
Auton Agent Multi-Agent Syst (2017) 31:1283–1343
DOI 10.1007/s10458-017-9363-y

Automated multi-level governance compliance checking

Thomas C. King1 · Marina De Vos2 · Virginia Dignum3 · Catholijn M. Jonker3 ·
Tingting Li4 · Julian Padget2 · M. Birna van Riemsdijk3

Published online: 6 April 2017
© The Author(s) 2017

Abstract An institution typically comprises constitutive rules, which give shape and mean-
ing to social interactions and regulative rules, which prescribe agent behaviour in the society.
Regulative rules guide social interaction, in particular when they are coupled with reward and
punishment regulations that are enforced for (non-)compliance. Institution examples include
legislation and contracts. Formal institutional reasoning frameworks automate ascribing
social meaning to agent interaction and determining whether those actions have social mean-
ings that comprise (non-)compliant behaviour. Yet, institutions do not just govern societies.
Rather, in what is called multi-level governance, institutional designs at lower governance
levels (e.g., national legislation at the national level) are governed by higher level institutions
(e.g., directives, human rights charters and supranational agreements). When an institution
design is found to be non-compliant, punishments can be issued by annulling the legislation or

B Thomas C. King
t.c.king@lancaster.ac.uk

Marina De Vos
mdv@cs.bath.ac.uk

Virginia Dignum
M.V.Dignum@tudelft.nl

Catholijn M. Jonker
C.M.Jonker@tudelft.nl

Tingting Li
tingting.li@imperial.ac.uk

Julian Padget
j.a.padget@bath.ac.uk

M. Birna van Riemsdijk
m.b.vanriemsdijk@tudelft.nl

1 Lancaster University, Lancaster, UK

2 University of Bath, Bath, UK

3 Delft University of Technology, Delft, The Netherlands

4 Imperial College London, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-017-9363-y&domain=pdf


1284 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

imposing fines on the responsible designers (i.e., government). In order to enforcemulti-level
governance, higher governance levels (e.g., courts applying human rights) must check lower
level institution designs (e.g., national legislation) for compliance; in order to avoid pun-
ishment, lower governance levels (e.g., national governments) must check their institution
designs are compliant with higher-level institutions before enactment. However, checking
non-compliance of institution designs in multi-level governance is non-trivial. In particular,
because institutions inmulti-level governance operate at different levels of abstraction. Lower
level institutions govern with concrete regulations whilst higher level institutions typically
comprise increasingly vague and abstract regulations. To address this issue, in this paper
we propose a formal framework with a novel semantics that defines compliance between
concrete lower level institutions and abstract higher level institutions. The formal frame-
work is complemented by a sound and complete computational framework that automates
compliance checking, which we apply to a real-world case study.

Keywords Institutions · Normative reasoning · Multi-level governance

1 Introduction

Institutions (e.g., legislation) guide societies towards subjectively-ideal and coordinated
behaviour. An institution, such as the written law, comprises regulations imposed on agents
taking part in the governed society, coupled with the means to detect compliance and impose
regulations that reward and punish agents for (non-)compliance. An institution comprises
constitutional and regulative rules. Constitutional rules define concepts, for example “mak-
ing an electronic bank transfer counts-as payment”. Regulative rules impose obligations and
prohibitions to instantiate the defined concepts, for example “you are obliged to make a
payment”. Institutions, comprising interacting constitutive and regulative rules, need to be
understood in order to be applied to the governed society. Hence, increasingly institutional
reasoning is formalised and computerised with automated normative and institutional rea-
soning frameworks (see [3] for a review). Such formal institutional reasoning frameworks
support governing bodies in automatically penalising agents as well as individual agents in
understanding their legal duties.

However, institutions are not typically written in a vacuum. Rather, institution designs are
constrained and regulated by higher level governing bodies. This is what is calledmulti-level
governance [45]. In multi-level governance, legislators design institutions comprising rules
and regulations, but whose design is also subject to regulation. For example, in 2006 the
European Union issued the Data Retention Directive [22] for harmonising member states’
data retention regulations. In 2009 the UK implemented the directive with the Data Retention
Regulations [74] in order to avoid being fined. Yet, in 2014 the European Court of Justice
ruled [21] that the EU directive was non-compliant with the EU’s Charter of Fundamental
Rights [23], and consequently annulled the EU’s Data Retention Directive. We will use this
case throughout, referring to the Charter of Fundamental rights as the EU-CFR, the EU’sData
Retention Directive as the EU-DRD, and the UK’s implementing Data Retention Regulations
as the UK-DRR. The main point is that multi-level governance exposes legislators to the risk
of punishment for non-compliant institution designs and burdens a judiciarywith determining
compliance of institution designs.

So far, institutional reasoning frameworks have focussed on single-level societal gover-
nance. Typically, automated institutional reasoning deals with regulations operating at the
level of institutions governing agents and/or corporations. For example, the UK-DRR [74]

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1285

obliges communications providers to store communications metadata. However, there lacks
formalisation for cases where regulations themselves are regulated by higher level institu-
tions in multi-level governance. For example, how EU directives govern national legislation
but where EU directives are in turn governed by human rights charters. In this paper we look
at how lower level institutions themselves are regulated by higher level institutions.

In particular, we look at increasingly abstract regulations at higher levels of governance,
which govern more concrete regulations at lower levels of governance. Such abstraction
sets multi-level governance apart from single-levelled governance of societies. In multi-level
governance at the highest-level, such as human rights charters, regulations are intentionally
abstract and open to interpretation. Such abstract regulations provide many ways in which
to (non-)comply. At a lower level, such as EU directives, regulations are more concrete and
less open to interpretation. At the lowest level, such as national or sub-national legislation,
regulations are concrete and should have the least ambiguity. Despite the differences in
abstraction between levels, each level’s institution design must somehow be demonstrated to
be compliant with relatively more abstract regulations at higher levels.

To give an example, the EU-CFR [23] contains vague regulations requiring that people’s
private and family life is respected. The EU-DRD [22] contains a more concrete regulation
requiring communications service providers (e.g., internet service providers) to store people’s
communications metadata (e.g., a phonecall’s time and place) within a fixed time frame. The
EU-CFR governs EU directives. Hence, the EU-DRD’s communications metadata regulation
must be shown to be compliant with the EU-CFR’s more abstract right to a private and family
life. At the same time, the EU-DRD itself governs the design of institutions, namely member
states’ legislation. Member states must implement the directive in a compliant way in order
to avoid fines. The directive gives some scope for member states to implement the legislation
differently, allowing the data retention period to be between 6 and 24months. The UK-DRR
[74] is more concrete and must be shown to ensure communications metadata to be stored
within the required time frame, no shorter and no longer. In fact, the UK-DRR does just that,
concretely requiring that communications metadata is stored for 13months which complies
with the abstract requirement of the directive to store data between 6 and 24months.

In this paper, we give a rigorous formal account and automate checking of compliance
in multi-level governance between concrete lower level and abstract higher level institutions
with a novel framework. Our framework provides a representation for defining institutions
and their multi-level governance relationship. A semantics defines the regulatory outcomes
of each institution in different (potentially hypothetical) contexts.

Specifically, a semantics re-interprets concrete regulations at lower levels in terms of their
more abstract meaning with respect to higher level institutions. Taking concrete regulations
and determining their abstract interpretation is based on Searle’s constitutive institutional
rules, which define the links between concrete and abstract concepts. By interpreting concrete
regulations in terms of their abstract meaning, it is determined if the concrete regulations are
(non-)compliant with the abstract regulations in higher level institutions. To give an example,
the EU-DRD [22] requires member states to store communications metadata. According to
the semantics we infer that storing communications metadata without someone’s consent
is, abstractly, unfair data processing. Since the EU-CFR prohibits unfair data processing
[23, Art. 8.2] the EU-DRD’s more concrete regulations are determined to be non-compliant.
This paper contributes a framework for semantically determining if concrete regulations at
lower levels of governance are compliant with more abstract regulations at higher levels of
governance.

This paper continues by providing the conceptual background of the framework in Sect. 2.
The approach we take in formalising multi-level governance compliance is described in

123



1286 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

Sect. 3. The new formal framework is presented in Sect. 4. A practical approach to multi-
level governance reasoning is provided with a computational framework presented in Sect. 5.
The computational framework provides a sound and complete translation from the formal
framework to an executable logic program. An implementation automates the translation
between high-level institution specifications and a logic programming language program,
which in turn automates compliance checking as we demonstrate for a real-world case study.
At the end of this paper we compare our framework to related work in Sect. 6. We conclude
with reflections and avenues for future work in Sect. 7.

2 Governance concepts

2.1 Institutions

An institution, alternatively called a normative system, is in our view a specification of
rules and regulations that guide agents in a Multi-Agent System (MAS) towards ideal and
coordinated behaviour. An institution is operationalised by interpreting and applying its rules
and regulations on the agents acting in theMAS that the institution governs. The interpretation
process involves assessing how agents in the MAS are behaving and the MAS’ state in order
to see which rules and regulations apply and when.

We view an institution’s rules as being classified into two types in line with existing formal
work. To quote Searle [72]:

Some rules regulate antecedently existing activities. For example, the rule ‘drive on
the right-hand side of the road’ regulates driving; but driving can exist prior to the
existence of that rule. However, some rules do not merely regulate, they also create the
very possibility of certain activities.

In other words two rule types exist in an institution, those that ascribe facts such as
social activities and those that prescribe facts, respectively known as constitutive rules and
regulative rules (norms) according to Searle’s philosophy of institutions [72], formal theories
of institutions [11–13,36] and legal scholarship [9].

Searle’s [70,73] constitutive counts-as rules establish institutional facts (e.g., that an agent
possesses money) from physical/brute facts (e.g., that an agent possesses a piece of paper
commonly viewed asmoney). Regulatory rules, whichwe also call norms, specify how agents
or a system should behave (e.g., obliging an agent to pay for goods) and/or what the state of
affairs should be.

In our view (following precedingwork on e.g., InstAL [13]) operationalising an institution
involves interpreting institutional rules of both types. Through institutional rule interpretation,
a social reality is established comprising institutional facts and various deontic positions
such as obligations. Ultimately, determining whether agents and society are behaving in a
compliant way is based on whether the created social reality conforms to the prescriptions
imposed by norms. We will now describe in detail constitutive rules and norms.

2.1.1 Constitutive rules

Constitutive rules [70,73] construct a social reality, where things such as ‘money’ and ‘per-
sonal data’ exist, from a brute reality where physical brute facts exist independently of an
institution or society (e.g., that there is a piece of paper that looks like money, or that an ana-
log signal has been sent down a wire in what we might call personal data communication).

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1287

These constitutive rules have the now ubiquitous counts-as form of “some brute or institu-
tional fact A counts-as an institutional fact B in a social context C”. For example, “storing
communications metadata counts-as storing personal data in the context that the metadata is
about the communications of a person”. Searle argues that such constitutive rules ascribe an
institutional meaning in the form of an institutional fact, the ‘B’ in such a rule (e.g., storing
personal data), to an ‘A’ in such a rule which is either a brute fact or another more concrete or
basic institutional fact (e.g., storing communications meta-data). Such rules are conditional
on a social context, which is a part of the social reality built by such counts-as rules (e.g., the
context that someone is a ‘person’ exists whenever an agent that exists in the brute reality is
ascribed the status of ‘personhood’ by a constitutive rule).

A similar example is “storing communications content data counts-as storing personal data
in the context that it is a person’s communications being stored”. In both of these examples,
content data and metadata are also institutional facts that are defined by other constitutive
rules as either referring to amore concrete institutional fact or a brute fact. Ultimately, through
a chain of derivations, all institutional facts exist because of constitutive rules that ascribe an
institutional fact as being constituted by brute facts. It is a bit tricky to exemplify a counts-as
rule that ascribes an institutional fact from a brute fact. The reason being, any time we try to
refer to a brute fact we will be using words from a language, and since language is a ‘base
institution’ thesewordswe usewill always be institutional facts (to give Searle’s example [73]
“It seems intuitively right to say that you can have language without money, but not money
without language.”). Hence, we will use the terms “the thing we call X” or “the observable
event X” to represent a brute fact distinct from the institutional fact/symbol X that refers
to the brute fact. So, for example, meta-data is an abstract institutional fact that refers to a
brute fact according to a constitutive rule such as “the thing we call storing communications
metadata counts-as storing communications metadata”. In other words, institutional facts are
ascribed as being constituted by brute facts, giving the physical reality a social meaning.

These examples are about ascribing abstract institutional events. But, constitutive rules
also establish the institutional properties that hold at a particular point in time. For example,
from an institutional event that occurs, the establishment of an institutional property that
holds is ascribed “someone signing a form stating a communications provider is allowed to
store their personal data counts-as establishing that the person has consented to personal data
storage”. This means that the establishment of an institutional ‘consent’ fact in a state is a
special meaning ascribed to the event where the agent signs a consent form.

One final example is “storing personal data counts-as non-consensual data processing in
the context that the person who the data concerns has not consented”. In this final example we
can see that by transitivity it follows that from storing metadata (which is personal data) in
the context that the person who it concerns has not consented we derive non-consensual data
processing from the aforementioned abstracting constitutive rules. In conclusion, constitutive
rules establish abstract institutional events and properties from more concrete brute events
or institutional events/properties. Constitutive rules build an abstract institutional reality of
institutional facts from brute facts, in turn the institutional reality can be further abstracted
according to constitutive rules.

It is important to note that counts-as rules make institutional facts possible. As Searle
argues [72]:

[…] institutional facts exist only within systems of constitutive rules. The systems of
rules create the possibility of facts of this type; and the specific instances of institutional
facts such as the fact that I won at chess or the fact that Clinton is president are created
by the application of specific rules […]

123



1288 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

In other words, a status or institutional fact assigned to a particular brute or institutional
fact exists only because a constitutive rule makes it so. For example, ‘personal data’ cannot
exist in a social reality without a constitutive rule ascribing it as being a status of a more
concrete brute or institutional fact (e.g., meta-data). An important distinction must be made
with the physical reality, taking a classical example often used for explaining abduction. We
may know that “if it rains then the grass becomes wet”, however the grass being wet is not a
fact introduced by the rule, rather the rule is representative of a predicted causal relationship
in a pre-existing physical reality. Consequently, if it has not rained, that does not mean that
the grass is not wet, perhaps the grass can become wet by some other means (e.g., a sprinkler
is turned on). In comparison, if we only have the two constitutive rules “communications
meta-data counts-as personal data” and “communications content counts-as personal data”
then the social meaning of data being personal can only be attributed to meta-data or content
data, since the constitutive rules introduce the fact of personal data. Accordingly, counts-as
rules are commonly known as having the property of being ascriptive (i.e., introducing new
concepts) [28, p. 420].

In this paper we characterise two counts-as rule types: those that ascribe abstract meaning
to events and those that ascribe abstract meaning to fluents (properties that hold in states). For
these counts-as rules types we give a simple semantics where if we have a rule “A counts-as B
in context C” and an A holds/occurs in a context C then a B holds/occurs in the same context
C. Counts-as rules semantics is intentionally simple, since we focus on the relation between
counts-as rules and norms. Specifically, we will later argue that ascriptive counts-as rules,
which introduce abstract institutional facts to refer to concrete institutional or brute facts,
are sufficient to interpret norms at different levels of abstraction such that concrete deontic
positions (e.g., obligations) count-as more abstract deontic positions.

2.1.2 Norms

Institutions, in our framework, use norms to govern a society or to govern other institutions’
normative effects. A choice needs to be made on the representation and semantics for norms
to take. We will discuss this choice by first describing two common forms for norms in the
literature. Namely, an evaluative form [2,37] and a modal form [70, p. 63]. Then, we will
compare evaluative and modal norms in terms of the ease with which we can represent and
reason about norms that govern other institutions’ normative effects. Or, in other words, norm
governing norms. We will conclude that modal norms offer a simpler way for representing
norm governing norms, which in a modal norm representation are a generalisation of norms
governing agents.

An evaluative norm provides a qualitative evaluation of an institutional fact in a specific
context. For example, “storing communications meta-data is good”. More precisely, eval-
uative norms ascribe institutional facts as being good/bad/a violation/compliant. They take
a specialised constitutive form of “A counts-as being good/bad/a violation/compliant in a
context C”. If regulations take an evaluative form, then they place evaluative statements in
the social reality stating how ideal the social reality itself is (e.g., whether there is a violation).
Evaluative norms do not place statements in the social reality stating what should be done,
only evaluations of what has been done (e.g., stating a norm has been complied with, or the
social reality is ‘good’). Rather, it is the evaluative rules themselves that state what should
and should not be done (e.g., “storing meta-data counts-as compliance” states that meta-data
should be stored).

Modal regulatory rules ascribe deontic positions of obligation/permission/prohibition/etc.
over particular institutional facts. Modal norms have the form of “An institutional fact A

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1289

causes the imposition of an obligation/prohibition/permission/etc. to do B in a context C”.
If norms are modal, then they ascribe ‘into’ the social reality explicit deontic positions
stating what should (not) be done or which state of affairs should (not) be brought about. For
example, the social reality can contain an obligation to store communications’ metadata. In
turn, whether there is compliance or violation is derived from the deontic statements that hold
in the social reality. For example, from an obligation to store metadata and the occurrence of
storing metadata, compliance is derived. Modal norms place deontic statements in the social
reality explicitly stating what should be done, based on which the social reality is evaluated
(i.e., whether the deontic positions are complied with).

In this paper we adopt a modal representation for norms. This is because they offer a
simpler way to represent and reason about norms at higher levels of governance, which
govern norms at lower levels of governance. For example, expressing that it is required
to not require storing communications metadata if the user has not consented. To see why
modal norms are simpler for norm governing norms, we compare evaluative and modal norm
representations.

In the evaluative form one possible representation is through rule nesting—“(storingmeta-
data counts-as being good in a context C) counts-as being bad if context C is somehow
compatible with the user not consenting”. In this form, the instantiation of the nested rule
violates the outer rule if the two have compatible contexts. There may be other evaluative
representations, but this appears to be the simplest which fully captures the requirement.
Determining compliance seems to differ between an evaluative norm about an evaluative
norm compared to an evaluative norm governing an agent’s actions. On the one hand, deter-
mining compliance with an evaluative norm governing an agent’s actions involves inspecting
the social reality in order to determine whether an agent’s actions are compliant. On the other
hand, determining compliance with an evaluative norm governing another evaluative norm
seems to involve comparing evaluative rules themselves to evaluate the rules’ compliance.
Hence, evaluative norms governing norms are not a simple generalisation of those governing
agents.

In comparison, a possible modal representation is to nest deontic modalities as opposed
to rules. An example is the following unconditional modal norm—“it is prohibited to oblige
a user’s metdata to be stored in the context that they have not consented”. Determining com-
pliance for a modal norm about another modal norm seems to be a simple generalisation
of determining compliance of a modal norm about an agent’s actions. Determining com-
pliance of an agent with a deontic modal statement requires seeing if, in the social reality,
the agent is performing actions or bringing about social facts that are obliged/prohibited.
Likewise, determining compliance of a deontic modal statement with another deontic modal
statement requires seeing if, in the social reality, there is an obligation/prohibition that is
itself obliged/prohibited.

We adopt modal norms in this paper as a simple way to reason about norms governing
norms. By adopting modal norms the social reality comprises both institutional facts from
descriptive constitutive rules and deontic positions from norms stating what is obliged and
prohibited.

2.2 Multi-level governance

In our view, multi-level governance acts as a mechanism to guide rather than regiment institu-
tional design. The purpose is to coordinate regulations across institutions (e.g., collaborative
cross-EU policies for data retention) and ensure institutions do not place unacceptable limits
on agents’ rights. At the same time, multi-level governance aims to appeal to the principle

123



1290 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

Increasingly Ab-
stract Regulations

Institution

Governs

Non-compliant
Institution

Compliant Institution Compliant Institution

Governs Governs Governs

Compliant Institution Compliant Institution Non-compliant
Institution

Compliant Institution

Governs Governs Governs Governs

Highest-level

Second-level

First-level

MASs

Fig. 1 A high-level depiction of institutions operating in multi-level governance

of subsidiarity (what can be done at the local level, should be left up to the local level). This
means that, higher-level institutions do not force lower-level institutions to be designed in a
specific way. Rather, higher-level institutions guide the design of lower-level institutions by
abstractly defining what obligations and prohibitions lower-level institutions should impose.
Where through abstraction, lower-level institution designers are able to comply in multi-
ple ways as deemed appropriate for their jurisdiction. For example, the EU-DRD [22] was
designed to coordinate all member states in enacting legislation to store communications’
metadata for future criminal investigations. Appealing to subsidiarity, it gave scope for mem-
ber states to define the length of time metadata is stored for. Another example is the EU-CFR
[23], which aims to prevent legislation in the EU from violating agents’ rights such as the
right to a private life. If legislation is enacted that is non-compliant, fines can be issued, and
legislation annulled or abrogated.

We view multi-level governance as comprising three distinctive characteristics relevant to
compliance checking, schematically depicted in Fig. 1. We draw these characteristics from
political science literature [45], work on multi-level governance for artificial societies in AI
[67,68] (in what is called polycentric governance), and the real-world case study we focus
on. These three characteristics are:

– Regulation of regulation: higher level institutions govern lower level institutions’ designs
with norms that govern norms. This differs from regimenting legislation changes, which
due to institution designers’ autonomy might not be possible. Since we adopt regulations
as being modal, “A establishes an obligation/prohibition in a context C”, regulations
governing regulations oblige/prohibit the imposition of obligations/prohibitions. We call
these regulations higher-order norms (first-order norms impose obligations/prohibitions
on agent actions and/or societal outcomes of agent actions) and they have the form “A
establishes an obligation/prohibition for an obligation/prohibition to hold in a context
C”.

– Multiple connected levels: in multi-level governance, higher-level institutions govern
lower-level institutions. We view these institutions as being connected in the sense that
the regulations of a lower-level institution can be (non-)compliant with the regulations in
a higher-level institution. For example, the EU-DRD is a level 2 institution that requires
EU member states’ legislation, level 1 institutions, to ensure people’s personal commu-
nications data is stored. The EU-DRD is governed by the EU-CFR, a level 3 institution.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1291

The directive violates the charter of fundamental right’s regulation that demands rights
to privacy are respected.

– Abstraction: increasingly abstract regulations, which can be interpreted in many different
ways are prescribed at increasingly higher levels of governance. To give an example, at the
(typically) highest level of governance, human rights charters use abstract terminology
such as ‘fairness’ or ‘privacy’ which can havemany different interpretations. At a slightly
lower level the terminology is more precise, such as in EU directives or supranational
agreements between governments, but there are many possible compliant institution
designs. For example, the EU-DRD [22] states that member states should legislate for
communications’ metadata to be stored between 6 and 24months. This regulation is far
clearer than human rights regulations, but does not provide the precise data retention time.
At a slightly lower level regulations aremore concrete, such as at the level of nation-states.
For example, the UK-DRR which implements the EU directive specifies a precise time
in that data should be stored. In multi-level governance increasingly abstract regulations,
which can be interpreted in many different ways, are prescribed at increasingly higher
levels of governance.

A key question is on what basis are concrete regulations determined to be non-compliant
with abstract regulations? Legal monitors such as courts interpret the concrete and abstract
regulations in order to determine if concrete regulations violate more abstract regulations.
To go back to our example, the European Court of Justice [21] determined that the EU-
DRD’s relatively concrete requirement for metadata to be stored violated the EU Human
Rights Charter’s for personal data to be processed fairly [23]. The basis of the judgement
[21] was an interpretation that storing metadata was the same as storing personal data, and
storing personal data without someone’s consent was the same as processing data unfairly. In
a different context, where someone has given consent, storing metadata would not be unfair
data processing.

