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Abstract Understanding when and how computational complexity can be used to protect
elections against different manipulative actions has been a highly active research area over
the past two decades. Much of this literature, however, makes the assumption that the voters
or agents specify a complete preference ordering over the set of candidates. There are many
multiagent systems applications, and even real-world elections, where this assumption is not
warranted, and this in turn raises a series of questions on the impact of partial voting on the
complexity of manipulative actions. In this paper, we focus on two of these questions. First,
we address the question of how hard it is to manipulate elections when the agents specify only
top-truncated ballots. Here, in particular, we look at the weighted manipulation problem—
both constructive and destructive manipulation—when the voters are allowed to specify
top-truncated ballots, and we provide general results for all scoring rules, for elimination
versions of all scoring rules, for the plurality with runoff rule, for a family of election systems
known as Copelandα , and for the maximin protocol. The second question we address is the
impact of top-truncated voting on the complexity of manipulative actions in electorates with
structured preference profiles. In particular, we consider electorates that are single-peaked
and we show how, for many voting protocols, allowing top-truncated voting reimposes the
NP-hardness shields that normally vanish in such electorates.
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1 Introduction

Preference aggregation is an important problem in multiagent settings as there are many
scenarios where a group of agents has to make a common decision. The process of arriving at
this decision, in turn, has to accommodate the needs and preferences of all the participating
agents. A natural, and commonly used, mechanism to achieve this is voting, where all the
agents specify their preferences and a previously agreed-upon procedure—called the election
system or voting protocol—is used to arrive at the decision. Election problems abound in
human contexts. From electing a government to hiring within a CS department to choosing
a winner in television reality shows, they are everywhere. Such problems are increasingly
ubiquitous in multiagent settings. For instance, it has been proposed as a mechanism for
web spam reduction [19], for collaborative filtering and recommender systems [45], and for
multiagent planning [21].

Given the fact that it is useful and a widely used mechanism, voting, naturally, has been
extensively studied and it has been found that it is not without its problems. In fact, the
theory of social choice, which focuses on the study of collective decision making processes
and procedures, has a number of impossibility results surrounding fundamental issues that
arise in running elections. Among many such issues, one natural worry that can arise is
“What if the agents try to manipulate the outcome of an election by, say, misreporting their
true preferences?”. From the perspective of designing voting systems, this question has been
answered through the Gibbard–Satterthwaite Theorem [37,46] and its generalizations (like
theDuggan–SchwartzTheorem [18])which essentially say that there are no reasonable voting
systems which aren’t manipulable. However, despite such results, there still remains the
question of how to achieve these manipulations. Starting with the seminal work of Bartholdi,
Orlin, Tovey, and Trick through a series of papers [3–5], there has been much work that
has raised this question and has looked into how computational complexity can be used as
a barrier to protect elections against different manipulative actions (see [27,28] for fairly
recent surveys and also [14, chap. 6–7]). This paper too tries to address the question of when
computational complexity can be used to protect elections, and in particular we consider the
case when the agents are allowed to submit truncated ballots—meaning that they are not
obligated to specify their ranking of all the candidates but need to do so only for a subset of
them.

Now, the first question that could arise here is: “why truncated ballots?”; after all, there
has been a flurry of papers in computational social choice that have studied the complexity
of manipulative actions under the assumption that the agents submit complete rankings over
the set of candidates. There are a number of reasons why looking at partial preferences in
general is important. First, expecting agents to provide complete ballots is only practical
when the number of candidates is small and in practice there are many situations where this
might not be the case. As an instance, consider the problem of building a meta-search engine
as outlined by Dwork et al. [19] by combining search results from individual search engines.
In this case, for a given query, if the search results of a particular search engine denotes
its “vote”, and the candidates are all the possible search results, then it is easy to see that
the votes have to be necessarily truncated before combining. Second, even if the number of
candidates were not very large, agents might just be unable to specify a complete ordering
because they do not have enough information on them. Third, there are many real-world
elections in which voters are allowed to submit partial orderings. For example, apart from
the fact that most political elections use the plurality rule where every agent only specifies
their most favourite candidate, the elections for the President of Ireland and for the legislative
assembly in the Australian Capital Territory uses the Single Transferable Vote where an agent
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can rank a subset of the candidates. Thus, it is important to understand the repercussions of
having partially specified preferences (“partial votes”) in general. While a “partial vote” can
refer to any partial ordering over the set of candidates, here we focus on one kind of “partial
vote”, namely top-truncated votes. Top-truncated votes are natural in many settings where
an agent is certain about its most preferred candidates but is indifferent among the remaining
ones or is unsure about them.

In particular, this paper addresses the following questions about elections with truncated
ballots.

– While, as outlined above, allowing voters to submit top-truncated ballots can be extremely
useful, one of the foremost questions that arises here is: “What happens to the complexity
of manipulation if the agents reveal only top-truncated preference orderings?”. It is this
question that we try to address first, in Sect. 4. Specifically, we study the weightedmanip-
ulation problem—both constructive and destructive manipulation—when the voters are
allowed to specify top-truncated ordering and we provide many general results. Subse-
quently, we remove the assumption that the manipulators have complete information and
instead look at the impact on complexity of manipulation when there is uncertainty about
the non-manipulators’ votes.

– There are many elections scenarios where the agents have structured preferences—
meaning that there are some valid votes that are never cast. We consider one of the
most widely studied such structured preferences, namely single-peaked preferences, and
we ask the following question: “What happens to the complexity of manipulative actions
when agents have structured preferences and are allowed to submit top-truncated bal-
lots?”. In particular, in Sect. 5, we look at the problem of weighted manipulation and
weighted bribery in single-peaked electorates, andwe show a number of surprising results
regarding the impact of top-truncated ballots on the complexity of these manipulative
actions in such electorates.

In addressing the abovementionedquestions, this papermakes the following contributions:

1. We (in Sects. 4.1 and 4.2) provide general results for all scoring rules, for elimination
versions of all scoring rules, for the plurality with runoff rule, for a family of election sys-
tems known as Copelandα , and for the maximin protocol, thus extending the preliminary
work of Narodytska and Walsh [42] on the impact of top-truncated voting on complex-
ity of manipulation. Subsequently, in Sect. 4.3, we look at the impact on complexity of
manipulation when there is uncertainty about the non-manipulators’ votes and when the
voters are allowed to submit top-truncated ballots.

2. We systematically study the impact of partial voting onmanipulative actions in structured
preference profiles. Here (in Sects. 5.2 and 5.3) we look at the problem of manipulation
and bribery in single-peaked settings when top-truncated ballots are allowed and show
a number of surprising results where allowing top-truncated voting seems to reinstate
combinatorial protections (that normally vanish when voters are only allowed to present
complete orders) for many voting rules against manipulation and bribery. In particular,
under the assumption that the voters submit complete ballots, we first provide polynomial
time algorithms for manipulation and weighted-bribery for certain voting rules in single-
peaked settings, thus extending the works of Faliszewski et al. [29] for manipulation and
Brandt et al. [9] for bribery. We then show how these polynomial-time problems become
NP-complete when top-truncated ballots are allowed.

3. Finally, we show an example of a natural voting rule where, contrary to intuition, the
complexity of manipulation actually increases when moving from the general case (i.e.,
when there is no restriction on the preferences) to the single-peaked case. In particular,
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in Theorem 31 we show how the complexity of manipulating eliminate(Veto), when
top-truncated ballots are allowed, moves from being in P in the general case to being
NP-complete in the single-peaked case.

2 Related work

The study of computational complexity for manipulative actions was started through a series
of papers by Bartholdi, Orlin, Tovey, and Trick [3–5]. Subsequently, there has been a flurry of
work in this domain of research which has studied the computational complexity of manip-
ulative actions in many different settings. The reader can refer to some fairly recent surveys
[27,28] and also the book chapters [14, chap. 6–7] for discussions on the evolution of this
domain.

Broadly, there are two lines of research that are closely related to our work. First is the
work on election problemswhen the agents are allowed to specify partial preferences. Among
them, the papers that are most related to our results here are those of Narodytska and Walsh
[42], and Fitzsimmons and Hemaspaandra [33]. Narodytska and Walsh [42] were the first to
look at complexity of constructivemanipulation under top-truncated voting and they provided
an analysis for weighted and unweighted elections using three particular voting protocols,
namely Borda, STV, and the Copeland rule. In fact, results in Sect. 4.1 of this paper can
be considered as a direct extension to their work. The other most relevant work is that of
Fitzsimmons and Hemaspaandra [33] where they looked into how the complexity of bribery,
control, and manipulation is affected when different types of partial preferences are allowed.
Here we note except for one theorem (Theorem 10)—which was proved independently by
Fitzsimmons and Hemaspaandra [33, Theorem 14]—and the case of the Borda scoring rule
in our Theorems 27 and 28 (which were shown by Fitzsimmons and Hemaspaandra [33,
Theorems 4, 5]), none of our other results overlap with theirs as all their results are derived
using only one of the following protocols: Borda, plurality, t-approval, and Copelandα .While
most of the results in both of these papers and our results in Sect. 4 assumes the general
preference setting (i.e., one where there is no restriction on the structure of the agents’
preferences), Sect. 5 of this paper looks at the complexity of manipulation and bribery with
top-truncated ballots when the preferences of the agents have some structure. Besides the
two papers mentioned above, we also note that, subsequent to the conference version of our
results in Sect. 5, there is very recent work by Fitzsimmons and Hemaspaandra [34] where
they look at the complexity of manipulation with different types of partial preferences in the
single-plateaued setting and for a single-peaked setting in which at most two ties are allowed
per position.

Additionally, there has also been somework in this line of research that has looked at other
election problems when preferences are only partially specified. Among these, the work of
Konczak and Lang [39] introduced the possible and necessary winners problem, and Xia and
Conitzer [48] extended this further to study the possible and necessary winners problem for
many different voting rules when the number of candidates are unbounded and the elections
unweighted. Furthermore, Lu and Boutilier [41] looked at the multi-winner problem when
only partial preferences are provided, and Baumeister et al. [6] discussed planning various
kinds of campaigns in settings where the ballots can be truncated at the top, bottom, or both. A
special case of the extension-bribery problem they introduced in that paper is closely related
to the manipulation problem with top-truncated ballots.

The second line of research that is closely related to results here is the work on
structured preference profiles. This line of research has mainly looked at single-peaked
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preferences and more recently at nearly single-peaked preferences. The notion of single-
peaked preferences was introduced by Black [7] and subsequently there has been a lot of
work in the social choice literature on the same. Among these, in particular, we note the
work of Cantala [11] who introduced the concept of “single-peaked with outside options”
which is identical to the notion of single-peaked with top-truncated ballots that we study
here in Sect. 5, and the work of Barberá [1] who discussed how properties of different
variants of single-peaked preferences change for varying amounts of indifference permit-
ted.

In computational social choice, three papers that are in this line of research and are most
related to our work are those of Faliszewski et al. [29], Brandt et al. [9], and Faliszewski et
al. [30]. The first two discuss manipulation and control, and bribery, respectively, and show
howmost of theNP-hardness shields for these manipulative actions vanish in single-peaked
settings. The third paper studies the complexity of manipulative actions in nearly single-
peaked electorates and shows how in many cases the hardness results evaporate. Our work in
Sect. 5, in contrast to all the ones above, follows the theme of reinstating these combinatorial
protections by allowing top-truncated voting.

Finally, although the above mentioned papers are by far the most related to our work, it is
worth noting that one problem which has received considerable attention from researchers in
computational social choice is that of single-peaked consistency where, informally, the task
is to determine if a given set of preferences is single-peaked or otherwise (see [2,17,23,24,
32,40]).

3 Preliminaries

We model an election as a pair E = (C, V ), where C = {c1, . . . , cm} is the set of candidates
andV = {v1, . . . , vn} is the set of voters. Each voter in turn ismodeled as a pairvi = (�i , wi ),
where �i is the preference order of vi over C and wi is a positive integer weight associated
with the voter vi . A preference order, �i , is said to be a complete order (or a complete
vote) when it is antisymmetric, transitive, and a total ordering on C . On the other hand, �i

is said to be a top-truncated order (or simply, a top order) when it is a linear order over a
non-empty subset of C and where all the unranked candidates are tied and are assumed to be
ranked below the ranked candidates. Throughout, a strict preference between two candidates
is denoted by “>”, while a tie between them is denoted by “∼”.

A preference profile is a vector P = 〈�1, . . . ,�n〉 of individual preferences. An election,
E , is said to be unweighted if for all vi ∈ V , wi = 1. On the other hand, it is said to be
weighted if ∃vi ∈ V such that wi > 1.

3.1 Voting protocols

An election system or a voting protocol takes in a preference profile, P , as input and it outputs
a collection W ⊆ C called the winner set. The following are the commonly-studied voting
rules that we consider in this paper. We first present their original definitions which is on
complete orders and then discuss how top orders can be handled.

1. Positional scoring rules A positional scoring rule is defined by a scoring vector α =
〈α1, . . . , αm〉, where α1 ≥ · · · ≥ αm . For each voter v ∈ V , a candidate receives αi

points if it is ranked in the i th position by v. In a scoring rule, all the candidates with
highest total score form the winner set. Some examples of scoring rules are the plurality
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rule with α = 〈1,
m−1

︷ ︸︸ ︷

0, . . . , 0〉, the Borda rule with α = 〈m − 1, m − 2, . . . , 0〉, and the

veto rule with α = 〈
m−1

︷ ︸︸ ︷

1, . . . , 1, 0〉.
2. Scoring elimination rules Let X be any scoring rule. Given a complete ordering,

eliminate(X ) is the rule that successively eliminates the candidate with the lowest score
according to X . Once a candidate is eliminated, the rule is then repeated with the reduced
set of candidates (meaning that if there were k candidates previously, after a candidate is
eliminated, we treat the instance as one with k −1 candidates and apply the rule for these
k − 1 candidates) until there is a single candidate left (in which case the candidate is the
uniquewinner) or all the candidates remaining have the same score (inwhich case all these
candidates form the winning set). The elimination order, e, for an elimination rule is the
order in which the candidates are successively eliminated. For instance, e = (c1, . . . , ck)

implies that c1 was the first candidate to be eliminated while ck was the last. Here, we
mainly consider two scoring elimination rules: eliminate(Borda)—which is also known
as Baldwin’s rule or Fishburn’s version of Nanson’s rule [44]—and eliminate(Veto).

3. Plurality with runoff The plurality with runoff rule proceeds in two steps. In the first
step, all the candidates except the top two with the most number of first votes are elimi-
nated. This is followed by a second round where the winner is determined by a pairwise
comparison between the top two candidates.

4. Copelandα Let α ∈ Q, 0 ≤ α ≤ 1. In Copelandα (introduced by Copeland [15] for
α = 1

2 and parameterized by Faliszewski et al. [26]), for each pair of candidates, the
candidate preferred by the majority receives one point and the other one receives a 0. In
case of a tie, both receive α points. Here all the candidates whose total score is at least
as high as that of all the other candidates form the winner set.

5. Maximin Let NP (ci , c j ) denote the number of voters who prefer ci over c j in the pref-
erence profile, P . Then the maximin score of ci is si = min j �=i NP (ci , c j ). The winners
in the maximin rule are the ones with the highest score.

