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Abstract In making practical decisions, agents are expected to comply with ideals of
behaviour, or norms. In reality, it may not be possible for an individual, or a team of agents, to
be fully compliant—actual behaviour often differs from the ideal. The question we address in
this paper is how we can design agents that act in such a way that they select collective strate-
gies to avoid more critical failures (norm violations), and mitigate the effects of violations
that do occur. We model the normative requirements of a system through contrary-to-duty
obligations and violation severity levels, and propose a novel multi-agent planning mech-
anism based on Decentralised POMDPs that uses a qualitative reward function to capture
levels of compliance: N-Dec-POMDPs. We develop mechanisms for solving this type of
multi-agent planning problem and show, through empirical analysis, that joint policies gen-
erated are equally as good as those produced through existing methods but with significant
reductions in execution time.

Keywords Norms · Multi-agent planning · Dec-POMDPs

1 Introduction

With increased automation, the need for systems to act in such away that they are cognizant of
normative expectations is critical. Norms declare ideals of behaviour, but they are inherently
violable: the actual behaviour of agents may differ from the ideal. Sub-ideal behaviour may,
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however, be inevitable. It may not be possible for an agent (or a group of agents) to be fully
compliant, given resource limitations. An agent may decide to violate a norm now in order
to avoid a more serious violation in the future. A norm may be violated due to an unexpected
outcome of a sequence of actions. In fact, inaction may not be sufficient to avoid the violation
of a norm: the world may change into a sub-ideal state unless an agent acts. The challenge we
address in this paper is how to develop effective reasoning mechanisms for agents such that
they operate robustly, both individually and as a collective, under normative expectations. By
robust, we mean that the agents act so that they are as compliant with the ideal as possible,
given prevailing circumstances.

Any solution to this general problem must take into account uncertainties due to non-
deterministic action outcomes, dependencies between and among agents with respect to
actions and resources, and environmental changes that are not under their control. There
are two other important considerations we take into account: there may be expectations on
agents regarding how they should repair, or recover from, non-ideal states of affairs (so called
contrary-to-duty obligations); and the violation of norms may vary in severity. The former of
these is widely considered to be an important characteristic of real-world domains. Prakken
and Sergot [21] use an example derived from regulations about the appearance of holiday
cottages to illustrate this: there must be no fence (the primary obligation); and if there is a
fence, it must be white (the contrary-to-duty rule). In the case where there is a fence (the
primary obligation is violated), it is the duty of the owner to ensure that it is painted white.

The idea that norms (or, strictly, the violation of norms) vary in severity is also widely
recognised, but, we argue, often poorly modelled for the purposes of practical reasoning. In
computational models, severity is often modelled through pre-defined sanctions [1]. Further,
the vast majority of examples used are fines, or some other loss of utility, implying an under-
lying additive assumption. The argument we present against this rather simplistic approach
is grounded, again, on how violations are classified in real-world domains. Distinguishing
different qualitative levels of violation is an important principle in law, often referred to as
“fair labelling”. According to Ashworth [3], for example, fair labelling is (in part) where
“offences are subdivided and labelled so as to represent fairly the nature and magnitude of
the law-breaking”. This is a principle reflected in various legal systems; e.g. misdemeanour
versus felony in theUS. Similarly, in security contexts, information is often classified in terms
of levels (restricted, secret, etc.), representing the idea that the revelation of any document at
a higher security classification is always more severe than revealing any amount of informa-
tion at a lower classification. Of course, revealing any classified information is undesirable,
but severity levels give tipping points of compliance. There is an important pragmatic reason
that qualitative levels of violation are specified in this way: sanctions are imposed after the
fact and given an assessment of the context in which the norm was violated. All we know in
advance (i.e. at the point where we need to make decisions about how to act) is that violations
of some norms are more/less severe than others. Further, specifying sanctions for all norms
over a single interval scale, equating to some loss of utility, can lead to additive fallacies
[18], where some number of violations at a lower level of severity are taken to be as bad as,
or worse than one at a qualitatively higher level. Such fallacies would lead to poor practical
decisions.

Contrary-to-duty obligations andviolation severity provide complementarymeans to spec-
ify requirements for system robustness. The use of contrary-to-duty obligations enables us
to reason about behaviour that goes some way to repair a failure. The use of severity levels
enables us to reason about behaviour that avoids critical levels of failure and that minimises
accumulated failures at some level.
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Our starting point is a deontic logic for the specification of normative systems that may
contain contrary-to-duty structures [29], along with a strict partial order over obligations that
declares the relative severity of their violation. From this, we compute a preference relation
over possible worlds that captures levels of system robustness (Sect. 3), which we prove to
be both transitive and acyclic. A transitive and acyclic preference relation is necessary for
reliable practical reasoning: with this input, an agent can compare worlds and hence possible
courses of action for compliance with the normative specification. Next, we propose a novel
model of multi-agent planning under uncertainty that is suitable for reasoning about domains
with qualitative reward functions such as those representing levels of system robustness.
This multi-agent planning mechanism is grounded on Dec-POMDPs [2]: Normative Decen-
tralised Partially Observable Markov Decision Processes, or N-Dec-POMDPs (Sect. 4). We
provide an algorithm for computing joint policies that uses a sequence of linear programs
that optimise against levels of robustness, iteratively introducing additional constraints at
less critical levels until no additional improvement can be found (Sect. 4.2). The analysis of
more/less preferred possible worlds is also exploited in the planner through a Most-Critical-
States (MCS) heuristic that is used to identify belief states to optimize an N-Dec-POMDP
policy towards a more compliant behaviour in a team of agents (Sect. 4.3). We demonstrate
through empirical analysis (Sect. 5) that this approach offers significant reductions in exe-
cution times (by 50% in the most challenging problem considered) for the N-Dec-POMDP
solver with no loss in solution quality. Before moving on to present the two key contributions
of this research (in Sects. 3 and 4), we outline a scenario that both illustrates the normative
concepts that are core to the model and gives an intuition of the practical reasoning problem
we address. We defer our review of related research in norm-governed and preference-based
planning, and discussion of the model and possible avenues for future research to Sect. 6.2.

The core contributions we claim of this research are twofold. First, we propose a mech-
anism to efficiently compute a preference relation over possible worlds from a normative
specification that correctly reflects both contrary-to-duty structures and violation severity.
Second, we present a novel multi-agent planning model, N-Dec-POMDPs, and associated
heuristic, MCS, that can compute effective joint plans given a qualitative reward function,
such as one that represents levels of compliance derived from a normative system speci-
fication. We, therefore, contribute both to modelling and practical reasoning in normative
multi-agent systems, and to algorithms for decentralised planning under uncertainty.

2 Motivating scenario

Consider a force protection scenario in which various agents are deployed to protect critical
infrastructure in a harbour. This may involve, among other things, establishing and main-
taining a restricted area off shore, around the harbour, through which only authorised vessels
may pass. This restricted area is to be continuously monitored by assets such as UAVs, and
patrolled by boats. In specifying the norms for this scenario, we first consider the surveil-
lance task. Let us assume we have UAVs and helicopters available, and suppose that, ideally,
surveillance should be done by a UAV.

O1 A UAV must always monitor the restricted area.
O2 If no UAV is monitoring the area, a helicopter must monitor the area.

Norms O1 and O2 capture a contrary-to-duty structure, with the primary obligation being
that aUAV ismonitoring. If this is violated,we should at least have a helicoptermonitoring the
area. Now, we can specify what should be done if an unauthorised vessel (boat) is detected by
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Fig. 1 Partial order over severity
of norm violation O3 O4

O2

O1 O5

an agent conducting surveillance. There are two interventions that we consider: interception
and reporting.

O3 If an unauthorised boat is detected, at least one agent must intercept it.
O4 If an unauthorised boat is detected and no agent intercepts it, the incursion must be

reported to headquarters.

Again, we have a contrary-to-duty structure, this time triggered by detection of an unau-
thorised boat, where the primary obligation is that at least one agent intercepts it. The ‘at
least one’ part of this obligation clearly introduces a requirement for agents to coordinate.
Finally, we have a further obligation on UAVs:

O5 UAVs should not reveal their location.

Given the focus is on harbour protection, the most severe violation would be not to
intervene when an unauthorised boat is detected (violation of O3 and O4). The next most
severe violation is if the restricted area is not being monitored (violation of O2). Given this,
we can specify an ordering over the severity of norm violation in our scenario (see Fig. 1).

Within the scenario, O5 (UAV revealing its location) indirectly interacts with decisions
regarding which agent intercepts a detected unauthorised vessel: the location of a UAV is
revealed if it intercepts a suspicious vessel (a causal constraint). This is, however, one of
the least severe violations, and so it would be better for a UAV to intercept an unauthorised
boat if it is the only agent available to do so. This is just one example of interactions among
normative (violable) constraints on agents’ actions, violation severity, dependencies between
agents’ actions, causal constraints, and stochastic events. In order to bore down on the details
of this kind of problem, consider a single UAV and a helicopter in this harbour protection
scenario and suppose that an unauthorised boat has been detected in the restricted area. In
Fig. 2, we illustrate some of the states that might occur and transitions between them. A
transition 〈〈β, α〉, 1.0〉 indicates that there is a joint action 〈β, α〉 where the UAV does β

and the helicopter does α, and if they perform this joint action this transition occurs with
probability 1.0.A transition 〈〈_, _〉, p〉 indicates that this transitionwill occurwith probability
p regardless of the actions of the agents.

Now, suppose that α is the act of intercepting the unauthorised boat, and β is to monitor
the restricted area. If, in the initial state, the UAV intercepts the unauthorised boat (does
α), then, regardless of what the helicopter does, we reach state B (‘bad’ state) in which the
UAV’s location is revealed. Subsequent transitions may also mean that the UAV’s location
is known, or we may return to a fully compliant state (the terminal state in Fig. 2), which
we summarise using the transition probability p. What if the UAV chooses to continue to
conduct surveillance (action β)? The outcome depends on the actions of the other agent. If the
helicopter intercepts the unauthorised boat (joint action 〈β, α〉), then all is well. If not, and the
helicopter conducts surveillance, then there is some chance that the system will transition to
the stateW (‘worse’ state) in which the unauthorised boat is neither intercepted nor reported.
Depending on the probabilities p and q in this summarised situation, the likelihood of the
system entering state W and the proability of multiple violations of O5 (entering state B)
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start B

W

〈〈β ,α〉,1.0〉

〈〈α , 〉,1.0〉

〈〈β ,β〉,1.0〉

〈〈 , 〉, p〉

〈〈 , 〉,1− p〉

〈〈 , 〉,q〉

〈〈 ,
〉,1−q〉 〈〈 , 〉,1.0〉

Fig. 2 A simple 2-agent decision problem

may vary.What we want is a mechanism that produces plans for multiple agents such that the
qualitative differences between the possible execution paths that the system as a whole may
take are taken into account to drive more compliant behaviour. The resulting plans need to
provide guidance to agents for situations in which fully compliant behaviour is not possible.
In this small example this could occur if, for example, the helicopter is low on fuel, leaving
only a choice between a path with 1 or more violations of O5 versus violation of O3.

