
Auton Agent Multi-Agent Syst (2017) 31:861–904
DOI 10.1007/s10458-016-9359-z

Interactive POMDPs with finite-state models of other
agents

Alessandro Panella1 · Piotr Gmytrasiewicz1

Published online: 25 January 2017
© The Author(s) 2017

Abstract We consider an autonomous agent facing a stochastic, partially observable, multi-
agent environment. In order to compute an optimal plan, the agent must accurately predict the
actions of the other agents, since they influence the state of the environment and ultimately
the agent’s utility. To do so, we propose a special case of interactive partially observable
Markov decision process, in which the agent does not explicitly model the other agents’
beliefs and preferences, and instead represents them as stochastic processes implemented by
probabilistic deterministic finite state controllers (PDFCs). The agent maintains a probability
distribution over the PDFCmodels of the other agents, and updates this belief using Bayesian
inference. Since the number of nodes of these PDFCs is unknown and unbounded, the agent
places a Bayesian nonparametric prior distribution over the infinitely dimensional set of
PDFCs. This allows the size of the learned models to adapt to the complexity of the observed
behavior. Deriving the posterior distribution is in this case too complex to be amenable to
analytical computation; therefore, we provide a Markov chain Monte Carlo algorithm that
approximates the posterior beliefs over the other agents’ PDFCs, given a sequence of (possi-
bly imperfect) observations about their behavior. Experimental results show that the learned
models converge behaviorally to the true ones. We consider two settings, one in which the
agent first learns, then interacts with other agents, and one in which learning and planning
are interleaved. We show that the agent’s performance increases as a result of learning in
both situations. Moreover, we analyze the dynamics that ensue when two agents are simul-
taneously learning about each other while interacting, showing in an example environment
that coordination emerges naturally from our approach. Furthermore, we demonstrate how
an agent can exploit the learned models to perform indirect inference over the state of the
environment via the modeled agent’s actions.

B Alessandro Panella
apanel2@uic.edu

Piotr Gmytrasiewicz
piotr@uic.edu

1 Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-016-9359-z&domain=pdf
http://orcid.org/0000-0001-6903-635X

862 Auton Agent Multi-Agent Syst (2017) 31:861–904

Keywords Multiagent systems · Stochastic planning · Opponent modeling

1 Introduction

An autonomous, rational agent operating in a stochastic and partially observable environment
acts according to a plan that aims at maximizing its expected utility with respect to its
belief, which is the agent’s subjective probability distribution over the current state of the
environment. The problem of finding the optimal policy can be formulated mathematically
as a partially observable Markov decision process (POMDP) [33,59]. Due to uncertainty in
both the environment’s transitions and the agent’s observations, POMDPs are notoriously
hard to solve.

Yet an additional layer of complexity is introduced when there are other agents that also
influence the environment with their own actions. Traditionally, problems in which multiple
agents interact within an environment have been approached using tools from economics and
game-theory, that are mostly based one the concept of Nash equilibrium.

In this paper, we depart from equilibrium solution concepts, and build upon the body
of work that uses subjective game theory and decision theory as its core paradigms [32,
61,62]. In particular, we propose an approach to multiagent stochastic planning that is a
specialization of interactive POMDPs (I-POMDPs) [23]. Within this framework, an agent
maintains a belief not only on the state of the environment, but also on the models of other
agents, and its decisions depend solely on this subjective belief. In previous research on
I-POMDPs, it has been predominant to consider intentional models [12,22] of other agents,
which consist of ascribing to them beliefs and preferences, and simulating their decision
making process in order to predict their actions. This intentional stance is reciprocated by
the other agents, yielding an infinite hierarchy of nested beliefs, which is cut off at a finite
level for implementation purposes.

In thiswork,we use subintentionalmodels to represent the other agents’ behavior.A subin-
tentional model is intended here as a stochastic process over the modeled agent’s sequence
of actions, that depends on the observations it receives as input. Note that a subintentional
model does not explicitly take into account another agent’s preferences or beliefs.

Our interest in subintentional models has several motivations. The first is computational:
since subintentional models do not explicitly represent the other agents’ beliefs, there is no
explicit reciprocal modeling. This means that an agent does not have to recursively solve the
other agents’ models in order to enable its own optimal decision making. This may lead to
substantial computational savings. Moreover, we are interested in situations where an agent
has weak prior knowledge about others. In particular, we consider the case in which their
preferences are completely unknown. In this scenario, the agent’s predictions of the other
agents’ actions can only be based on recognizing regular patterns in their behavior, which
is what subintentional models directly attempt to do. Furthermore, subintentional modeling
makes no assumption about the rationality of the other agents. Intentional modeling, on the
other hand, relies on the fact that other agents are rational, since their actions are predicted
by assuming that they themselves maximize their expected utility. While this may usually
be a safe assumption, it is not universally true. For example, an agent’s rationality may be
bounded or compromised.

Among all possible subintentional models, we consider the probabilistic deterministic
finite controller (PDFC) representation, in which the transitions between the nodes are deter-
ministic, while actions are generated stochastically in each node. Intuitively, the nodes of a

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 863

PDFC represent discrete “mental states” of the modeled agents. However, their beliefs are
never represented explicitly.

In line with the decision-theoretic approach to planning, the modeling agent places a prior
distribution over the space of PDFCs, and updates this belief in the Bayesian way, based on
the observed behavior of other agents. We do not assume that the agent is given a restricted
set of possible PDFCs of the other agents a priori. Instead, every possible PDFC must be
considered. This implies that the size of possible PDFCs, albeit finite, is unbounded. This is
desirable, since we do not wish to bound, a priori, the complexity of other agents’ models.
However, constructing a probability distribution over PDFCs of unbounded size presents
some challenges. In this work, we tackle this problem by using a Bayesian nonparametric
prior distribution [29]. Note that the term “nonparametric” does not indicate in this case the
absence of parameters, but the situation in which the posterior number of parameters (here,
the size of the PDFC) scales with the complexity of the observed data (here, another agent’s
behavior.)

Performing Bayesian inference using nonparametric distributions is not amenable to ana-
lytical solutions, requiring the use of approximatemethods. In thiswork,wedevelop aMarkov
chain Monte Carlo algorithm (MCMC) that learns an ensemble of PDFCs that approximates
the posterior distribution given a sequence of observed behavior. Note that the inference
procedure must deal with partial observability of the modeled agent’s behavior, since in
I-POMDPs another agent’s actions may not be perfectly observable.

This also implies that the modeling agent might not be able to discover, even at the infinite
limit, the true type of the other agent. This is because the learning agent is able to discern
between different models only to the extent that they induce different distributions over its
observations. In other words, learning can be only as good as the agent’s available data.
Moreover, the true type of the other agent may not belong to the class of PDFCs in the first
place; however, we show in our experiments that even in this case the modeling agent is able
to encode the regularities in the behavior of the other agent as PDFCs, and hence exploit
them to increase its rewards.

We consider two scenarios of interaction. In the first, themodeling agent uses past observa-
tions to learn the other agents’ models, and then exploits the inferred PDFCs by embedding
them into its own decision making process, according to the I-POMDP framework. The
second, more realistic scenario sees the agent interleaving learning and planning during
interaction, using a finite window of past observations. This allows the agent to cope with
opponents that are themselves adapting, perhaps by also learning the agent’s model in return.

