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Abstract The increase in robotic capabilities and the number of such systems being used
has resulted in opportunities for robots to work alongside humans in an increasing number
of domains. The current robot control paradigm of one or multiple humans controlling a
single robot is not scalable to domains that require large numbers of robots and is infeasi-
ble in communications constrained environments. Robots must autonomously plan how to
accomplish missions composed of many tasks in complex and dynamic domains; however,
mission planning with a large number of robots for such complex missions and domains is
intractable. Coalition formation can manage planning problem complexity by allocating the
best possible team of robots for each task. A limitation is that simply allocating the best
possible team does not guarantee an executable plan can be formulated. However, coupling
coalition formation with planning creates novel, domain-independent tools resulting in the
best possible teams executing the best possible plans for robots acting in complex domains.

Keywords Multi-agent planning · Complex mission planning · Temporal planning ·
Continuous planning

1 Introduction

The domains robots can operate in is rapidly expanding as robotic capabilities increase. Some
robotic domains, such as mass casualty response, will require close coupling between the
human and robot responders in order to successfully complete the mission. A taxonomy for
categorizing multi-agent system problems includes the types of robots (single-task robots vs.
multi-task robots), the number of robots per task (single-robot tasks vs. multi-robot tasks),
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and when information is available (instantaneous allocation vs. time-extended allocation)
[20]. This manuscript addresses centralized, domain-independent planning for multi-task
robot, multi-robot task, instantaneous allocation missions.

The planning problem uses an initial state and a set of actions and constraints to derive a
plan to achieve a goal state. The planning problem complexity is partially a function of the
number of robots and tasks and partially a function of the domain model complexity [16].
Planning for expressive real-world models with durative actions, joint actions, concurrently
executing actions, continuous variables, and continuous effects is much harder than planning
domains with instantaneous actions and boolean variables.

Consider a mass casualty response scenario after a tornado, such as the EF-4 tornado in
Tuscaloosa, AL on April 27, 2011. The immediate response involved hundreds of respon-
ders from local government agencies and required coordination to complete several tasks,
including clearing impassable roads, securing prohibited items, triaging the wounded, and
locating victims in the disaster area. Moving about the environment, clearing debris from
roads, and all other actions require time and are not instantaneous actions. Agents must be
able to coordinate actions and work concurrently. Real-world domains include continuous
variables, such as fuel level, that must be considered. The heterogeneous agents, complex
tasks, and complex environment complicate this difficult planning problem.

One method to address planning complexity is factored planning, which splits the goal
into lower complexity subgoals. Multi-agent planning approaches using factored planning
focus on how the entire coalition [4,14] or an individual agent [46] can solve subproblems.
Factored planning as part of single-agent planning does not address multiple agents [7,23].
Solutions for path-planning [47] and target tracking [24] exist, but are domain-dependent.
The tools presented in this manuscript address domain-independent planning problems with
multiple, heterogeneous agents and multiple, complicated tasks in complex domains with
durative actions, concurrently executing actions, continuous variables, and continuous effects
by factoring the problem by both tasks and coalitions of agents.

Coalition formation canmanage problem complexity by allocating a teamof agents to each
task. Coalition formation uses the capabilities of the agents and the capability requirements
of the tasks to form teams of agents that can accomplish a set of assigned tasks, while
optimizing an objective function (e.g., utility, cost, or number of tasks completed) [40].
The factoring produced by coalition formation generates several smaller problems from the
original problem; however, coalition formation cannot guarantee allocated coalitions will be
able to execute the task to which they are assigned to complete.

Current coalition formation research does not address the nonexecutable coalition problem
(a coalition which cannot complete its assigned task) and current planning research does not
perform task allocation on the scale of coalition formation. Factored planning is a popular
approach to decomposing the problem into manageable subproblems, but existing factored
planning algorithms do not consider agents. Multi-agent planning performs goal allocation,
but typically does not consider how multiple agents working together simultaneously on a
single task affects plan quality. Three novel tools incorporating both coalition formation and
planning are presented: coalition formation then planning, relaxed plan coalition formation,
and task fusion. The coalition formation then planning approach is used as the basis for the
other tools that utilizes the output from the coalition formation problem as the inputs to the
planning problem. Tasks are planned separately by the allocated coalitions and the results
are merged into a single solution for the original problem. The coalition formation then
planning tool derives satisficing solutions quickly, but raises two problems: nonexecutable
coalitions and suboptimal solutions. If coalition formation allocates a coalition to a task that
the coalition cannot complete, then a new coalition must be allocated. Relaxed plan coalition
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formation augments coalition formation then planning by performing iterative planning,
relaxed planning, and coalition formation until a valid executable plan is identified. The
second problem with coalition formation then planning is suboptimal solutions. Limiting
the agents available for planning limits the problem complexity, but reduces the size of the
problem solution set; thus, leading to suboptimal solutions. Task fusion balances solution
quality with problem complexity by planning for tasks and coalitions together for which
higher solution quality outweighs increased problem complexity.

Section2 provides an overview of related research. Section3 presents a formal definition
of the problem. Three experimental domains are given in Sect. 4. Section5 presents the
experimental design used to evaluate the presented planning tools. Section6 presents the
tools and the results for each tool solving problems in each experimental domain followed
by a discussion of how the results motivate the next tool. Finally, a conclusion and future
work is presented in Sect. 7.

2 Related work

2.1 Coalition formation

Coalition formation is a subclass of the task allocation problem without constraints on the
number of agents (robot or human) allocated to each task nor the number of coalitions to
which an agent is a member. The coalition formation problem is NP-complete [37], is diffi-
cult to approximate [40], and represents a multi-task, multi-robot problem that incorporates
algorithms for both instantaneous allocation [42,50] and time extended allocation [25,34].
The goal is to form teams of agents that are together more capable than the team’s individual
agents and can accomplish a set of assigned tasks, while optimizing an objective function
(e.g., utility, cost, tasks completed). The general coalition formation problem assumes a grand
coalition of n agents, Φ = {φ1, . . . , φn}, and a set of m tasks, V = {v1, . . . , vm}. A solution
is a map of each task, v ∈ V , to a coalition assigned to the task, Φv ⊆ Φ [37].

Agents and tasks are modeled as their capabilities offered or capabilities required, respec-
tively. Two different capability models are used, the resource model and the service model.
The resource model treats each agent as a set of available resources (e.g., chemical sensor,
camera, laser) and each task as a set of required resources. Let Res be a vector of possible
resource types, where Resi is the i th resource type. Each agent, φ, is modeled as a resources
available vector, Resφ , and a coalition, Φi ⊆ Φ, is modeled as a vector equal to the sum of
the available resource vectors of the constituent agents, ResΦi = ∑

φ∈Φi
Resφ . A task, v, is

similarly defined as a resources required vector, Resv . All elements of resources available
vectors and resources required vectors must be non-negative, and at least one element in each
vector must be non-zero. A coalition,Φ j , is a candidate coalition for a task, v, if and only if it

has available at least as many of each resource type as the task requires, ∀i, ResΦ j
i ≥ Resv

i .
Only a candidate coalition for v can be allocated to v.

The service model associates a set of functions that each agent can perform with the
particular agent (e.g., box-pushing, mapping, sentry-duty). Let Ser be a vector of possible
service types, where Seri is the i th service type. An agent, φ, has a services available vector
indicating whether or not each service is offered by the agent, Serφ

i ∈ {0, 1}, where Serφ
i is

1 if φ offers service i and 0 if not. A coalition, Φ, has a services available vector equal to the
sum of the services available vectors of its constituent agents, SerΦ = ∑

φ∈Φ Serφ . A task,
v, is modeled as a services required vector, Serv , where Serv

i ∈ N is a non-negative integer
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representing the number of services of type Seri required to satisfy v and ∃ j, Serv
j > 0. A

coalition, Φ, is a candidate coalition for a task, v, if and only if has available at least as many
services as the task requires, ∀i, SerΦ

i ≥ Serv
i .

There aremany heuristic-based coalition formation algorithms, eachwith its own strengths
and weaknesses. Greedy algorithms can derive solutions quickly, but make no guarantees
on the solution quality [40,42,44,51]. Approximation algorithms provide solution quality
guarantees, but suffer frompoorworst-case run-time complexity,which can render them inap-
propriate for real-time applications [27,33].Market-based techniques offer fault-tolerance for
a distributed system, but have high communication processing requirements [10,41,43,50].
Biologically inspired ant colony optimization algorithms have been applied to several NP-
complete problems, including coalition formation [36,38]. Different coalition formation
algorithms provide different solutions with differing performance. For example, selecting
a market-based algorithm with high communications requirements for use in a commu-
nications constrained environment results in poor performance. The intelligent Coalition
Formation for Humans and Robots system was developed to autonomously reason over the
specified mission constraints in order to select a subset of coalition formation algorithms to
apply to a particular allocation problem [39].

2.2 Planning

Classical planning results in a satisficing plan that contains a sequence of actions that achieves
a goal state [18].While classical planning is for single-task robots executing single-robot tasks
with an instantaneous allocation, variants of classical planning span the Gerkey and Matarić
taxonomy. The extensions of classical planning most applicable to this research are temporal
planning, continuous planning, andmulti-agent planning. Temporal planning admits durative
actions to the action set and allows concurrently executed actions in the solution, continuous
planning incorporates continuous variables in the state space and continuous effects in the
actions, and multi-agent planning models multiple agents executing actions, rather than a
single agent, as in classical planning.

Temporal planning incorporates durative actions and concurrent action execution. The
model for durative actions expands the classical action model to include a duration and tem-
poral specifications for action conditions and effects. Action duration specifies the length
of time required to execute the action. The temporal specifications indicate when condi-
tions must be satisfied (at the beginning, at the end, or over the entire action duration) and
when the effects are applied (at the beginning or at the end of action execution). A solu-
tion to the temporal planning problem is a satisficing plan that combines a set of actions
with execution constraints to achieve a goal state. Temporal planning solutions can be
classified as single-task agents executing single-agent tasks in an instantaneous allocation.
State-space based search is a popular method for planning, such as Yet Another Heuristic
Search Planner (YAHSP) [49], but other methods such as SAT-based planners (ITSAT [35])
also exist.

Approaches to managing problem complexity include subgoal partitioning and state-
based decomposition. Subgoal Plan solved large problems by creating a subgoal partitioning
through goal constraint analysis [7]. The subproblems were solved by Metric Fast Forward
[21] and were significantly easier to solve than the original problem. The time to solve a
problem exponentially decreased as the subproblems’ size was linearly reduced. Divide-and-
Evolve, similar to Subgoal Plan, used a preprocessing step to decrease problem complexity
before an encapsulated satisficing planner was used to solve the problem [3]. Divide-and-
Evolve used a state-based decomposition strategy to find a sequence of intermediate states
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that collectively solve the problem. Divide-and-Evolve with YAHSP [49] as the encapsulated
planner solved significantly more problems than YAHSP alone.

Continuous planning incorporates continuous variables in the state space and expands
the action model to include continuous effects. Classical planning models require continu-
ous variables to be discretized; however, real-world models are more accurate when state
variables, such as fuel level and temperature, can be modeled as continuous variables. Con-
tinuous effects must be combined with temporal planning and durative actions can have
effects applied over the entire action duration, known as a continuous effect. For example, an
accurate real-world model of aircraft flight must include a continuously decreasing fuel level.
If continuous effects are not admitted, then the change in fuel level over the entire action
duration must be applied instantaneously. A solution to the continuous planning problem
is a satisficing plan that combines a set of actions with execution constraints to achieve a
goal state. Continuous planning solutions can be classified as single-task agents executing
single-agent tasks in an instantaneous allocation.

