
Auton Agent Multi-Agent Syst (2018) 32:635–671
https://doi.org/10.1007/s10458-018-9390-3

Off-line synthesis of evolutionarily stable normative
systems

Javier Morales1 · Michael Wooldridge1 ·
Juan A. Rodríguez-Aguilar2 · Maite López-Sánchez3

Published online: 2 June 2018
© The Author(s) 2018

Abstract Within the area of multi-agent systems, normative systems are a widely used
framework for the coordination of interdependent activities. A crucial problem associated
with normative systems is that of synthesising norms that will effectively accomplish a
coordination task and that the agents will comply with. Many works in the literature focus on
the on-line synthesis of a single, evolutionarily stable norm (convention) whose compliance
forms a rational choice for the agents and that effectively coordinates them in one particular
coordination situation that needs to be identified and modelled as a game in advance. In
this work, we introduce a framework for the automatic off-line synthesis of evolutionarily
stable normative systems that coordinate the agents in multiple interdependent coordination
situations that cannot be easily identified in advance nor resolved separately. Our framework
roots in evolutionary game theory. It considers multi-agent systems in which the potential
conflict situations can be automatically enumerated by employing MAS simulations along
with basic domain information. Our framework simulates an evolutionary process whereby
successful norms prosper and spread within the agent population, while unsuccessful norms
are discarded. The outputs of such a natural selection process are sets of codependent norms
that, together, effectively coordinate the agents in multiple interdependent situations and

B Javier Morales
javier.morales@cs.ox.ac.uk

Michael Wooldridge
michael.wooldridge@cs.ox.ac.uk

Juan A. Rodríguez-Aguilar
jar@iiia.csic.es

Maite López-Sánchez
maite@maia.ub.es

1 Department of Computer Science, University of Oxford, Oxford, UK

2 Artificial Intelligence Research Institute (IIIA-CSIC), Campus de la UAB, Bellaterra, Spain

3 Department of Applied Mathematics and Computer Science, Universitat de Barcelona, Barcelona,
Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-018-9390-3&domain=pdf
http://orcid.org/0000-0002-7843-2431

636 Auton Agent Multi-Agent Syst (2018) 32:635–671

are evolutionarily stable. We empirically show the effectiveness of our approach through
empirical evaluation in a simulated traffic domain.

Keywords Norms · Normative systems · Norm synthesis · Evolutionary algorithm

1 Introduction

Within human societies and multi-agent systems (MAS), normative systems (norms) have
been widely studied as a mechanism for coordinating the interplay between autonomous
agents [7,28]. Norms can resolve coordination problems in MAS by guiding the decision-
making of the agents, restricting their behaviours or encouraging desirable courses of action
once some preconditions are fulfilled. Coordination in this sense is usually understood as
ensuring that the agents can successfully interact by avoiding undesirable outcomes.

When designing norms for MAS (e.g., an autonomous cars scenario), a system designer
will potentially need to address two crucial problems.First, identifying all the conflict situa-
tions (or even the MAS states) in which the agents may require coordination. If performed
manually, this task might be time consuming and error prone, specially if we consider that
conflict situations might be interdependent – that is, the agents’ decisions in a situation might
affect the outcomes of different ones. As an example, two cars arriving at a junction will need
to decide which one yields in order to avoid collisions. However, the coordination success
of these cars might depend on the decisions of other cars in the road, such as other cars
queueing behind them (and so on an so forth). These interdependencies might lead to numer-
ous situations that cannot be easily identified in advance nor resolved separately. Secondly,
a system designer will need to synthesise an effective normative system (a set of norms)
that the agents will comply with and that will successfully coordinate the agents in all the
identified conflict situations. Such a norm synthesis problem is known to be a challenging
problem (NP-Complete [30]) that remains open.

A popular (on-line) norm synthesis approach in the literature is that of norm emergence
(or convention emergence) [3,5,26,27,31,33,36], in which the norms of aMAS emerge from
within the agent society at runtime. For the purposes of this paper, what is interesting about
norm emergence is that it has been successfully used to synthesise stable norms. Most works
on norm emergence build on principles in line with those from the framework of evolutionary
game theory (EGT) [32]. They consider a MAS in which the agents repeatedly engage in a
conflict situation modelled as a game. Strategies that are seen to be successful prosper and
spread within the agent society through an evolutionary process whereby the agents tend to
adopt successful strategies with higher probabilities than unsuccessful ones. A conventional
norm (a convention) [36] emerges once a significant proportion of agents adopt a strategy
that everyone prefers to conform, on the assumption that everyone else does. Such a strategy
is said to be evolutionarily stable (ESS), for no agent could benefit from deviating. Hence,
complying with an ESS forms a rational choice for the agents.

From the point of view of a system designer, EGT and norm emergence can be seen
as powerful tools to synthesise effective and stable norms. By simulating the evolution of
strategies in a MAS, one can anticipate the norms that the agents will abide by at runtime
because they lead to successful coordination [3,31,34]. However, norm emergence considers
a single (typically two-player) game that is known beforehand and of which the agents
have complete information (e.g., the number of players, and the payoffs). Then, one norm is
synthesised to coordinate the agents in the game. Therefore, norm emergence is inappropriate
to synthesise norms for MAS with numerous interdependent conflict situations, such as the

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 637

traffic scenario. One possible solution might be considering a big game involving all the
agents from interdependent conflict situations (e.g., a game with two cars in a junction and
other cars queueing behind them). Nevertheless, agents may have a limited perception of
the environment, thus being unable to properly detect big games that they are engaged in in
order to coordinate with all their players. For instance, cars in a junction may not be able to
perceive other cars behind them, thus being unaware of their need for coordination.

An alternative on-line norm synthesis approach that may be more appropriate for the sce-
narios pictured so far is the one proposed in [17,18], in which the potential conflict situations
of a MAS need not be known in advance. Complex coordination situations are detected at
runtime duringMAS executions by considering basic domain information, and thenmodelled
as sets of smaller, interdependent games that the agents can fully recognise and coordinate in.
Norms are automatically created to resolve each game, and individually evaluated in terms
of their joint performance once the agents simultaneously play interdependent games. The
outputs of this process are sets of norms whose coordination utility depend on each other
and, as a whole, effectively coordinate the agents in each possible game. However, unlike
most state-of-the-art approaches, this work does not consider evolutionary stability as a syn-
thesis criterion, and hence the normative systems it synthesises cannot be guaranteed to be
evolutionarily stable.

Against this background, this paper builds on techniques from the work in [17,18] and the
framework of EGT [32], and contributes to the state of the art by introducing a novel frame-
work for the off-line synthesis of evolutionarily stable normative systems (ESNS) for MAS.
Our framework considers a MAS with multiple, interdependent conflict situations that are
unknown beforehand. It employs techniques described in [17,18] to automatically discover
these situations during MAS simulations, modelling them as interdependent games. Norms
are automatically created in order to coordinate the agents in these games, and submitted to
an evolutionary process inspired in EGT. Norms that are proven to be useful to coordinate
the agents in each game prosper and spread, ultimately converging to sets of codependent
conventional norms that, together, are effective for coordination and evolutionarily stable.
We provide empirical evaluation of our framework in a simulated traffic domain. We show
that it can synthesise ESNSs that successfully avoid conflicts in numerous (up to 89) inter-
dependent traffic situations that cannot be easily identified and resolved separately, for the
resulting normative systems would not be evolutionarily stable.

Broadly speaking, our framework provides a valuable tool for off-line norms design.
Given aMAS, it opens the possibility of synthesising evolutionarily stable normative systems
without requiring full knowledge about its possible conflict situations. By simulating basic
agents’ interactions and providing basic domain information (such as identifying when cars
collide), our framework can provide system designers with the necessary norms to achieve
effective and stable agent coordination in a MAS.

The remainder of the paper is organised as follows. Section 2 provides the necessary
background to understand our work. Section 3 describes our framework, whereas Sect. 4
illustrates its empirical evaluation. Section 5 reviews the state of the art in norm synthesis,
and Sect. 6 provides some concluding remarks and outlines possible future research. Finally,
Sect. 7 discusses the main limiting assumptions of this work and how these might be lifted
in order to be applicable to a wider extent of problems.

2 Background

In this section we provide the necessary background to understand our work. We start by sur-
veying the automatic norm synthesis approach described in [17,18], named iron (Intelligent

123

638 Auton Agent Multi-Agent Syst (2018) 32:635–671

�me t
(a)

�me t+1
(b)

�me t+2
(c)

car 1: go
car 2: go
car 3: go
car 4: go

car 3: go
car 5: go
car 6: go
car 7: go

�me t+3
(d)

car 3: go
car 5: go

car 6: stop
car 7: go

2

1

na

1
6

3 2

5
5

6 7 5 64 73

3 3

Fig. 1 Evolution of a traffic junction over time: a At time t there are four cars in the junction. Cars 1, 2 and
3 require coordination in order to avoid collisions; b at time t + 1, all cars have performed action “go”. As a
result, cars 1 and 2 collide; c At time t + 2, car 3 goes forward (it also turns right), and cars 5 and 6 engage
in the same conflict situation played by cars 1 and 2 at time t . This time, car 6 has applicable norm na (“give
way to your left”), which prohibits it to go forward. Also, car 7 needs to coordinate with car 6 in order to not
collide, but it has no norms for this aim; d At time t + 3, car 5 avoids colliding thanks to car 6 yielding, but
car 6 is hit by car 7 from behind

Robust On-line Norm Synthesis), as our work employs it to automatically detect coordina-
tion situations and generate norms. Then, we introduce the framework of evolutionary game
theory (EGT) [32] and the key concept of evolutionarily stable strategy (ESS).

2.1 Automatic norm synthesis

iron is an iterative approach that monitors the evolution of a MAS at regular time intervals,
searching for conflict situations (e.g., collisions in a traffic scenario). Whenever it detects
a conflict at time t , iron triggers a norm generation process that results in the creation of
a norm aimed to avoid the detected conflict in the future (from time t + 1 onwards). The
norm is then communicated to the agents, and thereafter empirically evaluated in terms of
its utility to coordinate the agents once they comply with it.1 If the norm avoids conflicts
once the agents abide by its strictures, then it is regarded as useful and sustained over time.
Otherwise, the norm is ultimately discarded and alternative norms are created in order to
avoid the conflict. Over time, ironmay detect multiple, interdependent conflicts. As a result,
it will create multiple, codependent norms whose utility might depend on each other.

For the purposes of this paper, we are interested in how iron detects conflicts and generates
norms. For clarity, we will rely on a running example to detail iron’s norm generation. Let
us consider a traffic scenario where agents are cars, and the coordination task is to ensure
that cars interact without colliding. The actions available to the cars are “go” forward2 and
“stop”. Figure 1a depicts a state of this scenario at time t , with four cars. Of these, cars 1–3
are engaged in a conflicting situation. If cars 1 and 2 go forward, they will collide. If car 2
stops, giving way to car 1, then car 3 has to stop in order to avoid hitting car 2 from behind.
Alternatively, car 1 can stop, giving way to cars 2 and 3.

iron considers a MAS in which the agents have a limited perception of the environment.
Thus, a car perceives the road by means of its local context, i.e., its internal representation of
the area of the road that is immediately next to and in front of it at a given time. For instance,

1 iron also considers the effects of the agents not complying with norms in order to assess whether they are
necessary. However, such a necessity is not relevant for the purposes of this paper.
2 Action “go” may include turns.

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 639

cars 1 and 2 perceive each other at time t (Fig. 1a), but neither of them can perceive car 3.
Car 3 perceives car 2, but it cannot perceive car 1.

iron detects a conflict at a given time by perceiving the state of the monitored MAS, and
employing a domain-dependent conflict function3 that allows it to detect groups of agents
whose interaction has led to an undesirable outcome in the state. For instance, at time t + 1
(Fig. 1b), iron will detect a collision between cars 1 and 2 after both have performed action
“go”.

After detecting a collision at time t+1, iron creates a normaimed toavoid future collisions.
Specifically, it creates a norm that prohibits to perform one of the actions performed by the
collided cars at time t + 1 whenever they engage in the situation faced by them before
colliding, i.e., at time t . In this way, the conflict might be avoided in the future. iron creates
a norm as follows. First, it randomly chooses one of the cars involved in the collision at time
t + 1, e.g., car 2. Then, it employs a domain-dependent context f unction3 to retrieve the
local context of this car in the situation previous to the conflict. The context of car 2 at time
t can be informally described as “there is a car coming from my left”.4 Next, it employs a
domain-dependent action f unction3 to retrieve the action that this car performed during the
transition from time t to time t + 1 (i.e., action “go”).

Finally, iron creates a norm that the agents can interpret and complywith. Such a normwill
have the retrieved car’s context as its activation condition (precondition), and a prohibition
to perform action “go” as its postcondition. Thus, by using this norm, any car perceiving a
car coming from its left will be prohibited to “go” forward. The resulting norm, na , can be
informally described as:

na : if there is a car coming from my left then “i am prohibited to go”.

The new norm is then communicated to all the agents in the system, who will have
this norm applicable once they face the situation described by the norm. Then, iron keeps
monitoring the MAS. At time t + 2, cars 5 and 6 engage in the same situation faced by cars
1 and 2 at time t . This time, car 6 has norm na applicable and is prohibited to go forward.
Consequently, car 6 stops at time t + 3, giving way to car 5, and being hit by car 7 from
behind. iron will detect this new conflict, which in fact is caused by the decision of car 6.
Then, it will generate a new norm that prohibits to go to any agent encountering the context
of car 7 at time t + 2. The resulting norm, nb, can be described as:

nb: if there is a car in front of me going forward then “i am prohibited to go”.

which can be seen as a “security distance” norm.
Notice that the twonorms synthesised so far (na andnb) are codependent, i.e., they can only

avoid collisions if the agents have both of them. iron has no means to explicitly detect such
a codependency relationship. Instead, it implicitly captures norms’ codependencies effects
by empirically computing their individual utilities in a series of concurrent game plays in
which norms can affect each other’s performances. For instance, say that a car applies norm
na and the car behind it applies norm nb, hence avoiding collisions. Then, both norms will be
individually evaluated as useful. Conversely, should cars not have and apply nb, then norm
na would be individually evaluated as useless. Eventually, iron will sustain these norms if
they individually prove to be useful enough during a sufficient amount of time. Otherwise, it

3 This function has to be characterised for each particular domain in which iron is to be employed.
4 With this aim, iron needs to monitor the MAS by means of a window of at least two time steps (that is, the
current MAS state at time t and the previous MAS state at time t − 1).