Experimental results show that our learning algorithm is able to infer PDFCs that converge
behaviorally to the true agents’ controllers as the size of the training data increases, under ideal
observability conditions. Evenwhen another agent’s behavior is only partially observable, we
show that the modeling agents’ performance increases when exploiting the learned PDFCs.
This continues to be true when the other agent’s true policy is not implemented as a finite
controller, but is instead computed online. Moreover, we analyze, for an example domain,
the dynamics that emerge when two agents are simultaneously planning and learning about
each other. In particular, we show that cooperation arises naturally when the two agents have
compatible utility functions. Throughout our results, it can be observed that the size of the
learned PDFCs reflects the complexity of the behavior of the modeled agent; this validates
the use of a Bayesian nonparametric prior, that naturally embodies the desirable Occam’s
razor property of learning.

The remainder of this paper is organized as follows. Section 2 contextualizes our approach
with respect to existing work, and introduces some necessary background concepts. In Sect. 3
we describe the nonparametric prior distribution over the space of PDFCs, while in Sect. 4 we

123

864 Auton Agent Multi-Agent Syst (2017) 31:861–904

present the MCMC algorithm that implements Bayesian learning, given this prior. Section 5
formally introduces interactive POMDPs with PDFC models and describes how the learned
PDFCs are in practice embedded in such framework. In Sect. 6 we provide the experimental
results that validate our methodology. Section 7 concludes this paper by summarizing the
findings and providing hints for future research.

2 Context and background

This section introduces concepts and existing methods that are related to the work described
later in this paper. Along with these descriptions, we expand on two important dichotomies
that characterize different approaches to opponent modeling in multiagent settings, namely
between implicit and explicit modeling, and between intentional and subintentional model-
ing.

2.1 Related work: model-based multiagent learning

The concept of learning inmultiagent systems is complex andmulti-faceted [57], and has been
the subject of extensive research both in the field of game theory and agent-based artificial
intelligence. In the following, we briefly review some approaches to learning explicit models
of other agents. The goal is not to provide a comprehensive survey, but to present some of
the related research in order to better contextualize our work.

One of the earliest approaches to opponent’s policymodeling is fictitious play [5]: an agent,
say i , ascribes to another agent, j , a probability over its actions givenby theobserved empirical
distribution of j’s previous actions. Despite being a very simple method, fictitious play has
been studied extensively, with a number of theoretical results especially in relation to Nash
equilibrium [20]. Fictitious play is applicable to repeated games with perfect monitoring,
that is, the same stage game is played by two agents repeatedly, and the agents can observe
each other actions.

A more general learning method that applies to the same setting is rational learning [34].
Given a set of possible strategies Σ j for agent j , and a set of possible histories of a game Z ,
the probability that i ascribes to j’s strategy σ j ∈ Σ j , given a history z ∈ Z , is derived by
applying Bayes’ rule:

p(σ j |z) = p(z|σ j) p(σ j)∫
Σ

p(z|σ j)p(dσ j)
. (1)

A remarkable result for rational learning is that, provided that the probability induced on
future plays by an agent’s belief over the other agent’s strategy is absolutely continuous with
respect to the distribution induced by the true strategy, the game will converge to a subjective
equilibrium. The requirement above is often referred to as the “grain of truth” property:
roughly speaking, an agent’s belief needs to assign a nonzero probability to the true state of
affairs. This method has vast theoretical merits, but if the set of strategies Σ is large, infinite,
or even uncountable, there is little hope that Eq. 1 can be implemented analytically.

The interactive POMDPmodel (I-POMDP) [23], which is described in detail in Sect. 2.2,
is a form of rational learning. Importantly, it extends rational learning to sequential, stochas-
tic, partially observable settings. In [13], the authors generalize the subjective equilibrium
convergence of rational learning to cover this more general setting, by restating the grain
of truth condition in terms of probability over future sequences of observations. However,
they also notice that it is impossible for two agents to recursively maintain beliefs over every

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 865

possible computable strategy. This result suggests that in I-POMDPs the space of strategies
of another agents needs to be limited to some extent.

Another work that expands on rational learning is [1], that considers environments that
evolve stochastically (but are perfectly observable,) in which the modeling agent maintains
a belief over a finite set of types of other agents.

In [6], the authors propose the use of deterministic finite automata (DFA) for opponent
modeling, and define a heuristic algorithm that derives a DFA consistent with past plays of
the game. This approach assumes that the environment is a (single-state) repeated game with
perfect monitoring, without allowing the modeled agent to be itself adaptive.

One approach to multiagent learning that aims at explicitly modeling adapting opponents
is the one in [52]. As before, the authors focus on repeated games with perfect monitoring,
and establish a series of desirable properties for opponent modeling. The algorithm they
provide targets a class of opponents whose policy only depends on a history of finite length.
The work in [8] makes similar assumptions, and proposes to solve the game in the space of
the adversary induced MDP, whose state space is the set of all possible joint histories of a
specific length, that can be solved with MDP methods.

We can recognize commonalities between some of the related work surveyed above and
the approach we propose in this paper. Like [34] and related methods, we also use Bayesian
update as the basis of learning. For obvious reasons, our work is related to the analysis of
convergence in I-POMDPs [13], and in particular shares the same generality about the type
of environment considered. A trait in common with [6] is the use of finite-state models of
other agents. The approaches in [52] and [8] consider models of opponents whose actions
are based on a finite history, and could therefore be modeled by a finite state controller, such
as in our approach.

2.1.1 Discussion: the case for explicit opponent modeling

In the work presented in this paper, as well as in the literature surveyed above, an agent forms
explicit models of other agents’ policies, against which to provide a best response. However,
there has been considerable effort in multiagent learning towards algorithms that model the
opponents implicitly [4,10,36]. The choice of which of these two paradigms is best suited to
solve the problem at hand depends on assumptions about the prior knowledge that the agent
has about the environment.

In our case, we assume that that an agent, say i , knows its own I-POMDP parameters. This
means that i knows its reward function, its observation function, and the world’s transition
function as a response to both agents’ actions. Note that this knowledge induces a problem
that is different from the one solved by reinforcement learning (RL), where such assumptions
are usually not made. Another subtle difference with RL is that in POMDPs (and hence in
I-POMDPs) the agent does not observe its rewards at each timestep, unless this is explicitly
encoded in the observation function.

Since agent i knows the world’s transition function, the missing piece of information is
a mapping g j : Ω∗

i × A∗
i → A j from i’s observations to j’s actions. In this paper, we

further assume that j’s observation function is known, allowing i to speculate about j’s
observations and actions, given its own. Therefore, instead of inferring g j , the agent aims
at directly learning j’s agent function f j : Ω∗

j × A∗
j → A j . This is precisely the type of

opponent modeling that takes place in I-POMDPs, using either intentional or subintentional
models.

