) moves. In
that work, he defined PMG for a number of pebbles smaller than the number of vertices. A
move consists of transferring a pebble to an adjacent unoccupied vertex. In this scenario, the
problem is to decide whether or not one arrangement of the pebbles is reachable from another.
The PMG problem further attempts to find the shortest sequence of moves needed to achieve
the rearrangement wherever possible. In the same paper, Kornhauser also provided solvability
conditions for a graph with two unoccupied vertices. One variant of PMG was defined by Yu
and Rus [20], who allowed parallel rotation. They defined a problem of finding a sequence of
simple moves and rotations that took an initial configuration to the goal configuration, thereby
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generalizing the problem into Pebble Motion with Rotation (PMR). The PMG problem can
easily be mapped to the Multi-robot Path-Planning (MPP) problem. Michler [21] revealed the
differences between PMG and MPP. He showed that PMG models usually assume that there is
a central planner attempting to minimize a sequential execution of moves on the graph, while
there are mainly two distinctions in MPP models: (1) whether the robots execute in parallel
or sequentially, and (2) whether there is a centralized planner or the planning is distributed.
Therefore, MPP can be thought of as a generalization of the PMG. It is also evident from the
literature that several techniques have emerged to solve sequential MPP. Surynek [15], Luna
and Bekris [14], de Wild et al. [13], and many others are working in this domain to solve
such types of problem. As noted earlier, parallel moves are one of the distinctions between
PMG and MPP. MPP with parallel moves (MPPp) can be defined as a chain of robots that
can be moved simultaneously as long as there is an empty vertex at the head on the chain.
This particular problem was studied by Ryan [22], who separated subgraphs on the basis of
MPPp. Yu and LaValle [23] added parallel rotation to the fully occupied cycle in MPP with
parallel moves and rotations (MPPpr) as a natural result for parallel movement.

The model proposed in our work, referred to as Multi-robot Path Planning with spinning
(MPPs), is a type of Multi-robot Path Planning with parallel moves and rotations (MPPpr). Its
inherent constraint is that parallel moves are allowable only when rotating robots in a cycle
(spinning). To illustrate the problem, visualize a roadmap G = (V, E), which is a connected
graph. Some important variables to be used are: a set of robots R, a set of vertices V, an initial
assignment of robots to vertices [J: R — V, and a target assignment of robots to vertices ®:
R — V. The functions 7 and & are total, injective, and non-surjective. Their totality can
be judged from the fact that the position of each robot must be specified, injective because
one vertex can hold only a single robot at a time, and non-surjective as we require that there
always be more vertices than robots. The path of robot i is therefore defined as a map from
a time-step to a vertex: p;: F +— V. A path p; is feasible for a robot r; € R if it satisfies the
following properties:

1. pi(0)=J(r;), the start position, at time-step zero, of the robot i, is the initial assignment
of robot r; to its start vertex.

2. For each robot i, there exists a finite number of time-steps k;€ F +such that in the last
time-step, the robot i reaches its goal vertex p;(k) =& (r;).

3. Forany 0 <k, (p; (k), pi(k+1)) € E or p;(k) =p(k+1). If p;(k) =p;(k+ 1), then the robot
r; stays at vertex p;(k) between the time steps k and k + 1.

We say that two paths p;, p; are in collision if there exists k € f +such that p;(k) = p;(k) is
a collision on a vertex (Fig. 13a), or (p;(k), pi(k+1))=(p;(k+1), pj(k)) is a collision on an
edge (Fig. 13b).

3.1 Problem (MPPs)

Given (G, R, J, ), the problem is to find a set of paths P={p;, ..., p,} such that each p;
is a feasible path for the respective robot r; and no two paths p;, p; collide.
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at time k at time k
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Fig. 13 Collision cases: a collision on vertex, b collision on an edge

Simultanous spinning B B
Sequential simple move
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aly) aly)
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Fig. 14 Multi-robot path planning problem with spinning

Based on the fact that PMR is a generalization of the PMG problem, and due to the avail-
ability of parallel rotation [20], MPP is a generalization of PMG because it allows distributed
and parallel computations [21]. We can therefore conclude that PMR is a centralized parallel
MPP. Furthermore, because MPPs and MPPpr are centralized parallel MPP, we can follow
PMR definitions; MPPs allow two types of moves of pebbles. In a simple move, a robot
may move to an adjacent empty vertex in a time-step. In a spinning move, robots occupying
all vertices of a cycle can rotate simultaneously (clockwise or counterclockwise), such that
each robot moves to the vertex previously occupied by its (clockwise or counterclockwise)
neighbor (Fig. 14).

4 Feasibility test

1. Polygons are solvable if and only if the start and finish positions differ by a cyclic
permutation.

2. The problem allowing parallel rotation would be considered solvable only if the instance
contains a cycle and the number of free nodes is greater than or equal to the maximum
bridge length.

3C € G: Cis a cycle A number of free nodes in G>max (bridge length) in G— G is
solvable.

Proof The proof of the first test is provided by Kornhauser [12]. The correctness of the
proof of the second test is guaranteed because it is constructed based on Kornhauser’s proof.
The principal change here is to relax the swap operation. By doing so, instead of swapping
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free vertices = bridge length

Swapping robots Opponent robots

S G BVG WG T/0 gl G T

bridge

Fig. 15 Feasibility Test

Fig. 16 Feasibility test, Case 1

a vertex, the algorithm achieves a successful swap by requiring the availability of a cycle
without any additional empty neighboring vertices. The swapping robots r and s would pass
to the nearest swapping cycle, pushing away opponent robots on their way (Fig. 15). If the
graph contains empty vertices equal to the longest bridge length, then the entire path would
be cleared. Once the swapping robots reach the entrance vertex of the cycle, the full parallel
spinning would be sufficient to swap the swapping robots’ positions, as is described in the
next section. All out-of-position robots affected by the execution of robot r would be restored.

To be accurate, there are two main cases for the current position and goal position of robot
r, with all other situations being subcases of these two. The cases are:

Case 1 Current position of the robot r and its goal position are at a cycle. According to its
definition, parallel spinning will always be able to pass a robot occupying a vertex in the
cycle to reach its goal on the same cycle even if the cycle is fully occupied.

Case 2 Current position of the robot r is at a cycle and its goal position is at another cycle.
Let G be an instance containing two cycles C; and C, a bridge with length b/, and free
vertices m equal to bl. In the worst case, the bridge is fully occupied, with the robot r at the
join vertex of C; and its goal position inside C;. Consider three main configurations in this
case;

1. All free vertices are inside C, while C; is fully occupied (Fig. 16).

In this case, robot r would occupy the join vertex v, which is the entrance to C,. However,
the solvability would still be guaranteed by moving robot r away one step to — v, followed by
shifting all robots in the bridge to C, and passing robot r toward C; through the free bridge.
Once r reaches the head of the bridge, which is the entrance to Cy, the robot will be treated
as Case 1.
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Fig. 18 Feasibility test, Case 3

2. The free vertices are divided between C; and C, equally (Fig. 17).

In this case, robot » would occupy the join vertex v, which is the entrance to C,. However,
the solvability of the problem would still be guaranteed by moving robot r away one step to
—v followed by shifting half of the robots in the bridge to C;. Once this is achieved, robot
r would be passed towards C; through half the free bridge and all opponent robots in the
second half would be shifted toward C;. Once r reaches the head of the bridge, which is the
entrance to Cy, the robot will be treated as Case 1.

3. All free vertices are inside C; while C; is fully occupied (Fig. 18).

In this case, robot » would occupy the join vertex v, which is the entrance to C,. However,
the solvability of the problem would still be guaranteed by shifting all of the robots in the
bridge to C; and then passing robot r toward C; through the free bridge. Once r reaches the
head of the bridge, which is the entrance to Cy, the robot will be treated as Case 1.

These results can be generalized for any division of the free vertices. Furthermore, they
can also be generalized to grid and bi-connected graphs when they contain a set of cycles
connected by a bridge of length one (an edge). Hence, one empty vertex is sufficient to make
theses graphs solvable. Furthermore, this result can clearly be applied to any instance, e.g.,
a tree attached at only one end to a bi-connected component, the grids, the bi-connected
components, a tree with leaves of cycles, the connectors, the corners, the loop-chain, etc.

5 Push and spin

Push and spin uses the same version of the Push operation proposed by the Push and Rotate
algorithm, and introduces a new swapping technique. The principal idea of this novel swap-
ping technique is based on the following fact:

If we rotate a cycle a number of rotations equal to the degree of the cycle, the cycle
will have returned to its initial configuration
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Fig. 19 Swapping robots a4 and a5 by using full rotation idea without affecting others

While abiding by this fact, any new algorithm need not reverse all its moves because
all occupying robots would already be back to their previous locations before the rotations
started.

Based on this fact, if two consecutive robots are pushed into the cycle, they will swap their
positions if the cycle is rotated a number of rotations equal to its degree. Furthermore, all
robots in the cycle will have returned to their previous positions with no reverse or resolve
operations required. Figure 19 shows two robots a4 and a5 wanting to swap their positions
using the rotation idea. First, these robots will be pushed inside the cycle (Fig. 19a), and then
the cycle will be rotated in clockwise direction by a number of rotations equal to its degree
(Fig. 19b—g). The final configuration will show that robots a4 and a5 have been swapped
while other robots have already returned to their previous positions.

To understand the Push and Spin algorithm, the following predicates will be used.