123

640 Auton Agent Multi-Agent Syst (2018) 32:635–671

Popula�on Pt
Strategy

replica�on

1 2

Popula�on Pt+1

3

converged? ESS
yes

no

Fig. 2 EGTmodel, composed of three phases: (1) a population Pt is created in which each group of strategists
has a certain size; (2) each group of strategists grows in terms of their fitness when playing against different
strategists; (3) if the process converges, it returns an ESS. Otherwise, it replicates a new population Pt+1 in
which each group of strategists has grown in numbers proportional to its fitness

will discard them and will synthesise new ones, and so on and so forth until it finds a set of
norms that successfully avoid conflicts in all possible situations.

At this point it is worth to notice that the normative systems synthesised by iron cannot be
guaranteed to be evolutionarily stable. iron does not seek to synthesise optimal normative
systems, but normative systems that are good enough for a given MAS. Thus, once iron
finds a good enough normative system, it misses to explore “better” (more useful) normative
systems that the agents might eventually be tempted to switch to. In this work we address
this problem, building on iron and incorporating ideas from EGT in order to synthesise
evolutionarily stable normative systems.

2.2 Evolutionary game theory

EGT combines population ecology with classical game theory. It considers a population of
agents that repeatedly engage in strategic pairwise interactions by adopting different (pure)
strategies. An ESS is a strategy that, if adopted by a majority of agents, no agent could benefit
from using any alternative strategy – namely, the fitness (i.e., the average payoff) of an agent
using that strategy is higher than the fitness of any agent using alternative strategies.

EGTprovides amodel of the underlyingprocesswhereby strategies change in a population.
It assumes that successful strategies “reproduce”, growing in frequency with higher proba-
bilities than less successful strategies. Evolutionarily stable strategies are attractor points of
such a natural selection process whereby agents can converge to adopting an ESS.

Figure 2 graphically illustrates the EGTmodel. It considers an initial population of agents
Pt that adopt different strategies to play a game (Fig. 2(1)). Each strategy has a certain fitness
that quantifies the average payoff to an agent that adopts the strategy to play against other
strategists. Strategies are then replicated (Fig. 2(2)), growing in frequency proportionally to
their relative fitness with respect to the average fitness of the population. If the process has not
converged yet, then a new population Pt+1 is generated that reflects the changes in strategy
frequencies (Fig. 2(3)). Such population is then employed to repeat the replication process,
and so on and so forth until the process converges. The replication process is considered to
have converged once the population remains stable between generations (that is, the frequen-
cies of each strategy remain unchanged). Then, if a majority of agents have adopted the same
strategy, this strategy is considered to be an ESS.

Next, we detail the equations employed by EGT to perform strategy replication, also
known as the replicator dynamics. We illustrate the replicator dynamics by relying on the
game of the Prisoner’s Dilemma [20], illustrated in Table 1. In this game, two agents can
choose either to cooperate (C) or to defect (D) in some situation. If both agents cooperate,
both receive a reward payoff 3. If both defect, both receive a punishment payoff 2. If one

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 641

Table 1 Payoff matrix of the Prisoner’s Dilemma

C D

C (3,3) (0,5)

D (5,0) (1,1)

Two agents can choose to cooperate (C) or to defect (D). If both agents cooperate, both receive a reward
payoff 3. If both defect, both receive a punishment payoff 1. If one agent defects and the other cooperates, the
defector receives a temptation payoff 5, while the cooperator receives the sucker’s payoff, 0

agent defects and the other cooperates, the defector receives a temptation payoff 5, while the
cooperator receives the sucker’s payoff, 1.

Consider a population of agents that adopt either strategy C or strategy D. Let F(C) ∈
[0, 1] be the frequency of cooperators in the population, and F(D) ∈ [0, 1] the frequency of
defectors. Note that F(C) + F(D) = 1. Let us denote as ρ(C,D) the payoff to a cooperator
when playing against a defector, and analogously for other strategy pairs.We assume that each
strategist has an initial fitness f0. The fitness of each strategy will depend on: (1) the payoff
to an agent when interacting with either a cooperator or a defector, and (2) the probability to
encounter each one of these, which actually is a representation of the frequency of strategists
of each type. The fitness f of each strategy can be computed as:

f (C) = f0(C) + F(C) · ρ(C,C) + F(D) · ρ(C,D) (1)

f (D) = f0(D) + F(C) · ρ(D,C) + F(D) · ρ(D,D) (2)

f0(C) and f0(D) being the initial fitness of cooperators and defectors, respectively.
In this manner, the fitness of a cooperator is computed as the summation of its initial

fitness, the probability of encountering a cooperator times the payoff to the cooperator when
that happens, and the probability of encountering a defector times the payoff to the cooperator
when that happens. The fitness of a defector is computed analogously.

Agents reproduce in numbers proportional to their fitnesses. In next generation, the fre-
quency of cooperators and defectors is updated in terms of their relative fitnesses with respect
to the average fitness of the whole population. Then, if cooperators perform worse than aver-
age they will decrease their frequency, and if defectors perform better than average they will
grow in frequency. The frequencies of cooperators and defectors are updated as: Replication
equation changed to an alternative one used in the literature. This one can be used if norms’
fitnesses are guaranteed to be always positive.

F(C)′ = F(C) · f (C) / θ (3)

F(D)′ = F(D) · f (D) / θ (4)

where θ is the weighted average fitness of the whole population, computed as:

θ = F(C) · f (C) + F(D) · f (D) (5)

In biology, replication models the natural process whereby fittest individuals are more
likely to survive and to reproduce than less fit ones. In economic settings (such as multi-
agent systems), replication provides a model of imitation [6,12] whereby the agents tend
to imitate strategists that prove to perform well, i.e., have a higher fitness, thereby adopting
their strategies over time. Then, if a strategy is fitter than the average, agents will be more
likely to adopt it than to adopt a less fit one.

123

642 Auton Agent Multi-Agent Syst (2018) 32:635–671

As previously mentioned, the replication process can eventually lead the population to a
point of equilibrium inwhich the frequencies of each strategy do not change over time because
their fitnesses are equal. When this happens, the population can be either monomorphic (a
majority of agents adopt the same strategy) or polymorphic (the agents adopt a variety of
strategies). If the population composition can be restored after a disturbance,5 then it is said
that the population is in an evolutionarily stable state. If such population is monomorphic,
then the strategy adopted by the agents is said to be an ESS.

In the Prisoner’s Dilemma, cooperation is not an ESS because a population of cooperators
will always perform more poorly (will have a lower fitness) than defectors when playing
against each other. Then, defection is the only evolutionarily strategy: a population of coop-
erators can be invaded by one defector.

3 Evolutionary norm synthesis

In this sectionwe introduce our framework for the synthesis of evolutionarily stable normative
systems (ESNS) – hereafter, referred to as our “System for Evolutionary Norm SynthEsis”,
or sense for short. In Sect. 3.1, we provide a general overview of the sense operation. Then,
we provide some basic definitions and formally define our problem in Sect. 3.2. We detail
how sense performs evolutionary norm synthesis in Sect. 3.3.

3.1 Evolutionary norm synthesis system: an outline

Our framework implements an evolutionary process similar to the one in EGT (Sect. 2.2),
but instead of strategies, it replicates norms. It considers a MAS in which agents have a
limited perception of the environment. Thus, complex coordination situations of a MAS, in
which agents may not be able to entirely perceive each other in order to detect their need for
coordination, are resolved by creating sets of simpler, interdependent games in which agents
can fully perceive each other and coordinate. At a given time, the coordination success of
the agents playing a game will depend on their actions in the game, as well as the actions of
other agents simultaneously playing interdependent games.

sense assumes no previous knowledge about the potential games of a MAS neither about
the potential payoff structure of theMAS. It learns these games along with their payoffs from
the observation of agents’ interactions within MAS simulations, and automatically creates
norms to coordinate the agents in them. For each game, sense endows each one of its norms
with: (i) a fitness value that quantifies its average utility to coordinate the agents in the game;
and (ii) a frequency value that stands for the proportion of agents that have the norm. These
norms will compete with each other for survival. Norms that prove to be fitter in a game will
prosper and will increase their frequency, while the less fit ones will be ultimately discarded.
Over generations, only the fittest norms of each gamewill survive, achieving 100% frequency.
Since games are interdependent, their respective norms will be codependent and hence they
will co-evolve over time. Eventually, norm co-evolution can converge to a set of conventional
norms (one for each game) that, together, achieve coordination in each possible game and
are evolutionarily stable.

Figure 3 illustrates the process implemented by sense. Likewise EGT, it starts with an
initial population Pt (Fig. 3(1)) whose agents employ no norms to coordinate. Each agent

5 Provided that the disturbance is not too large. For example, a small number of mutant strategists joins the
scenario, and after some time they are “eliminated” by dominant strategists.

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 643

Popula�on
Pt

1

Norm
replica�on

3
Popula�on

Pt+1

4
Games
base

games

games

games

MAS simula�on
2

U�lity learningNorm genera�on

u�li�es

converged? ESNS
yesno

Inherited from IRON

Fig. 3 Graphical representation of sense. It starts in (1), with an initial agent population Pt ; (2) simulation
is performed, during which sense detects new games and creates norms, and empirically computes norms’
utilities; (3) norms are replicated, growing in numbers proportional to their fitness; (4) a new population Pt+1
is generated in which the size of the group of agents adopting each norm is proportional to the frequency of
the norm. Such new population is employed in a new iteration of the process

in Pt has a personal normative system (a set of norms, one for each possible game) that is
initially empty. sense proceeds by repeatedly performing the following tasks:

– MAS simulation sense runs simulation of the MAS for a certain amount of time,6

repeatedly carrying out two simultaneous subtasks:

– Norm generation, which consists in monitoring agents’ activities, detecting new
games and keeping track of them in a Games Base. For each new tracked game,
sense creates alternative norms to coordinate the agents and sends each norm to
different agents. For instance, if a gamehas four different norms, 25%of agentswill be
providedwith the first norm, and the same applies to the remaining norms. The agents
will incorporate their assigned norms to their normative systems, and thereafter, every
time they play the game, their respective norms will guide their courses of action for
the sake of coordination. Over time, sense will create a heterogeneous population
whose agents have different normative systems, and thus will play each game by
using different, competing norms. In order to detect conflicts and create norms, sense
employs iron’s techniques described in Sect. 2.1.

– Utility learning, which consists in accumulating evidence about the utilities of the
norms of each game once the agents play the game over time. A norm’s utility is
empirically computed in terms of the frequency with which it effectively coordi-
nates the agents in a game once they comply with the norm within a sequence of
game plays. Such a utility might depend on the (codependent) norms adopted by
the agents in simultaneously played interdependent games. Computing norms’ util-
ities empirically allows sense to capture in a compact manner the runtime effects
of the codependencies between norms, enabling it to evaluate and co-evolve norms
together.

– Norm replication After simulation, sense has available a collection of interdependent
games along with their norms’ utilities. With all this at hand, sense replicates norms
likewise strategies are replicated in EGT. For each game, it computes the fitnesses of its
competing norms as their average utility in the game. Then, it replicates each norm in
numbers proportional to its fitness: the frequency of those norms fitter than average will

6 This value must be specified by a system designer.

123

644 Auton Agent Multi-Agent Syst (2018) 32:635–671

Fig. 4 Left: game where two
cars with roles 1 and 2 need
coordination when approaching a
junction. Right: alternative norms
to coordinate any two cars that
engage in such a game

Game A

role 1
(le� car)

role 2
(right car)

Prohibitions
Norm role 1 role 2
norm1 — —
norm2 go —
norm3 — go
norm4 go go

Fig. 5 Left: game where a car
behind (role 1) has to coordinate
with a car in front in order to not
collide. Right: alternative norms
to coordinate any car that
engages in such a game

Game B

role 1
(car behind)

Prohibitions
Norm role 1
norm5 —
norm6 go

increase, while that of those norms less fit than average will decrease. Likewise utilities,
the fitnesses and frequencies of codependent norms will co-evolve over time.

After replication, if the process has not converged yet, a new population Pt+1 will be
generated (Fig. 3(4)) in which the size of the group of agents having each norm will be
proportional to the new frequency of the norm. Thus, if a norm is 50% frequent, then 50% of
agents will have the norm. This new population will be then employed for a new simulation
and replication, and so on and so forth until either the process converges, or it reaches a time
out6. We say that sense has converged once the following conditions hold:

1. There is one norm in each game that has eliminated its competitors, i.e., this norm has
achieved 100% frequency.

2. The frequencies of each norm of each game remain stable (unchanged) during a sufficient
amount of generations, denoted as I.

Once this happens, the agent population has converged to using the same norms in a set of
games. Then, we say that the agents have adopted an evolutionarily stable normative system.