To deal with top-truncated orders in positional scoring rules where a voter ranks only
k out of the m candidates (k < m), we use the following three schemes that were used
by Narodytska and Walsh [42] in their preliminary work on manipulation with top orders
(Emerson [20] also used the same schemes for the Borda rule).

1. Round-up A candidate ranked in the i th position (i ≤ k) receives a score of αi , while
all the unranked candidates receive a score of αm . For any positional scoring rule X , we
denote this by X↑. Here we note that the only difference between the Round-up scheme
defined by Narodytska and Walsh [42] and the one defined here is with respect to the
score given to the unranked candidates. They assign a score of 0 to all the unranked
candidates, while we assign them a score of αm .

2. Round-downAcandidate ranked in the i th position (i ≤ k) receives a score ofαm−(k−i)−1,
while all the unranked candidates receive a score of αm . For any positional scoring rule
X , we denote this by X↓.

3. Average score A candidate ranked in the i th position (i ≤ k) receives a score of αi , while

all the unranked candidates receive a score of

∑

k< j≤m α j
m−k . For any positional scoring

rule X , we denote this by Xav .

Example 1 Let C = {c1, c2, c3, c4} and let v be a voter with top-truncated order �v : (c3 >

c1 > c2 ∼ c4). Then, in the round-up case, c3 receives a score of α1, c1 receives a score
of α2, and both c2 and c4 receive α4. In the round-down case, c3 receives a score of α2, c1
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receives a score of α3, and both c2 and c4 receive a score of α4, and in the average score
case, c3 receives a score of α1, c1 receives a score of α2, and both c2 and c4 receive a score
of α3+α4

2 .

In scoring elimination rules and plurality with runoff rule, top-truncated votes are dealt with
by using the round-up scheme described above. Here, we consider a vote to be valid only
until at least one of the candidates listed in it is remaining in the election. In other words,
we simply ignore a vote once all the candidates listed in it are eliminated. In the case of
Copelandα and the maximin rule, top orders are dealt with by just keeping to the definition
which assumes that all the unranked candidates are tied and are ranked below the ranked
candidates.

Condorcet-consistent voting rules An important property of a candidate is that of being
a Condorcet winner. A candidate is said to be a Condorcet winner (respectively, a weak-
Condorcet winner) if it is preferred over every other candidate by a strict majority of the
voters (respectively, by at least half of the voters).While it is not necessary that every election
instance has a Condorcet winner or even a weak Condorcet winner, a voting rule which, on
every input that has a weak-Condorcet winner, outputs the set of all weak-Condorcet winners
as the set of winners is said to be weak-Condorcet consistent. Among the voting rules defined
above, the maximin rule [31] and Copeland1 [9] are examples of weak-Condorcet consistent
rules.

3.2 Manipulative actions

We consider two weighted manipulative action problems, namely manipulation and bribery.
In particular, we study the Constructive Coalitional Weighted Manipulation (CWCM)
problem, the Destructive Coalitional Weighted Manipulation (DWCM) problem, and the
Weighted-bribery problem. CWCM and DWCM were first studied by Conitzer et al. [13]
and are described below. Informally, the main objective in CWCM is to decide if it is possible
for a certain set of voters (manipulators) to vote in such a way that it will result in a preferred
candidate winning, while in DWCM it is to decide if it is possible for the manipulators to
vote in such a way so as to ensure that a particular disliked candidate will not be a winner.

Definition 1 (CWCM) Given a set of candidates C , a set of weighted votes S (preferences of
the non-manipulators), the weights for a set of votes T (manipulators’ votes), and a preferred
candidate p, we are asked if there exists a way to cast the votes in T (i.e., for all v ∈ T ,
determine their �v) so that p is a winner in the election E = (C, S ∪ T ).

Definition 2 (DWCM) Given a set of weighted votes S (votes of the non-manipulators), the
weights for a set of votes T (manipulators’ votes), and a disliked candidate h, we are asked
if there exists a way to cast the votes in T so that h does not win the election.

The complexity-theoretic study of the bribery problemwas first introduced by Faliszewski
et al. [25]. The main objective in the bribery problem is to decide if there exists a subset of
voters whose votes can be changed, within a certain budget, to make a preferred candidate
win. Here we look at the weighted version of the bribery problem which is described below.

Definition 3 (Weighted-bribery) Given a set of candidates C , the set of weighted votes V ,
a preferred candidate p, and a limit k ∈ N, we are asked if there exists a way to change the
votes of at most k of the voters in V so that it results in p being a winner.

While there are two possible models—the unique winner model, where the objective is to
make the preferred candidate the unique winner, and the non-unique winner model, where
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the objective is to make the preferred candidate a winner—under which the problems defined
above can be studied, throughout, unless otherwise specified, we use the non-unique winner
model as our standard model. Also, we do not discuss how ties are handled since, as stated
above, the standard model we use throughout is the non-unique winner model where the
objective is just to make the candidate p a winner. As for the results which use the unique-
winner model, we are essentially assuming that the candidate p needs to win without having
to resort to any tie-breaking.

3.3 Computational complexity

For most of the NP-hardness results in this paper, we use reductions from either the well-
known NP-complete problem Partition (see, e.g., [36]), from a variant of the Partition
problem (Partition′), or from a variant of the subset sum problem (Fixed-Difference Sub-
set Sum).

Definition 4 (Partition) Given a set of non-negative integers S = {ai }1≤i≤n summing to 2K ,
we are asked if there exists a subset S1 of S which sums to K .

Definition 5 (Partition’) Given a set of non-negative integers S = {ai }1≤i≤n such that
∑

i ai = 2nK and ai ≥ K , for 1 ≤ i ≤ n, we are asked if there exists a subset S1
such that

∑

S1 = nK , where
∑

S1 denotes the sum of all the elements in the set S1.

TheNP-completeness of Partition′ can be shown by a reduction from the Partition prob-
lem and the proof can be found in the appendix.

Lemma 1 Partition′ is NP-complete.

Definition 6 (Fixed-difference subset sum) Given a set of non-negative integers S =
{ai }1≤i≤n summing to 2K , we are asked if there exist two disjoint subsets S1, S2 of S such
that

∑

S1 − ∑

S2 = K , where
∑

Si denotes the sum of all the elements in the set Si .

The NP-completeness proof of Fixed-Difference Subset Sum is very similar to the one
for Partition′ and can be found in the appendix.

Lemma 2 Fixed-Difference Subset Sum is NP-complete.

4 Complexity of manipulation in elections with top-truncated ballots

In this section, we address the question of how hard it is to manipulate elections if
the agents reveal only top-truncated preference orderings. In particular, we first look at
the weighted manipulation problem—both constructive and destructive manipulation—in
Sects. 4.1 and 4.2 under the assumption that manipulators have complete information about
the non-manipulators. Subsequently, we remove this assumption in Sect. 4.3 to study the
impact on complexity of manipulation with top-truncated ballots when there is uncertainty
about the non-manipulators’ votes.

4.1 Constructive manipulation

Here we look at the complexity of constructive manipulation when top-truncated ballots are
allowed.We begin by looking at scoring rules and we completely characterize the complexity
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of manipulation for all 3-candidate scoring rules when using each of the evaluation schemes
defined before (see Sect. 3.1). Note that in the complete votes case, all scoring rules except
plurality are known to be NP-complete for m ≥ 3 candidates [13,38]. While at initial
glance one might think that top-truncated voting may be of limited interest when there are
only three candidates, we emphasize that most of our results in this paper are hardness results
and thus state that even with three candidates certain problems are hard. We argue that this
is interesting in itself and provide a foundation for more general results as needed.1

4.1.1 Scoring rules

We start with a simple result which shows how computing if a coalition of manipulators
can manipulate X↑ (for any scoring rule X ), plurality↓, pluralityav , and veto↓ takes only
polynomial time.

Theorem 1 Computing if a coalition of manipulators can manipulate X↑, veto↓, plurality↓,
or pluralityav , where X is any positional scoring rule, with weighted top-truncated votes
takes polynomial time (for any number of candidates).

Proof For X↑, veto↓, and pluralityav , the manipulators can simply check if all of them voting
for p alone will make it a winner. If not, they cannot make p a winner.

In case of plurality↓, they can check if all of them placing p at the top and all the other
candidates in arbitrary order can make p a winner. ��

Next, we look at the complexity ofmanipulation for any scoring rule that is not isomorphic
to plurality or veto (we say that a scoring rule is isomorphic to another if the scoring vector
of one is a linear transformation of the other) and when using the round-down evaluation
scheme.

Theorem 2 For any 3-candidate positional scoring protocol X that is not isomorphic to
plurality or veto, CWCM with top-truncated votes in X↓ is NP-complete.

Proof Since there are only three candidates, the scoring vector for the corresponding posi-
tional scoring rule is defined by 〈α1, α2, α3〉, where α1 > α2 > α3 = 0 (because α1 = α2 is
isomorphic to veto, α2 = α3 is isomorphic to plurality, and α3 can be taken to be zero since
translating the scores in a scoring rule does not affect the outcome of the rule). Also, note
that if the three candidates are p, a, and b, each manipulator votes in one of the following
ways: (p > a ∼ b), (p > a > b), (p > b > a), where for (p > a ∼ b) candidate p gets a
score α2.

The problem is in NP since winner determination for any scoring rule can be done in
polynomial time. To showNP-hardness,we proceed by considering three cases: 1)α1 > 3

2α2

2) α1 < 3
2α2 3) α1 = 3

2α2. For the first two cases, we show a reduction from the Partition
problem, and for the third case we show a reduction from the Fixed-Difference Subset Sum
problem.
Case 1 α1 > 3

2α2. Given a Partition instance {ki }1≤i≤t summing to 2K , construct the fol-
lowing instance of CWCM, where p, a, and b are the three candidates. In S let there be two
voters, each of weight (2α1 − α2)K , voting (a > b > p) and (b > a > p), respectively. As

1 NP-completeness for three candidates does not automatically imply that it is equally hard for a larger number
of candidates (for example, see [29, Theorem 4.2] where it is shown that manipulating the 3-veto voting rule
is NP-complete for five candidates, but polynomial when there are at least six candidates). Therefore, future
work will have to resolve this issue.
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a result, a and b have a score of (2α1 − α2)(α1 + α2)K each. In T let each ki have a vote of
weight (α1 + α2)ki .

Suppose there exists a partition. Let those manipulators in one partition vote (p > a > b)

and those in the other vote (p > b > a). Then the score of p, a and b, is 2α1(α1+α2)K , and
so p is a winner (since all of them have the same score and we are considering the non-unique
winner model).

Conversely, suppose there exists a manipulation in favour of p. Let x, y, and z be the sum
of the ki ’s of the manipulators in T who vote (p > a > b), (p > b > a), and (p > a ∼ b),
respectively. So now, the score of p is ((x + y)α1 + zα2)(α1 + α2), while that of a and b
is ((2α1 − α2)K + xα2)(α1 + α2) and ((2α1 − α2)K + yα2)(α1 + α2), respectively. Since
there exists a successful manipulation, score of p should be at least as large as that of a, and
so we have ((x + y)α1 + zα2)(α1 + α2) ≥ ((2α1 − α2)K + xα2)(α1 + α2). Using the fact
that x + y + z = 2K , this simplifies to

(K − x)α2 ≥ z(α1 − α2). (1)

Again, the score of p should be at least as large as that of b, so we have

(K − y)α2 ≥ z(α1 − α2). (2)

Adding (1) and (2) and simplifying it, we have z(2α1−3α2) ≤ 0. Now, since we assumed
α1 > 3

2α2, this implies that z ≤ 0. But z cannot be less than 0, so it has to be equal to 0.
Plugging z = 0 in (1) and (2), we have x ≤ K and y ≤ K respectively. This together with
the fact that x + y + z = 2K implies that x = y = K , and therefore there exists a partition.
Case 2 α1 < 3

2α2. Given a Partition instance, construct the following instance of CWCM.
In S let there be a voter of weight 15K voting (b > a > p), a voter of weight 5K voting
(b > p > a), a voter of weight 11K voting (a > p > b), a voter of weight 9K voting
(a > b > p), a voter of weight 7K voting (p > b > a), and a voter of weight 7K voting
(p > a > b). As a result, the scores of a, b, and p are (20α1 + 22α2)K , (20α1 + 16α2)K ,
and (14α1 + 16α2)K respectively. In T let each ki have a vote of weight 6ki .

Suppose there exists a partition. Let those manipulators in one partition (who weight to
6K ) vote (p > b > a) and those in the other vote (p > a ∼ b). Then the score of all the
three candidates is 20α1K + 22α2K , and so p is a winner.

Conversely, suppose there exists a manipulation in favour of p. Let x, y, and z be the
total weight of manipulators in T who vote (p > a > b), (p > b > a), and (p > a ∼ b)

respectively. So now, the score of p is (x + y)α1 + zα2 + (14α1 + 16α2)K , while that of a
and b is (20α1 + 22α2)K + xα2 and (20α1 + 16α2)K + yα2 respectively. Since there exists
a successful manipulation, the score of p should be at least as large as that of a, and so we
have (x + y)α1 + zα2 + 14α1K + 16α2K ≥ (20α1 + 22α2)K + xα2. Using the fact that
x + y + z = 12K , this simplifies to

6(α1 − α2)K − xα2 ≥ z(α1 − α2). (3)

Again, the score of p should be at least as large as that of b, so we have

6α1K − yα2 ≥ z(α1 − α2). (4)

Adding (3) and (4) and simplifying it, we have (6K − z)(2α1 − 3α2) ≥ 0. Now, since we
assumed α1 < 3

2α2, this implies that (6K − z) ≤ 0, or z ≥ 6K . Plugging z ≥ 6K in (3)
and (4), we have x ≤ 0, and y ≤ 6K , respectively. But then x cannot be less than 0, so it has
to be equal to 0, and this in turn results in z ≤ 6K in (3). This combined with the fact that
we already showed z to be greater than or equal to 6K implies that z has to be equal to 6K .
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So plugging this in x + y + z = 12K , we have y = 6K , and this in turn implies there exists
a partition.
Case 3 α1 = 3

2α2. Consider the same instance of CWCM as in case 2. The scores of a, b,
and p are (20α1 + 22α2)K , (20α1 + 16α2)K , and (14α1 + 16α2)K respectively. In T let
each ki have a vote of weight 6ki .

Suppose there exists S1, S2 such that
∑

S1 − ∑

S2 = K . Let those manipulators who
are in S1 vote (p > b > a), those in S2 vote (p > a > b), and let all the remaining
manipulators vote (p > a ∼ b). If x, y, and z denote the sum of ki ’s of the manipulators
who vote for (p > a > b), (p > b > a), and (p > a ∼ b), respectively, then the
scores of p, a, and b are 9(x + y)α2 + 6zα2 + 37α2K , 52α2K + 6xα2, and 46α2K + 6yα2,
respectively. Now if there existed amanipulation, then the score of p has to be at least as large
as that of a and b. Let us consider p and a first. Whatever follows can be replicated for b.
Suppose score(p) ≥ score(a). This implies 9(x + y)α2+6zα2+37α2K ≥ 52α2K +6xα2.
Simplifying this we have, x + 3y + 2z ≥ 5K . But since y − x = K and x + y + z = 2K , we
know that x + 3y + 2z = 5K , and hence our assumption that score(p) ≥ score(a) is true.
Doing the same with respect to p and b, we will see that score(p) = score(b). As a result,
we can conclude that existence of S1, S2 such that

∑

S1 − ∑

S2 = K results in a successful
manipulation for p.