A(s): the vertex occupied by robot s.

A~!(v)=the robot occupying vertex v.

m: the number of unoccupied nodes in graph G.

m’ (u, v): the number of unoccupied nodes in the portion of G behind v and excluding edge
(u, v). If the portion of G behind v is already connected with the part of G behind u by a path
other than (u, v), m’ will equal m except u and v.

next (s) =the vertex next to A(s) on the shortest path of s.

Push (s, p, ¥) pushes robot s blindly through p. The Push operation will push away all
robots on p even though they are finished robots because the operation will consider the
finished set as obstacles.

Vertex is available: not occupied by any robot.

Path is reachable: a path linking that vertex is connected, but it is not necessary that all its
nodes be available.

Finished robot: robot at its goal node.

Definition (Simultaneous rotation) The rotation of robots in the cycle follows the least
restrictive parallelism model that allows a robot to move to a vertex from which another
robot is moving away even if there are no empty vertices.
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5.1 Push and Spin algorithm

The Push and Spin algorithm (Algorithm 1) takes a connected graph G as its input. In this
scheme, the assignment function is from an occupying robot to an occupied vertex; G is an
invertible one-to-one function while the goal function is from the robot to its goal vertex;
® is an invertible one-to-one function and set of robots R. The Push and Spin algorithm
returns a list of solutions, IT; the ID of each index in this list is the time-step, and the index
itself contains a list of moves made at that time-step. In sequential moves, each index in the
list contains an ID and a list with only one move. However, in the case of parallel moves,
many moves will be recorded at the same time-step. List IT takes all robots from their start
positions to their goal positions. The Push and Spin algorithm will extract all of the cycles in
the graph. The extract-cycles operation computes all non-trivial bi-connected components.
These components can be obtained in linear time O(IV|+|E) [24]. If there are no cycles in the
graph, the algorithm will switch to the Push and Swap' algorithm. Once cycles are extracted,
robots will be selected in an arbitrary manner and the Push and Spin algorithm will calculate
the shortest path connecting robot a with its goal by an A* search. This is done by iteratively
applying Push and Spin operators that move robot a toward its goal. We use the same Push
version, modified by the Push and Rotate algorithm [13], pushing the robot one step only.
If pushing robot a to its goal by the Push operation fails (line 15), the result will be that a
finished robot from ¢/ will be blocking a. In such a case, the algorithm would switch to the
next operator, the Spin operation (line 18). This operator will swap a and the robot blocking
a. In addition, if the Spin operation fails, all the attempts to advance the robot through its
shortest path have expired and robot a is congested in its position. In this case, the algorithm
will consider this robot as a Resolved robot and add it to the ResolveStack line 19). Note that
robots in the ResolveStack will not be executed unless one robot reaches its goal. If the robot
a reaches its goal, it will be added to the finished robots set I/, and the robots affected by its
solution—in the ResolveStack—will be re-executed in a LIFO order.

5.2 Push operation

The Push operation (Algorithm 2) attempts to advance robot a to its destination node, v, and
to insert all produced moves sequentially into IT (i.e., in different lists with different IDs). If
the destination vertex v is occupied by another robot (line 3), the Push operation has the right
to push non-finished robots (i.e., robot ¢ ¢/) without resolving them because at its execution
time, the shortest path will be calculated from a robot’s current position to its goal position
irrespective of its current position. To push the conflicted robot away, the Push operation, on
an ad hoc basis (line 9), would block the current position of robot a and the finished robot
at U (line 4). As a result, the shortest-path algorithm will consider those blocked robots as
obstacles. Then, the operation will find the nearest reachable free vertex to which to push
the conflicted robot (line 5) while calculating the shortest path to it (line 6) and advancing
the conflicted robot to it. If there is no path linking the conflicted robot with that node, (e.g.,
the conflicted robot is a finished robot), the Push operation will exit with a false return. If all
conflicted robots are pushed away and the robot a reaches its goal (line 11), the operation
will exit with true.

I To cover an instance of a tree.
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Algorithm.1 Push and Spin (G, A, ®, R)

1. Mark all nodes type in G as “B”

2. C =extract _cycles (G)

3. ifc=0

4. return Push And Swap (G, A,P)

5. ResolveStack =@

6.

7. U=0

8. a=0

9. while U#R

10. ifa=0

11. a = next (R/ U) 4 select next robot in R and not in U
12. p* = shortest-path(gG, A(a), P(a))

13. while A(a) # P(a)

14. v € p*next (a)

15. if Push (I, G, A, a, v, U) failed then

16. p*.blocked(a, b) ¢ b is the conflicted robot will be on next vertex on p*
17. m* =T

18. if Spin (l'l*, G, A, D,a,b,p* U* C, ResolveStack) failed then
19. ResolveStack. push (a)

20. a=9

21. break

22. else

23. M=1u I*

24. if A(a) = P(a)

25. U=UUa

26. a = ResolveStack.pop

27. return I1

Algorithm.2 Push (IL, G, A, r, v, U)

1.

R A I

—_ =
—- o

if A[r] # v then

Advance r to v until blocked, inserting intermediate actions into I1 in sequence indexes
if A[r] # v then

Mark A[r] and U as blocked on G

v, € reachable empty vertex to v on G

p € shortest-path(g, v, v.)

if p = @ then

return false
Mark A[r] and U as free on G

Move robots on p toward v,; insert actions into II in sequence indexes

. return true
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Fig. 20 Main three cases of swapping robots locations related to the cycle

5.3 Spin operation

All situations of swapping robots positions related to the swapping cycle can be summarized
into three main cases. The first is the bb-case (Fig. 20a), which occurs when the swapping
robots are on the bridge. The second case, known as the cb-case (Fig. 20b), occurs when one
swapping robot is on the cycle and the other is on the bridge. The last case, called the cc-case
(Fig. 20c), is encountered when the swapping robots are inside the cycle. All cases use the
same swapping technique with some differences in their details. The Spin operation checks
the swapping robots’ positions and executes the corresponding case.

Spin operation (Algorithm 3) works as follows. If the robots are inside the cycle, they
will be swapped by cc-case (Algorithm 4). If the swapping cannot occur, the Spin operation
will exit with false (line 3). On some occasions we may have a situation where the robots
are on the bridge, or one is on the bridge and the other on the cycle, and the problem
instance has passed the feasibility test. In such a case, there will always be at least one
swapping cycle containing sufficient unoccupied nodes to receive all opponent robots and
the swapping robots and execute swap. In this case, the swapping cycle should be calculated
by the compute-swapping-cycles operation. For each extracted cycle, the compute-swapping-
cycles operation? will compute 7, the total vertices in the part of the graph remaining when
the edge between the robot and the swapping robot is blocked; m” will be the number of
occupied vertices of m’. The total vertices able to receive the opponent robots will be m'—m".
If these vertices are sufficient to receive all opponent robots plus the swapping robots, then
the cycle is the swapping cycle. Afterwards, the swapping robots should be swapped by the
bb-case operation (Algorithm 4). As with the previous case, if robots cannot be swapped,
the Spin operation will exit with false. Otherwise, the Spin operation will try to resolve the
swapped robot (line 9) and exit with true.

Algorithm.3 Spin (I, G, A, , s, r, p*, U, C, ResolveStack)
1. if G.type (A[s]) = “C” AND G.type (A[r]) =“C"” then
if cc-case (l'[*, G, A,s,r, U, C,) failed then

return false
else
C = compute swapping cycles (G, A, C, s, 1)
if bb-case (l'I*, G, A, s, r, U,C) failed then
return false

Resolve (H*, G, A, D, 5,1, p* r, U, ResolveStack)

e A o

return true

2 Details of the compute swapping cycle operation are in Appendix A.3 of Supplementary material.
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5.4 cc-Case operation

In its first step, the cc-case operation (Algorithm 4) will select a join vertex v joining the cycle
with the rest of the graph (line 1). This will be followed by selecting one of its neighbors, u,
such that u is not implied to the cycle (line 2). To check its eligibility to receive the swapping
robots, the prepare cycle operation’ will borrow an unoccupied node either from the cycle or
out of the cycle to ensure that the vertex u is not occupied. However, we must keep in mind
that any moves made by the prepare cycle operation will be reversed* at the end.

Now, the instance containing a cycle with occupied nodes and the unoccupied join node’s
neighbor, u, (Fig. 21a) needs to be addressed. In this case, partial_spin will be calculated
as the number of nodes in the cycle between the vertex occupied by the swapper robot
s and the join vertex (line 8). When this process is completed, the cycle will be rotated
simultaneously a number of rotations equal to partial_spin (Fig. 21b). When the swapper
robot s reaches the join vertex v (line 9), the operation will multi-push the swapper robot s
(line 10) one step toward u and the swapped robot r one step toward v. This will leave one
unoccupied vertex at v—(Fig. 21c) and execute one rotate (line 10), so that the unoccupied
vertex will be vertex v (Fig. 21d). As a result, swapper robot s will be pushed back (line 11)
to the join vertex v (Fig. 21e). The final step of the rotations will be to rotate the cycle as
many times as the number of rotations, which will be its degree minus the partial_length
that we calculated previously minus one (line 12), (Fig. 21f). Upon completion of all these
operations successfully, the moves done in the borrowing steps will be reversed. This will be
done because at this point, we will be certain that the operation has backed up the instance
to exactly its previous configuration (Fig. 21g). Note that if one of these operators fails, the
operation will exit directly with false and the caller algorithm will totally destroy all moves
resulting from this attempt.