Let us illustrate the operation of sense with our traffic example introduced in Sect. 2.1.
Consider an initial car population with no norms to coordinate. Cars have a limited perception
of the MAS, and can perceive the area of the road immediately next to and in front of them
(they cannot perceive what is behind). Say that, after simulation, sense has detected two
interdependent games illustrated in Figs. 4 and 5. Figure 4 depicts a one-shot game A in
which two cars perceive one another in a junction. Thus, this game has two roles: a car
coming from the left (role 1) and a car coming from the right (role 2). Both roles have
available actions “go” and “stop”. sensewill create the following norms, listed in the Table
of Fig. 4:

– norm1 establishes no prohibitions. Thus, a car is free to go forward when coming from
either the left or the right (no matter the role it plays).

– norm2 says that a car is prohibited to go forwardwhen coming from the left (when playing
role 1). In practice, norm2 stands for a “giveway to the right” norm.Analogously, norm3
stands for a “give way to the left” norm.

– norm4 stands for a “give way always” norm, i.e., it prohibits a car to go forward once it
is playing either role 1 or role 2.

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 645

Fig. 6 a Two cars playing game
A from Fig. 4 at time t . Both cars
coordinate by using norm3
(represented as a thought bubble
containing n3); b successful
coordination of the two cars at
time t + 1, after car 2 has given
way to car 1

�me t
(a)

car 1: go
car 2: stop
car 3: stop

�me t+1
(b)

2

1

3 21
n3

n6

n3

3

Similarly, Fig. 5 depicts a game B in which a car behind perceives a car in front, but not
the other way around. Therefore, this game has a single role corresponding to the only car
that is aware of the need for coordination of these two cars, i.e., the car behind. This role has
two available actions “go” and “stop”. The norms for this game are illustrated in the Table
of Fig. 5: norm5 establishes no prohibitions, and norm6 prohibits role 1 to go forward.

Each car will incorporate two norms to its normative system: one norm to coordinate in
game A, and another norm for game B. In particular, 25% of the cars will have norm1 in
their normative systems, and the same applies to norm2, norm3 and norm4. Similarly, 50%
of the cars will have norm5, and the remaining 50% will have norm6. Thereafter, sense
will accumulate evidence about the coordination utility of each norm once the agents use
it to coordinate in a game. For instance, suppose that at a given time t sense perceives the
situation illustrated in Fig. 6a. Cars 1–2 play game A described above, and car 3 plays game
B. Cars 1–2 have norm3 as their norm to coordinate in game A, and car 3 has norm6 for
game B. Thus, at time t + 1 (Fig. 6b) cars 2 and 3 stop, giving way to car 1 and avoiding
a collision. sense will monitor this positive outcome and will evaluate norm3 and norm6
as useful. At a later time t ′, sense perceives a similar situation in which car 5 has norm5
to coordinate in game B (Fig. 7a). Thus, at time t ′ + 1 (Fig. 7b) car 4 stops and car 5 goes
forward, hitting it from behind. Consequently, sense will evaluate norm3 and norm5 as
useless.

During norm replication, sense will update the frequencies of norm1–norm4 for game
A. The new frequency of norm3 will depend on its relative fitness with respect to the average
fitness of norm1–norm4. As for game B, the frequency of norm6will increase because it has
proven to be more useful than norm5 (the frequency of norm5 will decrease). Then, in next
generation sensewill create a new agent population Pt+1 in which a higher number of agents
will have norm6. Consequently, in next generation norm3 will increase its utility because
cars will be more likely to stop in game B. Over time, norm3 and norm6 will co-evolve
and their frequencies will jointly increase, possibly leading sense to converge to an ESNS
containing these two norms.

3.2 Basic definitions and problem statement

We consider a MAS with a set of agents Ag and a finite set of actions Ac available to these
agents. Let S be the set of all the states of the MAS. We adopt a synchronous model in which
the agents interact in some system state, perform a collection of actions, and lead the system
from its previous state to a new one. We assume that each agent has a limited perception of
the state of theMAS it is part of at a given time. Thus, an agent’s context stands for its internal

123

646 Auton Agent Multi-Agent Syst (2018) 32:635–671

Fig. 7 a Cars 3–4 playing game
A (Fig. 4) at time t ′ and car 5
playing game B (Fig. 5). Cars
3–4 use norm3 to coordinate, and
car 5 uses norm5; b successful
coordination of cars 3–4 at time
t ′ + 1, and unsuccessful
coordination of cars 4–5

�me t'
(a)

car 3: go
car 4: stop
car 5: go

�me t'+1
(b)

4

3

5 43 5n3
n5

n3

representation of a MAS state (i.e., its beliefs). Agents express their contexts in terms of an
agent language L composed of predicates and terms.

In each state of the MAS, agents may engage in local strategic interactions in which they
need coordination in order to avoid conflicts. We will refer to such interactions as one-shot
games. Formally, a game is composed of a set of roles that define the actions available to
each agent involved in the game. A game has a description that describes the initial situation
of the game from the point of view of its players. Such a description is composed of the
local contexts of each player. We assume that the payoffs to the players of a game cannot be
assessed beforehand, as these might depend on the actions of the players of interdependent
games simultaneously played at runtime. Thus, it is important to notice that a game in our
model does not contain a predefined payoff matrix. Instead, we define it as follows:

Definition 1 (m-role game) An m-role game is a tuple 〈R, A, ϕ〉, where:
• R = {1, . . . ,m} is a set of m agent roles, one per each agent involved in the game.
• A = 〈A1, . . . , Am〉 is an m-tuple of action sets available to each role, where Ai ⊆ Ac is

the set of actions available to the agent taking on role i .
• ϕ is an expression of L that describes the initial situation of the game from the point of

view of its players (i.e., ϕ is the conjunction of their local contexts, sorted by role).

For simplicity, henceforth we shall refer to an m-role game as a game, and to an agent
playing role i in a game as player i .

As an example, we can formally describe game A in Fig. 4a as a tuple GA = 〈R, A, ϕ〉,
where R = {1, 2} is the set of roles, A = 〈{go, stop}, {go, stop}〉 is the set of actions
available to each role, and ϕ is its description, which can be informally interpreted as “player
1 perceives a car coming from its right and player 2 perceives a car coming from its left”.

In general, in each MAS state the same game can be simultaneously played by different
groups of agents, and each agent can engage in the same game in different MAS states. At
a given time, an agent identifies whether it is engaged in a game in the current state of the
MAS (and the role that it plays in it) by means of its context. For instance, if the context of
a car at a given time is “there is a car coming from my right”, then this car will know that it
is enacting role 1 in game GA.

If G is a game, a norm stands for a coordination strategy that specifies what an agent is
prohibited to do when playing each possible role of G. Norms are expressed in terms of the
agent language L so that agents can interpret and comply with them. Formally, a norm is a
(possibly empty) set of constraints that restricts the action space of the agents involved in a
game by prohibiting certain actions.

Definition 2 (Norm) Given a game G = 〈R, A, ϕ〉, a norm to coordinate the agents in G is
a pair 〈ψ, prh〉 where:

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 647

– ψ ∈ L is the precondition of the norm.
– prh : R → 2Ac is a function that returns the set of actions that an agent is prohibited to

perform when taking on role i , where prh(i) ∈ 2Ai for all i ∈ R.

As an example, norm3 introduced above to coordinate cars inGA can be formally defined
as a pair norm3 = 〈ψ, prh〉, where ψ =“player 1 perceives a car coming from its right and
player 2 perceives a car coming from its left”, and function prh returns an empty set for role
1, and action “go” for role 2. Formally, prh(1) = ∅ and prh(2) = {go}.

Let G = 〈R, A, ϕ〉 be an m-role game, and n = 〈ψ, prh〉 a norm. We say that n applies
in G if the precondition of n satisfies the description of G, namely if ϕ |	 ψ . Hereafter,
we will refer to the set of norms that apply in a game G as the norm space of game G,
denoted by NG . For instance, the norm space of game GA can be denoted by NGA =
{norm1, norm2, norm3, norm4} (the norms in the Table in Fig. 4).

Agents in a MAS may engage in multiple, different games. Henceforth, we shall denote
the set of games that agents can play as G = {G1, . . . ,Gs}. A normative system is a set of
|G| norms that provides an agent with the means to coordinate in each game in G. Following
our example, each car will have one norm out of norm space NGA , and so on for each game.

Definition 3 (Normative system) Let G be a (possibly empty) set of games. A normative
system is a set of norms Ω such that for each G ∈ G there is one norm n ∈ Ω and n ∈ NG .

First of all, each agent ag j ∈ Ag counts on its own normative systemΩ j . Thus, in general
we assume that a MAS is composed of a heterogeneous population whose agents may have
different normative systems.

Let Ag′ ⊆ Ag be a group of agents engaged in a game G = 〈R, A, ϕ〉 at a given time,
each playing one role from R. Each agent will count on one norm out of its normative system
that applies in G and prohibits it to perform some actions. We denote the combination of
norms applicable to these agents at this given time as n = 〈n1, . . . , nm〉, where ni stands for
the norm for G in the normative system of the agent playing role i . We assume that agents
always complywith their applicable norms.7 Therefore, based on the norms in n, these agents
will perform a tuple of actions a = 〈a1, . . . , am〉, where ai is an action performed by the
agent enacting role i that is not prohibited by norm ni for role i .8

As previously introduced, we assume that the payoffs to the players of a game cannot be
assessed beforehand, as these might depend on the actions of the players of interdependent
games simultaneously played at runtime.However, we can compute the rewards to the players
of such a game at a given time, once they perform a joint action and lead the MAS to its next
state. We obtain such a reward by means of a reward function.

Definition 4 (Reward) Given aMASwith a set of agents Ag, the reward to an agent ag ∈ Ag
at a particular point in time t ∈ N is represented by means of a reward function of the form
r t (ag) ∈ [0, 1].

Say that cars 1 and 2 in Fig. 6a have normative systems Ω1 and Ω2, respectively, and
that both normative systems have norm3 as the applicable norm in GA. Thus, at time t these

7 sense simulates 100% norm compliance in order to be able to evaluate norms’ utilities once the agents
comply with them. However, 100% compliance is not actually required in real-time MAS execution. Once
the agents are provided with an ESNS, this normative system establishes a convention for all the agents in
each possible game. Such a convention has the property that no agent could benefit from violating it or from
adopting different norms, and hence, agents would voluntarily comply with norms.
8 In principle, it is not possible to assume the composition of a, i.e., the actions that these agents will perform.
However, we assume that the actions in a comply with the prohibitions established by their respective norms
in n.

123

648 Auton Agent Multi-Agent Syst (2018) 32:635–671

cars play GA with norm combination n = 〈norm3, norm3〉. These cars will perform a joint
action a = 〈go, stop〉, thus avoiding collisions at time t + 1 and getting reward 1 (i.e.,
r t+1(1) = 1 and r t+1(2) = 1). At time t ′ (Fig. 7a), cars 3 and 4 play GA with the same
norm combination. Car 3 avoids collisions, but car 4 is hit from behind by car 5, which was
engaged in game B. Thus, the rewards of cars 3 and 4 at time t ′ + 1 are 1 and 0, respectively,
i.e., r t

′+1(3) = 1 and r t
′+1(4) = 0.

Notice that, in practice, given a game and the norms that apply in it, the agents will play
a repeated one-shot game of norms against norms, namely a normative game, in which the
norm combinations used by the agents to play the game over time will lead them to obtain a
history of rewards. Thus, a normative game will consist of a game, the norms that apply in
it, and a history of rewards obtained by the agents in the game.

Definition 5 (Normative game) A normative game is a tuple 〈G, NG , H,U 〉, where:
– G is an m-role game, and NG is the norm space of G.
– H = 〈h0, . . . , hw〉 is the memory of the normative game over a time window [0, tw],

where h j = 〈n j , r j 〉, j ∈ [0, w] such that n j ∈ N |R|
G is the combination of norms that

applied to the agents playing the game at time t j , and r j is the vector of rewards that
these agents obtained at that time (one for each agent).

– U = 〈u1, . . . , um〉 is an m-tuple of utility functions of the form ui : N |R|
G × H → [0, 1],

which return the personal coordination utility to an agent enacting role i in the game once
the players of the game have a certain combination of applicable norms. Such a utility is
empirically computed based on the memory of the game, H .

Intuitively, the utility of a norm combination tells us how successful it has been historically
to avoid conflicts to each player of the game. Such a utility is computed based on the rewards
obtained by the agents that have played the game within a time window. Further on, we
provide equations to compute such a utility in Sect. 3.3.2.

Note therefore that each game will have its equivalent normative game. If G = {G1, . . . ,

Gs} is a set of games with norm spaces NG1 , . . . , NGs , we shall denote asNG = {NG1, . . . ,

NGs} the set of all possible normative games, where NGi is the normative game resulting
from Gi and the norms from NGi .

At this point we import from EGT the concept of fitness introduced in Sect. 2.2. Given
a normative game NG, the fitness of each one of its norms quantifies the average utility of
an agent that uses the norm to play NG by enacting different roles and by playing against
agents with different norms. Formally:

Definition 6 (Norm fitness) Given a normative game NG = 〈G, NG , H,U 〉, the fitness of
a norm n ∈ NG is represented by means of a function of the form f (n, NG) ∈ [0, 1].

Furthermore, given a collection of normative gamesNG, and a normative system Ω with
one norm for each normative game NG ∈ NG, we compute the global fitness of normative
system Ω , denoted by fG , as the aggregated fitness of the norms of Ω in their respective
normative games:

fG(Ω,NG) =
∑

NG∈NG
f (nΩ

NG , NG) (6)

where nΩ
NG stands for the norm from Ω to coordinate the agents in normative game NG.

Now we are ready to introduce the problem that we address in this paper. Consider a
population of agents, and a collection of interdependent normative games NG. Our aim is

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 649

to find a normative system Ω such that, once it is used by all the agents to coordinate in the
games inNG, there is no agent that can derive a greater global fitness by using an alternative
normative system Ω ′. In terms of EGT, this amounts to saying that normative system Ω

is evolutionarily stable, since no agent could be ever tempted to use alternative normative
systems to coordinate in the normative games in NG.