Conversely, suppose there exists a manipulation in favour of p. This implies that the score
of p is at least as much as that of a, and from above we know that this in turn results in the
inequality x + 3y + 2z ≥ 5K . Using the fact that x + y + z = 2K , we have y − x ≥ K .
Similarly, comparing p and b we have, y − x ≤ K . But then, y − x cannot be both greater
and lesser than equal to K at the same time. So y − x has to be equal to K , and this in turn
implies that there exists two sets S1, S2 such that

∑

S1 − ∑

S2 = K , where y = ∑

S1 and
x = ∑

S2. ��
Our final result for scoring rules is when the evaluation scheme used is average score.

Theorem 3 For any 3-candidate positional scoring protocol X that is not isomorphic to
plurality, CWCM with top-truncated votes in Xav is NP-complete.

Proof Like in Theorem 2, since there are only three candidates, the scoring vector for the
corresponding positional scoring rule is defined by 〈α1, α2, α3〉, where α1 ≥ α2 > α3 = 0.
Also, note that if the three candidates are p, a, and b, each manipulator votes in one of the
following ways: (p > a ∼ b), (p > a > b), (p > b > a), where for (p > a ∼ b) candidate
p gets a score α1, a and b receive a score of (α2/2).

The proof uses a reduction from the Fixed-Difference Subset Sum problem and is very
similar to the one in case 3 of Theorem 2. Given an instance of Fixed-Difference Subset
Sum, construct the following instance of CWCM where in S we have a voter of weight
(4α1 + α2)K voting (b > a > p), a voter of weight (2α1 − α2)K voting (a > b > p), and
a voter of weight 2(α1 + α2)K voting (a > p > b). As a result, the scores of a, b, and p are
(4α1 + α2)(α1 + α2)K , (4α1 − α2)(α1 + α2)K , and 2α2(α1 + α2)K , respectively. In T let
each ki have a vote of weight 2(α1 + α2)ki .

Suppose there exists S1, S2 such that
∑

S1 − ∑

S2 = K . Let those manipulators who
are in S1 vote (p > b > a), those in S2 vote (p > a > b), and let all those remaining
vote (p > a ∼ b). If x, y, and z denote the sum of the ki ’s of the manipulators who
vote (p > a > b), (p > b > a), and (p > a ∼ b), respectively, then the scores of
p, a, and b are (4α1 + 2α2)(α1 + α2)K , ((4α1 + α2)K + 2(xα2 + zα2/2))(α1 + α2), and
((4α1−α2)K +2(yα2+zα2/2))(α1+α2), respectively. Now if there existed a manipulation,
then the score of p has to be at least as large as that of a and b. Let us consider p and a
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first. Whatever follows can be replicated for b. Suppose score(p) ≥ score(a). This implies
that (4α1 + 2α2)K ≥ (4α1 + α2)K + 2xα2 + zα2. Simplifying this we have, 2x + z ≤ K .
But since y − x = K and x + y + z = 2K , we know that 2x + z = K , and hence our
assumption that score(p) ≥ score(a) is true. Doing the same with respect to p and b, we
will see that score(p) = score(b). As a result, we can conclude that existence of S1, S2 such
that

∑

S1 − ∑

S2 = K results in a successful manipulation for p.
Conversely, suppose there exists a manipulation in favour of p. This implies that the score

of p is at least as much as that of a, and from above we know that this in turn results in the
inequality

2x + z ≤ K . (5)

Similarly, comparing p and b we have,

2y + z ≤ 3K . (6)

Now, using the fact that x + y + z = 2K , we know that inequality (5) reduces to y − x ≥ K
and inequality (6) reduces to y − x ≤ K . But then, y − x cannot be both greater and lesser
than equal to K at the same time. So y − x has to be equal to K , and this in turn implies that
there exists two sets S1, S2 such that

∑

S1 − ∑

S2 = K , where y = ∑

S1 and x = ∑

S2. ��

4.1.2 Scoring elimination rules

We now consider scoring elimination rules and first look at how top-truncated voting affects
the complexity of manipulation in eliminate(Veto). Following that we prove a general result
for all scoring elimination rules.

Theorem 4 For eliminate(Veto), in the unique winner model, any manipulation that can be
achieved by casting top-truncated votes can be achieved if only complete votes were allowed.

Proof Consider an arbitrary set W of top-truncated votes which—along with the set S of
non-manipulators’ votes—results in an elimination order e = (c1, c2, . . . , cm = p), where p
is the preferred candidate, and ci is the candidate eliminated in the i th round. Now, consider
the set of votes X such that each vote in W is replaced by (p = cm > cm−1 > · · · > c1). X
along with S results in the same elimination order e. Therefore, we see that any manipulation
that can be achieved by a set of top-truncated votes can be achieved by casting an equivalent
set of complete votes. ��

Since top-truncated voting does not encourage more strategic voting, it follows that
for bounded number of candidates—i.e., when there are only a (small) fixed number of
candidates—we can use the result by Coleman and Teague who showed that CWCM for
eliminate(Veto) is in P when the votes are complete [12, Theorem 11].

Corollary 5 In the unique winner model, computing if a coalition of manipulators can
manipulate eliminate(Veto) with weighted top-truncated votes takes polynomial time for
bounded number of candidates.

Next, we consider elimination versions of 3-candidate scoring rules in general and show
that CWCMwith top-truncated votes isNP-complete for elimination version of any scoring
rule that is not isomorphic to veto. For this, we first show that top-truncated voting does not
change the complexity of a related problem, Anti-WCM, for any scoring rule.
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Definition 7 (Anti-WCM [12]) Given a set S of weighted votes, the weights for a set of votes
T , and a disliked candidate d , we are asked if there exists a way to cast the votes in T so that
it results in d receiving the lowest score.

Theorem 6 When using the round-up evaluation scheme, top-truncated voting does not
change the worst-case complexity of Anti-WCM for any scoring protocol.

Proof Assume there exists an arbitrary set W of top-truncated votes which results in d
receiving the lowest score. For each of the top-truncated votes in W , let us complete them
in the following way: If d is included in the vote, append all the other candidates who are
not part of it in any arbitrary order. If d is not there, place d at the bottom of the preference
ordering (as the mth preferred candidate) and the rest in any arbitrary order. Completing the
votes as above does not change the candidate with the lowest score. ��

As a result of the above theorem, we have the following corollary which says that for any
scoring rule not isomorphic to veto, Anti-WCM with top-truncated votes is NP-complete.
Note that the corollary here is based on the result of Coleman and Teague who proved that
Anti-WCM isNP-complete for all scoring rules not isomorphic to veto [12, Corollary 10.1].

Corollary 7 For any scoring rule with α = 〈α1, . . . , αm〉, Anti-WCM with top-truncated
votes is in P if α1 = · · · = αm−1 and is NP-complete otherwise.

Next, we use the above result to show our main result concerning all scoring elimination
rules except eliminate(Veto).

Theorem 8 For any 3-candidate scoring rule X that is not isomorphic to veto, CWCM with
top-truncated votes in eliminate(X) is NP-complete.

Proof Since there are only three candidates and the corresponding positional scoring rule
is not isomorphic to veto, the scoring vector for the same is defined by 〈α1, α2, α3〉, where
α1 > α2 ≥ α3 = 0. Showing that the problem is inNP is easy. To showNP-hardness,weuse
a reduction from theAnti-WCMproblem. Given an arbitrary instance of Anti-WCM〈S, T, h〉
with 3 candidates, where a, b, and h are the three candidates, and h is the disliked candidate,
we construct an instance of CWCM with the same set of candidates, the same set of manip-
ulators T , and to the S from the Anti-WCM instance we add the following set S′ of voters
such that K is greater than the sum of the weights in S and T combined. In each case, we
add 1 voter of the corresponding type and weight specified below.

K : (a > b > h)

K : (b > h > a)

K : (h > a > b)

We set a to be the preferred candidate in the CWCM instance.
Suppose there was a way to make h receive the lowest score in the Anti-WCM instance.

This implies that h receives the lowest score in the CWCM instance since all the three
candidates a, b, and h are tied in S′ (each of them receives a score of α1K + α2K from S′).
Therefore, h will be eliminated in the first round, and following that the votes in S′ would be:

K : (a > b)

K : (b > a)

K : (a > b)
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And now since there are only two candidates, for any scoring rule X , eliminate(X) is equiv-
alent to eliminate(Veto). Hence, the candidate with the most number of last preferences will
be eliminated next. In our case this is b since it has K extra last preferences. Therefore, a
wins, thus ensuring a successful manipulation in the CWCM instance.

Conversely, suppose there exists a successful constructive manipulation for a in the
CWCM instance. Now, this is possible only if h is eliminated in the first round, because
otherwise if b is eliminated in the first round, then a will have K extra last preferences thus
resulting in its elimination in the second round. This in turn implies that there is a successful
manipulation against h in the Anti-WCM instance. ��

Since the pluralitywith runoff rule is the same as STVwhen there are only three candidates,
we have the following corollary which also follows from the result of Narodytska and Walsh
[42, Proposition 6].

Corollary 9 For the 3-candidate plurality with runoff rule, CWCM with top-truncated votes
is NP-complete.

4.1.3 Copelandα

Narodytska and Walsh [42] showed that CWCM with top-truncated votes in the Copeland
rule (Copeland0.5) is NP-complete for four candidates. Additionally, they also conjectured
that the result holds when the number of candidates is three. Here we prove that conjecture,
and also show that our hardness result holds for all rational α ∈ [0, 1). We note that the
following result was also independently obtained by Fitzsimmons and Hemaspaandra [33].

Theorem 10 Let α be a rational number with 0 ≤ α < 1. For Copelandα , CWCM with
top-truncated votes is NP-complete for three candidates.

Proof It is easy to show that the problem is in NP . To show that it is NP-hard, we use
a reduction from the Fixed-Difference Subset Sum problem. Given an arbitrary instance of
Fixed-Difference Subset Sum, construct an instance of CWCM where p, a, and b are the
three candidates. In S let there be a voter of weight 3K voting (a > b > p) and a voter of
weight K voting (b > a > p). In T let each ki have a vote of weight 2ki .

Suppose there exists S1, S2 such that
∑

S1−∑

S2 = K . In Copelandα , it can be assumed
that all the manipulators rank p first. So, let the manipulators in S1 vote (p > b > a), those
in S2 vote (p > a > b), and let the rest vote for (p > a ∼ b). If NV (r, s) denotes the
total number of votes in V which rank r prior to s and DV (r, s) = NV (r, s) − NV (s, r),
then DS∪T (p, a) = 0 and DS∪T (p, b) = 0. Therefore, the score of p is 2α. Also since
∑

S1 − ∑

S2 = K , DT (a, b) = −2K , while DS(a, b) = 2K . Therefore, DS∪T (a, b) = 0
and so, both receive a score 2α. Since all of them have the same score, p is a winner.

Conversely, suppose there exists a successful manipulation in favour of p. If x, y, and z,
denote the sum of ki ’s of the manipulators in T who vote (p > a > b), (p > b > a), and
(p > a ∼ b), respectively, then without taking into account the pairwise election between a
and b in T the score of p, a, and b is 2α, 1 + α, and α, respectively. Now since 2α < 1 + α

for all rational α ∈ [0, 1), therefore, the only way p would win this is if including the
pairwise election between a and b in T results in a tie between them. So this implies that
DS∪T (a, b) = 2K + 2x − 2y = 0 and that y − x = K . This in turn implies that there exists
sets S1 and S2 such that

∑

S1 − ∑

S2 = K , where y = ∑

S1 and x = ∑

S2. ��
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4.1.4 Maximin

Although we have seen instances like in scoring rules with the round-up evaluation scheme
(Theorem 1) where top-truncated voting decreases the complexity of manipulation (as com-
pared to the complete votes case), they aren’t really conclusive in the sense that one could
question the choice of the evaluation scheme that in turn caused the result. Clearly, the round-
up evaluation scheme isn’t a good choice as what we’re essentially doing by employing the
same is to encourage the manipulators to treat it just as a plurality-type rule. Therefore, one
question that could arise is: “Is there a voting system forwhichnomatter how the top-truncated
votes are dealt with the complexity of manipulation with top-truncated ballots decreases?”.
We answer this question below in the affirmative. We see that as long as all the unranked
candidates are considered tied and are assumed to be ranked below the ranked candidates
(which is the natural definition of a top-truncated vote), the complexity of manipulation with
top-truncated ballots is in P for the maximin rule. Note that CWCM for the maximin rule is
known to be NP-complete for four candidates when we consider only complete votes [13,
Theorem 8].2

Theorem 11 Computing if a coalition of manipulators can manipulate the maximin protocol
with weighted top-truncated votes takes polynomial time (for any number of candidates).

Proof Let W be an arbitrary set of top-truncated votes which—along with the set S of non-
manipulators’ votes—results in p being a winner. Since in the maximin rule moving p to
the top will never hurt p, we can safely assume that all the votes in W have p at the top.
Now for every vote in W , replace it by (p > c1 ∼ · · · ∼ cm−1), where c1, . . . , cm−1 are
the other candidates in an m-candidate election. By doing so we see that p’s score does not
change. Also, note that for all the other candidates their scores can only decrease or stay the
same, but can never increase. Therefore, any constructive manipulation achieved for p can
be achieved if all manipulators just vote (p > c1 ∼ · · · ∼ cm−1). ��
4.2 Destructive manipulation

In this section, we look at the complexity of destructive manipulation when top-truncated
ballots are allowed. We begin by looking at a broad class of rules for which top-truncated
voting has no impact on strategic voting. This class consists of all voting rules that are i) based
on numerical scores—meaning that the candidates are assigned numerical scores based on
the votes, ii) where the candidates with the highest score form the winner set, and iii) are
score-monotone, meaning that if a voter vi changes his or her vote (from > to >′) in such a
way that {b : a > b} ⊆ {b : a >′ b}, then a’s score will not decrease (or informally, more
support for a candidate will not decrease it’s score).

Theorem 12 For any voting rule that is based on numerical scores, where the candidates with
the highest score forms the winner set, and is score-monotone, any destructive manipulation
that can be achieved by casting top-truncated votes can be achieved if only complete votes
were allowed.

Proof Consider such a voting rule X . Let the destructive manipulation be against the can-
didate h. Now, suppose there exists an arbitrary set of top-truncated votes W that—along
with the set S of non-manipulators’ votes—results in the destructive manipulation of h in X .

2 Although Conitzer et al. [13] use the unique winner model, it can be verified that the result holds for the
non-unique winner model as well.
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Since X is based on scores, we can list the candidates in the decreasing order of their scores.
Let c1(�= h), c2, . . . , cm be this ordering. Next, consider the set of votes W ′ which is formed
by completing the votes in W in the following way: replace each vote in W by placing c1
at the top, h at the bottom (i.e., at the mth position), and the rest of the candidates in any
arbitrary order. Since X is score-monotone, W ′ along with S cannot result in the score of c1
decreasing and nor can it result in the score of h increasing. Therefore, if W resulted in the
destructive manipulation of h, then so should W ′. ��

Since top-truncated voting has no impact on destructive manipulation in rules that are
based on numerical scores, where the candidates with the highest score forms the winner set,
and are score-monotone, it follows that for bounded number of candidates we can use the
result by Conitzer et al. [13] who showed that DWCM was in P for all such rules when only
complete votes are allowed.