Hence, a relationship between concrete concepts having a context-sensitive abstractmean-
ing is used to determine compliance between concrete and abstract regulations. According
to the concept of institution we use, the context-sensitive rules linking concrete and abstract
institutional facts are constitutive rules. Hence, the relation between concrete and abstract
norms is derived from constitutive rules and based on this relationship concrete norms are
determined to be, themselves, (non-)compliant. Specifically, in the most basic case given that
if X counts-as Y in a context C then we derive an abstracting relation obliged X counts-as
obliged Y in the context C.

There is, however, a well-known argument against this type of derivation. Statements of
belief, desire, obligation etcetera. are known as Intentional statements, which are mental
states directed at states of affairs (borrowing from Searle [71, p. 3], a capital-I distinguishes
the technical term Intention from the specific mental state of intention). Many Intentional
statements are also intensional-with-an-s meaning that they fail at a substitution of identicals,
to quote Searle [71, p. 23]:

A sentence such as “John believes that King Arthur slew Sir Lancelot” is usually said to
be intensional-with-an-s because it has at least one interpretation where it can be used
to make a statement which does not permit existential generalization over the referring
expressions following “believes”, and does not permit substitutability of expressions
with the same reference, salva veritate.

In other words, if it is a fact that Sir Lancelot is-a person that never existed, we can-
not substitute Sir Lancelot with “a person that never existed” to obtain “John believes that

123



1292 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

King Arthur slew a person that never existed” salva veritate. Hence, the belief Intention is
intensional-with-an-s. On the other hand if John believes that King Arthur is a tall person,
then it is possible to make a substitution resulting in “John believes that a tall person slew
Sir Lancelot”. A substitution of X with Y is possible in an intensional-with-an-s statement if
the substituting property (Y) is held within the same Intention (John believes).

In our case of deriving abstract norms from concrete, a problem stems from the fact that
it is a substitution of identicals in Intentional statements (viz. obligations) that can also be
intensional-with-an-s. We are substituting obliged X with obliged Y because X counts-as
Y (i.e., Y is-an X). To give an example, storing meta-data counts-as storing personal data
and hence we might argue that there is a derivation to obliging storing meta-data counts-as
obliging storing personal data. However, if it is not also obliged that storing meta-data count-
as storing personal data then the substitution fails salva veritate. Likewise, King Arthur
can only be substituted with “a very tall person” in John’s belief, if John believes King
Arthur is a very tall person. In order to manage our expectations in this paper, and since
this is a difficult topic in its own right that has been covered elsewhere [71], we will leave
it here and make a simplifying assumption: we assume that if a constitutive rule “X counts-
as Y in context C” is included in an institution, through design or interpretation, then the
designers/interpreters are implying that it is obliged that “X counts-as Y in context C” and
based on that assumptionwewill also assume a substitution of identicals for abstracting norms
is correct salva veritate. To summarise, at the core of our proposal we are abstracting norms
based on constitutive rules, which is a substitution of identicals in otherwise intensional-
with-an-s statements (norms in our case), and through such abstraction we will determine
compliance of institution designs.

3 Approach

In this section we describe the approach we take to automatically determining compliance in
multi-level governance. Since we are reasoning about institutions in multi-level governance,
we build on an existing institutional reasoning framework. Our proposal requires representa-
tion and reasoning for: constitutive rules, modal norms, higher-order norms, connections
between institutions and reasoning about regulation abstraction. The InstAL (Institution
Action Language) framework [12,13] provides constitutive rules and modal norms. Hence,
we base our proposal on the InstAL framework and extend it to multi-level governance with
higher-order and abstract norm representation and reasoning.

We also modify InstAL from capturing institutions that are prohibitive by default (where
anything not permitted is forbidden) to permissive institutions (everything is permitted unless
explicitly prohibited). The main motivation is simply that the institutions in our running case
study, which comprises three institutions in a multi-level governance relationship from real-
world law, are inherently permissive.Hence, by representing those institutions in a framework
that captures permissive institutions we are able to show a clearer link between our formalised
rules and their natural-language counterparts.

Based on InstAL [12,13], an institution in our framework specifies six elements: events,
fluents, constitutive rules that generate institutional events, rules that initiate and terminate
fluents, constitutive rules that derive abstract institutional fluents from more concrete insti-
tutional fluents and an institution’s initial set of inertial fluents that hold in its initial state.
Each element is described subsequently in more detail.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1293

Events can represent observable changes to reality, corresponding to the notion of brute
fact. Events can represent changes to the social reality, corresponding to the notion of institu-
tional fact. For example, the brute fact we call storing metadata is an observable event, whilst
storing metadata and storing personal data are institutional events.

Fluents describe institutional facts holding in a social reality and are subject to chang-
ing over time. For example, a user consenting to processing their data causes a fluent to
hold stating that they have consented, which is removed if they revoke their consent. Some
fluents represent the deontic positions that hold, in our case: obligations, prohibitions and
empowerments.

Fluents representing obligations and prohibitions are normative fluents. For example, “an
obligation to pay a fine”. Higher-order normative fluents can also be specified, for example
an obligation to oblige paying a fine. We deal with institutions in a temporal setting, so the
various deontic normative fluents express that something should be done before a deadline.
For example, an obligation to pay a fine within 1month.

Empowerments, in contrast, represent the institutional power to perform institutionally-
recognised actions as given various formalisations by Jones and Sergot [47], Artikis et al.
[7] and Cliffe et al. [13], amongst others. In our use of the concept, a typical example is that
of bidding in an auction, multiple agents may raise their hand which typically constitutes
bidding, but only those agents empowered to bid can actually do so (e.g., by being registered
for the auction in the auction institution). In the context of our case-study, whilst multiple
telephony providers may perform an action that constitutes storing communications content,
only those providers located in the United Kingdom are empowered to perform that action
such that it affects the UK’s legal institutions (e.g., by being legal or illegal). To be clear,
in line with Jones and Sergot [47], we apply empowerments to agents (in our case study),
rather than roles. But in general we make no distinction in our formalism at the meta-level
between events occurring in the environment, or institutional actions such as performatives
taken by agents or by roles. Hence empowerment is used in a very general sense of making
institutional actions possible by which we mean legally recognisable.

In contrast, Jones and Sergot [47] formalise institutional power as a non-primitive derived
from counts-as rules. Specifically, an agent taking a particular action, such as consenting,
constituted by another, such as signing a form, is empowered to take that action (i.e., counts-
as rules empower institutional actions to be taken). Whilst we also adopt counts-as rules in
their canonical form to ascribe institutional facts, our use of empowerment is as an additional
restriction on what actions are empowered to occur—for example, an agent may be able to
de facto raise their hand which counts-as bidding, but only if the auctioneer has decided
to empower the agents in being able to bid can the agent actually do so. In other words,
empowerments represent hard constraints on the actions recognised by an institution, in line
with Cliffe et al.’s earlier conceptualisation [13].

Event generating constitutive rules cause institutional events to occur when observable
(brute) events or institutional events occur in a given context. For example, “the observable
event of storing metadata counts-as the institutional event of storing metadata”. An example
of a rule where an institutional events causes further institutional events to occur is “storing
personal data counts-as unfair data processing in the context that a user has not consented”.

Fluent initiation and termination rules cause inertial fluents to hold in a state when initi-
ated and persist from one state to another over time until terminated. For example, “a user
consenting to storing their data initiates the fluent stating that the user has consented”. Rules
that establish what we call normative fluents are norms. For example, “a user using a com-
munications device initiates an obligation for their communications’ metadata to be stored”.
Higher-order norms impose higher-order normative fluents. Once a fluent is initiated by such

123



1294 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

a rule it holds until it is terminated by another rule. That is, these rules initiate and terminate
inertial fluents.

Constitutive rules that derive fluents based on other fluents holding extend a state com-
prising relatively concrete institutional facts to a state comprising more abstract institutional
facts. For example, “an obligation to store personal data non-consensually counts-as unfair
data processing, unconditional on any specific social context”. Generally, these rules have
the form “fluent A counts-as fluent B in context C”. Viewed as counts-as rules, these rules
ascribe a special meaning B to a fluent A in a context C. For example, an obligation to store
personal data non-consensually has the special meaning of being unfair data processing. So
long as the fluent ‘A’ holds in a context ‘C’ then its special meaning ‘B’ also holds. But, unlike
fluent initition and termination rules, the special meaning ‘B’ does not hold until terminated,
rather, it holds when ‘A’ holds in the context ‘C’. That is the ‘Bs’ in rules of this type are
non-inertial fluents, since the Bs do not persist over time by default until terminated (i.e., they
do not possess inertia). Unlike the previous rules, constitutive rules that derive non-inertial
fluents from other fluents are not present in the InstAL framework. Similar non-inertial fluent
rules with the form “in context C non-inertial fluent A also holds” are present in subsequent
InstAL developments [54,65,66].

Each fluent in an institution’s set of initial inertial fluents, which can be the empty set,
holds in the institution’s first state and continues to hold until terminated. To summarise, an
institution specifies events, fluents and constitutive rules which ascribe institutional events
or institutional fluents.

Multi-level governance is operationalised with a semantics. This semantics defines how
each institution evolves from one state to the next in response to a trace of observable events.
These events can be real events occurring in the MAS, or hypothetical events if a pre-runtime
check for compliance is performed. An institution’s evolution is schematically depicted in
Fig. 2 and described as follows.

The institution starts in an initial state in which its initial set of inertial fluents holds. State
transitions are driven by observable events occurring in theMAS (potentially hypothetically).
During a state transition, further events occur in an institution according to its constitutive
rules, building up an institutional interpretation of reality based on the observable events that
have occurred. Further events signifying there is (non-)compliance also occur, for example
if there is an obligation to store communications’ metadata within 1month and the data is
not stored within 1month, then a norm violation occurs. If it is prohibited to oblige storing
communications’ metadata, then a higher-order norm violation occurs. That is, norm vio-
lations are institutional events denoting non-compliance. A newly transitioned to state can
contain different fluents from the previous state, based on each institution’s constitutive rules
variously initiating and terminating fluents from one state to the next. Thus, each institution
evolves over time from one state to the next transitioned by events.

Recall that concrete lower level institution norms are abstracted, in order to determine
whether they are compliant, in higher level institutions according to constitutive rules. The
approach we take is to firstly, link each institutional level such that concrete normative fluents
holding in lower level institutions are ‘passed up’ to the corresponding state in higher level
institutions. For example, an obligation to oblige storing communications metadata in the
EU-DRD is ‘passed up’ to the EU-CFR formonitoring. Likewise, so too are norm compliance
events.

Then, in each institutional state of a higher level institution the concrete normative fluents
coming from lower level institutions are re-interpreted and abstracted based on constitutive
rules. To give an example, storing communications metadata counts-as non-consensual data
processing in the context that the person whom the data concerns has not consented. Since

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1295

abstraction

Sn0
Eventsn0

abstraction

Sn1
Eventsn1

abstraction

Sn2 ...

abstraction

Snk+1

Nth-level Institution

abstraction

S20
Events20

abstraction

S21
Events21

abstraction

S22 ...

abstraction

S2k+1

Second-level Institution

abstraction

S10
Events10

abstraction

S11
Events11

abstraction

S12 ...

abstraction

S1k+1

First-level Institution

Obs. Event0 Obs. Event1 Obs. Eventk
...

Link

Input for all Institutions

Fig. 2 Overview of multi-level governance reasoning

storing metadata in such a context is ascribed the special status of non-consensual data
processing, an obligation to oblige storing communications metadata is re-interpreted as an
obligation to oblige non-consensual data processing.

In turn, from these abstractions any further abstractions are also derived. For example, the
obligation to oblige non-consensual data processing is abstracted simply to being unfair data
processing, if such an ascription exists according to constitutive rules. Thus, each institutional
state contains concrete normative fluents from lower levels and the state contains the closure
of all abstractions on these concrete normative fluents based on constitutive rules. So, it is the
concrete normative fluents imposed by norms in lower level institutions that are re-interpreted
as more abstract normative fluents at higher levels. Hence, concrete normative fluents are
determined in their abstract incarnationwhether they cause non-compliance and thuswhether
their originating concrete norms are compliant with abstract norms.

An example is depicted in Fig. 3 based on the running case study and described as follows:

1. In the EU-DRD’s first state there is an obligation to oblige storing communications’
metadata, which is passed up to the EU-CFR.

2. In the EU-CFR’s initial state the EU-DRD’s obligation to oblige storing communications’
metadata is abstracted. This is because concrete normative fluents are abstracted based

123



1296 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

Prohibited to process data unfairly

Unfair data processing

Prohibited to process data unfairly

Obligation to oblige processing
data non-consensually

Abstraction

Obligation to oblige storing per-
sonal data

Abstraction
Obligation to oblige storing meta-
data

Ada has consented to storing data

Obligation to oblige storing per-
sonal data

Obligation to oblige storing meta-
data

Ada consents to
storing data
Violated prohibi-
tion to process data
unfairly

Obligation to oblige storing meta-
data

Abstraction

Obligation to oblige storing meta-
data

Ada consents to
storing data

Charter of Funda-
mental Rights of the
EU

Data Retention Di-
rective

Abstraction

Fig. 3 An example of abstracting normative fluents at different levels of governance based on the context.
Normative fluents oblige/prohibit an aim a occurs before or at the same time as a deadline d. We use < to
denote one thing occurring strictly before another and ≤ to denote one thing occurring before or at the same
time as another

on whether the prescribed event counts-as a more abstract event in a context entailed by
the state. Specifically:

i The obligation to oblige storing metadata is abstracted to an obligation to oblige
storing personal data, because storing metadata counts-as storing personal data.

ii The obligation to oblige storing personal data is abstracted to an obligation oblige pro-
cessing datawithout consent, because storing personal data counts-as non-consensual
data processing in the context where an agent has not consented.

3. An obligation to oblige processing data non-consensually counts-as ‘unfair data process-
ing’ and is hence abstracted to ‘unfair data processing’.

4. Unfair data processing is prohibited and thus a norm violation event occurs in the tran-
sition to the EU-CFR’ next state.

In the EU-CFR institution the next state lacks an obligation to oblige processing data
without consent because a user has consented. So, unfair data processing also does not hold.
That is, the abstract meaning of concrete normative fluents evolves as the context evolves.
Consequently, compliance of normative fluents is context sensitive because normative fluents’
abstraction is context sensitive.

To summarise, our semantics for multi-level governance defines the evolution of each
institution over time in response to a sequence of events. Specifically, the semantics takes
concrete normative fluents from lower-level institutions and abstracts them in higher-level
institutions. Abstracted normative fluents can cause higher-order norm compliance events
through discharging or violating higher-order norms. Thus, non-compliance can be deter-
mined by inspecting the sequence of events in higher level institutions for higher-order norm
compliance events. In the next section we will define the representation and a semantics as
described.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1297

obl(a,d) pro(a,d)

Event/fluent a Event/fluent d

Violates
if < dDischarges

if ≤ d
Discharges
if ≤ a

Violates
if < a

obl(obl(a,d),d′)

Discharges
if ≤ d′

obl(pro(a,d),d′)

Discharges
if ≤ d′

pro(obl(a,d),d′)

Violates
if < d′

pro(pro(a,d),d′)

Violates
if < d′

Fig. 4 Discharge and violation (higher-order) normative fluent conditions.<X denotes the event/fluent hold-
ing or occurring strictly before X causes a violation. ≤X denotes the same, but the condition is not strictly
before

4 Formal framework

In this section we present the syntax for representing multi-level governance (Sect. 4.1) and
alongside give the intuition/informal semantics for each syntactic construct. Then,we provide
a semantics for reasoning about multi-level governance (Sect. 4.2).

4.1 Syntax

We begin with representing normative fluents. These are fluents that represent tempo-
ral obligations and prohibitions, meaning they have an aim which should be achieved
before a deadline. Obligation and prohibition fluents are respectively represented as
obl(aim, deadline) and pro(aim, deadline). The aims and deadlines can be events, fluents
or other normative fluents to represent higher-order normative fluents. Two special events
are used in aims and deadlines, now and never.1 The event ‘now’ occurs immediately to
represent something should (not) be done immediately. For example, obl(aim, now) means
the aim should occur ‘now’. Our representation is inspired by the formalisation of instan-
taneous norms in a variant of dynamic logic [17], which similarly use ‘now’ to refer to the
present state. An aim or deadline event never represents that the aim/deadline never occurs,
potentially meaning that the normative fluent lasts indefinitely. For example pro(aim, never)
means it is always prohibited for the aim to occur or in other words that the aim should
‘never’ occur.

The informal semantics for normative fluents’ is described in terms of when obliga-
tions/prohibitions are discharged and violated, overviewed in Fig. 4. An obligation fluent,
of the form obl(aim, deadline), represents that the aim should occur/hold before or at the
same time as the deadline to discharge the obligation (fulfil all duties). If the deadline
occurs/holds strictly before the aim then the obligation is violated. Prohibition fluents, of
the form pro(aim, deadline), are the inverse of obligations. Prohibitions represent that the
aim should not occur/hold strictly before the deadline. When a normative fluent n is dis-
charged it causes the event disch(n) to occur. If n is violated then the event viol(n) occurs.

1 We allow a normative fluent’s aim to be now or never, even though, for example, it sounds odd to say “it is
obliged to be now”. This is for symmetry between obligations and prohibitions—for example, obliged never
before an event E is the same as saying prohibited E until never (i.e., forever).

123



1298 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

Higher-order norms impose higher-order normative fluents. A higher-order normative
fluent obliges/prohibits another normative fluent is imposed before a deadline. The dead-
line is an event or another normative fluent. Compliance-focussed higher-order norms can
also be expressed, which oblige/prohibit compliance with an obligation/prohibition occurs
before/after an event occurs or another normative fluent is imposed (e.g., it is obliged a norm
is violated before a fine is imposed). Where for an obligation n = obl(a, d) or prohibition
n = pro(a,d) norm discharge is the event disch(n) and violation is the event viol(n). A
grammar to specify normative fluents is formalised as:

Definition 1 Normative Fluents Let P be a set of propositions denoting events with typical
element p. The set of normative fluents N |P is the set of all normative fluents n expressed
as:

aim ::= p | n | now | never | disch(n) | viol(n)
deadline ::= p | n | now | never | disch(n) | viol(n)
n ::= obl(aim, deadline) | pro(aim, deadline)

We give some examples concerning two agents, a law enforcement officer called Charles
and an internet communications user called Ada, and an internet communications provider
colloquially called an ISP. The UK-DRR implements the EU-DRD. The UK-DRR states
that if a law enforcement official (e.g., charles) requests the data stored by a communications
provider (e.g., isp) of a user (e.g., ada) then the communications provider is obliged to provide
the data within 1month (m1):

obl(provideData(isp, charles, ada), time(m1))

Instantaneous normativefluents express that something should (not) be doneor a normative
fluent should (not) be imposed now. One way an higher-level institution designer might use
instantaneous norms is to express that as soon as something happens a normative fluent should
be imposed. For example, as soon as a norm is violated it is obliged that there is an obligation
to punish the violator. The EU-DRD as we formalise it, requires that any implementing
legislation should impose punishment as soon as regulations are violated. Thus, when there
is a violation it imposes a normative fluent obliging an obligation to punish the violator is
imposed immediately:

obl(obl(punish(isp), time(m6)), now)

Compliance-focussed normative fluents can be used to express that an agent should dis-
charge/violate a normative fluent before another normative is imposed that rewards/punishes
the agent. For example, in our previous work [51], an obligation expressed “it is obliged that
a norm is violated before a fine is imposed”. Such compliance focussed normative fluents do
not state that a normative fluent being discharged should cause a reward/punishment. Rather,
they state that discharge/violation should occur before the reward/punishment is imposed.
Following this paper’s case-study—it is obliged that the communications provider isp vio-
lates the obligation to provide charles with data which concerns ada before any obligation
to punish the communications provider isp is imposed.

obl(viol(obl(provideData(isp, charles, ada), time(m1))), obl(punish(isp), time(m6)))

Normative fluents can also be explicitly first-order, but implicitly higher-order by oblig-
ing/prohibiting fluents that abstractly represent other normative fluents. Recall that various
obligations in the EU-DRD can abstractly be interpreted as unfair data processing. Hence, the

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1299

following is an example of an abstract first-order norm that indirectly governs other norms.
The EU-CFR states that it is prohibited to process Ada’s data unfairly (indefinitely):

pro(unfairDataProcessing(ada), never)

We now proceed to representing individual institutions. In short, institutions are specified
as a tuple, extending the formal specification of an institution in the InstAL framework [13].
Generally, speaking, an individual institution describes the things that can occur (events)
and hold (fluents) in the institution as well as the institution’s rules causing events to occur
and fluents to hold. An institution’s constitutive rules—cause institutional events to occur in
response to other events (“an event A counts-as an event B in context C”), fluents to hold in
response to events (“an event A counts-as establishing/removing a fluent B in context C”),
and further, more abstract, fluents to be derived from other fluents (“a fluent A counts-as a
fluent B in context C”). Rules stating fluents are derived are not present in InstAL but we
introduce them since they provide an abstracting relation between fluents and thus contribute
to our goal of reasoning about abstraction in multi-level governance. Regulative rules are just
modal norms represented as constitutive rules that establish normative fluents, “an event A
counts-as establishing an obligation/prohibition in context C”.

Specifically, institutions comprise the following elements:

Events—a set of propositions (E ) denoting events that can occur in the institution, s.t.
now, never /∈ E , meaning that the institution cannot define when the events now and
never occur. The set of events comprises:

Observable events (Eobs) that are exogenous to the institution corresponding to the
notion of a brute fact denoting an event.
Internal institutional events (Einst) representing an institutional description of reality.
Compliance events (Enorm = {disch(n), viol(n) | n ∈ Fcnorm∪Fanorm}) indicating a
normativefluent (in the set of concrete and abstract normativefluentsFcnorm∪Fanorm)
has been discharged or violated.

Fluents—a set of propositions (F ) denoting the fluents that can hold in the institution,
comprising:

Domain fluents (Fdom) providing an institutional description of the state of reality
(e.g., an agent has consented to their data being processed).
Empowerment fluents (Fpow ⊆ {pow(e) | e ∈ Einst}) denoting an event is recog-
nised by the institution in a state and has the power to affect the institution (i.e., is
empowered).
Normative fluents (Fnorm = Fcnorm ∪ Fanorm) comprising mutually disjoint sets
of concrete normative fluents (Fcnorm ⊆ N |E∪Fdom ) and abstract normative fluents
(Fanorm ⊆ N |E∪Fdom ):

Concrete normative fluents denote obligations and prohibitions imposed by the
institution about events or domain fluents. These normative fluents are concrete
in the sense of being explicitly imposed by an institutional norm, rather than
being abstract interpretations of other normative fluents that have been imposed.
Abstract normative fluents denote obligations and prohibitions imposed by the
institution about events or domain fluents. These are abstract in the sense of
not being imposed by the institution, but rather represent an abstract interpre-
tation of other more concrete normative fluents. For example, an obligation to
store personal data is a more abstract interpretation of an obligation to store
communications metadata.