3 Levels of robustness in normative system specifications

Given a normative specification, such as the one described in the previous section, we need
to identify how compliant each state of affairs is so that we can guide the planning process.
In essence, our aim is to compute a preference relation over possible worlds that reflects the
level of compliance of those worlds with a set of norms. For example, we want worlds in
which O5 is violated (B in Fig. 2) to be preferred to those in which O3 is violated (due to the
severity specification), and worlds in which O3 is violated to be preferred to those in which
O4 is violated (due to the contrary-to-duty structure linking O3 and O4). We then use this
preference relation to build a ranking of possible worlds, which allows the space of possible
worlds to be partitioned into different severity ranges. We first present the semantics of our
model and define the notions of compliance of a world with a norm and coherence between
an obligation and a pair of worlds. With these definitions, we specify a transitive and acyclic
preference relation, PW , and present a method to efficiently compute a ranking of possible
worlds from this relation.

3.1 Normative system semantics

Our semantics is inspired by Prohairetic Deontic Logic (PDL) [29], and other preference-
based deontic logics, such as that proposed by Prakken and Sergot [22], where dyadic
(conditional) obligations are represented through a preference relation betweenworlds. These
logics rely on a normative specification that is free from logical conflict, which is adequate for
our purposes because we are interested in effective multi-agent decision making mechanisms
in the presence of functional conflicts [10]; i.e. conflicts between a consistent set of social
norms and the actions of agents in a non-deterministic environment. The key advantage of
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these logics, however, is that they adequately capture the concept of contrary-to-duty obliga-
tions, avoiding well-known paradoxes of normative reasoning [11,14]. In addition to a set of
norms, we declare a strict partial order over these norms that represents the relative severity
of their violation. We, therefore, define a model M = 〈W, PV, V A, OS, Po〉1 where:
– W = {w1, . . . , wi , . . . , wn} is a set of n possible worlds.
– PV is a set of propositional variables, and φ, φ2 denote individual propositions. The set

of well formed formulae of propositional logic, F , is such that PV ⊂ F , and if p, q ∈ F
then ¬p ∈ F , p ∧ q ∈ F , etc.

– VA : W → 2PV is a valuation function that assigns, to each world w ∈ W , the set of
propositional variables that hold true in w.

– OS = {O1 = O(p1 | q1)), . . . , Om = O(pm | qm)} is a normative specification, where
pi and qi are two formulae in F . Intuitively,O(pi | qi ) represents a dyadic obligation to
achieve (or maintain) pi that applies to worlds in which qi holds: an obligation to achieve
pi that is conditional on qi .

– Po ⊆ OS × OS is a strict partial order over obligations that reflects the relative severity
of their violation. Given two obligations Oi and Oj , (Oi , Oj ) ∈ Po (or alternatively
Oi 	o O j ) means that a violation of Oi is considered more severe than one of Oj . Po
is a transitive relation, thus, if we consider a graph G, where each node represents an
obligation, and each edge a member of Po, we say that violating Oa is more severe than
violating Ob if and only if the node representing Ob is reachable from Oa through the
edges of G.

Propositional logic formulae are evaluated as usual over possible worlds. Given a world
wi ∈ W , we define the logical entailment relation |
wi as follows:

– M |
wi φ iff φ ∈ VA(wi )

– M |
wi ¬φ iff φ /∈ VA(wi )

– M |
wi φ1 ∧ φ2 iff M |
wi φ1 and M |
wi φ2

The other boolean operators are defined as usual. Prohibition is defined in terms of obligation:
F(p | q) (p is forbidden whenever q holds) is equivalent to O(¬p | q) (¬p is obliged
whenever q holds). Contrary-to-duty structures are specified in this logic in the following
way: suppose that p is a state of affairs that is prohibited (F(p | �) or O(¬p | �) where
� is a tautology) and that the achievement of the state of affairs q in some way mitigates
the violation of this norm, then we state that O(q | p). In this way we capture the intuition
that in states of affairs where p holds, and hence norm F(p | �) is violated, q is obliged.
Furthermore, we assume that everything that is not forbidden is permitted.

We now define the compliance of a world with a dyadic obligation, and the coherence
of an ordered pair of worlds with respect to an obligation. These two concepts are used to
define the relationship between the normative and severity specifications and the preference
relation over worlds.

Definition 1 Aworld wi is compliant with an obligation Oj = O(p | q) if M |
wi ¬q ∨ p;
in other words, if the obligation does not apply to wi (¬q) or the obligation is satisfied (p).
We denote this by compliant(wi , Oj ).

Definition 2 A preference for worldwi over worldw j is coherent with respect to Ok ∈ OS,
written coherent(wi , w j , Ok), iff compliant(wi , Ok) and ¬compliant(w j , Ok).

1 In van der Torre and Tan [29] and in our prior research [15], a model also includes an accessibility relation
R ⊆ W × W in order to evaluate temporal logic formulae. This is not necessary here because our aim is only
to compute a ranking of possible worlds for use within a multi-agent planning mechanism.
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Table 1 Norms in the harbour
protection scenario

Id Norm

O1 O(mu | �)

O2 O(mh | ¬mu)

O3 O(iu ∨ ib ∨ ih | �)

O4 O(rep | ¬(iu ∨ ib ∨ ih))

O5 O(¬ru | �)

Definition 3 A preference for wi over w j is incoherent with respect to Ok ∈ OS, written
incoherent(wi , w j , Ok), iff compliant(w j , Ok) and ¬compliant(wi , Ok).

This concept of (in)coherence is used in considering whether or not a pair of worlds
(wi , w j ) is part of the preference relation over worlds representing their relative “ideality”,
or compliance with a normative specification. Informally, the pair (wi , w j ) is coherent with
obligation Ok if and only if, taking into account only compliance with Ok , wi would be
preferred to w j ; i.e. if wi satisfies the obligation butw j does not. Note that incoherence does
not simplymean thatwi is not preferred tow j , but thatw j is preferred towi ; i.e. that obligation
Oj is incompatible with the preference (wi , w j ). Therefore, while incoherent(wi , w j , Ok)

implies that coherent(wi , w j , Ok) does not hold, the fact that coherent(wi , w j , Ok) is false
does not imply incoherence. A pair of worlds can be neither coherent nor incoherent with an
obligation; e.g. if both theworlds complywith the obligation.We chose the term incoherence,
rather than conflict, in order to avoid confusion with the concept of conflicts among norms.

We can now formalise the norms described in Sect. 2: Table 1. For simplicity of presen-
tation, we assume there is an unauthorised boat in the restricted area (norm O3 is triggered).
We also simplify this illustration by using propositional variables:mu , the UAV is monitoring
the restricted area; mh , the helicopter is monitoring; iu , ih and ib the UAV, helicopter or boat
is intercepting the unauthorised boat; ru the UAV’s position is revealed; and rep a report is
made to headquarters.

There will be causal constraints on possible worlds in any domain model. In the harbour
protection scenario, for example, we have iu → ru (if the UAV is intercepting the unautho-
rised boat, its location is revealed) and ¬mh ∨ ¬ih (the helicopter cannot both monitor and
intercept). Possible worlds are then all the joint assignments of values for the propositional
variables that satisfy these constraints. Consider, for example, the following two possible
worlds: w3 (where rep and mu are true with all other propositions false) and w16 (where mh ,
ru and iu are true). World w3 violates obligation O3 because none of the agents is intercept-
ing. World w16 violates O1 (the UAV is not monitoring) and O5 (the UAV’s location has
been revealed). This means that obligation O5 is violated in world w16, but not in world w3:
coherent(w3, w16, O5). Similarly, coherent(w16, w3, O3) holds.2

3.2 A preference relation over possible worlds

We define PW ⊆ W × W as a preference relation among worlds. We write (wi , w j ) ∈ PW ,
or alternatively wi ≺w w j , if wi is preferred to w j according to the normative and severity
specification. PW is computed from M according to Eq. 1.

2 These world IDs (w3 andw16) are the same as those used in Table 2 and are generated as part of the ranking
mechanism that we will present in Sect. 3.3; we simply use the same IDs here for consistency.
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Fig. 3 The effect of a severity
specification on the preference
relation over worlds. a No
severity relation. b Failing to
intercept is more severe than
failing to monitor

mu ∧¬iuw1

(a)

O′
3 =O(iu | �)

O1 =O(mu | �)

¬mu ∧ iu w2

mu ∧¬iuw1

(b)

O′
3 =O(iu | �)

O1 =O(mu | �)

¬mu ∧ iu w2O′
3 �o O1

wi ≺w w j ↔ ∃ Ok ∈ OS : coherent(wi , w j , Ok) and

(∀ Ol ∈ OS s.t. incoherent(wi , w j , Ol) :
∃ Om ∈ OS : coherent(wi , w j , Om) and (Om 	o Ol))

(1)

Informally, we say that wi is preferable to w j if all the obligations Ol that are complied
with byw j , and are violated bywi , are strictly less severe than at least one obligation Om that
is complied with by wi and is violated by w j . The requirement that there exists at least one
obligation Ok that is complied with bywi , and that is violated byw j is introduced in order to
make incomparable two worlds that violate exactly the same obligations. If we assume that
all obligations are incomparable in terms of their severity, a possible world wi is preferred
to another possible world w j if and only if wi violates a strict subset of the obligations
violated in w j . In this case, the second part of the equation (the universal quantification) is
used to solve the strong preference problem, making two worlds incomparable if they violate
incomparable obligations.

In order to illustrate this concept, and how the introduction of severity preferences affects
the resulting preference order over possible worlds, consider the situation depicted in Fig. 3.
We consider two obligations: O1 = O(mu | �), the UAV should monitor the restricted area;
and O ′

3 = O(iu | �), a simplification of O3 in Table 1 that requires the UAV to intercept an
unauthorised boat. These are enforced over two possible worldsw1 andw2 such that M |
w1

mu ∧ ¬iu and M |
w2 ¬mu ∧ iu . Clearly, w1 complies with O1 but violates O ′
3, whereas

w2 complies with O ′
3 but violates O1. An arrow (solid or dotted) labelled with an obligation

and directed from a world wi to a world w j represents the fact that the obligation is coherent
with wi being preferred to w j . Figure 3a represents the situation where no severity relation
is specified, whereas Fig. 3b illustrates the result of introducing a severity relation O ′

3 	o

O1, which reflects the requirement in our scenario that intercepting is more critical than
monitoring. In the first case we have that coherent(w1, w2, O1) and coherent(w2, w1, O ′

3)

hold. Since the two obligations are incomparable, no preference between the two worlds can
be inferred. In the second case, since violations of O ′

3 are defined to be more severe than
those of O1, and there is no other obligation coherent with (w1, w2) being included in the
preference relation, we have that w2 is preferred to w1. We can think of the arrow labelled
with an obligation Oi as overriding the arrows labelled with any Oj such that Oi 	o O j .
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w1 w2 w3w2 \ (w1 ∪ w3)

w1 ∩ w2 ∩ w3w1 ∩ w2 ∩ w3

w3 \ (w2 ∪ w1)w1 \ (w2 ∪ w3)

w1 ∩ w2 ∩ w3

(w1 ∩ w3) \ w2

(w1 ∩ w2) \ w3(w1 ∩ w2) \ w3 (w1 ∩ w3) \ w2

(w2 ∩ w3) \ w1 (w2 ∩ w3) \ w1

O3O3O1,2 O1,2

Oj

Ok

Fig. 4 Partition over three generic possible worlds: cases 2.2 and 2.2.1

Equation 1 can be interpreted as saying that wi is preferred to w j if for each arrow from w j

to wi there is one arrow from wi to w j that overrides it, and there is at least one such arrow
from wi to w j .