Algorithm.4 cc-case (]'[*, G, A, s,r,U,C.)

1. v=entering vertex : v € C. : G.degree(v) >3

u € Gadjv]:uécC.

start_reversing_index = m

if prepare cycle (I1', G, A, s, 7, v, u, C.) failed then
return false

end _reversing_index =T11"

back_index = 0

partial_spin € shortest_path(G, A[s], v)

R A A T o

if execute spin (G,A,Ce, length (partial_spin), ") then

10. if multipush (11", G, A, s, u, r, v, @) AND execute_spin (G,4,Ce, 1, 11") then
11. if Push (I, G, A, s, v, @) then
12. if execute spin (G,A,C., length (C.) — length (partial_spin) - 1,11") then
13. if reverse (s, r, start_reversing_index, end_reversing_index,
back_index ,cc, T1") then

14. return true

3 Details of the compute prepare cycle operation are in Appendix A.1 of Supplementary material.

4 Details of the reverse operation are in Appendix A.4 of Supplementary material.
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(g

Fig. 21 Execution of cc-case operation. a cc-case after preparing the join node’s neighbor (u). b cc-case after
executing partial rotation. ¢ cc-case after multipushing the swapping robot s and r to v and u. d cc-case after
one additional rotate. e cc-case after pushing swapper robot r back to vertex v. f cc-case after full rotation. g
cc-case after reverse borrowing operator
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Fig. 22 Execute spin one time

5.5 Execute spin operation

As described earlier, our problem definition allows simultaneous rotation of robots in a cycle.
The advantage of this model is that it is the least restrictive model because it allows robots to
move even if there is no unoccupied node available. In the execute spin operation (Algorithm
5), for each iteration, the cycle will spin all robots occupying its nodes simultaneously one
time clockwise. A list of moves will be initialized in each iteration (line 2), and for every
occupied vertex in the cycle (line 4), the occupying robot will be moved to its neighbor vertex
in the clockwise direction. This task will be performed by numbering the vertices in the cycle
increasing in the clockwise direction (line 6). Even if a neighbor vertex is occupied, the
operation would ensure the availability of the neighbor vertex because all robots would be
moved simultaneously (Fig. 22). For the same reason, the robot will be pushed blindly—¥ in
the finished-robots set—to the next vertex (line 7). Finally, the list of moves generated in the
same iteration will be added to the solution list in the same index, because an index means a
time-step (line 9).

Algorithm.5 execute spin (G, A, C., spin number, I1)

1. for iteration = 0 = spin number
2. n=g

3 for every v € C.

4 if A" [v]# @ then < occupied node

5. index = C.'[v]

6 u € C. [(index+1)% length(C.)] + neighbor in clockwise direction.
7 if Push (I, G, A, A [v], u, @) failed then

8 return false

9

insert [T~ into same index in [T*

10.return true

5.6 bb-Case operation

In its first step, the bb-case operation (Algorithm 6) will select a join vertex v to the swapping
cycle C that joins the cycle with the rest of the graph (line 1). It will then select one of
its neighbors, u, such that « is not implied to the swapping cycle C (line 2). The operation
will push the swapping robots s and r blindly toward the nodes u and v, respectively, with
the multipush® operator blindly. This will push all opponent robots and the swapping robots

5 Details of the multi-push operation are in Appendix A.2 of Supplementary material.
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toward the swapping cycle regardless of any finished robot. This is because the set of finished
robots sent by ¢ (line 4) and all moves generated by this operator will be reversed at the end
(Fig. 23a). Once this step is completed, the swapping robot will again be multi-pushed to the
swapping cycle (line 6). The goal of doing this process in two steps is to save the index of the
moves to be reversed (Fig. 23b). The swapping cycle will be rotated a number of rotations
equal its degree (line 7), (Fig. 23c—f). At this stage, the swapper robot will be at the join node.
The operation will push it one step out of the cycle (line 8), (Fig. 23g), and the cycle will
continue its rotation (line 9), (Fig. 23h). Upon completion the robots will swap the moves
generated by multipush in the first step and all other robots will reverse their moves (line 11),
(Fig. 231, )).

Algorithm.6 bb—case (IT, G, A, s, r, U, C)
v € join vertex to C : G.degree(v) >3
u € Gadjvl]:ugC

start _reversing_index = mn
if multipush (11, G, A, s, v, 7, u, @) then
back_index =1I"
if multipush (11", G, A, s, C[1], r, C[0], @) then
if execute spin (G,4, C, length (C)-1, I1") then
ifpush (I', G, A, s, u, @) then
if execute spin (G,4, C, 1, 1T°) then

A T A L T o

—
o

. . *
end_reversing index = I1

—
—

if reverse (s, r, start_reversing index,
end_reversing_index, back_index,bb, I1") then

12. return true

5.7 Resolve operation

As mentioned earlier, the Resolve operation was proposed initially by the Push and Swap
algorithm. Push and Rotate reported the original Resolve operation results in a recursive
resolve case and therefore proposed re-executing the algorithm to resolve the problem. In
addition, the Push and Rotate resolving mechanism results in infinite executions of the prob-
lem in the case of no order between robots. In our proposed algorithm we cannot use their
resolving approach. Push and Spin assumes that merging both ideas may solve both issues.
Recalling the Push and Swap resolve technique, Resolve operation in Push and Swap exe-
cutes recursively to return each robot affected by the Swap operator to its previous location.
This may lead to a swap with another robot. In this case, the Resolve operation will turn to
the swapped robot to resolve it, which also may change the last robots’ locations. This will
result in moving the robots two steps away from their locations, which is not considered by
Push and Swap Resolve operation. The Push and Rotate algorithm stacks all resolving robots
in a list and tries to re-execute them after a robot in turn reaches its goal. This maintains the
idea that all resolving robots will remain one step away their goals. The Resolve operation
(Algorithm 7) will attempt to resolve the swapped robot by moving the swapping robot one
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Swapping robots

Swapping robots Opponent robots

Fig. 23 Execution of bb-case operation. a bb-case multipushes the swapping robots blindly will push all the
opponent robot forward. These moves will be reversed. b bb-case multipushes the swapping robots into the
swapping cycle, this move will not reversed. ¢ First rotation in bb-case. d Second rotation in bb-case. e Third
rotation in bb-case. f Fourth rotation in bb-case. g bb-case pushes swapper robot out. h Fifth rotation in
bb-case. i bb-case reverses the moves generated by multipush in a. j bb-case reverses the moves generated by
multipush in a

step toward its goal and re-push the swapped robot to its goal. If this fails, the swapped robot
will be stacked to be re-executed after the swapper robot reaches its goal. Note that it will be
removed from finished robot set ¢/ so it will be re-executed naturally in the Push and Spin
algorithm.
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Algorithm.7 Resolve (IT', G, A, ®, s, p* r. U, ResolveStack)

1. v =p¥* next(s) 4 after spin, s location will be at » location
2. if Push (IT', G, A, s, v, U) then

3 if Push (IT', G, A, r, ®[r], U) failed then

4, ResolveStack.push( r)
5

U.remove ( r)

6 Analysis
6.1 Proof of completeness

Lemma 1 Push (s, v) operation (Algorithm 2) always advances robot s one step to v=next(s)
in a connected G successfully if the vertex v is unoccupied by any finished robot and if there
is at least one free vertex u in the rest of the graph and if all robots in the path between v and
u are non-finished robots.

A~ W) ¢UAm >1A3u:uisfree A Vr € shortest-path (v, u) : r ¢ U — Push (r, v)

Proof Actually, there are many cases for vertex v=next(s). However, we would limit our-
selves to the only case that makes the left hand side of implication true.

Let r1 be the blocking robot at vertex v such that r1 is non-finished robot. Let m’ be equal
to one so there is an unoccupied vertex u in the remaining part of the graph. Assume that the
paths between vertex v and u are fully occupied by non-finished robots (Fig. 24a).

By the definition of Push operation (Algorithm 2), it would always able to push non-
finished robot away the pushed robot’s path. While there is a chain of robots between v and
u (Fig. 24a), one push will move all robots one step occupying vertex u and freeing vertex
v. Once vertex v is free, robot r1 can move to (Fig. 24b). Hence, robots s will be pushed to
node v successfully.

(a) (b)

Fig. 24 Lemma 1, Push operation clears the path of non-finished robots (a) and pushes robots (b)

@ Springer



Auton Agent Multi-Agent Syst (2018) 32:693-740 717

[11 31 11 [3] [1]
(a) (b) (c) (@

Fig. 25 Lemma 3, base case. a Configuration C;. b Configuration C5. ¢ Configuration C3. d Configuration
Ci

Lemma 2 Multipush (s, r) operation® always advances the compost robot R, composed of r
and s robots, one step to v=next(R) in a connected G successfully if the vertex v is unoccupied
by any finished robot and if there is at least one free vertex u in the rest of the graph and if
all robots in the path between v and u are non-finished robots.

Proof This implication can be proved directly based on Lemma 1, once the fronted robot is
pushed successfully, it would leave an unoccupied vertex which would be the destination of
the follower robot.

Lemma 3 If the cycle has been rotated in any direction a number of rotations equal to its
degree, it will restore the initial configuration C.