123



1300 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

Inertial and non-inertial fluents, We assume that fluents are either inertial or non-
inertial represented as mutually disjoint sets of inertial fluents (Finert) and non-
inertial fluents (Fninert) such that F = Finert ∪ Fninert and Finert ∩ Fninert = ∅.
Institutions define fluents that can be initiated by the institution’s state consequence
function and then persist fromone state to the next by default until they are terminated.
That is, some fluents are inertial. Other fluents hold due to constitutive rules stating
more abstract fluents are derived from more concrete fluents. These abstract fluents
hold whenever the concrete fluents hold and do not persist from state to state by
default. That is, they are non-inertial fluents. Concrete normative fluents are inertial,
since an institution explicitly imposes them by initiation and termination according
to the state consequence function (Fcnorm ⊆ Finert). Abstract normative fluents are
non-inertial since they are derived from other normative fluents and do not persist
from state to state by default (Fanorm ⊆ Fninert).

Contexts—these characterise a condition on a state anddenote the social context each rule
is conditional on. A context is a set of positive and weakly negative fluents, which acts as
a condition on a state that is true if all of the positive fluents hold and none of the negative
fluents hold. Formally, the set of all contexts is X = 2F∪¬F s.t. ¬F = {¬ f | f ∈ F }
is the set containing the negation of all elements in the set F .
State change rules (C : X × E → 2Finert × 2Finert ), described as a state consequence
function. They specify that due to the occurrence of events conditional on a context
holding in a state, inertial fluents are initiated and terminated from one state to the next.
State change rules can be descriptive (e.g., a user consenting to their data being stored
initiates a fluent stating that they have consented) and regulative rules by initiating and
terminating normative fluents (e.g., someone using electronic communications initiates
an obligation for the communications provider to store their communications’ metadata).
Event generation rules—(G : X × E → 2Einst ), described as an event generation
function. These rules are only descriptive. They specify that when an exogenous or
institutional event occurs, conditional on a social context holding in a state, another
institutional event occurs.
Fluent derivation rules—(D : X × F → 2Fninert ), described as a fluent derivation
function. These rules state that a fluent holding in a state derives a non-inertial fluent
holding in the same state, conditional on a social context.

According to these notions, an individual institution is formally defined as:

Definition 2 Individual Institution An institution is a tuple I = 〈E , F , C, G, D,Δ〉 such
that:

– E = Eobs ∪ Einst ∪ Enorm is the set of events.
– F = Fdom ∪ Fnorm ∪ Fpow is the set of fluents.
– C : X × E → 2Finert × 2Finert is the state consequence function.
– G : X × E → 2Einst is the event generation function.
– D : X × F → 2Fninert is the fluent derivation function.
– Δ ⊆ Finert is the set of inertial fluents that initially hold in the institution’s zeroeth state

(and until terminated will hold in subsequent states).

Some further useful constructs are:

– Σ = 2F to denote the set of all states for I .
– Given a context X ∈ X and an event e ∈ E we denote the result of the consequence

function as C(X, e) = 〈C↑(X, e), C↓(X, e)〉 s.t. the set of initiated fluents is C↑(X, e)
and the set of terminated fluents is C↓(X, e).

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1301

– For readability if an institution is denoted with a superscript, such as id then all its
elements have the same superscript, such as I id = 〈E id, F id, C id, G id, Did,Δid〉, the set
of states being Σ id and the set of contexts being X id.

We exemplify using institutional specification fragments where for clarity we use a super-
script denoting the name of each institution. The EU-CFR [23, Art. 8.2] states that a person’s
data must be processed fairly. For an agent called ‘ada’, the set of inertial fluents initially
holding in the CFR institution includes:

pro(unfairDataProcessing(ada), never) ∈ Δcfr

A communications provider, called ‘isp’, storing metadata is by default an event empow-
ered to affect the Data Retention Regulations:

pow(storeData(isp, ada, metadata)) ∈ Δdrd

Now we give some example counts-as rules, fluent initiation and termination rules and
norms (where, for clarity, we use  to denote right-hand side’s membership of the left-hand-
side). According to the European Court of Justice’s (ECJ) judgement [21] on the EU-DRD,
with respect to the EU-CFR, storing communications metadata counts-as storing personal
data. If an agent’s metadata is stored, such as Ada’s, unconditional on a specific context (the
empty set) then the event of storing the Ada’s personal data is generated. Additionally, if
Ada’s personal data is stored in the context that Ada has not consented then the event of non-
consensually processing Ada’s data occurs. The following rules are a part of the EU-CFR,
incorporating the ECJ’s judgement.

Gcfr(∅, storeData(isp, ada, metadata))  storeData(isp, ada, personal)

Gcfr({¬consentedDataProcessing(ada, isp)}, storeData(isp, ada, personal))
 nonConsensualDataProcessing(ada)

The DRD [22, Art. 8] requires data concerning people is transmitted to authorities on
request before any undue delay. A fluent initiation rule is conditional on an agent, Charles,
requesting the data froma communications provider, ISP, of another agent,Ada. In the context
that Charles is a law enforcement official the rule initiates an obligation to immediately oblige
that ISP provides Charles with data concerning Ada before any undue delay.

Cdrd↑({is(charles, lawEnforcement)}, requestData(ada, isp, charles)) 
obl(obl(provideData(isp, charles, ada), undue_delay), now)

According to the ECJ’s interpretation of the EU-DRD [21] with respect to the EU-CFR.
Obliging that personal data is processed non-consensually counts-as unfair data processing.
We represent the ECJ’s interpretation as a fluent derivation rule in the CFR institution. It
states that obliging an agent, Ada’s, personal data is processed without consent in any social
context (the empty set) derives the fluent of (counts-as) unfair data processing.

Dcfr(obl(nonConsensualDataProcessing(ada), now),∅)  unfairDataProcessing(ada)

In multi-level governance, institutions are related in the sense that institutions designed
at lower levels of governance are governed by institutions designed at higher levels of gov-
ernance. In our approach, this means that if a lower level institution imposes an obligation
or a prohibition, then the same obligation/prohibition holds in any higher level institution
that governs it. Institutions are linked in this way in what we call a multi-level governance

123



1302 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

institution, where institutions are ordered by the level they operate at and linked with a
relation between lower level and higher level institutions. The relations linking institutions
are expressed as a set of directed edges R between lower level institutions and higher level
institutions they are governed by. Each relation is restricted such that higher levels cannot be
governed by lower levels,meaning that collectively the relations are always acyclic. Formally,
a multi-level governance institution is:

Definition 3 Multi-level Governance Institution A Multi-level Governance Institution is
a directed graph 〈T , R〉. The vertices are represented as a tuple T = 〈I1, . . . , In〉 of
institutions. The arrows are a set of pairs R = 2[1,n]×[1,n] of institution indexes in T such
that ∀〈i, j〉 ∈ R : i < j .

For example, in our running case study a multi-level governance institution is 〈T , R〉with
a hierarchy of institutions comprising the UK-DRR, the EU-DRD and the EU-CFR such that
T = 〈Idrr, Idrd, Icfr〉 and R = {〈drr, drd〉, 〈drd, cfr〉}. To demonstrate the representation in
its full entirety, the case study is formalised in Appendix A.2

According to these definitions, we can represent the three main aspects of multi-level
governance we focus on in this paper. Firstly, regulations that regulate other regulations in
higher level institutions with higher-order normative fluents in prescriptive rules. Secondly,
the links between lower level institutions governed by higher level institutions by compos-
ing multi-level governance institutions. Thirdly, the interpretation of concrete concepts and
normative fluents as more abstract concepts and normative fluents.

In our framework abstraction can occur in institutions related via multi-level governance
in two ways. Firstly with constitutive rules, which state concrete concept counts-as a more
abstract concept in a particular context. Such abstracting constitutive rules are represented
as the event generation function and the fluent derivation function. The event generation
function represents abstracting constitutive rules of the form “a concrete event A counts-as a
more abstract event B in the context C”. The fluent derivation function represents abstracting
constitutive rules of the form “a concrete fluent A counts-as an abstract fluent B in the
context C”. The second abstraction method is the implicit abstraction of concrete normative
fluents regulating concrete concepts to more abstract normative fluents regulating abstract
concepts. Normative fluent abstraction requires no explicit representation, since it is defined
semantically based on constitutive rules between concrete and abstract concepts according
to the event generation and fluent derivation functions.

4.2 Semantics

In this section we present the formal semantics for multi-level governance. Given a multi-
level governance institution specification the semantics define a model, comprising for each
institution states transitioned between by events, in response to a supplied trace of observable
events. The key idea behind the semantics, depicted in Fig. 5 is to transition from one
state to another, driven by generated events, by initiating and terminating inertial fluents.
Then each state is closed by deriving non-inertial fluents according to an institution’s fluent
derivation function and abstracting concrete fluents to non-inertial abstract normative fluents
according to normative fluent abstraction. Given a multi-level governance institution model
it can be determined whether individual institutions are compliant with the institutions that
govern them in different contexts. The formal semantics provide a mechanism for automated
compliance-checking in multi-level governance.

2 Appendices can be downloaded from http://thomascking.com/JAAMAS_Automated_Multilevel_
Governance_Compliance_Checking/appendices.pdf.

123

http://thomascking.com/JAAMAS_Automated_Multilevel_Governance_Compliance_Checking/appendices.pdf
http://thomascking.com/JAAMAS_Automated_Multilevel_Governance_Compliance_Checking/appendices.pdf


Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1303

Closed Initial State
(definition 8)

Closed transitioned to state
(definition 10)

Generated events
(definition 5)

Inertial
Fluents

Inertial
Fluents

Fluent initiation
and termination
(definition 9)

concrete
normative
fluents As

abstracts
(definition 7)

non-inertial
abstract
normative
fluent B

non-inertial
fluent A

derives
(definition 6) non-inertial

fluent B

concrete
normative
fluents As

abstracts
(definition 7)

non-inertial
abstract
normative
fluent B

non-inertial
fluent A

derives
(definition 6) non-inertial

fluent B

Fig. 5 An overview of the semantics, depicting the transition from the initial state to the next state and state
closure

In order to reduce repetition the following definitions are with respect to several com-
mon objects. First, a multi-level governance institution ML = 〈T , R〉 where T =
〈I1, . . . , In〉 is a tuple of institutions with typical elements being ∀i ∈ [1, n] : I i =
〈E i , F i , C i , G i , Di ,Δi 〉. Second, a tuple of states, representing the state of each institution
for a single point in time j—〈S1j , . . . , Snj 〉. Third, a tuple of event sets, representing the events
occurring in each institution for a single point in time j—〈E1

j , . . . , E
n
j 〉.

4.2.1 State conditions

Institutional rules are conditional on states and the occurrence of events. Therefore, deter-
mining if a rule is ‘fired’ requires determining in part if its state condition, a social context,
holds in a state. We begin by defining when contexts are modelled by (hold in) a state.

Informally, a state formula is modelled by a state if for each positive fluent in the formula
there is an equivalent fluent that is a member of the state and for each negative fluent in the
formula there is not an equivalent fluent that is a member of the state. Rather than defining
modelling a state formula in terms of whether the positive/negative fluent is in the state, we
use equivalence. This is because two normative fluents can have an equivalent semantics
whilst being syntactically different—this is not unusual, in ‘Standard Deontic Logic’ [76]
forbidden X is defined as obliged not X.

In our case, we define equivalences between two fluents based on whether they are are
syntactically identical and two normative fluents based on whether their (non-)compliance
coincide. Referring again to Fig. 4, there is an obligation for an event/fluent a to occur/hold
before or at the same time as a deadline d when the obligation fluent obl(a, d) holds, likewise
a is prohibited strictly before d when the prohibition fluent pro(a, d) holds. Given two
normative fluents obl(a, d) and pro(a′, d ′) where a is equivalent to d ′ and d equivalent to
a′ the obligation’s and prohibition’s discharge and violation coincide and therefore they are
equivalent. The equivalences (≡) of obligations and prohibitions according to their discharge
and violation is summarised as obl(a, d) ≡ pro(a′, d ′) if a ≡ d ′ and d ≡ a′, a definition
that generalises to higher-order normative fluents.3

Accordingly, we define modelling a state formula as:

3 An example of higher-order equivalence generalisation is obl(obl(a, d), d ′) ≡ obl(pro(d, a), d ′) ≡
pro(d ′, obl(a, d)), etc.

123



1304 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

Definition 4 State Formulae Let f ∈ F i be a fluent. We define ≡ and |� for all contexts
X ∈ X i as:

f ≡ f
obl(a, d) ≡ pro(a′, d ′) ⇔ a ≡ d ′ and d ≡ a′

Si |� f ⇔ ∃ f ′ ∈ Si : f ≡ f ′
Si |� ¬ f ⇔ � f ′ ∈ Si : f ≡ f ′
Si |� X ⇔ ∀x ∈ X : Si |� x

4.2.2 Events

In this section we semantically define the events occurring in an institution, in response to
other events in specific contexts. Precisely, an event generation operation GRi defines for
an institution I i in a multi-level governance institution which events occur in a state Si

in response to a set of events Ei . An event occurs in an institution if it is generated by
the institution’s event generation function G i , or if it represents the discharge/violation of a
discharged/violated normative fluent holding in the institution’s state or that of a lower-level
institution the institution governs. The event generation operation is formalised below and
explained subsequently:

Definition 5 Event Generation Operation The event generation operation GRi : Σ i ×
2E i → 2E i

is defined for each institution I i w.r.t. the tuple of multi-level governance states
〈S1j , . . . , Snj 〉 and event sets 〈E1

j , . . . , E
n
j 〉. The operation is defined as GRi (Si , Ei ) = E ′ iff

E ′ minimally (w.r.t. set inclusion) satisfies all of the following conditions:

now ∈ E ′ (D5.1)

Ei ⊆ E ′ (D5.2)

∃X ∈ X i , e ∈ E ′, e′ ∈ G i (X, e) : Si |� X ∧ Si |� pow(e′) ⇒ e′ ∈ E ′ (D5.3)

Si |� obl(a, d) ∧ (a ∈ E ′ ∨ Si |� a) ⇒ disch(obl(a, d)) ∈ E ′ (D5.4)

Si |� obl(a, d) ∧ (d ∈ E ′ ∨ Si |� d) ∧ disch(obl(a, d)) /∈ E ′ ⇒ viol(obl(a, d)) ∈ E ′
(D5.5)

Si |� pro(a, d) ∧ (d ∈ E ′ ∨ Si |� d) ⇒ disch(pro(a, d)) ∈ E ′ (D5.6)

Si |� pro(a, d) ∧ (a ∈ E ′ ∨ Si |� a) ∧ disch(pro(a, d)) /∈ E ′ ⇒ viol(pro(a, d)) ∈ E ′
(D5.7)

∃〈h, i〉 ∈ R, e ∈ Eh
norm ∩ E i

norm ⇒ e ∈ E ′ (D5.8)

In more detail:

– D5.1—the event of now always occurs.
– D5.2—events that have already occurred still occur (monotonicity).
– D5.3—an event generated by the institution’s event generation function in response to

another event, conditional on a social context modelled by the state and the event being
empowered to occur.

– D5.4 to D5.7—a compliance event occurring signifying a normative fluent is discharged
or violated in a state, by an obliged/prohibited event, fluent or another normative fluent.
Compliance events do not need to be empowered in order to occur.

– D5.8—norm compliance events occurring in lower level institutions linked to this insti-
tution, also occur in this institution.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1305

Collectively, these conditions and the minimality constraint close a set of events by pro-
ducing all events in response to those events (etc.). Note that GRi is increasingly monotonic,
well-defined and can be a partial function. The function GRi is partial if there is a fault in
the institutional specification or the set of events passed are inconsistent. Specifically, if an
institution is defined such that violating a normative fluent causes an event that discharges the
same normative fluent via the event generation function G (either directly or transitively). We
will see later in Sect. 4.2.5 how events generated cause fluents to be initiated and terminated
when all the definitions are put together to define a multi-level governance institution model
in definition 13.

4.2.3 Derived fluents

In this section we semantically define deriving fluents from other fluents in a given state. We
define a fluent derivation operation FDi which, operating on an institutional state, extends
the state to include derived fluents based on fluent derivation rules of the form “fluent A
derives fluent B in context C” described by the fluent derivation function Di . These derived
fluents are the ‘Bs’ from fluent derivation rules where the context ‘C’ holds and the fluent ‘A’
is modelled by the state. By deriving fluents from other fluents in a state, it is possible further
fluents should be derived. Thus, the fluent derivation operation FDi is defined to close a state
by producing an extended state that includes all derived fluents with respect to the extended
state itself. The fluent derivation operation is formally defined as:

Definition 6 FluentDerivationOperationThe fluent derivation operationFDi : Σ i → Σ i

is defined for each institution I i and a state Si ∈ Σ i such that FDi (Si ) = S′ iff S′ minimally
(w.r.t. set inclusion) satisfies all of the following conditions:

Si ⊆ S′ (D6.1)

∃X ∈ X , f ∈ S′, f ′ ∈ Di (X, f ) : S′ |� X ⇒ f ′ ∈ S′ (D6.2)

In more detail:

– D6.1—Closure of the state does not remove any fluents from the input state.
– D6.2—A fluent derived from another fluent conditional on a social context modelled by

the state according to the institution’s fluent derivation function is a member of the closed
state.

Collectively, these conditions and the minimality constraint close a state under flu-
ent derivations. Note that the fluent derivation operation is undefined if an institution’s
fluent derivation function has an output that is inconsistent with its input. For example
D({¬B}, A)  B or in words “A counts-as B in the context that B does not hold”. In other
cases, the fluent derivation operation is multi-valued if at least two rules defined by the insti-
tution’s fluent derivation function are mutually inconsistent. For exampleD({¬B2}, A)  B1
and D({¬B1}, A)  B2, or in words “A counts-as B1 in the context that B2 does not hold”
and vice versa “A counts-as B2 in the context that B1 does not hold”. Such properties indicate
an institution design problem, which should be resolved by the institution designer.

4.2.4 Abstracting normative fluents

This section presents a semantics for abstracting concrete normative fluents. The basic idea,
depicted in Fig. 6, is to establish new counts-as relations between concrete normative fluents

123



1306 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

obl(a0,d)
counts-as
obl(b,d)

obl(a1,d)
counts-as
obl(b,d)

...
obl(an,d)
counts-as
obl(b,d)

pro(a0,d),
pro(a1,d),
... and
pro(an,d)
counts-as
pro(b,d)

a0 counts-as b a1 counts-as b ... an counts-as b

Deontological counts-as
between normative flu-
ents based on ai counting
as b

An event, fluent or normative
fluent ai counts-as an event, fluent
or normative fluent b in a state
according to event generation,
derived fluents and deontological
counts-as functions

Fig. 6 Overview for deontological counts-as semantics between concrete and abstract normative fluents,
based on counts-as relations between the elements they prescribe holding in a context entailed by a single state

and abstract normative fluents, based on the concrete concepts they prescribe counting-as
more abstract concepts. Before we go into the actual semantics for abstracting concrete nor-
mative fluents, we describe the intuition and general semantics, then give numerous examples
and finally the formalisation.

We call the relation between concrete and abstract normative fluents deontological counts-
as and derive it based on three counts-as rule types (referring again to Fig. 6). Firstly, based
on counts-as between events according to an institution’s event generation function. Here, we
derive relations stating concrete normative fluents about events count-as an abstract normative
fluent about an event. Secondly, based on counts-as between fluents according to an institu-
tion’s fluent derivation function. Here, we derive relations stating concrete normative fluents
about fluents count-as an abstract normative fluent about a fluent. Thirdly, based on counts-as
between normative fluents themselves according to the deontological counts-as relation we
define. Here, we derive relations stating higher-order concrete normative fluents prescrib-
ing normative fluents count-as a more abstract higher-order normative fluent prescribing a
normative fluent. So, a deontological counts-as relation between concrete and abstract nor-
mative fluents is derived from more primitive ontological counts-as relations according to
an institution’s event generation and fluent derivation functions, and deontological counts-as
itself in order to derive deontological counts-as between higher-order normative fluents.

How the deontological counts-as relations between concrete and abstract normative fluents
are derived is described as follows. The intuition is that concrete normative fluents count-as a
more abstract normative fluent if and only if: the events or fluents that cause compliance with
the concrete normative fluents (i.e., discharging or not violating) in turn count-as a certain
institutional event to occur or fluent to hold that guarantees the abstract normative fluent is
also complied with (i.e., discharged or not violated).

Following this intuition, we start by describing deontological counts-as for obligations. In
reference to Fig. 6, whenever any of a0 to an occur or hold we are guaranteed b occurs/holds.
If there is a concrete obligation imposed on one of a0, . . . , an to occur/hold before a deadline
d , then it is guaranteed that complying with the concrete obligation (discharging or not
violating) means a more abstract obligation for b to hold before the same deadline d is also
guaranteed to be discharged or not violated. Therefore, we derive a deontological counts-as
relation stating that a concrete obligation on any of a0, . . . , an before d counts-as a more
abstract obligation for b to occur before d .

Prohibitions are different. If a0, . . . , an count-as b, then unlike obligations we cannot
apply modus ponens and say that prohibiting a0 before d counts-as prohibiting b before

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1307

d . The reason being, a0 not occurring/holding does not mean b does not occur/hold. Thus,
prohibiting a0 on its own does not mean b should not occur. In other words, discharging
or not violating a prohibition on a0 before d does not guarantee that a prohibition on b
before d is discharged or not violated. The reason is b can occur due to any of a1, . . . , an
occurring/holding (all counting-as b) and thus violate a prohibition on b before d . We might
be tempted to apply modus tollens and say that b not occurring/holding means a0, . . . , an
do not occur/hold, therefore prohibiting b before d counts-as prohibiting a0, . . . , an before
d . However, this would be concretisation since a0, . . . , an are more concrete than b (recall
that concrete concepts count-as abstract concepts, and a0, . . . , an count-as b). On the other
hand, we are interested in abstraction. To summarise, unlike obligations modus ponens is
incorrect to base counts-as between prohibitions on (since a prohibition is an obligation to
the contrary), whilst modus tollens is inappropriate since it concretises rather than abstracts.

Instead, we derive a deontological counts-as relation between prohibitions stating that pro-
hibiting all of a0, . . . , an from occurring/holding before d counts-as a prohibition on a more
abstract event/fluent b occurring/holding before d . This is based on the fact that counts-as is
ascriptive, with reference to the discussion in Sect.2, defining allways an abstract institutional
concept can occur/hold when more concrete concepts occur/hold. Since abstract institutional
events/fluents are ascribed by an institution’s counts-as rules, if none ofa0, . . . , an occur/hold
then b is not ascribed and therefore does not occur/hold. Note that this is entirely different
from material implication. For example, given if it rain then the grass will be wet, the fact
that it does not rain does not mean the grass is not wet. Counts-as rules in contrast make
institutional facts possible, if some institutional fact B has no counts-as rules ascribing it,
then that institutional fact cannot exist in an institution’s social reality. In reference to the
discussion in the background section, counts-as rules introduce institutional facts. Thus, com-
plying with (discharging or not violating) all prohibitions on a0, . . . , an occurring/holding
before d guarantees that a prohibition on b before d is also complied with (discharged or not
violated)—if a0, . . . , an should not occur/hold before d then neither should b before d .