Our “ideality” preference relation, computed according to Eq. 1, must be guaranteed to be
transitive and acyclic. Transitivity is an intuitive property for a preference relation, including
those used in other preference-based deontic logics. Acyclicity is required in order for us
to be able to rank the possible worlds from the most to the least compliant, which we do
in Sect. 3.3. Moreover, given transitivity, and given the fact that our preference relation is
strict, the presence of a cycle would imply that each world in the cycle is less compliant than
itself. These properties are, therefore, necessary for this relation to effectively guide practical
reasoning.

Lemma 1 Given a set of possible worlds, W , a set of obligations, OS, and an acyclic severity
specification that contains no infinite chain of preferences, Po, the preference relation over
possible worlds computed according to Eq. 1 is transitive.

Proof Without loss of generality, let a possible world wi be characterised by the subset of
obligations that are violated in wi . In doing so, we will assume that all obligations that are
in OS, but not in the set wi , are complied with in the world wi . Consider three possible
worlds w1, w2 and w3, such that w3 ≺w w2 and w2 ≺w w1. These possible worlds can
be partitioned such that, for example, world w1 consists of the subsets of obligations that
are violated in that world, and that are, or are not, violated in worlds w2 and w3; thus:
w1 = (w1 \ (w2 ∪w3))∪ ((w1 ∩w2)\w3)∪ ((w1 ∩w3)\w2)∪ (w1 ∩w2 ∩w3) (see Figs. 4,
4 and 6).

In order to prove that w3 ≺w w1 holds, we first need to show that each obligation O3

in w3 is either in w1, or it is less severe than an obligation that is coherent with the pair
(w3, w1); that is, an obligation that is in w1 but not in w3. We reason by cases, and consider
each separately:
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1 O3 ∈ (w1 ∩ w2 ∩ w3) or O3 ∈ (w1 ∩ w3) \ w2. In these situations, O3 is also in w1, and
therefore O3 is not incoherent with (w3, w1).

2 O3 ∈ ((w2 ∩ w3) \ w1). In this case, the obligation O3 is also violated in w2. Since
w2 ≺w w1 holds, and since O3 /∈ w1, there must be an obligation O1,2 ∈ w1 \ w2 such
that O1,2 	o O3. We can distinguish between two sub-cases:

2.1 O1,2 ∈ w1 \ (w2 ∪ w3). In this case, O1,2 is coherent with (w3, w1), and is more
severe than O3.

2.2 O1,2 ∈ ((w1∩w3)\w2). In this situation, O1,2 is not coherent with (w3, w1) because
it is also violated in w3. Since O1,2 is also in w3, but not in w2, it is incoherent with
(w3, w2). Therefore, there must exist an obligation Oj ∈ w2 \w3 that is more severe
than O1,2. We can distinguish between two further sub-cases:
2.2.1 Oj ∈ w2 \ (w3∪w1). This situation is depicted in Fig. 4. Since Oj is incoherent

with (w2, w1) there must be an obligation Ok ∈ w1 \ w2 that is more severe
than Oj . From the transitivity of Po we have that Ok 	o O3. If Ok is not in w3,
(that is, Ok ∈ w1 \ (w2 ∪ w3)), then Ok is coherent with the pair (w3, w1). If
Ok is also in w3, that is, Ok ∈ ((w1 ∩ w3) \ w2) we can apply again Case 2, but
taking O1,2 = Ok . Note that at each recursive application of Case 2, Ok must
be different from any previous value of O1,2, otherwise Po would be cyclic.
Since Po does not contain any infinite chain of preferences, it follows that this
recursive reasoning must eventually terminate with an Ok ∈ w1 \ (w2 ∪ w3) or
with case 2.2.2 detailed below.

2.2.2 Oj ∈ (w2 ∩ w1) \ w3. In this case, Oj is also in w1, and therefore is coherent
with (w3, w1). Moreover, for the transitivity of Po, we have that Oj 	o O3.

3 O3 ∈ (w3 \ (w1 ∪ w2)). Given w3 ≺w w2, and since O3 is incoherent with (w3, w2)

there must be an obligation O2,3 ∈ (w2 \ w3) such that O2,3 	o O3. We distinguish two
sub-cases:
3.1 O2,3 ∈ (w2 \ (w1 ∪ w3)). Given w2 ≺w w1, and since O2,3 is incoherent with

(w2, w1), there must be an obligation O1,2 ∈ (w1 \ w2) such that O1,2 	o O2,3. We
distinguish between two further sub-cases:

3.1.1 O1,2 ∈ (w1 \ (w2 ∪ w3)). For the transitivity of Po, we have that O1,2 	o O3.
Moreover, O1,2 is coherent with (w3, w1).

3.1.2 O1,2 ∈ ((w1 ∩ w3) \ w2). This situation is depicted in Fig. 5. In this case,
obligation O1,2 is neither coherent, nor incoherent with (w3, w1). By reasoning
in a similar way to Case 2.2.1, it is easy to see that there must be an obligation
Ok ∈ (w1 \ w3) that is more severe than O3.

3.2 O2,3 ∈ (w2 ∩ w1) \ w3. Since O2,3 is also in w1, it is coherent with (w3, w1).

This case-by-case analysis proves that, for each obligation O3 that is incoherent with
(w3, w1), there exists at least one obligation O1 that is coherent with (w3, w1), and that is
more severe than O3.

It remains to be shown that there is always at least one obligation (Ok in Eq. 1) that is
coherentwith (w3, w1).We prove this again through an exhaustive strategy. Sincew3 ≺w w2,
there must be at least one obligation that is coherent with (w3, w1), that is, O2,3 ∈ w2 \ w3.
There are two possible cases:

4 O2,3 ∈ ((w1 ∩ w2) \ w3). Since O1,2 ∈ w1, it is also coherent with (w3, w1).
5 O2,3 ∈ (w2 \ (w1 ∪w3)). Sincew2 ≺w w1, and incoherent(w2, w1, O2,3), there must be

an obligation O1,2 ∈ (w1 \ w2) that is more severe than O2,3. There are two sub-cases:

5.1 O1,2 ∈ (w1 \ (w2 ∪ w3)). If so, O1,2 is coherent with (w3, w1).

123



36 Auton Agent Multi-Agent Syst (2018) 32:26–58

w1 w2 w3w2 \ (w1 ∪ w3)

w1 ∩ w2 ∩ w3w1 ∩ w2 ∩ w3

w3 \ (w2 ∪ w1)w1 \ (w2 ∪ w3)

w1 ∩ w2 ∩ w3

(w1 ∩ w3) \ w2

(w1 ∩ w2) \ w3(w1 ∩ w2) \ w3 (w1 ∩ w3) \ w2

(w2 ∩ w3) \ w1 (w2 ∩ w3) \ w1

O1,2

O2,3

Oj

O1,2

Ok
O3

Fig. 5 Partition over three generic possible worlds: case 3.1.2

w1 w2 w3w2 \ (w1 ∪ w3)

w1 ∩ w2 ∩ w3w1 ∩ w2 ∩ w3

w3 \ (w2 ∪ w1)w1 \ (w2 ∪ w3)

w1 ∩ w2 ∩ w3

(w1 ∩ w3) \ w2

(w1 ∩ w2) \ w3(w1 ∩ w2) \ w3 (w1 ∩ w3) \ w2

(w2 ∩ w3) \ w1 (w2 ∩ w3) \ w1

O1,2 O1,2

Oj

Ok

O2,3

Fig. 6 Partition over three generic possible worlds: case 5.2

5.2 O1,2 ∈ ((w1 ∩ w3) \ w2). This situation is depicted in Fig. 6. Since O1,2 is also
in w3, and w3 ≺w w2, there must be an Oj ∈ w2 \ w3 that is more severe than
O1,2. This, in turn, must be different from O2,3, otherwise there would be a cycle
in Po. If Oj is in ((w2 ∩ w1) \ w3), then Oj is also coherent with (w3, w1). If,
on the other hand, Oj ∈ (w2 \ (w1 ∪ w3)), then, by reasoning in a similar way to
Case 2.2.1 we can see that there must be an Ok in (w1 \ (w2 ∪ w3)) that is coherent
with (w3, w1). ��
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Lemma 2 Given a set of possible worlds, W , a set of obligations, OS, and an acyclic severity
specification that contains no infinite chain of preferences, Po, the preference relation among
possible worlds, PW , computed according to Eq. 1 does not contain any finite cycle.

Proof Assume that there is a cycle in PW . From the transitivity of PW , we have that, for all
possible worlds wi in the cycle, wi ≺w wi holds. Consider now a possible world wi in the
cycle. Since there is no obligation that is coherent with (wi , wi ), and from Eq. 1 it follows
that wi ≺w wi does not hold. Therefore, there must be no cycle in PW . �

3.3 Computing a ranking over possible worlds

We can now use PW to rank worlds from the most to the least compliant.

Definition 4 Given a set of possible worlds, W , and a preference relation, PW , we define
the ranking of the set as a function rank(PW ) : W → N where:

rank(PW )(wi ) =
⎧
⎨

⎩

1 if �(w j , wi ) ∈ PW
max

(w j ,wi )∈PW

(
rank(PW )(w j ) + 1

)
otherwise (2)

Since there are no cycles in PW , such a ranking can always be computed, but the question
remains: how to do this efficiently?

Suppose there is a functionVI : W×OS → 2OS that, given a set of obligations, associates
with each possibleworld the set of obligations that are violated in thatworld. If the satisfaction
of a formula in a possible world can be computed in constant time, then the complexity of a
naïve algorithm for this function will be O(|OS| · |W |).