Some planners, such as Temporal Fast Downward (TFD) [17], support continuous vari-
ables, but not continuous change. Zeno was the first planner to allow continuous change in
planning problems [31]; however, it was unable to handle concurrent continuous effects, such
as are required for an accurate model of in-flight refueling. COLIN (COntinuous LINear)
extended state space search techniques to manage continuous effects [8]. Other continuous
planning algorithms include IxTeT [26], Sapa [12], and dReal[5]. Accommodating domains
with non-linear continuous change allows real-world domains to bemore accuratelymodeled,
but is only supported by dReal.

Multi-agent planning explicitly considersmultiple agents executing actions by substituting
a set of agents for a set of actions in the classical planning definition, where each agent is
modeled as a set of actions that the agent can execute. The solution is a plan specifying a set
of actions with execution constraints and an associated agent responsible for executing each
action. Multi-agent planning solutions exist for single-task and multi-task agents, single-
agent and multi-agent tasks, and instantaneous allocation.

Factored planning approaches are natural multi-agent planning solutions. One of the first
such algorithms used individual agent planning to generate a heuristic for use in global
planning for the original problem [14,15]. Another factored planning approach performed
distributed planning followed by agent voting [46]. Agents modified a base plan and dis-
tributed it to the other agents. A new base plan was selected from the set of agent plans by
voting. If all agents indicated the base plan satisfied their task, then planning ended, otherwise
another iteration of planning and voting occurred.

Deriving plans individually requires a plan merge step to integrate the plans to a single
global solution. Plan merge allows agents to take advantage of side products, the unused
product of other agents’ actions, to eliminate redundant actions in plan merge steps [52].
Another approach treats the problem as a plan-space search problem in which incremental
changes are made until the plan is valid [9]. Part of the plan merge problem requires sat-
isfying all temporal constraints. Simple temporal networks have been applied by encoding
the temporal constraints of the individual plans and finding consistent variable assignments
representing a valid plan merge [1].

The domain complexity and the method used for factoring the problem are the differenti-
ating aspects addressed by the presented tools. Existing multi-agent planning solutions focus
on instantaneous actions and discrete state spaces or assume that tasks are executable by a
single agent [4,11,13,30]. Developing real-world domain models requires durative actions
in continuous state spaces for tasks that require multiple agents.
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2.3 Integrated task allocation and planning

Chance-constrained task allocation is an example approaches that incorporate task allocation
with aspects of planning [32]. Each agent estimated the utility of it completing each task.
Allocation utility was a function of the agent allocated to the task, when the agent will be
able to execute the task, and a predefined model of problem uncertainty. However, real-world
problems do not consist exclusively of single-agent tasks.

Approaches to coalition formation in which tasks have temporal and spatial constraints
can address task allocation and scheduling, but do not produce plans for how agents will
execute their allocated tasks when they reach the task location [25,34]. Both approaches are
for multi-task agents executing multi-agent tasks in a time-extended allocation and assumed
all agents capable of reaching the task location were able to contribute to the task, an invalid
assumption in some missions (e.g., an agent without a camera cannot assist an imaging task).

Auction style coalition formation algorithms allow agents to perform task planning prior
to allocation and typically grant exclusive ownership of tasks, which can be detrimental when
agents fail to complete their task and no method for informing the other agents of the failure
exists. A method based on bounty hunters and bail bondsmen allows for nonexclusive task
execution [53]. Following the bail analogy, agents act as bounty hunters and auctioneers as
bail bondsmen. The bail bondsmen increase the value of each task until it has been completed.
Agents commit to a task and announce to the other agents that they have committed to the
task. Agents can plan how to complete each available task, but can only commit to a single
task. Agents receive the task utility only upon completing the task. If an agent fails to
complete a task, the system adapts by incentivizing other agents to complete the task through
increasing task value. This approach lacks collaboration among the agents, a key feature in
real-world problems representative of multi-robot task domains. These auction approaches
are for multi-task agents executing single-agent tasks.

The Automatic Synthesis of Multi-robot Task solutions through software Reconfiguration
(ASyMTRe) system used connected agent and task schemas to allocate coalitions to tasks
[45]. Agents were modeled by perceptual, motor, and communication schema and tasks
were modeled as a set of motor schema requirements. ASyMTRe connected robot schemas
to develop a joint schema capable of accomplishing assigned tasks. For example, if robot ri
knows its position relative to robot r j and r j knows its position in a global reference frame,
then ri can derive its position in the same global reference frame. Connecting the various
robotic schemas determined which agents were capable of jointly completing a task, but
did not plan how the robots completed the task. A similar system, Remote Object Control
Interface, considered robots as nodes offering expanded functionality dependent on the other
nodes in the system [6]. Both systems fail to produce executable plans for the assigned tasks.
These two systems are both for multi-task agents executing multi-agent tasks.

One domain-dependent integration of task allocation and planning that has been exten-
sively studied is the multi-robot task allocation and path planning problem [2,29,54].
Simultaneously considering the task allocation and the path to the task allows for collision-
free trajectories to be developed more efficiently than if the two problems were considered
independently. One application incorporates two agents that swap tasks when a collision is
detected [47,48]. The new trajectories for the agents are guaranteed not to collide with one
another. A search and destroy problemwith attackUAVs developed a plan offline to determine
an optimal search pattern to locate mobile targets whose locations were unknown a priori;
thus, the decision regarding which UAVs will perform the attack must be made online [24].
A distributed probabilistic approach considered the path for each UAV to reach the target,
the UAV’s attack capability, and the probability of target destruction. These approaches are
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feasible for the specific domains, but many, diversemulti-agent domains exist and developing
a different solution for each domain is impractical.

Task allocation and planning are closely coupled problems, but there is minimal existing
literature that addresses the interaction between the two problems. Planning affects task
allocation via the developed plans, as the plan constrains the set of agents available by
requiring agents to perform actions at specific times. Task allocation affects planning by
determining which agents are available when developing a plan. If an agent is not allocated
to a task, then the planning algorithm will not use the agent to develop a plan. Tools for
coupling domain-independent task allocation and planning will facilitate solving planning
problems consisting of multi-task agents executing multi-agent tasks.

3 Formal definition

The presented tools are for planning for multi-task robot, multi-robot task, instantaneous
allocation problems [20]. This Hybrid Mission Planning with Coalition Formation problem
couples coalition formation with planning to facilitate solving complex problem instances
with heterogeneous multi-task robots executing multi-robot tasks.

Definition 1 (HybridMission Planning with Coalition Formation) The hybrid mission plan-
ning with coalition formation problem is defined as a tuple, 〈S, I, Φ, V,C〉, where:
– S is the state space,
– I is the initial state,
– Φ = {φ1, φ2, . . . , φm} is the grand coalition of agents,
– A = 2Φ → 2Act is the coalition-action set mapping,
– V = {v1, v2, . . . , vn} is the set of tasks, and
– C = 〈Cap,CΦ,CV 〉 is the capability vector, coalition capability mapping, and the task

capability mapping.

The hybrid state space, S, includes boolean, discrete, and continuous variables. A state, s,
is an assignment of each state space variable to a value in its associated domain. The initial
state, I , is the environment state at the beginning of the mission.

The grand coalition, Φ, is the set of all available agents. A coalition, Φi ⊆ Φ, is any
non-empty set of agents. The coalition-action set mapping, A, maps a possible coalition, 2Φ ,
to a set of actions the coalition can execute, 2Act , where Act is the set of all possible actions.
An action is modeled as a tuple, 〈Φexec, eff , cond, dur〉, where:
– Φexec is the executor coalition,
– cond = 〈cond
, cond↔, cond�〉 is the action state constraints that must be satisfied at

the beginning, during, and at the end of action execution, respectively, and
– eff = 〈eff 
, eff↔, eff �〉 is the action effects for atomic fact transitions applied to the

state at the beginning of, during, and at the end of action execution, respectively,
– dur is a constraint on the length of the time interval required to execute the action.

The executor coalition, Φexec, for an action, a, is the set of agents that execute a. If Φexec

is a singleton coalition consisting of a single agent, then a is a single-agent action. If Φexec

includes more than one agent, then a is a joint action between multiple agents. A state
constraint can be applied to boolean or continuous state variables. Constraints on boolean
variables specify the truth value the variable must take, while constraints on continuous
variables specify the interval to which the variable’s value must belong. Action state con-
straints can be specified as applying at the beginning, during, or end of action execution,
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cond
, cond↔, and cond�, respectively. Action effects at the beginning of action execu-
tion, eff 
, can apply to boolean state variables (as setting the value to true or false) or to
continuous state variables (as an instantaneous change in value). Action effects throughout
action execution, eff↔, must apply to continuous state variables and represent a continuous
change in the value of the variable during action execution. Action effects at the end of action
execution, eff �, can apply to boolean state variables or to continuous state variables. The
action duration constraint, dur , is the interval to which action duration must belong. Action
duration must be non-negative. Similar actions, such as navigating between waypoints, are
considered different if they are executed by different agents. For example, φi navigating from
wr to ws is different than φ j navigating from wr to ws .

The task set, V , is a set of tasks to be satisfied. Each task, v ∈ V , is modeled as a set of
goal state constraints. A task, v, is satisfied in a state, s, if and only if all of v’s goal state
constraints are satisfied in s.

The capability vector, Cap = [Cap1,Cap2, . . .], is the vector of coalition formation
capabilities used in the problem. The coalition capability mapping, CΦ , is a mapping of
each agent to a capability available vector. The elements of a capabilities available vector
are non-negative values, with at least one non-zero element. Each agent, φ, has a capabilities
available vector,Capφ . For example, if |Cap| = 5 and φ has two ofCap3 and three ofCap5,
then Capφ = [Capφ

1 = 0,Capφ
2 = 0,Capφ

3 = 2,Capφ
4 = 0,Capφ

5 = 3], where Capij is
the amount of Cap j that entity i (agent or coalition) has at its disposal. Each coalition, Φ,
has a capabilities available vector, CapΦ , equal to the sum of the capability available vectors
of Φ’s constituent agents, CapΦ = ∑

φ∈Φ Capφ . The task capability mapping, CV , is a
mapping of each task to a capability required vector. The elements of a capability required
vector are non-negative reals, with at least one non-zero element. For example, if |Cap| = 5
and v requires one ofCap2 and two ofCap3, thenCapv = [Capv

1 = 0,Capv
2 = 1,Capv

3 =
2,Capv

4 = 0,Capv
5 = 0], where Capij is the amount of Cap j required to satisfy i .

A plan, π , is a set of action steps. An action step consists of an action, a start time to
begin executing the associated action, and the duration of the action. An executable plan is a
plan for which the action steps are executed validly. An action step is executed validly if the
associated action’s state constraints are satisfied. Executing the action steps in a executable
plan transitions the environment from the initial state, I , to an end state, send , achieved after
all action steps have finished. A solution to the problem is a satisficing plan, an executable
plan in which send satisfies the goal state constraints of each task, v ∈ V . A utility function,
such as makespan or number of action steps, can be used to compare satisficing plans. An
optimal plan is a satisficing plan that maximizes the selected utility function. A coalition is
an executable coalition if a satisficing plan has been derived for the coalition to complete
its task. A nonexecutable coalition is a coalition for which a satisficing plan has not been
derived for the coalition to complete its task.

4 Example domains

Thegoal is to solve complex real-world domain problemswithmultiple heterogeneous agents,
durative actions, and complex state spaces. Existing planning problems were modified as
a first step towards achieving this goal and evaluating the presented tools. Most existing
planning domains lack at least one of the aspects representative of the desired domains and
to properly evaluate the presented planning tools. A modified Blocks World domain will be
used to illustrate the formal problem definition. Two additional planning domains, Rovers
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Fig. 1 Example states with the double-weight blocks shaded and required end effector for each block in
italics. a Initial state, b goal state constraints

and a modified Zenotravel, are presented and used to experimentally validate the tools.
Each domain, and the modifications to each, are presented and implemented in the Planning
Domain Definition Language (PDDL) [19].