These informal semantics abstract concrete normative fluents with different concrete aims
to an abstract normative fluent with a more abstract aim. Normative fluents’ deadlines are
also abstracted. However, as we observed when defining equivalences between normative
fluents, the aim of an obligation is by definition obliged, whilst the deadline is prohibited
and vice versa for prohibitions. Thus, the abstraction of obligation fluents’ deadlines should
be under the same semantics as prohibitions’ aims and vice versa for prohibitions. So, given
that a0 counts-as b, a prohibition for z to occur before a0 counts-as a prohibition for z to
occur before b. Alternatively, we can just apply the equivalences between normative fluents
such that we have an obligation for a0 to occur before z that counts-as an obligation for b to
occur before z, which is in turn equivalent to a prohibition for z to occur before b. Since a
state with a prohibition fluent also models an equivalent obligation fluent and vice versa, we
define deontological counts-as based on the normative fluents a state models and obtain the
abstraction of normative deadlines ‘for free’.

This summarises the intuition behind deontological counts-as. More formally, deontolog-
ical counts-as is defined as the function DCi : Σ i → 2F i

norm × F i
norm. The function specifies

for a state (S) a relationship (〈N , n〉 ∈ DC(Si )) between sets of relatively concrete normative
fluents (N ) that count-as an abstract normative fluent (n) in the state Si .

We exemplify the deontological counts-as function using our running case study.
We focus on the EU-DRD’s prescriptions formalised as an institution Idrd. Counts-as
between events according to the DRD’s event generation G function state that a com-
munications provider (isp) storing the content of a user’s (ada) communications data

123



1308 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

(storeData(isp, ada, content)) counts-as (causes the institutional event of) storing per-
sonal data (storeData(isp, ada, personal)). Likewise, storing communications’ metadata
(storeData(isp, ada, metadata)) counts-as storing personal data.

Storing metadata or content data counts-as storing personal data. Thus, obliging metadata
or obliging content data is stored immediately counts-as obliging personal data is stored
immediately, since if a communications provider stores metadata or content data then it also
stores personal data:

〈{obl(storeData(isp, ada, content), now)}, obl(storeData(isp, ada, personal), now)〉
∈ DCi (Si )

〈{obl(storeData(isp, ada, metadata), now)}, obl(storeData(isp, ada, personal), now)〉
∈ DCi (Si )

Prohibiting storing both content and metadata indefinitely counts-as prohibiting storing
personal data indefinitely:

〈{pro(storeData(isp, ada, content), never),
pro(storeData(isp, ada, metadata), never)}, pro(storeData(isp, ada, personal), never)〉

∈ DCi (Si )

Higher-order normative fluents are abstracted using the same intuitions as first-order nor-
mative fluents, but with abstraction based on deontological counts-as. According to our
case study, obliging an obligation to store content data counts-as obliging an obligation to
store personal data. Likewise, obliging an obligation to store metadata counts-as obliging an
obligation to store personal data.

〈{obl(obl(storeData(isp, ada, content), now), now)},
obl(obl(storeData(isp, ada, personal), now), now)〉 ∈ DCi (Si )

〈{obl(obl(storeData(isp, ada, metadata), now), now)},
obl(obl(storeData(isp, ada, personal), now), now)〉 ∈ DCi (Si )

Likewise, but for prohibitions, prohibiting storingmetadata and prohibiting storing content
data counts-as prohibiting storing personal data. Thus, obliging to immediately prohibit
storing metadata and obliging to immediately prohibit content data counts-as obliging to
immediately prohibit storing personal data. Only obliging to prohibit storing content data,
does not mean it is obliged to prohibit storing personal data:

〈{obl(pro(storeData(isp, ada, content), never), now),
obl(pro(storeData(isp, ada, metadata), never), now)},

obl(pro(storeData(isp, ada, personal), never), now)〉 ∈ DCi (Si )

Higher-order prohibition abstraction semantics generalises the intuition of deontological
counts-as for first-order prohibitions, but based on deontological counts-as itself. Prohibit-
ing all concrete normative fluents that count-as a more abstract normative fluent, counts-as
prohibiting the more abstract normative fluent.

According to our case study, indefinitely prohibiting obliging storing content data and
prohibiting to oblige storing metadata, counts-as indefinitely prohibiting obliging storing
personal data. Likewise, for prohibiting prohibitions.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1309

〈{pro(obl(storeData(isp, ada, content), now), never),
pro(obl(storeData(isp, ada, metadata), now), never)},
pro(obl(storeData(isp, ada, personal), now), never)〉 ∈ DCi (Si )

〈{pro(pro(storeData(isp, ada, content), never), never),
pro(obl(storeData(isp, ada, metadata), never), never)},
pro(pro(storeData(isp, ada, personal), never), never)〉 ∈ DCi (Si )

Abstracted normative fluents can also be further abstracted. To give an example, in the
EU-DRD the event of storing personal data without someone’s consent counts-as a non-
consensual data processing event. Hence in the context that the agent Ada has not consented
(S |� ¬consentedDataProcessing(ada)) we have the following deontological counts-as rela-
tion. It states the EU-DRD is effectively obliging an obligation for data to be processed
non-consensually:

〈{obl(obl(storeData(isp, ada, personal), now), now)},
obl(obl(nonConsensualDataProcessing(ada), now), now)〉 ∈ DCi (Si )

Deontological counts-as relations are also derived from the fluent derivation function Di .
To exemplify, we take the previous example where we have an abstract obligation obliging
Ada’s data is stored non-consensually. Loosely speaking, the ECJ judged [21] that the EU-
DRD, by obliging an obligation for non-consensual data processing, violated the EU-CFR’s
prohibition on unfair data processing (e.g., pro(unfairDataProcessing(ada), never)). But
howdowego froma second-order obligation for data to beprocessednon-consensually to vio-
lating a first-order prohibition on unfair data processing?One possibility is that the EU-CFR’s
fluent derivation function (Dcfr) states that obliging non-consensual data processing counts-as
unfair data processing, such thatDcfr(∅, obl(nonConsensualDataProcessing(ada)), now)) 
unfairDataProcessing(ada). Thus we have the following relation stating the second-order
obligation for non-consensual data processing deontologically counts-as, more abstractly,
obliging data is processed unfairly:

〈{obl(obl(nonConsensualDataProcessing(ada)), now), now)},
obl(unfairDataProcessing(ada), now)〉 ∈ DCi (Si )

However, obliging data is processed unfairly does not violate the EU-CFR prohibition
on unfair data processing, pro(unfairDataProcessing(ada), never). This is unsurprising, the
EU-CFR does not impose an explicit second-order prohibition, or contain any explicit
higher-order norms for that matter (both in reality and in our formalisation). Unfair data
processing is somehow derived from an obligation to oblige non-consensual data process-
ing. One possibility is as follows: i according to the fluent derivation function obliging
non-consensual data processing counts-as unfair data processing, thus ii obliging an obli-
gation to process data non-consensually counts-as obliging unfair data processing. iii The
EU-CFR considers whether data is processed unfairly or obliged to be processed unfairly
as irrelevant, both are viewed as unfair data processing. iv Thus, an obligation to process
data unfairly counts-as unfair data processing according to the fluent derivation function,
Dcfr(∅, obl(un f air DataProcessing(ada)), now))  unfairDataProcessing(ada). That is,
normative fluents about abstract concepts are reduced to (ascribed as) those abstract concepts,
in this way first-order norms can indirectly govern other norms.

The idea here does not mean what ought to be the case is the case (e.g., unfair data
processing). Rather, unfair data processing is an abstract concept, which has many meanings,

123



1310 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

including obliging unfair data processing itself. Note that this means not only is an obligation
to process data unfairly reduced to unfair data processing, but so is a second-order obligation,
a third-order obligation, etcetera. Formally:

〈{obl(obl(unfairDataProcessing(ada), now), now)},
unfairDataProcessing(ada)〉 ∈ DCi (Si )

〈{obl(obl(obl(unfairDataProcessing(ada), now), now), now)},
unfairDataProcessing(ada)〉 ∈ DCi (Si )

. . .

It is worth discriminating between issuing norms and re-interpreting norms at different
abstraction levels, now that we have given a general argument for norm interpretation and
its application according to constitutive rules. From an institution design perspective, it is
most straightforward to issue norms at the abstraction level of an institutional fact we wish to
regulate (e.g., prohibiting storing content data). An alternative method is to issue norms at a
more concrete level of abstraction (e.g., prohibiting storing message content, telephone calls,
etc.), where the concrete detached obligations/prohibitions are collectively re-interpreted
as an obligation/prohibition on the more abstract institutional fact (e.g., prohibiting storing
content data). The second approach is certainly possible, since an institution defines all of
the ways in which an abstract institutional fact is constituted according to its counts-as rules,
as we have discussed previously. Moreover, in our framework the domains we consider
are finite and hence it is possible to enumerate all concretisations. However, this is a less
convenient approach since an abstract concept can have a large number of concretisations
that need to be accounted for. Moreover, when counts-as rules in an institution change over
time (e.g., introducing a rule stating that storing message’s subject counts-as storing content
data) further concrete norms may need to be introduced (e.g., prohibiting storing message
subjects) in order to continue regulating the same abstract fact (e.g., prohibiting storing
content data). The most convenient approach to regulating abstract institutional facts or
norms is to directly regulate those abstract institutional facts or norms and rely on abstraction
of relatively concrete facts/norms in each social context to determine compliance.

Following this discussion, we formally define deontological counts-as, based on counts-
as relations that hold in a state according to the event generation function, fluent derivation
function and deontological counts-as itself. For convenience, we collect the event generation
and fluent derivation counts-as relations into a single set Ai that forms the deontological
counts-as function’sbase cases. Since deontological counts-as is also defined based on its own
counts-as relations (in order to generalise to higher-order normative fluents), deontological
counts-as is defined recursively. Formally, deontological counts-as is defined as:

Definition 7 DeontologicalCounts-asGiven a state Si , the deontological counts-as function
DCi : Σ i → 2F i

norm ×F i
norm is defined for the state Si ∈ Σ i such thatDCi (Si ) is theminimal

(w.r.t. set inclusion) set of all pairs 〈N ′, n′〉 where N ′ �= ∅ that satisfy the following:

N ′ = {obl(a, d) | a ∈ A}s.t.〈A, b〉 ∈ Ai (Si ) ∪ DCi (Si ) ∧ n′ = obl(b, d) ∈ F ′
norm or

(D7.1)

N ′ = {pro(a, d) | 〈A, b〉 ∈ Ai (Si ) ∪ DCi (Si ) ∧ a ∈ A} ∧ n′ = pro(b, d) ∈ F i
norm

(D7.2)

where the set of abstracting counts-as relations Ai (Si ) for the state Si is defined as:

A(Si ) ={〈{a}, b〉 | X ∈ X i , a ∈ E i , b ∈ G i (X, a) ∧ Si |� pow(b)}∪ (D7.3)

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1311

{〈{a}, b〉 | X ∈ X i , a ∈ F i , b ∈ Di (X, a)} (D7.4)

A state closed under deontological counts-as function is the function DC
i : Σ i → Σ i ,

such that S′ = DC
i
(Si ) iff it minimally (w.r.t. set inclusion) satisfies all of the following

conditions:

Si ⊆ S′ (D7.6)

∃〈N ′, n′〉 ∈ DCi (Si ) : N ′ ⊆ S′ ∧ n′ ∈ F i
anorm ⇒ n′ ∈ S′ (D7.7)

Inmore detail. Concrete obligations count-as amore abstract obligation according toD7.1.
Concrete prohibitions count-as a more abstract prohibition according to D7.2. These counts-
as relations are derived from relations between concrete concepts counting-as an abstract
concept defined by the event generation function and fluent derivation function according
to D7.3—D7.4 (the base cases) and with respect to deontological counts-as itself since it is
defined recursively.

Deontological counts-as does not describe whether normative fluents in a state Si are
abstracted, but rather whether they could be. Closing a state under deontological counts-as

is according to the operation DC
i
. Condition D7.6 ensures any fluents already in the state

remain in the state. Condition D7.7 ensures if concrete normative fluents, should they hold
in a state are abstracted to a normative fluent, and they do indeed hold, then the abstracted
normative fluent also holds. Note that in D7.7 it is ensured only normative fluents that
belong to the abstract set of normative fluents can hold in a state due to being derived from
concrete normative fluents. Consequently, deontological counts-as only adds non-inertial
abstract normative fluents to a state.

Note that DC
i
is a partial function if there is a fault in the institutional specification. For

example, if an institution obliges an event a to occur in some state, and the event a generates
the event b in that state, then b is also obliged to occur in that state. However, if a generates
the event b conditional on b not being obliged then there is a problem. We have that b is
obliged since a is obliged. But, if b is obliged then a does not count-as b, thus obliged a does
not count-as obliged b and so there is no obligation for b to occur. Again, in principle there is
nothing wrong with the possibility of this paradox occurring since it is an institutional design

fault. If we have DC
i
(S) = ⊥ then we have detected an institutional design problem in the

state S for the institution designer to rectify.

4.2.5 Models

In this section we provide a multi-level governance institutional model definition, which
captures how each institution in a multi-level governance institution evolves from one state
to the next, driven by observable events that potentially generate institutional events in state
transitions. A model is defined in response to a trace of observable (exogenous) events.

The approach we take is to put together all of the previous operations according to the fol-
lowing description. An institution starts at an initial state that includes the institution’s initial
set of inertial fluents (Δi ) and the state closed under the fluent derivation and deontological
counts-as operations. The institution transitions between states with a set of events generated
by the event generation operation in response to an observable event in the event trace. Each
state transitioned to contains the fluents that held in the previous state that were not termi-
nated, any newly initiated fluents as well as closing the state under the fluent derivation and
deontological counts-as operations. Additionally, an institution’s evolution is affected by the
evolution of other institutions it governs. This means that a higher level institution’s state

123



1312 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

includes normative fluents from lower level institutions it governs. These normative fluents
are ‘passed up’ to the higher level institution in order to abstract the lower levels normative
fluents and determine if they are compliant in their abstract interpretation.

We begin by defining the initial state of each individual institution. Formally and described
subsequently:

Definition 8 Initial StatesThe initial state Si0 for each individual institution I i w.r.t.ML =
〈T , R〉 and a tuple of initial states 〈S10 , . . . , Sn0 〉 is the set Si0 if and only if Si0 minimally (w.r.t.
set inclusion) satisfies the following:

Si0 ⊆ Δi (D8.1)

∃〈h, i〉 ∈ R, n ∈ (F h
cnorm ∪ F h

anorm) ∩ F i
ninert : n ∈ Sh0 ⇒ n ∈ Si0 (D8.2)

Si0 = FDi (Si0) (D8.3)

Si0 = DC
i
(Si0) (D8.4)

– D8.1—an institution’s initial set of inertial fluents is included in the institution’s initial
state.

– D8.2—if the institution governs a lower level institution then it contains any normative
fluents holding in that lower level institution’s initial state.

– D8.3—the initial state is closed under the fluent dependency operation, such that all
derived fluents are included.

– D8.4—the initial state is closed under deontological counts-as such that all abstracted
normative fluents are included.

Now we define which fluents are initiated and terminated from one state to the next in
response to a generated set of events (i.e., by the event generation operation). The set of
fluents that are initiated (INITi ) and terminated (TERMi ) from one state to the next are
formally defined as and subsequently described:

Definition 9 Fluent Initiation and Termination The sets of all initiated and terminated
fluents for I i are respectively defined with the functions INITi : Σ i × 2E i → 2F i

and
TERMi : Σ i × 2E i → 2F i

:

INITi (Si , Ei ) = { f | ∃e ∈ Ei , ∃X ∈ X i : f ∈ C i↑(X, e) ∧ Si |� X} (D9.1.1)

TERMi (Si , Ei ) = { f | ∃e ∈ Ei , X ∈ X i :Si |� f ∧ f ∈ Ci↓(Xi , e) ∧ Si |� X or
(D9.2.1)

Si |� f ∧ (viol( f ) ∈ Ei ∨ disch( f ) ∈ Ei )}
(D9.2.2)

Condition D9.1.1 specifies the set of initiated inertial fluents according to the institu-
tion’s consequence function. An inertial fluent is initiated by the state consequence function
conditional on an event occurring and a social context holding in the state. Conversely,
D9.2.1 specifies that the set of terminated inertial fluents includes any inertial fluents ter-
minated according to the institution’s consequence function. Condition D9.2.2 states that
any discharged or violated inertial (concrete) normative fluents are also terminated, meaning
dishcarged/violated normative fluents do not persist by default.4

4 Meaning, if you discharge or violate an obligation you are no longer obliged and likewise for prohibitions.
In some cases, it can make sense for a discharged/violated normative fluent to persist. For example, if you
violate a prohibition on murder, it is often the case that you are still prohibited from committing murder. For
an extensive discussion on when it does and does not make sense for obligations and prohibitions to persist
after discharge/violation see [33].

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1313

A state transition operation (TRi (Si , Ei )) produces a new institutional state based on the
previous state (Si ) due to the occurrence of events (Ei ). The new state includes any inertial
fluents that held in the previous state and have not been terminated, any newly initiated
fluents, normative fluents holding, and the state’s closure under the fluent derivation and
deontological counts-as operations.

Definition 10 State Transitions The state transition operation TRi : Σ i × 2E i → Σ i

is defined for each institution I i , a state Si and a set of events Ei w.r.t. the states of other
institutions 〈S1j , . . . , Snj 〉holding at the same time andML = 〈T , R〉, such thatTRi (Ei Si ) =
S′ iff S′ minimally (w.r.t. set inclusion) satisfies all of the following conditions:

∀ f ∈ (Si ∩ F i
inert)\TERMi (Si , Ei ) ⇒ f ∈ S′ (D10.1)

∀ f ∈ INITi (Si , Ei ) ⇒ f ∈ S′ (D10.2)

∃〈h, i〉 ∈ R, n ∈ (F h
cnorm ∪ F h

anorm) ∩ F i
ninert : n ∈ Shj ⇒ n ∈ S′ (D10.3)

S′ = FDi (S′) (D10.4)

S′ = DC
i
(S′) (D10.5)

– D10.1—non-terminated inertial fluents persist from one state to the next, following the
common sense law of inertia.

– D10.2 initiated fluents hold in the next state.
– D10.3 a higher level institution’s state contains all normative fluents that hold in the same

state of a lower level institution the higher level governs.
– D10.4 the newly transitioned to state includes all normative fluents that can be derived

according to the fluent derivation operation.
– D10.5 the newly transitioned state contains all normative fluent abstractions according

to deontological counts-as.

We now proceed to event traces. The trace a model is defined in response to is a sequence
of observable events recognised by the institutions involved in a multi-level governance
relationship. That is, it is a trace of only those events that can affect the institutions involved,
driving their evolution and themulti-level governance institution’s evolution as a whole. Each
event in a trace needs to be recognised by at least one institution to drive its evolution over
time. We call such a trace, a composite event trace, formally:

Definition 11 Composite Event Trace Let ML = 〈T , B〉 be a multi-level governance
institution where T = 〈I1, . . . , In〉. ctr = 〈e0, . . . , ek〉 is a composite trace for ML iff
∀ j ∈ [0, k], ∃i ∈ [n] : e j ∈ E i

obs

Synchronisation issues can arise between institutions. These issues occur if a composite
trace includes an event recognised by one institution, therefore driving its state forward,
but not recognised by another institution meaning its state does not evolve. If an event in a
composite trace is not recognised by an institution, then the institution should still transition
to a new state to ensure it is evolving at the same rate as other institutions. We replace
unrecognised events by the event of no change, the null event, in a synchronised trace for
each institution derived from a composite trace. Formally:

Definition 12 Synchronised Trace Let I be an institution, and ctr = 〈e0, . . . , ek〉 be a
composite event trace. A trace str = 〈se0, . . . , sek〉 is a synchronised trace of ctr for I iff
∀i ∈ [0, k] : if ek ∈ Eobs, sek = ek and sek = enull otherwise.

123



1314 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

We now define a multi-level governance institution model. A model comprises sequences
of states (S) and events (E). One state sequence for each individual institution (Si ) and one
sequence of event sets for each individual institution (Ei ) driving its state transitions. Amodel
is defined in response to a composite trace such that the corresponding synchronised trace
for each institution drives its evolution over time, causing events to occur and driving state
transitions forward. Each state and set of transitioning events is defined for each institution
assuming that the states and set of transitioning events exist for every other institution.
Formally:

Definition 13 Multi-level Governance Institution Model Let M = 〈M1, . . . , Mn〉 be a
tuple of state and event sequence pairs for each institution I i with typical element Mi =
〈Si , Ei 〉where Si = 〈Si0, . . . , Sik+1〉 and Ei = 〈Ei

0, . . . , E
i
k〉. Let ctr be a composite trace for

ML = 〈T , R〉 and stri = 〈sei0, . . . , seik〉 be a synchronised trace of ctr for each institution
I i . Let ∀i ∈ [1, n],∀ j ∈ [0, k] : GRi (Sij , E

i
j ) be the event generation operation for I i

w.r.t. 〈S1j , . . . , Snj 〉 and 〈E1
j , . . . , E

n
j 〉. Let ∀i ∈ [1, n],∀ j ∈ [0, k] : TRi (Sij , E

i
j ) be the state

transition operation for each institution I i w.r.t. 〈S1j , . . . , Snj 〉. The tuple M is a model of
ML w.r.t. ctr if and only if:

∀i ∈ [1, n] : Si0 is the initial state of each institution I i w.r.t. 〈S10 , . . . , Sn0 〉 (D13.1)

∀i ∈ [1, n],∀ j ∈ [0, k] : Ei
j = GRi (Sij , {seij }) (D13.2)

∀i ∈ [1, n],∀ j ∈ [0, k] : Sij+1 = TRi (Sij , E
i
j ) (D13.3)

– D13.1—the initial state of each individual institution, which is defined with respect to
the initial state of every other institution (meaning a higher-level institution includes
normative fluents from a lower-level institution).

– D13.2—each institution’s set of events transitioning to a new state comprises all events
generated from the corresponding event in the synchronised trace and the previous state
according to the event generation operation. The event generation operation is also defined
with respect to the states and events from every other institution, such that norm compli-
ance events are ‘passed up’ between governance levels.

– D13.3—the next state transitioned from the previous state by the set of transitioning
events. The state transition operation is also defined with respect to the states and events
from every other institution, such that normative fluents are ‘passed up’ between gover-
nance levels.

This concludes multi-level governance institution semantics.

4.2.6 Compliance monitoring

A multi-level governance institution model monitors the compliance of other institution’s
regulations and their outcomes. A model determines if the concrete regulatory effects of one
institution are non-compliant with the more abstract regulations of a higher level institu-
tion in a particular context. This is by ‘passing up’ any concrete normative fluents from a
lower level institution to the higher level institution that governs it. Then, abstracting those
concrete normative fluents in the higher level institution according to the higher level insti-
tution’s abstracting constitutive rules (i.e., under the semantics of deontological counts-as).
Then, taking the more abstract interpretation of the lower levels’ concrete normative fluents,
generating any discharge and violation events of the higher level institution’s higher-order

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1315

norms that oblige/prohibit the abstracted lower level institution’s concrete norms. All that is
needed to determine if there is non-compliance is to collect a set of violation events from
the multi-level governance model for each institution. Formally, the set of sets of violation
events for each individual institution denoting non-compliance is:

Definition 14 Multi-level Governance Violations Let ML = 〈T , R〉 be a multi-level
governance institution and M = 〈M1, . . . , Mn〉 a model of ML w.r.t. a composite trace ctr
such that ∀i ∈ [n] : Mi = 〈Si , Ei 〉, Si = 〈Si0, . . . , Sik+1〉, Ei = 〈Ei

0, . . . , E
i
k〉. The tuple

V = 〈V1, . . . , Vn〉 is the set of multi-level governance violations for ML w.r.t. ctr if and
only if:

∀i ∈ [1, n] : Vi = {e | ∃ f, j : f ∈ F i
cnorm ∪ F i

anorm, j ∈ [k] ∧ viol( f ) ∈ Ei
j ∧ e = viol( f )}

(D14.1)

Non-compliance is found if the set of violation events is non-empty. For an institution
governing a society this implies that the society is non-compliant (either in reality if com-
pliance checking is performed before run-time or hypothetically if not). For a higher level
institution governing a lower level institution non-compliance denotes that the regulatory
effects are non-compliant if the violated norms belong to the higher level institution. Such
non-compliant regulatory effects can be due to having a more abstract, non-compliant, mean-
ing.