Consider now two possible worldsw1 andw2. Given a set of obligations OS, and a severity
relation Po, we want to verify whether w1 ≺w w2. Notice that, in Eq. 1, only obligations
that are either coherent or incoherent with (w1, w2) are considered. Therefore, all violated
obligations in VI(w1, OS) ∩ VI(w2, OS) can be disregarded. In order to verify whether
w1 ≺w w2, we need to check that all violated obligations in V1 = VI(w1, OS)\VI(w2, OS)

are strictly less severe than at least one violated obligation in V2 = VI(w2, OS)\VI(w1, OS)

and that the set V2 is non-empty. A naïve algorithm would consist of verifying, using Depth-
First Search over the graph induced by the severity relation, for each violated obligation
o1 ∈ V1 and each o2 ∈ V2, whether o1 is reachable from V2. This algorithm would run
in time O(|OS|2 · (|OS| + |Po|)) = O(|OS|3 + |OS|2 · |Po|), because the complexity of
verifying reachability is (|OS| + |Po|).

Given two worlds w1 and w2, Algorithm 1 verifies whether w1 ≺w w2. The algorithm
first computes the set of violated obligations V2 that are coherent with (w1, w2) and the
set V1 of those that are incoherent with (w1, w2). If V2 is empty, then we can conclude
that w1 ≺w w2 does not hold. The algorithm then proceeds to use a Depth First Search
from multiple starting points (all the violated obligations in V2) to compute the set of all
obligations that are reachable from at least one violated obligation in V2; that is, all those
violated obligations that are less severe than at least one in V2. Finally, we just need to verify
whether V1 is included in the set of reachable states. Since we run a single depth first search,
we visit every violated obligation, and every member of Po at most once: the algorithm runs
in time O(|OS| + |Po|).

To compute the preference relation, we need to compare each ordered pair of possible
worlds, or each pair of subsets of OS, depending on which one is smaller. The resulting
algorithm has complexity O(min(|W |2, 22|OS|) · (|OS| + |Po|)). Some properties of the
preference relation can be used in order to decrease the number of comparison that are needed.
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Algorithm 1 Computing the preference relation, PW .
Input: W, OS, Po,VI, w1, w2
Output: true iff w1 ≺w w2
1: V1 = VI(w1, OS) \ VI(w2, OS)

2: V2 = VI(w2, OS) \ VI(w1, OS)

3: if V2 is empty then
4: return false
5: else
6: S = empty stack
7: reachable = ∅
8: for all o ∈ V2 do
9: push o in S
10: reachable = reachable ∪ o
11: end for
12: while S is not empty do
13: o = S.pop
14: for all o′ s.t. o 	o o′ do
15: if o′ /∈ reachable then
16: reachable = reachable ∪ o′
17: push o′ in S
18: end if
19: end for
20: end while
21: if V1 ⊆ reachable then
22: return true
23: else
24: return false
25: end if
26: end if

In particular, from Eq. 1, it is straightforward that, if a world wi violates a set of obligations
V I (wi , OS), then everyworldwk such that V I (wk, OS) ⊂ V I (wi , OS) is preferable towi .
Since PW is transitive, given two worldswi andw j , once we have established thatwi ≺w w j

holds, we can infer that, for all worldswk such that V I (wk, OS) ⊆ V I (wi , OS),wk ≺w w j .
Now we can rank the worlds according to Eq. 2, obtaining a ranking where the more

compliant worlds are in a higher position; that is, they are associated with a lower ranking
number. To do so, we extend the topological sorting algorithm developed by [19], computing
the ranking while sorting the worlds in a linear extension of the partial order. Instead of
saving the nodes in an ordered list, we iteratively increase the ranking after eliminating each
level of the topologically sorted graph. We denote the set of pairs (wi , w j ) ∈ PW , for any
w j as from(wi , PW ), and the set of pairs (w j , wi ) ∈ PW , for any w j as to(wi , PW ). Given
a graph that represents the preference relation PW , from(wi , PW ) and to(wi , PW ) denote
the outgoing and incoming edges of wi , respectively. In Algorithm 2 we iteratively find all
the nodes that have indegree 0 (those nodes with no incoming edges), and assign to them
the current ranking. After doing so, we remove these nodes and their outgoing edges, and
increase the current ranking value. We repeat this procedure until all nodes are visited.

This ranking of possibleworlds, computed on the basis of a normative system specification
that captures both contrary-to-duty obligations and varying severity of violation, can be used
to guide agents within a team to make effective decisions about what to do. The challenge
now is that these decisions need to take into account strategies of action rather than simply
considering the compliance of agents with isolated states of affairs. Agents need to take
into account future possible compliance with a set of norms in making (collective) action
decisions now.Decisionmechanisms need to take into account uncertainties in terms of action
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Algorithm 2 Computing the ranking over possible worlds.
Input: W, PW
Output: rank(PW )
1: toVisit = W
2: relation = PW
3: currentRank = 1
4: while toVisit is not empty do
5: noIncoming = {wi ∈ toVisit : to(wi , relation) is empty }
6: toVisit = toVisit \ noIncoming
7: for all wi ∈ noIncoming do
8: rank(PW )(wi ) = currentRank
9: relation = relation \ from(wi , relation)
10: end for
11: currentRank = currentRank + 1
12: end while

outcomes and exogenous influences on the state of the environment, and enable agents to
coordinate their behaviour with others with influence over the environmental state. In order
to model decisions in this context, we propose a novel, decentralised planning mechanism
that is driven by qualitative rewards reflecting this norm-based ranking of possible worlds.

Returning to the harbour protection scenario, our main objective is to preserve the prop-
erties iu ∨ ih ∨ ib (unauthorised boats are intercepted) and, whenever iu ∨ ih ∨ ib does not
hold, to preserve rep (incursion into the restricted area is reported). Violations of O3 or O4

are more severe than other violations. Moreover, since we want to specify that having some-
one monitoring the area is more important than not revealing the UAV location, we want to
say that violations of O2 are more severe than violations of O1 or O5. This partial order is
illustrated in Fig. 1. Looking at, for example, worlds w3 and w16 (Table 2), this ordering
means that w3 is considered worse than w16, even though fewer obligations are violated,
because the unauthorized boat is not intercepted in w3. Similarly, w15 should be considered
less preferable than w16 because it violates O2, which is more severe than O5, whereas the
two are incomparable with regard to obligation O1. Part of the ranking over possible worlds
in our example computed using Algorithm 2 in this scenario is presented in Table 2. The
most and least compliant worlds are w9 and w22 respectively, and we use � to refer to the
ranking of the least compliant world. World w3 appears, as expected, at a higher ranking
than worlds w15 and w16 with w16 considered more compliant than w15 given the relative
severity of violation of obligations O2 and O5. States that are incomparable with respect to
violation severity and CTD structures are ranked equally; e.g. worlds w1 and w2 where O3

is violated in both and O1 and O5 are equally severe violations.
Given that we can reliably compute a ranking over possible worlds that takes into account

normative constraints, we now turn to the problem of norm-governed planning for a team of
agents.

4 Norm-governed multi-agent planning

Decentralized Partially ObservableMarkovDecision Processes (Dec-POMDPs) are an effec-
tive means to model collective, distributed decision making where multiple agents, each of
them with a particular view of the environment, must coordinate their actions in a decentral-
ized fashion in order to optimize some joint-reward [2]. ExistingDec-POMDP formalisations
are founded on a real-valued reward function that specifies the value an agent obtains from
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Table 2 Ranking of possible worlds in the harbour protection scenario

R Id World Violations

1 w9 ¬ih ¬rep ib ¬mh ¬ru mu ¬iu

… …

3 w16 ¬ih ¬rep ¬ib mh ru ¬mu iu O1, O5

4 w15 ih ¬rep ¬ib ¬mh ¬ru ¬mu ¬iu O1, O2

… …

6 w3 ¬ih rep ¬ib ¬mh ¬ru mu ¬iu O3

7 w1 ¬ih rep ¬ib mh ¬ru ¬mu ¬iu O1, O3

7 w2 ¬ih rep ¬ib ¬mh ru mu ¬iu O3 ,O5

… …

� = 15 w22 ¬ih ¬rep ¬ib ¬mh ru ¬mu ¬iu O1, O2, O3, O4, O5

performing some action in some state of affairs. Our problem is different, however.We require
a model of decentralised planning in which agents are rewarded for remaining as compliant
with social norms as possible. We have shown that norms are most naturally organised as
levels of compliance. We want agents to operate in such a way that they maximise their com-
pliance, and in order to motivate agent behaviour in this way we require a model of rewards
that reflects these qualitative levels of compliance. To achieve this aim, here we propose a
novel model of Dec-POMDPs with qualitative rewards, which we dub N-Dec-POMDPs to
reflect our aim of developing a model of severity-sensitive and norm-governed multi-agent
planning.

4.1 N-Dec-POMDPs

An N-Dec-POMDP is defined as a tuple, 〈I, S, b0, {Ai }, Ps, {Ei }, Pe, R〉 where: I is a set of
agents, and S is the set of states; b0 is an initial belief state, i.e. a probability distribution over
possible initial states; Ai is a finite set of actions available to agent i and a = 〈a1, . . . , an〉 is
a joint-action (one for each agent); Ps(s j |si , a) represents the probability that taking joint-
action a in state si will result in a transition to state s j ; Ei is a finite set of observations
available to agent i andE is the set of joint observations e consisting of one local observation
for each agent; Pe(e | s j , a) specifies the probability of observing e when performing a
joint-action a that leads to a state s j ; R is a reward function, the definition of which we
provide below.

We focus on finite-horizon N-Dec-POMDPs, and so assume that the execution terminates
after H steps. An action-state history as a sequence of joint actions, each followed by a
state (a1, s1, . . . , at , st ), and an action-observation history is a sequence of local actions
each of them followed by a local observation (a1, e1, . . . , at , et ) up to an instant of time t .
Agents decide how to act only according to their local observations, and so a solution for a
N-Dec-POMDP is a joint-policy q ∈ Q, consisting of a local policy qi ∈ Qi for each agent
i ; i.e.Q = Q1 ×· · ·× Qn . Each local policy maps action-observation histories to stochastic
sub-policy choices.

To get an intuition of the strategies that are developed for agents during this planning
process, consider again the harbour protection scenario introduced in Sect. 2. A good policy
for the UAV may be to continue surveillance, even if it has observed an unauthorised boat in
the restricted area, but this depends on the context. If it is operating in a teamwith some other
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agent (e.g. a helicopter), it may keep monitoring with a high probability if it observes only
one boat in the area (assuming the other agent will intercept it), and with a low probability it
will intercept the boat. In situations where the UAV intercepts more than one boat in the area,
the UAVmay decide to intercept (or report) one of the boats with a higher probability. These
policies are, of course, stochastic, and observations (e.g. detection of an incursion) lead to a
choice between different sub-policies for each agent in the team. The objective we have in
this planning process is to find, given the initial belief state b0, a joint-policy for the agents
in the team that maximizes the total expected value of the joint-reward over the horizon H .
Given a t-steps-to-go joint-policy qt , qti is the local policy for agent i , aqt is the joint-action
prescribed by the policy, and π t

i : E × Qt−1
i → [0, 1] is the stochastic mappings that return,

for each agent i and observation e, the probability of selecting local sub-policy qt−1
i ∈ Qt−1

i
after observing e.