Surely, agent i could still treat agent j’s policy implicitly, and fold it into the transition
function as noise, but that would imply that j’s actions depend just on the current state of the

123

866 Auton Agent Multi-Agent Syst (2017) 31:861–904

world s, which is unrealistic since j’s decision making is in general more involved. We claim
that using finite state models is an appropriate hypothesis space for j’s policies, especially
since we do not bound the number of nodes, hence allowing j’s actions to depend on a history
of unbounded length.

Without the prior knowledge assumptionsmade above,modeling the other agent explicitly
might be ineffective, whereas POMDP reinforcement learning techniques, such as utile suffix
memory [40], Bayes-adaptive POMDPs [55], infinite generalized policy representation [38],
infinite POMDPs [17], and others would be more suitable to solve the problem, by learning
a model of the environment that implicitly contains the other agent’s policy.

2.2 Interactive POMDPs

The interactive partially observableMarkov decision process (I-POMDP) [23] is an extension
of the POMDP framework [33,59] to multiagent settings. A distinguishing feature of I-
POMDPs is that each agent maintains full autonomy, and plans in isolation according to its
own subjective belief and preferences. This sets I-POMDPs apart from purely cooperative
approaches to multiagent stochastic planning where the agents share initial knowledge and
goals, such as decentralized POMDPs (DEC-POMDPs) [3].

In the following and in the rest of this paper, we consider an environment containing two
agents, namely agent i and agent j . In its general form [13], an I-POMDP for agent i is
defined as a 6-tuple:

I -POMDPi = (I Si , A,Ωi , Ti , Oi , Ri), (2)

where:

– I Si is the set of interactive states, defined as I Si = S × Mj , where Mj is the set of
possible models of the other agent. Each model m j ∈ Mj is a triple m j = (Oj , z j , f j),
where Oj ∈ O j is an observation function,1 z j ∈ Z j is a history of j’s actions and
observations, i.e. z j = ω1

j a
1
jω

2
j a

2
j . . ., and f j ∈ Fj is an agent function of the form

f j : Z j → Δ(A j).
– A = Ai × A j is the set of joint actions for the two agents.
– Ωi is the set of observations for agent i .
– Ti : S × A × S → [0, 1] is the stochastic transition function. Ti (s, ai , a j , s′) =

p(s′|s, ai , a j) is the probability of landing in state S given that the agent execute actions
(ai , a j) when the environment is in state s.

– Oi : A × S × Ωi → [0, 1] is the stochastic observation function. Oi (ai , a j , s′, ωi) =
p(ωi |ai , a j , s′) corresponds to the probability that agent i receives observation ωi , given
that the joint action (ai , a j) was executed and the resulting state is s′.

– Ri : S × A → R is the reward function. Ri (s, ai , a j) is the payoff to agent i when joint
action (ai , a j) is executed in state s.

Similarly to single-agent POMDPs, any history can be summarized with a belief over the
interactive state space, denoted as bi , that can be updated by applying Bayes’ rule as follows,
given the current belief, action ai , and observation ωi :

b′
i , (is

′
i) = p(is′

i |ai , ωi , bi)

= β
∑

isi∈I Si s.t.
(O ′

j , f
′
j)=(Oj , f j)

bi (isi)
∑

a j∈A j

f j (z j , a j) Oi (ai , a j , s
′, ωi) p(is′

i |isi , ai , a j) (3)

1 O j also implicitly contains information about agent j’s observation set Ω j .

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 867

where β is a normalization constant. The term p(is′
i |isi , ai , a j) is the interactive transition

model, defined as:

p(is′
i |isi , ai , a j) = Ti (s, ai , a j , s

′)
∑

ω j∈Ω j

O j (ai , a j , s
′, ω j) δ(z′j , z j a jω j). (4)

Here and in the rest of this paper, the symbol δ indicates the Kronecker delta function, that
assumes value 1 when its two arguments are the same, and 0 otherwise. The term z j a jw j

refers to the history obtained by concatenating the previous history z j with a j and w j .

2.2.1 Intentional I-POMDPs

The definition above is mathematically sound, but of little practical use if we do not restrict
the set of possible agent functions Fj . Considering every possible computable mapping from
Hj to A j is not viable. In addition to the obvious impracticality of such approach, there
are actual theoretical limits that prevent the set Fj to be so general, as described in [13]. In
fact, the original definition of I-POMDP introduced in [23] limits Fj by considering the set
of agent functions that can themselves be implicitly encoded as I-POMDPs, thus taking an
intentional stance [12]. We call this approach intentional I-POMDP.2

This is formalized by considering themodels of the other agent that consist of an I-POMDP
tuple and a belief state that summarizes its past history, that is:

m j = ((I S j , A,Ω j , Tj , Oj , R j), b j) = (m̂ j , b j), (5)

where b j is a probability distribution over j’s interactive state space I S j , that summarizes its
past history z j . This definition of intentional model is consistent with the game-theoretical
notion of type in the context of Bayesian games [26], that refers to the set of agent j’s
private information that are involved in its decision making process. In the notation above,
the element m̂ j is referred to as the frame of agent j , that is assumed to be static.

As mentioned in the introduction, agent i’s intentional stance can be reciprocated by agent
j : specifically, I S j = S × Mj , where mi ∈ Mi is defined as in Eq. 5 after swapping the
subscripts i and j . Clearly, this triggers an infinite recursion of beliefs, that must be truncated
at a finite arbitrary level l.

In this case, the augmented notation I Si,l = S × Mj,l−1 refers to the interactive state
space for agent i at level l. The recursion ends at level 0, with I Si,0 = S.3 Accordingly, the
belief update formula in Eq. 3 specialized for intentional models becomes:

b′
i,l(is

′
i,l) = p(is′

i,l |ai , ωi , bi,l)

= β
∑

isi,l∈I Si,l s.t.
m̂′

j,l−1=m̂ j,l−1

bi,l(isi,l)
∑

a j∈A j

p(a j |m j,l−1) Oi (ai , a j , s
′, ωi) p(is′

i,l |isi,l , ai , a j),

(6)
where the term p(a j |m j,l−1) represents the probability of agent j executing action a j given
that it is Bayes rational (i.e. optimizes the sum of expected rewards) and has type m j,l−1.

2 Strictly speaking, the intentional I-POMDP formalization in [23] considers subintentional models side by
side with intentional models. However, how to obtain the set of possible subintentional models or how to
update them is not explicitly discussed.
3 In this formulation, we assume that at level 0 the behavior of the other agent is folded into the world state’s
transition function as noise; in general, it can be encoded in a more complex subintentional model.

123

868 Auton Agent Multi-Agent Syst (2017) 31:861–904

The term p(is′
i,l |isi,l , ai , a j) is in this case defined as:4

p(is′
i,l |isi,l , ai , a j)

= Ti (s, ai , a j , s
′)

∑

ω j∈Ω j

O j (ai , a j , s
′, ω j) δ(b′

j,l−1, κ(b j,l−1, a j , ω j)),
(7)

where κ(b j,l−1, ai , ωi) is the belief transition function, that computes j’s new belief by
applying Eq. 6 over I S j,l−1.