Definition 7 (Norm synthesis problem) Given a set of agents Ag and a set of normative
gamesNG, our aim is to find a normative system Ω such that the following conditions hold:

1. All agents adopt Ω . That is, Ωi = Ω for each agent agi ∈ Ag.
2. There is no alternative normative system whose fitness outperforms that of Ω . For-

mally, there is no alternative normative systemΩ ′ such that fG(Ω ′,NG) > fG(Ω,NG).

3.3 Formal model for evolutionary norm synthesis

We now describe the tasks that sense performs to synthesise a normative system that solves
the norm synthesis problem in Definition 7. That is, norm generation and utility learning
(Fig. 3(2)), and norm replication (Fig. 3(3)). In particular, normgeneration and utility learning
are achieved by runtime observation of the agents’ activities during MAS simulations, while
norm replication is subsequently performed outside simulations.

3.3.1 Generating new normative games from observation

As introduced in Sect. 3.1, sense takes the norm generation approach of iron (Sect. 2.1).
It monitors agents’ interactions at regular time intervals within a simulation of the MAS
for a given number of time steps. At each time step, sense tries to detect new, untracked
games, and generates norms to coordinate the involved agents. Likewise iron, we assume
that conflicts can be detected at runtime, and that the agents involved in a conflict are the
ones that are responsible for the conflict. Moreover, we assume that a conflict in a MAS state
at a given time t is caused by the actions that the agents performed in the previous MAS state
at time t − 1.

In order to generate norms for a given domain, sense requires the use of domain-dependent
knowledge. With this aim, it relies on the following domain-dependent functions considered
by iron in [17,18] (see Sect. 2.1):

– A conflict function of the form conflicts : S → 2Ag , which returns groups of agents that
are involved in a conflict in the state of the MAS at a given time.

– A context function of the form context : Ag × S → 2L, which returns the local context
of an agent in a state of the MAS. As introduced in Sect. 3.2, this context is expressed in
terms of an agent language L.

– An action function of the form action : Ag × S × S → Ac, which returns the action
that an agent performed during the transition from a MAS state st at a given time t to the
subsequent MAS state st+1 at time t + 1.

At a given time t , sense detects and keeps track of a new m-role game by performing the
following tasks:

1. Detecting a new conflict at time t . Formally, sense obtains the conflicts of the current
state of the MAS st ∈ S at a given time t by invoking function conflicts(st).

2. Retrieving the contexts at time t − 1 of the m agents that are in conflict at time t . This
amounts to generating, for each agent ag ∈ Ag involved in the conflict at time t , an

123

650 Auton Agent Multi-Agent Syst (2018) 32:635–671

expression ϕ ∈ L that describes the context of this agent in the MAS state st−1 ∈ S at
time t − 1. Formally, context (ag, st−1).

3. Creating a new m-role game as G = 〈R, A, ϕ〉 with R as the set of roles played by the
agents at time t − 1, A as the set of the actions available to these agents at time t − 1,
and ϕ as the set of contexts of these agents at time t − 1.

After tracking a new game G, sense will create all the norms that can be used to regulate
the agents in G, i.e., its norm space NG , by:

1. Identifying the actions that led to the conflict at time t . That is, retrieving the m actions
that the m agents involved in the conflict performed in the transition from the MAS state
st−1 at time t − 1 to its subsequent state st at time t . sense obtains the action performed
by an agent ag ∈ Ag in such a state transition as action(ag, st−1, st).

2. Creating alternative norms that prohibit different roles of G to perform the actions that
led to the conflict. Each one of these norms will prohibit agents to perform the conflicting
actions whenever they perceive the context corresponding to different roles of the game.

Then, sense will create the corresponding normative game NG = 〈G, NG , H,U 〉, with
the new game G, NG as its norm space, H as its tuple of history functions,9 and U as its set
of empirical utility functions. Next, the norms of NG will be uniformly distributed among
the agents in a MAS. This guarantees that the normative systems in an agent population
are heterogeneous, namely the agents will play game NG by using different, “competing”
norms.

At this point it is worth to say that sense is not guaranteed to solve a game on its first
attempt, since a game may require norms that prohibit more than one action in order to
coordinate the agents. For instance, if once cars are prohibited to go forward in a given game
they decide to turn to one side, still colliding, then sense will synthesise further norms that
prohibit both to go forward and to turn to one side, adding them to the norm space of the
game and sending the new norms to the cars in the scenario.

Going back to our example of GA and cars 1–2 (Fig. 8), sense will now create its norm
space, NGA , by first identifying action “go” as the one performed by cars 1 and 2 during the
transition from time t to time t+1. That is, action(1, st , st+1) = go and action(2, st , st+1) =
go. Then, it will create norms to prohibit action “go” to: none of the roles (norm1 in the
Table of Fig. 9), role 1 (norm2), role 2 (norm3), and both roles (norm4). sense will now
create and track the corresponding normative game NGA = 〈GA, NGA , H,U 〉. Thereafter,
it will deliver each norm to 25% of the agents.

3.3.2 Computing norms’ utilities empirically

sense continuouslymonitors the game play of the agents during aMAS simulation, detecting
when they play each normative game, and keeping track of their rewards in thememory of the
game. At the beginning of a simulation, sense clears the memory of each normative game
detected so far in order to learn new reward histories for each game from scratch. In this
way it avoids mixing reward evidences from past simulations, which may no longer apply
after norms have been replicated and their frequencies have been updated. After simulation,
sense will exploit this new knowledge in order to empirically compute the utility matrix of
the game as follows. Let NG = 〈G, NG , H,U 〉 be a normative game, and n a combination
of norms applicable to the players of NG. Consider the history H of NG over a time window

9 Initially, each history function h j ∈ H will return an empty sequence of rewards. Consequently, each
empirical utility function ui ∈ U will return an undefined value.

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 651

Fig. 8 Game with two cars
playing roles 1 and 2 when
approaching a junction

�me t
(a)

car 1: go
car 2: go

�me t+1
(b)

2

1

2

1

Fig. 9 Left: game in which two
cars with roles 1 and 2 need
coordination when approaching a
junction. Right: alternative norms
to coordinate any two cars that
engage in such a game

Game A

role 1
(le� car)

role 2
(right car)

Prohibitions
Norm role 1 role 2
norm1 — —
norm2 go —
norm3 — go
norm4 go go

[t0, tω]. First, we propose to retrieve from H the rewards obtained by the agents when playing
norm combination n, which we note as Rn. Then, we compute the utility obtained by player
i as its average reward:

ui (n, H) = 1

|Rn|
∑

rt∈Rn

rt [i] (7)

where rt [i] is the reward obtained by player i in NG at time t .
Back with our example, consider that after a simulation cars have played game NGA four

times (Fig. 9) and game NGB one (Fig. 10). In the first game play, cars played NGA with
norm combination n = 〈norm3, norm3〉 and performed joint action a = 〈go, stop〉. While
player 1 avoided collisions, player 2was hit frombehind by a third car thatwas simultaneously
playing NGB behind it and did not stop because it used norm5. Hence, the tuple of rewards
of the players of NGA at that time is 〈1, 0〉. In the second and third game plays, cars played
NGA with the same norm combination, avoiding collisions because no cars were behind
them, and getting reward 1 (i.e., 〈1, 1〉). In the fourth game play, cars played NGA with norm
combination n = 〈norm1, norm1〉 and performed a joint action a = 〈go, go〉, thus getting
reward 0 (i.e., 〈0, 0〉). The resulting memory of NGA is:

H = 〈〈〈norm3, norm3〉, 〈1, 0〉〉, 〈〈norm3, norm3〉, 〈1, 1〉〉,
〈〈norm3, norm3〉, 〈1, 1〉〉, 〈〈norm1, norm1〉, 〈0, 0〉〉〉

Say that we want to compute the utility of norm combination 〈norm3, norm3〉. First, we
retrieve from H the reward sequence of 〈norm3, norm3〉, that is, 〈〈1, 0〉, 〈1, 1〉, 〈1, 1〉〉. Note
that k = 3, where k is the length of the history of rewards for 〈norm3, norm3〉. We will
compute the utilities of this norm combination for each role as:

u1(〈norm3, norm3〉, H) = 1 + 1 + 1

3
= 1

u2(〈norm3, norm3〉, H) = 0 + 1 + 1

3
= 0.66

123

652 Auton Agent Multi-Agent Syst (2018) 32:635–671

Fig. 10 Left: game where a car
behind (role 1) has to coordinate
with the car in front. Right:
alternative norms for this game

Game B

role 1
(car behind)

Prohibitions
Norm role 1
norm5 —
norm6 go

3.3.3 Replicating norms

As previously introduced, norm replication is the process of computing the fitness of each
norm (Definition 6 in Sect. 3.2), and then making its frequency grow proportionally to its
fitness. sense computes a norm’s fitness similarly to the way a strategy’s fitness is computed
in EGT (Sect. 2). Given a normative game, the fitness of a norm n will depend on:

1. the utility that an agent derives when using norm n to play the game by enacting different
roles and by playing against other agents with possibly different norms in the game; and

2. the probability that the agent encounters these agents, which can be computed in terms
of the frequencies of the norms applicable to these agents in the game.

Intuitively, if an agent derives a high utility once it plays a normative game against agents
with a highly frequent norm, then the agent will be very likely to encounter an agent that uses
that norm to play that game (and hence, to get a high fitness). Conversely, the same agent
will very likely get a low fitness if it is highly likely to interact with agents against whom it
always derives a low utility.

As an example, let us consider that a car repeatedly plays game NGA in Fig. 9 by using
norm1. According to this norm, the car will never give way. This car will yield a high
utility when playing against cars that have applicable norm4, since this norm obliges a car
to always give way. This occurs when the combination of norms used in the game is either
〈norm1, norm4〉 (with our car playing role 1), or 〈norm4, norm1〉 (with our car playing role
2). Conversely, this car will derive a low utility when it interacts with cars that have norm1
(since both will go forward and collide), namely when the combination of norms used in the
game is 〈norm1, norm1〉. Now, say that the number of cars with norm4 doubles the number
of cars with norm1. Then, our car will be twice as likely to play against cars that have norm4,
and hence to obtain a higher fitness.

Given a normative game NG = 〈G, NG , H,U 〉, we compute the fitness of a norm n as
the average utility ui to an agent once it uses norm n to play NG, for each role i and each
combination of norms applicable to the players of NG. Formally:

f (n, NG) =
|R|∑

i=1

∑

n∈N |R|
G | ni=n

ui (n, H) · p(n) (8)

where:

– N |R|
G is the set of all norm combinations that the agents playing the game can employ;

– n is a norm combination and ni = n is the norm employed by the agent playing role i ;
– ui (n, H) is the utility to role i when agents play with norm combination n, computed

based on the game’s memory H at a given time; and
– p(n, t) is the joint frequency of the norms in n in the normative systems of the players.

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 653

Table 2 Example of utility matrix of norm1 and norm3 after simulation

norm1 norm3

norm1 (0,0) (1,0.45)

norm3 (0,0) (1,0.66)

Once cars use norm1 to coordinate they go forward and collide, deriving utility 0. Once the car on the right
(role 2, column player) applies norm3, hence stopping, cars avoid colliding. In that case, the left car (role 1,
row player) derives utility 1, and the right car’s utility ranges in [0.34,0.45]

We compute the joint frequency of the norms in n in the normative systems of the players
of NG at a given time as:

p(n) =
∏

n∈n

F(n) = |{ag ∈ Ag | n ∈ Ωag}|
|Ag| (9)

where F(n) ∈ [0, 1] is the frequency of norm n at a given time, namely the proportion of
agents whose normative systems contain n at that time.

Next, those normswith higher fitness than average becomemore frequent,while thosewith
fitness below average become less frequent. This will be captured by a replication equation
computed as follows. If NG is a normative game, we update the frequency of a norm n ∈ NG

as:

F(n) = F(n) · f (n, NG)

Θ
(10)

where Θ is the average fitness of all the norms applicable in NG, computed as:

Θ =
∑

n∈NG

f (n, NG) · F(n) (11)

Notice that equations 10 and 11 are the counterparts of 3-4 and 5 introduced in Sect. 2.2
to describe the replicator dynamics of EGT. Also, note that norms’ fitness will range in [0,1]
since they are computed based on utilities and frequencies (which range in [0,1]).