The expected value of executing a policy qt from a state si can be computed recursively:

V (q0, si ) = R(si , aq0) (3)

V (qt , si ) = R(si , aqt ) +
(∑

s j ,e
Ps(s j |si , aqt ) × Pe(e|s j , aqt )

×
∑

qt−1

(
V (qt−1, s j ) ×

∏

i
π t
i (e, q

t−1
i )

))
(4)

Wecompute the immediate reward obtained fromexecuting actionaq0 from state si (Eq. 3).
Then we consider each possible outcome state s j , each possible joint-observation, and all
possible resulting joint sub-policy choices with their probabilities and recursively evaluate
these sub-policies from s j (Eq. 4). This equation can be generalized for a generic belief state
b as shown in Eq. 5.

V (qt , b) =
∑

si

b(si ) · V (qt , si ) (5)

Most of this characterisationof anN-Dec-POMDPmirrors that of a standardDec-POMDP;
the differences occur in the reward function and theway inwhichweoptimise agents’ policies.

One way to define the reward function in terms of norm violations is:

∀si ∈ S, a j ∈ A : R(si , a j ) = −rank(η)((si )) (6)

Essentially, we assign a higher penalty (a negative reward) to states at a lower level
of compliance (higher ranking). This approach, however, does not avoid the fallacies in
reasoning that we highlight in the introduction. Recall that, in solving a Dec-POMDP, we
want to find a joint-policy that maximises the expected value of the sum of the rewards
accumulated during execution (i.e. minimises the penalties for norm violation). A reward
function, then, entails a preference relation over possible histories, where histories that have
a higher total reward are preferred.

Consider the three execution histories h1, h2 and h3 depicted in Fig. 7. History h1 visits
three states s1.1, s1.2 and s1.3 with rankings r = 1, r = 6 and r = 1, respectively. History h2
visits states with rankings 4, 4 and 1, and history h3 visits states with rankings 4, 3 and 3.
Using the reward function of Eq. 6, these three histories would be associated with rewards of
−8 (h1), −9 (h2) and −10 (h3), and hence history h1 will be preferred to h2, and h2 will be
preferred to h3. This is inconsistent with our view of norm compliance as a series of partially
ordered levels. Our goal is to find policies that minimise the likelihood of reaching states at
lower compliance levels, and so we require a reward function such that:

1. Histories that include states with lower compliance levels are less preferred; and
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Fig. 7 Three example histories:
h1, h2 and h3 h1

s1.1
r=1

s1.2
r=6

s1.3
r=1

h2
s2.1
r=4

s2.2
r=4

s2.3
r=1

h3
s3.1
r=4

s3.2
r=3

s3.3
r=3

a1.1 a1.2

a2.1 a2.2

a3.1 a3.2

2. If two histories are incomparable with respect to violations for all compliance levels
lower than level i , the history with fewer violations at level i is preferred.

In order to capture these requirements, we exploit the qualitative theory ofMDPs proposed
by Bonet and Pearl [6]. This is based on an order of magnitude approximation for utility and
probability values, and was developed to model problems where only imprecise information
about quantitative parameters of anMDP is available. They define polynomials and an infinite
series of elements of the setQ of extended reals. Given a variable ε which represents a small
unknownquantity, an extended real is a rational function p/q , with p andq being polynomials
in ε. As an example, the quantity ε−1 can be used to represent an unknown high utility, while
ε5 can be used to represent a very small utility. Bonet and Pearl define operations over
the set 	 of infinite series ψ = ∑

k ckε
k and generalize the value iteration algorithm [23]

for Qualitative MDPs and POMDPs. Let ψ1 and ψ2 denote two members of 	 such that
ψ i = ∑

k c
i
kε

k , α ∈ R and o(ψ i ) be the order of ψ i , defined as o(ψ i ) := min{k : cik �= 0}.
Equations 7–10 define the sum and comparison between two extended reals and the product
of an extended real with a real. Note that the comparison of extended reals is reduced to a
lexicographic comparison of their coefficients.

(ψ1 + ψ2) :=
∑

k
(c1k + c2k )ε

k (7)

ψ1 ≺ 0 iff c1o(ψ1)
< 0 (8)

ψ1 ≺ ψ2 iff ψ1 − ψ2 ≺ 0 (9)

(α ∗ ψ1)k :=
∑

k
(α ∗ c1k )ε

k (10)

Given a real parameter, ρ, the magnitude of an extended real is defined as:

‖ψ i‖ρ :=
∑

k
|ck |ρ−k (11)

Bonet and Pearl [6] then show that, for positive coefficients and large enough ρ, we have
ψ1 ≺ ψ2 if and only if ‖ψ1‖ρ < ‖ψ2‖ρ .

Given our requirements, therefore, we can characterise the reward function for an N-Dec-
POMDP: R : S × A → Q is a reward function, and R(si , a) specifies the reward obtained
by performing a in si . We can then associate with each history, h, an extended real utility
ψh = ∑

0≤i<� −chi ε
i where �is the maximum ranking level of the given N-Dec-POMDP,

and each component chi corresponds to the number of states in the history that have rank
�− i . This is equivalent to assigning a state-based reward of−ε�−i to each state with rank i .
Such a reward function can be interpreted as the agents incurring in a higher cost for visiting
states with higher rank. Equation 12 captures this formally.

∀si ∈ S, a j ∈ A : R(si , a j ) = −ε�−rank(PW )(si ) (12)
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Consider again the example of Fig. 7. Assuming a maximum rank, � = 6, history h1 is
now associated with a value of −ε0 − 2ε5, history h2 with −2ε2 − ε5, and history h3 with
−ε2 − 2ε3. From Eq. 9 we have that (−ε0 − 2ε5) ≺ (−2ε2 − ε5) ≺ (−ε2 − 2ε3), and
therefore, as expected, h3 is preferred to h2 and h2 is preferred to h1. Maximizing the total
expected reward, therefore, implies minimizing the probability of reaching higher ranking
levels (lower levels of compliance).

4.2 Policy optimisation in N-Dec-POMDPs

Given that finding a γ -approximation of an optimal policy for a Dec-POMDP is NEXP-
complete, finding such a policy for an N-Dec-POMDP will be at least as hard given that the
introduction of qualitative levels of reward, representing norm compliance, does not simplify
the underlying decision problem. Due to this complexity, our approach is to develop an
algorithm that can efficiently find solutions without providing any guarantees on the solution
quality with respect to the optimum.One of themost successful existing algorithms in solving
large instances ofDec-POMDPs is Point-Based PolicyGeneration (PBPG) [32].As discussed
in Sect. 6.1, PBPG starts from the last time step and moves backwards using the t-steps-to-go
policies as possible sub-policies for the (t + 1)-steps-to-go policies. At each step, a heuristic
is used to select a set of reachable belief states. A set of candidate policies is then generated
and evaluated from those belief states and only the best maxTrees policies are retained. In
the policy generation phase, one candidate for each possible joint-action is created, and a
linear program is used to find sub-optimal stochastic mappings for the given belief state and
joint-action. The mappings for each agent are iteratively improved while the other agents’
policies are fixed. We adapt PBPG in order to approximately solve N-Dec-POMDPs, and,
in Sect. 4.3, propose a novel heuristic for qualitative reward domains to restrict the selected
belief states.

The reward function of an N-Dec-POMDP has its co-domain in 	, and so we need to
define a procedure for policy optimisation that accepts reward values and returns expected
values in 	. Note that Ps , Pe, and π t

i are defined as functions with real co-domain. To do
this we can use a combination of Eqs. 7 and 10 to evaluate joint policies.

Since the linear program used in PBPG to improve the stochastic mappings of policy
candidates optimises a real valued expected total reward, it cannot be directly applied to
improve the policy of anN-Dec-POMDP.One alternative is to simply substitute each extended
real with itsmagnitude, and use the linear program tomaximise themagnitude of the expected
reward. The correctness of this approach relies on the fact that, for each pair ψ1, ψ2 ∈ 	

we can find a large enough ρ such that ψ1 ≺ ψ2 if and only if ‖ψ1‖ρ < ‖ψ2‖ρ . Figure 8
gives the linear program for this method. The value of the current policy is V t+1(π , b), the
variables π ′

i (q
t
i |ei ) represent the new values for the stochastic mappings of agent i , while

π−i (qt−i |e−i ) are the fixed mappings for agents other than i , and δ is the improvement that
needs to be maximized. This procedure is repeated until no further improvement is possible.
The solution corresponds to an equilibrium, where no agent can unilaterally improve its own
policy. We use the inverse of the magnitude in order to account for the fact that our extended
reals rewards have only negative coefficients. Tijs [28] shows that it is always possible to find
a ρ large enough such that lexicographic optimization reduces to linear programming. Tijs’
proof does not show how to find a good value of ρ, however. As a result, this approach can
only approximate the solution of a lexicographic optimisation.

An alternative approach is to consider a series of � linear programs, each of them max-
imizing one coefficient of the value function. In Fig. 9 we present the linear program that
maximises the value of the j th coefficient V t

j (π , b) of the value function. The improvement
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Fig. 8 Linear program for joint-policy optimisation through reward magnitude

Fig. 9 Linear program to optimise the j th coefficient of the 	 value function

of each j th component is represented by δ j . We start by maximizing the value of the coeffi-
cient of ε0. Then for each subsequent LP, we improve only the j th components of the value
functions of the policies. However, for each kth component with k < j we introduce an
additional constraint to ensure that we do not decrease the kth component.

Note that improving the j th component might result in situations where, for some lth
component, with l > j , only a negative improvement is possible. These improvements
represent a trade-off where we accept a decrease in one component of V t (π , b) in order to
improve one that is associated with a higher ranking level (lower compliance). We say that an
improvement sequence δ0, . . . , δ� is acceptable if and only if, for each negative improvement
δ j < 0, there exists a δk > 0 such that k < j . Informally, an improvement is not acceptable if
it leads to a policy that has lower expected value than the initial one according to the ordering
among extended reals.

This translation guarantees that an acceptable improvement sequence results in locally
optimal solutions. While this approach requires solving � LPs, the first LP will have only
a sparse constraint matrix and can be solved very efficiently. The following LPs will only
have to consider a very constrained solution-space, and therefore can also be solved more
efficiently. In fact, since our main objective is to maximise values associated with higher
ranking levels, and doing so will often restrict the space of possible policies to only a few
candidates, we can limit our sequence of improvements only to a limited number of higher
ranked levels and still expect to find close-to-optimal solutions. As we will show in Sect. 5, if
we terminate our sequence of LPs when we find a non-zero coefficient for the value function,
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we obtain considerable saving in execution time without affecting the quality of the resulting
policy. We refer to this approach as the greedy LP, and to the magnitude translation as the
magnitude LP.