Corollary 13 DWCM with top-truncated votes is in P for all scoring rules, for the maximin
rule, and for Copelandα .

Next, we consider the elimination versions of all 3-candidate scoring rules and we show
how for all scoring rules that are not isomorphic to veto DWCM isNP-complete. We prove
this by using a similar reduction as in Theorem 8 from an arbitrary instance of Anti-WCM.

Theorem 14 For any 3-candidate positional scoring rule X that is not isomorphic to veto,
DWCM in eliminate(X) with top-truncated votes is NP-complete.

Proof Since there are only three candidates, the scoring vector for the corresponding posi-
tional scoring rule is defined by 〈α1, α2, α3〉, where α1 > α2 ≥ α3 = 0. Showing that the
problem is in NP is easy. To show NP-hardness, we use a reduction from the Anti-WCM
problem (see Corollary 7). Given an arbitrary instance of Anti-WCM〈S, T, h〉 with 3 candi-
dates, where a, b, and h are the three candidates, and h is the disliked candidate, we construct
an instance of DWCM with the same set of candidates, the same set of manipulators T , and
to the S from the Anti-WCM instance we add the following set S′ of voters such that K is
greater than the sum of the weights in S and T combined. In each case, we add 1 voter of the
corresponding type and weight specified below.

K : (a > h > b)

2K : (h > a > b)

K : (b > h > a)

2K : (h > b > a)

3K : (a > b ∼ h)

3K : (b > a ∼ h)

We set h to be the disliked candidate in the DWCM instance.
Suppose there was a way to make h receive the lowest score in the Anti-WCM instance. If

scoreS(a) denotes the score candidate a receives from S, then this implies that scoreS∪T (a)

> scoreS∪T (h), and scoreS∪T (b) > scoreS∪T (h). Also, note that all the three candidates a, b,
and h are tied in S′ as each of them receive a score of 4α1K + 2α2K . This in turn implies
that h receives the lowest score in the DWCM instance, and so will be eliminated in the first
round. Thus, existence of a successful manipulation in the Anti-WCM instance ensures the
existence of a successful manipulation in the DWCM instance.
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Conversely, suppose there exists a successful destructive manipulation against h in the
DWCM instance. We first show that this is possible only if h is eliminated in the first round
in eliminate(X). To do so, let us assume it were not the case and that one of a or b was
eliminated in the first round. Let us consider a first. If a was eliminated in the first round
then the votes in S′ would now be:

K : (h > b)

2K : (h > b)

K : (b > h)

2K : (h > b)

3K : (b > h)

Since the elimination ofa means that there are only two candidates remaining, fromnowon
we can assume our protocol to be equivalent to plurality (since any scoring rule is equivalent
to plurality when there are only two candidates). So now, scoreS′(h) − scoreS′(b) = K and
since K is greater than sum of the weights in S and T combined this implies that in the
subsequent round b will be eliminated, thus resulting in h winning the DWCM instance.
Therefore, there cannot be a destructive manipulation against h in the DWCM instance if a
is eliminated in the first round. Similarly, by doing things identically for candidate b, we can
see that a destructive manipulation against h will not be possible if b is eliminated in the first
round. This in turn leads us to conclude that a successful destructive manipulation against h
is possible only if h is eliminated in the first round. But then, since all the three candidates
are tied in S′, the only way this can happen is if h receives the lowest score in S. Or in other
words, a successful destructive manipulation against h in the DWCM instance is possible
only if there exists a successful manipulation against h in the Anti-WCM instance. ��

Again, since the plurality with runoff rule is equivalent to STV when there are only three
candidates, we have the following corollary.

Corollary 15 For the 3-candidate plurality with runoff rule, DWCM with top-truncated votes
is NP-complete.

4.3 Impact on complexity when there is uncertainty about the non-manipulators’
votes

So far, we have looked at the complexity of manipulation with top-truncated ballots when
the manipulators have complete information on the non-manipulators’ votes. Although this
is a useful setting to study, especially given that it enables us to look at the hardness of
manipulation without having to worry about the complexities that are introduced as part of
the uncertainty model, the assumption that the manipulators will have complete information
isn’t always realistic. Therefore, we now look at how incomplete information about the
non-manipulators impacts the complexity of manipulation with top-truncated ballots.

To model the incomplete information setting, we consider the following two scenarios
and we study each of them separately.

1. What if only top-truncated preference orderings of the non-manipulators were visible to
the manipulators?

2. What if the manipulators have only probabilistic information on the votes of the non-
manipulators?
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Before we go on to the results, we note that the partial information assumption has been
considered before. For instance, Conitzer et al. [13] considered the second setting for the
case of complete votes, and Briskorn et al. [10] and Erdélyi and Reger [22] looked at the
problem of bribery under different models of partial information. Additionally, there is also
recent work by Dey et al. [16] which looks at the complexity of manipulation under the
partial information assumption. Here they define three notions of manipulation and of these
we note that the Weak Manipulation (WM) notion that they define is a generalization to the
first scenario that we consider here. However, we also note that there are no overlaps between
the results here and in that paper since their results on the WM problem are on voting rules
that are not considered here.

4.3.1 When only top orders of the non-manipulators are visible

Before we look at the problem of manipulation, let us introduce the following problemwhich
is the weighted version of the extension-bribery problem which in turn was introduced by
Baumeister et al. [6]. Informally, the Weighted Extension-bribery problem captures one of
the tasks a campaign manager faces in the presence of truncated ballots and it is concerned
with trying to figure out if it possible to extend a partially specified vote—as in, if it is
possible to increase the number of ranked candidates specified in the preference order by
suitably filling it up—so as to ensure that the manager’s candidate wins. Now, since it is
natural that not all voters can be easily convinced, this entails that we assume that every voter
i has an associated cost function. This cost function for every agent i , which is assumed
to be dependent only on the number of added candidates, is the δi in the definition below.
More formally, the assumption is that δi : R+ ∪ {0} → R+ ∪ {0}, δi (0) = 0, and δi is
non-decreasing (at this point we refer the reader to Baumeister et al. [6] for more a detailed
discussion on the extension-bribery problem).

Definition 8 (Weighted extension-bribery) We are given a set S of votes which are possibly
top-truncated, the weights of each of the voters in V , a collection Δ = (δ1, . . . , δn) of
extension-bribery cost functions, a preferred candidate p, and a non-negative integer B (which
is the budget). We are asked if there exists an extension to the votes in S with cost ≤ B such
that p is the winner.

Here we are concerned with only a special case of the Weighted Extension-bribery which
we refer to as the Weighted Extension-bribery with zero costs where δi = 0, 1 ≤ i ≤ n.

Next, before we look at the complexity of Weighted Extension-bribery with zero costs
for all the voting rules considered in this section, consider the following version (CWCM∗)
of CWCM with top-truncated votes where the only difference is that here we make it nec-
essary for the non-manipulators to always have complete ballots (i.e., in CWCM∗ only the
manipulators can cast top-truncated votes).

Definition 9 (CWCM∗) CWCM∗ with top-truncated votes is the same problem as CWCM
with top-truncated votes, with the additional restriction that the non-manipulators always
have complete preference orders.

The first thing to observe here is that all the NP-complete results for CWCM with top-
truncated votes from Sect. 4.1 hold for CWCM∗ as well, since a close look at the proofs
for Theorems 2, 3, 8, and Theorem 10 reveal that in all the cases we showed reductions to
instances which always had complete orders for the non-manipulators. Hence, we have the
following theorem.
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Theorem 16 CWCM∗ with top-truncated votes is NP-complete for 3-candidate X1↓, 3-

candidate X2
av , eliminate(X3), 3-candidate Copelandα for α ∈ [0, 1), and 3-candidate

plurality with runoff rule, where X1 represents all scoring rules except plurality and veto,
X2 represents all scoring rules except plurality, and X3 represents all scoring rules except
veto.

The second observation to make regarding CWCM∗ with top-truncated votes is that it is
a special case of Weighted Extension-bribery with zero costs, where some of the ballots are
complete (those of the non-manipulators) and some are empty (those of the manipulators).
Therefore, any hardness result for CWCM∗ carries over forWeighted Extension-bribery with
zero costs, and so we have the following theorem.

Theorem 17 Weighted extension-bribery problem with zero costs is NP-complete for 3-
candidate X1↓, 3-candidate X2

av , eliminate(X3), 3-candidate plurality with runoff, and 3-

candidate Copelandα for α ∈ [0, 1), where X1 represents all scoring rules except plurality
and veto, X2 represents all scoring rules except plurality, and X3 represents all scoring rules
except veto.

Additionally, we also have the following result which shows that Weighted Extension-
bribery with zero costs is in P for certain voting rules considered here.

Theorem 18 Weighted Extension-bribery with zero costs is in P for X↑, veto↓, plurality↓,
pluralityav , and the maximin protocol, where X is any positional scoring rule.

Proof For all the above mentioned protocols except plurality↓, the best we can do is to
extend each top-truncated vote by placing p at its end (i.e., place p as kth candidate if
k − 1 candidates are already ranked), if it isn’t already present. In case of plurality↓, the best
strategy is to complete each of the top-truncated votes by placing p at the topmost position
possible followed by all the other as-yet unranked candidates in any arbitrary order. ��

Next we show that if Weighted Extension-bribery with zero costs is hard then constructive
manipulation with even a single manipulator is hard.

Definition 10 (CWIM-TTU) In Constructive Weighted Individual Manipulation under Top-
Truncated Uncertainty (CWIM-TTU), we are given a set S of partial votes of the non-
manipulators, the weight of the manipulator, and a preferred candidate p. We are asked if the
manipulator can cast his vote in such a way so as to ensure that there is at least one extension
to the votes in S that makes p a winner.

Theorem 19 If Weighted Extension-bribery with zero costs is NP-hard for a given protocol
with k candidates, then CWIM-TTU with top-truncated votes is also NP-hard for it with k
candidates.

Proof Construct an instance of CWIM-TTU from an Weighted Extension-bribery with zero
costs instance by just adding a manipulator of weight 0.

Combining Theorems 17 and 19, we have the following result which says that for all the
protocols considered in Sect. 4.1 for which CWCMwith top-truncated ballots was hard, even
individual manipulation with top-truncated votes is hard when there is uncertainty about the
non-manipulators’ votes.
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Theorem 20 CWIM-TTU with top-truncated votes is NP-complete for 3-candi-date X1↓,

3-candidate X2
av , eliminate(X3), 3-candidate plurality with runoff rule, and 3-candidate

Copelandα for α ∈ [0, 1), where X1 represents all scoring rules except plurality and veto,
X2 represents all scoring rules except plurality, and X3 represents all scoring rules except
veto.

Finally,we conclude this section by showing that theCWIM-TTUwith top-truncated votes
is in P for eliminate(Veto) (it is easy to see that it is also in P for all the rules mentioned in
Theorem 18). We show this by first proving that Weighted Extension-bribery with zero costs
is in P for eliminate(Veto).

Theorem 21 In the unique winner model, Weighted Extension-bribery with zero costs is in
P for eliminate(Veto) when the number of candidates is bounded.

Proof Suppose there was an arbitrary extension W which resulted in p winning. Let the
corresponding elimination order be e = (c1, c2, . . . , cm(= p)), where ci is the candidate
eliminated in the i th round. Now, we claim that the same elimination order can be achieved
by doing the following:

– In each of the top-truncated votes, complete it by placing the candidates in the reverse
order in which they appear in e. That is, place p if not already present, followed by cm−1

if not present, and so on until c1.

Doing the above results in the same elimination order as e. This can be shown through
an inductive argument. When there are m candidates, c1 which is eliminated first in e has
been placed last wherever possible and this in turn will result in it getting eliminated first
in our completion. Once c1 is eliminated, we have m − 1 candidates with c2 placed last
wherever possible and therefore c2 will be eliminated next. Continuing this way, guarantees
the elimination order e.

To solve Weighted Extension-bribery, the campaign manager can try out all possible
elimination orders, extend the votes as outlined above, and see if any of them results in p
winning. Doing so will only take polynomial time since the number of candidates is bounded.

��
Theorem 22 In the unique winner model, CWIM-TTU with top-truncated votes is in P for
eliminate(Veto) when the number of candidates is bounded.

Proof Since theWeighted Extension-briberywith zero costs problem is inP , themanipulator
can try out all possible complete orders to check if manipulation is possible. This is enough
because, for eliminate(Veto), any manipulation that can be achieved by top-truncated votes
can be achieved by completing the votes appropriately (see Theorem 4). ��

The above result also implies that, in the unique winner model, CWCM under Top-
Truncated Uncertainty and with top-truncated votes is in P for eliminate(Veto) when the
number of candidates is bounded, since in eliminate(Veto) any manipulation that can be
induced by an arbitrary set of the manipulators’ vote can be induced if all the manipulators
vote in the same way [12, Lemma 12].

4.3.2 When there is only probabilistic information on the non-manipulators

Manipulation under probabilistic uncertainty was introduced by Conitzer et al. [13]. In their
work they introduced the Weighted Evaluation problem which, given a probability distribu-
tion on the votes, and a number r ∈ [0, 1], asks if the probability of a candidate winning
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is greater than r . Subsequently, they also proved that if CWCM (with complete votes) for
a voting protocol is hard then so is Weighted Evaluation [13, Theorem 15]. Now, since we
additionally allow top-truncated votes, we can state the following result which is almost
equivalent to [13, Theorem 15] with the only difference being that the “set of all possible
votes” would now contain top-truncated votes as well and that the reduction here is from
CWCM with top-truncated votes. In fact, most of the results in this section are only exten-
sions to the corresponding result from Conitzer et al.’s paper [13] that arise as a result of
allowing top-truncated voting.

Theorem 23 If CWCM with top-truncated votes is NP-hard for a given protocol with k
candidates, then Weighted Evaluation when top-truncated votes are allowed is also NP-
hard for it (with k candidates) even if r = 0, the votes are drawn independently, and only the
following types of distributions are allowed: (1) the vote’s distribution is uniform over all
possible votes, or (2) the vote’s distribution puts all of the probability mass on a single vote.

Proof We can proceed exactly as in [13, Theorem 15] to prove this result. To begin, consider
an arbitrary instance of CWCMwith top-truncated votes with the set S of non-manipulators,
T of manipulators, and p, the preferred candidate. Let the Weighted Evaluation instance be
the same, with r = 0, and p being the candidate to be evaluated. Now, for the voters in
S, since their votes are already given in the CWCM instance, in the Weighted Evaluation
instance its distribution places all of the probability mass on that given vote. On the other
hand, if the voter was in T, then its vote is drawn uniformly from the set of all the possible
votes. Now, it is easy to see that p wins with a probability greater than zero in the Weighted
Evaluation instance if and only if there exists some way to cast votes for voters in T such
that there is a successful constructive manipulation in favour of p in the CWCM instance. ��
Corollary 24 Weighted Evaluation when top-truncated votes are allowed is NP-hard for
3-candidate X1↓, 3-candidate X2

av , eliminate(X3), 3-candidate plurality with runoff, and
3-candidate Copelandα for α ∈ [0, 1), when the votes are drawn independently, and the
distributions allowed are: (1) uniform over all possible votes, or (2) the vote’s distribution
puts all of the probability mass on a single vote, where X1 represents all scoring rules except
plurality and veto, X2 represents all scoring rules except plurality, and X3 represents all
scoring rules except veto.