4.1 Blocks World

The modified Blocks World domain requires that heterogeneous robotic arms manipulate
stacks of heterogeneous blocks on a table of finite size. Each arm has a subset of end effectors
available to it, while each block requires a specific end effector to be manipulated. A block
can be manipulated by an arm if and only if the arm has the block’s required end effector.
While blocks have the same dimensions, blocks can be either single- or double-weight.
Single-weight blocks can be manipulated by a single arm with the required end effector,
while double-weight blocks require two arms, each with the required end effector, in order to
be manipulated. The block stacks rest on a table with only enough space for a finite number
of block stacks. The goal state is a rearrangement of the blocks from the initial state into a
specified set of block stacks. The modified domain has been made freely available.1

The state space, S, includes both boolean and continuous variables. The boolean variables
describe the block stacks, each block’s required end effector type, which block each arm
is holding, and each arm’s available end effectors. The continuous variables describe the
height of each arm and block, the number of blocks on the table, and the table capacity.
The domain of the continuous variables is non-negative integers, which is not continuous;
however, modeling the variables as continuous simplifies the state model by not requiring all
possible values to be enumerated and ordered. The initial state, I , is an assignment of a value
to each variable in the state space. As a partial example, the middle stack in the example
initial state in Fig. 1a is expressed by assigning the value true to the following variables:
(onTable C), (onBlock D C), (onBlock E D), (requires C encompass), (requires D
magnetic), and (requires E f riction).

The grand coalition,Φ, is the set of arms executing actions. The actions are the up anddown
armmovement and block manipulation. The duration of each action is a linear function of the
number of arms executing the action, i.e., a single arm picking up a single-weight block is a
shorter action than two arms picking up a double-weight block due to fewer arms executing
the action. An example PDDL implementation of arm a picking up a single-weight block b1
off of block b2 is presented in Fig. 2. The action has a duration of 1. Executing the action
requires that a be empty, that b1 be clear, and that b1 be on b2 at the start of action execution,
while over the entire action execution a must be at the same height as b1, that b1 require the
specified end effector, and that a have the specified end effector. The action has three start

1 https://gist.github.com/aldukeman/879b32f602282f729770c5ddac25fbaa.
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(:durative-action pick-single-block-on-block
:parameters (?a - arm ?b_1 - single_block ?b_2 - block ?e - effector)
:duration (= ?duration 1)
:condition

(and
(at start (empty ?a))
(at start (clear ?b_1))
(at start (on_block ?b_1 ?b_2))
(over all (= (arm_height ?a) (block_height ?b_1)))
(over all (requires ?b_1 ?e))
(over all (has_effector ?a ?e))

)
:effect

(and
(at start (not (empty ?a)))
(at start (not (clear ?b_1)))
(at start (not (on_block ?b_1 ?b_2)))
(at end (clear ?b_2))
(at end (holding_single ?a ?b_1))

)
)

Fig. 2 PDDL implementation for an arm to pick up a block off another block

of action effects, a is no longer empty, b1 is no longer clear, and b1 is no longer on b2. The
two end of action effects are that b2 is clear, and that a is holding b1. The combination of
effects at the beginning and end of action execution ensures logical consistency throughout
action execution. For example, the combination of effects ensures that a third block cannot
be placed on b2 while b2 is being removed from on top of b1.

Each stack of blocks in the goal state corresponds to a task. The example goal state in
Fig. 1b is divided into three tasks: vC , vE , and vF . vC is the stack with C on the bottom and
the goal state constraints for vC are satisfied when C is on the table and B is on C , i.e., when
(onBlockBC) and (onTableC) are both true.

The capability vector for the Blocks World domain corresponds to the end effector types:
[suction, f r iction,magnetic, encompass]. The capabilities offered vector for each arm
is a function of the end effectors available to the arm. For example, an arm with a friction
end effector and an encompass end effector has the capabilities available vector [0, 1, 0, 1].
Double-weight blocks require twice the capabilities of single-weight blocks, because manip-
ulating double-weight blocks requires two robotic arms. The capabilities for each stack are
a function of two sets of blocks, the blocks in the goal stack and the blocks that must be
manipulated to access the blocks in the goal stack. For example, the capabilities required
vector for vE is a function of E and G, because they are the blocks in the goal stack and there
are no other blocks above E and G in the initial state. E requires two suction capabilities
and G requires the two friction capabilities; therefore, the capabilities required vector for vE
is [2, 2, 0, 0]. The capabilities required vector for vC is a function of B and C , as they are in
the goal stack, and of D and E , because they are above C in the initial state. The capabilities
required vector will be constructed iteratively as an example. E requires two friction capabil-
ities, thus, [0, 2, 0, 0]. D adds a requirement for a single magnetic capability, [0, 2, 1, 0]. C
adds a single encompass end effector, [0, 2, 1, 1]. B requires a single encompass end effector,
but an encompass end effector is already part of the capabilities required vector; therefore,
the capabilities required vector is not modified. The final capabilities required vector for vC
is [0, 2, 1, 1].
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4.2 Rovers

The Rovers domain has been used for several iterations of the International Planning Com-
petition (IPC) [28]. The domain models rovers navigating between waypoints, collecting
different classes of scientific data at a subset of waypoints, and communicating the data back
to the central lander. The five classes of scientific data are soil analysis, rock analysis, high-
resolution imagery, low-resolution imagery, and color imagery. Each rover can independently
navigate a subsection of the environment and collect a subset of the classes of scientific data,
but only one rover at a time can communicate data to the central lander. Rock analysis is
required at a subset of waypoints and soil analysis is required at a subset of waypoints. Rovers
must be at a waypoint to perform rock or soil analysis on waypoint and must be equipped
for the analysis. Up to three types of imagery data can be collected at each waypoint. A
rover must have the correct camera type and the target waypoint must be visible in order for
the rover to collect imagery data for the target waypoint. The PDDL implementation of the
domain is identical to the simple time version of the domain used in the 2002 International
Planning Competition,2 with the exception of modified action durations.

The state space contains only boolean variables and describes waypoint connectivity,
waypoint visibility, rover scientific tools, data collection types and location, central lan-
der location, and communication channel capacity. Each action has a fixed duration. The
domain’s capability model corresponds to the classes of scientific data being collected. Each
rover’s capabilities offered vector is a function of the tools available to the rover. The goal is
subdivided into a task for each class of scientific data, e.g., all the state constraints concerning
rock analysis are grouped into a single task. The capabilities required vector for each task
corresponds to the types of scientific data collected for the task.

4.3 Zenotravel

The Zenotravel domain was originally created for testing the Zeno planner [31] and was
modified to include hub and spoke airports, passengers and cargo, and short-range and long-
range planes. Spoke airports are airports in smaller cities, with each spoke connected to a
single hub airport. Hub airports are located in larger cities and are connected to a set of spoke
airports. Short-range planes fly only between a hub and its connected spokes. The set of
spoke airports for each pair of hubs is disjoint. All hubs are connected and only long-range
planes can fly between them. Each plane has limited passenger and cargo capacity. The goal
is satisfied when all passengers and cargo are at their destinations. The modified domain has
been made freely available.3

The state space includes both boolean and continuous variables. The boolean variables
describe the location of each passenger, cargo, and plane. The continuous variables include
the amount of passengers and cargo on each plane, each plane’s passenger and cargo capacity,
each plane’s fuel level and capacity, and the distance between connected cities. The number of
passengers, amount of cargo and their respective capacities for each plane are not continuous
variables; however, similar to Blocks World, modeling the values as continuous variables in
PDDL facilitates the experiments and expressing the models by not requiring all possible
values to be enumerated. The actions to load and unload passengers and cargo from a plane
have fixed duration. Fuel use and the action duration for a plane to fly between two cities
is a linear function of the distance traveled. The time required to refuel a plane is a linear

2 http://ipc02.icaps-conference.org/CompoDomains/RoversSimpleTime.pddl.
3 https://gist.github.com/aldukeman/1103214e83d47a01b4414699228f9d7d.
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function of the fuel level at the start of action execution and the fuel capacity. The capability
model includes passenger and cargo capacity and the hub cities. For example, a short-range
plane based out of the hub airport of ATL in Atlanta, Georgia has a capabilities offered vector
corresponding to its passenger and cargo capacity and its ability to travel between ATL and
ATL’s spoke airports. A long-range plane has a capabilities offered vector corresponding
to its passenger and cargo capacity and its ability to travel between any two hub airports,
such as ATL and LAX in Los Angeles, California. The goal state is divided into tasks
based on the origin and destination airports of the passengers and cargo. All passengers and
cargo originating in a city and traveling to the same city are grouped into a single task. The
capabilities required vector of each task is a function of the number of passengers and cargo
included in the task, the origin, and the destination.

5 Experimental design

This section describes the experimental design for each tool when solving the hybrid mission
planning and coalition formation problem.

5.1 Random problem generation

Grand coalitions and missions were generated for each domain. A grand coalition consists
of a set of agents and their associated capabilities. A Mission consists of an initial state and
a goal state description. Each grand coalition in each domain was paired with each Mission
in the same domain to create a problem to be solved. Ten grand coalitions and ten missions
were generated for each domain, for a total of 100 generated problems for each domain. The
specific experimental details for each domain are presented.

5.1.1 Blocks World

The grand coalitions in the Blocks World domain were a randomly generated set of robotic
arms. Four types of end effectors were used: friction, suction, magnetic, and encompass.
Each grand coalition had between four and eight arms, with each arm averaging two end
effectors. The grand coalitions required at least two arms with each end effector to guarantee
the ability to execute each mission. The generated grand coalitions were manually validated
as possessing the required end effectors. If a grand coalition was deficient, then the least
capable arm in the grand coalition was augmented with the missing end effector(s). The
grand coalitions ranged from 4 to 8 arms, with an average of 6.5 arms. Each arm averaged
2.6 end effectors. Themission initial states included between three and five block stacks, with
each stack having three blocks, for a total of nine to fifteen blocks. The missions averaged 4.1
stacks of blocks in the initial state. Each mission’s goal state description required a random
rearrangement of the blocks from the initial block stacks into an equal number of block
stacks. The problems generated from the same mission differ in the number of arms and the
number of and types of end effectors on the arms. The problems generated from the same
grand coalition differ in the number of blocks and the goal state description.

5.1.2 Rovers

The grand coalitions included ten randomly generated rovers. Each rover was allocated tools
allowing it to collect an average of two of the five classes of scientific data, defined in Sect. 4.2.
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Table 1 Dependent variables Dependent variable Units

Makespan Time

Action execution steps Scalar

Memory usage gigabytes

Planning tool time Seconds

Themission initial states included the connections between thewaypoints, thewaypoints each
rover was able to traverse, each rover’s starting location, scientific data source locations, and
the central lander’s location. The mission goal state description requires all the scientific data
to be communicated to the central lander. The missions averaged 103 waypoints, with an
average of 4.7 waypoints traversable from each waypoint. Each mission required collecting
an average of 116.1 pieces of scientific data. Each grand coalition averaged 4.2 rovers capable
of collecting a given class of scientific data, with a minimum of two rovers in each grand
coalition capable of collecting each class of scientific data.