Let us compute the norms’ fitnesses of game NGA (Fig. 9). For simplicity, let us consider
that only norm1 and norm3 are available to the cars. At the outset, half of the cars have
norm1 in their normative systems, while the rest of cars have norm3. Thus, it follows that
the cars can employ the following norm combinations to play the game: 〈norm1, norm1〉,
〈norm1, norm3〉, 〈norm3, norm1〉, and 〈norm3, norm3〉. The joint probability of each of
these combinations is 0.25 (e.g., p(〈norm1, norm1〉) = F(norm1)·F(norm1) = 0.5·0.5 =
0.25). Also, let us consider that at a given time our system computes the utility matrix
illustrated in Table 2 based on the memory of NGA after a MAS simulation. Then, we can
compute the fitness of norm1 by using equation 8 as follows:

f (norm1, NGA) = + u1(〈norm1, norm1〉, H) · p(〈norm1, norm1〉)
+ u1(〈norm1, norm3〉, H) · p(〈norm1, norm3〉)
+ u2(〈norm1, norm1〉, H) · p(〈norm1, norm1〉)
+ u2(〈norm3, norm1〉, H) · p(〈norm3, norm1〉)

= 0 · 0.25 + 1 · 0.25 + 0 · 0.25 + 0 · 0.25 = 0.25

123

654 Auton Agent Multi-Agent Syst (2018) 32:635–671

Analogously, we compute the fitness of norm3 as follows:

f (norm3, NGA) = u1(〈norm3, norm1〉, H) · p(〈norm3, norm1〉)
+ u1(〈norm3, norm3〉, H) · p(〈norm3, norm3〉)
+ u2(〈norm1, norm3〉, H) · p(〈norm1, norm3〉)
+ u2(〈norm3, norm3〉, H) · p(〈norm3, norm3〉)

= 0 · 0.25 + 1 · 0.25 + 0.45 · 0.25 + 0.66 · 0.25
 0.528

It is worth noticing that norm3 is more than twice as fit as norm1. Now, let us replicate
both norms. We compute the average fitness of norm1 and norm3 using equation 11 as:

Θ = f (norm1, NGA) · F(norm1) + f (norm3, NGA) · F(norm3)

= 0.25 · 0.5 + 0.528 · 0.5 = 0.389

Since norm3’s fitness is larger than the average, its frequency in the next generation must
increase, while that of norm1 must decrease. Specifically:

F(norm1) = F(norm1) · f (norm1, NGA) / Θ

= 0.5 · 0.25 / 0.389
 0.321

F(norm3) = F(norm3) · f (norm3, NGA) / Θ

= 0.5 · 0.528 / 0.389
 0.679

Hence, in next generation approximately 68% of agents will have norm3 in their normative
systems, which means that norm3 will spread. The remaining 32% of agents will adopt
norm1, and hence the presence of norm1 in the agents’ normative systems will shrink.

4 Empirical analysis and results

In this sectionwe empirically evaluate our approach in a simulated traffic scenario.We explore
several dimensions. Firstly, we analyse its convergence, showing that it manages to converge
up to 100% of times to an evolutionarily stable normative system (ESNS) that fulfils the
coordination needs of a given agent population. Secondly, we perform an interdepedencies
analysis in which we analyse the effects of the interdependencies between games on the final
normative systems that sense converges to. Thirdly, we test the adaptiveness of our approach,
that is, its capability to adapt the normative systems it synthesises to the coordination needs
of the population. Finally, we study the stability of the normative systems synthesised by our
approach upon convergence.We demonstrate that, once all cars abide by anESNS synthesised
by sense, there is no alternative normative system that the agents can be tempted to switch
to.

4.1 Empirical settings

Our experiments consider a discrete simulator of a traffic scenario publicly available in [16],
inwhich agents are cars and the coordination task is to ensure that cars reach their destinations
as soon as possible without colliding. The implementation of sense used in our experiments
is publicly available in [15]. Figure 11a illustrates our scenario, composed of two orthogonal
roads represented by a 7×7 grid. At each time step, new carsmay enter the scenario from four
different entry points (labelled as “in”), and travel towards one of four exit points (labelled
as “out”).

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 655

in

in

in

in

out

out

out

out

(b)(a)

a

b c d

e

role 1
(go,stop)

role 2
(go,stop)

Fig. 11 a Simulated traffic scenario with four entry points (labelled as in), and four exit points (labelled as
out); b A 2-role game. Cells a–d describe the four positions in front of the car playing role 2 (the car at cell
e). Cells a, c, e and d describe the four positions in front of the car playing role 1 (the car at cell b)

At each time step, each car performs an action out of a set of available actions {go,acc,stop}.
Actions “go” and “acc” imply that a car moves either one cell or two cells towards its
direction, respectively. Action “stop” implies that a car stays in its cell for one time step.
Cars are naive and have basic driving skills, but they do not know how to coordinate. We
will model a population of prudent drivers that like driving calmly and without suddenly
accelerating. Thus, at a given time step, a car chooses an action to perform based on the
following total order of preferences over the set of available actions:

go > stop > acc (12)

That is, cars perform action “go” by default unless they are explicitly prohibited by a norm
to do so. In this case, they perform action “stop”, remaining in place for one time step, or
action “acc” in case they are both prohibited to go and to stop.

Also, we consider the following reward function that numerically quantifies the personal
“success” of a car at a given time in terms of its own goal achievement (see Definition 4 in
Sect. 3.3.2):

r t (car) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if player i avoids collisions and can go forward at time t
0.7 if player i avoids collisions but has to stop at time t
0.35 if player i avoids collisions but has to accelerate at time t
0 if player i collides at time t

(13)

where a is a joint action performed by the players of a normative game NG at time t .
Thus, a car gets the best possible reward (reward 1) once it plays a normative game at time

t and avoids collisions by going forward at time t + 1 (hence not delaying). A car gets a less
positive reward (reward 0.7) once it has to stop in order to not collide (which is detrimental to
the goal of reaching its destination as soon as possible). When a car is required to suddenly
accelerate in order to not collide, it gets half the reward it gets when stopping (0.35). Finally,
a car gets the worst possible reward (reward 0) once it plays a normative game and collides,
not being able to progress any more. Note that the rewards for not colliding (either by moving
forward, stopping or accelerating) are significantly higher than the reward for colliding. Thus,
cars will give a higher importance to avoiding collisions at the expense of travelling time. In
other words, we say that the cars will be highly averse to colliding.

123

656 Auton Agent Multi-Agent Syst (2018) 32:635–671

Fig. 12 a Example of a “give
way to your right” norm to
regulate the game depicted in
Fig. 11b. Whenever a car
perceives the context of player 1
in Fig. 11b (the car in cell b),
then it enacts role 1 in the game
and hence is prohibited to “go”.
If a car perceives the context of
player 2 (the one in cell e), then
no prohibitions are established

reference
car

prohibited
to go

reference car

no
prohibi�ons
established

“Give way to your right” norm

(role 1)

(role 2)

Each car has a limited perception of the MAS and perceives the four cells immediately
next to and in front of it: one cell on its left, two consecutive cells in front, and one cell on
its right. For instance, in Fig. 11b the car in cell e can perceive cells a, b, c and d. A cell
can contain either a car heading different directions, nothing, or a collision. While cars can
perceive the position and direction of other cars in their contexts, they cannot assess whether
they are moving (going forward or accelerating) or stopped.

We say that two cars have collided in a state if they are in the same cell at that state.
Specifically, two cars collide once their trajectories coincide in time and space. For example,
say that at a given time the cars in cells b and e in Fig. 11b jointly accelerate, aiming to
progress two cells all at once. The trajectories of these cars will cross in cell c, and hence a
collision between these cars will arise in this cell at the next time step.

A game is described by means of the contexts perceived by its players. Figure 11b graph-
ically illustrates the description of a 2-role game played by two of the cars in Fig. 11a. Two
cars can avoid collisions in this game once one of them stops for one time step (giving way to
the other car), or if it accelerates for one time step, anticipating to the other car and rapidly
going through the junction. Conversely, if both cars go forward or accelerate at the same
time, they will inevitably collide.

Norms specify the actions that cars are prohibited to perform once they enact each possible
role in a game. Figure 12 graphically illustrates an example of a “give way to your right”
norm to coordinate cars in the game depicted in Fig. 11b. Whenever a car perceives the
context of role 1 in Fig. 11b (the car in cell b), then this car knows that it is enacting role 1 in
the game and hence is prohibited to “go”. Conversely, a car has no established prohibitions
whenever it perceives the context of player 2 (the one in cell e in Fig. 11b).

Each experiment consists of a set of executions of sense that start with a population of
agents that have no norms to coordinate (that is, each agent ag j ∈ Ag has an empty normative
system Ω j = ∅). Simulations run in rounds of 200 time steps. In each round, cars interact in
the scenario and collisions occur as the simulation goes on.10 sensemonitors the simulation,
detecting games and creating norms as detailed in Sect. 3.3.1. At the end of each simulation,
sense computes norm utilities and replicates norms as detailed in Sects. 3.3.2 and 3.3.3. We
consider that sense has converged to an ESNS once all the agents have adopted the same

10 Whenever two or more cars collide, they remain in the scenario for 5 time steps until they are removed.
With this delay we aim to simulate the time that the emergency services require to remove collided cars.

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 657

(a) (b) (c) (d)
Single stop game (SSG) Preven�on game (PG) Double stop game (DSG) Traffic jam game (TJG)

role 1
(le� car)

role 2
(right car)

role 1
(le� car)

role 2
(right car)

role 1
(car behind)

role 1
(car behind)

Fig. 13 Different game types detected in our simulations: a a 2-role single-stop game (SSG), where the best
strategy is that one of the cars goes forward, while the other one stops, giving way to the first car, or accelerates
anticipating to it; b a 1-role prevention game (PG), in which the car playing role 1 may need to stop in order
to not collide with the car in front (which might be playing a SSG); c a 2-role double-stop game (DSG), in
which both cars need to stop in order to not collide because of a blocked road; d a 1-role traffic jam game
(TJG), in which the car playing role 1 has always to stop in order to not collide with the car in front, which
will likely stop because the road is blocked

norm in each possible game, and this condition holds for 100 generations (I = 100, see
Sect. 3.1)

4.2 Convergence analysis

We first analyse the capability of our approach to synthesise an ESNS that avoid collisions
by adapting to the coordination needs of our population of prudent drivers.

Out of 1,000 executions of sense, the system takes an average of 54 rounds to converge.
On average, sense detected 89 different games that can be grouped into the four categories
illustrated in Fig. 13. The first category (label a), which we call single-stop games (SSG),
stands for 2-role games inwhich the best strategy to avoid collisions is that one of the cars goes
forward while the other car either: (i) stops, giving way to the first car, or (ii) accelerates,
going through the junction before the first car does. Two examples of SSG are the game
illustrated in Fig. 13a and the game depicted in Fig. 11b, which is very similar to the former
one but also considers a third and a fourth car in cells a and d. In general, any variation in
cells a, c and d of a 2-role game is considered as a different game.11

The second category (label b), which we call prevention games (PG), stands for 1-role
games that are interdependent with SSGs. In a PG, a car perceives another one in front, but
not the other way around. Therefore, only one car (the one behind) is aware of the need for
coordination of both cars. The car in front may be playing a SSG with a third car and hence
may possibly stop in order to give way to it. Player 1 has no means to assess whether or not
this car will stop, and thus it can choose to go forward, assuming a collision risk in case the
car in front stops, or to stop for one time step in order to keep a security distance with it.

The third category (label c), called double-stop games (DSG), stands for 2-role games in
which both players need to stop in order to avoid collisions because the junction is blocked.
Figure 13c shows an example of DSG, in which two cars are waiting for a collision to be
removed. The fourth category (label d), which we call traffic-jam games (TJG), stands for
1-role games that are interdependent with DSGs. TJGs are similar to PGs, but in this case
the road is blocked in front of the two cars and hence the car in front is very likely to stop.

11 This is because sense assumes no previous knowledge about the potential games of the MAS, and hence
it cannot assume that two similar situations will in fact correspond to the same game.

123

658 Auton Agent Multi-Agent Syst (2018) 32:635–671

Table 3 Norms to coordinate a population of prudent drivers in interdependent SSGs and PGs, along with
the percentage of times that cars converged to adopting each type of norm in these games

Norms “no prohibitions” “role 1: prh(go)” “role 2: prh(go)” “both roles: prh(go)”

SSG 0% 49% 51% 0%

(strategy) (go, go) (stop, go) (go, stop) (stop, stop)

PG – 100% – –

(strategy) (go) (stop) – –

Table 4 Norms to coordinate a population of prudent drivers in interdependent DSGs and TJGs, along with
the percentage of times that cars converged to adopting each type of norm in these games

Norms “no prohibitions” “role 1: prh(go)” “role 2: prh(go)” “both roles: prh(go)”

DSGs 0% 0% 0% 100%

(strategy) (go, go) (stop, go) (go, stop) (stop, stop)

TJGs 0% 100% – –

(strategy) (go) (stop) – –

Thus, player 1 has no choice but stopping in order to avoid collisions. TJGs also include
games in which the only player perceives a collision in the cell immediately in front of it, in
which case it is also required to stop in order to avoid collisions.

It is worth noticing that SSGs and DSGs are only played at the junction (once the trajec-
tories of two cars cross orthogonally), while PGs and TJGs are played before arriving at the
junction, once cars are waiting behind other cars playing SSGs and DSGs in the junction.

Overall, sense detects 89 different games out of all executions. Thus, normative systems
have 89 norms, one for each possible game. More specifically, 17 SSGs are detected, 25 PGs,
7 DSGs and 40 TJGs as a result of different variations in the empty cells in front of the players
of these games in Fig. 13 (cars in different directions, a collision, or nothing). Tables 3 and 4
illustrate the possible types of norms that can be used to coordinate cars in each one of these
games, along with the percentage of times that each type of game converged to each one of
these norms. Below each percentage is the strategy adopted by the cars once they adopted
each possible norm. Such a strategy stands for the actions actually performed by the cars
when playing each role of a game out of the remaining actions permitted by their adopted
norm. These norms specify that: “no prohibitions” are imposed on roles 1 and 2; “role 1 is
prohibited to go” (denoted as “role 1: prh(go)”); “role 2 is prohibited to go” (denoted as
“role 2: prh(go)”); and “both roles are prohibited to go”.

On average, cars converge 100% of executions to an ESNS that avoids collisions. In SSGs
(Table 3) cars adopt 49% of times norms that prohibit role 1 to go, hence adopting a “give
way to the right” strategy. That is, they stop when playing role 1 because action “stop” is
the next one in order of preference once action “go” is forbidden (see Equation 12). Since
role 2 has no prohibitions, cars go forward when playing this role. The resulting strategy is
denoted as (stop, go). The remaining 51% of times cars converge to norms that prohibit role
2 to go, hence adopting a “give way to the left” strategy, denoted as (go, stop). As for PGs
(Table 3), 100% of executions converge to norms that prohibit to go forward and cars adopt
a “stop” strategy.