Next, we show a relation between theWeighted Evaluation andmanipulation with a single
manipulator as in [13]. Note that the difference between CWIMwith Uncertainty (CWIM-U)
that we define below and CWIM-TTU that we defined in the Sect. 4.3.1 is in how the partial
information about the non-manipulators’ votes is specified.

Definition 11 (CWIM-U) In Constructive Weighted Individual Manipulation under Uncer-
tainty (CWIM-U), given a distribution over all the non manipulators’ votes, the weights of
the non-manipulators, the weight of the manipulator, a preferred candidate, p, and a number
r ∈ [0, 1], we are asked if the manipulator can cast his vote in such a way so as to ensure p
wins with a probability greater than r .

Theorem 25 If Weighted Evaluation with top-truncated votes isNP-hard for a protocol with
k candidates and some restrictions on the distribution, then CWIM-U with top-truncated votes
is also NP-hard for the same protocol with k candidates and the same restrictions on the
distribution.

Proof Construct an instance of CWIM-U from an arbitraryWeighted Evaluation instance by
just adding a manipulator of weight 0. ��
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Finally, we show that Weighted Evaluation when top-truncated votes are allowed can be
hard even if CWCM with top-truncated votes is in P . To do so, we consider eliminate(Veto)
for which CWCM with top-truncated votes was shown to be in P for bounded number of
candidates (see Corollary 5).

Theorem 26 Weighted Evaluation when top-truncated votes are allowed is NP-hard in
3-candidate eliminate(Veto) even if r = 0, the votes are drawn independently, and the dis-
tribution over each vote has a positive probability for at most 2 of the votes.

Proof We show this by a reduction from the Partition problem. Given an instance of Partition,
construct an instance of Weighted Evaluation where a, b, and p are the three candidates. Let
there be a vote of weight 1 for (p > a > b). For each ki in the partition instance, let it have
a weight ki and vote for (a > p > b) and (b > p > a) with probability 1/2 each.

Let x and y denote the sum of the weights of the voters voting (a > p > b) and
(b > p > a), respectively. Next, consider the case when x ≥ K + 1. If this is the case, then
since x + y = 2K , this implies that y ≤ K − 1 and so p will get eliminated in the second
round. On other hand if x ≤ K − 1, then y ≥ K + 1 and so again p will get eliminated in
the second round. Hence we see that p wins if and only if (a > p > b) and (b > p > a)

are voted by exactly K of the vote weight as failing to do so would mean that p will be
eliminated in the second round. But then this is possible if and only if there exists a partition.

��

5 Reinstating combinatorial protections for manipulation and bribery in
single-peaked electorates

In the previous section we looked at the complexity of manipulation when the voters are
allowed to cast top-truncated ballots. The fundamental assumption in all of the resultswas that
there is no particular structure in the agents’ preferences, and so, given the set of candidates,
C , it was assumed that an agent can specify any linear order over C or a non-empty subset
of it. However, there are many election scenarios where the preferences of agents have an
underlying structure, meaning that there is a subset of admissible votes that are never cast. For
instance, there have been studies that have shown that many important election scenarios like
theU.S. presidential elections and elections in committees are close to having a single-peaked
structure (see, for example, [8,43]).

One natural question that arises in the above context is: “What happens to the host of results
in computational social choicewhereNP-hardness shieldswere obtained for different voting
rules using constructions on combinatorially rich structures such as partitions and covers?
Do they still hold when the electorate has structured preferences?”. This question was first
raised by Walsh [47] and was subsequently studied in detail by Faliszewski et al. [29] for
manipulation and control in single-peaked electorates and by Brandt et al. [9] for bribery in
single-peaked electorates. The overarching theme in all these papers was that the previously
obtained combinatorial protections vanish when the voters have structured preferences—i.e.,
many of the NP-hardness results fall into polynomial time.

In light of the above results, our results in this section take this line of research in a new
direction by looking at the impact of partial preferences on manipulative actions in single-
peaked electorates. In particular, we consider top-truncated preferences, and we look at their
impact on manipulative actions in single-peaked settings. In doing so, we arrive at a number
of surprising results, which in turn form the theme of this section—of reinstating combina-
torial protections by allowing top-truncated voting. Although, as noted by Faliszewski et al.
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[30], polynomial time algorithms for manipulative actions such as bribery and control are not
always unethical or “bad” (as it can be a valuable tool in the hands of, say, the campaign man-
ager, committee chair etc.), in the majority of situations they aren’t socially “good” either and
hence we believe that it is important to have elections protected against them. This thought,
along with the “easiness” results previously obtained, and the fact that, among structured
preference profiles, single-peaked preferences are the most widely studied, forms the main
motivation of our work here. The overarching theme in this section is that top-truncated
voting is useful in reinstating combinatorial protections in single-peaked electorates, and we
believe that these results form a win-win scenario: allowing voters to specify top-truncated
ballots (or partial preferences, in general) is extremely useful and often necessary in many
multi-agent systems applications and even in real-world elections, and allowing this addi-
tional flexibility in turn gives us what we want in terms of making the complexity of many
manipulative-action problems hard.

The rest of this section is organized as follows. First, in Sect. 5.1, we formally define
single-peaked preferences. Subsequently, in Sect. 5.2, we present all our results for manip-
ulation when the electorate is single-peaked. Following this we turn to the problem of
weighted bribery in Sect. 5.3. Finally, in Sect. 5.4, we address the question on whether
our observations—of top-truncated voting reinstating combinatorial protections—are uni-
versal and ask if there are voting rules for which top-truncated voting is not beneficial in
terms of increasing the complexity of manipulation.

5.1 Single-peaked preferences

Most work in computational social choice assumes no particular structure for an agent’s
preference—i.e., given the set of candidates C , it is assumed that an agent can specify any
linear order overC or a non-empty subset of it (in the case of truncated orders). However, there
are many election scenarios where the preferences of agents have an underlying structure
and therefore there are some admissible votes that would never be cast. So, in this context,
we consider one of the most widely studied such notions (see, e.g., [9,29])—single-peaked
preferences.

The notion of single-peaked preferences, first introduced by Black [7], captures settings
where the preferences of a voter are based on a one-dimensional axis. The basic idea here
is that every voter has a peak (their most preferred alternative) and that their utility for an
alternative decreases the further it is away from this peak.More formally, a preference profile,
P , where the preference, �v , of each v ∈ V is a linear order over C , is said to be single-
peaked if there exists a linear order L over C such that for every triple of candidates a, b,

and c it holds that

(a L b L c ∨ c L b L a) �⇒ (∀v ∈ V ) [a >v b �⇒ b >v c] .

Although the above definition of single-peakedness assumes that the voters have complete
orders, when voters are allowed to present top-truncated ballots, this notion of single-
peakedness essentially captures those scenarios where they have a continuous range over
L over which their preferences are single-peaked and outside of which they are indifferent
among the alternatives. In social choice theory, this notion of single-peakedwith top-truncated
preferences has been captured as “single-peakedwith outside options” in the context of choos-
ing a level of public good by Cantala [11].

Example 2 Let C = {c1, c2, c3, c4} and c2 L c4 L c3 L c1 be a linear order over C . Then,
the preference orders (c4 > c3 > c2 > c1) and (c4 > c2 > c3 > c1) are both valid complete
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single-peaked orders, while the preference order (c4 > c1 > c2 > c3) is not a valid single-
peaked order. Also, with respect to the given linear order, (c4 > c3 > c2 ∼ c1) and (c4 >

c2 > c3 ∼ c1) are both valid top-truncated single-peaked orders, while (c4 > c1 > c2 ∼ c3)
is not.

In addition to the model of Cantala [11], Lackner [40] also introduced another model that
extends the definition of single-peaked preferences to accommodate partial orders. In this
model a profile P of partial orders is said to be single-peaked with respect to an axis L if
each of the preference orders in P can be extended to a total order that is single-peaked with
respect to L . We note that when restricted to the case of top-truncated preferences, the model
of Lackner [40] is equivalent to the one of Cantala [11] (which is the one we use here).

When discussing results for manipulative action problems in single-peaked electorates,
we will follow the model proposed by Walsh [47] and hence assume that the societal order
L is given as part of the input—or in other words, we assume that the unidimensional issue
of concern to an electorate is publicly known (for a more in-depth discussion on why this is
a reasonable, and often useful, assumption, see, for example, [9, Section 2] and [30, Section
4]).

5.2 Manipulation in single-peaked electorates

In this section we study CWCMwith top-truncated votes in single-peaked electorates. Since
the theme here is the reinstatement of combinatorial protections by top-truncated voting, for
all the voting rules considered in this section, we present both the “easiness” result (if not
already known from previous work) as well as the subsequent “hardness” result that arises
as a consequence of allowing top-truncated ballots.

Walsh [47] was the first to consider manipulation with single-peaked preferences and
he showed that STV remains NP-hard to manipulate for 3 candidates. Subsequently, Fal-
iszewski et al. [29] showed that for many voting protocols which are usually hard to
manipulate, restricting the preferences to being single-peaked makes them easy. In partic-
ular, they showed that any 3-candidate scoring rule with (α1 − α3) ≤ 2(α2 − α3) is easy
to manipulate. This result was then extended to obtain a complete characterization for any
m-candidate scoring rule by Brandt et al. [9]. Here, we look at 3-candidate scoring rules again
and study the impact on complexity of manipulation when top-truncated voting is allowed.
We note that the following results for the case of 3-candidateBorda rulewas previously shown
by Fitzsimmons and Hemaspaandra [33, Theorems 4, 5]. Additionally, since the proofs for
Theorem 27 and Theorem 28 in this section are very similar to the ones for Theorem 2 and
Theorem 3 in Sect. 4, they have been moved to the appendix.

Theorem 27 For any 3-candidate scoring rule X that is not isomorphic to plurality or veto,
in single-peaked electorates, CWCM with top-truncated votes in X↓ is NP-complete.

Theorem 28 For any 3-candidate scoring rule X that is not isomorphic to plurality, in
single-peaked electorates, CWCM with top-truncated votes in Xav is NP-complete.

From Theorems 27 and 28, we can see that a relaxation of the complete votes assumption
by additionally allowing top-truncated votes actually increases the complexity of CWCM
for all 3-candidate scoring rules with (α1 − α3) ≤ 2(α2 − α3) (with the exception of veto)
from being in P [29, Theorem 4.4] to being NP-complete when either the round-down or
average score evaluation schemes are used. However, with the round-up evaluation scheme
manipulation become easy for all m-candidate scoring rules as shown below.
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Theorem 29 In single-peaked electorates, computing if a coalition of manipulators can
manipulate plurality↓, veto↓, pluralityav , and X↑, for any scoring rule X, with weighted
top-truncated votes takes polynomial time (for any number of candidates).

Proof For all the voting rules except plurality↓, the manipulators can simply check if all
of them voting p alone will make it a winner. If not they cannot make p a winner. In case
of plurality↓, all the manipulators can vote for any single-peaked order consistent with the
societal order L that has p at the top. ��

Another interesting point to note here is that Theorems 27, 28, and 29 together also imply
that the restriction of preferences to being single-peaked has no effect on the complexity
of manipulation with top-truncated ballots, since, as we have already seen, the same corre-
sponding results were obtained in Sect. 4.

Next,we look atCWCMinCopelandα .Yang [49,Theorem4] showed that in single-peaked
electorates CWCM with complete votes is in P for m-candidate Copelandα , where m ≥ 3,
and below we show that it is NP-complete for even three candidates when top-truncated
votes are allowed.

Theorem 30 In single-peaked electorates, for 3-candidate Copelandα , α ∈ Q, 0 ≤ α < 1,
CWCM with top-truncated votes is NP-complete.

Proof It is easy to see that the problem is inNP. To proveNP-hardness, we show a reduction
from the Fixed-difference Subset Sum problem.

Given an arbitrary instance of the Fixed-difference Subset Sum problem, construct the
following instance of CWCM, where a, b, and p are the three candidates. Let a L p L b be
the linear ordering over the candidates. This linear ordering in turn restricts the set of allowed
votes to {(a > p > b), (p > a > b), (p > b > a), (b > p > a), (a > b ∼ p), (b > a ∼
p), (p > a ∼ b)}. In S let there be a vote of weight 6K voting (a > b ∼ p) and (b > a ∼ p)

each, and a vote of weight 2K voting (p > a > b). In T , let each ki have a vote of weight 2ki .
Suppose there exists S1, S2 such that

∑

S1−∑

S2 = K . In Copelandα , it can be assumed
that all the manipulators rank p first. So, let the manipulators in S1 vote (p > b > a), those
in S2 vote (p > a > b), and let the rest vote (p > a ∼ b). If NV (r, s) denotes the total
number of votes in V which rank r prior to s, and DV (r, s) = NV (r, s) − NV (s, r), then
DS∪T (p, a) = 0 and DS∪T (p, b) = 0. Therefore, the score of p, s(p) = 2α. Also since
∑

S1 − ∑

S2 = K , DT (a, b) = −2K , while DS(a, b) = 2K . Therefore, DS∪T (a, b) = 0
and so, both receive a score 2α. As a result, p wins by tie-breaking.

Conversely, suppose there exists a successful manipulation in favour of p. If x, y, and z,
denote the sum of ki ’s of the manipulators in T who vote (p > a > b), (p > b > a), and
(p > a ∼ b), respectively, then without taking into account the pairwise election between a
and b in T , the score of p, a, and b is 2α, 1+ α, and α, respectively. Now since 2α < 1+ α

for all rational α ∈ [0, 1), therefore, the only way p would win this is if including the
pairwise election between a and b in T results in a tie between them. So this implies that
DS∪T (a, b) = 2K + 2x − 2y = 0, or y − x = K . ��

Our final result for manipulation under single-peaked preferences is the very interesting
case of eliminate(Veto).

Theorem 31 In single-peaked electorates, and in the unique winner model, for elimi-
nate(Veto),

1. CWCM with complete votes is in P when the number of candidates is bounded.
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2. CWCM with top-truncated votes is NP-complete even for three candidates.

Proof We first present the polynomial time algorithm for CWCM with complete votes.
Suppose there was an arbitrary set W of the manipulators’ votes which—along with S—

resulted in p winning. Let the corresponding elimination order be e = (c1, . . . , cm = p).
To prove this theorem, we need the following lemmas, the proofs of which are given in the
appendix.

Lemma 3 During each round of the eliminate(Veto), only the rightmost or the leftmost
candidate in the linear ordering L is eliminated.

Lemma 4 The reverse of e is a single-peaked order with respect to the given linear order L.

Proof of Theorem 31 cont’d. Now since the reverse of every elimination order e caused by
any arbitrary manipulation in favour of p is single-peaked (Lemma 4), the manipulators can
try out all possible single-peaked orders which have p at the top and can try to induce e by
collectively voting for the same. This is enough because we know that in eliminate(Veto) any
elimination order that is achieved by an arbitrary set of manipulators’ votes can be achieved
if all the manipulators vote the same way (by using the reverse of the elimination order) [12,
Lemma 12]. And since, when the number of candidates is bounded, there are only polynomial
number of single-peaked orders which have p at the top, this can be done in polynomial time.