5.1.3 Zenotravel

The grand coalitions in the Zenotravel domain were a randomly generated set of long-range
planes and short-range planes. Each hub city had between one and three short-range planes
and five to ten long-range planes were randomly distributed across the hubs in each mission’s
initial state. The generatedmissions use the same set of hubs and spokes, based on real airports
in the US and the distances between each. Seven hub airports and forty-two spoke airports
were selected, with each hub having between five and seven associated spokes. The missions
consisted of an average of 60.1 passengers and 59.7 units of cargo were spread over 17 tasks.
The short-range planes had a capacity of four passengers and four cargo units and the long-
range planes had a capacity of eight passengers and eight cargo units. The grand coalitions
averaged 8.1 long-range planes and 14.5 short-range planes.

5.2 Metrics

A test case is a single problem attempted by a single planning tool. The dependent variables,
as presented in Table1, were recorded during each test case.Makespan is the amount of time
required to execute a plan:

makespan(π) = max
s∈π

start (s) + dur(s),

whereπ is a plan and s is an action execution step inπ . Thenumber of action execution steps in
the generated plan was recorded.Memory usagewas recorded using the Linux getrusage
function. The getrusage function returns resource usage measures of the current process,
including the maximum resident set size, which is an indicator of the amount of memory
required by the planning tool. Reported memory values are in gigabytes. Planning tool time
is the time for the planning tool to produce a solution in seconds.

Three potential outcomes exist for each test case. First, a satisficing plan for the grand
coalition to achieve the goal is produced, in which case the metrics are reported. Second,
no plan is produced due to a grand coalition being nonexecutable for a mission, which hap-
pens when an allocated coalition is confirmed by the planning tool as unable to complete
its assigned task. If a coalition is unable to complete its task, then the grand coalition is
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nonexecutable for the mission. Finally, the planning tool can exceed either memory or com-
putation time limits. All planning problems were limited to 48GB of memory. Computation
time limits were varied and are given with the results. VAL, the plan validator for PDDL
[22], was used to confirm that the produced plans were satisficing. The experiments were run
under Xubuntu 16.04 using an Intel Core i7-5820K CPU with 64GB RAM. All source code
is written in C++ and compiled with g++ 5.2.1.

5.3 Coalition formation and planning algorithms

Three planning algorithms and three coalition formation algorithms were used with the pre-
sented tools. ITSAT [35], a SAT-based planner, was selected for planning in the Rovers
domain and a service model approximation algorithm [40] was selected for coalition for-
mation. ITSAT was selected due to being open source after the 2014 International Planning
Competition and a desire to test multiple classes of planning algorithms. The service model
approximation algorithm provides solutions quickly and supports the service model of coali-
tion formation used in the Rovers domain. TFD [17], a state space search planner using
the context-enhanced additive heuristic modified for continuous state variables and temporal
planning, was selected for the Blocks World domain and a dynamic programming coali-
tion formation algorithm [40] was selected for coalition formation. TFD was selected due
to being open source, performing well in the temporal track of the 2014 International Plan-
ning Competition, and supporting the continuous state variables. The dynamic programming
algorithm finds solutions for the Blocks World problems quickly and works with either ser-
vice or resource models. Coalition formation in the Blocks World domain uses the service
model. The enforced hill climbing (EHC) version of the COLIN planner [8], a state space
search planner using a relaxed plan graph heuristic, supports continuous linear effects and
was selected for planning in the Zenotravel domain. COLIN was selected due to being open
source and supporting the continuous effects required in the Zenotravel domain. A greedy
algorithm [42] was selected for coalition formation in the Zenotravel domain. The greedy
algorithm works quickly by limiting potential coalition size.

All three coalition formation algorithms can be applied to the Rovers and Blocks World
domain, but the service model approximation algorithm cannot be applied in the Zenotravel
domain due to not supporting the resource model of coalition formation. COLIN supports
all the necessary features to plan problems in all three domains. TFD can be used to solve
problems in the Rovers and Blocks World domains, but does not support the continuous
effects present in the Zenotravel domain. ITSAT does not support continuous variables, so it
can only be used with the Rovers domain.

6 Planning tool motivation and analysis

This section presents the tools used to solve the randomly generated problems in each domain.
Each tool is presented and described using the experimental domains, followed by the experi-
mental results, and a summary of the results and how they motivate the next tool. A summary
is located at the end of this section to provide an overview of the results.

6.1 Planning alone

A solution for the generated problems can be derived using existing planning algorithms.
The problem is solved as a single planning problem. All agents in the grand coalition are
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Algorithm 1: Planning Alone
Input : S - state space, A - coalition action mapping, Φ - grand coalition, I - initial state, V - tasks
Output: π - plan to satisfy all tasks

1 Actions = A(Φ);
2 G = ∧v∈V cond(v);
3 π = Plan(S, I, Actions,G);

available for planning and all task state constraints must be satisfied simultaneously in the
solution’s end state. Planning for all tasks with all agents simultaneously can consider all
possible interactions between the tasks and agents, but planning as a single problem becomes
computationally prohibitive as the expressive features of the state model, the number of
agents, and the number of tasks increase. As the number of agents increases, so too does the
number of actions that can be executed in any given state, the size of the state space, and the
number of executable plans that can be considered by the planning algorithm. As the number
of tasks increases, more constraints are placed on the goal state and the size of the set of
goal states decreases; thus, fewer plans qualify as satisficing. These two effects combine to
increase the problem’s difficulty.

The problem formalization is translated to a single planning problem by Algorithm 1.
The set of available actions for planning, Actions, is a function of the agents in the
grand coalition, A(Φ), shown in Line 1. The goals for the planning problem, G, are com-
bined in Line 2. G is satisfied if and only if all the tasks, v ∈ V , are satisfied. Plan in
Line 3 represents a planning algorithm capable of reasoning over the action model, the
state space (S), and the goals. Each presented tool is agnostic of the underlying plan-
ning algorithm. Different planning algorithms are used for each domain, as discussed in
Sect. 5.3.

6.1.1 Blocks World

Forty-two of the one hundred generated problems for the Blocks World domain were solved
by planning alone. Table2 presents the five number summary for plan makespan, number of
action execution steps, time to derive the plan, and memory required to derive the plan for
the solved problems. The temporal makespan of the solved problems is presented in Table3.
A value of “MEM” indicates the memory limit was exceeded while trying to solving the
problem. The makespan of the derived plans ranged from 21 to 69, with a median of 33.
Plans were not produced for any of the Grand Coalitions in three of the Missions (3, 4, and
8) and a plan was derived for only one of the Grand Coalitions in Mission 7. Planning alone
derived plans for all the Grand Coalitions in Mission 2. The number of action execution
steps, presented in Table4, ranged from 46 steps to 139 steps and had a median of 68 steps.
The time to derived the satisficing plan for each problem is presented in Table5 and ranged
from 6.1 to 6489.1 s, with a median of 72.2 s. Table6 presents the memory required during
plan derivation for each problem, ranging from 0.05 to 43.91GB, with a median of 0.49GB.
Planning alone failed to derive plans for 58 of the 100 problems due to exceeding the memory
limit and required more than 10GB of memory when solving nine problems; thus, there is
much room for improvement. The heatmap ranges applied for the presented Blocks World
results are also applied to the next sets of Blocks World results for comparison of results for
the same problems across tools.
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Table 2 The five number summary for metrics collected while solving the Blocks World problems using
Planning Alone

Metric Minimum Lower Quartile Median Upper Quartile Maximum

Makespan 21 29 33 39 69

Steps 46 58 68 82 139

Time (s) 6.1 25.5 72.2 454.4 6489.1

Memory (GB) 0.05 0.20 0.49 6.52 43.91

Table 3 Temporal makespan using planning alone for the Blocks World problems (Color table online)

The heatmap overlay ranges from 20 (green) to 120 (red). A value of “MEM” indicates the memory limit was
exceeded while attempting the problems

Table 4 Number of action execution steps in the derived plans using planning alone for the Blocks World
problems (Color table online)

The heatmap overlay ranges from 40 (green) to 150 (red). A value of “MEM” indicates the memory limit was
exceeded while attempting the problems

6.1.2 Rovers

All one hundred Rovers problems were solved by Planning Alone. Table7 presents the five
number summary for planmakespan, number of actions, time to derive the plans, andmemory
required to derive the plans. The makespan of the derived solutions, presented in Table8,
ranged from 876 to 3463, with a median of 1585. Grand Coalition 10 had the shortest average
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Table 5 Planning time in seconds using planning alone for the Blocks World problems (Color table online)

The heatmap overlay ranges from 0 (green) to 1800s (red). A value of “MEM” indicates the memory limit
was exceeded while attempting the problems

Table 6 Required memory in gigabytes using planning alone for the Blocks World problems (Color table
online)

The heatmap overlay ranges from 0 (green) to 40GB (red). A value of “MEM” indicates the memory limit
was exceeded while attempting the problems

Table 7 The five number summary for metrics collected while solving the Rovers problems using planning
alone

Metric Minimum Lower Quartile Median Upper Quartile Maximum

Makespan 876 1349 1585 1927 3463

Steps 481 668 759 902 1403

Time (s) 1029.0 1505.1 1790.4 2227.0 13033.2

Memory (GB) 12.41 15.65 17.29 20.08 40.75

makespan, while Grand Coalition 1 had the longest. Mission 10 had the longest average
makespan, while Mission 3 had the shortest. The number of action execution steps for each
problem is presented in Table9 and ranged from 481 steps to 1403 steps, with a median of
759 steps. Mission 10 required the most steps (998), while Mission 3 with 556 steps required
the least. Grand Coalition 1 required the most steps to complete a Mission (998), while
Grand Coalition 10 with 674 steps required the least. Table10 presents the time to derive
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Table 8 Temporal makespan using planning alone for the Rovers problems (Color table online)

The heatmap overlay ranges from a value of 800 (green) up to a value of 3500 (red)

Table 9 Number of action execution steps in the derived plans using planning alone for Rovers problems
(Color table online)

The heatmap overlay ranges from 480 (green) to 1400 (red)

Table 10 Planning time in seconds using planning alone for the Rovers problems (Color table online)

The heatmap overlay ranges from 800 (green) to 3100s (red)

the satisficing plan for each problem, ranging from 1118.0 to 13475.4 s, with a median of
1790.4 s. Deriving plans for Mission 10 required an average of 5123s, the highest of all the
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Table 11 Required memory in gigabytes using planning alone for the Rovers problems (Color table online)

The heatmap overlay ranges from 0 (green) to 40GB (red)

Missions, while Mission 3 required the least, at 1387s. Memory usage ranged from 12.41 to
40.75GB, with a median of 17.29GB, and is presented in Table11. Mission 10 required the
most memory (25.56GB), whileMission 3 with 14.29GB required the least. Grand Coalition
6 required the most memory (23.86GB), while Grand Coalition 8 at 15.19GB required the
least. The large amount of memory and time required to solve these problems leaves room
for improvement. The same heatmap ranges are applied to the next sets of Rovers results.

Missions 3 and 10 were the hardest and easiest Missions, respectively, in terms of time
and memory required to derive a plan and in terms of derived plan makespan and number
of steps. The average number of scientific data collections per Mission was 116. Mission 10
(149 data collections) was 1.64 standard deviations above the average, while Mission 3 (92
data collections) was 1.25 standard deviations below the average. The hardest and easiest
Grand Coalitions for which to plan in terms of the time and memory limitations, makespan,
and number of steps in the derived plan ismuch less clear than the equivalent analysis with the
Missions. The average Grand Coalition offered 21 capabilities. Grand Coalition 10 was the
most capable with a total of 28 capabilities, with at least five of the ten rovers being capable
of collecting each class of scientific data. The greater capabilities translated to better plans
in terms of makespan and number of steps; however, the greater capabilities did not require
the most time nor memory with which to plan. Grand Coalition 8 was the least capable of
the coalitions, with three rovers capable of collecting each class of scientific data (total of 15
capabilities offered), but the plans derived for GrandCoalition 8were not the longest, in terms
of makespan or number of steps. The derived plans for Grand Coalition 1 were the longest in
terms of makespan and number of steps. The reason for the difference is the number of rovers
capable of soil analysis. Both rock and soil analyses require more navigation throughout the
environment than the imagery analyses, because the rover must be at the waypoint to perform
the analysis, while the imagery analyses only require that the rover have line of sight to the
waypoint. Grand Coalition 8 had three rovers capable of soil analysis, while Grand Coalition
1 had two rovers capable of soil analysis.