5 Computational framework

In this section we provide a practical approach to reasoning about multi-level governance
with a computational framework that corresponds to the formal framework. The idea of
the computational framework is to use Answer-Set Programming, a declarative program-
ming language where the commonly accepted syntax is AnsProlog, which we describe in
section 5.1. An AnsProlog program in our framework produces models of a multi-level
governance institution for a trace of events.

There are two main components in the computational framework. Firstly, a general
AnsProlog program that implements the multi-level governance semantics from the previ-
ous section. Secondly, specificAnsProlog programs that represent each individual institution,
their multi-level governance relationships and norm abstractions. By executing theseAnsPro-
log programs together we can automate compliance checks. We describe, for brevity, these
AnsProlog programs in section 5.2 and give the representation in full in Appendix B. To
show that the computational framework provides a practical implementation of the formal
framework we provide soundness and completeness theorems between the two frameworks
in section 5.5. The theorems are proven in Appendix C. Moreover, we provide general prop-
erties of the computational framework’s complexity for given institutions in a multi-level
governance relationship in Sect. 5.6

The corresponding AnsProlog programs that represent institutions, their multi-level gov-
ernance relationships and norm abstractions are specific to each set of institutions in a
multi-level governance relationship. Consequently, it would be a lot of effort for a user
to manually write AnsProlog programs for each institution they wish to use in a multi-
level compliance check. For this reason, we use a compiler that takes as input institutions
described in a high-level language, similar to the formal representation used for institutions
albeit with additional useful constructs such as variables and types. The compiler outputs
executable AnsProlog programs for individual institutions, their norm abstractions and the

123



1316 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

general AnsProlog program representing multi-level governance semantics. By executing
these compiled programs together, we can automatically detect compliance without having
to write AnsProlog code by hand. We give an overview of the implemented compiler and
demonstrate the result of executing the AnsProlog programs for our running case study, with
a compliance check corresponding to the real-world judgements of the European Court of
Justice, in Sect. 5.3.

5.1 Answer set programming

Answer-Set Programming is a non-monotonic logic-programming language [8,32], for
declaring problems according to the syntax of AnsProlog as a set of first-order rules. AnsPro-
log is fully declarative in the sense that the ordering of logical formulae (horn clauses and
facts) makes no semantic difference. Executing an AnsProlog program solves the declared
problems by first running a grounder, which grounds all rules, replacing variableswith ground
terms, and then running a solver against the ground program. A solver computes the set of
answer-sets, where each answer-set is a model of the AnsProlog program and a solution to
the problem declared. Answer-sets are computed according to the stable-model semantics
[32].

WeuseAnsProlog for twomain reasons. Firstly, it provides a natural representation of indi-
vidual and multi-level governance institutions, where institutions’ functions are represented
as AnsProlog rules. Secondly, it supports meeting the goal of our framework: automatically
checking different contexts, or traces of exogenous events, for whether regulations in a lower
level institution are non-compliant. Using AnsProlog, a single trace of events can be supplied
to check for compliance, but we can also specify a partial trace and that all variants of that
trace must be used to check compliance or even all possible traces up to a specific length
must be checked for compliance. It is also possible to declare that each answer-set produced
must have a particular property, such as ‘there must be at least one violation of a norm in a
higher level institution’. In this case the property implies that if no answer-sets are produced
then there is full compliance for all traces up to a certain length. In summary, Answer-Set
Programming provides a natural representation of multi-level governance institutions and an
easy way to perform a contextual search for compliance.

There are many answer-set solvers available (e.g., [20,30]). We briefly reintroduce the
main definitions to give context for what follows, focussing on the syntax of the CLINGO
[30] grounder and solver making use of a number of its unique constructs. In more detail,
an AnsProlog program is built from atoms and predicates. Predicates can be ground, such
as lays_eggs(slinky) or non-ground predicates containing variables representing the
ground instance schemas, such as bird(X). Atoms and predicates can be weakly negated,
such as not.5 A rule r is typically of the form p_0 :- p_1, …, p_n comprising a head
atom denoted H(r) and a set of body literals denoted B(r), which can be delineated into the
positive body atoms B+(r) and atoms appearing negated in the body B−(r). A rule r can
also be a fact by having an empty body such that B(r) = ∅ containing only a single head
atom such as lays_eggs(slinky). To give an example adapted from [8], the following
program declares that a bird is an animal that lays eggs and is not a reptile, a reptile is an
animal that lays eggs that is not a bird and slinky is an animal that lays eggs:

bird(X) :- lays_eggs(X), not reptile(X).
reptile(X) :- lays_eggs(X), not bird(X).
lays_eggs(slinky).

5 We ignore the case of strong negation since it is unnecessary in our use of AnsProlog.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1317

A (total) interpretation of an answer-set program is a truth-assignment to literals, compris-
ing a set of the atoms assigned the value of ‘true’. An answer-set is a minimal interpretation
containing all atoms that are justified in being true. Precisely, for a rule r , the head atom
denoted H(r) is justified in being true if all positive body atoms, denoted B+(r), are true,
and none of the weakly negated body atoms, denoted B−, are true. This implies facts are
always justified in being true (e.g., lay_eggs(slinky)). Looking at the previous exam-
ple there can be more than one answer-set. If bird(slinky) is in an interpretation then
reptile(slinky) cannot be in the interpretation for it to be an answer-set, and vice
versa. These answer-sets are:

– { bird(slinky), lays_eggs(slinky) }
– { reptile(slinky), lays_eggs(slinky) }

Determining if an interpretation is an answer-set requires knowing which atoms are justi-
fied according to the program’s rules. In the presence of weak negation this means we should
only consider the rules that do not contain weakly negated atoms that are in the answer-set.
Furthermore, for those rules that remain we do not need to consider their weakly negated
literals to determine if the head is justified. Removing all rules in a program with weakly
negated literals that are in an interpretation and all weakly negated literals from the remaining
rules is called the reduct of the program, formally from [31]:

Definition 15 Reduct Let Π be an Answer-Set Program and X an interpretation of Π , the
reduct denoted Π X is the set:

{H(r) ← B+(r) | r ∈ Π and B−(r) ∩ X = ∅}
We want to determine for a reduct and a set of atoms, whether that set of atoms

is closed under the program (containing all justified atoms) and whether it is minimal
(containing no atoms that are not justified). To give an example, if we have a reduct
Π = { lays_eggs(slinky). bird(slinky) :- lays_eggs(slinky). },
then the set {lays_eggs(slinky), bird(slinky), some_atom} is closed since
lays_eggs(slinky) and bird(slinky) are justified but it is not minimal due to the
presence of some_atom. Formally adapted from [31]:

Definition 16 Let Π be a reduct and X a set of atoms. The set of atoms X is closed under
Π X if for all r ∈ Π X , we have H(r) ∈ X iff B+(r) ⊆ X . The smallest set of atoms closed
under Π X is denoted Cn(Π X ).

An answer-set is simply a minimal interpretation of a reduct of the program for the
interpretation:

Definition 17 Answer-Set Let Π be an Answer-Set Program and X be an interpretation of
Π and Π X be the reduct of Π w.r.t. X . X is an answer-set of Π iff X = Cn(Π X ).

In addition to the Answer-Set Programming semantics given above we use three con-
structs present in CLINGO [30]. Namely, constraints, choice rules and conditional literals.
Constraints are a special type of rule of the form : −b1, . . . ,bn. representing a rule with
falsity in the head such that if all of b1 to bn are true in an interpretation then there is a con-
tradiction and therefore the interpretation is not an answer-set. Choice rules are of the form
{a1, . . . ,an} : −b1, . . . ,bn., meaning that any atom in a1, . . . ,an can arbitrarily be picked
for inclusion in an answer-set if b1, . . . ,bn. is true. Aggregates are present in the body of

123



1318 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

rules and are of the form l{b1; . . . ;bn}u where l and u are positive integers meaning that
at least l and at most u elements of b1, . . . ,bn must be true for the aggregate to be true.
Omitting l or u removes the respective constraint. Finally, conditional literals are special
literals that can be contained in the body of a rule or within in an aggregate and are of the form
b1 : b2, . . . ,bn. They follow the semantics of material implication; conditional literals are
true if the head is true or the body is false. Note that there are no conditional literals within
aggregates, rather a rule of the form l{b1 : b2, . . . ,bn}umeans that b1 is counted as being
true when restricted to the domain of b2, . . . ,bn. Without variables this simply means that
b1 is counted as true when b2, . . . ,bn is true.

5.2 Mapping

In this section we give the general idea behind mapping between the formal representation
and semantics of multi-level governance institutions and their representation in AnsProlog.
For a detailed account, we refer the reader to Appendix B.

The approachwe take is to represent the events and fluents that can hold in each institution,
as AnsProlog facts, and the functions as non-factual AnsProlog rules. Each rule antecedent
corresponds to the parameters the functions take. For the event generation and state conse-
quence functions, the corresponding AnsProlog rules’ antecedents comprise the occurrence
of events and the state conditions. For the fluent derivation function, expressing constitutive
rules of the form “fluent A derives (counts-as) fluent B in context C” the corresponding
AnsProlog rules’ antecedents comprise conditions on the state containing fluent A and mod-
elling the context C. The consequence of a rule corresponds to the effect of the function’s
returned value on a multi-level governance institution model. The resulting effect is an event
caused to occur according to G, the initiation and termination of fluents according to C, and
non-inertial fluents holding in a state according to a fluent derivation function D.

Multi-level governance institution semantics is represented in AnsProlog as more general
rules. For example, stating that if an inertial fluent is initiated then it holds until it is terminated.
The exception is the semantics of deontological counts-as, which is represented as a set of
specific AnsProlog rules that ensure normative fluent abstractions are included in states.
Finally, composite traces are mapped to a corresponding AnsProlog representation as sets of
facts, each stating that an event has been observed at a particular point in time.

The computational framework’sAnsProlog rulesmake use of the same commonpredicates
used previously in work extending InstAL to settings with multiple institutions [54–56]. In
turn these are similar to Event Calculus [53] constructs. To give context for what follows,
the predicates are summarised in their non-ground form:

– holdsat(F,In,I) denotes that the fluent F holds in the institution In at time I.
– observed(E,In,I) denotes that the event E is observed by the institution In at time

I corresponding to the exogenous event that has occurred in the synchronised trace for
the institution.

– occurred(E,In,I) denotes that the event E occurs in the institution In at time I.
– initiated(F,In,I) denotes that the fluent F is initiated in the institution In at time

I.
– terminated(F,In,I) denotes that the fluent F is terminated in the institution In at

time I.
– instant(I) denotes I is a time instant.
– start(I) denotes I is the first time instant.
– final(I) denotes I is the last time instant.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1319

– next(I,J) denotes J is a time instant that is strictly after I such that there is no time
instant between I and J.

The aforementioned predicates are used in both antecedents and consequents of rules. Such
as, stating conditional on particular fluents (not) holding in a state one event causes another
event to occur. This means events in function parameters correspond to occurred/3whilst
state conditions correspond to sets containing positive and negativeholdsat/3 predicates.6

5.2.1 Multi-level governance translation

The main idea is to translate the formal representation of a multi-level governance institution
and its semantics into a a set of AnsProlog rules.

The translation for representing a multi-level governance institution, comprising a set of
AnsProlog rules, comprises the translation of the individual institutions and the translation
of the multi-level governance links between them.

Startingwith individual institutions, their institutional events and fluents are represented as
AnsProlog facts. For example in theEU-CFR,exConsent is an exogenous event,consent
is an institutional event and consentedDataProcessing(ada,isp) is an inertial
fluent:

1 evtype(exConsent ,cfr ,ex).

2 evtype(consent ,cfr ,in).

3 ifluent(consentedDataProcessing (ada ,isp),cfr).

An institution’s event generation function is translated to rules. Each rule containing
an occurred/3 atom in the head representing the event that is caused to occur. Each
rule’s body comprising an occurred/3 atom representing the causal event, and positive
and negative holdsat/3 atoms representing the rule’s state conditions. For example, the
following rule states that non-consensual data processing occurs if Ada’s personal data has
been stored and she has not consented, where non-consensual data processing is empowered
to occur:

1 occurred(nonConsensualDataProcessing(ada),cfr ,I) :-

2 occurred(storeData(isp ,ada ,personal),cfr ,I),

3 holdsat(pow(cfr ,nonConsensualDataProcessing(ada)),cfr ,I),

4 not holdsat(consentedDataProcessing (ada ,isp),cfr ,I), instant(I).

An institution’s consequence function is translated to AnsProlog rules, using
initiated/3 and terminated/3 atoms in the head for the initiation and termination
of fluents. Each fluent initiation and termination rule’s body comprises an occurred/3
atom representing the event causing a fluent to be initiated/terminated, and positive and nega-
tive holdsat/3 atoms representing the context in which the fluent initiation/termination is
conditional on. For example, in the EU-CFR institution the fluent stating ada has consented to
data processing is initiated if she consents. In the EU-DRD institution the obligation to oblige
metadata is stored is initiated (i.e., imposed) when Ada uses electronic communications:

1 initiated(consentedDataProcessing (ada ,isp),cfr ,I) :-

2 occurred(consent(ada ,isp),cfr ,I), instant(I).

3 initiated(obl(obl(storeData(isp ,ada ,metadata),now),now),drd ,I) :-

4 occurred(useElectronicCommunication(ada ,isp),drd ,I), instant(I).

6 An empty state condition (the empty set) is always true and replaced with the special atom #true for
technical reasons.

123



1320 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

An institution’s fluent derivation function is represented as AnsProlog rules with
holdsat/3 atoms in the head and body. For example, in the institution ‘unfair data pro-
cessing’ is derived from an obligation to process data non-consensually:

1 holdsat(obl(nonConsensualDataProcessing(ada),now),cfr ,I) :-

2 holdsat(unfairdataprocessing(ada),cfr ,I), instant(I).

The links between institutions are also represented as rules. Generally, a link from a
lower level institution institution L to a higher level institution H that governs L, comprises
rules with occurred/3 and holdsat/3 atoms in the head. The occurred rules state a
norm discharge/violation event occurs in the institution H when it occurs in the institution L.
Likewise, a normative fluent holds in H when it holds in L. All of these rules are produced
such that only the discharge/violation events occurring in L and consequently in H are about
normative fluents L imposes. Likewise, further rules state only normative fluents hold in H
when they hold in L for those normative fluents that L itself imposes. Thus, if L receives
norm discharge/violation events or normative fluents from another institution, these do not
get passed up to H from L.

To give an example, the following rule states that when the prohibition on deleting data
before 12months holds in the UK-DRR, then it also holds in the EU-DRD for checking
compliance.

1 holdsat(pro(deleteData(isp , ada , metadata),time(m12)),drd ,I) :-

2 holdsat(pro(deleteData(isp , ada , metadata),time(m12)),drr ,I),instant(I).

Abstraction according to deontological counts-as is also represented as rules, where the
head is a holdsat atom representing the abstract normative fluent conditional on some concrete
normative fluents holding. For brevity we do not give details but refer the interested reader
to Appendix B.1.

Finally, the semantics is represented as more general rules. For example, the following
rules state that an inertial fluent holds in a state if it is initiated or if it held in the previous
state and was not terminated (capturing the common-sense law of inertia):

1 holdsat(P,In,J) :- holdsat(P,In,I),

2 not terminated(P,In ,I), next(I,J), ifluent(P, In).

3 holdsat(P,In,J) :- initiated(P,In ,I), next(I,J), ifluent(P, In).

The translation, where here we give its intuition (see Appendix B.1 for details), allows us
to automate compliance checks for institutions operating in amulti-level governance relation.
Moreover, the translation to an AnsProlog program is equivalent in the sense of producing
answer-sets that correspond to the formal models in the formal framework. That is, we have
soundness and completeness properties which we present later in Sect. 5.5.

5.3 Specification language and compiler

The computational framework is implemented as a high-level specification language for
declaring institutions in a multi-level governance relationship and a compiler for producing
executable answer-set programs. The implementation extends the InstAL specification lan-
guage and compiler [12]. The system is demonstrated with the results of formalising our case
study in the high-level specification language and executing the compiled AnsProlog code
for a trace of exogenous events.

The high-level specification language allows users to declare individual institutions and
links between them. The language constructs provided to users correspond to much the same
representation elements as in the formal framework, with the addition of types and variables

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1321

to provide users with a concise way to represent institutions over large domains. Below,
is a fragment of the EU-DRD institution from our case study written in the specification
language, which we subsequently describe:

1 institution drd;

2 type Agent;

3 type CommServProv;

4

5 exogenous event exUseElectronicCommunication(Agent , CommServProv );

6 inst event useElectronicCommunication(Agent , CommServProv );

7

8 fluent pow(useElectronicCommunication(Agent , CommServProv );

9 obligation fluent obl(obl(storeData(CommServProv , Agent , Data), now), now);

10

11 exUseElectronicCommunication(Ag, Co) generates useElectronicCommunication(Ag , Co);

12 initially pow(useElectronicCommunication(Ag , Co));

13 useElectronicCommunication(Ag , Co) initiates

14 obl(obl(storeData(Co , Ag, metadata), now), now);

Thenameof the institution is declared on line 1, and the types of agent and communications
service provider on lines 2 and 3. Lines 5 and 6 declare the institution’s events. Lines 8 and
9 declare the institution’s fluents. Line 11 corresponds to the notion of the mapping between
events provided by an institution’s event generation function. It states that the exogenous
event of using electronic communications generates an institutional event of using electronic
communications. Line 12 declares that a fluent holds in an institution’s initial state, in this case
the fluent empowering the event to use electronic communication to occur in the institution.
Line 13 represents a mapping provided by the institution’s consequence function, in this
case the descriptive rule stating that if an agent uses electronic communication then it is
obliged that the communications provider is obliged to store the communications’ metadata
immediately.

A separate file, called a domain file, declares the terms of each type, such as who is an
agent or a communications provider. The compiler processes the files declaring the individ-
ual institutions and outputs a set of AnsProlog files representing each institution and their
semantics.

The AnsProlog files are then processed by the grounder and AnsProlog solver CLINGO,
together with a timeline program declaring a sequence of events and a special program declar-
ing the links between each institution. A short example of a link between two institutions is
the following program. The program specifies the governance relation between the institu-
tions on lines 1 and 2. On line 3 a rule states an obligation in a lower-level institution that
holds and is a non-inertial fluent in the higher-level institution, also holds in the higher-level
institution.

1 governs(cfr , drd).

2 governs(drd , drr).

3 holdsat(obl(A, D), HIn , I) :-

4 holdsat(obl(A, D), LIn , I), nifluent(obl(A, D), HIn), governs(HIn , LIn).

The result of executing the AnsProlog programs together is a multi-level governance insti-
tution model for the sequence of events provided. Themodel can be inspected for compliance
of regulations, denoted with compliance events, and other properties.

5.4 Running the case study

We have written the case study in the high-level computational framework specification
language. By compiling from the specification language to an AnsProlog representation we

123



1322 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

are able to assess compliance in our case study’s multi-level governance institution. This is
by executing the resulting AnsProlog program together with a trace of events.

The case study is instantiated for a domain comprising four types. Firstly the agents
acting in the system (ada and charles). Secondly, we specify various types of role,
since we need to distinguish between the agents/organisations and their social status. The
case study differentiates between citizens and law enforcement officials as well as Internet
Service Providers (ISPs) thus we have the roles lawEnforcement and isp. Thirdly, we
distinguish between different data types (content, metadata and personal).

The case study is run against an observable event trace.We chose an observable event trace
that shows the framework’s context-sensitivity to abstract norm reasoning. This is by testing
the use of electronic communications and ISP’s fulfilment of metadata storage obligations in
different social contexts. Namely, the context that an agent, Ada, has not consented and the
context that she has. The trace is given below:

1 observed(exUseElectronicCommunication (ada , isp), 0).

2 observed(exStoreData(isp , ada , metadata), 1).

3 observed(exRequestData(charles , isp , ada), 2).

4 observed(exSignedConsentForm(ada , isp , personal), 3).

5 observed(exUseElectronicCommunication (ada , isp), 4).

6 observed(exStoreData(isp , ada , metadata), 5).

7 observed(exSignedConsentForm(ada , isp , voicerecording ), 6).

8 observed(exSignedConsentForm(ada , isp , emailsubject ), 7).

9 observed(exRequestData(ada , isp , bertrand), 8).

10 observed(exCloseInvestigation(charles , ada), 9).

11 observed(exChangeDataStorageLocation(isp , newzealand), 10).

12 observed(exUnauthoriseDataStorageLocation (bertrand , newzealand), 11).

13 observed(exUnauthoriseDataStorageLocation (bertrand , noneu), 12).

14 observed(exRequestData(charles , isp , bertrand), 13).

15 observed(exAuthoriseDataStorageLocation (bertrand , newzealand), 14).

16 observed(exOpenInvestigation(charles , bertrand), 15).

17 observed(exRequestData(charles , isp , bertrand), 16).

First the agent Ada uses electronic communications provided by the service provider ISP.
Then, the service provider, ISP, stores Ada’s commnications metadata. An agent, Charles,
requests data from ISP concerning Ada. Ada signs a consent form for her data being stored
(after the fact). Ada uses ISP’s electronic communications again. Finally, ISP stores Ada’s
metadata again. Thus Ada’s data is stored without her consent and then Ada’s data is stored
after she has given consent.

Then, Ada signs a consent form for voice recordings to be stored and subsequently email
subjects. Ada requests Bertrand’s data from ISP. Charles closes the investigation on Ada. ISP
changes the data storage location to New Zealand. Bertrand unauthorises New Zealand as
a storage location and subsequently all non-EU countries. Charles requests ISP to provide
Bertrand’s Data, then Charles opens an investigation about Bertrand and finally Charles
requests Bertrand’s data again. The main points about this latter half of the trace are that Ada
consents to storing two types of content data, a ban is placed on storing data first in a specific
non-EU country and then any country outside of the EU and finally Charles tries to obtain
Bertrand’s data before an investigation is opened and then afterwards.

The resulting multi-level governance institution model is depicted in Fig. 7, for brevity
edited to just containing those fluents that are relevant to the discharge and violation of norms
or demonstrate semantic features. The model is described subsequently.