We now go on to show the hardness of CWCM with top-truncated votes for 3-candidate
eliminate(Veto). Clearly, the problem is inNP . To showNP-hardness, we show a reduction
from the Partition problem.

Given an arbitrary instance of the Partition problem, construct the following instance of
CWCM, where a, b, and p are the three candidates. Let a L b L p be the linear ordering over
the candidates. This linear ordering in turn restricts the set of allowed votes to {(a > b >

p), (b > a > p), (b > p > a), (p > b > a), (a > b ∼ p), (b > a ∼ p), (p > a ∼ b)}.
In S let there be a voter of weight K + 2 voting (b > p > a), voter of weight K − 1
voting (b > a > p), a voter of weight 1 voting (a > b > p), a voter of weight 2 voting
(p > a ∼ b), and a voter of weight 3 voting (a > b ∼ p). In T let each ki have a vote of
weight ki .

The first thing to observe is, p cannot be unique winner if a is eliminated in the first round.
This is because once a is eliminated, score(b) = score(p) = 2K + 2. Therefore, for p to
be a unique winner, b has to be eliminated in the first round. This in turn implies that the total
score of a and p should be at least 1 more than that of b (since we are in the unique winner
model). So we have,

scoreT (a) + K + 3 ≥ 2K + 3 + scoreT (b) �⇒ scoreT (a) − scoreT (b) ≥ K

scoreT (p) + K + 4 ≥ 2K + 3 + scoreT (b) �⇒ scoreT (p) − scoreT (b) ≥ K − 1,

where scoreT (p) is the score p receives from the votes in T .
Now, it is possible to show that the above equations can be satisfied only if b receives a

score of 0 from T . Therefore, this implies that all the votes are concentrated on (p > a ∼ b)

and (a > b ∼ p). As a result, given the equations above, we basically have two possibilities:
a total weight of K + 1 voting for (a > b ∼ p), K − 1 voting (p > a ∼ b), or a total weight
of K voting (a > b ∼ p) and (p > a ∼ b) each. In the first case it is easy to see that p will
be eliminated in the second round, while in the latter case p will be a unique winner. Hence
p can be a unique winner if and only if there exists a partition. ��

Theorem 31 is most interesting not because of the fact that it follows our theme of top-
truncated voting reinstating combinatorial protections, but for the following other reasons.
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First is the very unusual behaviour that it is showing. Eliminate(Veto), when there are only
a bounded number of candidates and in the unique winner model, is known to be in P in
most settings—from CWCM with complete votes in the general case [12], to CWCM with
top-truncated votes in the general case (see Corollary 5 in Sect. 4), and even when there is
only partial information (in the form of top-truncated votes) on the non-manipulators’ votes
(see Theorem 22 in Sect. 4 and the discussion following that). However, here, with single-
peaked preferences andwith top-truncated votes, it isNP-complete evenwhen there are only
three candidates. Second, what makes Theorem 31 even more interesting is the fact that this
actually serves as a counterexample (with the only caveat that, to be fair, they had considered
only complete votes in that paper) to a conjecture stated by Faliszewski et al. [29] where they
say that they do not expect the complexity of manipulation for “any existing, natural voting
system” to increase when moving from the general case (where there is no restriction on the
preferences) to the single-peaked case. But this is exactly what we are seeing here.

5.3 Bribery in single-peaked electorates

Faliszewski et al. [25] were the first to look at the complexity of bribery in elections. Subse-
quently, the problem was studied by Brandt et al. [9] in single-peaked settings and there they
showed that many of the combinatorial protections for bribery vanish when the preferences
are restricted to being single-peaked. Here, we revisit the problem of bribery in single-peaked
settings and we see if bribery too, like manipulation, fits into our theme of reinstating com-
binatorial protections in single-peaked elections through top-truncated voting.

5.3.1 Weighted-bribery in scoring rules

Here, we first derive the results for 3-candidate scoring rules in single-peaked settings when
only complete votes are allowed. Subsequently, we do the same when top-truncated ballots
are allowed. TheNP-completeness proofs here use an idea that is similar to the one used by
Faliszewski et al. [25] in Theorem 4.9, where they use a reduction from a modified version of
the weighted manipulation problem to show that α-weighted-bribery isNP-complete when
it isn’t the case that α2 = α3 = · · · = αm . Although it is possible to extend the results
of the complete votes case here to any m-candidate scoring rule, thanks to the complete
characterization of weighted manipulation for scoring rules given by Brandt et al. [9], we
stick to the 3-candidate case here because, to the best our knowledge, such a complete
characterization is not yet known when top-truncated ballots are allowed.

Let us first define the modified version of manipulation that we will use to reduce to the
problem of weighted-bribery. The modified problem defined here is similar to the one used
by Faliszewski et al. [25], with the only difference that in their problem all the manipulators
need to have weights at least twice as much as the weight of the heaviest non-manipulator,
while in our case we require that all the manipulators need to have weights at least thrice as
much as the weight of the heaviest non-manipulator.

Definition 12 (CWCM’) CWCM′ is the same problem as CWCM with the restriction that
each manipulative voter has a weight at least thrice as much as the weight of the heaviest
non-manipulator.

Theorem 32 In single-peaked electorates, CWCM′ with complete votes is NP-complete for
3-candidate scoring rules when (α1 − α3) > 2(α2 − α3).
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Proof To prove the above theorem for the complete votes case, wemake use of Faliszewski et
al. [29]’s proof of Theorem 4.4 which shows how CWCM is NP-complete for 3-candidate
scoring rules when (α1 − α3) > 2(α2 − α3). The first observation to make here is that
the reduction in [29, Theorem 4.4] works even if we use Partition′. So, to prove the NP-
completeness of CWCM′, the only thing we need to do is to make sure that the manipulators
used in the reduction have weights at least thrice as that of the heaviest non-manipulator. This
in turn can be ensured if we can somehow replace every non-manipulator who has a weight
greater than the threshold (which here is one-third the weight of the lightest manipulator)
with several non-manipulators each of whose weight is less than the threshold.

Again, in the proof of [29, Theorem 4.4], if we use Partition′ for reduction then there will
be 2n non-manipulators (instead of just 2 in the original proof) each of weight 3(2α1 −α2)K
such that n of them vote for (a > p > b) and the other n vote (b > p > a). Additionally,
each of manipulators will now have a weight of 3(α1 − 2α2)ai , where {a1, . . . , an} is an
arbitrary instance of Partition′ with ai ≥ K ,∀i and

∑

i ai = 2nK (the rationale behind
multiplying an additional factor of 3 to the weights of each manipulator and non-manipulator
will be evident below). But now, since we need the weights of the manipulators to be at least
thrice as much as the weight of the heaviest non-manipulator, we will have to replace each
non-manipulator by at most

⌈

3(2α1 − α2)K
⌊ 1
3 (3(α1 − 2α2))amin

⌋

⌉

non-manipulators, where amin = argmini {ai }. Since amin ≥ K , and (α1 − 2α2) ≥ 1, we
have,

⌈

3(2α1 − α2)K
⌊ 1
3 (3(α1 − 2α2))amin

⌋

⌉

≤
⌈

3(2α1 − α2)K

amin

⌉

≤ �B�

where B = 3(2α1 − α2) is a constant. Now, since this splitting can be done in polynomial
time, that completes the proof of the theorem. ��

We now show the result for weighted-bribery in scoring rules.

Theorem 33 In single-peaked settings, weighted-bribery with complete votes is in P for
3-candidate scoring rules when (α1 − α3) ≤ 2(α2 − α3) and is NP-complete otherwise.

Proof Let a, b, and p be the three candidates. Without loss of generality we can assume that
α3 = 0. We will discuss both cases (α1 ≤ 2α2 and α1 > 2α2) separately.
Case 1 α1 ≤ 2α2. Here we basically have two cases: i) when the input linear ordering of the
candidates is a L b L p and ii) when the input linear ordering of the candidates is a L p L b.
In scoring rules, it is reasonable to assume that the bribed voters will always be made to vote
in such a way that p will be at the top. Therefore, in the first case, since there is only one
vote (p > b > a) that has p placed at the top, all the bribed voters will be bribed to vote
(p > b > a). So now the only part remaining part here is to identify who to bribe. This
can be done in the following way. Let us suppose that there was a successful bribery for a
given instance. Since the only allowed votes for a L b L p are {(a > b > p), (b > a >

p), (b > p > a), (p > b > a)}, any successful bribery would have resulted in bribing x1
voters initially voting (a > b > p), x2 voters initially voting (b > a > p), and x3 voters
initially voting (b > p > a). Now, to identify these x1, x2, and x3, we simply need to iterate
through all the feasible (a solution (x1, x2, x3) is feasible if the input set of votes has at least
x1 voters voting (a > b > p), at least x2 voters voting (b > a > p), and at least x3 voters
voting (b > p > a)) integral solutions of x1 + x2 + x3 ≤ k, where k is the bribe limit, pick
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the x1 heaviest voters voting (a > b > p), the x2 heaviest voters voting (b > a > p), the x3
heaviest voters voting (b > p > a), bribe all of them to vote (p > b > a), and check if it
makes p a winner. If yes, we accept. Else, we continue on to the next set of solutions which
satisfy the equation. Since there are only O(k3) such solutions, and since k ≤ n, this can be
done in polynomial time.

For the case a L p L b, the only allowed votes are {(a > p > b), (p > a > b), (p >

b > a), (b > p > a)}, and so we can bribe a voter to vote either (p > a > b) or
(p > b > a). Therefore, the main task here is to first identify the right voters to bribe and
then decide on whether to make them vote (p > a > b) or (p > b > a). To do this, let
us assume there was a successful bribery in favour of p. This in turn would have resulted
in bribing x1 voters initially voting (a > p > b), x2 voters initially voting (b > p > a),
x3 voters initially voting (p > a > b), and x4 voters initially voting (p > b > a). Now,
let F = {(x1, x2, x3, x4) | x1 + x2 + x3 + x4 ≤ k and (x1, x2, x3, x4) is feasible}. For each
x = (x1, x2, x3, x4) ∈ F , pick the heaviest x1 voters voting (a > p > b), the heaviest x2
voters voting (b > p > a), the heaviest x3 voters voting (p > a > b), and the heaviest x4
voters voting (p > b > a). Let S′ be the set of all these voters. Next, calculate the scores of
p, a, and b considering all the votes in S − S′, where S is the set of all votes given as part
of the input. Let these scores be denoted by sS−S′(p), sS−S′(a), and sS−S′(b) respectively.
Now for the case aLpLb, since α1 ≤ 2α2, for any set of votes, p cannot lose to both a and
b. Therefore the only possible cases for the scores sS−S′(p), sS−S′(a), and sS−S′(b) are the
following. For each of them we mention how the bribery needs to be done.

1. sS−S′(p) ≥ sS−S′(a), sS−S′(p) ≥ sS−S′(b): In this case, for each voter in S′, make him
or her vote either (p > a > b) or (p > b > a), if they aren’t already voting for either
of them.

2. sS−S′(b) > sS−S′(p), sS−S′(a) ≤ sS−S′(p): In this case, for each voter in S′, make him
or her vote (p > a > b), if they aren’t already.

3. sS−S′(a) > sS−S′(p), sS−S′(b) ≤ sS−S′(p): Here, for each voter in S′, make him or her
vote (p > b > a), if they aren’t already.

Doing the above takes only polynomial time since there are only O(k4) feasible solutions
and k ≤ n.

Case 2 α1 > 2α2. To show that weighted-bribery in this case is NP-complete, we use a
reduction from CWCM′. Note that to show this we use the linear ordering a L p L b since
there are polynomial time algorithms for both CWCM′ andweighted-briberywhen p is at one
of the ends in the societal order. Now, given an arbitrary instance (C, S, T, p) of CWCM′,
we construct the following instance (C, V, p, k) where C is set of candidates, V = S ∪ T ′
where T ′ is the set of voters from T voting either (a > p > b) or (b > p > a). We set
k = |T |.

It is easy to see that if a successful manipulation exists then bribery with at most k = |T |
bribes is possible. To prove the converse we basically need to show that any bribery with at
most |T | bribes is possible if we bribe only the voters from T ′. For this, let us assume this
were not the case and that there was a voter v ∈ V −T ′ whowas part of the successful bribery
in favour of p. By bribing v, the gain for p against a or b is at most (α1 + (α1 − α2))w(v),
where w(v) is the weight of voter v (this is so because, p can gain at most (α1 − α2) when
it moved to the top since in any valid single-peaked order according to L it is placed in the
second position; the other α1 term comes from the fact that candidate a or b can lose at most
α1 in the worst-case as a result of this bribery). On the other hand if a voter v′ ∈ T ′ was
bribed, then the gain for p against a or b is at least (α1 − α2)w(v′). But then, according
to the restriction imposed on CWCM′, any v′ ∈ T ′ has a weight at least thrice as much as
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the heaviest voter in V ′ − T . This in turn implies that w(v′) ≥ 3w(v), and so we might as
well bribe v′ instead of v. As a result, any bribery in favour of p can be achieved by bribing
only the voters from T ′. Therefore, existence of a successful bribery implies that a successful
manipulation exists in CWCM′. ��

For the case of top-truncated ballots, we proved in Theorem 27 that, in single-peaked
settings, CWCMwith top-truncated votes isNP-complete for all 3-cand-idate scoring rules
except plurality and veto when the evaluation scheme was round-down. Similarly, we also
showed in Theorem 28 that CWCM with top-truncated votes is NP-complete for all 3-
candidate scoring rules except plurality when the evaluation scheme was average-score.
Based on these two theorems it is easy to see that we can make similar ‘splitting’ arguments
as in the proof of Theorem 32 to prove these results hold true even for CWCM′. As a result,
we can state the following results which can be proved by using a reduction from CWCM′
similar to the one shown in case 2 of Theorem 33.

Theorem 34 For any 3-candidate scoring rule X that is not isomorphic to plurality or veto, in
single-peaked electorates, weighted-bribery with top-truncated votes in X↓ is NP-complete.

Theorem 35 For any 3-candidate scoring rule X that is not isomorphic to plurality, in single-
peaked electorates, weighted-bribery with top-truncated votes in Xav is NP-complete.

5.3.2 Weighted-bribery in eliminate(Veto)

Here we look at the problem of weighted-bribery in eliminate(Veto) in single-peaked elec-
torates and yet again observe that allowing top-truncated voting increases the complexity of
weighted-bribery from being in P to being NP-complete.

Theorem 36 In single-peaked electorates, and in the unique winner model, for 3-candidate
eliminate(Veto),

1. weighted-bribery with complete votes is in P .
2. weighted-bribery with top-truncated votes is NP-complete.

Proof First, we discuss the polynomial time algorithm for weighted-bribery when only com-
plete votes are allowed.

Let a, b, and p be the three candidates. Without loss of generality, we need to consider
only two linear orders: a L b L p and a L p L b.
(i) a L b L p: For the given linear ordering, since b cannot be eliminated in the first round
as there is no valid preference order according to L in which it can be placed last, only the
following elimination orders are possible: {(a, b, p), (a, p, b), (p, a, b), (p, b, a)}, where
(a, b, p) implies that a is eliminated in the first round, followed by b, and then p (which is
the winner). We will consider each of these cases separately.