6.1.3 Zenotravel

None of the Zenotravel problems were solved by planning alone using the COLIN planner
in EHC mode. A 2h time limit was enforced for solving the Zenotravel problems, which
resulted in no satisficing plans being generated for any of the problems. Five of the one
hundred problemswere selected to reevaluatewithout the time limit. Each of the five problems
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Table 12 Planning alone summary

Domain Problems solved Summary

Blocks World 42 Some problems solved, but the
majority of the problems exceeded
the memory limit. No plans were
found for three missions

Rovers 100 All problems solved, but high
computational resource usage

Zenotravel 0 No problems solved within time
limit. Ten problems were run
without a time limit and all
problems exceeded the memory
limit after 16.5h

exceeded the 48GBmemory limit after an average of 16.5h of execution. The problems being
solved in the Zenotravel domain average 60 passengers, 60 cargo, and 22 planes. The large
number of planes, passengers, and cargo produces a large branching factor. Assume, as a
conservative estimate, each plane can refuel, fly to three different cities, or load a single
passenger or cargo. The branching factor for such a situation is over 100. Each plane is likely
to be able to fly to about five cities from any particular state and load or unload cargo and
passengers, thus, the true branching factor is likely to be much higher.

6.1.4 Summary

The results from each domain provide room for improvement, as summarized in Table12.
Results from each of the domains leave room for improvement. Only 42 of the 100 Blocks
World problems were solved and no plans were produced for three of the Missions. All 58
failures for the Blocks World problems were due to exceeding the 48GB memory limit. All
Rovers domain problems were solved by ITSAT, but computational resource usage needs
to be improved. ITSAT required, on average, 2157s and 18.5GB of memory to solve the
problems. None of the Zenotravel domain problems were solved within the 2h time limit
and removing the time limit did not allow for any of the problems to be solved.

The primary issue when using planning alone is exponential complexity. The number of
agents, the number of tasks, and the domain complexity (durative actions, continuous state
variables, etc.) all contribute to the problem complexity. One option is to reduce the domain
complexity through various relaxations, such as assuming all actions are instantaneous and
executed sequentially. A plan is only as good as the domain and problem description from
which it is created; thus, plans are more likely to succeed in real-world missions when they
are created from accurate domainmodels with representative durative actions and continuous
variables. A better option is to address the other aspects of problem complexity, i.e., reduce
the number of agents and number of tasks considered at any one time. The three presented
tools address problem complexity by reducing the number of goals and agents considered
during planning, while maintaining high fidelity state models and plans.

6.2 Coalition formation then planning

The coalition formation then planning tool (CFP) produces several smaller planning instances
focused on a subset of the goals, each using a subset of the agents to satisfy the goals.
Algorithm 2 presents the CFP algorithm, which begins with an empty plan and no goals,
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Algorithm 2: Coalition Formation then Planning
Input : S - state space, A - coalition action mapping, Φ - grand coalition, I - initial state, V - tasks,

C - capability mappings
Output: π - plan to satisfy all tasks

1 π = ∅;
2 G = ∅;

3 {Capφ}φ∈Φ = C(Φ);
4 {Capv}v∈V = C(V );

5 {Φi , vi }|V |
i=1 = CF({Capφ}φ∈Φ, {Capv}v∈V );

6 foreach i ∈ {1, . . . , |V |} do
7 G = G ∧ vi ;
8 Ii = Simulate(I, π);
9 Actions = A(Φi );

10 πi = Plan(S, Ii , Actions,G);
11 π = PlanMerge(S, I, π, πi ,G);
12 end

Lines 1 and 2, respectively. The capabilities offered vector for each agent is identified using
the capability mappings in Line 3. The capabilities required vector for each task is identified
using the capability mappings in Line 4. Coalition formation is applied in Line 5 to allocate
coalitions to tasks. Coalition formation’s result is an assignment of a candidate coalition to
each task. A coalition is a candidate coalition for a task if and only if the coalition has at least
as many of each type of resource as required by task, i.e., Φv is a candidate coalition for v

if and only if ∀i,CapΦv

i ≥ Capv
i . The planning loop, Line 6–12, is executed after coalition

formation. The goals for vi are combined with G to form the goals to be solved in the current
iteration, Line 7. Combining the previous constraints with the current iteration constraints
allows the iterative plan to break previous constraints in the course of planning, as long as
the constraints are satisfied at the end of the iterative planning. The initial state, Ii , for the
current iteration is the end state achieved after simulating the current plan, π , from the initial
state, I , using VAL, Line 8. The available actions, Actions, are a function of the coalition
allocated to the current task, Φi , and available for planning, Line 9. An appropriate planning
algorithm, Plan, finds an iterative plan, πi , to satisfy G from the initial state, Ii , using the
actions of the available coalition, Actions, in Line 10. CFP relies on coalition formation
to produce executable coalitions. If Φi is a nonexecutable coalition, then CFP reports the
problem as failed, else the iterative plan must be merged. πi is merged with the current plan,
π , to create a plan to satisfy G when executed from I , Line 11. The planning problem solved
during each iteration in Line 10 is analogous to deriving a plan, executing the plan, and being
given an additional planning goal to satisfy. The current goals, G, have been satisfied in the
current state, Ii , but additional goals are given, so augmenting G with the additional goal
constraints, G = G ∧ vi , and a plan must be derived to transition from Ii to a state satisfying
G. The plan merge step, Line 11, can be as simple as modifying the action execution steps in
πi , such that the action execution steps begin execution immediately when π ends; however,
more complex scheduling can occur. A greedy scheduling approach, in which each action
execution step in πi is modified, one at a time in increasing original start time order, to occur
as early as possible in the resulting plan, is applied.

Performing coalition formation affects problem complexity in twoways. First, the number
of goal constraints addressed at any one time is reduced. Assume the Blocks World example
from Fig. 1b. The set of goal constraints for planning alone addresses the seven blocks in the
figure, whereas the goal constraints in CFP are divided into three sets of goals constraints,
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two of which address the locations of two blocks and one of which addresses the location of
three blocks. Each of the stacks of blocks in the goal state description of the Blocks World
problems correspond to a task. Planning for a single stack at a time prunes blocks from
the state space that must be considered. Second, the number of agents is reduced; thus, the
number of actions and the state space is reduced. Reducing the number of actions creates a
lower branching factor in the search tree, but also eliminates states from the search tree. Goal
states can be among the eliminated states; thus, reducing the search branching factor can
force deeper searches to identify a goal state. The state space is reduced due to eliminating
the variables and domain values that are no longer reachable given the reduced action set.
The effects of the reduced action set and reduced state space combine to increase the number
of states that can be searched per unit of time. Coalition formation in the Blocks World
problems identifies a coalition of arms to allocate to each task. Each identified coalition is
selected based on the end effectors available to the coalition and the end effectors required to
achieve each block stack. If the grand coalition is not allocated to the task, then the branching
factor in planning for the task has been reduced.

6.2.1 Blocks World

Twenty-six of the one hundred generated problems for the BlocksWorld domain were solved
by CFP. Table13 presents the five number summary for plan makespan, number of action
execution steps, time required to derive the plan, and memory required to derive the plan for
the solved problems. The temporal makespan of the derived plans are presented in Table14.
Values of “NE”, “MEM”, and “TIME” indicate a nonexecutable coalition, an exceeded
memory limit, and an exceeded time limit, respectively. The time limit was 1h. Themakespan
ranged from 30 to 114, with a median of 52. Grand Coalition 10 was the only Grand Coalition
for which plans were not derived for any of the Missions andMission 9 was the only Mission
for which plans were not derived for any of the Grand Coalitions. The number of action
execution steps ranged from37 steps to 153 steps, with amedian of 84 steps, and are presented
in Table15. The time to derive a plan had a median of 103.1 s, ranging from 2.6 to 3093.4 s,
and are presented in Table16. The memory required to derive a plan is presented in Table17.
The memory required ranged from 0.01 to 22.86GB, with a median of 0.36GB.

Seventeenproblemswere commonly solvedbyPAandCFP.Acomparisonof the seventeen
problems is presented in Table 18. The ratio of the metric when using PA to the metric when
using CFP was calculated, and the median ratio is presented. The median makespan ratio
was 1.46, with 11 of the problems having higher makespan solutions (ratio > 1.0) when
solved using CFP compared to PA. Ten of the CFP derived plans had more actions than the
counterparts derived using PA, with a median ratio of 1.06. Computation time was lower
with CFP than with PA for 12 of the problems (ratio < 1.0), with a median ratio of 0.71.

Table 13 The five number summary for solving the Blocks World problems using CFP

Metric Minimum Lower Quartile Median Upper Quartile Maximum

Makespan 30 42 52 61 114

Steps 37 73 84 93 153

Time (s) 2.6 33.9 103.1 494.8 3093.4

Memory (GB) 0.01 0.15 0.36 8.35 22.86
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Table 14 Temporal makespan using CFP for the Blocks World problems (Color table online)

The heatmap overlay ranges from 20 (green) to 120 (red). A value of “MEM”, “NE”, or “TIME” indicates
the problem was not solved due to exceeding the memory limit, generating a nonexecutable coalition, or
execeeding the time limit

Table 15 Number of action execution steps in the derived plans using CFP for the Blocks World problems
(Color table online)

The heatmap overlay ranges from 40 (green) to 150 (red). A value of “MEM”, “NE”, or “TIME” indicates
the problem was not solved due to exceeding the memory limit, generating a nonexecutable coalition, or
execeeding the time limit

Table 16 Planning time in seconds using CFP for the Blocks World problems (Color table online)

The heatmap overlay ranges from 0 (green) to 1800s (red). A value of “MEM”, “NE”, or “TIME” indicates
the problem was not solved due to exceeding the memory limit, generating a nonexecutable coalition, or
execeeding the time limit
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Table 17 Required memory in gigabytes using CFP for the Blocks World problems (Color table online)

The heatmap overlay ranges from 0 (green) to 40GB (red). A value of “MEM”, “NE”, or “TIME” indicates
the problem was not solved due to exceeding the memory limit, generating a nonexecutable coalition, or
execeeding the time limit

Table 18 Median ratio of the CFP metric value to the PA metric value for Blocks World problems

Problems Makespan ratio Actions ratio Time ratio Memory ratio

17 1.46 1.06 0.71 0.71

Only problems solved by both tools are considered

Finally, thirteen of the problems required less memory to solve with CFP than with PA, with
a median ratio of 0.71.

The plan merge step ensures that all actions execution steps in πi do not occur until their
conditions are satisfied in π . For example, if block A is placed on the table as a result of
executing step m in π and a step n in πi relies on A being on the table, then the plan merge
step ensures that n does not start until after A has been placed on the table by m.