We first look at the interaction between the UK-DRR and the EU-DRD which governs
the UK-DRR. Accordingly:

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1323

S0

1) + is(charles, lawEnforcement): drd, drr
+ is(ada, suspect): drd, drr
+ is(bertrand, dataregulationbody): drr
2) + pro(dataUnprotected(ada, personal),

never): cfr
3) + pro(privacyDisrespected, never): cfr
4) + pro(uncontrolByIndepAuth, never): cfr
5) + pro(unfairDataProcessing(ada), never):

cfr
6) – + obl(pro(storeData(isp, ada, content),

never), now): cfr, drd
7) + pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

8) + pro(storeData(isp, ada, content),
never): cfr, drd(from 7)

9) + dataStorageLocation(isp, australia): drr

S1

useElectronicCommunication(ada, isp): cfr,
drd, drr

disch(obl(pro(storeData( ada, content),
never), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) – pro(dataUnprotected(ada, personal),

never): cfr
3) – pro(privacyDisrespected, never): cfr
4) – pro(uncontrolByIndepAuth, never): cfr
5) – pro(unfairDataProcessing(ada), never):

cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) – + obl(storeData(isp, ada, metadata),
now): cfr, drd, drr

8) – + obl(obl(storeData(isp, ada, metadata),
now), now): cfr, drd

9) – + obl(obl(storeData(isp, ada,
personal), now), now) : cfr(from 8)

10) – + obl(obl(
nonConsensualDataProcessing(ada),
now), now): cfr (from 9)

11) – + obl(dataProcessed, now) : cfr
(from 9)

12) – + obl(dataUnprotected(ada,
personal), now): cfr (from 9)

13) – + obl(
nonConsensualDataProcessing(ada),
now) : cfr (from 10)

14) – + obl(privacyDisrespected, now) :
cfr (from 9)

15) – + obl(unfairDataProcessing(ada),
now) : cfr (from 13)

16) + dataProcessed : cfr (from 11)
17) + dataUnprotected(ada, personal) :

cfr (from 12)
18) + privacyDisrespected : cfr (from 14)
19) + uncontrolByIndepAuth : cfr (from
16)

20) + unfairDataProcessing(ada) (from
15) : cfr

21) pro(storeData(isp, ada, emailbody;
emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

22) pro(storeData(isp, ada, content),
never): cfr, drd(from 21)

23) dataStorageLocation(isp, australia): drr

S2

storeData(isp, ada, metadata): cfr, drd, drr
nonConsensualDataProcessing(ada): cfr
disch(obl(obl(storeData( ada, metadata),

now), now)) : cfr, drd
disch(obl(storeData(i ada, metadata),

now)) : cfr, drd, drr
storeDataIn(australia): drr
storeDataIn(noneu): drr

viol(pro(uncontrolByIndepAut never)) :
cfr

viol(pro(privacyDisrespecte never)) : cfr
viol(pro(dataUnprotected(a personal),

never)) : cfr
viol(pro(unfairDataProcessing(ad

never)) : cfr

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) pro(storeData(isp, ada, content), never):
cfr, drd, drr

3) pro(storeData(isp, charles, content),
never): cfr, drd, drr

4) + pro(dataUnprotected(ada, personal),
never): cfr

5) + pro(deleteData(isp, ada, metadata),
time(m12)): drd, drr

6) + pro(privacyDisrespected, never): cfr
7) + pro(uncontrolByIndepAuth, never): cfr
8) + pro(unfairDataProcessing(ada), never):
cfr

9) + pro(unfairDataProcessing(charles),
never): cfr

10) + obl(deleteData(isp, ada, metadata),
time(m13)): drd, drr

11) + pro(deleteData(isp, ada, metadata),
time(m12)): drd, drr

12) – + obl(ensure data retention period(ada,
isp, metadata, m6, m24), now) : cfr, drd

+ ensure data retention period(ada, isp,
metadata, m6, m24) : drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

14) pro(storeData(isp, ada, content),
never): cfr, drd(from 13)

15) dataStorageLocation(isp, australia): drr

Fig. 7 Case study execution. The originating institutions for a fluent are in bold, ‘+’ indicates an initiated
fluent, ‘–’ indicates a terminated fluent. Non-inertial fluents are in blue denoting they are derived from other
fluents according to the fluent derivation and deontological counts-as (norm abstraction) operations. Norm
discharge in green and violation in red events are highlighted (Color figure online)

– State S0—Contains fluents stating the agent charles is playing the role of
lawEnforcement ada is a suspect and bertrand is a dataregulationbody
officer. A fluent states that isp stores data in Australia. The EU-DRD obliges that it
is prohibited for isp to store the content of ada’s data. The UK-DRR does indeed
prohibit isp from storing the content of ada’s communications data. Thus, the obligation
to prohibit storing content data in the EU-DRD is immediately discharged as denoted by
the discharge event occurring in the transition to the next state. The transition to the next
state also includes the event of ada using electronic communications provided by isp,
due to the occurrence of the exogenous event in the timeline program stating the same.

– State S1—Includes new fluents. Firstly, the EU-DRD imposes an obligation on the UK-
DRR to oblige isp to store ada’s communications’ metadata. Secondly, the UK-DRR

123



1324 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

S3

requestData(charles, isp, ada): cfr, drd, drr
disch(obl(ensure data retention period(ada,
isp, metadata, m6, m24), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

3) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

4) pro(dataUnprotected(ada, personal),
never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never): cfr
9) ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 2 and 3
10) + obl(provideData(isp, charles, ada),

time(m1)): drd, drr
11) + obl(provideData(isp, charles, ada),

undue delay) : drd from 10
12) – + obl(obl(provideData(isp, charles,

ada), undue delay), now) : drd
13) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

14) pro(storeData(isp, ada, content),
never): cfr, drd(from 13)

15) dataStorageLocation(isp, australia): drr

S4

consent(ada, isp, personal): cfr, drr
disch(obl(obl(provideData( charles,
ada), undue delay), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

3) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

4) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

5) pro(dataUnprotected(ada, personal),
never): cfr

6) pro(privacyDisrespected, never): cfr
7) pro(storeData(isp, ada, content), never):

cfr, drd, drr
8) pro(uncontrolByIndepAuth, never): cfr
9) pro(unfairDataProcessing(ada), never): cfr
10) ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 2 and 3
11) + consentedDataProcessing(ada, isp,

personal): cfr
12) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

13) pro(storeData(isp, ada, content),
never): cfr, drd(from 12)

14) dataStorageLocation(isp, australia): drr

S5

useElectronicCommunication(ada, isp): cfr,
drd, drr

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) pro(dataUnprotected(ada, personal),
never): cfr

3) pro(privacyDisrespected, never): cfr
4) pro(uncontrolByIndepAuth, never): cfr
5) consentedDataProcessing(ada, isp,
personal): cfr

6) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

7) obl(provideData(isp, charles, ada),
undue delay): drd

8) pro(dataUnprotected(charles, personal),
never): cfr

9) pro(unfairDataProcessing(ada), never): cfr
10) pro(storeData(isp, charles, content),

never): cfr, drd, drr
11) + obl(deleteData(isp, ada, metadata),

time(m13)): drd, drr
12) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr
13) – + obl(storeData(isp, ada, metadata),

now): cfr, drd, drr
14) – + obl(obl(storeData(isp, ada, metadata),

now), now): cfr, drd
15) ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 11 and
12

16) – + obl(obl(storeData(isp, ada,
personal), now), now) : cfr from 14

17) – + obl(privacyDisrespected, now): cfr
from 16

18) – + obl(dataProcessed, now): cfr from
16

19) – + obl(dataUnprotected(ada,
personal), now): cfr from 16

20) + dataUnprotected(ada, personal) :
cfr from 18

21) + privacyDisrespected : cfr from 17
22) + uncontrolByIndepAuth : cfr from
18

23) pro(storeData(isp, ada, emailbody;
emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

24) pro(storeData(isp, ada, content),
never): cfr, drd(from 23)

25) dataStorageLocation(isp, australia): drr

Fig. 7 continued

imposes an obligation forisp to storeada’s communications’metadata. TheUK-DRR’s
first-order obligation to storemetadata discharges the EU-DRD’s second-order obligation
to oblige an obligation to store metadata. The transition to state S2 includes the event of
ada’s communications’ metadata being stored by isp in Australia and consequently in
a non-EU country, and consequently the discharge of the obligation from the UK-DRR
for isp to store Ada’s communications metadata.

– State S2—The EU-DRD, which governs the UK-DRR, obliges data retention to be
ensured for between 6 and 24months. In comparison, the UK-DRR, both obliges that
Ada’s communicationsmetadata is deleted before 13months andprohibits deletion before
12months. Hence, the UK-DRR requires that metadata is stored for between 12 and
13months, which is abstractly interpreted in the EU-DRD as ensuring data is retained
between 6 and 24months
(ensure_data_rention_period(ada, isp, metadata, m6, m24) dis-
charging the EU-DRD’s obligation for data to be stored within this timeframe. In the
transition to state S3 charles requests Ada’s data from isp.

– State S3—Since charles is playing the role of lawEnforcement, this causes the
EU-DRD to oblige that isp is obliged to provide the data before any undue_delay.
Meanwhile, theUK-DRRobligesisp to providecharleswith the data within 1month
(m1). According to the EU-DRD anything occurring before 1month counts-as the event

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1325

S6

storeData(isp, ada, metadata): cfr, drd, drr
storeData(isp, ada, personal): cfr

nonConsensualDataProcessing(ada,
metadata): cfr

disch(obl(storeData(i ada, metadata),
now)) : cfr, drd, drr

viol(pro(uncontrolByIndepAut never)) :
cfr

viol(pro(privacyDisrespecte never)) : cfr
viol(pro(dataUnprotected(a personal),

never)) : cfr

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

3) obl(provideData(isp, charles, ada),
undue delay): drd

4) pro(dataUnprotected(ada, isp,
voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):
cfr

9) consentedDataProcessing(ada, isp,
personal): cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) – + obl(ensure data retention period(ada,
isp, metadata, m6, m24), now): cfr, drd

dataStorageLocation(isp, australia): drr
14) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage), never): cfr,
drd, drr

15) – pro(storeData(isp, ada, voicerecording),
never): cfr, drd, drr

16) – pro(storeData(isp, ada, content),
never): cfr, drd(from 14 and 15)

17) dataStorageLocation(isp, australia): drr

S7

consent(ada, isp, voicerecording): cfr, drr
disch(obl(ensure data retention period(

a isp, metadata, m6, m24), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

3) obl(provideData(isp, charles, ada),
undue delay): drd

4) pro(dataUnprotected(ada, isp,
voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):
cfr

9) consentedDataProcessing(ada, isp,
personal): cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) – pro(storeData(isp, ada, emailsubject),
never): cfr, drd, drr

15) dataStorageLocation(isp, australia): drr
16 + consentedDataProcessing(ada, isp,

voicerecording): cfr, drr

S8

consent(ada, isp, emailsubject): cfr, drr

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

3) obl(provideData(isp, charles, ada),
undue delay): drd

4) pro(dataUnprotected(ada, isp,
voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):
cfr

9) consentedDataProcessing(ada, isp,
personal; voicerecording): cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

15) dataStorageLocation(isp, australia): drr
16 + consentedDataProcessing(ada, isp,

emailsubject): cfr, drr

Fig. 7 continued

of undue_delay. Thus the EU-DRD interprets the obligation to provide data within
one month as the abstract obligation to provide data before any undue delay. This causes
discharge of the obligation to oblige data is provided before any undue delay.

– States S4 to S6 follow largely the same pattern. In the transition to the next state S4 ada
consents to her data being stored, which has no affect on the UK-DRR or the EU-DRD.
Transitioning to state S5 ada uses electronic communications, then ada’s data is stored,
causing the same obligations and prohibitions to be imposed by the UK-DRR and EU-
DRD when these events occurred previously. Consequently, the transition from state S6
includes the second discharge of the obligation to ensure data retention between 6 and
12months.

– State S7 removes the prohibition in the drr on storing Ada’s voice recording data and
consequently the abstract prohibition on storing content data no longer holds either (since
it was derived from the fact that all types of communications content storage was pro-
hibited on a case by case basis: voice recordings, email subject’s, email bodies, etc.).

– Similarly state S8 no longer contains a prohibition on storing Ada’s email subject data.
– When transitioning to state S9 Ada requests Bertrand’s data from ISP, but no obligation

is imposed on ISP in the drr because Ada is not a law enforcement officer.
– In state S10 Charles closes the investigate on Ada, causing her to no longer be a suspect.
– State S11 has the data storage location of ISP changed to New Zealand in the drr.
– State S12 contains a prohibition on storing data in New Zealand after Bertrand, the data

regulation body officer, unauthorises data storage in New Zealand. However, note that

123



1326 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

S9
requestData(ada, isp, bertrand): cfr, drd, drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

3) obl(provideData(isp, charles, ada),
undue delay): drd

4) pro(dataUnprotected(ada, isp,
voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):
cfr

9) consentedDataProcessing(ada, isp,
personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

15) dataStorageLocation(isp, australia): drr
16) – is(ada, suspect) : drd, drr

S10
closeInvestigation(charles, ada): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

3) obl(provideData(isp, charles, ada),
undue delay): drd

4) pro(dataUnprotected(ada, isp,
voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):
cfr

9) consentedDataProcessing(ada, isp,
personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) – dataStorageLocation(isp, australia): drr

S11

changeDataStorageLocation(isp, newzeland):
drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

3) obl(provideData(isp, charles, ada),
undue delay): drd

4) pro(dataUnprotected(ada, isp,
voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):
cfr

9) consentedDataProcessing(ada, isp,
personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) + dataStorageLocation(isp, newzealand):
drr

S12

unauthoriseDataStorageLocation(bertrand,
newzealand): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

3) obl(provideData(isp, charles, ada),
undue delay): drd

4) pro(dataUnprotected(ada, isp,
voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):
cfr

9) consentedDataProcessing(ada, isp,
personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) + pro(storeDataIn(newzealand), never):
cfr, drd, drr

S13

unauthoriseDataStorageLocation(bertrand,
noneu): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

3) obl(provideData(isp, charles, ada),
undue delay): drd

4) pro(dataUnprotected(ada, isp,
voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):
cfr

9) consentedDataProcessing(ada, isp,
personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) pro(storeDataIn(newzealand), never): cfr,
drd, drr

16) + pro(storeDataIn(noneu), never): cfr,
drd, drr

S14

requestData(charles, isp, bertrand): cfr, drd,
drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) – pro(storeDataIn(newzealand), never):
cfr, drd, drr

16) pro(storeDataIn(noneu), never): cfr, drd,
drr

Fig. 7 continued

there is not consequently a prohibition on storing data in non-EU countries, because
although New Zealand is a non-EU country there are also other non-EU countries where
data can, permissibly, be stored.

– In state S13 data is prohibited from being stored in non-EU countries after Bertrand
explicitly places a blanket ban on storing data in any non-EU country.

– AlthoughCharles requests Bertrand’s data from ISPwhen transitioning to state S14, there
is no such obligation since Bertrand is not a suspect.

– State S15 lifts the ban on storing data in New Zealand, although there is still a ban on
storing data in all non-EU countries.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1327

S15

authoriseDataStorageLocation(bertrand,
newzealand): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(
m1)): drd, drr

3) obl(provideData(isp, charles, ada),
undue delay): drd

4) pro(dataUnprotected(ada, isp,
voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):
cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):
cfr

9) consentedDataProcessing(ada, isp,
personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) pro(storeDataIn(noneu), never): cfr, drd,
drr

S16
openInvestigation(charles, bertrand): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) pro(storeDataIn(noneu), never): cfr, drd,
drr

16) + is(bertrand, suspect): drd, drr

S17

requestData(charles, isp, bertrand): cfr, drd,
drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
is(bertrand, suspect): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) pro(storeDataIn(noneu), never): cfr, drd,
drr

16) + obl(provideData(isp, charles, bertrand),
time(m1)): cfr, drd, drr

17) + from 16 obl(provideData(isp,
charles, bertrand), undue delay): drd

Fig. 7 continued

– Finally, Charles opens an investigation into Bertrand, he becomes a suspect in state S16.
Then when Charles requests Bertrand’s data from ISP there is an obligation to provide
it within 1month in state S17 since Bertrand is now a suspect, and consequently there is
an obligation to provide the data before any undue delay as interpreted by the drd.

In conclusion, for this trace of events the UK-DRR is compliant with the EU-DRD. All
of the EU-DRD’s normative fluents it imposes are discharged and none are violated. In
comparison, the EU-DRD is non-compliant with the EU-CFR as we will see:

– State S0—the EU-CFR prohibits the EU-DRD’s regulations from being uncontrolled
by an independent authority. What this means is that data retention should be within
the EU jurisdiction. Likewise, the EU-CFR also prohibits data from being unprotected
(i.e., stored without anonymisation), privacy from being disrespected (i.e., personal data
being stored) and data being processed unfairly (i.e., personal data being stored without
an agent’s consent).

– State S1—a number of the EU-CFR’s prohibitions are violated:

– Violation of the CFR’s prohibition on regulations not being controlled by an
independent authority (meaning, compliance with the EU-CFR’s data protection
rights must be observable by an independent authority, such as by ensuring data
is retained within the EU). The EU-DRD obliges the UK-DRR to oblige ada’s
communications’ metadata is stored. According to the EU-CFR obliging storing data
(of any type) counts-as data being processed, hence an obligation to oblige storing
metadata is abstracted to an obligation to process data, which is abstracted further
to processing data. The EU-CFR views processing data without a prohibition on it
being stored outside of the EU counting-as regulations not being controlled by an
independent authority. Hence, the prohibition on regulations being uncontrolled by
an independent authority is violated.

123



1328 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

– Violation of the CFR’s prohibition on unfair data processing The EU-CFR inter-
prets storing metadata as storing personal data, thus it determines that there is an
abstract obligation to oblige personal data is stored. In the EU-CFR, storing per-
sonal data in the context that an agent has not consented counts-as non-consensual
data processing (nonConsensualDataProcessing(ada)). Thus the EU-
CFR determines that there is an obligation to oblige non-consensual data processing
of ada’s data. According the EU-CFR an obligation to store data non-consensually
counts-as unfair data processing, hence an obligation to oblige non-consensual data
processing is abstracted to an obligation to process data unfairly. An obligation to
process data unfairly in turn, counts-as unfair data processing (i.e., from the perspec-
tive of the EU-CFR it does not matter if data is actually processed unfairly or just
obliged, both are unfair data processing). This causes the EU-CFR’s prohibition on
processing data unfairly to be violated.

– Violation of the CFR’s prohibition on disrespecting privacy The obligation to
oblige storing metadata imposed by the EU-DRD is abstracted to an obligation to
oblige storing personal data. In the EU-CFR obliging storing personal data counts-as
the non-inertial fluent for privacy to be disrespected. Hence, obliging an obligation
to store personal data is further abstracted to obliging privacy is disrespected which
also counts-as simply disrespecting privacy. Hence the EU-CFR’s prohibition on
disrespecting privacy is violated.

– Violation of the CFR’s prohibition on data being unprotected The obliges an
obligation for Ada’s metadata to be stored (according to the an obligation to oblige
personal data to be stored) even in the context that it is not anonymised. The EU-
CFR views an obligation to oblige storing personal data as being the same thing as
processing data, which in the context that the data is not anonymised is abstractly
the same thing as data being unprotected. Hence, the EU-CFR’s prohibition on data
being unprotected is violated.

Each violated prohibition in the EU-CFR is initiated in the next state.
– States S2 and S3 contain nothing of interest from the perspective of the EU-CFR. In the

transition to state S4 Ada consents to her personal data being stored.
– State S4 contains a fluent stating Ada has consented to her personal data being stored.
– State S5 also contains prohibitions in the EU-CFR which are violated by the EU-DRD,

as in state S1, with one difference:

– The CFR’s prohibition on data being processed unfairly is not violated The EU-
DRD, from the perspective of the EU-CFR, obliges an obligation to store personal
data. However, since Ada has consented the obligation to oblige personal data being
stored is not abstracted to an obligation to oblige non-consensual data processing and
not subsequently abstracted to ‘unfair data processing’. Hence, in state S5, unlike in
state S2 the EU-CFR’s prohibition on unfair data processing is not violated since the
context is different (Ada has consented to her data being stored). Meanwhile, the rest
of the EU-CFR’s prohibitions are violated (for the second time).

– Subsequent states are less interesting to the cfr, however it is important to note that
in the final state S17 there is no violation of the EU-CFR’s prohibition on regulations
not being controlled by an independent authority (within the EU), since there is now
a prohibition on storing data in non-EU countries. Hence, the context change caused
by Bertrand prohibiting data storage outside of the EU results in different compliance
effects.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1329

From this case studywe can see theUK-DRR is compliantwith theEU-DRD(i.e., theUK’s
legislation correctly implements the directive). On the other hand, the EU’s data retention
directive is non-compliant with the EU-CFR. In particular, the EU-DRDwas found to be non-
compliant in a particular social context with particular prohibitions issued by the EU-CFR.
In different contexts the same prohibitions might not be violated. As we saw in the context
that Ada had consented to her personal data being processed, the directive did not the violate
the prohibition on unfair data processing. This is because the directive’s normative fluents
were not interpreted by the charter as more abstractly counting-as unfair data processing.
Hence, whether there is compliance depends on the context, which determines the abstract
meaning of normative fluents.

5.5 Computational framework soundness and completeness

We now demonstrate that the computational framework provides an executable implemen-
tation of the formal framework. This is with theorems stating the computational framework
is sound and complete with respect to the formal framework (proofs are provided in
Appendix C). We begin by packaging, for convenience, the AnsProlog programs of the
computational framework, given in Appendix B, into a single AnsProlog program ΠML(k).

Definition 18 Multi-level Governance AnsProlog Program Let ML = 〈T , R〉 be a
multi-level governance institution. Let ctr be a composite trace for ML of length n. Let
Π insts and Πabstr be the institutional and deontic abstraction programs obtained for ML.
Let, Π trace(n) be the trace program obtained for ctr and let Πbase(n) be a multi-level gover-
nance base program. A multi-level governance institution AnsProlog program for ML and
a composite trace ctr is:

ΠML(n) = Πbase(n) ∪ Π trace(n) ∪ Πabstr ∪ Π insts

We now give the soundness property for the deontic abstraction representation in AnsPro-
log with respect to the formal definition of deontological counts-as. In doing so, we
demonstrate that we have provided a transformation that flattens the deontological counts-as
function described in the formal framework to an executable set of AnsProlog rules. The
property states that a state in the answer-set for a multi-level governance answer-set pro-
gram is equivalent to the same state in the formal model for the formal framework with the

deontological counts-as function DC
i
applied.

Lemma 1 LetML = 〈T , R〉 be amulti-level governance institution s.t.T = 〈I1, . . . , In〉,
and ctr be a composite trace of length k. Let ∀i ∈ [1, n] Ini be a unique label for I i . Let
ΠML(k) be the multi-level governance AnsProlog program for ML and ctr. Let MP be an
answer-set for the program P∗ = ground(ΠML(k)). Given a set Sij such that

∀i ∈ [1,m],∀ j ∈ [k] : MP |� holdsat( f, Ini , j) ⇒ f ∈ Sij

then Sij = DC
i
(Sij ).

Proof See Appendix C.1.

The next property we are interested in is soundness for the translation to an AnsProlog
program as a whole. Specifically, the property states any answer-set for a multi-level gover-
nance AnsProlog program for a given trace of events corresponds to a multi-level governance
institution model in the formal framework for the same trace of events.

123



1330 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

Theorem 1 (Soundness) Given a multi-level governance institution ML = 〈T , R〉 s.t.
T = 〈I1, . . . , In〉. Let ctr = 〈e0, . . . , ek〉 be a composite trace for ML. Let ΠML(k)

be the multi-level governance AnsProlog program for ML and ctr. Let ∀i ∈ [1, n] :
stri = 〈sei0, . . . , seik〉 be a synchronised trace for I i w.r.t. ctr. Let MP be an answer-set
for the program P∗ = ground(ΠML(k)). Then M = 〈M1, . . . , Mn〉 with ∀i ∈ [n] : Mi =
〈Si , Ei 〉, Si = 〈Si0, . . . , Sik+1〉, Ei = 〈Ei

0, . . . , E
i
k〉 such that:

∀h ∈ [1, n],∀ j ∈ [k], : MP |� holdsat( f, Inh, j) ⇒ f ∈ Shj (T1.1)

∀h ∈ [1, n],∀ j ∈ [k],∀e �= null : MP |� occurred(e, Inh, j) ⇒ e ∈ Eh
j (T1.2)

∀h ∈ [1, n],∀ j ∈ [k] : MP |� occurred(null, Inh, j) ⇒ enull ∈ Eh
j (T1.3)

is the model of ML w.r.t. ctr.