C = C + full rotation

Proof Base Case Let robots a and b be located on index 2 and 3 of the smallest cycle
respectively in configuration C;. The degree of the smallest cycle would be set at three. If
the cycle has been rotated three times, the configuration would be changed to C;, C3 and C;
again. That would mean that robots a and b would be back to indexes 2 and 3 (Fig. 25)

Ci = Cj + threerotations.

Inductive Hypothesis Let’s consider a cycle with degree k, robot a and b be located at
indexes k — 1 and k respectively in configuration Cjx);. This would mean that if the cycle
has been rotated k times, the configuration would be changed to Cix2, Cix)3,----Criiks Crat
again. By this implication, robots a and b would be back to indexes k — 1 and k respectively
(Fig. 26).

Ciq1 = Cpq1 + k rotations. (D

Inductive Step On this base, we have to prove in the cycle with degree k+ 1. Consider
robots a and b be located at indexes k and k+ 1 respectively. The initial configuration of the
cycle is with degree k+ 1 is Cjx+11. If the cycle has been rotated k+ 1 time, the configuration
would be changed to Cpi4112, Cix+1135---Cla+15k+1, Cla+171 again, robots a and b will be back
to indexes k and k+ 1 respectively.

Based on the hypothesis, after k rotations, as shown in Fig. 27, the initial configuration
Cik)1 of the cycle with degree k will be restored while a and b will be at index k. One more
rotation (k+ 1) would be enough to restore the initial configuration Cg11.

C[k+1]1 = C[k]l + 1 rotation. 2)

6 Details of Multipush operation is in Appendix A.2 of Supplementary material.
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Fig. 27 Lemma 3, induction

From (2) in (1)
Clis111 = Cpj1 + k rotations + 1 rotation.

Hence, robots a and b will reach indexes k and k+ 1 respectively and the initial configu-
ration Cg4171 of the cycle with degree k+ 1 will be restored (Fig. 27).

Lemma 4 Prepare cycle operation’ will always evacuate vertex u, which is a join vertex
neighborhood that does not imply to the cycle C without affecting swapping robots adjacency
if the problem instance satisfies the solvability condition.

v, u : v is join vertex of C, u € adj[v] A u ¢ C A max (bridge length) < m — prepare_cycle(C).

Proof Lets assume that there is an outer neighbor of the cycle C join vertex v; u, and the
bridge is only the edge connecting v by u (Fig. 28). Further assuming that the instance satisfies
solvability condition. There should be at least one unoccupied nodes in the graph, prepare
cycle operation will push the robot A~!(x) to the nearest one blindly. Let w is the nearest
unoccupied vertex to u there are two case for w position regarding the cycle C:

e w¢C.

If the graph is connected, and there is an occupied vertex u as well as one unoccupied
vertex w which are connected by path p. This path is in the worst case, fully occupied. In such
case, prepare cycle will make blind push for robot A~!(u) to w successfully. From Lemma
1 push operation will always push robot A~!(u) to the free vertex w if the path to it is free
or occupied by non-finished robots, prepare cycle will send empty finished robot set. Hence,
prepare cycle will always evacuate vertex u in this case (Fig. 29).

e weC.

7 Details of prepare cycle operation is in Appendix A.1 of Supplementary material.
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Fig. 28 Lemma 4, prepare cycle
will evacuate vertex u

Fig. 31 Lemma 4, main three cases should be considered before blind pushing robot A~ (v) inside the cycle

In this case, there are two subcases. However, both are treated in the same way. If w is
inside the cycle, that would mean there is definitely a path p from u then v to w. Let p’ be the
other path connecting u to w and the swapping robots on the join node. prepare cycle operation
will always consider path p, even if there is shorter one. The operation will first evaluate the
location of swapping robots and makes the number of rotations enough to alienate them far
of the join node. Without this rotation, evacuating u will result in Fig. 30 case. This is in
conflict with the definition of swapping robots positions. Actually, the number of rotations
required to alienate swapping robots from v varies between {0, 1, 2} only. Figure 31a shows
when the cycle requires zero rotation, Fig. 31b shows when the cycle requires one rotation
and Fig. 31c shows when the cycle require two rotations. After that, prepare cycle will push
A~!(u) to vertex w blindly. The success of this operation is always guaranteed based on
Lemma 1. That is due to the fact that prepare cycle will send an empty finished-robot-set to
Push operation, then, prepare cycle will always evacuate vertex u in this case (Fig. 32).
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Fig. 32 Lemma 4 Case 2

Lemma 5 In compute swapping cycle operationSif the instance containing a cycle satisfies
the solvability condition—for the bridge length bl, there should be at least m free nodes
where m> bl—then, there is at least one cycle able to receive swapping robots.

max (bridge length) < m — compute swapping cycle

Proof The proof of this lemma is direct, as shown in from the proof of the feasibility test
(Sect. 5). There is always a way to pass a robot to any position in the graph if the graph
satisfies the solvability condition. Hence, compute swapping cycle selects the best cycle fit
all opponent robots and the swapping robots.

Proposition 2 [f prepare cycle operation evacuates vertex u, then, cc-case operation (Algo-
rithm 4) always swaps swapping robots positions and returns other out-of -position robots
to their previous positions.

prepare cycle — cc-case

Proof Based on Lemma 4, prepare cycle would always evacuates vertex u which is a join
vertex neighborhood that does not imply to the cycle if the problem instance passes the fea-
sibility test. Hence, we have to prove that cc-case always (1) restores the initial configuration
except swapping robots positions, and (2) exchanges swapping robots’ positions.

1. LetC; be the graph configuration before applying prepare cycle, C, be the graph configu-
ration resulting after applying prepare cycle on the graph and m be the sequence of moves
generated by prepare cycle to transfer C; to C,. The robots affected by other operations
during rotation (i.e., swapping robots) would be excluded from Lemma 3 result. Indeed,
we would be concerned in this part on the robots moved by m and full rotation operation
only. cc-case uses prepare cycle operation to clear the vertex u# which generates m.

Cr,=Cq|m 3)

Then, cc-case operation would rotate the cycle for a number of rotations equal to its degree
Hence the configuration C, would be restored definitely (Lemma 3).

C, = C, + full rotation )

But, cc-case would execute push and multipush operations on the swapping robots r and
s during rotation.

Cy/s <= C; + full rotation + multipush, , + push (5)

From (5) in (3) we conclude that cc-case would always be able to restore C;—except the
swapping robots s and r configuration—by full rotating the cycle and reversing m.

(Cy + full rotation + multipush + push) |m_1 = Cyy5 <

8 Details of compute swapping cycle operation is in Appendix A.3 of Supplementary material.
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Fig. 33 Proposition 2, exchange swapping robots

2. cc-case would rotate the cycle partially until the swapping robots reach the join vertex v.

Once, in desired configuration C;, cc-case multipushes the fronted robot » toward u suc-
cessfully in time 71 (Lemma 4). The follower robot s would be sent towards the vertex
v—which was occupied in 1 by the fronted robot r. Upon successfully completing the pro-
cedure in 2, it would leave unoccupied node; —v. cc-case would rotate the cycle one more
rotation which will make the unoccupied vertex v. In this way, it can push the fronted robot
r back to vertex v (Fig. 33) and the rotates the cycle a remaining number of rotations. At
the end, and based on the first part of this proof, all robots will return to their positions.
Furthermore, the swapping robot would have exchanged their positions.

Proposition 3 [If compute swapping cycle operation finds a swapping cycle, then, bb-case
operation (Algorithm 6) always swaps the swapping robots positions and return all out-of -
position robots to their previous positions.

compute swapping cycle — bb-case

Proof Based on Lemma 5, compute swapping cycle would always find at least one desired
cycle C. This cycle would be able to receive swapping robots if the instance containing a
cycle satisfies the solvability condition. Hence, we would have to prove that bb-case always
(1) multipushes the swapping robots toward the swapping cycle blindly, (2) while exchang-
ing swapping robots’ positions and (3) simultaneously restoring initial configuration except
swapping robots positions.

1. Let C; be the graph configuration. Since compute swapping cycle guarantees to find a
swapping cycle SC (Lemma 5), bb-case will multipush the swapping robots s and r at
the bridge toward the join vertex v of SC blindly. As clearly evident, multipush will not
consider any finished robot in the swapping robots’ way and it will push them to SC
as well. Based on Lemma 2 and Proposition 1, the swapping cycle SC would always
be able to receive the swapping robots and all the robots in their way. This proves that
the multipush always succeeds in compute swapping cycle. C, is the resulted graph
configuration and m is the sequence of moves transfers C; to Cs.

C, =Cq|m (6)

Once the swapping robots reach the join vertex v, bb-case would push the fronted robot r
to the vertex next to v in clockwise direction; +v and the follower robot s to v.

Let C3 be the resultant graph configuration after pushing swapping robots inside the
swapping cycle SC. bb-case will rotate the swapping cycle SC for a number of rotations that
is equal to its degree minus one. When performed, the fronted robot r will be at the join
vertex v and the follower robot s would be at the vertex previous to the join node; — v. Since
multipush would insert all robots in the bridge in the swapping robots way to the swapping
cycle, the neighbor vertex of v on the bridge # would be unoccupied. In this way bb-case
would push the fronted robots r to u and execute the remaining rotation which would restore
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Fig. 34 Proposition 4, Stage 1 of resolving technique

all robots in the cycle into configuration C3 and set the follower robot to v. At this point,
configuration C3 would have been restored except the swapping robots.