CFP failed to solve nine problems due to exceeding thememory limit and failed to solve 66
of the 100 problems due to allocating nonexecutable coalitions. CFP solved fewer problems
than planning alone, but the median problems required 29% less memory and 29% less time
than planning alone. The problems that failed due to nonexecutable coalitions can be divided
into two categories, both of which are a result of the order in which tasks were planned.
First, arms were not required to drop blocks at the end of their tasks. The finite table limited
the number of blocks on the table and forced agents to place blocks on top of one another.
If block a was placed on top of b and the task required moving b, but the coalition was
incapable of moving a due to no agent in the coalition possessing the required end effector,
then the coalition was nonexecutable. Second, agents were not required to release blocks at
the end of a task. If arm φ is holding a at the end of plan execution and v j requires a for a
later plan, then Φ j allocated to v j will fail planning, unless φ releases a before the algorithm
plans for v j or φ ∈ Φ j . If φ releases a before the algorithm plans for v j , then a will be a
part of some tower in I j . If φ ∈ Φ j , then planning will succeed due to φ holding a in I j
and φ being able to place a where it belongs. One option to avoid the second failure mode
is to require agents to satisfy “cleanup goals” before planning each task. The cleanup goals
will ensure that each agent is prepared to plan for the next task. Cleanup goals in the Blocks
World problems will require that all agents not hold any blocks at the end of task planning. A
design decision was made not to test cleanup goals for these experiments. Requiring agents
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Table 19 The five number summary for solving the Rovers problems using CFP

Metric Minimum Lower Quartile Median Upper Quartile Maximum

Makespan 1154 1990 2299 2658 3161

Steps 486 578 656 722 935

Time (s) 812.3 1036.0 1296.1 1545.3 2292.8

Memory (GB) 0.93 1.45 1.88 2.41 4.41

Table 20 Temporal makespan using CFP for the Rovers problems (Color table online)

The heatmap overlay ranges from 800 (green) to 3500 (red). A value of “NE” indicates a nonexecutable
coalition failure

to drop blocks between tasks can detrimentally affect plan quality. Consider the φ holding a
case from earlier. Assume φ is holding a, v j is the next task to be planned, andΦ j is allocated
to v j . If φ ∈ Φ j and a is a part of v j , then requiring φ to drop a before planning v j wastes
time, since some agent in Φ j will pickup a again.

The results also demonstrate that coalition formation can be detrimental. Five problems
(Mission 2 with Grand Coalition 5, Mission 5 with Grand Coalitions 5 and 7, Mission 6 with
Grand Coalition 5, and Mission 10 with Grand Coalition 3) were solved by planning alone,
but exceeded the memory limit when attempted by CFP. More states had to be created and
searched because the decrease in branching factor caused by using fewer agents did not offset
the increase in the search depth required to solve the problems.

6.2.2 Rovers

Seventy-six of the one hundred generated Rovers problems were solved by CFP. The five
number summary for planmakespan, number of action execution steps, time required to derive
the plan, and memory required to derive the plan for the solved problems are presented in
Table19. The temporal makespan of the derived plans ranged from 1154 to 3161 and had a
median of 2299. Full makespan results are presented in Table20. A value of “NE” indicates a
nonexecutable coalition was allocated. The number of action execution steps is presented in
Table21 and ranged from 486 steps to 935 steps, with amedian of 656 steps. The computation
time and memory usage is presented in Tables22 and 23, respectively. Computation time
ranged from 812 to 2292.8 s and had a median of 1296.1 s. Memory usage ranged from 0.93
to 4.41GB, with a median of 1.88GB.
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Table 21 Number of action execution steps in the derived plans using CFP for Rovers problems (Color table
online)

The heatmap overlay ranges from 480 (green) to 1400 (red). A value of “NE” indicates a nonexecutable
coalition failure

Table 22 Planning time in seconds using CFP for the Rovers problems (Color table online)

The heatmap overlay ranges from 800 (green) to 3100s (red). A value of “NE” indicates a nonexecutable
coalition failure

Table 23 Required memory in gigabytes using CFP for the Rovers problems (Color table online)

The heatmap overlay ranges from 0 (green) to 40GB (red). A value of “NE” indicates a nonexecutable coalition
failure
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Table 24 Median ratio of the CFP metric value to the PA metric value for Rovers problems

Problems Makespan ratio Actions ratio Time ratio Memory ratio

76 1.34 0.85 0.73 0.11

Only problems solved by both tools are considered

A comparison of the set of 76 problems commonly solved by PA and CFP is shown
in Table 24. The median makespan ratio was 1.34, with 62 of the problems having higher
makespan solutions (ratio > 1.0) when solved using CFP compared to PA. Six of the CFP
derived plans had more actions than the corresponding plans derived using PA, with a median
ratio of 0.85. Computation time was lower with CFP than with PA for 71 of the problems
(ratio< 1.0), with amedian ratio of 0.73. Finally, all 76 of the problems required lessmemory
to solve with CFP than with PA, with a median ratio of 0.11.

The plan merge step in the Rovers domain is simple as the rovers are mostly indepen-
dent. The difficulty comes from the single shared communications channel with the lander.
A simple merge where each plan is executed concurrently does not work because the com-
munications channel is disrupted if multiple rovers attempt to transmit at the same time. The
merged plan must ensure no two rovers are ever concurrently transmitting with the lander.

The twenty-four problems that were not solved by CFP due to a nonexecutable coalition
being assigned to a task failed due to not being able to reach required waypoints to collect
scientific data. Most of the instances were due to a nonexecutable coalition assigned to the
rock or soil analysis task. A rover must be at waypoint wi to collect rock or soil analysis at
wi . If no rover in the coalition can reachwi , then the coalition is nonexecutable. The imagery
analyses are less likely to be nonexecutable due to a rover not being required to be at wi to
collect imagery data for wi . Imagery data for each waypoint requiring imagery analysis was
collectable from multiple waypoints. Multiple specific waypoints must be unreachable in
order for a coalition to fail this task whereas a single waypoint being unreachable can make
rock or soil analysis nonexecutable.

6.2.3 Zenotravel

Eighty-five of the one hundred generated problems were solved by CFP using the resource
model greedy coalition formation algorithm and the COLIN planner in EHC mode. The
fifteen problems were due to using the incomplete EHC-based planning algorithm. The five
number summary for plan makespan, number of steps, time to derive the plan, and memory
required to derive the plan for the solved problems are presented in Table25. Derived plan
makespan is presented in Table26. One Grand Coalition completed all Missions (Grand
Coalition 9), while five Missions were completed by all Grand Coalitions (Missions 1, 2, 6,
9, and 10). The makespan of the derived plans ranged from 686 to 1891, with a median of
1055. Grand Coalition 6 had the smallest average makespan, while Grand Coalition 2 had the
largest. Mission 5 had the longest average makespan, while Mission 7 had the shortest. The
number of action execution steps ranged from 459 steps to 663 steps, with a median of 529
steps, and is presented in Table27. Mission 6 required the most steps (649.0), while Mission
10, with 467.0 steps, required the least. The time to derive a satisficing plan for each problem
ranged from 279.7 to 936.4 s, with a median of 410.2 s. Full results are presented in Table28.
Mission 6 required the most time, at 805s, while Mission 10 required the least, at 316s. The
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Table 25 The five number summary for solving the Zenotravel problems using CFP

Metric Minimum Lower Quartile Median Upper Quartile Maximum

Makespan 686 900 1055 1291 1891

Steps 459 489 529 553 663

Time (s) 279.7 354.6 410.2 473.7 936.4

Memory (GB) 0.15 0.15 0.16 0.19 0.19

Table 26 Temporal makespan using CFP for the Zenotravel problems (Color table online)

The heatmap overlay ranges from 700 (green) to 1900 (red). A value of “EHC” indicates a failure due to using
an incomple enforced hill climbing algorithm

Table 27 Number of action execution steps in the derived satisficing plan using CFP for the Zenotravel
problems (Color table online)

The heatmap overlay ranges from 460 (green) to 660 (red). A value of “EHC” indicates a failure due to using
an incomple enforced hill climbing algorithm

required memory results are presented in Table29 and ranged from 0.15 to 0.19GB, with a
median of 0.16GB.

Coalition formation was the least likely to generate nonexecutable coalitions for the Zeno-
travel domain. The domain and capability model was designed such that a candidate coalition
will always be executable. The only instance inwhich a coalitionwill be nonexecutable occurs
if planning for an earlier task transports a passenger to an airport inaccessible to the nonex-

123



1452 Auton Agent Multi-Agent Syst (2017) 31:1424–1466

Table 28 Planning time in seconds using CFP for the Zenotravel problems (Color table online)

The heatmap overlay ranges from 280 (green) to 940s (red). A value of “EHC” indicates a failure due to using
an incomple enforced hill climbing algorithm

Table 29 Required memory in gigabytes using CFP for the Zenotravel problems (Color table online)

The heatmap overlay ranges from 0.15 (green) to 0.19GB (red). A value of “EHC” indicates a failure due to
using an incomple enforced hill climbing algorithm

ecutable coalition. The iterative initial state will have changed enough that the candidate
coalition will no longer be executable. Assume the goal for vi is to transport passenger passi
from ci tyo to ci tyi and the goal for v j is to transport pass j from ci tyo to ci ty j . Φ j is
assigned to v j and can only travel between ci tyo and ci ty j . If vi is planned before v j and
the plan for vi transports pass j to ci tyi , then Φ j will be nonexecutable due to being unable
to pickup pass j in ci tyi .

The Zenotravel domain has the simplest plan merge due to all tasks being independent.
Two plans executed by disjoint coalitions can be executed concurrently. planea transporting
cargoi from ci tym to ci tyn is independent of planeb transporting cargo j from ci tym to
ci tyn . Plan merge must consider when the agent’s prior action ended execution and if the
passengers or cargo are prepared for loading or unloading. For example, a plane can begin
refueling as soon as the plane arrives at an airport, but it will have to wait to continue to its
destination if new passengers or cargo are not yet ready to board.

The average makespan for plans derived for Grand Coalition 2 was 1360, which is 0.93
standard deviations above the average makespan, while the average makespan for plans
derived for GrandCoalition 6was 913, 0.71 standard deviations below the averagemakespan.
Grand Coalition 2 was composed of six long-range planes and twelve short-range planes,
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Table 30 Coalition formation then planning summary

Domain Problems solved Summary

Blocks World 26 Fewer problems solved than with
planning alone due to
nonexecutable coalitions, but lower
computation time and memory for
most problems

Rovers 76 Fewer problems solved than with
planning alone due to
nonexecutable coalitions, but lower
computation time for most
problems and lower memory usage
for all problems

Zenotravel 85 Most of the problems are solved with
coalition formation then planning.
All failures were due to using an
incomplete underlying planning
algorithm

while Grand Coalition 6 was composed of nine long-range planes and fourteen short-range
planes. Having more planes of both types allowed Grand Coalition 6 to complete more tasks
simultaneously.Mission 6 required an average of 649 action execution steps per derived plan.
Mission 6 had nineteen tasks to be planned, with fifteen tasks requiring that the passengers
and cargo be unloaded from one plane and loaded onto another plane. Mission 1 also had
nineteen tasks, but required a below average number of action execution steps. Eleven of
the Mission 1 tasks did not require passengers and cargo to change planes; therefore, fewer
actions were required to produce a satisficing plan. The memory results are an effect of using
the EHC version of COLIN. Focusing on specific agents and goals decreases the size of the
heuristic plateaus that require breadth-first search.