In the equations above, retrieving the terms p(a j |m j,l−1) and κ(b j,l−1, a j , ω j) triggers
recursions into j’s own decision making process and belief update, that in turn might involve
solving i’s I-POMDP from j’s perspective, and so on down to level 0. Therefore, solving
an intentional I-POMDP at any level of nesting is at least as complex as solving a single-
agent POMDP, which is itself known to be in general PSPACE-complete [47]. On top of
this, there exist a theoretical limitation: while an agent may wish to maintain a belief over
every possible belief of the other agent, it can be shown [14] that it is impossible to have a
probability distribution over every possible belief for nesting level larger than two.

Nevertheless, several approximate algorithms have been proposed to solve intentional I-
POMDPs, among which Monte Carlo methods [14], policy iteration [60], point-based value
iteration [15], and nested dynamic influence diagrams [63].

2.2.2 Discussion: intentional and subintentional I-POMDPs

In this section, we highlight some of the pros and cons related to picking an intentional
or a subintentional stance in I-POMDPs. Ultimately, we believe that neither approach is
absolutely preferable to the other. Given the problem at hand, one should be able to weight
in the advantages of either method. Furthermore, in some cases, a combination of the two
might be the best solution.

– Complexity Using subintentional models is arguably less computationally intensive than
recursively solving other agent’s intentional models.

– Prior assumptionsDespite the intentional I-POMDP formulation is in theory very flexible
with respect to the prior knowledge is available to the agent, practical implementations
always assume knowledge about the frame of the other agent, in particular its reward
function, or limit the set of possible frames to a small finite set. The subintentional
I-POMDP methodology that we propose, on the other hand, assumes no knowledge
about the other agent’s payoff structure, and about what transition function the other
agent considers; however, we assume in this work that its observation function is known.
Moreover, intentional I-POMDPs assume that the other agent is rational. On the other
hand, subintentional models do not require such assumption.

– Use of prior knowledge If the true frame of the agent is indeed known, the subintentional
approach is wasteful in that it does not exploit it. The subintentional approach described
in this work was explicitly designed to cope with situations where little prior knowledge
is given, and does not necessarily represent best approach for scenarios in which the
reward model of the other agent is known.

– Transferable knowledge If the frame of the other agent is not fixed, intentional modeling
may provide insight into its reward function by means of belief update. Since an agent
preferences may carry over from one domain to another, this constitutes transferable

4 Here and in the remainder of this paper, δ denotes the Kronecker delta function, that is equal to 1 if its
arguments are equal, 0 otherwise.

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 869

knowledge that can be used in situations different than the one inwhich the knowledgewas
obtained. On the other hand, subintentionalmodels aremore intricately tied to a particular
domain, and are only valid insofar the modeled agent’s own model of the environment
remains unchanged. Switching to a new domain requires the other agent’s models to
be re-learned from scratch. However, it might be possible to speculate about an agent’s
preferences starting from its inferred subintentional model, using inverse reinforcement
learning methods such as the one in [9]. We leave the exploration of such possibility for
future work.

2.3 Probabilistic deterministic finite-state controllers

Finite-state controllers (FSC) represent in some cases the optimal solution to a POMDP [33];
in fact, some algorithms search directly for a solution in the space of finite state controllers
[25,41,51]. Hence, our choice of modeling an observed agent’s behavior as a finite state
controller is perhaps not surprising. We consider a special case of FSCs called probabilistic
deterministic finite-state controllers (PDFCs). A PDFC is a 6-tuple:

c = (Ω, A, Q, τ, θ, q1), (8)

where:

– Ω is the set of observations of the agent.
– A is the set of actions the agent can execute.
– Q is the set of nodes.
– τ : Q × A × Ω → Q is the deterministic node transition function. If q is the current

node, from which an agent executes an action a and receives an observation ω, the next
node is q ′ = τ(q, a, ω), that we usually abbreviate as τqaω. In this paper, we use the
term “transition” and “edge” interchangeably to refer to a single element τqaω.

– θ : Q× A → [0, 1] is the stochastic emission (action generation) function. If q is the cur-
rent node, the agent will execute action a with probability p(a|q) = θ(q, a), sometimes
abbreviated as θqa . The notation θq denotes the probability vector (θq1, θq2, . . . , θq|A|).

– q1 ∈ Q is the starting node.

It is straightforward to seehowaPDFCcan implement an agent function: conditional on the
history5 z1:T = (a1:T , ω1:T), the current PDFC node is defined recursively for t = 1, 2, . . .,
starting from q1, as qt = τ(qt−1, at−1, ωt). From qt , the agent generates an action using
the probability distribution θqt . Intuitively, the nodes of a PDFC implementing a conditional
policy can be viewed as internal mental states of the agent that behaves according to such
policy. In POMDPs, this is indeed the case, since each node of a PDFC (and in general, of a
FSC) can be mapped to a region of the belief space.

Given a sequence of observations ω1:T , a PDFC induces a probability distribution over
the action sequence a1:T defined as follows:

p(a1:T |ω1:T) = θ(q1, a1)
∏

t=2:T

∑

q∈Q
δ(q, τ (qt−1, at−1, ωt)) θ(q, at). (9)

PDFCs are related to transducers in the context of grammar learning [28]. In [45], the
authors propose a heuristic algorithm for learning deterministic transducers based on state-
merging moves. More recent work [2] attempts at learning stochastic transducers using
spectral methods.

5 Here and in the rest of this paper, the notation x1:t indicates the sequence (x1, x2, . . . , xt). Sometimes, a
condensed notation is used for two or more sequences, i.e. (x, y)1:t � (x1:t , y1:t)

123

870 Auton Agent Multi-Agent Syst (2017) 31:861–904

2.4 Partially observable Monte Carlo planning for POMDPs

We briefly describe in this subsection the POMCP algorithm [58] for planning in (single-
agent) POMDPs, since it is the method that we adapt to solve I-POMDPs with subintentional
models (Sect. 5).

Traditional online POMDP planners work by executing a “full-width” forward search of
the belief tree. This means that the agent considers every possible belief state that can be
reached from the current belief. This procedure has a complexity exponential in the time
horizon, an issue that is sometimes defined as the curse of history [49]. In contrast, partially
observable Monte Carlo planning (POMCP) is an online stochastic algorithm that performs
a finite set of randomized simulations through the belief search tree instead of executing a
full-width search. The algorithm has two main features:

– Instead of running a set of random simulations, the algorithm uses Monte Carlo tree
search (MCTS) to orient exploration towards promising regions of the belief search tree.
This is done by considering the choice of action at each hypothetical belief node as a
multi-armed bandit problem, and applying the UCB1 algorithm [35] in order to select
the next action in the simulation.
This provides an optimal trade-off between exploring new future belief paths and focusing
the search on branches that seem promising.

– Each belief node is represented empirically as a set of unweighted particles, each corre-
sponding to a possible state of the world.
During the execution of MCTS to select the next action, the sampled future states of the
world are stored at each belief node along the simulation. Once the agents executes a real
action and receives an observation, its updated belief node is obtained by following the
corresponding branch in the lookahead belief tree created by MCTS: the set of particles
that were stored in such node during the simulations constitute the new belief of the
agent.

3 A prior distribution for PDFCs

This section formally introduces the Bayesian learning problem we want to solve, and
describes what features are desirable for a prior probability distribution over PDFCs. The
specific prior probability that we adopt is subsequently described, along with some of its
features and possible alternatives.