Cy/s <>r= C3 +full rotation + push, (@)

2. When the swapping robots would be at v and u, their positions would be exchanged.
bb-case would reverse the sequence of moves generated by multipush while exchanging
swapping robots moves.

From (7) in (6) we conclude that bb-case always multipushes the swapping robots toward
the swapping cycle blindly. It would exchange swapping robots’ positions and restore initial
configuration except swapping robots positions.

(C3 + full rotation + pushr) m~! = Ciss <

Proposition 4 After execution of Spin operation (Algorithm 3), the position of the swapper
robot will be exchanged with the blocking robot and all robots will be at their positions except
the swapped robot in the worst case.

Proof Spin operation evaluates the position of the swapping robots,

o If the swapping robots are inside a cycle, cc-case would always swap robots positions and
would return other out-of-position robots to their previous positions (Proposition 2).

e If the swapping robots are on the bridge, bb-case would always swap the robots positions
and would return all out-of-position robots to their previous positions (Proposition 3).

The last part to prove, is that at the end of the second and third case, the swapper robot
s would be at the swapped robot r position. This may be the goal of the swapped robot r
(Fig. 34). In such case, the Resolve operation would try to push robot s one more step in its
shortest path. In this way, it would resolve robot r by pushing it back to its goal, if not, this
would be because the swapper robots s faces another finished robot in its shortest path, hence,
robot s needs to finish its execution and the swapped robot will be resolved in stage 2 in the
next algorithm. Hence, the swapped robot is out-of-position at the end of Spin operation in
the worst case.

Proposition 5 After execution of one iteration in Push And Spin operation (Algorithm 1),
robot r will have been solved and all robots will be at their positions except the swapped
robot in the worst case.

Proof Push And Spin algorithm would find the shortest path connecting the current position
of robot r with its goal position based on the reachability. This would be independent of the
path availability which would be guaranteed in the connected graph. Consequently, for each
step, the robot would advance to next vertex in the shortest path toward its goal position. This
next vertex may be:

e Unoccupied, the robot would simply advance to it by push operation successfully (Lemma
1).
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e Occupied by non-finished robot s, the robot would be advanced to it by push operation
and the occupying robot s would be pushed away successfully (Lemma 1).

e Occupied by finished robot s, after execution of Spin operation, the position of the swapper
robot » would be exchanged with the blocking robot s and all robots would be at their
positions except swapped robot in the worst case (Proposition 4).

If all cases would succeed, the robots would be assumed to have reached its goal at the end
of its iteration in Push And Spin algorithm. In this way, all robots would be at their positions
except the swapped robot in the worst case.

Theorem 1 Push and Spin algorithm is complete for any graph contains a cycle and a
number of free nodes more than or equals maximum bridge length.

Proof The idea behind the proof is:

1. In each iteration of Push and Spin algorithm (Algorithm 1) in which a robot is selected
that is not in ¢/ (line 8), a robot would be added to U/.

2. In case a finished robot s has been moved off its goal location by Spin operation, then
its current location would be adjacent to its goal location. Resolve operation would try
to make one push for swapper robot r in order to evocate the goal of robot s. When that
would happen, it would push robot s back to its goal. If it would fail, it would schedule
robot s in ResolveStack to be re-executed after swapper robot r reaches its goal.

3. After a finite number of iterations, all robots in ResolveStack would have been processed,
restoring out-of-position agents in I/ to their goal location.

To prove the first point, for non-finished robot r, after execution of the iteration of robot
r in Push and Spin algorithm (line 12), robot r would have been solved and all robots would
be at their positions except the swapped robot in the worst case (Proposition 4), robot r will
be added to /.

To prove the second and third point, Push And Spin would execute push algorithm to push
robot s in Fig. 35a. In its shortest path, robot s would face a finished robot r in its shortest
path. Spin algorithm will exchange their positions successfully (Proposition 4) (Fig. 35b).
Furthermore, Spin algorithm would try to resolve robot r by pushing robot s one step in
its shortest path and it would fail since robot s would be facing another finished robot in
its shortest path, hence. This would make the Spin operator to exit with stacked robot; {r}
(Fig. 35¢c). Push And Spin algorithm would continue to plan robot s’s path. It would execute
push algorithm to push robot s in its shortest path making robot s face finished robot ¢ in its
shortest path. Spin algorithm would have exchanged their positions successfully (Fig. 35d).
After this, Spin operator would try to resolve robot g by pushing robot s one step in its
shortest path. This attempt would fail since robot s would be facing another finished robot in
its shortest path making the Spin operator to exit with stacked robot; {¢, r} (Fig. 35e).

Push And Spin algorithm would continue to plan the path of robot s. For meeting that
objective, it would execute push algorithm to push robot s in its shortest path. Robot s would
be facing a finished robot ¢ in its shortest path, Resultantly, Spin algorithm would have
exchanged their positions successfully (Fig. 35f). Spin algorithm would try to resolve robot
t by pushing robot s one step in its shortest path (Fig. 35g) and it will succeed in pushing
robot s one step and resolving ¢ (Fig. 35h). In this manner, Spin operator would exit without
stacked robot. At the end of robot s execute, it would be added to finished robots set. Push
And Spin algorithm would re-execute stacked robots in last-in-first-out manner since the
latest swapped robot g will be able to move to the last evocated vertex before robot ¢ goal
(Fig. 351). This would give us the desired unoccupied vertex which is the goal of earliest
stacked robot r (Fig. 35j).
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Fig. 35 Thereom 1, Stage 2 of resolving technique

6.2 Runtime analysis

Let k denote the number of robots in the instance and n be the number of vertices in the
roadmap. In order to solve an instance, each robot needs to be sent to its goal position by
Push and Spin algorithm (lines 13-23) to solve the robot or to resolve the robot, it will take at
most k. In the iteration of the robot, Push and Spin algorithm computes the shortest path for
the robot to reach its goal position. The length of this path (or any simple path in the graph) is
upper bounded by n. For each step along this shortest path, Push and Spin algorithm operation
will do a Push or Spin algorithm. Out of these algorithms, the runtime of Spin algorithm is
dominant, which simplifies the following equation:

IPush and Spin = Ok -n- [Spin)

Spin algorithm executes either cc-case algorithm or compute swapping cycle, bb-case,
and resolve algorithms resulting the following equation:

tSpin =0 (tcc—case + tcompute swapping cycle Tob-case + tresolve)

e cc-case takes O(n?), the runtime of prepare cycle operation is dominant, it pushes a robot
on u to clear this will take O(»n?) in the worst time

e compute swapping cycle operation takes O(c.n?) because it evaluates the availability of
each cycle O(C) and calculates the shortest path to it O(lnl+lel) = O(n?).

e bb-case algorithm takes O(n3), the runtime of multipush operation is dominant, it takes
O(n?) time to push the robot toward its goal, this push will be repeated along the robot
path which is upper bounded by #.

e resolve algorithm takes O(n?) time to push the swapping robot and swapper robot one step.
Hence, the time complexity of Spin algorithm is:

3 4
tspin = O (n ) —> Ipush and Spin = O(k - n™)
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6.3 Solution quality analysis

For the same reasons as above, the Spin algorithm is a dominant factor in the output of the
Push and Spin algorithm. This yields the following expression for the number of moves that
the Solve algorithm outputs:

Ipush and Spin = O(k - n - [Spin)

as described in time analysis, Spin algorithm executes either cc-case algorithm or compute
swapping cycle, bb-case, and resolve algorithms resulting the following equation:

lSpin =0 (lcc—case + lcompule swapping cycle T Ivb-case + lresolve)

e cc-case takes O(n?), the output of execute spin operation is dominant and it moves all
robots in the cycle of n vertices O(n) moves for a number of rotations. This in its worst
case would equal the cycle size O(n). In addition, execute spin operation produces O(n)
makespan.

e Compute swapping cycle operation doesn’t take any action, hence, no moves will be
produced.

e bb-case operation takes O(n?), the output of multipush operation is dominant, it takes O(r2)
moves in each push of the robot one step toward its goal to push the opponent robots away,
this output will be produced for each step in the path to the goal produces O(n) moves.

e resolve operation produces O(n) moves to push the swapping robot and swapper robot one
step which require push all opponent robots away O(n). Hence, the path quality of Spin
operation is:

lspin = O (nQ) —> Ipush and Spin = O(k - I’l3)

7 Post-processing and heuristic

The goal of the research problem that we tackle is to find the complete solutions for MPPs.
The theoretical analyses already performed demonstrate the completeness of the algorithm.
However, the Push and Spin algorithm does not guarantee the optimality of the solution. It
is noteworthy here that we did not improve the performance metrics (i.e., using heuristics,
smooth methods, etc.) in the previous sections, although various methods exist to optimize
the completed solution. In this section, two optional methods are used for this purpose.