Algorithm 3 Algorithm for the Greedy LP optimization

Input: bt , a, Qt
0, . . . , Q

t
n

Output: π0, . . . , πn
1: initialise π0, . . . , πn randomly.
2: Vπ = eval(Qt

0, . . . , Q
t
n , π0, . . . , πn)

3: repeat
4: changed = f alse.
5: for ag = 0 to n do
6: for l = 0 to � − 1 do
7: 〈δl , πag〉 = LP(Vπ , Qt

0, . . . , Q
t
n , π0, . . . , πn , ag, l)

8: if δl > 0 then
9: changed = true
10: end if
11: Vπ

l = Vπ
l + δl

12: if Vπ
l > 0 then

13: break
14: end if
15: end for
16: end for
17: until changed = true

Algorithm 3 formalises the greedy LP optimization. The algorithms takes as input the
belief against which we are evaluating our policy bt , the candidate joint action a, and the
set of possible sub-policies Qt

i for each agent 1 ≤ i ≤ n, and it returns, for each agent
1 ≤ i ≤ n, a function πi that maps its local observations to a probability distribution over
Qt

i . The algorithm starts by initializing themappings randomly and evaluating thesemappings
over the belief bt using Eq. 4. It then considers each agent in turn in order to improve their
local policy (Lines 5–16). For each agent, the algorithm applies the LP of Fig. 9 to improve
each component of the expected value function V π (7) starting from the one associated with
the highest ranked (least norm-compliant) level. After each call to the LP, the value V π is
updated accordingly, and, if the value for the level being considered is greater than 0, the
improvement for the current agent is terminated (Line 13). This procedure is repeated until
we complete an iteration without any change in the value function (Lines 3–17).

4.3 The most-critical-states heuristic

In PBPG, heuristics are used to identify relevant belief states against which to optimize
the policy. The intuition behind PBPG is that, if the agents act in a way that is close to
the optimum, only a subset of states will be reachable. In building policies in a bottom-up
fashion, therefore, we can optimize them only against those states that are most likely to be
encountered during execution, increasing the scalability of the algorithm.

In finding a policy for an N-Dec-POMDP, our objective is to minimize the probability
of visiting states associated with a higher ranking level (lower compliance). The approach
we take, therefore, is to restrict the belief states we select so that they include only those
reachable states that are likely to lead to more severe violations. In so doing, we focus
planning effort on developing agent strategies to avoid these undesirable states. This has
the effect of improving the scalability of the algorithm without affecting the performance
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of resulting policies. Inspired by the MDP and Dec-POMDP heuristics (we refer to these
by MDP and Dec) proposed by Seuken and Zilberstein [25] we exploit information that is
easily obtainable by computing the optimal policy for the underlying MDP and its value
function. The value function VMDP(si ) represents the expected utility that we would obtain
if the execution had started from si , assuming the agents were able to fully observe the
current state of the system and to coordinate their decisions at each step. VMDP, thus, repre-
sents a good candidate to heuristically assess the importance of a state, taking into account
the capability of a coalition to remain compliant or to recover from current violations. We
define Rt

MDP(si ) ⊆ S to be the set of reachable states from a state si if the coalition follows
the MDP policy for t time steps, and we define prsi (s j ) to be the probability of reach-
ing state s j ∈ Rt

MDP(si ). The values of these can be estimated using standard sampling
techniques. Given a threshold τ ∈ 	, mcsiτ is the subset of states, among those reachable
from si , such that the product of their value function and their probability is less than τ .
Formally:

mcsiτ := {s j ∈ Rt
MDP(si ) : VMDP(s j ) ∗ prsi (s j ) < τ }

Intuitively, if we accept VMDP(si ) to be a good approximation of the value that we can
expect to obtain from a state si in the decentralized case,mc

sk
τ includes those reachable states

that have a potential impact on the expected ranking that is higher than τ .
Given an initial state si , and a threshold τ , the MDP Most-Critical-States (MDPMcs)

heuristic is the heuristic that returns a belief state b such that:

b(s j ) =

⎧
⎪⎨

⎪⎩

prsi (s j )∑

sk∈mcsiτ
prsi (sk )

if s j ∈ mcsiτ

0 otherwise

(13)

These definitions can be easily generalized for an initial belief state. An improved ver-
sion of MDPMcs (denoted as DecMcs) can be obtained by using a previously obtained
policy qH to sample the set of reachable states and to evaluate them. We can simulate the
execution of the system assuming that the coalition follows qH for t steps. For each of a
number of simulations we obtain a state si and a sub-policy q(H−t), which we use to evaluate
VDec(si ). Note that a state can be reached following different paths, potentially resulting
in different sub-policies and values of VDec. For each state we take the minimum among
those values. In our experiments, a mixed approach (denoted as MixMcs), using qH to find
the reachable states, and VMDP to evaluate their criticality led to better policies. Moreover,
this mixed approach does not require us to evaluate additional joint policies. While the
best value for τ depends on the scenario, a typically good value is τ = cεs+1, where s
is the order of VMDP (b0), and c a small real. This threshold captures all those states that
might potentially to lead to the worst (highest) ranking level reachable by an MDP-based
execution.

With our method of mapping a normative system specification into a ranking over possible
worlds, the magnitude and greedy approaches to solving an N-Dec-POMDP, and the Most
Critical States (MCS) heuristic, we can move on to evaluate our model. Existing benchmark
problems for (Dec-)POMDPs do not include normative, or soft constraints, and so we use
the multi-agent harbour protection scenario that involves both CTD structures and varying
severity. We can, however, directly compare the magnitude and greedy approaches to solving
an N-Dec-POMDP, and compare MCS with standard PBPG.
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5 Evaluation

In the harbour protection scenario introduced in Sect. 2, there are restricted and unrestricted
areas, and both agents (UAV, helicopter and patrol boat) and unauthorized boats can move
between them. The UAV and the helicopter can perform the action monitor in order to start
monitoring their current area; this action always suceeds, but monitoring does not guarantee
detection of an unauthorised boat. Each agent is able to observe the location of unathorized
boats in the same area with probability 0.15. By monitoring an area, an agent increases
this probability to 0.75. Each agent can perform intercepti in order to intercept the i th
unauthorized boat, and an action report to report an incursion. Each of these actions will
succeed with a probability of 0.8, and the agent must commit to this task over two time
steps to have an effect. Each agent is able to observe its own location and, with a certain
probability, the location of agents in the same area. By monitoring an area, an agent increases
its probability of correctly observing other agents’ locations. The behaviour of unauthorized
boats is controlled by the simulation. Throughout the simulation, each boatwillmove from the
unrestricted area to the restricted area with probability 0.11 or return to the unrestricted area
with probability 0.3. Initial exploration of possible values for these probabilities indicated
that these gave a good level of dynamism and indeterminism in the simulation, and hence
represent a good level of challenge for the planning problem. We chose a horizon, H = 20,
for all simulations; preliminary experiments showed that a horizon greater than 20 offered
no additional benefit to the quality of the plans computed for any of the algorithm/heuristic
combinations. For the same reason, for each simulationmaxTrees = 2 (the number of policies
retained at each step during plan generation). Each experimental condition was repeated 20
times with identical initial conditions: all unauthorized boats in the unrestricted zone, and all
agents in the restricted zone with no agent monitoring.

We used three different instantiations of the harbour protection scenario, chosen in order
to investigate both under- and over-constrained conditions. The first consists of two agents
(one UAV and one helicopter) and three unauthorized boats. This is over-constrained because
if all three unauthorized boats are in the restricted area at the same time, there are insufficient
agents to intercept them all. In this case, the best choice for the agents is for one of them to
intercept a boat and for the other to issue a report to headquarters. The second case consists
of three agents (one UAV, one helicopter, and one patrol boat) agents and two unauthorized
boats. In this case, even if both unauthorized boats are in the restricted area at the same time,
the agents can intercept both (one by the patrol boat and one by the helicopter) and maintain
surveillance (the UAV). The agents can remain fully compliant. In the third case there are
three agents and three unauthorized boats. If all three unauthorized boats enter the restricted
zone, the agents are then faced with the choice between intercepting all three andmaintaining
surveillance. The three cases are, therefore, designed to maximise the challenge with respect
to agents making the most compliant joint action choices.

In Table 3 we report the average and standard deviation of the execution time and the
quality of the resulting policy for our planning algorithms andPBPG.Specificallywe compare
execution of our planner using the standard PBPG heuristic and the MCS heuristic, and the
magnitude and greedy linear programs. The columnsAg and B specify the number of agents
and unauthorized boats in each scenario. The two columns Standard andMCS compare the
results for the two different heuristics. In particular, the MCS executions use a combination
of the MDPMcs and random heuristics3 and the standard executions use a combination of

3 The random heuristics sample for reachable states by simulating agents that choose a random action at each
step.
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Table 3 Planning results for
standard PBPG heuristics and
MCS with the magnitude and
greedy linear program planners

Ag B Standard MCS

Value Time Value Time

Magnitude LP

2 3 −5.88e−20 32.05 −5.88e−20 27.10

±3.76e−23 ±2.89 ±3.59e−23 ±2.10

3 2 −3.68e−20 185.25 −2.69e−20 146.75

±3.70e−23 ±15.69 ±8.27e−23 ±14.61

3 3 −4.61e−20 7609.10 −4.76e−20 5375.60

±3.58e−23 ±484.27 ±2.64e−22 ±578.30

Greedy LP

2 3 −5.88e−20 31.15 −5.88e−20 23.65

±3.02e−23 ±2.96 ±3.04e−23 ±2.78

3 2 −3.28e−20 112.20 −2.61e−20 79.85

±2.86e−21 ±7.38 ±4.56e−22 ±7.66

3 3 −4.58e−20 4984.80 −4.70e−20 3236.25

±3.04e−22 ±483.49 ±5.94e−22 ±392.69

Fig. 10 Execution time and policy quality (value) for the 2 agents and 3 boats case

Fig. 11 Execution time and policy quality (value) for the 3 agents and 2 boats case

MDP and random heuristics. The first part of the table presents results obtained using the
magnitude LP, which optimises the inverse of the magnitude of the reward. The second part
of the table presents obtained using the greedy LP, interrupting improvement of the solution
as soon as we find a level with value lower than −0.001. The results are also summarised in
the box-plots presented in Figs. 10, 11 and 12.
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Fig. 12 Execution time and policy quality (value) for the 3 agents and 3 boats case

Table 4 Pair-wise differences in
execution time: p-values

Comparison of LPs Comparison of Heuristics

Scenario Heuristics Scenario LPs

Ag B Standard MCS Ag B Magnitude Greedy

2 3 1.000 0.133 2 3 0.000 0.000

3 2 0.000 0.000 3 2 0.048 0.034

3 3 0.000 0.000 3 3 0.003 0.003

The results are not normally distributed, and so we tested them for significance using the
Kruskal Wallis (analysis of variance) test, which does not assume a normal distribution of
residuals. There are no significant differences for the value obtained (policy quality): asymp-
totic p-value of 1.000. We do, however, observe significant differences in execution time.
In order to better understand where these between-groups differences lie, we performed a
post-hoc analysis consisting of Bonferroni-corrected pairwise Mann–Whitney tests. Table 4
summarises the p-values for all the pairwise tests comparing the execution times of differ-
ent algorithms. Using this conservative method, we found that all pair-wise differences are
significant with the exception of two.