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 659

(a) Single-Stop Game
(SSG)

(b) Preven�on Game
(PG)

(c) Double-Stop Game
(DSG)

“no prh”
(go,go)

“both roles:
prh(go)”

(stop,stop)

“role 1:
prh(go)”
(stop,go)

“role 2:
prh(go)”
(go,stop)

“no prh”
(go,go)

“both roles:
prh(go)”

(stop,stop)

“role 1:
prh(go)”
(stop,go)

“role 2:
prh(go)”
(go,stop)

“no prh”
(go)

“role 1: prh(go)”
(stop)

(d) Traffic-Jam Game
(TJG)

“no prh”
(go)

“role 1: prh(go)”
(stop)

Fig. 14 Evolutionary dynamics of norm adoption in SSGs (a), PGs (b), DSGs (c) and TJGs (d). Each square
represents the possible frequency distributions of the norms in Tables 3, 4. Arrows represent the gradient of
norm adoption for each norm distribution, i.e., the most likely trajectory in terms of norm adoption that a
population with a given norm distribution will follow. a shows the dynamics of SSGs, in which any norms
prescribing strategies to prohibit either role 1 or 2 to go are evolutionarily stable. b shows the dynamics of
PGs, in which the only norm that can always avoid collisions is to prohibit role 1 to go. c shows the dynamics
of DSGs, in which the only stable norm is one to prohibit both roles to go. d shows the dynamics of TJGs,
whose dynamics are equal to those of PGs

In DSGs, cars converge 100% of times to a “both roles are prohibited to go” norm, and
cars adopt an “stop always” strategy (stop, stop). Consequently, in TJGs cars converge
100% of times to a norm that prohibit them to go, also adopting a “stop” strategy.

Figure 14 shows the evolutionary dynamics of norm adoption for SSGs (a), PGs (b) DSGs
(c) and TJGs (d). Each square represents the possible frequency distributions of the norms
from Tables 3, 4. For instance, the top-left corner of each square represents a population in
which 100% of cars adopt a “no prohibitions established” norm, and the middle point of the
square represents a population in which the four norms are 25% frequent. Arrows represent
the gradient of norm adoption for each norm distribution, i.e., the most likely trajectory in
terms of norm adoption that a population with a given norm distribution will follow.

In SSGs, cars always tend to adopt norms to either prohibiting role 1 to go (“give way
to the right”) or prohibiting role 2 to go (“give way to the left”). Both norms are attractor
points of the norm evolution process. If the mass of cars giving way to the right is bigger
than the mass of cars giving way to the left, then all agents will tend to give way to the right
in order to synchronise. As for PGs, the only attractor norm is the one that prohibits role 1
to go. Regarding DSGs, cars always tend to adopt norms to prohibit both roles to go. Thus,
no matter what the initial norm distribution is, as long as at least one car adopts such a norm
its fitness will be higher than that of any other car, and the whole population will eventually
adopt its norm. Consequently, cars tend to adopt norms to prohibit role 1 to go in TJGs.

4.3 Interdependencies analysis

We now analyse the effects of the interdependencies between games on the convergence
of sense. With this aim, we perform a second experiment with an alternative, dynamic
population of cars that behave differently depending on their location in the scenario. When
a car enters the scenario, it behaves aggressively, having a strong preference for quickly
reaching its destination at the expense of avoiding collisions. Once cars reach the junction,

123

660 Auton Agent Multi-Agent Syst (2018) 32:635–671

Table 5 Norms to coordinate prudent drivers in SSGswith aggressive drivers in PGs, alongwith the percentage
of times that cars converged to adopting each type of norm in these games

Norms “no prohibitions” “role 1:prh(go,stop)” “role 2: prh(go,stop)” “both roles:prh(go,stop)”

SSGs 0% 50% 50% 0%

(strategy) (go, go) (acc, go) (go, acc) (acc, acc)

PGs 100% 0% – –

(strategy) (go) – – –

they calm down and behave more prudently, being willing to stop if necessary. Thus, once
cars engage in a PG or a TJG before reaching the junction, they choose their actions based
on the following total order of preferences over the set of available actions:

go > acc > stop (14)

That is, cars prefer to “go” unless they are explicitly prohibited by a norm to do so. In that
case, they prefer to accelerate rather than stopping, unless they are also prohibited to perform
this action.

Once cars reach the junction and possibly play a SSG or a DSG, they behave prudently
and choose their actions based on the action preference previously used in Sect. 4.2:

go > stop > acc (15)

Also, we consider an alternative reward function that returns higher rewards for any car
whenever it accelerates than when it stops:

r t (car) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if player i avoids collisions and can go forward at time t
0.7 if player i avoids collisions and can accelerate at time t
0.35 if player i avoids collisions but has to stop at time t
0 if player i csollides at time t

(16)

We performed 1,000 executions of sense with this population. Table 5 illustrates the four
types of norms that can coordinate cars in SSGs and PGs, along with: (i) the percentage of
times that each type of game converged to each one of these norms; and (ii) the strategy
adopted by the agents once having each norm.

Initially, one would expect that cars should adopt norms that prohibit them to go forward
once enacting one of the roles in SSGs, likewise in the experiments of Sect. 4.2.However, once
cars play a SSG, other cars playing PGs behind them behave aggressively, going forward and
colliding with them. In other words, the players of PGs “push” the players of SSGs to adopt
alternative strategies in order to avoid collisions. Then, cars converge in SSGs to norms that
prohibit them both to go forward and to stop when enacting either role 1 or 2. Consequently,
cars perform action “acc” because it is the only remaining action that is not prohibited by the
norm. In other words, cars adopt an “accelerate to anticipate to the other car” strategy. On
average, cars adopt 50% of times norms to accelerate when coming from the left (acc, go),
and the remaining 50% of times they adopt norms to accelerate when coming from the right
(go, acc). This allows cars to converge 100% of times to a “no prohibitions” norm in PGs
that allows them to adopt a “go” strategy.

As for DSGs (Table 6) we observe similar convergence results to the ones illustrated in
Sect. 4.2. Despite the aggressiveness of cars in TJGs, the best strategy in DSGs is still 100%
of times to “stop always” in order to not collide with whatever is blocking the road. This

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 661

Table 6 Norms to coordinate prudent drivers in interdependent DSGs, along with the percentage of times
that cars converged to adopting each type of norm in these games

Norms “no prohibitions” “role 1: prh(go)” “role 2: prh(go)” “both roles: prh(go)”

DSGs 0% 0% 0% 100%

(strategy) (go, go) (stop, go) (go, stop) (stop, stop)

Table 7 Norms to coordinate
aggressive drivers in TJGs, along
with the percentage of times that
cars converged to adopting each
type of norm in these games

Norms “no prohibitions” “role 1: prh(go,acc)”

TJGs 0% 100%

(strategy) (go) (stop)

“no prh”
(go,go)

“both roles:
prh(go,stop)”

(acc,acc)

“role 1:
prh(go,stop)”

(acc,go)

“role 2:
prh(go,stop)”
(go,acc)

“no prh”
(go,go)

“both roles:
prh(go)”

(stop,stop)

“role 1:
prh(go)”
(stop,go)

“role 2:
prh(go)”
(go,stop)

“no prh”
(go)

“role 1: prh(go)”
(acc)

“no prh”
(go)

“role 1: prh(go,acc)”
(stop)

(a) Single-Stop Game
(SSG)

(b) Preven�on Game
(PG)

(c) Double-Stop Game
(DSG)

(d) Traffic-Jam Game
(TJG)

Fig. 15 Evolutionary dynamics of norm adoption in SSGs (a), PGs (b), DSGs (c) and TJGs (d) with an alter-
native population of aggressive–prudent drivers. Each square represents the possible frequency distributions
of the norms in Tables 5, 6 and 7. Arrows represent the gradient of norm adoption for each norm distribution,
i.e., the most likely trajectory in terms of norm adoption that a population with a given norm distribution will
follow. a shows the dynamics of SSGs, in which any norms prescribing strategies to “accelerate from the
right” or “accelerate from the left” are evolutionarily stable. b shows the dynamics of PGs, in cars tend to
adopt norms that allow them to accelerate. c shows the dynamics of DSGs, in which the evolutionarily stable
norms are those prescribing strategy “give way always”. d shows the dynamics of TJGs, in which cars tend to
adopt norms that prohibit them to go and accelerate, adopting a “stop” strategy

provokes cars to converge 100% to norms that prohibit to go forward and to acceleratewhen
playing a TJG (Table 7), hence adopting a “stop” strategy. Figure 15 shows the effects of
games interdependencies on the dynamics of norms adoption. Because cars always tend to
adopt a “go” strategy in PGs, they also tend to adopt strategies to accelerate from either the
left or the right in SSGs (label a). The dynamics of DSGs and TJGs are similar to the ones
observed in Sect. 4.2.

Notice therefore that SSGs and PGs cannot be resolved in isolation (separately), for the
resulting normative system would not be evolutionarily stable. The rationale is as follows.
If we disregard PGs, we can evolve norms in a SSG until the process converges to a norm
that prohibits cars to “give way” to one side. Such a norm will successfully avoid collisions
when cars play the SSG in isolation, for no other cars could affect the outcome of the game.
Similarly, by disregarding SSGs we can evolve norms in a PG until converging to a “no
prohibitions” norm, for the car in front would never be playing a SSG-DSG and hence would

123

662 Auton Agent Multi-Agent Syst (2018) 32:635–671

Table 8 Reward functions to model populations with different degrees of collision aversion. The lower
rewards (e.g., r t0, r

t
1) represent populations with lower aversion to colliding. The higher rewards (e.g., r

t
9, r

t
10)

represent populations with higher aversion to colliding

Outcome r t0 r t1 r t2 r t3 r t4 r t5 r t6 r t7 r t8 r t9 r t10

Goes and avoids collisions 1 1 1 1 1 1 1 1 1 1 1

Stops and avoids collisions 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accelerates and avoids collisions 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Collides 0 0 0 0 0 0 0 0 0 0 0

never stop. But, if we provide with these norms and put them to simultaneously play SSGs
and PGs at runtime, they will not avoid collisions: cars will go forward in PGs, hitting the
players of SSGs from behind. By co-evolving norms from interdependent games together,
sense can synthesise a normative system that coordinates cars when playing SSGs and PGs
both in isolation and simultaneously.

4.4 Adaptiveness analysis

Next, we analyse the capability of sense to adapt norm synthesis to the coordination needs
of the population to regulate. With this aim, we run simulations with prudent drivers that
have different degrees of aversion to colliding. Cars choose their actions at a given time by
employing the action total order depicted in Equation 15 from Sect. 4.3.

We model these populations by considering a collection of reward functions depicted in
Table 8. Each function returns 0 once a car collides at time t , and 1 once a car goes forward
without colliding at time t . These functions differ in the reward obtained by the cars once they
stop or accelerate to avoid collisions, which balances their “hurry” to get to their destinations
with their willingness to avoid collisions. In particular, the reward for accelerating is always
half of the reward for stopping. This is to preserve cars’ preferences for stopping instead
of accelerating. If these rewards are low (e.g., r t0), then cars prefer not to stop in order to
not delay, even if it implies a collision risk. Then, we say that cars have a low collision
aversion degree. As these rewards increase, cars have a lower aversion to stopping, which
can be interpreted as a higher aversion to colliding.We run 1,000 simulations for each reward
function. Figure 16 shows averaged results of all simulations. The x-axis depicts the different
empirical reward functions (collision aversion degrees), and the y-axis shows:

– the number of rounds that sense requires to converge, normalised from 0 to 100 range,
(where 100 represents the average maximum number of rounds required to converge out
of all simulations).

– the average frequency with which cars optimally converge in the games that achieved
100% successful convergence in Sect. 4.2: SSGs, DSGs and TJGs. That is, the frequency
with which they converge to a norm like “give way to the right” or a norm like “give way
to the left” in SSGs, and to a norm like “always stop” in DSGs and TJGs.

– the average frequency with which cars optimally converge in PGs. That is, the frequency
with which they converge to a norm that prohibits to go. In fact, this norm is the only one
that allows to avoid 100% of collisions in PGs.

– the collision avoidance rate during the last round of the simulation (once the simulation
has converged and the cars have adopted an ESNS).

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 663

 0

 20

 40

 60

 80

 100

rt0 rt1 rt2 rt3 rt4 rt5 rt6 rt7 rt8 rt9 rt10

Reward functions

#rounds (normalised from 0 to 100 range)
SSGs-DSGs-TJGs optimal convergence rate

PGs optimal convergence rate
collision avoidance degree

Fig. 16 Averaged results of 1000 simulations for each collision aversion degree. The x-axis represents differ-
ent reward functions modelling different collision aversion degrees. For instance, r t0 represents a population
with null collision aversion, and r t10 represents a population with total collision aversion. The y-axis shows:
(1) the number of rounds the simulations required to converge (normalised in the 0–100 range, where 100
represents the maximum number of rounds required in all simulations, i.e., 278); (2) the frequency with which
cars converge optimally in SSGs, DSGs and TJGs; (3) the frequency with which cars converge optimally in
PGs; and (4) the collision avoidance rate during the last round of the simulation (once agents had converged
to an ESNS)

With null collision aversion (r t0), simulations take the highest number of rounds to converge,
(278 rounds, normalised as 100 in the plot) . This happens because the rewards for colliding
and for stopping are equal, and hence thefitness of the norms that cause collisions (those estab-
lishing no prohibitions) and those that prohibit to go and avoid collisions are similar. Conse-
quently, cars take a long time to decide which norm to adopt. Upon convergence, cars adopt
ESNSs containing norms that establish no prohibitions, hence avoiding 0% of collisions.