Proof See Appendix C.2.

The next property we are interested in is completeness. This states that for any model of a
multi-level governance institution in the formal framework, for a trace of events, the multi-
level governance AnsProlog program produces a corresponding answer-set for the same trace
of events.

Theorem 2 (Completeness) Given a multi-level governance institution ML = 〈T , R〉 s.t.
T = 〈I1, . . . , In〉. Let ctr = 〈e0, . . . , ek〉 be a composite trace for ML. Let ∀i ∈ [1, n] :
stri = 〈stri0, . . . , strik〉 be a synchronised trace for I i w.r.t. ctr. Let M = 〈M1, . . . , Mn〉
be the multi-level governance institution model ML w.r.t. ctr where ∀i ∈ [1, n] : Mi =
〈Si , Ei 〉, Si = 〈Si0, . . . , Sik+1〉, Ei = 〈Ei

0, . . . , E
i
k〉. Let ΠML(k) be the multi-level structure

AnsProlog program for ML and a composite trace ctr. Let MP be the set of atoms:

∀i ∈ [1, n],∀ j ∈ [k + 1] : Sij |� f ⇒ MP |� holdsat( f, Ini , j) (T2.1)

∀i ∈ [1, n],∀ j ∈ [k] : e ∈ Ei
j ⇒ MP |� occurred(e, Ini , j) (T2.2)

∀i ∈ [1, n],∀ j ∈ [1, k] : f ∈ (S j\S j−1) ∩ F i
inert ⇒ MP |� initiated( f, Ini , j − 1)

(T2.3)

∀i ∈ [1, n],∀ j ∈ [1, k] : f ∈ (Sij\Sij+1) ∩ F i
inert ⇒ MP |� terminated( f, Ini , j + 1)

(T2.4)

∀i ∈ [1, n],∀ j ∈ [k] : e = ctr j ⇒ MP |� observed(e, Ini , j),

MP |� observed(e, j),

MP |� obs( j) (T2.5)

∀i ∈ [1, n],∀ j ∈ [k] : e = strij �= enull ⇒ MP |� occurred(e, Ini , j) (T2.6)

∀i ∈ [1, n],∀ j ∈ [k] : enull = strij ⇒ MP |� occurred(null, Ini , j) (T2.7)

∀i ∈ [1, n],∀e ∈ E i
obs : MP |� evtype(e, Ini ,ex) (T2.8)

∀i ∈ [1, n],∀e ∈ E i
inst : MP |� evtype(e, Ini ,inst) (T2.9)

∀i ∈ [1, n],∀ f ∈ F i
inert : MP |� ifluent(f, Ini ) (T2.10)

∀i ∈ [1, n],∀ f ∈ F i
ninert : MP |� nifluent(f, Ini ) (T2.11)

∀i ∈ [1, n] : MP |� inst(Ini ) (T2.12)

∀i ∈ [k] : MP |� instant(i) (T2.13)

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1331

MP |� start(0) (T2.14)

∀i, j ∈ [k] : j = i + 1 ⇒ MP |� next(i, j) (T2.15)

MP |� final(k) (T2.16)

Then, MP is an answer set of P∗ = ground(ΠML(k)).

Proof See Appendix C.3.

This concludes the demonstration of the soundness and completeness of the formal and
computational frameworks, with respect to each other.

5.6 Computational framework complexity

The question remains over the computational framework’s complexity. There are three con-
cerns surrounding an ASP program’s complexity relevant to our case. Firstly, the program
grounding complexity, which we measure as the worst-case growth in size of a ground pro-
gram for a given input of institutions in a multi-level governance relationship represented
in the formal framework. The growth in size as a function of institutions represented in
the formal framework also accounts for any growth due to performing the transformation
from the formal framework’s institutional representation to an ASP program. Secondly, the
answer-set computation complexity, which we measure in terms of how many literals need
to be tested for inclusion in an answer-set as a function of the institutions in a multi-level
governance relationship represented in the formal framework. Thirdly, the number of answer-
sets to compute. Assuming the institutions are self-consistent then there will be at most one
answer-set if a full event trace is provided as input. If a full event trace is not provided but
the institutions are self-consistent, then for a given number of events |E | and number of
undefined events in the trace m there is a combinatorial explosion of answer-sets |E |m . If
the institutions are not self-consistent then there are potentially zero, one or more formal
models and as a corollary of the soundness and completeness theorems the same number
of answer-sets. However, as far as we are aware there is no feasible way to give a general
analysis of the number of answer-sets for the inconsistent institution design case, since they
are dependent on the resulting ASP program’s structure. Hence, we refer the interested reader
to dynamic programming algorithms for the tricky problem of counting answer-sets a-priori
[24]. Consequently, we focus on complexity in terms of program size and computing literal
inclusion in an answer-set which can be determined together (i.e., grounding complexity is
given by the growth from the input to the resulting program size, and the resulting program
size gives a worst-case for computing one answer-set).

Wegive the ground program size for amulti-level governance institutionML as a function
of, for each institution I i : the number of events and fluents, and the sum of rules and their
sizes (i.e., the size of each rule is its context condition size plus two for the input and
output event/fluent). The number of events is denoted as |E i | and non-normative domain and
empowerment fluents respectively as |F i

dom| and |F i
pow|. It is important to note that higher-

order norms have a more detrimental effect on complexity than first-order norms. Hence,
we also delineate between the number of normative fluents of a particular order such that
F i

norm(a:d) denotes the set of normative fluents, for I i , that have the order of complexity

(nesting) a for the aim and d for the deadline. For example, F i
norm(1:1) contains all of the

first-order normative fluents, F i
norm(2:1) contains all of the second-order normative fluents

where a first-order normative fluent is the aim and an event or domain fluent is the deadline,
and so on. For rules, we mean specifically the number and size of: state consequence rules

123



1332 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

for fluent initiation and termination (|C i |), event generation rules (|G i |) captured by the
event generation function, and fluent derivation rules (|Di |) captured by the fluent derivation
function.

An upper-bound on the size of the ground AnsProlog program (i.e., the number of ground
facts, and the sum of ground rules and their sizes) for a multi-level governance institution
ML and composite trace of length k, denoted as |ground(ΠML(‖))|, is given below.

∣
∣
∣ground

(

ΠML(k)
)∣
∣
∣ ≤

([1,n]
∑

i

1 + |E i | + |F i
dom| + |F i

pow|
)

+
⎛

⎝

[1,n]
∑

i

[0,k]
∑

j

|C i | + |G i | + |Di |
⎞

⎠

+
⎛

⎝

[1,n]
∑

i

[0,k]
∑

j

N
∑

a,d

2a+d × |Fnorm(a:d)| × 2

⎞

⎠

+
⎛

⎝

[1,n]
∑

i

[0,k]
∑

j

N
∑

a,d

|G i | × |Fnorm(a:d)| + |Di | × |Fnorm(a:d)|
⎞

⎠

The first line is the number of facts in the ground ASP program representing each insti-
tution’s name, events and non-normative fluents. The second line is the size and number of
each institution’s rules for each point in time in the ground ASP program. The third line is
the number of rules for computing equivalences between norms and their size (one head and
one body literal). The fourth line represents the worst-case number and size of rules that
abstract normative fluents (note that it assumes the set of normative fluents only contains
obligations, since there are many more rules for abstracting obligations than prohibitions and
thus it represents the worst-case complexity). In summary the biggest impact on program
size is the complexity order of normative fluents, which require rules capturing normative
fluent equivalences and thus causing the ground program size to grow exponentially.

6 Related work

This paper builds on our previous work for reasoning about what we called multi-tier insti-
tutions in [50,51] (which in turn built on preliminary work by King et al. [52]). In our prior
work higher-tier institutions govern lower-tier institutions, which we extended in this paper
to representing and reasoning about multi-level governance. In turn, our work is influenced
by the InstAL framework [13] for institutional reasoning. Our framework bears the most
similarity to other computational-focussed institutional reasoning frameworks, hierarchical
governance and higher-order normative reasoning, and work on norm abstraction. We com-
pare ourworkwith each of these individual aspects in the literature. However, we find nowork
that combines higher-order normative reasoning and abstraction, as required for multi-level
governance reasoning, or provides an obvious way to combine the two.

6.1 Institutional reasoning and verification

There have been many different approaches proposed to reason about institutions, normative
systems and organisations which we split into three broad types. Firstly, those proposing

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1333

a high-level institution specification language (e.g., [19,61,62]) for institution designers to
precisely specify an institution’s software implementation. Secondly, those proposing or
studying formal logics of norms and other institutional rules (e.g., [10,16,40,41,63,75]).
Thirdly, those contributing frameworks for formally representing and reasoning about insti-
tutions andnormative systems,with an aim for practical implementations using an algorithmic
or logic-programming based approach (e.g., [12,13,33,36,46,54]). Our work most closely
relates to the latter practical frameworks, which we discuss in more detail.

The most closely related framework, on which we build, is the Institutional Action Lan-
guage (InstAL) first proposed by Cliffe et al. [12,13]. Li et al. have made developments on
InstAL for detecting conflicts between norms [56], in particular in interacting institutions
[55] and cooperating institutions [54]. In the work of Li et al. institutions are linked with
special bridge institutions such that events occurring in one institution can cause events to
occur in another institution and likewise for fluents being initiated or terminated. Such bridge
institutions have a similar role to our links between different levelled institutions, but can
be flexibly defined to ensure specific fluents are initiated in one institution by another. In
our framework, we do not require such flexibility since we only need to capture multi-level
governance relationships where regulatory effects are passed between institutions.

Further developments on InstALwere realised by Pieters et al. [65,66] for reasoning about
institutions as a means to police and enforce security policies. In their work, Pieters et al.
[65,66] extend InstAL with rules for non-inertial fluents that (in our own words) state “when
context C holds then so does fluent B”. These bear similarity to our fluent derivation rules
of the form “fluent A counts-as (derives) fluent B in context C”. But, in our case we view
fluent derivation rules as firstly ascribing a special meaning to a concrete fluent ‘A’ (hence
they have a different form) and secondly serving as a basis for abstracting normative fluents.
Using a variant of Searle’s money example [70], in our framework a counts-as rule might
state “possessing a piece of paper marked with a Euro symbol counts-as (derives) possessing
money in the context of the Eurozone”, hence if it holds that such a piece of paper is possessed
in the context of the Eurozone, then it also holds that money is possessed. In the framework
of Pieters et al. [65,66] the same rule would be “in the context of possessing a piece of paper
marked with a Euro symbol in the Eurozone then money is also possessed”. In the former
case it is clearly possessing the piece of paper that has the status symbol of possessingmoney,
hence in the context of the Eurozone we can derive from an obligation to possess that piece
of paper another obligation to possess money. In the latter case, it is not clear what, exactly,
possessing money is. In this case, we cannot clearly derive that an obligation to possess the
right piece of paper counts-as an obligation to possess money, because it is not explicit that
the paper constitutes money. Hence in comparison to [65,66] our rules for ascribing non-
inertial fluents are counts-as rules in the usual sense for the reason that it enables us to derive
relations between concrete and abstract normative fluents.

Finally, our work in this paper also extends our previous work, which was loosely based
on InstAL [50,51], for reasoning about multi-tier institutions and higher-order norms. The
main differences between all of these developments and this paper is that we have extended
InstAL for representation and reasoning about multi-level governance. In more detail, there
are differences in reasoning about permissive societies (where anything not prohibited is
permitted), instantaneous and indefinite norms, bridgedversus linked institutions, non-inertial
fluent rules versus fluent derivation rules, and ourmain focus in this paper: combining higher-
order normative reasoning and norm abstraction. We summarise all of these differences in
Table 1.

Work that addresses reasoning about artificial societies or events and their effects bears
resemblance where similar techniques, such as the Event Calculus [53], are used. A series of

123



1334 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

Table 1 Comparison between closely related developments on InstAL

InstAL
[12,13]

Li et al.
[54–56]

Pieters
et al. [65,66]

King et al.
[50,51]

This paper

Individual Institutions

Empowerment

Bridged vs. Linked
Institutions

B L

Non-Inertial vs. Fluent
Derivation rules

NI D

Permissive Society

Instantaneous and
Indefinite Norms

Higher-order Normative
Reasoning

Norm Abstraction

papers by Artikis (et. al.) uses Event Calculus-based reasoning to capture MAS’ normative
dimension based on the events that occur and consequently fluents that hold, or to determine
the events occurring in the MAS themselves. In [6,7] Artikis et al. formerly use the Event
Calculus and latterly the C+ language in a similar fashion to our proposal. That is, in order to
reason about the same core institutional concepts we adopt: deontic positions, empowerment
and counts-as rules. Whilst we adopt a generic notion of empowerment that applies to events
and can be applied to events that (presumably) denote agent actions, Artikis et al. offer an
empowerment fluent that specifically applies to agents. In the latter case where Artikis et al.
use C+ as their foundational logic, the institutional language is richer in someways compared
to our proposal. For example, both defaults (e.g., that by default everyone is empowerment
to make a payment) and constraints on performing actions can be expressed. In principle, the
expressiveness of Artikis et al. could be incorporated into our proposal, where ours differs
significantly in aims (institutions governing other institutional designs, where compliance is
verified for supplied or generated event traces).

Social commitments (e.g., contracts, promises) have also been formalised [15,43,77] with
‘lifecycle’ elements not present in our notion of norms, such as the creation and deletion of the
commitment/rule (e.g., through an utterance) which in turn imposes obligations in particular
circumstances. Higher-order commitments are grammatical in some commitment-focused
approaches (e.g., [43,77]) but they do not coincide with our notion of higher-order norms, as
we now explain. In our case, a higher-order norm represents a statement such as ‘if event A
occurs then it is obliged that the outcome of your rules does not oblige B in context C’. On the
other hand, nested commitments represent statements such as ‘you have promised to me that
you will not create a commitment rule stating that when A occurs there is an obligation to do
B in context C’. In the case of commitments, the nesting is really a promise to (not) make a
certain commitment rule.Whilst in our case the nesting in a higher-order norm represents that
there should (not) be certain obligations and prohibitions imposed from any normative rule,
regardless of their form, in specified contexts.Moreover, in our case, the higher and first-order
obligations and prohibitions may have more abstract meanings which need to be determined
through interpretation. Consequently, commitments and nested commitments, come from a
fundamentally different perspective and are not aligned with our formalisation of regulations
that govern other regulations nor do they capture norm/commitment abstraction.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1335

Another practical institutional reasoning approach is temporal defeasible deontic logic.
Defeasible logic is a non-monotonic logic designed to be implemented in Prolog [4,64].
There are three rule types in many defeasible logics, strict rules (→) whose conclusion
is true so long as the antecedent is true, defeasible rules (⇒) whose conclusion when the
antecedent is true unless the rule is rebutted or undercut by another rule, and defeating rules
(�) whose conclusion is never true but if the antecedent is true rebuts or undercuts other
rules that have a contradictory conclusion or antecedent (respectively). A defeasible logic
often comprises a proof procedure where rule conclusions are tested for whether they are
true by first asserting them as an argument, then finding all counter-arguments by applying
defeating rules, and then recursively counter-attacking all attacks with further arguments,
terminating thanks to constraints on non-repeatability of arguments (e.g., [69]). Defeasible
temporal deontic logics formalised by Governatori et al. [33,36] extend defeasible logic with
rule types and proof procedures for obligations and temporalised outcomes. In these proposals
various legal concepts are formalised, including constitutive rules and norms. But as far as we
know there have been no developments on these approaches towards norms governing norms
and/or norm abstraction, such as for reasoning about compliance in multi-level governance.

6.2 Hierarchical governance and governing regulations

There appears to be little literature on hierarchical governance and the regulation of regula-
tions. In [61] López and Luck propose a framework for reasoning about norms governing
agents, created from a top-down governance perspective. Their framework, based on the Z
specification language, gives a precise specification language of a normative system/institu-
tion. In comparison, our framework comprises a specification language and operationalisation
(semantics) for institutions operating in multi-level governance. Like our framework, theirs
offers similar expressivity with temporal norms, rewards, punishments, etcetera. In partic-
ular Lopez and Luck formalize what they call legislative norms, which are special norms
governing the act of norm changes in the sense of making it possible to amend norms. This
still presents a substantial difference to the method of hierarchical governance and regula-
tion governing regulations that we propose, since we use higher-order norms that govern the
outcome of other norms fromwhich (non-)compliance is determined (typically pre-runtime).
López y López and Luck’s legislative norms on the other hand govern the changes to the
norms (rules) themselves.

Boella and van der Torre [10] offer a conceptual formalisation of hierarchical normative
systems in the Input/Output Logic (a logic aimed at studying conditional norms [63]). In
particular, they focus on the role of permissions in hierarchical normative systems, where
permissions are issued by higher authorities (e.g., existing in higher level institutions) and
act to derogate (except) obligations to the contrary (prohibitions) issued by lower level
authorities. Their work is similar to ours with respect to governance hierarchies, but at the
same time quite different in that they are not concerned with the regulation of regulations
and non-compliant regulatory outcomes or a corresponding computational framework.

LopesCardoso andOliveira [57,58] focus on norms applied to different levels ofwhat they
call context hierarchies. In their work institutions share concepts with our own formalisation,
comprising descriptive rules that create institutional facts and norms that create deontic
positions. What differentiates their work from our own is the idea that a norm can defeat
another if it is applied to a lower-level context and there is a normative conflict. In this sense,
the more specific norms (i.e., applied to a narrower context) are preferred in a similar vein
to the lex specialis principle. In this way, agents are able to interact according to a super-
contract that applies in the top-most context and through this super-contract inherit newnorms

123



1336 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

in new sub-contractual relationships applied to more specific lower-level context as deemed
appropriate for a given social interaction. In contrast with ourwork, a semantics of abstraction
is not defined and instead the focus is on defeasibility based on context application.

García-Camino et al. [29] also investigate hierarchical normative structures. In this case,
where there are hierarchical relations between activities and their constituent sub-activities.
For example, ‘trading’ is an activity that has the sub-activity ‘auction’. In this hierarchical
setting, activities are governed by norms and so are their sub-activities. The central problem
García-Camino et al. investigate is not norms at higher-levels governing those at lower-levels,
but instead the possibility for conflicts to occur between norms in activities that are propagated
down to their sub-activities. García-Camino et al. propose a conflict resolution mechanism
to address this issue.

6.3 Abstracting norms

There has already been a reduction of Standard Deontic Logic [76] to a logic of counts-as
conditionals representing evaluative norms [2], colloquially known as ‘Anderson’s reduction’
(as studied in [38,42]). For example, ‘B counts-as a violation in a context C’. Following this
idea, Aldewereld et al. [1] propose implemented reasoning for concretising abstract norms.
This is done by representing abstract norms as counts-as statements such as ‘B counts-as a
violation in a context C’ and so B is forbidden in C. Then, making use of the fact that more
concrete concepts count-asmore abstract concepts (e.g., ‘Acounts-asB in contextC’). Finally,
applying transitivity to concretise abstract norms (e.g., ‘A counts-as a violation in context C’,
since A counts-as B and B counts-as a violation). Alderwereld et al. provide a computational
approach to the normative reasoning with a rule-based computational language. The same
warning against this approach for multi-level governance that we make in the background on
the governance concepts (Sect. 2), applies towhat differentiates it fromourwork. Specifically,
that in our approach we can represent higher-order norms simpler, such as ‘it is prohibited
to oblige a user’s metdata to be stored in the context that they have not consented”. That is,
when compared to themore complicated representation required usingAnderson’s reduction,
such as “(storing metadata counts-as being good in a context C) counts-as being bad if
context C is somehow compatible with the user not consenting”. Specifically, by ignoring
deontic modalities it is difficult to describe and reason about higher-order norms. Although
concretisation of norms is possible, higher-order normative reasoning (regulation governing
regulations) is not and neither is the abstraction of higher-order norms.

A description-logic based formalisation for reasoning about abstract institutional concepts
is also proposed byGrossi et al. [39]. Unlike our work, Grossi et al. do not propose abstraction
of norms themselves (in fact, they propose concretising concepts), since normative reasoning
is not considered. Rather, they offer guidance on how normative reasoning can be incorpo-
rated, either by the reduction of norms to counts-as, which like us they acknowledge does
neither supports nesting of deontic modalities nor higher-order norms. They also offer an
alternative path to normative reasoning that involves the use of explicit deontic modalities
(the same approach we adopt). However, this part of their proposal is not formalised. Further-
more, our work still differs in that we are interested in abstracting rather than concretising
norms in a temporal-like setting.

In comparison, a series of papers by Fornara and Colombetti [26], Fornara [25] and
Fornara et al. [27] combine the semantic-web focussed description logic OWL2DL with
normative reasoning. In their proposal, obligations are about events with a time-indexed
deadline. Time is not integrated within the underlying logic, rather it is reasoned about using
an external process that adds facts to the knowledge-base (e.g., that an action has occurred,

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1337

time has passed, etc.). Like our proposal and many others, the deadline of an obligation
occurring before the aim triggers violations and potentially causes punishing obligations to
be imposed. In comparison to the work of Grossi et al. they do explicitly look at representing
and reasoning about norms in description logic but do not aim to reason about the relationship
between concrete and abstract concepts or the concretisation/abstraction of norms. The same
differences apply when compared to our own work with the additional difference that we do
not restrict norms to being about events. Rather, in our proposal normative fluents can be
higher-order and about events or other fluents.

Criado et al. [14] look at agent reasoning for fulfilling agent desires about abstract insti-
tutional concepts. Such desires may come about due to the presence of regulative norms
(e.g., an obligation to be married), but their focus is on the concretisation of these abstract
institutional concepts (e.g., if an agent wants to get married, what are the brute facts that
need to be realised?). In relation to our work, Criado et al. also view counts-as, as providing
interpretive rules in which abstract institutional concepts can be reasoned about. However,
they do not explicitly look at how to transform abstract norms into concrete ones, or as we
do concrete (higher-order) norms into abstract ones to check compliance. Rather, their focus
is on the interpretation of the abstract concepts in order to fulfil agents’ desires.

Related to our abstraction of temporal norms Lopes Cardoso and Oliveira propose rea-
soning and monitoring for norms with flexible deadlines [59,60]. In their proposal, the idea
is that deadlines in contractual norms are not always strict, but instead one party can violate a
deadline (e.g., to deliver goods) whilst the counter-party may be okay to waive the violation
if the obligation is discharged within a reasonable time after its violation (e.g., if the goods
being delivered are more important than the sanction for the misdemeanour). In contrast,
our proposed semantics re-interprets temporal norms by abstracting the constituent aim and
deadline in the contexts it is applied. To some extent, we investigated temporal conditions
with a flexible meaning, for example where the data-retention regulations required data be
provided on request within a specific time limit and this constituted, according to the ECJ’s
interpretation, an obligation to provide data before any undue delay. Although we look into
the idea of ambiguity surrounding temporal conditions, Lopes Cardoso and Oliveira capture
deadlines that can be defeated under defeasible reasoning at run-time.