We further explored the differences in performance of the LPs in order to isolate the effect
of choosing the greedy LP over the magnitude LP. There is no significant difference in the
execution time of themagnitude and greedyLPswith both Standard andMCSheuristics in the
2-agents, 3-boats case (Fig. 10, p-values being 1.000 and 0.133, respectively). We believe
that this is due to the fact that this is an over-constrained problem, such that we cannot
easily discount those strategies that are more likely to lead to the most severe violations. The
strategy of solving multiple, smaller LPs at different ranking levels and terminating when
no significant improvement can be found, therefore, has little effect. There are, however,
significant differences in all other comparisons between the LPs, such that the greedy LP
significantly out-performs the magnitude LP.

We then explored the differences in performance of the heuristics in order to isolate the
effect of choosing the MCS heuristic over the Standard heuristic. The positive effect of using
theMCS heuristic over Standard is significant in all cases for either LP. It is interesting to note
that, although significant, the benefit in using the MCS heuristic is more marginal in the 3-
agents/2-boats case. This is the least constrained of the problems considered, given that even
if both unauthorised boats enter the restricted area at the same time, there are sufficient agents
to intercept both and maintain surveillance. This is expected because the MCS heuristic was
specifically designed to provide additional guidance to decision-making inmore challenging,
over-constrained scenarios.
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Fig. 13 Comparison of
MCS+Greedy and random play

Table 5 Comparison of
MCS+Greedy and random play

Ag B MCS + Greedy Random

2 3 −5.88e−20 −9.10e−1

±3.04e−23 ±1.03e−1

3 2 −2.61e−20 −2.40e−1

±4.56e−22 ±2.69e−02

3 3 −4.70e−20 −7.59e−1

±5.94e−22 ±7.17e−02

It is important to note here that the effects on execution time due to the use of the greedy
LP and the MCS heuristic are additive. When the problem is over-constrained, the use of the
MCS heuristic provides significant execution time improvements, and continues to provide
some benefits in less constrained scenarios. The greedy LP algorithm is able to exploit the
structure of the domain in all but over-constrained scenarios. In combination, the greedy
LP algorithm and MCS heuristic significantly improves execution times across all norm-
governed scenarios, regardless of how they are constrained with respect to resources. Further,
as the complexity of the scenario itself increases, the combined effect is more marked. In
the 3-agents, 3-boats case, execution times are more than halved: mean execution time for
magnitude/standard being 7609s, and for greedy/MCS being 3236s.

In common with all other algorithms for planning in Dec-POMDPs, our N-Dec-POMDP
planner does not provide guarantees for the quality of the solution. No existing model is
able to utilise the qualitative reward function that is necessary to reason about levels of
norm compliance, but comparison with the alternatives above, including an adaptation of the
standard heuristic, provides the most objective assessment available. There is the question,
however, of whether our approach (or, indeed, whether any of the others considered) finds
good policies. We may do this by comparing the quality of policies computed by our greedy
algorithm using the MCS heuristic with the expected value of a set of randomly computed
policies. In Fig. 13 and Table 5 we present the results of this comparison. Our policies behave
consistently better, with the difference beingmore pronounced inmore constrained situations.
Again, we tested these results for significance using the Kruskall-Wallis test, and obtained a
p-value of 0.000 in each case.We can, therefore, claim that our planning algorithm is effective
in finding good policies for decentralized, collective planning problems under uncertainty.

6 Discussion

In placing this research in context, we first discuss the current research landscape on single
and multi-agent planning under normative (or equivalent) constraints. We then move on
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to explore in more detail the model of norms used in this research, alternative modelling
approaches and discuss some avenues for future investigation. Our conclusions follow this
extended discussion.

6.1 Related research in norm-governed planning

Models of practical reasoning where action is both constrained by causal dependencies and
guided by ideals of behaviour (soft constraints or preferences) have been studied in a range
of contexts. Gerevini and Long [17] extended the Planning Domain Description Language,
PDDL, to include preferences. These are represented as boolean formulae that are satisfied
or violated by a plan. Even in the presence of preferences, however, PDDL requires the
domain designer to specify a quantitative metric function to be optimised by a planner. These
metrics may, or may not, depend on the satisfaction of each constraint. For example, it is
possible to assign a real-valued weight to each constraint violation. Our approach is different
because we specify qualitative preferences among constraint violations. Bienvenu et al. [5]
do consider qualitative priorities over constraints. Their formalism allows alternative plans
to be evaluated according to a lexicographic ordering over the set of constraints. Using this
approach, we can specify that avoiding the violation of a single norm is more important
than avoiding the violation of any other norms that follow in the lexicographic order. Our
approach is different, however: we do not simply consider norms in a lexicographic order,
rather we compute severity levels that depend on all norms that are violated in a state, and then
consider severity levels in a lexicographic order. Moreover, Bienvenu et al. [5] do not take
into account how many times each constraint is violated. They do model the specification of
temporally extended preferences; that is, preferences that regulate execution paths, instead
of single states. While we do not discuss this issue in this paper, our model can be directly
extended in order to represent and reason about temporally extended norms, as discussed in
prior research [16]. These models only capture deterministic, single agent scenarios, and do
not support the specification of contrary-to-duty constraints.

In norm-aware practical reasoning, a number of different methods for reasoning about
norm compliance have been proposed. Meneguzzi and Luck [20], for example, extend the
BDI architecture to take into consideration norms. They describe algorithms that enable
agents to react to the activation and expiration of norms by modifying their intentions;
i.e. by introducing plans for the fulfilment of obligations and removing plans that violate
prohibitions. Dignum et al. [12] discuss the introduction of a preference relation over norms
to solve normative conflicts. This preference relation is taken into account only in situations
where it is not possible to comply with all norms. Our decision theoretic approach is different
in the sense that an agent might decide to violate a less severe norm even in the absence
of a conflict if, in doing so, the probability of violating a more severe norm in the future
decreases.Moreover, Dignum et al. only consider single agent scenarios andwith a simplified
(state-based) representation of norms. While these approaches support the specification and
reasoning about contrary-to-duty obligations, they only consider single agent scenarioswhere
the environment is fully observable and actions are deterministic.

Fagundes et al. [13] useMarkovDecisionProcesses (MDPs) [23] tomodel a self-interested
agent that takes into account norms, and the possibility of violating them, in deciding how to
act. Violations are associated with sanctions, which result in the modification of the transition
probabilities, or of the agent’s capabilities. Agents consider the effects of sanctions on their
expected utility and weigh these against the potential benefits of violating norms in order to
decide upon a course of action. This model does not, however, explicitly capture the relative
severity of norm violations, and the representation of sanctions relies on the assumption
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that the norm enforcement authority has the power to affect the agent’s capabilities and the
probabilities of transitions.

A more appropriate representation of severity levels of norm violation could be obtained
by representing the problem as a multi-objective MDP; that is, an MDP where the reward is
a vector, rather than scalar quantity, and where each component of the vector may represent
a different objective. A number of researchers have focussed on methods to efficiently solve
multi-objective POMDPs (Partially Observable MDPs) [24,26,30]. Some of these methods
attempt to find a set of policies that maximise the expected value for a set of possible scalar-
izations. A scalarization essentially gives a weight to each component of the reward value
and is formally defined as a linear function that takes a vector and returns a scalar. Roijers
et al. [24], for example, present OLSAR, a point-based algorithm based on Perseus [27] that
efficiently finds a set of approximately optimal policies for different scalarizations. Reason-
ing about norm compliance may be seen as a particular case of a multi-objective POMDP,
where each component represents the degree of compliance. From this point of view, differ-
ent scalarizations may be used to represent different degrees of severity for norm violation.
Such an approach, however, does not avoid the sort of fallacies in reasoning illustrated in the
introduction in terms of “fair labelling”, or with different classification levels in a security set-
ting. An alternative would be to take the approach proposed by Soh and Demiris [26], where
genetic algorithms are used to find the set of Pareto optimal solutions for a multi-objective
POMDP. A solution is Pareto-optimal if it is not possible to improve any component of the
expected reward vector without decreasing the value of another component. This approach
assumes that the different components of the reward are of incomparable importance and
requires the user to decide which of the Pareto optimal solutions to adopt. We propose a
method that exploits the knowledge of the relative importance of each component to improve
the efficiency of the planning algorithm. A similar approach is taken byWray and Zilberstein
[30], where they propose an algorithm to solve multi-objective POMDPs where the reward
components are ordered according to their degree of importance. This work only deals with
the single agent case, however, without considering the issue of coordination among agents.

Problems in which a coalition of agents collaborate in order to maximise a joint reward are
often modelled as Decentralized Partially Observable MDPs (Dec-POMDPs) [2]. In a Dec-
POMDP, each agent has a local and partial view of the environment, and must take a decision
on what action to perform based only on its local observations. Finding a γ -approximation
of an optimal policy for a Dec-POMDP4 has been proven to be intractable [4]. For this
reason, a substantial amount of research has focused on algorithms that can efficiently find
sub-optimal solutions without providing guarantees on the solution quality. The vast majority
of this focuses on quantitative models, where the joint reward is real-valued.

Wu et al. [32], for example, propose Point Based Policy Generation (PBPG), an algorithm
for solving finite horizon Dec-POMDPs with real-valued rewards. The algorithm relies on
a set of heuristics to find belief states (probability distributions over possible states) that
are likely to be reachable after a given number of steps. Given an execution horizon H , the
algorithm starts by finding the best one-step policies (a one-step policy consists of a single
action) and evaluating them from the beliefs that are reachable at time H − 1. It then uses
these policies as sub-policies to build a set of candidate two-step policies, which are evaluated
from the beliefs reachable at time H − 2. The algorithm proceeds in this way until it builds
the set of candidate policies for time 0. At each step, only the best MaxTrees policies are
retained and used as possible sub-policies, resulting in boundedmemory complexity and time

4 Given a real γ , and an optimal policy with value V ∗, a γ -approximation of this policy is a policy with value
V ′ ≥ V ∗ − γ .
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complexity linear in the execution horizon. Because of this pruning, however, the algorithm
does not provide guarantees on the quality of the solution with respect to the optimum.