Case 1 (a, b, p). Here no bribery is required as p is already the winner.
Case 2 (a, p, b). In this case, it is easy to see that a simple greedy strategy would suffice.
Since b cannot be eliminated in the first round (as there is no vote with b at the end
according to L), we only need to make sure that p wins against b in the second round.
This can be ensured by doing the following:
Starting with the heaviest voter among all voters who do not rank p above b, bribe him
or her to vote (p > b > a). If p is the winner after the bribe, then accept. If not, continue
the same until number of voters bribed exceeds the limit k. If the limit exceeds, reject.
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Case 3 (p, a, b). Here for p to win, it has to be saved from elimination in the first round,
and subsequently has to beat b in the second round. To do this, we can proceed in two
phases: In the first phase, starting with the heaviest voter among all voters who do not
rank a last, bribe them to vote (p > b > a). After each bribe, check if LV (a) > LV (p),
where LV (a) denotes the total weight of all the voters who have placed a last in their
preference ordering. Once that is done, i.e., once LV (a) > LV (p), we check if p is the
winner. If yes, we accept. Else, we move on to the second phase where starting from the
heaviest voter but now among all voters who do not rank p above b, we bribe them to
vote (p > b > a). Here again, after each bribe, we see if it results in p being the winner.
If it does, we accept. Otherwise, if at any point during this algorithm the number of voters
bribed exceeds the limit k, then we reject.
Case 4 (p, b, a). Follow the exact same algorithm as in case 3.

Before considering the second linear order, we need the following lemma, the proof of
which is given in the appendix.

Lemma 5 For the linear order a L p L b, when the input elimination order is (a, p, b), if
there exists a successful bribery, then it can be induced by the elimination order (a, b, p) (or
in other words, we do not need to consider any other elimination orders).

(ii) a L p L b: Here, only the following elimination orders are possible: {(a, b, p), (a, p, b),

(b, a, p), (b, p, a)}. Again, we will consider each of these cases separately.

Case 1 (a, b, p), (b, a, p). In both these cases no bribery is required as p is already the
winner.
Case 2 (a, p, b). Here the situation is a little more complicated since the voters can be
bribed to either induce the elimination order (a, b, p) or (b, a, p). But although this is
the case, in Lemma 5 we prove that inducing (a, b, p) is enough as inducing the other
would require bribing more voters. So now, this case is similar to case 2 for the linear
order a L b L p and we can use the use the algorithm described there.
Case 3 (b, p, a). This is similar to case 2 above with a and b interchanged.

This concludes the proof of the first part.
To prove the second part, we show how Partition′ can be used to prove that weighted-

bribery is hard for eliminate(Veto) when top-truncated votes are allowed. The proof
essentially follows an idea similar to the one used for proving the corresponding result
for manipulation in Theorem 31, only that we show this reduction through the modified
partition problem. The main motivation behind using the modified partition problem is to
basically facilitate a situation that will enable us to argue that the bribery can be restricted to a
certain set of voters (who correspond to the manipulators in the corresponding manipulation
instance).

Now, it is easy to see that the problem is clearly inNP . To proveNP-hardness, we show
a reduction from Partition′. Given an arbitrary instance {a1, . . . , an} of Partition′, where
∑

i ai = 2nK and ai ≥ K ,∀i , construct an instance of weighted-bribery (C, V, p, k),
where C = {a, b, p} is the set of candidates, a L b L p is the linear order of the candidates,
and V is the set of the following voters.

1. For each ai , construct a voter vi whose weight is ai and who votes for (b > a > p). Let
T be the set of all these voters.

2. Construct the following set of voters S: n voters of weight K each voting (b > p > a),
n voters of weight K − 1 each voting (b > a > p), n − 1 voters of weight 1 each voting
for (b > a > p), 1 voter of weight 1 voting (a > b > p), 1 voter of weight 2 voting
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(b > p > a), 1 voter of weight 2 voting (p > a ∼ b), and 1 voter of weight 3 voting
(a > b ∼ p).

Set the bribe limit k = n and V = S ∪ T .
First thing to notice is that, if a is eliminated in the first round then p cannot be a unique

winner, no matter how we choose the n voters to bribe. Therefore the only way to make p a
unique winner is by making sure that a does not get eliminated. Now since the bribe limit is
n, the maximum total weight of the voters bribed cannot exceed 2nK . Also, using arguments
similar to the one used in the proof of Theorem 31, we can see that any bribery with at most n
bribes is possible only if there is an equal weight of nK that is assigned to both (p > a ∼ b)

and (a > b ∼ p). Therefore, the only part that remains to be argued is to show that this
bribery with at most n bribes can be achieved if we bribe only those voters in T .

Before we show this, let us see the objectives involved in the bribery of this instance. First
is that any bribe results in changing the vote of the corresponding voter to either (p > a ∼ b)

or (a > b ∼ p). Secondly, while bribing a voter, we always want the gain for p against every
other candidate to be as much as possible. And lastly, we also need to ensure that while a is
given enough score so that it is not eliminated in the first round, any bribe to vote (a > b ∼ p)

does not result in the score of p decreasing (because if the score of p decreases as a result of
the bribery, then p cannot become a unique winner since the difference between the scores
of p and a when considering only the votes from S is just one).

Now, having seen the objectives, let us suppose that there was a voter v ∈ S who was
part of a successful bribery in favour of p. Before the bribe, v has one among (b > p > a),
(b > a > p), (a > b > p), (p > a ∼ b), and (a > b ∼ p) has his or her vote. But given the
objectives, the only rational choice of a voter who has to be bribed is one who’s current vote
is (b > a > p) (bribing one with (a > b ∼ p) is irrational since to compensate the reduction
in the score of a we will have to bribe another voter; bribing a voter with (b > p > a) is
irrational since if this voter was bribed to vote (p > a ∼ b) then the gain for p would have
been more if instead a voter voting (b > a > p) would have been bribed, or otherwise if
he or she was bribed to vote (a > b ∼ p) then another voter would have to be bribed to
compensate the reduction in p’s score; bribing a voter with (a > b > p) is irrational since
bribing this voter has the same effect as bribing a voter with (b > a > p) and the weights
of all the voters voting (b > a > p) is at least as much as the weight of the voter voting
(a > b > p)). But then, all the voters in T are not only voting (b > a > p) initially, but
they also have weights which are at least as much as of those voters voting (b > a > p) in
S. Hence, any bribery that is possible with at most n bribes can be achieved if we bribe only
the voters from T . Now, since the total weight of all voters in T is equal to 2nK , this implies
that p is a unique winner if and only if there is a partition. ��

5.3.3 Is weighted-bribery for weak-Condorcet consistent rules always easy?

Brandt et al. [9] showed that in single-peaked electorates weighted-bribery is in P for all
weak-Condorcet consistent voting rules (see [9, Theorem 4.4] for a more general result).
The polynomial results in their theorem and the reason why it was possible to consider
all weak-Condorcet consistent voting rules together was because of the well-known prop-
erty of single-peaked electorates where it is guaranteed that there is always at least one
weak-Condorcet winner (the top choices of the “median” voters are always weak-Condorcet
winners). However, this property no longer holds when top-truncated votes are allowed. As
has also been pointed out by Cantala [11], it is not even necessary that a weak-Condorcet
winner exists in such settings. We illustrate this with the following example.
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Example 3 Let C = {a, b, c, d, e} with a L b L c L d L e as the linear ordering. Let there
be 5 voters {v1, . . . , v5} with and following votes, respectively: (a > b > c > d ∼ e), (b >

c > d ∼ e ∼ a), (c > d > e ∼ b ∼ a), (d > e > a ∼ b ∼ c), and (e > d > c ∼ b ∼ a).
Now, it is easy to see that in the pairwise majority relation, a and b lose to d , c loses to b,
and both d and e lose to c. Since everyone loses at least once, there is no weak-Condorcet
winner.

Because of the above we can no longer consider all weak-Condorcet consistent rules
together as done by Brandt et al. [9] and exploit the connection between the weak-Condorcet
winner(s) and “median” voters to come up with polynomial time algorithms for weighted-
bribery. In fact, next we show that for 3-candidate Baldwin’s rule (also known as Fishburn’s
version of Nanson’s rule [44]), which is a weak-Condorcet consistent rule in single-peaked
electorates [9], weighted-bribery is NP-complete when top-truncated ballots are allowed.
To show this we use an idea similar to the one used in Theorem 36. The complete proof can
be found in the appendix.

Theorem 37 In single-peaked electorates, weighted-bribery with top-truncated votes is NP-
complete for 3-candidate Baldwin’s rule.

5.4 Does top-truncated voting always increase the complexity of manipulation in
SP electorates?

Although we have seen instances, like in 3-candidate scoring rules with round-up evaluation
scheme, where the complexity of manipulation decreases as a result of moving from a purely
single-peaked setting to a setting where top-truncated votes are allowed, we haven’t really
seen examples of any other voting rule which shows this behaviour. Moreover, we also know
that with a different evaluation scheme like round-down or average-score this behaviour is
no longer seen for even 3-candidate scoring rules. Therefore, a natural question one could
ask is: “What role does the evaluation scheme play? Is it possible that given a voting rule one
can always construct an evaluation scheme so that it will result in an increase in the com-
plexity of manipulation when top-truncated voting is allowed in single-peaked electorates?”.
Alternatively, one could also ask: “Is there a voting system for which it is always easy to
manipulate when top orders are allowed?”. We answer the former question in the negative
and the latter one in the affirmative. We show that, as long as all the unranked candidates are
assumed to be tied and are assumed to be ranked below the ranked candidates (which is the
natural definition of a top-truncated vote), there is at least one voting system for which, irre-
spective of how the top-truncated votes are dealt with, it isNP-hard to manipulate in purely
single-peaked settings, but is easy to manipulate when top-truncated votes are allowed.

Theorem 38 There exists a voting system for which, in single-peaked settings,

1. CWCM with complete votes is NP-complete.
2. CWCM with top-truncated votes is in P.

Proof Let us first define the (artificial) voting system that we consider here.

Definition 13 (Artificial voting rule (AVR)) Given the set, V , of voter preferences, the score
of each candidate c ∈ C is calculated as

s(c) =
∑

v∈V

∑

a∈C
a �=c
c>va

(m − pos(c))w(v)
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where pos(c) is the position of candidate c in the preference order of v if it is ranked
(pos(c) = i if c is ranked in the i th position by v) and is m otherwise, m = |C |, w(v) is the
weight of voter v, and c >v a denotes that c is ranked above a by v.

Example 4 Let C = {a, b, c, d, e} be the set of candidates and let there be a single voter
of weight w with the preference ordering (d > b > a > e > c). Then the scores of the
candidates are s(a) = 4w, s(b) = 9w, s(c) = 0, s(d) = 16w, and s(e) = w.

So now we need to show that for AVR, in single-peaked settings, CWCM with complete
votes is NP-complete while CWCM with top-truncated votes is in P .

We show the first part by a reduction from Partition. Given an arbitrary instance {ki }1≤i≤t ,
∑

i ki = 2K , of Partition, construct the following instance of CWCM, where a, b, and p are
the three candidates and a L p L b is the linear ordering over the candidates. In S let there
be two voters of weight 7K each voting (a > p > b) and (b > p > a) respectively, and two
voters of weight K each voting (p > a > b) and (p > b > a) respectively. In T let each ki

have a vote of weight ki . According to the rule defined above, the scores of a, b, and p are
29K , 29K , and 22K respectively.

Suppose there exists a partition. Let those manipulators in one half vote (p > a > b)

while those in the other half vote (p > b > a). As a result the scores of a, b, and p are all
30K and hence p is a winner.

Conversely, suppose there exists a manipulation in favour of p. In AVR it is reasonable
to assume that all the manipulators place p first. So, now, let x and y be total weight of the
manipulators in T who vote (p > a > b) and (p > b > a) respectively. Since there exists a
successful manipulation in favour of p, the score of p should be at least as much as that of
a. Therefore, we have: 22K + 4x + 4y ≥ 29K + x . Using the fact that x + y = 2K , this
simplifies to x ≤ K . Doing the same with respect to p and b we have, y ≤ K . But then since
x + y = 2K , this implies that x = K and y = K and that there exists a partition.

For the second part, it is easy to see that the optimal strategy for the manipulators is to
just vote (p > a ∼ b). ��

6 Conclusions and future work

While there have been many previous works which have studied the complexity of different
manipulative actions, a disproportionate number of them have been under the assumption
that the agents specify complete preference orderings over the set of candidates. Although it
is an interesting setting to study, there are many practical situations where the agents may not
be willing or may simply not be able to provide this information. It is these kind of scenarios
that we study here, and in particular, we focus on situations where the agents are allowed to
specify partial preferences in the form of top-truncated ballots.

In looking at elections with top-truncated ballots, we addressed two related questions.
First was the question of what the impact on complexity of manipulation is when top-
truncated ballots are allowed. Thiswas discussed in Sect. 4 and herewe studied the problemof
manipulation—both constructive and destructive—in weighted elections when the agents are
allowed to specify top-truncated preferences and also looked at the impact on manipulation
when there is uncertainty about the non-manipulators’ votes. We devoted most of this section
studying the first problem—i.e., when the manipulators have complete information on the
non-manipulators—and the results for the same are summarized in Table 1. Subsequently, we
also explored the second avenue i.e., when there is uncertainty about the non-manipulators’
votes. Here we discussed two possible ways in which the uncertainty can be modeled and
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Table 1 Complexity of CWCM and DWCM with top-truncated votes

Voting rule CWCM (#cand) DWCM (#cand)

X↑ P P
Plurality↓ P P
Veto↓ P P
X1↓ NP-complete (3) P
Pluralityav P P
X2
av NP-complete (3) P

eliminate(Veto) P P
eliminate(X3) NP-complete (3) NP-complete (3)

Plurality with runoff NP-complete (3) NP-complete (3)

Copelandα, α ∈ [0, 1) NP-complete (3) P
Maximin P P
The entries in bold indicate that there is a change in complexity of CWCM as compared to the case of complete
votes, the non-highlighted ones indicate that there is no change to the worst-case complexity as compared to
the case of complete votes, and the italicized entries indicate those rules for which there is more opportunity
for manipulation but for which the worst-case complexity is still the same as compared to the case of complete
votes
X : all scoring rules
X1: all scoring rules except plurality and veto
X2: all scoring rules except plurality
X3: all scoring rules except veto

Table 2 Change in complexity of CWCMwhenmoving from complete votes to top-truncated votes in single-
peaked electorates

Single-peaked electorates

Voting rule CWCM (complete orders) Voting rule CWCM (top-t orders)

3-X P , if (α1 ≤ 2α2) [29] 3-X1↓ NP-complete

3-X NP-complete, if (α1 > 2α2) [29] 3-X2
av NP-complete

eliminate(Veto) P eliminate(Veto) NP-complete

m-Copelandα α ∈
[0, 1), m ≥ 3

P [49] 3-Copelandα, α ∈ [0, 1) NP-complete

X : all scoring rules
X1 : all scoring rules except plurality and veto
X2 : all scoring rules except plurality
X3 : all scoring rules except veto

we also showed that in both cases even individual manipulation under uncertainty was hard
when constructive coalitional manipulation was hard.