6.2.4 Summary

CFP provided improved performance in terms of computational resource usage compared to
PA on some problems, while introducing a new failure mode, nonexecutable coalitions. A
summary of the results is presented in Table 30. The number of BlocksWorld problems solved
byCFP is lower than the number of problems solved byPA,with 26 problems solvedwithCFP
versus 42 solved with PA. However, most of the 74 failures are correctable. Nonexecutable
coalition failures are correctable and caused 69 failures. Only five of the failures were due to
exceeding the computational resource limits, which is not correctable by any of the presented
tools. Only oneMission failed to generate a plan with any of the Grand Coalitions, compared
to threeMissionswith no plans for PA. Fewer problemswere solved for the Rovers domain by
CFP compared to PA. CFP solved 76 problems, while PA solved 100. However, all the failures
were due to nonexecutable coalitions, which is a correctable failure mode.Most of the Rovers
problemswere solved faster byCFP than PA. Furthermore, CFP had a requiredmemory usage
median of only 11% that required by PA. Most (85 out of 100) of the Zenotravel problems
were solved using CFP, which is much better than the zero problems solved using PA. The
fifteen failures were due to using a planning algorithm based on the incomplete Enforced Hill
Climbing algorithm. Planning algorithm failures are not addressed by the presented tools,
but using a complete underlying planning algorithm can allow the problems to be solved.
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Algorithm 3:Coalition Formation then Planning with Relaxed Plan Coalition Augmen-
tation
Input : S - state space, A - coalition action mapping, Φ - grand coalition, I - initial state, V - tasks,

C - capability mappings
Output: π - plan to satisfy all tasks

1 π = ∅;
2 G = ∅;

3 {Capφ}φ∈Φ = C(Φ);
4 {Capv}v∈V = C(V );

5 {Φi , vi }|V |
i=1 = CF({Capφ}φ∈Φ, {Capv}v∈V );

6 foreach i ∈ {1, . . . , |V |} do
7 G = G ∧ vi ;
8 Ii = Simulate(I, π);
9 Actions = A(Φi );

10 πi = Plan(S, Ii , Actions,G);
11 while Φi is nonexecutable do
12 All Actions = A(Φ);
13 πr = Relaxed Plan(S, Ii , All Actions,G);
14 Φi = Φi ∪ Relaxed PlanCoali tionAugmentation(Φ,Φi , πr );
15 Actions = A(Φi );
16 πi = Plan(S, Ii , Actions,G);
17 end
18 π = PlanMerge(S, I, π, πi ,G);
19 end

CFP provides an alternative method of centralized planning for multi-agent systems pro-
viding reduced computational resource usage at the cost of being an incomplete algorithm.
Problems in both the Rovers and Blocks World domains failed due to nonexecutable coali-
tions. The coalition formation algorithms used only consider task capability requirements
and capabilities available to the coalitions; thus, the algorithms are reliant on the capability
models being accurate representations of each coalition’s action set and each task’s require-
ments. Research in coalition formation includes spatial and temporal constraints on tasks.
The more expressive coalition formation problem is more difficult, but provides more infor-
mation as to whether or not a coalition can complete a task. The Rovers domain is an example
of task spatial constraints. Considering the waypoints each rover can reach allows a coalition
formation algorithm to eliminate rovers which cannot reach required waypoints; however,
the more complex coalition formation formalisms are still estimates of the coalitions capable
of completing a task. A plan must still be produced and coalitions can still be found to be
nonexecutable. The relaxed plan coalition formation modification to CFP was developed to
addresses this shortcoming to CFP.

6.3 Relaxed plan coalition augmentation

The Coalition Formation then Planning with Relaxed Plan Coalition Augmentation (RPCA)
tool addresses the nonexecutable coalition limitation that arises with the CFP tool. RPCA
adds logic to the planning loop of the Coalition Formation then Planning tool (see lines
11–17 in Algorithm 3). Planning for relaxed domains creates plans from low fidelity models
of the real-world, but the problem is easier; thus, relaxed plans are appropriate for use as a
heuristic or, in this case, coalition modification. Planning is attempted as in CFP, Line 10.
If planning fails, then the algorithm enters a loop (lines 11–17). A nonexecutable coalition,
Φi , is modified in order to make it executable. Coalitions can be modified by adding agents,
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removing agents, or a combination thereof; however, allowing any modifications introduces
an exponential number of possible coalitions. The tool is limited to adding agents in order to
transform a nonexecutable coalition into an executable coalition. The set of actions available
to Φ, All Actions, is derived, Line 12. A relaxed plan to complete the task, πr , is generated
from All Actions, Line 13. The grand coalition, Φ, the currently allocated coalition, Φi , and
the generated relaxed plan, πr , are analyzed to select additional agent(s) to allocate to the
task, Line 14. Each action execution step in the relaxed plan is analyzed in execution order. If
the action in the step can be executed by an agent in Φi or a subcoalition of Φi , then analysis
continues to the next action execution step, otherwise, the agent or coalition assigned to the
action execution step is added to Φi and relaxed plan analysis stops. At least one agent must
be added to Φi before planning is attempted again, so if all steps of the relaxed plan are
analyzed and no agent has been added, then the agent, φ, executing the most action execution
steps in πr and φ /∈ Φi is added to Φi . Planning is attempted with the new coalition, Line
16, and the loop repeats if necessary.

The relaxed plan coalition formation augmentation loop (Lines 11–17) has two potential
completions. Either an executable plan is derived using the newly generated coalitions and
planning attempts or the grand coalition is allocated to the task and the algorithm is unable to
identify a plan. The latter case is inconclusive, since the grand coalition can be nonexecutable
for multiple reasons. The grand coalition may be nonexecutable due to previous planning
decisions that make the task nonexecutable. An example can be created from a finite fuel
modification to Zenotravel. The version of Zenotravel used in these experiments allows
unlimited refueling, but if the amount of fuel available is limited, then prior planning decisions
using excessive amounts of fuel can create situations in which no planes can reach their
destination. The grand coalition may also be nonexecutable if the task cannot actually be
executed, inwhich case the problem is unsolvable by any tool. An example of a nonexecutable
grand coalition in the BlocksWorld domain is a grand coalition for which there are fewer than
two arms with access to a required end effector type. If all the initially allocated coalitions
are executable, then the loop starting at Line 11 is never entered; thus, RPCA reduces to
CFP when all coalitions are executable. All Zenotravel coalitions were executable, so RPCA
results are not reported for zenotravel.

6.3.1 Blocks World

Seventy of the one hundred problemswere solved byRPCAwithin the time limit of 1h, a large
improvement over the 42 and 25 problems solved by planning alone and CFP, respectively.
The five number summary for the solved problems are presented in Table 31. The quality of
the derived plans are presented in Table32. At least one satisficing plan was derived for all
Grand Coalitions and all Missions. Plans were derived for all Grand Coalitions for Mission
9 and for all Missions for Grand Coalition 6. The number of actions in each plan is presented

Table 31 The five number summary for solving the Blocks World problems using RPCA

Metric Minimum Lower Quartile Median Upper Quartile Maximum

Makespan 22 42 49 62 148

Steps 37 70 79 96 168

Time (s) 2.6 13.6 76.7 437.6 3111.9

Memory (GB) 0.01 0.09 0.35 6.40 30.80
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Table 32 Temporal makespan using RPCA for the Blocks World problems (Color table online)

The heatmap overlay ranges from 20 (green) to 120 (red). A value of “MEM” or “TIME” indicates the memory
or time limit, respectively, was exceeded while attempting to solve

Table 33 Number of action execution steps in the derived plans using RPCA for the Blocks World problems
(Color table online)

The heatmap overlay ranges from 40 (green) to 150 (red). A value of “MEM” or “TIME” indicates the memory
or time limit, respectively, was exceeded while attempting to solve

in Table33. The derived plans had a median of 70 action execution steps and ranged from
37 to 168 action execution steps. Time and memory requirements are presented in Tables34
and 35, respectively. Time requirements ranged from 2.6 to 3111.9 s, with a median of 76.7 s.
Memory usage had a median of 0.35GB and ranged from 0.01 to 30.80GB.

A set of 37 Blocks World problems were commonly solved by both PA and RPCA.
The median metric ratios for the commonly solved problems are presented in Table36. The
solution quality metric ratios were 1.45 and 1.11 for makespan and steps, respectively. A
ratio greater than 1 indicates that the plans derived by PA were better than the plans derived
by RPCA. The makespan and action ratios were greater than 1 for 29 and 24 problems,
respectively. However, the computational resource ratios were 0.73 and 0.70 for time and
memory, respectively, indicating that RPCA derived plans while using less memory than PA.
RPCA required less time and memory than PA for 25 and 24 problems, respectively.

The coalition formation failures in CFP are a result of the plans derived for earlier tasks
and can be divided into two different cases. Assume a problem with the start state in Fig. 1a
and the goal state description illustrated in Fig. 1b. Achieving stackC in the goal state requires
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Table 34 Planning time in seconds using RPCA for the Blocks World problems (Color table online)

The heatmap overlay ranges from 0 (green) to 1800s (red). A value of “MEM” or “TIME” indicates the
memory or time limit, respectively, was exceeded while attempting to solve

Table 35 Required memory in gigabytes using RPCA for the Blocks World problems (Color table online)

The heatmap overlay ranges from 0 (green) to 40GB (red). A value of “MEM” or “TIME” indicates the
memory or time limit, respectively, was exceeded while attempting to solve

Table 36 Median ratio of the RPCA metric value to the PA metric value for Blocks World problems

Problems Makespan ratio Steps ratio Time ratio Memory ratio

37 1.45 1.11 0.73 0.70

Only problems solved by both tools are considered

moving D and E in order to access C . The goal state to plan to achieve stack C does not
place any constraints on D and E . The first coalition formation failure case occurs when an
arm is still holding a block at the end of a task plan. Blocks D or E in this example can
remain held at the end of the plan due to not being part of the goal description. The second
coalition formation failure case occurs when a block is placed such that the blocks in the
goal description are inaccessible. Block D placed on G is an example of the second failure
case. The end effector required to manipulate D is not considered in the capabilities required
vector for the stack E task. If the coalition for stack E cannotmanipulate D, then the coalition
will be nonexecutable.
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Table 37 The five number summary for solving the Rovers domain problems using RPCA

Metric Minimum Lower Quartile Median Upper Quartile Maximum

Makespan 1074 2013 2355 2742 4043

Steps 486 596 658 727 935

Time (s) 777.0 1032.3 1280.6 1526.3 2289.3

Memory (GB) 0.93 1.57 2.01 2.53 7.99

Table 38 Temporal makespan using RPCA for the Rovers problems (Color table online)

The heatmap overlay ranges from 800 (green) to 3500 (red)

Table 39 Number of action execution steps in the derived plans using RPCA for Rovers problems (Color
table online)

The heatmap overlay ranges from 480 (green) to 1400 (red)

6.3.2 Rovers

RPCA solved all of the Rovers problems. The five number summary of the collected metrics
is presented in Table37. Each problem’s solution makespan is presented in Table38 and
ranged from 1074 to 4043, with a median of 2355. The number of action execution steps in
the derived plans is presented in Table39 and had a median of 658 steps. Plan derivation time
ranged from 777.0 to 2289.3 s, with a median of 1280.6 s. Full derivation time results are
presented in Table40 and the memory results are presented in Table41. Required memory
ranged from 0.93 to 7.99GB.
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Table 40 Planning time in seconds using RPCA for the Rovers problems (Color table online)

The heatmap overlay ranges from 800 (green) to 3100s (red)

Table 41 Required memory in gigabytes using RPCA for the Rovers problems (Color table online)

The heatmap overlay ranges from 0 (green) to 40GB (red)

All 100 Rovers problemswere solved by both PA and RPCA. Themedianmetric ratios are
presented in Table42. The solution quality metric ratios were 1.38 and 0.87 for makespan and
steps, respectively. PA produced lower makespan plans than RPCA for 85 of the problems,
while produced plans with more actions than the corresponding RPCA plans for 86 of the
problems. The computational resource ratios were 0.71 and 0.11 for time and memory,
respectively, indicating that RPCA derived plans while using less memory than PA. PA
required more time than RPCA for 95 of the problems, and more memory to solve all of the
problems.