As the collision aversion increases, simulations take less number of rounds to converge
and cars adopt norms that prohibit to go more frequently. For low collision aversions (r t1 to
r t3), simulations still take a high number of rounds (269, 262 and 185 rounds, respectively,
which are normalised as 96, 94 and 66.5), but cars adopt ESNSs that avoid up to 82% of
collisions. Specifically, cars converge optimally up to 72% of times in SSGs, DSGs and TJGs,
and up to 64% of times in PGs. The reason that this frequency is slightly lower in PGs is
because in these type of games cars do not always collide once they choose to go forward.
Hence, cars occasionally converge to norms establishing no prohibitions, which cannot fully
avoid collisions. For middle and high collision aversion degrees (r t4 to r t9), the number of
rounds necessary to converge decreases significantly. The best results are given by functions
r t7 and r

t
8, with which convergence is achieved on an average of up to 54 rounds (normalised

as 19 in the plot), and cars optimally converge in the 100% of SSGs, DSGs and TJGs – yet
they optimally converge up to 91% in PGs, hence avoiding up to 93% of collisions.

With total collision aversion (r t10), the number of rounds necessary to converge increases
again (up to 237, normalised as 85). This happens because the reward for stopping and not
colliding, and the reward for going forward and not colliding are equal. Hence, the fitness
of all the norms that avoid collisions in SSGs (either by prohibiting one role or both roles to
go) are similar. In consequence, cars need extra time to decide which norm to adopt. Upon
convergence, cars adopt ESNSs containing only norms that prohibit both roles to go in SSGs
and DSGs, hence converging optimally for DSGs, but not for SSGs. As a result, cars remain

123

664 Auton Agent Multi-Agent Syst (2018) 32:635–671

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350 400

N
or

m
at

iv
e

sy
st

em
 id

's

Rounds

most frequent normative system

Fig. 17 Competition of an ESNS Ω∗ (represented with id 1000) against mutant normative systems in one
simulation. The x-axis illustrates the different rounds of the simulation. The y-axis illustrates the id’s of
the different normative systems generated during the simulation. Black dots represent the creation of mutant
normative systems with a certain id at a given round. The red line illustrates the id of the most frequent
normative system

stopped indefinitely and 100% of collisions are avoided. It turns out that cars are so afraid of
colliding that they do not mind to stay indefinitely in place in order to avoid collisions.

4.5 Stability analysis

Finally, we analyse the stability of the normative systems synthesised by our approach upon
convergence. With this aim, we perform 100 different executions of sense that consider a
population of 100 agents of which the 100% abide by an ESNS of those synthesised in the
experiment of Sect. 4.2, whichwewill callΩ∗. Each execution of sense lasts 400 rounds, i.e.,
400 iterations of the evolutionary process illustrated in Fig. 3, composed of MAS simulation
(Fig. 3(2)) and norm replication (Fig. 3(3, 4)). Each MAS simulation lasts 200 time steps,
during which cars interact in the junction, playing different games and coordinating bymeans
of their ESNS. In each round, during norm replication, sense randomly chooses a 10% of
agents (i.e., 10 agents) to be mutated. For each one of these agents, sense randomly chooses
a 10% of norms from its normative system (8.9 on average, since each ESNS contains 89
norms on average), and replaces them with random norms from the norm spaces of their
games. Thus, on average, in each round sensemutates an average of 89 norms in the agents’
normative systems.

In each round, the mutant agents introduced by sense and the majority of agents adopting
an ESNS will play against each other, evaluating how their norms perform, and adopting the
norms that perform better during norm replication. As considered in the literature in EGT
[32], we consider that our normative system is an ESNS if none of its norms can be invaded
by any alternative norm. That is, if in every single round, the fitness of the mutant norms
is lower than the fitness of the norms in Ω∗ (and hence, the invader norms cannot grow
in frequency). Thus, if our normative system is an ESNS, every mutant agent will end up
adopting it after a certain number of rounds.

In 100% of sense’s executions, cars ultimately adopted normative system Ω∗. Figure 17
illustrates the dynamics of one of these simulations. The x-axis shows the different rounds

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 665

of the simulation, and the y-axis depicts the id’s of the normative systems created over time.
Black dots represent mutant normative systems created in each round (with which Ω∗ has
to compete), and the red line indicates the id of the most frequent normative system. For the
sake of clarity, we representΩ∗ as the normative system with id 1,000. After 200 rounds, the
simulation created 2,500 different mutant normative systems. Upon round 400, normative
system Ω∗ remained stable most of the time. In punctual rounds, sense generated a high
number of mutant normative systems, making the frequency ofΩ∗ to go below stability. This
happened because at certain rounds there were more mutant agents than agents withΩ∗. But,
after a few rounds, Ω∗ replicated and mutant agents ended up adopting Ω∗, thus becoming
again the most frequent normative system. Upon round 400, the cars converged to adopting
Ω∗, thus demonstrating that Ω∗ is a best choice for the agents.

Finally, let us detail why Ω∗ remains stable over time with an example. Consider the
game of our running example (Figure 13a, pp. 22) in which two cars approach each other in
a junction. Say that Ω∗, which is initially adopted by all the agents, contains a “give way
to your right” norm, i.e., prohibited to go when enacting role 1, and allowed to go when
enacting role 2. Destabilising this norm would require, at least, a 50% of mutant agents that
adopt an alternative “give way to the left” norm. Intuitively, even if there would be a 49%
of mutant agents that give way to the left, cars would still be more likely to encounter other
cars that give way to the right (51% likely). Therefore, giving way to the right would still
be the best choice for the agents, and hence would remain stable. However, should these
probabilities be equal (once a 50% of cars are mutant), then the agents could end up adopting
either of these norms. In our scenario, this applies to every Single-Stop Game (Fig. 13a)
and Double-Stop Game (Fig. 13a). Since these conditions never occur during our stability
experiments, Ω∗ remains stable until the end.

5 Related work

Broadly speaking, research on norm synthesis can be classified into two main strands of
work: off-line design, and on-line synthesis. Pioneered by Shoham and Tennenholtz [30],
off-line design aims at designing the norms that will coordinate the agents before they start
to do their work [8,11,30,35]. Alternatively, on-line synthesis studies how norms can come
to exist while the agents interact at runtime. Most on-line approaches focus on investigating
how norms emerge from agent societies through an iterated process whereby agents tend to
adopt best-performing strategies [2,3,10,29,36,37]. For an extensive survey about several
works on norm emergence, the reader may refer to the work in [23].

Alternatively, recent work by Morales et al. approached on-line synthesis by employing
designated agents that observe agents’ interactions at runtime and generate norms aimed at
resolving conflict situations [18,19]. Later on, Mashayekhi et al. [14] extended this work by
proposing a hybrid mechanism in which norms are synthesised by designated agents, and
the agent society iteratively selects and spread best-performing norms, ultimately adopting
most successful ones.

The closest approach to our work in the literature is that of norm emergence, and partic-
ularly the study of norm evolution and stability. One of the pioneer works on this approach
is the one by Axelrod [3,4], which studies how norms evolve and emerge as stable patterns
of behaviour of agent societies. Axelrod considers a game-theoretic setting in which agents
repeatedly play a single two-player game by employing different strategies. The strategies
that allow the agents to achieve better personal results prosper and spread. A (stable) norm is

123

666 Auton Agent Multi-Agent Syst (2018) 32:635–671

said to have emerged once a majority of agents abide by the same strategy that is sustained
over time.

Subsequently, many researchers have studied norm emergence by employing the game
theoretic approach. In [27], Rajiv Sethi extended the work of Axelrod and studied how social
norms of vengeance and cooperation emerge within agent societies. With this aim, Sethi
incorporated the solution concept of evolutionarily stable strategy (ESS) and the principle of
replicator dynamics from evolutionary game theory (EGT) [32]. Again, this work considers
that agents play a single two-player game, and hence one norm can be synthesised. Shoham
and Tennenholtz [31] introduced a framework for the emergence of social conventions as
points of (Nash) equilibria in stochastic settings. They introduced a natural strategy-selection
rule whereby the agents eventually converge to rationally acceptable social conventions.

Later, Sen and Airiau proposed in [26] a social learning model whereby agents can learn
their policies and norms can emerge over repeated interactions between the agents in two-
player games. Many works have considered this model to study further criteria that affect to
the emergence of norms. Of these, the closest to our work is perhaps the one by Sugawara
et. al. [33,34], in which conflict situations are characterised as Markov games, and a model
is introduced to evolve norms that successfully coordinate the agents in these games.

More recent work (such as that by Santos et al. [21]) studies how cooperation norms can
emerge once the agents can explore alternative strategies, i.e. they have arbitrary exploration
rates. They show that cooperation emergence depends on both the exploration rate of the
agents and the underlying norms at work. Similarly, Soham et al. [9] introduce an EGT-based
model to study how norms change in agent societies in terms of the need for coordination
and the agents’ exploration rate. They show that societies with high needs for coordination
tend to lower exploration rates and higher norm compliance, while societies with lower
coordination needs lead to higher exploration rates. Also, Lorini et al. [13] introduce a model
for the evolution and emergence of fairness norms in relation to the degree of sensitivity
(internalisation) of the agents to these norms. They show that, in the long term, the higher
the sensitivity of the agents to norms, the more beneficial for the social welfare.

From Axelrod [3,4] to Lorini [13], our approach is different to all the aforementioned
works for several reasons. Most previous works consider that the agents play a single game
whose payoffs are known beforehand. Unlike them, our framework considers a setting in
which agents can play multiple, interdependent games whose outcomes may depend on each
other. Our framework performs runtime detection of interdependent games, and automati-
cally creates normswhose coordination utility is computed based on the rewards to the agents
once they repeatedly play each game over time. To the best of our knowledge, our framework
is the first one in introducing the analytical concept of evolutionarily stable normative sys-
tem (ESNS) as a set of norms that, together, successfully coordinate the agents in multiple
interdependent games.

6 Conclusions and future work

In this work we introduced sense, a framework for the off-line synthesis of evolutionar-
ily stable normative systems (ESNS), whose compliance forms a rational choice for the
agents. sense synthesises sets of codependent norms that, together, successfully coordinate
the agents in multiple, interdependent coordination situations that cannot be easily modelled
and resolved separately beforehand. ESNSs are synthesised by carrying out a natural selec-
tion process inspired in evolutionary game theory (EGT) whereby the agents tend to adopt
the norms that are more successful to coordinate them in strategic situations.

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 667

sense assumes no previous knowledge about the potential situations in which agents may
need coordination, neither about their outcomes. Instead, it learns these by running MAS
simulations, detecting situations that lead to undesirable outcomes, and modelling them as
interdependent one-shot games. sense automatically synthesises norms for each game, and
makes norms compete with each other in repeated game plays, iteratively learning their
utilities in an empirical manner. Norms that are more useful to coordinate the agents in
games prosper and spread, and are ultimately adopted by the agents. The outputs of such
an evolutionary process are normative systems whose norms’ coordination utilities are co-
dependent. Together, these norms are evolutionarily stable and effectively coordinate the
agents in a variety of interdependent situations. Once the agents are provided with these
norms, no agent can benefit from either violating them or switching to alternative ones.

We provided evidence of the quality and the relevance of our approach through an empiri-
cal evaluation in a simulated traffic scenario.We showed that our framework converges 100%
of times to ESNSs that satisfy the coordination needs of car populations, avoiding collisions
in a numerous (up to 89) interdependent traffic situations. We showed that the ESNSs syn-
thesised by sense can only be synthesised by co-evolving norms from interdependent games
together. Otherwise, the resulting normative systems might be ineffective and unstable. We
illustrated the capability of our approach to adapt norm synthesis to the preferences of the
agent population, showing that different types of normative systems can be synthesised as
one considers agent populations with different preferences and behaviours.

As future work, there are multiple opportunities for research. First, we plan to enhance
sense to synthesise essential norms [36]. sense’s model in this paper is described in terms
of the individual goals of the agents, and hence, sense is capable of synthesising norms
that are evolutionarily stable once they are useful for the agents to satisfy their own goals.
Nevertheless, sense cannot be employed to synthesise essential norms that allow to achieve
a global, system-level goal established by a system designer that might be unaligned with
the agents’ goals. With this aim, we plan to add a sanction mechanism in sense to synthesise
normative systems that achieve some system-level goals, while being evolutionarily stable.

Second, and more importantly, we plan to improve sense to synthesise ESNSs without
the need for simulation. In this improved version of sense, a system designer will only need
to provide domain information in the form of small sets of two-player games, along with
their potential interdependencies represented as relationships in a games network. Based
on this information, sense will carry out a co-evolutionary process that mathematically
simulates the co-evolution of agents’ strategies together with norms. For instance, in the
traffic scenario considered in this paper, sense could synthesise sets of essential norms that
are evolutionarily stable by only considering a few (up to five) two-player games describing
basic car interactions (e.g., two cars in a junction, two cars doing a queue, and so on) along
with their interdependency relationships.

7 Discussion

In what follows we provide guidelines about potential uses of sense. First, we describe
sense’s limiting assumptions and how sense could be employed once certain conditions
hold. Then, we detail how some of these assumptions could be lifted in order to apply sense
to a wider variety of problems.

In order to apply sense, a scenario, besides the traffic scenario described in this paper,
must satisfy the following requirements:

123

668 Auton Agent Multi-Agent Syst (2018) 32:635–671

– Agents must be rational. sense assumes that agents always choose the strategies (norms)
that allow them to maximise their individual payoffs (fitnesses). The assumption of
rationality is a common and sensible assumption in norm synthesis research that has
allowed to use ideas from game theory and evolutionary game theory to study how
autonomous agents might interact and, in particular, how agents could reach successful
conventions [1,3,22,24–26,31,37].

– Agents’ interactions can be simulated. sense employs simulation of a MAS in order to
learn its potential games along with the co-dependent utilities of their norms. Therefore,
the MAS at hand should be capable of being simulated.