7.1 Smooth operation

The Smooth operation is a component invoked on the complete solution at the end of the
algorithm. It reduces the generated redundant moves. In this work, we have implemented the
same Smooth operation introduced in the Push and Swap algorithm; however, because our
solution contains simultaneous moves, the operation has been modified accordingly. Smooth
operation (Algorithm 8) takes the list of solutions IT, which contains a list of lists of moves.
Each list is indexed with its time-step in I1; hence, the sequential moves represent a list of one
move, and the simultaneous moves represent a list of all moves executed at the same time-step.
Smooth operation iterates over IT in a reverse manner.’ If the index contains simultaneous

9 The description here is written as in the Push and Swap publication because we have implemented the same
smooth operation of the Push and Swap algorithm.
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moves (list of length more than one), the operation will skip it (line 6), because there will
be no redundant moves generated by executing the Spin operation. If the index contains
sequential moves (list of length one), for each action 7, the actions after 7 in the reversed
sequence are checked for an occurrence of the final vertex v in 7. If such an action 7’ exists
(line 9), and 7 and 7’ are executed by the same robot r (line 10), then all actions executed
by r between 7 and 7’ (including 7) can be removed from IT (lines 11-13). Additionally,
7" can be adjusted to end at vertex v (line 14). The smoothing process continues until the
entire solution sequence has been iterated through, and the iteration begins anew. Smooth
continues to iterate over IT in reverse order until no paths are removed.

Algorithm.8 smooth (IT)

1. removed = TRUE

2. while removed == TRUE

3. removed = FALSE

4. for all t € Il.reverse ()

5. if m.size > 1 then

6. continue

7. 7 = robot (1)

8. v = last vertex in 7

9. 7' € next path in [T.reverse () containing v
10. if T #@ and r ==robot(r’) then

11. for all 7"€ I1 (7, ')

12. if robot(n") == r then

13. Remove (") from I1
14. Remove portion of 7" after v

15. removed = TRUE

16. return Il

7.2 Heuristic search

After designing a complete polynomial algorithm, we found that within the complete solution,
alternative complete decisions may appear that may improve the performance of the algorithm
in addition to its completeness. Hence, we designed a new version of the complete Push and
Spin algorithm (improved Push and Spin algorithm) that inherits the completeness of the
original algorithm but with better performance.

One of the major factors affecting multi-robot path-planning algorithms is the total path
length. It is calculated as the total number of moves that transform the initial configuration
of robots into the goal configuration. Hence, in the complete algorithm, finding the shortest
path as an alternative to the connected path will provide a better solution in terms of reducing
the total path length. This has a direct effect on the traversal times of robots.

Furthermore, in general in the Push and Spin algorithm, as described earlier, the Spin
operation represents the dominant factor in both execution time and total path length metrics.
Hence, these metrics can be improved by reducing the number of situations that lead to the
need to invoke the Spin operation.

The Spin operation will be called when robot a finds a (blocking) planned-robot n (Fig. 36)
in its connected path p. Hence, one way to improve the path and eliminate Spin operation calls
is to try to find another path p* such that p* contains the minimum number of planned-robots.
However, if there is no other path, we must maintain completeness by using path p.
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Fig. 36 Alternative path
computation

These ideas have been applied to the improved Push and Spin algorithm by replacing the
connected-path algorithm in Algorithms 1 and 2 with the best-path algorithm (Algorithm
9). In this algorithm, we introduced an evaluation function that evaluates the available paths
according to their lengths and the availabilities of planned-robots. Furthermore, the execution
time factor will be improved by reducing Spin cases, but may suffer by evaluating different
available paths.

Algorithm.9 best-path (r, path-set, G, U, w;, ws)

1- min = |G|
2- index = -1
3- For each path p; € path-set :
a. best-path =w,. |p;]| + w,. number of planned-robot (p;)
b. If min > best-path:
i. min = best-path
ii. index= i

4- return index

8 Results and discussions

The research problem that we aimed to tackle is to find the complete solution for the multi-
robot path planning problem. The first contribution is to recognize the solvable instances
of the problem by our solvability test; the theoretical analysis is already provided to show
the validity of this test. The second contribution is to solve this problem completely, in
polynomial time, by the Push and Spin algorithm. Once the problem is solved, we found
within the complete solution different decisions that may improve the performance side of
the complete algorithm. Hence, the third contribution is to improve the performance side by
selecting the best path from the set of complete paths. The improved version of our algorithm
is referred to as the improved Push and Spin algorithm.

8.1 Experimental framework

The experiments were run on the evaluation environment implemented by us [21].1° We have
compared the performance of Push and Spin (PASp) with that of MAPP tractable multi-agent
path planning algorithm for undirected graphs, Push and Swap (PAS), Push and Rotate (PAR),

10 The link of the tools: https://pushandspin.wordpress.com/evaluation-tools/.
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Bibox algorithms'! and the improved Push and Spin (PASp+) with weighted path heuristic
and smooth operation. The Push and Spin algorithm has been implemented in C++.

8.1.1 The evaluation factors

e The total number of moves

Push and Swap, Push and Rotate, Bibox and MAPP algorithms work on MPP problems
against the Push and Spin algorithm works on MPPr problem. For the purpose of removing
any biasedness, we unified the metrics here and calculated the path length as the total number
of sequential moves. Therefore, the single parallel rotation of n robots here is calculated as
7 moves.

e The CPU time

The execution time is calculated as the real time between the algorithm start time to the
end time. Bibox algorithm contains handle decomposition preprocess. Also in its current
implementation, it assume that the cycles are defined earlier i.e., before the execution start
time. Therefore we have ignored the execution time of the preprocess of both Push and
Spin algorithm which is extract cycle time and Push and Rotate algorithm which is problem
decomposition time.

e The makespan

Makespan is the number of time steps required to get all robots to their destination. In
Push and Spin algorithm, the makespan always equal to the path length except in the moves
generated by single rotation. In that case, they will be calculated as one move since it takes
single timestep.

8.1.2 Type of instances

Furthermore, we have tested the algorithms on four types of instances;
e Large public benchmark instances

Sturtevant [22] describes a new repository that has been placed online!? to improve the
evaluation of grid-based problems. The repository allows researchers to use the same prob-
lems and test sets thereby increasing the reproducibility of published results. In the repository,
two main sets are described; Commercial Game Benchmarks and Artificial Benchmarks. Each
map has been coded in a way to be able to parse. The maps are attached with set of scenarios
describing robots locations on the map.

e Random bi-connected instances

Surynek’s code'? in the current implementation doesn’t include handles decomposition
preprocess, Instead, it generates random bi-connected graphs according to three parameters;
h the number of handles, Cy the size of the initial cycle, and / the maximum handle length
(Fig. 37). In addition, one can choose the number of empty vertices, with a default value of
2. To be able to compare the algorithms with Bibox, we have used the same generator to

T Our source code is in: https://pushandspin.wordpress.com/source-code/.
12 http://movingai.com/benchmarks/.

13 We used the code available at http://ktiml.mff.cuni.cz/“surynek/research/icra2009/.
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Fig. 37 Initial cycle (CO),
maximum handle length (1) and
number off handles (h) in
Surynek graphs

co

generate the same bi-connected instance for evaluation. Since there are two sets of parameter,
our evaluation tool generates two sets of scenarios; fixed graph parameter variable number of
robots (FG-VR) and fixed number of robots variable graph parameter (FR-VG). Surynek code
generates scenarios of each instance by filling the generated graph with the given number of
robots randomly.

e Random instances

The class we argue Push and Spin would the only one able to solve, is the class of graphs
containing maximum bridge length less than or equal free nodes. This can be generalized to
the fact that the Push and Spin is able to solve grid and bi-connected graphs with only one free
node too. To validate our argument, we have designed a random generator which generates
this type of graphs, the procedures for generating random graphs described as follow:

1. Parameter n: the number of vertices, bl: the maximum bridge length.
2. i=0
3. G=¢
4. whilei<n
a. Selectrandom b € [1, bl]
b. Create bridge with length b
c. Selectrandom c; € [3, n—b], ¢ € [3, n—b—ci]
d. Create two non trivial biconnected components with size c; and ¢;
e. G’ < Append the two cycles by the bridge in random connection points.
f. Append the G’ by G
g. i=i+b+ci+c;

Once the graph is created, the scenario is generated by calling the procedure of generating
random scenario with parameter (n, n—IRI'). Hence, the generated scenarios will be; fixed
graph size variable bridge length and robot number (FG-VR) and fixed bridge length and
robot number for variable graph size (FR-VG) scenarios.

e Random grid instances

We have used the same Surynek generator to generate grid instances of n x n size with
constant value of the parameter (h, Co, ) = ((n — 1)2 —1,4,4). Hence, the generated scenarios
will be; fixed grid size variable number of robots (FG-VR) and fixed number of robots variable
grid size (FR-VG).

14 Because the number of free nodes should be equal to the longest bridge in this instances.
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8.2 Experimental results

The discussion part of the experimental results will be limited to:

o Investigation of the completeness of the Push and Spin algorithm for wider use.

e Annotation of the theoretical worst-case bounds with the performance of the algorithm on
different instance classes. Often in real world, algorithms perform significantly better than
their worst-case time complexity would indicate.

o Test the heuristics and confirm statistically that they are capable of improving the solution
length, with the execution being longer when using the heuristic [23].

e Show the degree of improvement in total path length of Push and Spin algorithm yields.

e Provide an insight into the performance of the algorithm for the purpose of allowing it to
be compared with other approaches. For this purpose, instances from a public benchmark
set [22] have been included, since these have been used to test other algorithms [13].