3.1 The need of a suitable prior

The goal of this work is the design and implementation of an I-POMDP agent, henceforth
i , that operates in a stochastic, partially observable, multiagent environment, and models the
other agent, j , explicitly as a PDFC. Since the exact model of the other agent is not known
a-priori, agent i needs to infer an accurate model of j from its own observations.

We propose aBayesianmethodology that yields learning over the class of possible PDFCs,
given an observed trajectory (or history) z1:Ti . We want to compute the posterior distribution:

p(c j |z1:Ti) ∝ p(z1:Ti |c j) p(c j). (10)

Crucial to this task is providing a suitable prior distribution p(c j) over PDFCs. Since
agent j’s complexity is unknown to agent i , we do not wish to bound, a priori, the number of

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 871

nodes of j’s PDFC. Instead, we want to provide a prior probability that allows the complexity
of the learned PDFC to scale with the complexity of the observed behavior: if agent j follows
a simple policy, we want to learn a small PDFC that best captures our observations; on the
other hand, if j’s behavior exhibits complex patterns, we want to be able to learn a more
complex model that explains such regularities.

Recall from the definition of PDFC that each node k is associated to a continuous param-
eter θk ∈ Δ(A j). Therefore, the set of PDFCs (of unbounded size) is infinite-dimensional.
Bayesian nonparametric (BNP) techniques have increasingly been used in recent years to
design priors over infinite-dimensional spaces, such as the case of Dirichlet process mix-
ture models (DPMMs) [19] and variations thereof [29]. In the remainder of this section, we
describe the BNP prior distribution over PDFCs that we adopt in our work.

3.2 Prior distribution over the transition function

In order to have a less cluttered notation, we will refer to j’s PDFC states, observations,
and actions using numerical indexes. First, let us introduce the quantities K = |Q j |, the
number of nodes of j’s PDFC; G = |A j |, the cardinality of j’s action set; H = |Ω j |, the
cardinality of j’s observation set. Now, let k = 1, 2, . . . , K represent a specific value that
the variable q j can assume; similarly, let g = 1, 2, . . . ,G represent the value of a j , and
h = 1, 2, . . . , H the value of ω j . Using this notation, τkgh refers to the destination node
τ(q j = k, a j = g, ω j = h) reached when action g is executed in node k, and observation h
is perceived. In general, the number of nodes K is unknown and unbounded; therefore, k is
also unbounded.

For each value k of the starting node, action g, and observation h, the destination node
τkgh is drawn from an infinite discrete probability vector π = (π1, π2, . . .). Intuitively, the
component πk can be interpreted as the tendency of node k to attract incoming transitions.

The vector π is in turn drawn from a distribution called stick-breaking process, with
parameter α, defined as follows:

πk = μk

k−1∏

h=1

(1 − μh), where μk ∼ Beta(1, α). (11)

This distribution is traditionally denoted as GEM(α).6 The components π1, π2, . . . can be
thought as being generated by the following intuitive process. Imagine to have a stick of
initial length 1, and brake it at a point selected according to Beta(1, α). The length of the left
chunk is π1. Now, we break the right chunk by using the same procedure, obtaining π2, and
so on infinitely. Summarizing, we have:

π | α ∼ GEM(α)

q1 | π ∼ Discrete(π)

τkgh | π ∼ Discrete(π) k = 1..∞; g = 1..G; h = 1..H
(12)

Figure 1 represents this hierarchical prior as a Bayesian network.
An equivalent construction of this hierarchical distribution is obtained by assigning the

PDFC transitions sequentially, drawing from the following distribution:

6 The acronym stands for Griffiths, Engen, and McCloskey.

123

872 Auton Agent Multi-Agent Syst (2017) 31:861–904

Fig. 1 Graphical model of the
nonparametric prior over PDFCs.
In evidence is the fact that π is an
infinite discrete probability vector

p(τkgh = k′|α, τ<kgh) ∝ vk′ if node k′ has been previously chosen
p(τkgh = k̄′|α, τ<kgh) ∝ α for “new” node k̄′, (13)

where τ<kgh are the values of the edges that have been sampled prior to τkgh , and vk′ is a count
statistics representing the number of edges in τ<kgh that “already” point to node k′. Note that
the vector π does not appear explicitly in this characterization, and is in fact integrated out.

To exemplify this construction, also known as the “Chinese Restaurant Process” (CRP),
consider an agent j with G = 2 actions and H = 2 observations. First, we draw the initial
node q1. Since there is no node currently instantiated, the probability in Eq. 13 reduces to
p(q1 = 1|α) = α/α = 1. Note that “1” is just the numerical label assigned to the node.
Now, for this first node, we need to sample the HG = 4 outgoing transitions. Proceeding in
order, we first sample the transition for g = 1 and h = 1. The probability for τ111 to be node
1 itself is 1/(1 + α), whereas the probability of going to a newly instantiated node (that we
label as 2) is α/(1+ α). Let us assume that, in this particular instance, it so happens that we
draw τ111 = 1. Now, the transition τ112 will have probability 2/(2 + α) of being assigned
to node 1 itself, and probability α/(2 + α) of going to a new node. Let us assume that in
this case τ112 = 2; the next transition to be sampled, τ121, will be drawn with the following
probabilities:

p(τ121 = 1|α, τ111, τ112) = 2

3 + α

p(τ121 = 2|α, τ111, τ112) = 1

3 + α

p(τ121 = 3|α, τ111, τ112) = α

3 + α
(new node.) (14)

This process continues until all transitions havebeen assigned andnonewnodes are generated.
The prior distribution over the PDFC transitions so defined induces a “rich get richer”

property to the nodes of the PDFC: transitions are more likely to point to nodes that already
receive many incoming transitions. This self-reinforcing bias is not undesirable in our case:
if we imagine that each node of a PDFC is associated to a unique region of agent j’s belief
space (as is the case for POMDP controllers,) then the self-reinforcing property of the stick-
breaking prior reflects the fact that some nodes represent more commonly visited “mental
states” for the agent, such as reset states.

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 873

1 2 3 4 5 6 7 8 9
0

5

10

15

v i
(s
or
te
d)

α = 1

Nodes
0 5 10 15

0

10

20

30
α = 5

Nodes
0 10 20

0

20

40

60
α = 10

Nodes

Fig. 2 Number of incoming transition per node, sorted, with different values of α

The histograms in Fig. 2 depict the number of incoming transitions vi (sorted in descending
order) for the nodes of a PDFC, sampled according to the prior distribution above, for different
values of α, and |A j | = G = 3, |Ω j | = H = 2. We can see that, for larger values of α,
more nodes are generated, which is expected since α is proportional to the probability of
instantiating a new node at each step of the CRP as described above. The next subsection
quantifies exactly the probability over the number of instantiated nodes as a function of α.