– Agents’ preferences can be modelled at design time. sense assumes some domain infor-
mation thatmust be provided by a system designer together with theMAS simulator, such
as the agents’ action preferences and rewards. For example, in Sect. 4 sense considers
a reward function (Eq. 16 in page 26) that returns the individual reward of a car once it
collides in some situation, once it is able to progress safely, and so on.

– MAS conflictsmust be identifiable. Since sense’s game detection is based on the detection
of conflicts (e.g., car collisions), it must be able to identify once a group of agents are
engaged in a conflict.

– Agents’ actions consequences arise immediately. sense’s one-shot games detection is
based on the assumption that once a conflict arises at a given time t , the cause of the
conflict can be identified from the actions of the agents at the previous time step, t − 1.

– Agents’ preferences and behaviours do not change over time. sense is intended for off-
line norms design, and hence, it synthesises normative systems that are evolutionarily
stable whenever agents’ preferences and actions do not change over time. However,
should these conditions change at runtime, an ESNS may not be stable any more.

When the conditions above hold, sense can be successfully used to perform off-line
synthesis of ESNSs even when the potential conflict situations of the MAS at hand cannot
be identified beforehand. In this sense, sense stands for a novel contribution and a valuable
tool for system designers. By simulating agents’ interactions (such as cars’ driving skills in
a road) and providing basic domain information (such as identifying when cars collide, and
assessing cars’ individual rewards after interacting), sense can automatically create ESNSs
that will achieve effective and stable coordination in a MAS. To the best of our knowledge,
there is no previous work in the literature in norms research that addresses the synthesis of
normative systems for multiple interdependent coordination situations.

Additionally, by applying some changes, sensemight be adapted to perform on-line norm
synthesis in a decentralised manner. That is, sense might be employed by individual agents
during real MAS executions in order to make on-line predictions about which norms might
be evolutionarily stable. Potentially, this could allow agents to achieve fast convergence of
ESNSs at runtime – instead of going through an iterative emergence process until converging
to some stable convention, the agents could predict which norms are stable in advance in
order to immediately adopting them. However, further work would be required to investigate
this on-line strand of research and to prove its feasibility and performance.

In order to synthesise ESNSs on-line, each agent should be embedded with a modified
version of sense illustrated in Fig. 18. Each agent should proceed by continuously interacting
in the MAS, detecting when it engages in conflicts (Fig. 18(1)). Based on detected conflicts,
the agent could continuously learn (keep track of) the potential games it can play, and creating
different norms to coordinate in each possible game (norm generation, Fig. 18(2)). Game
detection and normgeneration should be performed as illustrated in Sect. 3.3.1. Over time, the
agent would play different games by enacting different roles and by playing against different

123

Auton Agent Multi-Agent Syst (2018) 32:635–671 669

Predic�on phase
(norm evolu�on)

Learning phase

U�lity learningNorm genera�on

norm u�li�es
norm frequencies ESNS

conflicts1 3

4

2

Fig. 18 Graphical representation of how sense could be employed by individual agents to make on-line
predictions about which norms might be evolutionarily stable. (1) an agent continuously interacts in a MAS,
detecting conflicts; (2) for each detected conflict, the agent creates a new game and its corresponding norms
in order to avoid the conflict in the future; (3) over a series of game plays, the agent accumulates evidence
about the empirical utility of each norm of each game; (4) once the agent accumulates enough evidence about
the utility of each norm, it performs norm evolution, which outputs an ESNS to be adopted by the agent

agents. Unlike the original off-line version of sense, in this on-line approach the agent would
always have available all the norms of the norm space of a game once it plays the game.
In each game play, the agent should choose one norm to apply in the game out of the norm
space of the game according to its frequency (probability). Thus, if a norm is highly frequent,
the agent would be very likely to apply it every time it plays the game. This would allow the
agent to accumulate evidence about the rewards it obtains by applying different norms in the
game in order to compute the utility of each norm as described in Sect. 3.3.2 (utility learning,
Fig. 18(3)). Once the agent would have enough evidence about the utility of each norm, it
could internally simulate norm evolution by performing multiple norm replication steps as
described in Sect. 3.3.3 (Fig. 18(4)). The output of norm evolution would be a prediction
about the set of norms that might be evolutionarily stable given the current MAS conditions,
i.e., an ESNS. Then, the agent should just immediately adopt these norms in order to try to
achieve stable coordination. If the adopted norms were not stable, then the agent could keep
on accumulating evidence about norms’ utilities and carrying out norm evolution again in
order to make more accurate predictions.

Notice though that applying sense on-line requires to make some assumptions about
the agents’ capabilities. Particularly, agents need to be endowed with capabilities to (1)
detect conflicts; (2) assess the contexts and observe the actions of other agents in games; (3)
explicitly create games along with their norms; (4) empirically evaluate norms’ utilities; and
to (5) replicate norms’ probabilities.

Finally, notice that by employing sense in an on-line manner the agents could adapt their
normative systems to the changing conditions of theMAS at runtime. That is, once the agents
have adopted an ESNS, should the MAS’ conditions change (such as the agents’ rewards, or
the type of conflicts), the agents could gather new evidence in order to evolve norms again,
thus predicting new ESNSs that adapt to the new system conditions.

Acknowledgements Research supported by the H2020-MSCA-IF project number 707688 (EVNSMAS).
Michael Wooldridge was supported by the European Research Council under Grant 291528 (RACE). Juan A.
Rodríguez-Aguilar and Maite López-Sánchez were funded by projects TASSAT3: TIN2016-76573-C2-2-P
and Collectiveware TIN2015-66863-C2-1-R (MINECO/FEDER).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

123

http://creativecommons.org/licenses/by/4.0/

670 Auton Agent Multi-Agent Syst (2018) 32:635–671

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ågotnes, T., van der Hoek, W., & Wooldridge, M. (2007). Normative system games. In Proceedings of
the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, page 129. ACM.

2. Airiau, S., Sen, S., &Villatoro, D. (2014). Emergence of conventions through social learning.Autonomous
Agents and Multi-Agent Systems, 28(5), 779–804.

3. Axelrod, R. (1986). An evolutionary approach to norms. American political science review, 80(04),
1095–1111.

4. Axelrod, R. M. (1997). The complexity of cooperation: Agent-based models of competition and collabo-
ration. Princeton: Princeton University Press.

5. Azar, O. H. (2004). What sustains social norms and how they evolve? The case of tipping. Journal of
Economic Behavior & Organization, 54(1), 49–64.

6. Björnerstedt, J., & Weibull, J. W. (1994). Nash equilibrium and evolution by imitation. Working Paper
Series 407, Research Institute of Industrial Economics.

7. Boella, G., Van Der Torre, L., & Verhagen, H. (2006). Introduction to normative multiagent systems.
Computational & Mathematical Organization Theory, 12(2–3), 71–79.

8. Corapi, D., Russo, A., de Vos, M., Padget, J., & Satoh, K. (2011). Normative design using inductive
learning. Theory and Practice of Logic Programming, 11(4—-5), 783–799.

9. De, S., Nau, DS., & Gelfand, M.J. (2017). Understanding norm change: An evolutionary game-theoretic
approach. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’17, pages 1433–1441, Richland, SC, 2017. International Foundation for Autonomous Agents
and Multiagent Systems.

10. Delgado, J. (2002). Emergence of social conventions in complex networks. Artificial Intelligence, 141(1–
2), 171–185.

11. Fitoussi, D., & Tennenholtz, M. (2000). Choosing social laws for multi-agent systems: Minimality and
simplicity. Artificial Intelligence, 119(1–2), 61–101.

12. Iwai, K. (1984). Schumpeterian dynamics: An evolutionary model of innovation and imitation. Journal
of Economic Behavior & Organization, 5(2), 159–190.

13. Lorini, E., & Mühlenbernd, R. (2015). The long-term benefits of following fairness norms: A game-
theoretic analysis. In International Conference on Principles and Practice of Multi-Agent Systems, pp.
301–318. Springer.

14. Mashayekhi, M., Du, H., List, G.F., & Singh, M. P. (2016). Silk: A simulation study of regulating open
normative multiagent systems. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, pp. 373–379. AAAI Press.

15. Morales, J. System for evolutionary norm synthesis (sense), a framework to synthesise evolutioanrily sta-
ble normative systems for multi-agent systems. https://github.com/NormSynthesis/SENSE, 2016–2017.

16. Morales, J. A traffic simulator for the system for evolutionary norm synthesis (sense). https://github.com/
NormSynthesis/SENSE_Simulators. 2016–2017.

17. Morales, J., López-Sánchez, M., Rodríguez-Aguilar, J. A., Vasconcelos, W., & Wooldridge, M. (2015).
On-line automated synthesis of compact normative systems. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 10(1), 2:1–2:33.

18. Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar, JA., Wooldridge M., & Vasconcelos, W. (2013).
Automated synthesis of normative systems. In Proceedings of the AAMAS’13, pp. 483–490. IFAAMAS.

19. Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar, J.A., Wooldridge, M., & Vasconcelos, W.(2015).
Synthesising liberal normative systems. InAAMAS ’15:Proceedings of the 14th InternationalConference
on Autonomous Agents and Multiagent Systems, pp. 433–441. International Foundation for Autonomous
Agents and Multiagent Systems (IFAAMAS), 04/05/2015 2015.

20. Rapoport, A., & Chammah, A. M. (1965). Prisoner’s dilemma: A study in conflict and cooperation (Vol.
165). Ann Arbor: University of Michigan press.

21. Santos, F. P., Pacheco, J. M., & Santos, E. C. (2016). Evolution of cooperation under indirect reciprocity
and arbitrary exploration rates. Scientific Reports, 6, 37517.

22. Savarimuthu B.T.R. (2011). Mechanisms for norm emergence and norm identification in multi-agent
societies. Ph.D. thesis, University of Otago.

23. Savarimuthu, B. T. R., & Cranefield, S. (2011). Norm creation, spreading and emergence: A survey of
simulation models of norms in multi-agent systems. Multiagent Grid Systems, 7(1), 21–54.

123

https://github.com/NormSynthesis/SENSE
https://github.com/NormSynthesis/SENSE_Simulators
https://github.com/NormSynthesis/SENSE_Simulators

Auton Agent Multi-Agent Syst (2018) 32:635–671 671

24. Savarimuthu, B. T. R., Purvis, M., Purvis, M., & Cranefield, S. (2009). Social norm emergence in virtual
agent societies. In M. Baldoni, T. C. Son, M. B. van Riemsdijk, & M. Winikoff (Eds.), Declarative Agent
Languages and Technologies VI (pp. 18–28). Berlin: Springer.

25. Sen, O., & Sen, S. (2010). Effects of social network topology and options on norm emergence. In Pro-
ceedings of COIN, pp. 211–222.

26. Sen, S., & Airiau, S.(2007). Emergence of norms through social learning. In Proceedings of the 20th
International Joint Conference on Artifical Intelligence, IJCAI’07, pp. 1507–1512, San Francisco, CA,
USA, Morgan Kaufmann Publishers Inc.

27. Sethi, R. (1996). Evolutionary stability and social norms. Journal of Economic Behavior & Organization,
29(1), 113–140.

28. Shoham, Y., & Leyton-Brown, K. (2009).Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. New York: Cambridge University Press.

29. Shoham,Y.,&Tennenholtz,M.(1992). Emergent conventions inmulti-agent systems: Initial experimental
results and observations (preliminary report). In B. Nebel, C. Rich, andW. R. Swartout, editors,KR, pages
225–231. Morgan Kaufmann.

30. Shoham, Y., & Tennenholtz, M. (1995). On social laws for artificial agent societies: off-line design.
Artificial Intelligence, 73(1–2), 231–252.

31. Shoham, Y., & Tennenholtz, M. (1997). On the emergence of social conventions: modeling, analysis, and
simulations. Artificial Intelligence, 94(1), 139–166.

32. Smith, J. M. (1988). Evolution and the theory of games (pp. 202–215). Boston, MA: Springer.
33. Sugawara, T. (2011). Emergence and stability of social conventions in conflict situations. In Proceedings

of the Twenty-Second international joint conference on Artificial Intelligence-Volume Volume One, pp.
371–378. AAAI Press, 2011.

34. Sugawara, T. (2014). Emergence of conventions for efficiently resolving conflicts in complex networks.
In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI)
and Intelligent Agent Technologies (IAT)—Volume 03, WI-IAT ’14, pp. 222–229, Washington, DC, USA.
IEEE Computer Society.

35. van Der Hoek, W., Roberts, M., &Wooldridge, M. (2007). Social laws in alternating time: Effectiveness,
feasibility, and synthesis. Synthese, 156(1), 1–19.

36. Villatoro, D.(2011). Self-organization in decentralized agent societies through social norms. In The 10th
International Conference on Autonomous Agents and Multiagent Systems-Volume 3, pp. 1373–1374.
International Foundation for Autonomous Agents and Multiagent Systems.

37. Walker, A., & Wooldridge, M.(1995). Understanding the emergence of conventions in multi-agent sys-
tems. In International Conference on Multiagent Systems, ICMAS’95, pp. 384–389.

123

	Off-line synthesis of evolutionarily stable normative systems
	Abstract
	1 Introduction
	2 Background
	2.1 Automatic norm synthesis
	2.2 Evolutionary game theory

	3 Evolutionary norm synthesis
	3.1 Evolutionary norm synthesis system: an outline
	3.2 Basic definitions and problem statement
	3.3 Formal model for evolutionary norm synthesis
	3.3.1 Generating new normative games from observation
	3.3.2 Computing norms' utilities empirically
	3.3.3 Replicating norms

	4 Empirical analysis and results
	4.1 Empirical settings
	4.2 Convergence analysis
	4.3 Interdependencies analysis
	4.4 Adaptiveness analysis
	4.5 Stability analysis

	5 Related work
	6 Conclusions and future work
	7 Discussion
	Acknowledgements
	References