We can theoretically predict the performance differences between the Push and Spin,
MAPP and Bibox algorithms by considering the differences between their techniques.
MAPP imposes alternative paths for each vertex in the robots’ shortest paths; when two
planned-robots collide, MAPP would switch the robot to the alternative-cached path. This
would require a high number of unoccupied vertices resulting in better performance in such
instances. Bibox solves the problem incrementally; it solves the handles one by one and
removes them from the search space. Additionally, it always solves the problem in its worst
scenario by filling the free vertices with dummy robots which are cleared from solutions
after obtaining final result. As a result in this algorithm, the congestion rate, unlike for other
algorithms, will not affect the performance of the Bibox algorithm. Hence, it can be seen
that Bibox would perform better when the graph size is low or the graph topology contains
higher handle lengths [10].1

The Push and Swap as well as Push and Rotate algorithms are too close to the Push and
Spin algorithm. It should be noted that irrespective of the experiment setting, these algorithms
would produce approximately similar performance in their original implementations (without
heuristics and smooth operations). The results would be a bit better for the Push and Rotate
algorithm since it would use robots ordering heuristics in its original implementation, which
reduces the number of swapping cases. The main difference is observed when two planned-
robots collide; both the Push and Swap and Push and Rotate algorithms will look for the
nearest swapping vertex (a vertex of degree three or more) and clear the path to it. This
operation would require O(n?) moves. On the other hand, when the same case occurs, the
Push and Spin algorithm will look for the nearest swapping cycle (a cycle with empty vertices
equal to the facing robots and swapping robots) and clear the path to it by pushing all facing
robots toward it. This operation would require O(n?) moves too. Therefore, the performance
may differ when the graph contains closer-full cycles. This demonstrates the ability of the
Push and Spin algorithm to work when the cycle is full. For the same scenario, both the Push
and Swap and Push and Rotate algorithms would try to clear the neighbors of the entrance
vertex of the cycle (the entrance vertex will definitely be a vertex of degree three), and they
will fail if the cycle is full. To handle such a performance difference, we apply the Push and
Spin, Push and Swap, and Push and Rotate algorithms in different evaluation models. We
expect differences in the Push and Spin, Push and Swap, and Push and Rotate performance
when the graph topology changes, and also, when the congestion rate increases.

15 Our evaluation tools allow the user to set the handle length as well as the graph size and the congestion
rate.
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(b)

Fig. 38 Two maps selected from Baldurs Gate II. a ARO306SR map of Baldurs Gate II (left), its coded map
(right). b ARO603SR map of Baldurs Gate II (left), its coded map (right)

8.2.1 Large public benchmark instances

We have tested two Commercial Game maps from Baldurs Gate II of size 512X512,
ARO0307SR (Fig. 38a) and ARO603SR (Fig. 38b). The parser will read the coded maps
of AR0306SR and ARO603SR into graphs where every element in the map is converted into
a vertex if it not obstacles (land). This would result in graphs that are characterized by a large
set of vertices, many of which are unoccupied.

Since the graph topology here is random, we cannot predict a difference in the behavior
of the Push and Spin, Push and Swap, and Push and Rotate algorithms. The Push and Spin,
and Push and Swap algorithms would produce competitive performance, and the Push and
Rotate algorithm perform better than both of those in terms of total-path-length and execution
time. This better performance is due to the fact that it uses a robot ordering technique. MAPP
would perform better in terms of the resulting total-path-length when the number of robots is
low. However, it would perform worse when the congestion increases since it imposes a high
number of alternative-free paths. On the other hand, MAPP uses cached-alternative paths, and
hence, the action that would be taken when the collision occurs is to switch to an alternative
path. This operation would require less execution time compared to other algorithms.
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Fig. 40 Comparison on map AR0307SR of PASp, PAS, PAR and MAPP, a number of moves, b CPU time

Figures 39 and 40 show the number of moves produced by Push and Spin, Push and Swap,
Push and Rotate, MAPP, and Push and Swap (no Bibox, as the maps were not bi-connected).
These also show the CPU times on ARO603SR and AR0307SR maps respectively. The figures
show that Push and Swap produces very efficient plans due to lower number of moves. At
the same time, Push and Spin and Push and Rotate produce bit higher number of moves
because they impose new techniques to cover wider solvable area which affects their plan
quality. In addition, Push and Spin produces too low makespan. This variance agrees with
the theoretical computation of the upper bound of the number of moves for Push and Swap,
Push and Rotate and Push and Spin algorithms. MAPP requires many more moves to find a
solution, and therefore we did not try to include it in our further experiments. On the other
hand, the heuristics and post-process show significant improvement since PASp+ provides
the lowest number of moves among all others. Consequently, the makespan of PASp+ shows,
also, more improvement.

On the contrary, Push and Swap is the slowest for this type of instances. Push and Spin
takes higher time to find the solution than Push and Rotate and MAPP. Push and Rotate uses
robot ordering technique which beside making the algorithm complete also improves the
solution in term of time and number of moves. MAPP is the fastest in this aspect because
when collision occurs, it switches the robot to the alternative path. In addition, even though
the heuristic and post-process improve the path length in PASp+ significantly, they consume
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more time to evaluate the paths and smooth it, this is one of the drawback of the nature of
optimization techniques [23]. Moreover, by taking the highest registered moves of Push and
Spin, 8.2 x 10° in Fig. 39a, it would be clear to note that it is significantly lower than the
upper bound of the number of moves for that scenario (2000 x 578,73%).

8.2.2 Random bi-connected graph

As described earlier, Surynek generator generates two set of experiments each of them vary
for a specific parameter. Figure 41 shows FG-VR scenarios, Fig. 41a shows the number of
moves produced by Push and Spin, Push and Swap, Push and Rotate and Bibox and Fig. 41b
shows their CPU time. All experiments are performed on Bi-connected graph of 105 nodes
with 20 handle, 5 nodes for initial cycle and 10 nodes for maximum handle length. We keep
on increasing the number of robots, ranging from 65 to 103 (step size 2).

In Fig. 41a, Push and Spin produces the highest number of moves among others.'® How-
ever, the heuristics and post process in PASp+ improve the number of moves. Bibox produces
low number of moves but still higher than Push and Rotate. In addition, the makespan of Push
and Spin produces too low number of moves almost equaling those produced by Push and
Rotate. Figure 41b shows that Push and Spin takes the highest computation time than Push
and Swap and Bibox. Push and Rotate is the fastest due the use of ordering robot technique.
It is clear that Bibox is constantly fast at uniform rate because it solves the instance always
in its worst scenario by filling the free nodes by dummy robots and clear their solutions from
final result.

On the other hand, Fig. 42 shows FR-VG scenarios, Fig. 42a shows the number of moves
produced by Push and Spin, Push and Swap, Push and Rotate and Bibox and Fig. 42b shows
their CPU time. All of these are achieved on Bi-connected graphs generated according to
a single variable x that ranged from 3 to 30, with steps of two, that was used for all three
parameters (number of handles, initial cycle size, and maximum handle length). The number
of empty vertices was kept at two (and one exceptionally, since Push and Rotate able to solve
instances with single empty vertex).

16 The CPU time of PASp+ is removed from Fig. 37b since it is too high which show no variant between the
CPU time of other algorithms.
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In Fig. 42a, it can be seen that Push and Spin produces the highest number of moves for
two unoccupied nodes experiments. Bibox produces low number of moves but still higher
than Push and Swap and Push and Rotate algorithms. In addition, heuristic and post-process
of Push and Spin produces too low number of moves almost equaling those produced by Push
and Rotate. For the instances with one empty vertex, Push and Spin is the only one which can
solve it, the results show higher number of moves than the instance with two empty vertices
solved by Push and Spin due to higher congestion. Its makespan is also higher for the same
reason. Figure 42b shows that Push and Spin takes the high computation time, moreover, the
improved version takes the highest time due to the heuristic search and post-process time,
then, Bibox and Push and Swap take lower time. Push and Rotate is the fastest in these type of
instances due to the use of agent ordering heuristic in that pure implementation. In addition,
Push and Spin solves one empty vertex biconnected graph slower than two empty vertices
biconnected graph due to the congestion. In addition, the highest number of moves generated
by Push and Spin algorithm in Fig. 42a, 4.6 x 10 is significant lower than the upper bound
calculated for that scenario (1599 x 16003).

8.2.3 Random graph

Our random generator generates two set of experiments each of them varying for specific
parameter. Figure 43 shows FG-VR scenarios, Fig. 43a shows the number of moves produced
by Push and Spin and Fig. 43b shows its CPU time, all on random graph of size 100 and a
number of empty nodes and maximum bridge length ranging from (1, 1) to (100, 100) (step
size 5). The number of moves and the CPU time increases with increase in the number of
robots. This shows the scalability of Push and Spin algorithm. Furthermore, it shows, in the
contrast of Bibox, Push and Spin can benefit of the existence of empty nodes in the graph. In
addition, the heuristic and post-process in PASp+ show better performance in term of number
of moves and makepan but they consume more time for improvement.

Figure 44 shows FR-VG scenarios, Fig. 44a shows the number of moves produced by Push
and Spin and Fig. 44b shows its CPU time. These are calculated on random graphs of different
sizes ranging from 53 to 156 (step size 5) with 50 number of empty nodes and maximum
bridge length. Figure 44 confirms the scalability and the robustness of Push and Spin. With
increase in graph size with the same number of empty nodes (same congestion rate), Push
and Spin is able to solve these instance. Moreover, the heuristic and post-process in PASp+
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show better performance in term of number of moves and makepan but they consume more
time for improvement. The highest number of moves generated by Push and Spin algorithm
in Fig. 44a, 3.4 x 107 is much lower at about 35.7% than the upper bound calculated for that
scenario (95 x 100%). Note that none of the algorithms including Push and Swap, Push and
Rotate, Bibox, MAPP are able to solve such type of instances when maximum bridge length
equals the number of empty nodes.