RPCA was able to solve the 24 problems that CFP failed to solve and in so doing solved
every problem that planning alone was able to solve, but with a much lower computational
resource requirement. The median memory usage and computation time for RPCA was 11%
and 72% that of PA, respectively. The CFP failures were the result of rovers being unable to
reach a necessary waypoint to collect scientific data. The generated relaxed plan provided
information regarding which rovers were able to reach the required waypoints. A single rover
was selected to augment the coalition and planning reattempted.
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Table 42 Median ratio of the RPCA metric value to the PA metric value for Rovers problems

Problems Makespan ratio Steps ratio Time ratio Memory ratio

100 1.38 0.87 0.71 0.11

Only problems solved by both tools are considered

Table 43 Relaxed plan coalition augmentation summary

Domain Problems solved Summary

Blocks World 70 Solved more problems than PA and
CFP, with lower average time and
memory

Rovers 100 All problems were solved, with
average computation time and
memory usage well below that of
PA

Zenotravel 85 Results are identical to CFP

6.3.3 Summary

TheRPCA algorithmwas able to correct all the nonexecutable coalition failures that occurred
during the CFP evaluation. RPCA solved at least asmany problems as CFP in each domain, as
summarized in Table43. The RPCA algorithm solved more Blocks World problems than PA
and did so with lower average computation time and memory. RPCA solved the same Blocks
World problems as CFP in addition to others, but PA solved some problems that RPCA did
not. RPCA solved all the Rovers problems, requiringmedian lower memory and computation
time compared to PA. All of the nonexecutable coalition failures from CFP were fixed by
applying RPCA. No nonexecutable coalition failures occurred when CFP was applied to the
the Zenotravel problems; thus, the RPCA results are identical to the CFP results, because
RPCA only addresses CFP’s nonexecutable coalition failure mode.

The ability to correct for nonexecutable coalitions is imperative when generating plans for
real-world problems. Generating a relaxed plan is easier than the original planning problem,
so the grand coalition can be used in relaxed planning. Using the grand coalition during the
relaxed planning step generates additional information unavailable during coalition forma-
tion. An agent, previously unassigned to the coalition, is selected to augment a nonexecutable
coalition and transform it into an executable coalition. Adding agents to a nonexecutable
coalition does not guarantee that the coalition will become executable, but it does provide
additional actions that can be considered during planning to produce an executable plan for
the coalition’s assigned task.

6.4 Task fusion

The Coalition Formation followed by Task Fusion then Planning (TF) tool addresses the
limited ability of CFP to reason over task interactions. Coalition formation is applied as in
CFP, Line 5 in Algorithm 4. Task fusion reasons over the tasks and their capabilities required
and the coalitions and their capabilities offered to guess which tasks and coalitions are most
likely to interact and benefit from joint planning, Line 6. Two coalition-task pairs, 〈Φa, va〉
and 〈Φb, vb〉, selected to be fused create a single coalition-task pair, 〈Φa ∪ Φb, va ∧ vb〉.

123



Auton Agent Multi-Agent Syst (2017) 31:1424–1466 1461

Algorithm 4:Coalition Formation followed by Task Fusion then Planning with Relaxed
Plan Coalition Augmentation
Input : S - state space, A - coalition action mapping, Φ - grand coalition, I - initial state, V - tasks,

C - capability mappings
Output: π - plan to satisfy all tasks

1 π = ∅;
2 G = ∅;

3 {Capφ}φ∈Φ = C(Φ);
4 {Capv}v∈V = C(V );

5 {Φi , vi }|V |
i=1 = CF({Capφ}φ∈Φ, {Capv}v∈V );

6 {Φ j , v j }|V f |
j=1 = TaskFusion({Φi , vi }|V |

i=1);

7 foreach j ∈ {1, . . . , |V f |} do
8 G = G ∧ v j ;
9 I j = Simulate(I, π);

10 Actions = A(Φ j );
11 π j = Plan(S, I j , Actions,G);
12 while Φ j is nonexecutable do
13 All Actions = A(Φ);
14 πr = Relaxed Plan(S, I j , All Actions,G);
15 Φ j = Φ j ∪ Relaxed PlanCoali tionAugmentation(Φ,Φ j , πr );
16 Actions = A(Φ j );
17 π j = Plan(S, I j , Actions,G);
18 end
19 π = PlanMerge(S, I, π, π j ,G);
20 end

Fusing tasks into a single task permits more potential interactions between the tasks to be
considered during the planning step. The coalition capability offerings and the task capability
requirements will be used to determine which tasks to fuse. Assume two coalitions, Φi and
Φ j , are allocated to two tasks, vi and v j , respectively. If Φi is also a candidate coalition for
v j and Φ j is also a candidate coalition for vi , then the coalitions can assist each other; fusing
the coalition-task allocations allows both coalitions to contribute to both tasks during the
planning step. Each coalition-task allocation fusion decreases the number of subproblems
by one, but the difficulty of planning for the two tasks is much lower than planning for the
fused subproblem due to the exponential complexity of the planning problem. The goal of
Task Fusion is to select the coalition-task pairs to fuse for which improved plan quality is
worth the increase in computational resources.

TF applied to the Blocks World domain allows planning to intentionally make progress
towards constructing multiple stacks. A block can be placed intentionally where it belongs in
the goal state. TF can be applied to the other experimental domains as well. Fusing tasks in
the Rovers domain allows rovers to work together. Assume the rock and soil tasks have been
fused. If a rover is capable of both analyses and is at a waypoint requiring both analyses, then
the rover can perform both rock and soil analysis. Zenotravel task fusion allows more of each
plane’s capacity to be used. The CFP algorithm only plans for one task at a time; thus, the
current task’s passengers and cargomust be transported to their destination before passengers
and cargo for subsequent tasks can be considered. Fusing tasks involving transport between
the same hubs will allow more of each plane’s capacity to be used.

TF allows mission planners to tune computational resource usage and plan quality. Ana-
lyzing TF is most logical in mission planning problems for which plan quality is measured
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by plan makespan due to the tradeoff between planning time and plan quality introduced
by the tool. The time to derive a solution can be as important as the quality of the derived
solution. Solving problems in domains, such as planetary rovers, can take longer to plan,
because the time to execute the plan is likely to dominate the planning plus execution time
equation due to the large areas being explored. If the makespan unit in the example Blocks
World problem is 30s, then TFminimizes planning time plus execution time. If the makespan
unit is 1 s, then CFP minimizes planning plus execution time. If the makespan unit is 1min,
then planning alone minimizes planning plus execution time. TF can be applied to decrease
plan makespan at the cost of increased memory usage and planning time. However, TF must
be applied intelligently, as increasing the planning time by minutes is illogical if the plan
makespan is only decreased by seconds. TF represents an intermediate option between CFP
and planning alone. Fusing selected coalition-task pairs can produce better plans than CFP,
while still satisfying computational resource constraints.

6.5 Summary

The first tool evaluated, PA, is an existing method for solving multi-agent planning problems
containing expressive state models. The other two tools evaluated in this research, CFP and
RPCA, present an alternative for multi-agent planning addressing the problem’s computa-
tional complexity. Three domains were used to evaluate the tools, Blocks World, Rovers,
and Zenotravel. Each tool was evaluated using 100 randomly generated problems from each
domain, with the number of problems for which planswere derived presented in Fig. 3. RPCA
derived plans for at least as many problems as PA in each domain. Every problem for which
CFP derived a plan, an identical plan was derived by RPCA. Furthermore, every nonexe-
cutable coalition failure mode that occurred during the CFP evaluation was corrected by
RPCA; thus, RPCA dominates CFP and CFP will not be further analyzed. Statistical analysis
of the PA and RPCA is complicated by the computation resource limits applied during the
evaluation. The limits are realistic in that real-world applications of planning research must
consider the time and memory required to solve a problem, but the limits cause the collected
data to be right-censored, i.e., no data is collected for problems requiring time above the
limit or memory above the limit, even though problems capable of generating such data are
included in the evaluation. Missing data limits the data points that can be used in statistical
significance testing and when determining effect size. All the problems attempted during the

Fig. 3 Number of problems in each domain with derived plans by algorithm
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Fig. 4 Metrics box plots for Rovers problems solved with PA and RPCA. aMakespan, b steps, c computation
Time and d required memory

evaluation are solvable, but data is lacking for many, especially for the PA algorithm. Given
the limits of the data collection, statistical analysis using limited assumptions regarding the
data was conducted.

Both PA and RPCA solved Blocks World problems that the other algorithm did not,
with PA solving 42 problems and RPCA solving 70 problems. A McNemar’s test found a
significant difference in the proportion of problems for which plans were derived by each
tool (a = 37, b = 5, c = 33, d = 25, p < 0.001). The set of 37 problems commonly
solved by both PA and RPCA was used for analyzing the four metrics using the sign test.
Significant differences between the PA and RPCA algorithms were found for makespan
(Z = 3.66, p < 0.001) and computation time (Z = 2.33, p = 0.028), but there was not
enough evidence to reject the significance hypothesis for differences in required memory
(Z = 1.81, p = 0.099) or number of actions (Z = 1.86, p = 0.090). Given that all 58
of the PA failures were due to exceeding memory limits, it is predicted that increasing the
memory limit will produce additional data points that will demonstrate significant differences
for required memory between PA and RPCA in the Blocks World domain.

All the Rovers problems were solved by both PA and RPCA. The box plots for each
metric are presented in Fig. 4, please note that the y-axis for the time and memory box plots
are on a log scale. The sign test found significant differences between PA and RPCA for
all four metrics (Z = 7.00, p < 0.001 for makespan, Z = 7.20, p < 0.001 for action
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steps, Z = 9.00, p < 0.001 for computation time, and Z = 10.00, p < 0.001 for required
memory), with PA deriving plans with lower makespan, but RPCA requiring less time and
memory to derive plans with fewer action executions.

PA derived no plans for the Zenotravel domain; therefore, it is infeasible to provide an
analysis of the results compared to RPCA. RPCA derived plans for 85 of the problems.

7 Conclusion

Multi-agent systems will only become more complex and robots will need to plan and act
autonomously alongside humans, not simply be controlled by humans. An important aspect
of mission planning is the tradeoff between mission planning time and plan quality. If unlim-
ited computational resources are available, then existing planning algorithms alone are able
to solve large, complex mission planning instances for high fidelity real-world domain mod-
els. However, computational resource constraints and real-world time constraints encourage
development of new tools to support real-time planning for dynamic, uncertain real-world
domains. The presented tools manage the planning problem’s exponential complexity. The
Coalition Formation then Planning tool uses existing coalition formation algorithms to factor
the problem prior to applying existing planning algorithms in order to generate executable
plans. Two issues arise with the Coalition Formation then Planning tool: nonexecutable
coalitions and suboptimal plans. The Relaxed Plan Coalition Formation tool addresses the
nonexecutable coalition issue by using relaxed planning to select agents to insert into coali-
tions in order to transition nonexecutable coalitions into executable coalitions. Task Fusion
addresses the suboptimal plans issue by fusing coalition-task pairs for which the increase
in plan quality from planning simultaneously offsets the increase in computational resource
requirements. Deciding whether or not to apply Task Fusion is mission dependent. If plan
quality is judged by makespan, then makespan must be reduced by an amount of time greater
than or equal to the additional time required to derive the plan. These tools work together to
generate executable plans for large, complex mission planning problems with high fidelity
domain models that include continuous variables and concurrently executing actions.

Future work involves integrating the Task Fusion augmentation into the existing frame-
work for coalition formation then planning and analyzing different heuristics for selecting
tasks for fusion. A test domain modeling a first response scenario and associated problems
will be evaluated with each of the presented tools. Finally, the mission planning system will
be integrated with the i-CiFHaR coalition formation system in order to create a complete
system for real-world mission deployments.
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