The second issue we looked at is the question of what the impact of top-truncated ballots
are on the complexity of manipulation and bribery when the electorate has structured pref-
erences. In particular, we focused on single-peaked preferences, and we observed a number
of surprising results which in turn formed the theme of Sect. 5—of reinstating combinatorial
protections in single-peaked electorates by allowing top-truncated voting. We observed this
behaviour first in the case of manipulation and showed how for different voting protocols
manipulation with complete votes was in P whereas manipulation with top-truncated votes
jumped to beingNP-complete. These results were followed by the results for bribery where,
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Table 3 Change in complexity of weighted-bribery when moving from complete votes to top-truncated votes
in single-peaked electorates

Single-peaked electorates

Voting rule CWCM (complete orders) Voting rule CWCM (top-t orders)

3-X P , if (α1 ≤ 2α2) 3-X1↓ NP-complete

3-X NP-complete, if (α1 > 2α2) 3-X2
av NP-complete

eliminate(Veto) P eliminate(Veto) NP-complete

3-Baldwin’s rule P [9] 3-Baldwin’s rule NP-complete

X : all scoring rules
X1 : all scoring rules except plurality and veto
X2 : all scoring rules except plurality
X3 : all scoring rules except veto

again, we observed similar behaviour for the voting rules considered. In addition to the above
results (summarized in Tables 2, 3) we also showed an instance of a natural voting system
(eliminate(Veto)) where, contrary to intuition, the complexity of manipulation, when top-
truncated ballots are allowed, actually increases from being in P in the general case to being
NP-complete in the single-peaked case. Finally, we concluded our discussion in Sect. 5 by
showing the example of a voting system where allowing top-truncated voting isn’t beneficial
in the sense that it actually results in a decrease in the complexity of manipulation.

There are numerous possible avenues for futurework. Foremostwould be to consider other
types of partial preferences like bottom orders,3 weak orders etc. Although Fitzsimmons and
Hemaspaandra [33] have done somework in this direction, they only look at specific protocols
and moreover largely (with the exception of their results for the 3-candidate Borda rule in
single-peaked settings) consider only the general setting—i.e., when the preferences of the
agents do not have a particular structure. Especially in the case of structured preferences, it
would be interesting to see if similar observations as in Sect. 5 can be made. Second, while
studying the impact of top-truncated ballots on the complexity of manipulative actions in
structured electorates, we have only considered the problems ofmanipulation and bribery, but
not control. Therefore,we feel that it would beworthwhile to see if similar observations can be
made for the problem of control as well. Third, while considering structured preferences, we
have only considered single-peaked preferences. However, there are papers in the literature
that look at the notion of near-single-peakedness (see, e.g., the work of Erdélyi et al. [23]) and
so seeing if we can obtain similar results when considering such electorates can be interesting.
Fourth,we have considered onlyweighted elections in thiswork, butwebelieve that looking at
the unweighted casewould be evenmore insightful as it would help us understand the inherent
“hardness” that is embedded in the voting rule itself. Often what seems to be happening in
weighted elections is that the computational complexity seems to be arising mainly from the
weights themselves, thus denying us the opportunity to understand the voting rules better.
Therefore, it is definitely something to be considered as a future research direction. With
regards to the impact of partial voting on the complexity of manipulative actions, to the
best of our knowledge, there is only one work by Narodytska and Walsh [42] that has some
results on unweighted elections. Finally, a possible criticism regarding the results in this
work (and in fact any work which considers the same notions) could be that the results are

3 Bottom orders can be useful in scenarios where one is indifferent between some candidates at the top but
truly dislike some other candidates; there are several papers in computational social choice that look at bottom
orders (see, e.g., [6,29,33]).
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in the worst-case and that we use NP-hardness—which in many cases does not necessarily
reflect the actual difficulty in practice—as the complexity measure. Therefore, one long term
research direction would be to look at the average-case complexity for manipulative actions
in elections. There has been some work that has been done in this direction (see, e.g., the
work of Friedgut et al. [35]), but we believe that there is still scope for much more.

Acknowledgements We acknowledge the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC) through the Discovery Grants Program.

Appendix: Additional proofs

Proofs for Sect. 3.3

Lemma 1 Partition′ is NP-complete.

Proof It is easy to see that Partition′ is inNP . To proveNP-hardness, we show a reduction
from the Partition (P1) problem. Let {a1, . . . , an}, where ∑

i ai = 2M , be an arbitrary
instance of the Partition problem. Next, construct the following instance of Partition′(P2):
1. For each ai , construct bi = ai + 2M2 and b′

i = 2M2.
2. Construct X1 = X2 = 2M2n + 4M2 − M .

Now, it can be seen that
∑

i (bi + b′
i ) + X1 + X2 = 2 · (2n + 2) · 2M2 and that each of

bi , b′
i , X1, X2 ≥ 2M2.

Suppose there exists a partition S1, S2 for P1. Then it is easy to see that P2 also has a
partition T1, T2 such that

∑

T1 = ∑

T2 = (2n+2)2M2,where T1 = {bi }i |ai ∈S1∪{b′
i }i |ai ∈S2∪

{X1} and T2 = {bi }i |ai ∈S2 ∪ {b′
i }i |ai ∈S1 ∪ {X2}.

Conversely, suppose there exists a partition for P2. This implies that there exists two
subsets T1, T2 such that

∑

T1 = ∑

T2 = (2n + 2)2M2. Now, the first thing to observe is
that both X1, X2 cannot belong to the same set, because if so then the sum of the rest of the
elements = 4nM2 +2M < (2n +2)2M2. So let us assume that X1 ∈ T1 and X2 ∈ T2. Also,
since X1 > bi ,∀i , we can remove X1 and X2 from the two subsets. Removing them we have
∑

T1 − X1 = ∑

T2 − X2 = M + 2nM2. So now we can construct S1, and S2 as follows:

S1 = {ai }i |bi ∈T1

S2 = {ai }i |bi ∈T2

This in turn implies that P1 has a partition. ��
Lemma 2 Fixed-Difference Subset Sum is NP-complete.

Proof It is easy to see that Fixed-Difference Subset Sum is in NP . To prove NP-hardness,
we show a reduction from the Partition probem. Let {k1, . . . , kt }, where ∑

i ki = 2K , be an
arbitrary instance of Partition. Next, construct the following instance {�1, . . . , �t , �

′
1, . . . , �

′
t }

of Fixed-Difference Subset Sum(P2), where �i = ki + 2n+i , �′
i = 2n+i , and n = �log 2K �.

Suppose there exists a partition S1, S2 for P1. Then P2 has subsets T1, T2 such that
∑

T1 − ∑

T2 = K + ∑t
i=1 2

i+n , where T1 = {�i }i |ki ∈S1 ∪ {�′
i }i |ki ∈S2 and T2 = ∅.

Conversely, suppose there exists subsets T1, T2 in P2 such that
∑

T1 − ∑

T2 = K +
∑t

i=1 2
i+n . Now, it is easy to argue that none of �i or �′

i for i = 1, . . . , t can belong to
T2, because if so then the second term (

∑t
i=1 2

i+n) of
∑

T1 − ∑

T2 will not be attainable.
Therefore, we can construct S1 and S2 such that S1 = {ki }i |�i ∈T1 and S2 = {ki }i |�i /∈T1 , and
this in turn implies that P1 has a partition. ��
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Additional proofs for Sect. 5.2

Theorem 27 For any 3-candidate scoring rule X that is not isomorphic to plurality or veto,
in single-peaked electorates, CWCM with top-truncated votes in X↓ is NP-complete.

Proof (sketch) The proof here is similar to Theorem 2 and hence we only sketch the same.
To proveNP-hardness, we can proceed like in Theorem 2 by considering the following three
cases. In all the cases we can use a reduction from the Partition problem.

Case 1 α2 < α1 < 2α2. Given an arbitrary instance of Partition, construct the following
instance of CWCMwith p L a L b as the linear ordering over the candidates. This linear
ordering in turn restricts the set of allowed votes to {(p > a > b), (a > p > b), (a >

b > p), (b > a > p), (a > b ∼ p), (b > a ∼ p), (p > a ∼ b)}. In S let there be a
vote of weight K voting (a > b > p), (b > a > p), (b > a ∼ p), and (p > a ∼ b)

each, and let each ki in T have a vote of weight ki . Now, proceed like in Theorem 2.
Case 2 α1 > 2α2. In this case, construct the following instance of CWCMwith a L p L b
as the linear ordering over the candidates. This linear ordering in turn restricts the set
of allowed votes to {(a > p > b), (p > a > b), (p > b > a), (b > p > a), (a >

b ∼ p), (b > a ∼ p), (p > a ∼ b)}. In S let there be a vote of weight (2α1 − α2)K
voting (a > p > b) and (b > p > a) each, and let each ki in T have a vote of weight
(α1 − 2α2)ki . Now, proceed like in Theorem 2.
Case 3 α1 = 2α2. In this case, construct the following instance of CWCMwith a L p L b
be the linear ordering over the candidates. In S let there be a vote of weight 3K voting
(a > b ∼ p) and (b > a ∼ p) each, and let each ki in T have a vote of weight ki . Now,
proceed like in Theorem 2. ��

Theorem 28 For any 3-candidate scoring rule X that is not isomorphic to plurality, in
single-peaked electorates, CWCM with top-truncated votes in Xav is NP-complete.

Proof (sketch) The proof here is similar to Theorem 3 and hence we only sketch the same. To
proveNP-hardness,weuse a reduction fromFixed-differenceSubset Sum.Given an arbitrary
instance of Fixed-difference Subset Sum, construct the following instance of CWCM with
a L p L b as the linear ordering over the candidates. This linear ordering in turn restricts the
set of allowed votes to {(a > p > b), (p > a > b), (p > b > a), (b > p > a), (a > b ∼
p), (b > a ∼ p), (p > a ∼ b)}. In S let there be a vote of weight 8K voting (a > b ∼ p)

and (b > a ∼ p) each, vote of weight 3K voting (p > b > a), and a vote of weight K voting
(p > a > b). In T let each ki have a vote of weight 2ki . Now, proceed like in Theorem 3. ��
Lemma 3 During each round of the eliminate(Veto), only the rightmost or the leftmost
candidate in the linear ordering L is eliminated.

Proof Let c1 L c2 L · · · L cm be any arbitrary linear ordering. It is clear that in the first
round of eliminate(Veto) only c1 or cm will be eliminated since all the votes only have either
of them placed at the end. Also, since the votes are single-peaked, for any candidate c j , the
only candidates which can be immediately on top of it in a vote where c j is placed last are its
right and left neighbours, where the right neighbour of the rightmost candidate is the leftmost
one and vice-versa. Therefore, in particular, if c1 is the candidate eliminated in the first round
then all its last votes gets transferred to either c2 or cm . Hence in the subsequent round only
one of c2 or cm will be eliminated. Continuing this way we can see that at every round r
only one of the corner candidates in L (which now is the linear ordering over the remaining
m − r + 1 candidates) will be eliminated. ��
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Lemma 4 The reverse of e is a single-peaked order with respect to the given linear order L.

Proof Our claim is that O : (p = cm) > cm−1 > · · · > c1 is a valid single-peaked order
with respect to L . To prove this, let us assume the contrary. This implies that there exists
three candidates ci , c j , ck such that c j >O ci >O ck , but according to the linear ordering
L it is only possible that ci L · · · L ck L · · · L c j or c j L · · · L ck L · · · L ci . Now,
c j >O ci >O ck implies that, among ci , c j , and ck , ck is eliminated first, followed by ci , and
then c j . But then, since at any round r only the corner elements can be eliminated (Lemma
3), ck can never be eliminated before both ci and c j in either of the two linear orderings.
Hence e cannot be a valid elimination order if its reverse is not single-peaked. ��
6.1 Additional proofs for Sect. 5.3

Lemma 5 For the linear order a L p L b, when the input elimination order is (a, p, b), if
there exists a successful bribery, then it can be induced by the elimination order (a, b, p) (or
in other words, we do not need to consider any other elimination orders).

Proof Since the linear order is a L p L b, only the following votes are allowed: {(a > p >

b), (p > a > b), (p > b > a), (b > p > a)}. Let us assume that the total weight of
all the voters voting (a > p > b) is W1, those voting (p > a > b) is W2, those voting
(p > b > a) is W3, and those voting (b > p > a) is W4. Now, since the input elimination
order is (a, p, b), we have the following inequalities: (1) W1 + W2 ≤ W3 + W4 (since a is
getting eliminated in the first round, LV (a) ≥ LV (b), where LV(a) is the total weight of all
the voters who place a at the end), and (2) W1 + W2 + W3 < W4 (since p gets eliminated in
the second round). A successful bribery for p can proceed in two ways. First is if the bribery
induces the elimination order (a, b, p) and the other way is to induce the elimination order
(b, a, p). The task here is to prove that inducing (a, b, p) is better than inducing (b, a, p),
or in other words, prove that inducing (b, a, p) requires bribing at least one more voter than
what is required to induce (a, b, p).

To prove this, let us consider the casewhen the elimination order (a, b, p) is induced. Since
the input already has a getting eliminated in the first round, we only need to look at the second
round and see how much total weight should be bribed so that p is saved from elimination.
Once a is eliminated, LV (b) = W1+W2+W3, and LV (p) = W4. Therefore, for p to win in

the second round, the weight of votes we need to bribe is at least Dpb =
⌈

W4−(W1+W2+W3)
2

⌉

.

Let this bribery require k1 voters to be bribed. Moreover, note that all the bribed votes are of
the form (b > p > a) and they will be bribed to vote (p > b > a).

Now, let us consider the second elimination order (b, a, p). To induce this, that is to make
b get eliminated in the first round, the total weight of votes we need to bribe is at least Dab =
⌈

(W3+W4)−(W1+W2)
2

⌉

=
⌈

2W3+W4−(W1+W2+W3)
2

⌉

= W3 +
⌈

W4−(W1+W2+W3)
2

⌉

= W3 + Dpb.

As a result, among voters voting (b > p > a) we need to bribe a weight of at least Dpb so as
to get b eliminated in the first round. But then, this bribery requires at least k1 voters (from
above), which in turn implies that we need at least onemore voter to be bribed here than in the
case where the elimination order (a, b, p) was induced. Hence, when the input elimination
order is (a, p, b) and the linear order aLpLb, for a successful bribery it is enough to induce
the elimination order (a, b, p). ��
Theorem 37 In single-peaked electorates, weighted-bribery with top-truncated votes is NP-
complete for 3-candidate Baldwin’s rule.
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Proof (sketch) The proof here is similar to that of Theorem 36 and hence we only sketch
the same. To prove NP-hardness, we show a reduction from Partition′. Given an arbitrary
instance {a1, . . . , an} of Partition′, construct an instance of weighted-bribery (C, V, p, k),
where C = {a, b, p} is the set of candidates, a L p L b is the linear order of the candidates,
and V is the set of the following voters.

1. For each ai , construct a voter vi whose weight is 2ai and who votes for (b > a ∼ p).
Let T be the set of all these voters.

2. Construct the following set of voters S: n voters of weight 2K each voting (b > p > a),
n voters of weight 2K each voting (b > a ∼ p), n voters of weight K each voting
(a > b ∼ p), 2 voters of weight 1 each voting (b > p > a), 2 voters of weight 1 each
voting (a > b ∼ p), and 1 voter of weight 1 voting (p > a ∼ b).

Set the bribe limit k = n and V = S ∪ T . Now, proceed like in Theorem 36. ��
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