3.2.1 Induced distribution over the number of nodes

Strictly speaking, Eq. 12 defines a distribution over PDFCs with infinite nodes, rather than an
unbounded finite number of nodes. However, we are interested only in the finite “connected
component” containing the nodes that are reachable from the initial node, ignoring the infi-
nite subset of nodes that are not connected. It is useful to determine analytically the prior
probability p(K |α) over the effective number of nodes K induced by our prior distribution.
“Appendix 1” shows that it is given by:

p(K |α) = αK (KY)!
α(KY+1)

(K−1)Y∑

l=K−1

φ̄(K , l)

l! , (15)

where α(KY+1) indicates the rising factorial, Y = GH , and φ̄(K , l) is given by the recurrence
relation

φ̄(K , l + 1) = y φ̄(K , l) +
{

φ̄(K − 1, l) if l < (K − 2)Y

0 o.w.
, (16)

that is initialized as ȳ(K , K) = 1. Figure 3 shows the distribution of K for various values of
α, assuming as before G = 3 and H = 2. Again, we observe that the expected number of
nodes increases with α, since a larger α corresponds to a higher probability of creating new
nodes in the construction of Eq. 13.

3.3 Distribution over the emission function

For each node k = 1, 2, . . . ,∞, the corresponding emission distribution θk over A j is given
a symmetric Dirichlet prior with total parameter λ, that is,

θk | λ ∼ Dir
(

λ
G , . . . , λ

G

)
k = 1..∞ (17)

123

874 Auton Agent Multi-Agent Syst (2017) 31:861–904

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

K

p
(K

|α
)

α = 1
α = 5
α = 10
α = 20

Fig. 3 Probability of PDFC size, for different values of α

The parameter λ encodes our prior belief on the entropy of the emission distributions of the
PDFC’s nodes: a large value of λ reflects a bias towards more stochastic actions, while lower
values favor emission distributions skewed toward a single action. Setting λ = G yields a
non-informative (flat) prior distribution.

3.4 Alternative priors and related work

The hierarchical distribution described in this section is not the only prior one could design
over the space of PDFCs. Other similar priors can be considered, such as ones based on the
Pitman-Yor process,which is a slight generalization of the one presented here, and other forms
of two-parameters stick-breaking priors [46]. Moreover, some classes of parametric prior
distributions could be adapted to PDFCs, such as the hierarchical distribution described in
[24].Although these latter traditionally requiremore convoluted inference based on reversible
jump Markov chain Monte Carlo methods, recent work [42] has shown promising results in
deriving simpler inferential methods. We leave the exploration of such prior distributions for
future work.

In a relatedwork [48], a hierarchical stick-breaking prior has been proposed for probabilis-
tic deterministic finite automata (PDFA) in the context of language modeling. The transition
function of a PDFA depends on the previous node and on the action there executed, and not
on an external input signal (the observation) as in the case of PDFCs, which are in fact a
generalization of PDFAs. Nevertheless, the methodology described has similarities with our
work. Moreover, stick-breaking priors have been used over the space of policies for decen-
tralized POMDPs [37]. While the approach may be similar to ours in the way that priors are
designed, the cited work presents a “planning as inference” methodology for decentralized
POMDPs, targeting a very different problem than the one we consider in this paper.

4 Bayesian learning of PDFCs

This section provides the details of the algorithm used to implement the Bayesian learn-
ing process described in Sect. 3.1. First, the Bayesian learning problem is instantiated in
our specific context of learning a PDFC in an I-POMDP environment, with the aid of a
Bayesian network representation of the learning setup. Then, the MCMC learning algorithm
is introduced, and each of the important steps is described in detail.

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 875

Fig. 4 Graphical model representation of PDFC learning. Observed variables are shaded in grey

4.1 Learning setup

As an I-POMDP, agent i is in general unable to perfectly observe the trajectory of observations
and actions (ω1:T

j , a1:Tj) of agent j , and instead just receives its own sequence of observations

from the environmentω1:T
i . Additionally, agent i may not just be a passive observer, therefore

its own actions a1:Ti need to be considered when learning j’s model. We hence need to infer
the posterior distribution over j’s PDFC parameters:7

p(τ, θ |ω1:T
i , a1:Ti) = p(ω1:T

i |τ, θ, a1:Ti) p(τ, θ)

p(ω1:T
i |a1:Ti)

. (18)

As we mentioned in the introduction, this distribution may not, in the infinite limit, con-
verge to the actual true model of the other agent, since agent i perceives the world only
through his own observations. Moreover, the true type of agent j may not belong to the class
of PDFCs to begin with; even so, modeling j as a finite controller is a reasonable approach,
as it allows to encode regularities in j’s observed behavior. However, we cannot claim that
PDFCs can in general model every behavior of agent j .8

The dynamic Bayesian network in Fig. 4 depicts the learning scenario graphically. The
PDFC parameters (τ, θ) have prior distributions defined by Eqs. 12 and 17. The rest of the
conditional distributions of the model are given by the dynamics (transition and emission
function) of the PDFCbeing learned and the I-POMDP’s transition and observation functions.

Moreover, we place an exponential hyperprior over the parameter α of the stick-breaking
distribution and the parameter λ of the symmetric Dirichlet over θk . This makes the learning
more flexiblewith respect to the number of nodes and the entropy of the emission distributions
of the PDFC. Specifically, we have:

α | ζα ∼ exp(ζα)

λ | ζλ ∼ exp(ζλ).
(19)

7 In order not to clutter notation, we consider the initial node q1 as being part of τ .
8 For instance, j’s behavior may be time dependent, or be encoded as a pushdown transducer.

123

876 Auton Agent Multi-Agent Syst (2017) 31:861–904

4.2 MCMC sampler for PDFC inference

Computing the posterior distribution defined in Eq. 18 is not analytically tractable. This is
usually the case for complex models in Bayesian inference. In this work, we adopt aMarkov-
chain Monte Carlo (MCMC) algorithm to approximate the posterior distribution, inspired
by previous research on inference for Dirichlet process mixture models (DPMM). Using a
Monte Carlo method means that we will obtain an set of samples that approximates the true
posterior distribution. In other words, we will obtain an ensemble of candidate PDFCs of
agent j , and not just a single model.

In general, the state of the Markov chain is a value assignment to all the PDFC parame-
ters that we need to learn, including the hyperparameters α and λ, and the hidden variables
(s, ω j , a j)

1:T . However, the weight vector π can be integrated out analytically via the CRP
construction, as described in Sect. 3.2 (Eq. 13).Moreover, sincewe placed a conjugateDirich-
let prior over the nodes’ multinomial emission parameters, θ can also be treated analytically.
Lastly, since in a PDFC the next node depends deterministically on the value of the previ-
ous node, its action, and the new observation, there is no need to include the sequence q1:T
explicitly in the state: it can be derived at will when needed. The resulting collapsed state of
the Markov chain is therefore a tuple (τ, ω1:T

j , a1:Tj , λ, α).
Given that the state comprisesmultiple variables, it seems natural to implement theMCMC

algorithm as Gibbs sampling, which is a during which one variable at a time is sampled, while
the others are kept fixed, until convergence. The most critical element to sample is the transi-
tion function τ . We can devise a Gibbs sampling jumping probability that, at each iteration,
re-samples the destination of a single edge τkgh , given the value of all other state variables.
Since only one edge can be modified at each iteration, we call this jumping distribution an
incremental move, described in detail in Sect. 4.2.1. Despite being relatively easy to perform,
allowing only one edge to change at each iteration may negatively affect the mixing time, and
potentially cause the MCMC algorithm to get stuck in local modes of the posterior distribu-
tion for long periods of time. This problem is not new in the context of Gibbs sampling for
mixture models [7,30]. This is because, in order to go from a local mode to a state with higher
probability, the incremental Gibbs sampler might need to pass through a sequence of states
of low probability, effectively preventing the state from ever reaching the global mode of the
posterior distribution. In DPMMs, this might prevent the creation of new components. In our
case, incremental moves might not be sufficient to reach the region of the space containing
PDFC configurations with an adequate number of nodes.