8.2.4 Random grid instances

As described earlier, Surynek generator generates two set of experiments each of them vary
for a specific parameter. Figure 45 shows FG-VR scenarios, Fig. 45a shows the number of
moves produced by Push and Spin, Push and Swap, Push and Rotate and Bibox. On the
other hand, Fig. 45b shows their CPU time measured on grid graph of 24 x 24 vertices, the
an increasing number of robots, ranging from 376 to 575—24 x 24 with one unoccupied
vertex—(step size 10).
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Figure 45a shows that Bibox produces the highest number of moves among all of the
algorithms. Push and Swap, Push and Spin produce low number of moves but still higher
than Push and Rotate. In addition, the makespan of Push and Spin produces very low number
of moves and it is closely to those produced by Push and Rotate. In addition the improved
version of Push and Spin (PASp+) shows better performance in term of number of moves
and makespan. Figure 45b shows that Bibox takes the highest computation time than both
Push and Swap and Push and Spin. Push and Rotate is the fastest in these type of instances
due to fact that Push and Rotate orders the robots before the solution thereby improving the
number of moves. It is clear that Bibox is fast and about constant time because it solves the
instance always in its worst scenario by filling the free nodes by dummy robots and clear
their solutions from final result. On the other hand, the Fig. 45b shows too much time to
improve Push and Spin algorithm.

On the other hand, Fig. 46 shows FR-VG scenarios, Fig. 46a represents the number of
moves produced by Push and Spin, Push and Swap, Push and Rotate and Bibox respectively.
Figure 46b shows their CPU time, computed on grid size ranging from 4 x 4 to 50 x 50 (step
size 2), while the number of empty vertices was kept at two.

As can be seen from Fig. 46a, both Push and Spin as well as Push and Swap produce the
highest number of moves among others for two empty node experiments. Bibox produces
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Table 1 Impact of heuristic and postprocess on Push and Spin performance

Instance Path reduction Makespan reduction Spin calls reduction
(average of %) (average of %) (max of %)
Large public ARO0603SR 424 47.5 25.0
benchmark
instances AR0307SR 21.6 18.7 28.3
Random bi connected FG-VR 20.7 28.4 243
instances FR-VG 478 54.0 72.7
Random instances FG-VR 32.8 49.3 25.3
FR-VG 429 63.5 26.1
Random grid FG-VR 20.3 7.6 29.3
instances FR-VG 44.9 52.1 56.1

low number of moves but till higher than Push and Rotate, This is due to the fact that Push
and Rotate orders the robots before the solution time which improve the number of moves.
For the number of moves factor, the improved Push and Spin algorithm shows competitive
performance. Figure 46b shows that Bibox takes the highest computation time, the improved
Push and Spin PASp+, Push and Spin and Push and Swap are bit faster. Push and Rotate is
the fastest in these type of instances since its robot ordering technique reduces the number
of swaps, which reduce the computation time.

The implemented heuristic aims to avoid the paths containing finished robot in order to
eliminate Spin operation calls, the smooth operation of post-process aims to remove the
redundant moves in the final solution. The effect of these improvements is summarized in
Table 1. It shows for each instance described earlier, the average of the percentages of the
improved path by heuristic and smooth operation (produced by PASp+) to the original path
(produced by PASp). In addition, it shows the average of the percentages of the improved
makespan by heuristic and smooth operation to the original makespan. Finally, it shows the
maximum percentage of the number of Spin operation calls in PASp+ to the number of Spin
operation calls in PASp.

9 Conclusions

In summary, this paper succeeds in presenting three contributions to the field. First, it provides
a solvability test to decide early whether or not the problem is solvable. Second, it proposes
a new complete algorithm called Push and Spin. Third, it presents a heuristic approach to
computing a favorable set of moves with which to move a robot towards its destination vertex
in the goal configuration to optimize the complete algorithm.

The Push and Spin algorithm allows simultaneous rotation to cover all solvable instances
that are proven to contain as many or more unoccupied vertices than the longest bridge length
in the graph. In addition, our algorithm eliminates the tedious process of carrying out reverse
moves, as occurs in the Push and Swap and Push and Rotate algorithms, by applying the fact
that fully spinning the cycle will restore all the out-of-position robots.

The mathematical proofs demonstrate that Push and Spin is a more complete algorithm
for a wider class of problem instances than the class solvable by the Push and Swap, Push and
Rotate, Bibox or MAPP algorithms, and solves any graph recognized to be solvable without
any assumptions. The following interesting observations can be made from the experiments:
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e The original versions of the Push and Spin, Push and Swap, and Push and Rotate algo-
rithms provide closer-to-linear performance on the public benchmark instances when the
congestion rate increases. However, the Push and Rotate algorithm provides slightly better
performance due to the use of a robot-ordering heuristic that improves the performance.
Alternatively, MAPP provides better total-path-lengths when the congestion rate is low.
However, its total-path-length grows exponentially when the congestion rate increases.
MAPP is the fastest algorithm because it uses cached-alternative paths. The improved
Push and Spin (PASp+) provides the best performance in terms of the total-path-lengths.
However, it requires a longer time to optimize the solution due to the differences between
complete and optimization algorithms that we have previously reported [17]. The complete
algorithms provide complete non-optimal solutions, while the optimization algorithms pro-
vide optimal incomplete solutions.

e Although graph topology is not one of the factors affecting the performance of the Push
and Spin, Push and Swap, and Push and Rotate algorithms, the experiments demonstrate
that all three algorithms perform better on grid and bi-connected graphs than on any other
graph; this is because the worst-case scenario is produced rarely. The grid and bi-connected
graphs contain closer cycles, and hence, a shorter path-to-clear before the swapping vertex
(or swapping cycle).

e In general, Push and Rotate provides the best performance for the grid and bi-connected
graphs due to the use of the robot-ordering technique. However, it is incomplete for solving
grid and bi-connected graphs with one and two unoccupied vertices. Moreover, Bibox
provides good performance for bi-connected graphs and worse performance for grid graphs
because, as expected, it is affected by the handle length, which is fixed to two in grid graphs.
Push and Spin is complete for solving all grid and bi-connected graphs with too high a
congestion rate up to one unoccupied vertex. It provides the worst performance among all
of the algorithms in bi-connected graphs and a performance that is close to the Push and
Swap algorithm in grid graphs.

e The results of the previous point lead us to conclude that Push and Rotate provides the
best performance, while Push and Spin provides complete performance in bi-connected
and grid graphs. Hence, improving the Push and Spin algorithm with heuristics and post
processing may result in better and more complete solutions. The results of the improved
Push and Spin on grid and bi-connected graphs indicate this.

e The Push and Spin algorithm is complete for a wider class of problem instances than the
class solvable by the Push and Swap, Push and Rotate, Bibox or MAPP algorithms. It
solves any graph recognized to be solvable without any assumption needed.

e The improved Push and Spin algorithm combines the advantages of completeness and
optimization techniques by applying optimization methods on a set of complete solutions
produced by the Push and Spin algorithm. It produces complete optimal solutions with
longer execution times.

e Push and Spin scales well for all graphs solvable only by it. The results show that it
often performs significantly better (almost 35.7%) than its worst-case time complexity.
In addition, in contrast with the Bibox algorithm, Push and Spin offers wider room for
improvement.

9.1 Limitations and future works
Although this work has proposed a new complete algorithm for the multi-robot path-planning

problem, there are limitations and open research problems that still need to be investigated
and solved in future studies.
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One of the major factors limiting the performance of the Push and Spin algorithm is the
number of executing spin operations needed, which is an operation in which the robot tries
to push a planned-robot out of its way. Hence, ordering the robot to execute a move in such
a way to reduce the need to push a planned-robot will reduce the number of spin operation
invocations; this will improve the performance of the Push and Spin algorithm. Two methods
may be used for such a purpose:

e The robot-ordering technique proposed by the Push and Rotate algorithm, which orders
robots based on the distance between their current and goal positions. The problems will
be solved earlier for a robot far from its goals.

e Decomposing the problem using the Bibox decomposition technique, which solves robots
with outer goals first, and once they are planned, their goal vertices will be excluded from
the search spaces.

In addition, the criteria for selecting the swapping cycle in the compute-swapping-cycle
operation affect the total-path-length in the solution. The compute-swapping-cycle operation
explores all the extracted cycles one by one to evaluate a robot’s position in relation to the
swapping robots and to verify if it can receive all the opponent robots and swapping robots.
Here, many heuristics may be implemented to reduce the total-path-length and traversal time
of robots. For example:

o Inthe current definition of the compute-swapping-cycle operation, the algorithm may select
a cycle too far away; this would still be able to execute the spin algorithm successfully,
though it would generate a higher number of moves. Therefore, adding a distance factor
between the swapping robots and the swapping cycle as an additional criterion for selecting
swapping cycles yields a better solution.

e In addition, the compute-swapping-cycle operation may select the nearest swapping cycle,
though it may be large. This will then produce a large number of moves, because the cycle
should be spun a number of spins equal to its degree. Hence, adding a cycle-size factor as
an additional criterion for selecting swapping cycles would reduce the number of spins,
and hence, the total path length.

Other ideas that could open new horizons include implementing a pattern database and
employing a full parallel model for executing robots. We wish to expand these results to real
test-bed environments with a larger team of robots.
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