To summarise, published work proposing ways to reason about abstract and concrete
norms or using techniques that can be extended to do so is quite different from that which
we describe here. Whilst some work does look at the concretisation of abstract norms, there
is apparently no work that looks at the abstraction of concrete, potentially higher-order,
norms. Furthermore, the aforementioned work that explicitly looks at concretisation is not
in a temporal setting. In contrast, our proposal focuses on the temporal aspects where, as the
institutional context evolves, so does the abstract meaning of concrete norms and thus their
compliance with abstract norms at higher governance levels.

6.4 Legal power and counts-as rules

As we discussed previously, the notion of power we adopt differs from that of Jones and
Sergot’s [47], where an action is empowered to be taken if it can be ascribed by constitutive
rules. This counts-as based notion of empowerment has also been used to characterise rule
change governance.Whilst in this paperwe focussed on the governance of institution designs,
the jurist Hart [44] conceptualised secondary legal rules that act to make legally possible the
institutional action of rule change (e.g., through a majority vote or physically changing the
rule book). Later, Biagoli [9] argued that secondary legal rules are a sub-class of Searle’s
counts-as rules.

123



1338 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

Based on these developments, Boella and van der Torre [11] formalised the notion of
constitutive rules that make it possible to legally change rules, which in themselves may also
be legally changed. In their formalisation, Boella and van der Torre focus on legislating games
where participants aim tomodify rules for their ownpurposes in a static setting.Governatori et
al. [34,35]meanwhile adopt a kind ofmeta-rule that acts to introduce rule changes into a legal
system, in a similar vein to Boella and van der Torre’s formalisation of Hart’s secondary rules,
which legally empower rule change. In Governatori et al.’s work the focus is on formalising a
temporal defeasible logic of rule change and different classes of rule change (e.g., annulment,
abrogation, etc.). Later King et al. [49] and King [48, p.136–154] formalised the legality of
rule change, using counts-as rules, in a temporal setting where the focus was on the legality
of rule change being conditional on hypothetical effects (e.g., whether it would criminalise
formerly innocent people) and whether it would cause a paradox (e.g., a self-modifying rule).
These papers capture a kind of governance of institutional designers or legislators, compared
to our formalisation of institutional design governance by higher-level institutions.

Artikis [5] also formalises a notion of the legal power to change rules (legally). In Artikis’
approach the Event Calculus is used to specify social protocols comprising familiar institu-
tional concepts to direct and guide agent interactions at the bottom-most level of the society.
Adopting a hierarchical structure, agents can also dispute and change a protocol according to
a meta-protocol specifying the social choice procedure that must be followed in order for the
object-level protocol to be modified in a legally empowered way. In turn the meta-protocol
is also legally modifiable by a meta-meta- protocol and so on. Similar to our proposal, a
governance hierarchy is employed, but unlike our work the focus is not on governing the
outcomes of institutional rules (obliging/prohibiting obligations and prohibitions) nor on
abstraction in multi-level governance. Instead, Artikis’ proposal bears closer resemblance to
the aforementioned work on the legal power to change rules.

7 Conclusions

In this paper we introduced a novel framework for determining compliance in multi-level
governance. Our framework contributes a formal representation and semantics, giving a
rigorous account of multi-level governance compliance independent of any particular imple-
mentation.We ensure our proposal is practical by complementing the formal framework with
a corresponding computational framework. We adopt the usual notion of counts-as between
concrete and abstract institutional facts. Based on the counts-as ontological rules, we seman-
tically defined the abstraction of norms, both first-order and higher-order, with a semantics
of deontological counts-as. In so doing, we proposed a novel semantics for assessing the
different contexts in which norms can be applied and abstracting the normative effects of
lower level institutions based on those contexts, where the abstract meaning evolves as the
social context evolves. Our framework uses this abstracting mechanism to determine if con-
crete norms in lower-level institutions are non-compliant with more abstract higher-order
norms in higher-level institutions. That is, we gave a semantics of compliance in multi-level
governance.

Weassessedour proposal along three fronts. Firstly,with a comprehensive case studybased
on three-levelled governance in EU law where abstraction and context-sensitivity are impor-
tant in determining non-compliance. Secondly, by proving that the practical implementation
in Answer-Set Programming, the computational framework, is indeed sound and complete
with respect to the formal framework. We used the fact that the formal framework corre-

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1339

sponds to the computational framework to implement the proposal by extending the InstAL
compiler, thereby offering users a high-level language to specify institution designs under
multi-levelled governance and the means to automatically determine institutional design
compliance. Thirdly, we analysed the program complexity in terms of its size compared to
its input institution specifications. That is, our framework provides both a rigorous formal
foundation for multi-level governance representation, semantics and compliance checking,
and the practical computational means to automatically determine compliance.

Our approach and the framework we proposed show potential for further development,
refinement and wider application. Firstly, through investigation into the abstraction of tempo-
ral normative fluents to non-temporal normative fluents based on counts-as between temporal
formulae. For example, an obligation to send communications’ metadata before 1month
counting-as an obligation to send communications’ metadata quickly. In part, such abstrac-
tion was not captured by our proposal due to the fact that temporal formula cannot be said
to count-as another (non-)temporal formula (e.g., “A before D counts-as B in context C”).
Consequently, we lacked an ontological rule on which to base a deontological counts-as
between temporal and explicitly non-temporal normative fluents. We foresee that a move to
a full temporal logic is necessary for this kind of abstraction. Further investigation is needed,
since using a temporal logic raises questions such as at which point in time from “A before
D counts-as B in context C” we can derive an institutional fact “B”. Defining answers to
such questions in a temporal logic would enable us to apply the intuitions of deontological
counts-as we have set out here to a fully-temporal setting.

Another important future development is extending our semantics to support ontological
alignment of institutions. In our proposal lower level institutions’ regulatory effects were re-
interpreted at the abstraction of higher level institutions. In one sense, this means that lower
level institutions’ regulations were aligned with the abstraction of higher level institutions.
For example, obliging the storing of communications metadata in a lower level institution is
abstracted to obliging the storing of personal data in a higher level institution. However, we
assumed that the terms shared by lower and higher level institutions have the same meaning
and are already ontologically aligned, by which we mean storing metadata in the lower level
institution coincides with storing metadata in the higher level institution. Thus, if the lower
level obliges the storing of metadata, and the higher level views the storing of metadata as
storing personal data, then from the higher level institution’s perspective the lower level is
obliging that personal data is stored. The assumption of shared terms being aligned between
institutions should be relaxed with a correct formal treatment in order to compare regulations
between institutions.

Another avenue for future work is extending the application of our theoretical work on
multi-level governance in human societies, to artificial societies. We envisage this as an
important operationalisation of two proposals. In what Pitt et al. [67] called polycentric gov-
ernance, it is argued that in complex artificial MAS a single one-size-fits-all institution is
inadequate, since different localised parts of the MASmay need different regulations. There-
fore, separate lower level institutions should be designed, appealing to subsidiarity, inline
with overarching institutions abstractly prescribing what regulations should be implemented.
Similarly, a design methodology for institutions/organisations governing artificial MASs has
been proposed in the OMNI framework [18]. Here, the design methodology is focussed on
a regulation abstraction hierarchy where at the most abstract level statutes comprising val-
ues, objectives and contexts should be designed, followed by abstract norms implementing
these statutes and then concrete norms implementing the abstract norms. In our framework
we showed how constitutive rules provide the ontological basis for capturing links between
concrete and abstract norms an appropriate ontology for an artificial society. Hence, we fore-

123



1340 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

see our contributions supporting the design of governance for artificial and socio-technical
systems according to the design principles of [18,67], based on an appropriate ontology of
constitutive rules for an artificial or socio-technical society.

Acknowledgements We would like to thank the anonymous reviewers of JAAMAS for helping to improve
the article. Thomas C. King would like to thank John R. Searle for the correspondence on substitution-of-
identicals which illuminated some formerly implicit assumptions (now explicit) made in this paper. Thomas
C. King was supported by the SHINE (http://shine.tudelft.nl) project of TU Delft.

References

1. Aldewereld, H., Álvarez-Napagao, S., Dignum, F., Vázquez-Salceda, J. (2010). Making norms concrete.
InProceedings of the 9th international conference on autonomous agents andmultiagent systems (AAMAS
2010) (pp. 807–814).

2. Anderson, A. R. (1958). A reduction of deontic logic to alethic modal logic. Mind, 67(265), 100–103.
3. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L. (2013). Normative multi-agent systems,

Vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
4. Antoniou, G., Billington, D., Governatori, G., &Maher,M. J. (2001). Representation results for defeasible

logic. ACM Transactions on Computational Logic, 2(2), 255–287.
5. Artikis, A. (2009). Dynamic protocols for open agent systems. In 8th International conference on

autonomous agents and multiagent systems (pp. 97–104).
6. Artikis, A., Pitt, J., Sergot, M. (2002). Animated specifications of computational societies. In Proceedings

of the first international joint conference onAutonomousAgents andMultiagent Systems (pp. 1053–1061).
New York, NY: ACM Press.

7. Artikis, A., Sergot, M., Pitt, J. (2003). Specifying electronic societies with the causal calculator. In
Proceedings of the workshop on agent oriented software engeneering III (AOSE), volume LNCS 2585.

8. Baral, C. (2003). Knowledge representation, reasoning and declarative problem solving. Cambridge:
Cambridge University Press.

9. Biagioli, C. (1997). Towards a legal rules functional micro-ontology. In Proceedings of the 1st LegOnt
workshop on legal ontologies.

10. Boella, G., van der Torre, L. (2003). Permissions and obligations in hierarchical normative systems. In
Proceedings of the 9th international conference on artificial intelligence and law (pp. 109–118).

11. Boella, G., van der Torre, L. (2004). Regulative and constitutive norms in normativemultiagent systems. In
Proceedings of 9th international conference on the principles of knowledge representation and reasoning
(KR’04) (pp 255–265). AAAI Press.

12. Cliffe, O. (2007). Specifying and analysing institutions in multi-agent systems using answer set program-
ming. PhD thesis, University of Bath.

13. Cliffe, O., De Vos, M., Padget, J. (2007). Answer set programming for representing and reasoning about
virtual institutions. Computational logic in multi-agent systems (pp. 60–79).

14. Criado, N., Argente, E., Noriega, P., &Botti, V. (2013). Reasoning about constitutive norms in BDI agents.
Logic Journal of the IGPL, 22(1), 66–93.

15. Dastani, M., van der Torre, L., & Yorke-Smith, N. (2017). Commitments and interaction norms in organ-
isations. Autonomous Agents and Multi-Agent Systems, 31(2), 207–249.

16. Dignum, F. (2002). Abstract norms and electronic institutions. In International workshop on regulated
agent-based social systems: Theories and applications (RASTA’02) (pp. 93–104).

17. Dignum, F.,Weigand,H., Verharen, E. (1996)Meeting the deadline:On the formal specication of temporal
deontic constraints. In International symposium on methodologies for intelligent systems (pp. 243–252).

18. Dignum, V., Vázquez-Salceda, J., & Dignum, F. (2004). OMNI: Introducing social structure, norms and
ontologies into agent organizations. Programming multi-agent systems (pp. 181–198). Berlin Heidelberg:
Springer.

19. D’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., & Sierra, C. (2012). Communicating open
systems. Artificial Intelligence, 186, 3146–3150.

20. Eiter, T., Faber, W., Leone, N., & Pfeifer, G. (1999). The diagnosis frontend of the dlv system. AI
Communications, 12(1), 99–111.

21. European Court Reports (2014). C-293/12 Digital Rights Ireland Ltd v Minister for Communications,
Marine and Natural Resources; Minister for Justice, Equality and Law Reform; Commissioner of the
Garda Síochána; Ireland; and The Attorney General and Others. C-594/12 Digital Rights Irela.

123

http://shine.tudelft.nl


Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1341

22. European Parliament and the Council of the European Union (2006). Directive 2006/24/EC of the Euro-
pean Parliament and of the Council of 15 March 2006 on the retention of data generated or processed
in connection with the provision of publicly available electronic communications services or of public
communications network.

23. European Union (2000). Charter of fundamental rights of the European Union 2000/C 364/01. Official
Journal of the European Communities.

24. Fichte, J. K., Hecher,M.,Morak,M.,Woltran, S. (2016). Counting answer sets via dynamic programming.
In Informal proceedings of the first workshop on trends and applications of answer set programming,
TAASP 2016, Klagenfurt, Austria, September 26, 2016.

25. Fornara, N. (2011) Specifying and monitoring obligations in open multiagent systems using semantic
web technology. Semantic agent systems (pp. 25–45).

26. Fornara, N., & Colombetti, M. (2010). Representation and monitoring of commitments and norms using
OWL. AI Communications, 23(4), 341–356.

27. Fornara, N., Okouya, D., Colombetti, M. (2012). Using OWL 2 DL for expressing ACL Content and
Semantics. In European workshop on multi-agent systems (pp. 97–113).

28. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds). (2013). Handbook of
Deontic logic and normative systems, Vol. 1.

29. García-Camino, A., Noriega, P., Rodríguez-Aguilar. J.-A. (2006). An algorithm for conflict resolution
in regulated compound activities. In Seventh annual international workshop engineering societies in the
agents world (pp. 193–208).

30. Gebser, M., Kaufmann, B., & Kaminski, R. (2011). Potassco: The Potsdam answer set solving collection.
AI Communications, 24(2), 107–124.

31. Gelfond, M. (2008). Answer Sets. Foundations of Artificial Intelligence, 3, 285–316.
32. Gelfond, M., Lifschitz, V. (1988) The stable model semantics for logic programming. In Logic program-

ming: Proceedings of the fifth international conference and symposium (pp. 1070–1080).
33. Governatori, G., Hulstijn, J., Rotolo, A. (2007). Characterising deadlines in temporal modal defeasible

logic. In Proceedings of the 20th Australian joint conference on artificial intelligence (pp. 486–496).
34. Governatori,G., Palmirani,M.,Riveret, R., Rotolo,A., Sartor,G. (2005).Normmodifications in defeasible

logic. In Legal knowledge and information systems (JURIX 2005) (pp. 13–22). IOS Press.
35. Governatori, G., & Rotolo, A. (2010). Changing legal systems: Legal abrogations and annulments in

defeasible logic. Logic Journal of IGPL, 18, 157–194.
36. Governatori, G., Rotolo, A., & Sartor, G. (2005). Temporalised normative positions in defeasible logic.

In Proceedings of the 10th international conference on artificial intelligence and law (pp. 25–34). New
York: ACM Press.

37. Grossi, D. (2008). Pushing Anderson’s envelope: The modal logic of ascription. In 9th International
conference on deontic logic in computer science (DEON 2008) (pp. 263–277).

38. Grossi, D. (2011). Norms as ascriptions of violations: An analysis in modal logic. Journal of Applied
Logic, 9(2), 95–112.

39. Grossi, D., Aldewereld, H., Vázquez-Salceda, J., & Dignum, F. (2006). Ontological aspects of the imple-
mentation of norms in agent-based electronic institutions.Computational andMathematical Organization
Theory, 12, 251–275.

40. Grossi, D., Meyer, J.-J., Dignum, F. (2005).Modal logic investigations in the semantics of counts-as. In
Proceedings of the 10th international conference on artificial intelligence and law (ICAIL ’05) (pp. 1–19).
ACM.

41. Grossi, D., Meyer, J.-J. C., Dignum, F. (2006) Counts-as: Classification or constitution? An answer using
modal logic. Lecture notes in computer science (including subseries Lecture notes in artificial intelligence
and Lecture notes in bioinformatics), 4048 LNAI:115–130.

42. Grossi, D., Meyer, J. J. C., & Dignum, F. (2008). The many faces of counts-as: A formal analysis of
constitutive rules. Journal of Applied Logic, 6(2), 192–217.

43. Günay, A., Yolum, P. (2012) Detecting conflicts in commitments. Declarative agent languages and tech-
nologies IX (pp. 51–66).

44. Hart, H. L. A. (1961). The concept of law. Oxford: Clarendon Press.
45. Hooghe, L., & Marks, G. (2003). Unraveling the central state, but how? Types of multi-level governance.

American Political Science Review, 97(2), 233–243.
46. Jiang, J. (2015). Organizational compliance: An agent-based model for designing and evaluating orga-

nizational interactions. PhD thesis, TU Delft, Delft University of Technology.
47. Jones, A. J. I., & Sergot, M. (1996). A formal characterisation of institutionalised power. Journal of IGPL,

4(3), 427–443.
48. King, T. C. (2016). Governing governance: A formal framework for analysing institutional design and

enactment governance. PhD thesis, Delft University of Technology.

123



1342 Auton Agent Multi-Agent Syst (2017) 31:1283–1343

49. King, T. C., Dignum, V., Jonker, C. M. (2016). When do rule changes count-as legal rule changes? In
Proceedings of the 22nd European conference on artificial intelligence (ECAI 2016). Frontiers in artificial
intelligence and applications (Vol. 285. pp. 3–11).

50. King, T. C., Li, T., De Vos, M., Dignum, V., Jonker, C. M., Padget, J., Riemsdijk, M. B. V. (2015). A
framework for institutions governing institutions. In Proceedings of the 2015 international conference on
autonomous agents and multiagent systems (AAMAS 2015) (pp. 473–481), Istanbul, Turkey. International
Foundation for Autonomous Agents and Multiagent Systems.

51. King, T. C., Li, T., Vos, M. D., Jonker, C. M., Padget, J., Riemsdijk, M. B. V., et al. (2016). International
Workshops, COIN@AAMAS, Istanbul, Turkey, May 4, 2015, COIN@ IJCAI, Buenos Aires, Argentina,
July 26, 2015. Revised selected papers, 9628, (191–208)

52. King, T. C., Riemsdijk, M. B. V., Dignum, V., Jonker, C. M. (2015). Supporting request acceptance with
use policies. In Coordination, organizations, institutions, and norms in agent systems X: COIN 2014
international workshops, COIN@ AAMAS, Paris, France, May 6, 2014, COIN@ PRICAI, Gold Coast,
QLD, Australia, December 4, 2014, Revised Selected Papers (pp. 114 – 131). Springer.

53. Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation Computing, 4(1),
67–95.

54. Li, T. (2014) Normative conflict detection and resolution in cooperating institutions. PhD thesis, Univer-
sity of Bath.

55. Li, T., Balke, T., De Vos, M., Padget, J., Satoh, K. (2013). Legal conflict detection in interacting legal
systems. In 1st International Jurix doctoral consortium and poster sessions, JURIX-DoCoPe 2013, in
Conjunction with the 26th International conference on legal knowledge and information systems, JURIX
2013.

56. Li, T., Balke, T., De Vos, M., Satoh, K., Padget, J. (2013). Detecting conflicts in legal systems. In Y.
Motomura, A. Butler, D. Bekki (Eds.), New frontiers in artificial intelligence. JSAI-isAI 2012. Lecture
notes in computer science, (Vol. 7856, pp. 174–189). Springer, Berlin, Heidelberg.

57. Lopes Cardoso, H., Oliveira, E. (2008). Norm defeasibility in an institutional normative framework. In
European conference on AI (ECAI ’08) (pp. 468–473).

58. Lopes Cardoso, H., & Oliveira, E. (2009). A context-based institutional normative environment. Coordi-
nation, organizations, institutions and norms in agent systems IV (pp. 140–155).

59. Lopes Cardoso, H., Oliveira, E. (2010). Directed deadline obligations in agent-based business contracts.
InCoordination, organization, institutions and norms (COIN@AAMAS) (Vol. 6069, LNAI, pp. 225–240).

60. Lopes Cardoso, H., &Oliveira, E. (2010). Monitoring directed obligations with flexible deadlines: A rule-
based approach. International workshop on declarative agent languages and technologies (pp. 77–92).
Hungary: Budapest.

61. López, F. L. Y., Luck, M. (2003). Modelling Norms for autonomous agents. In Proceedings of The fourth
Mexican conference on computer science (pp. 238–245). IEEE Computer Society.

62. López, F Ly, Luck, M., & D’Inverno, M. (2006). A normative framework for agent-based systems.
Computational and Mathematical Organization Theory, 12(2–3), 227–250.

63. Makinson, D., & van der Torre, L. (2003). What is input/output logic? Trends in Logic, 17, 163–174.
64. Nute, D. (1987). Defeasible logic. In Dov M. Gabbay, C. J. Hogger, J. A. Robinson (Eds.), Handbook of

logic in artificial intelligence and logic programming (Vol. 3). New York: Oxford University Press.
65. Pieters, W., Padget, J., Dechesne, F. (2013). Obligations to enforce prohibitions: On the adequacy of

security policies. In Proceedings of the 6th international conference on security of information and
networks (pp. 54–61).

66. Pieters, W., Padget, J., Dechesne, F., Dignum, V., & Aldewereld, H. (2015). Effectiveness of qualitative
and quantitative security obligations. Journal of Information Security and Applications, 22, 3–16.

67. Pitt, J., & Artikis, A. (2015). The open agent society: Retrospective and prospective views. Artificial
Intelligence and Law, 23(3), 241–270.

68. Pitt, J., Diaconescu, A. (2015). Structure and governance of communities for the digital society. In IEEE
International conference on autonomic computing (ICAC) (pp. 279–284).

69. Prakken,H.,&Sartor,G. (1996).A dialecticalmodel of assessing conflicting arguments in legal reasoning.
Artificial Intelligence and Law, 4, 331–368.

70. Searle, J. R. (1969). Speech acts: An essay in the philosophy of language. Cambridge: Cambridge Uni-
versity Press.

71. Searle, J. R. (1983). Intentionality: An essay in the philosophy of mind. Cambridge: Cambridge University
Press.

72. Searle, J. R. (1995). The construction of social reality. New York: The Free Press.
73. Searle, J. R. (2005). What is an institution? Journal of Institutional Economics, 1, 1–22.
74. UK (2009). The data retention (EC Directive) Regulations 2009, No. 859.

123



Auton Agent Multi-Agent Syst (2017) 31:1283–1343 1343

75. van der Torre, L., Tan, Y. (1988). The temporal analysis of Chisholm’s paradox. In Proceedings of the
fifteenth national conference on artificial intelligence (AAAI’98) (pp. 650–655).

76. von Wright, G. (1951). Deontic logic. Mind, 60(237), 1–15.
77. Yolum, P., & Singh, M. (2004). Reasoning about commitments in the event calculus: An approach for

specifying and executing protocols. Annals of Mathematics and Artificial Intelligence, 42(1–3), 227–253.

123


	Automated multi-level governance compliance checking
	Abstract
	1 Introduction
	2 Governance concepts
	2.1 Institutions
	2.1.1 Constitutive rules
	2.1.2 Norms

	2.2 Multi-level governance

	3 Approach
	4 Formal framework
	4.1 Syntax
	4.2 Semantics
	4.2.1 State conditions
	4.2.2 Events
	4.2.3 Derived fluents
	4.2.4 Abstracting normative fluents
	4.2.5 Models
	4.2.6 Compliance monitoring


	5 Computational framework
	5.1 Answer set programming
	5.2 Mapping
	5.2.1 Multi-level governance translation

	5.3 Specification language and compiler
	5.4 Running the case study
	5.5 Computational framework soundness and completeness
	5.6 Computational framework complexity

	6 Related work
	6.1 Institutional reasoning and verification
	6.2 Hierarchical governance and governing regulations
	6.3 Abstracting norms
	6.4 Legal power and counts-as rules

	7 Conclusions
	Acknowledgements
	References