In order to tackle this problem, we implement split-merge moves [31], that split a whole
node or collapse two nodes in a single step, thus enabling a more effective exploration of
the sample space. Split-merge moves are computationally more expensive than incremental
moves, therefore they are applied only every Rth iterations, where R is a parameter of the
MCMC algorithm. A detailed description of this step is provided in Sect. 4.2.2.

Moreover, the algorithm needs to resample the hidden sequences (s, ω j , a j)
1:T . As we

describe in Sect. 4.2.3, this is done in block by using a backward filtering-forward sampling
(BFFS) procedure. Additionally, the algorithm resamples the hyperparameters α and λ at
each iteration. This is done via a Metropolis-Hastings (MH) step, as detailed in Sect. 4.2.4.

The overall MCMC algorithm, whose structure is provided in Algorithm 1, employs a
general Gibbs sampling schema, and incorporates Metropolis-Hastings moves for splitting
andmergingnodes and sampling hyperparameters. It is therefore an instance ofhybridMCMC
sampling.

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 877

Algorithm 1 LearnPDFC

Input: ω1:T
i , a1:Ti , M, R, S, Niter

Output: τ (1:Niter), α(1:Niter), λ(1:Niter)
	 Initialize PDFC

1: q1
(1) ← 1

2: τ
(1)
1gh ← 1 ∀ g = 1..G, h = 1..H

3: α(1) ∼ exp(ζα)

4: λ(1) ∼ exp(ζλ)

	 Initialize hidden sequences
5: (s1:T , a1:Tj , ω1:T

j)(1) ← sample-seq(τ, λ, ω1:T
i , a1:Ti)

	 MCMC iterations
6: for n = 2..Niter do
7: if mod (n, R) �= 0 then
8: τ (n) ← incremental-move(τ (n−1), α(n−1), λ(n−1), (a1:Tj , ω1:T

j)(n), M)

9: else
10: τ (n) ← split-merge(τ (n−1), α(n−1), λ(n−1), (a1:Tj , ω1:T

j)(n), S)

11: end if
12: (s1:T , a1:Tj , ω1:T

j)(n) ← sample-seq(τ (n), λ(n), ω1:T
i , a1:Ti)

13: (α(n), λ(n)) ← sample-hyperpars(τ (n), α(n−1), λ(n−1), (a1:Tj , ω1:T
j)(n))

14: end for

4.2.1 Incremental moves (Algorithm 1, line 8)

In order to performan incrementalGibbsmove,wefirst choose a single edge source uniformly
at random out of the KGH + 1 transitions of the PDFC in the current state, where K is the
current number of PDFC nodes. Note that the initial node q1 is here considered as a special
edge, hence the ‘+1’. Let the chosen edge be indexed as kgh, indicating the source node, the
action, and the observation it corresponds to, respectively; the special index ‘0’ indicates the
initial node.

We then proceed to sample the destination of this transition from its conditional distribu-
tion, given the current values of all other state variables. Such destination node can be one of
the existing nodes or a new one, that is added to the PDFC. By using Bayes’ rule and applying
the conditional independence encoded in the model’s structure (see Fig. 4), we obtain:

p(τkgh |τ−kgh, ω
1:T
j , a1:Tj , α, λ) ∝ p(τkgh |α, τ−kgh) p(a1:Tj |τ, ω1:T

j , λ), (20)

where τ−kgh denotes all current values of τ except the one being sampled, i.e. τ = τkgh ∪
τ−kgh .

The first term of the RHS side of Eq. 20 is the conditional prior distribution. Since the
edges of a PDFCs represent an exchangeable sequence given the stick-breaking prior, we
can consider that each edge is sampled after all the others and apply the CRP conditional
distribution in Eq. 13. The second term of the RHS is the likelihood that the new assignment
awards to the action sequence a1:Tj , given j’s observation sequence ω1:T

j . For existing nodes,

this can be computed by considering that τ , a1:Tj , and ω1:T
j jointly determine the value of

the node sequence q1:T . The likelihood can be then obtained by computing the expectation
of the quantity in Eq. 9 with respect to the measure p(θk |λ), for each node k. Since this
latter density is in our model a conjugate prior to the multinomial action generation of the
PDFC, the likelihood can be easily computed in closed form by using the properties of the
Dirichlet-multinomial model [21]. Let us introduce a count matrix d , where each element
dkg represents how many times action g is generated in node k in such sequence, that is,

123

878 Auton Agent Multi-Agent Syst (2017) 31:861–904

dkg = ∑T
t=1 δ(qt , k)δ(atj , g). The likelihood term in Eq. 20 is then given by:

p(a1:Tj |ω1:T
j , τ, λ) =

K∏

k=1

[
Γ (λ)

Γ (
∑G

g=1 dkg + λ)

G∏

g=1

Γ (dkg + λ/G)

Γ (λ/G)

]

. (21)

Computing the likelihood of assigning τkgh to a new node is more complicated because,
when a new node is considered, its own outgoing transitions need to be evaluated. According
to the prior, such transitions can in turn point to some other new node, and so on recursively. It
is therefore unfeasible to sum over all the countably infinite possible transition configurations
that stem out of the new node. This situation is akin to DPMMs with non-conjugate priors,
where the components’ parameters cannot be integrated analytically. In our case, the param-
eters θk’s are given a conjugate Dirichlet prior, and hence θ can be integrated out analytically.
However, the new node’s outgoing transitions, that can be thought as additional parameters
of the nodes, cannot.

A simple solution to this problem could be the use of a Metropolis-Hastings (MH) step
instead of Gibbs to sample the new transition, similarly to the algorithm proposed in [48].
In our case, however, such method leads to slow mixing rates. A better solution is to adapt
the auxiliary variables algorithm described in [43]. The key idea behind this method is to
approximate the integration over possible new nodes by sampling M candidate transition
configurations for the new node (i.e. the new node’s own outgoing transitions) from the
conditional prior distribution, which is obtained by recursively sampling from the CRP until
no new node is generated. Once the likelihood of these candidates is evaluated, we sample
the transition τkgh from Eq. 20, distributing α uniformly among the M candidates, so that the
total prior probability of generating a new node is still proportional to α. We refer the reader
to [43] for additional details on this procedure.

4.2.2 Splitting and merging nodes (Algorithm 1, line 9)

This step starts by sampling two edges uniformly at random. If they point to the same node,
a split of such node is proposed, otherwise a merge of the two destination nodes is proposed.
Once a split or merge is proposed, it is accepted or rejected using the Metropolis-Hastings
criterion. It is important to propose “high-quality” splits, since it is intuitive that just splitting
the node randomly will probably not represent an improvement, and hence the move will
likely be rejected by the MH criterion.