To the best of our knowledge, the problem of qualitative decision making in decentralized,
stochastic scenarios has been previously addressed only by Brafman et al. [9]. Their work
is different in spirit, however. The authors build upon a simplified Dec-POMDP, where only
qualitative statements about the possible transitions and observations are available, and a set
of goal states is defined in place of a reward. They show that this problem can be solved using
classical planning techniques. Their formalism does not permit the specification of different
degrees of preferences among goals, however. Norms are often seen as constraints over the
behaviour of (groups of) agents. From this point of view, our work is related to research
on constrained Dec-POMDPs by Wu et al. [31]. Wu et al. consider a Dec-POMDP with a
single reward function, but multiple cost functions. The objective is then to maximise the
reward function, subject to constraints over cumulative costs. Rather than trying to minimise
the number of constraint violations, their algorithm excludes all solutions that violate one or
more constraints. Our aim is to find solutions that minimise the qualitative level of violation
severity that occurs, and minimise the number of violations at each level.

Before moving on to present the two key contributions of this research (in Sects. 3 and 4),
we outline a scenario that both illustrates the normative concepts that are core to the model
and gives an intuition of the practical reasoning problem we address.

6.2 Discussion of alternatives and future research

Our starting point in this research is the extensive body of research in normative systems
specification and reasoning. We model classical contrary-to-duty structures, which capture
the important notion of reparation. We also argue for the related, but complementary notion
of violation severity levels. There are, of course, assumptions we make in this research, and,
as discussed in Sect. 6.1, practical reasoning under normative constraints is closely related
to preference-based planning. In this discussion, therefore, we briefly explore alternative
approaches tomodel violation severity, and alternative reward functions forN-Dec-POMDPs.
We discuss some of the limitations of the mechanisms proposed and indicate some avenues
for future research.

First we discuss ceteris paribus networks (CP-nets) [7] in more detail, which is a common
means to capture preferences in planning domains. Given a set of variables, V , each of them
with a domain of possible values, preferences may be expressed: given a variable Xi ∈ V ,
and a (possibly empty) set of variables Y ⊆ V \ Xi , we can specify a preference over
different outcomes of Xi conditioned on a given assignment for the variables in Y . The
fact that these preferences are valid only when all the other assignments are equal makes
them weaker than the norm-induced preferences considered in our model. They do not allow
us to represent CTD structures; consider, for example, the adaptation of the CTD structure
concerning surveillance where we make explicit the idea that we only want one agent (the
UAV or the helicopter) monitoring the restricted area at any time (see Fig. 14):

1. It ought to be that the UAV is monitoring: O1 = O(mu | �).
2. If the UAV is monitoring, it ought to be that the helicopter is not monitoring: O2 =

O(¬mh | mu).
3. If the UAV is not monitoring, it ought to be that the helicopter is: O3 = O(mh | ¬mu).

The most preferred world is one in which the UAV is monitoring, but the helicopter is not.
The two worlds where only O2 is violated (¬mu ∧ mh) or only O1 is violated (mu ∧ mh)
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Fig. 14 Deontic preference
model for the surveillance
example

mu ∧¬mh /0

mu ∧mh {O2} ¬mu ∧mh {O1}

¬mu ∧¬mh {O1,O3}

Fig. 15 CP-Net model for the
surveillance example mu ∧¬mh

mu ∧mh ¬mu ∧mh

¬mu ∧¬mh

P2

P1

P3

P1

are incomparable, and worlds in which neither agent is monitoring the area (O1 and O3 are
violated) is least compliant.

We may attempt to capture this as a CP-Net, the preferences for which are illustrated in
Fig. 15, thus:

1. P1 : mu ≺ ¬mu

2. P2 : ¬mh ≺ mh if mu

3. P3 : mh ≺ ¬mh if ¬mu

Each arrow is labelled with the statements that induce the corresponding preference, and the
result is a complete ordering over possible worlds. While this ordering is consistent with that
obtained in our model, it introduces an additional constraint:mu ∧mh ≺w ¬mu ∧mh , which
is not entailed by the normative specification. We can introduce this additional constraint by
stating that a violation of O1 is more severe than a violation of O2, but that may not be what is
intended. In fact, CP-Nets implicitly consider an unconditioned preference over a variable Xi

as being more important than another preference that is conditioned on the value of Xi . We
may remove the preference P3, making the twoworldsmu∧mh and¬mu∧mh incomparable,
but this would also result in worlds mu ∧ ¬mh and mu ∧ ¬mh being incomparable. These
two worlds differ in all their variables, and CP-Nets do not offer a way to specify a direct
preference between them.

In subsequent research, Brafman et al. [8] extend CP-Nets by introducing preference rela-
tionships among variables. If, for example, variable X1 is more important than X2, we should
always prefer an improvement in X1 to one of X2. This addresses some of the limitations
of CP-Nets, but the two variables concerned must be mutually preferentially independent.
In other words, the preference over the values of one variable must not depend on the value
of the other variable. Since, in our example, the preference over mh depends on the value
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of mu , importance relationships are not sufficient. Thus, CP-Nets cannot be used to express
contrary-to-duty obligations.

It may be argued that the severity relation does not add to the expressiveness of a model of
norms that already includes contrary-to-duty structures. Given a desired ranking of worlds,
it is always possible to define a normative system that uses only CTD norms, and that would
result in the ranking required. If we say that Li is the boolean expression that identifies all
the worlds at the i th level, we could define a normative system as:

– O(L1 | true)
– O(L2 | ¬L1)

– …
– O(Ln | ∧n−1

i=1 ¬Li )

In order to do this, however, it would be necessary to know in advance the desired ranking
of worlds, which is not trivial. Moreover, our approach enables a more straightforward and
natural formalization for the same normative system. The mechanisms presented in Sect. 3
can then be used to efficiently compute exactly this ranking.

Our severity specification is defined as a strict partial order over single obligations; i.e.
Po ⊆ OS × OS. This allows us to specify that the violation of one obligation is more
severe than any number of violations of another. Moreover, if we define O1 	o O2 and
O1 	o O3, worlds violating both O2 and O3 will be preferred to worlds that violate O1. It
would be interesting to consider an alternative relation: Po ⊆ 2OS × 2OS . We could then
express relationships such as {O1} 	o {O2}, {O1} 	o {O2} and {O2, O3} 	o {O1}. An
interesting direction for future research would to be study how to compute a meaningful,
acyclic preference relation over possible worlds, given this richer severity specification.
Assuming such an ordering can be reliably computed, this alternative domain analysis could
be directly used as input to our N-Dec-POMDP solver.

The reward function of an N-Dec-POMDP favours histories where states associated with
an higher ranking level are visited less often. This approach may lead to unexpected results
in some situations that involve independent5 norms of incomparable severity. Consider two
histories, h1 and h2. History h1 consists of a sequence of states, (s1.1, s1.2), such that in state
s1.1 there are no violations, but in state s1.2 both obligations O1 and O2 are violated. History
h2 consists of a sequence of states, (s2.1, s2.2), such that in state s2.1, O1 is violated, in s2.2,
O2 is violated. Assuming that violations of O1 and O2 are incomparable with respect to
their severity, we might expect these two histories to be equally good (or bad). In the model
proposed here, state s1.2 in history h1 would lie at a higher ranking level than either states
s2.1 or s2.2 in h2, and hence h2 will be preferred to h1. The reason for this is that our objective
is not to minimise the sanctions received as a result of norm violation, but to minimise the
possible consequences of these violations. The goal of the norm analysis phase is to ensure
that more severe consequences are associated with higher ranked states. Of course, this does
not guarantee that any increase in ranking is associated with more severe consequences.

An alternative reward function for an N-Dec-POMDP may be defined that would result
in histories h1 and h2 being assessed as equally good. We could, for example, rank all the
obligations according to their severity using an adaptation of Algorithm 2, applied to the
set of norms rather than the set of possible worlds. We may then give rewards to states that
equate to, for each ranking level l, −n.ε�−l where n is the number of violations at level l.
Histories h1 and h2 would then have the same reward. It is not clear, however, how we could
capture the fact that violating contrary-to-duty norms should be considered less desirable
than violating the corresponding primary norms, which is an important aspect of our model.

5 Two norms are independent if neither is a contrary-to-duty obligation of the other.
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In our model, norm compliance is necessarily evaluated on single states. On the face of
it, this restricts the types of norm that can be represented. In many domains, for example,
obligations may include a deadline for fulfilment: temporally-extended norms. Norms may
also link individual actions, such as in separation of duty constraints where two actions must
be performed by two different agents. In order to evaluate compliance with such norms, we
must take into account sub-histories rather than individual states. It is possible, however, to
directly extend our model to consider such norms by keeping track of the evolution of norm
instances (activation, expiration, etc.) in each state, as discussed in previous research [16].
The cost is an (potentially significant) increase in the number of states, placing additional
burden on the planner.

In this paper, we have focussed exclusively on normative motives. These are social drivers
of action, but autonomous agentsmay also be driven by individual goals. Individual goalsmay
be encoded as obligations, but this would be to combine compliance to social expectations
and individual drives. Severity could be used to capture the relative importance of individual
goals and norms if goals are expressed as obligations. It may, however, be more appropriate
to make explicit the distinction between social norms and individual goals. We could then
employ multiple-objective optimisation methods to manage the trade-off between remaining
compliantwith social expectations and satisfying individual goals. This is an avenue for future
research, given that a suitable approach would need to account for the naturally qualitative
nature of the reward function for norm-governed planning.

7 Conclusions

In the introduction, we claimed contributions both to modelling and practical reasoning in
normative multi-agent systems, and to algorithms for decentralised planning under uncer-
tainty. For the former, we have presented what we believe to be the first end-to-end model
from the analysis of a domain where the behaviour of agents is governed by norms, through to
a decentralised planning mechanism for multiple agents to act in concert such that they max-
imise their compliance with these norms. We consider normative system specifications that
include guidance for recovering from violations (contrary-to-duty obligations) and avoiding
critical levels of failure (severity). The domain analysis mechanism proposed is guaranteed
to generate a transitive and acyclic preference relation over possible worlds. This preference
relation enables possible worlds to be ranked from the most to least compliant. This is then
used to guide collective decision making in the presence of uncertainty, with the goal of
maximising the expected compliance of states in an execution history.

The N-Dec-POMDP planning mechanism is an adaptation of Dec-POMDPs for use
with a qualitative reward function. Our greedy LP algorithm approximately solves an N-
Dec-POMDP by starting with the problem of optimising against the highest levels of the
reward function, adding additional constraints associated with lower levels until no signif-
icant improvement can be found. The most-critical-states (MCS) heuristic also exploits the
qualitative structure of the reward function to guide planning effort. From the results obtained
from evaluating this planning mechanism, we may reliably conclude that both the greedy LP
and the MCS heuristic provide significant and considerable savings in terms of execution
time without affecting the quality of policies computed.
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