In order to propose high-likelihood splits, the algorithm described in [31] is adapted to our
case. When splitting a node, its incoming transitions are re-directed towards either one of the
two newly created nodes using S iterations of a “restricted Gibbs sampler” (S is a parameter
of the algorithm,) that also samples the new nodes’ outgoing transitions. This produces a split
that reflects to some extent the observed data instead of being just randomly sampled, and
hence has a higher chance of being accepted. A merge is proposed using a similar method,
that collapses two nodes into one and samples its outgoing transitions. The statistical details
of this procedure are quite involved, and go beyond the scope of this paper; the interested
reader can find a description of the basic method in [31].

4.2.3 Sampling hidden sequences (Algorithm 1, line 12)

An easy way to sample the sequences (s, ω j , a j)
1:T would be to use a Gibbs sampling

schema applied to each individual variable, given the value of all the others. Although simple

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 879

to implement, this method would lead to poor mixing since it does not allow more than
one variable to change at the same time, considering that the amount of variables in these
sequences can be large. We can instead sample each entire sequence in block, by adapting
similar methods used for hidden Markov models [53]. It is actually possible to take this
approach further, and sampling the three sequences together and in block, given the current
values of τ and the evidence (ai , ωi)

1:T . In order to do this, we use a backward filtering,
forward sampling procedure (BFFS), described in the following.

Webegin by noticing that, given τ , the value of the variables (st , qt) at each timestepmakes
all future variables conditionally independent from past ones; this is due to the Markovian
nature of both I-POMDP and PDFC and can be evinced from the structure of the Bayesian
network in Fig. 4. Therefore, by applying concatenation and Bayes rule, the following holds
for each 1 < t ≤ T :

p(at−1
j , st , ωt

j |st−1, qt−1, at−1:T
i , ωt :T

i , τ)

∝ p(at−1
j |qt−1) p(st |st−1, at−1

i , at−1
j) p(ωt

j |at−1
i , at−1

j , st)

× p(ωt
i |at−1

i , at−1
j , st) p(ωt+1:T

i |st , qt = τqt−1at−1
j ωt

j
, at :Ti).

(22)

All but the last term of the RHS in the equation above are known from the conditional
probabilities of the Bayesian network. The last term can be computed for each time step using
a variation of the backward portion of the forward-backward algorithm for HMMs [53]: it
can be interpreted as a backward probability message, and represents the probability of future
observations given the sufficient statistics at time t , denoted as ξt (st , qt). This quantity can
be computed for each 1 ≤ t ≤ T using the following recursive relation:

ξ t (st , qt) =p(ωt+1:T
i |st , qt , at :Ti)

=
∑

atj

p(atj |qt)
∑

st+1

p(st+1|st , ati , atj) p(ωt+1
i |ati , atj , st+1)

×
∑

ωt+1
j

p(ωt+1
j |ati , atj , st+1) ξ t+1(st+1, τqt atjω

t+1
j

).

(23)

The computation starts at ξ T (·, ·) = 1 and proceeds backwards down to t = 1. Once ξ1:T
is computed, the new values of a1:T , s1:T , and ω1:T

j can be sampled using Eq. 22, moving
forward from t = 1 to T .

4.2.4 Resampling hyperparameters (Algorithm 1, line 13)

The stick-breaking parameter α and the Dirichlet parameter λ are distributed exponentially
with parameters ζα and ζλ, respectively. We adopt a Metropolis-Hastings (MH) procedure in
order to resample their values at each iteration of Algorithm 1. The details are described in
the following.

The parameterα is conditionally independent from all the other variables, given the current
number of nodes K of the PDFC. Since sampling from p(α|K) directly is not feasible, we use
the MH method. First, given the current value α, the new α∗ is proposed from a log-normal
distribution with mean ln(α) and unit variance, i.e. α∗ ∼ lnN (ln(α), 1). This proposal
distribution is convenient in that it yields a simple formula for the MH acceptance ratio
a(α∗|α) [27]. By substituting the appropriate densities into the formula and simplifying, we
obtain:

123

880 Auton Agent Multi-Agent Syst (2017) 31:861–904

a(α∗, α) = min

[

1,
α∗

α

e−ζαα∗

e−ζαα

p(K |α∗)
p(K |α)

]

. (24)

where the likelihood terms p(K |α) and p(K |α∗) can be computed from Eq. 15.
The Dirichlet parameter λ is conditionally independent from all the other variables, given

the counts dkg of the actions executed in each node. To sample λ, we use the same method
as above, obtaining the MH acceptance ratio:

a(λ∗, λ) = min

[

1,
λ∗

λ

e−ζλλ∗

e−ζλλ

p(d|λ∗)
p(d|λ)

]

, (25)

where the likelihoods p(d|λ) and p(d|λ∗) are given by Eq. 21.

5 Planning against the learned models

While the previous sections focus on learning probabilistic deterministic finite-state con-
trollers of another agent, this section is dedicated to the use of the learnedmodels in interactive
POMDPs. We first formally introduce the framework of subintentional I-POMDPs with
PDFC models, and subsequently describe two methods of use of such framework.

5.1 Subintentional I-POMDP with PDFC models

Recall that in the general case, the interactive state space I Si of an I-POMDP is defined as
the cross product of the set of world states S and j’s models Mj , i.e. I Si = S × Mj , and
that a model of the other agent is a tuple m j = (h j , f j , Oj), where h j is a history for agent
j , f j is an agent function, and Oj is an observation function.

A subintentional I-POMDP with PDFC models is defined by specializing the set of j’s
models Mj from the general I-POMDP case to only contain models that can be expressed
as PDFCs. Note that this approach takes a subintentional stance to opponent modeling, as
opposed to the intentional (or type-based) approach that is traditional in I-POMDP literature.
Specifically, there is no explicit modeling of the other agent’s beliefs and preferences; j is
simply modeled as a statistical process that takes observations as inputs and generates actions
as output.

Formally, an element of Mj is a tuple m j = (q j , c j , Oj), where c j is a PDFC that
implements the agent function, and q j is a node of the PDFC, that summarizes j’s past
history. Since we assume that j’s observation model is known, an interactive state is a tuple
isi = (s, c j , q j). Ideally, c j belongs to the set of all possible PDFCs. In practice, the set
of PDFCs C j that we consider is the finite ensemble resulting from Algorithm 1. This is
not a severe limitation, however: the set C j was indeed inferred from the set of all possible
controllers by learning on past observations, and hence represents an approximation of the
distribution over the uncountably infinite set of all possible PDFCs.

The formula of the I-POMDP belief update in Eq. 3 can be specialized to our case and
rewritten as:

p(is′
i |ai , ωi , bi) = β

∑

isi : c j=c′
j

bi (isi)
∑

a j

θc j (q j , a j) Oi (ai , a j , s
′, ωi) p(is′

i |isi , ai , a j),

(26)

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 881

whereβ is a normalization constant, and p(is′
i |isi , ai , a j) is the interactive transition function

defined as:

p(is′
i |isi , ai , a j) = T (s, ai , a j , s

′)
∑

ω j

O j (ai , a j , s
′, ω j) δ(q ′

j , τ
c j (q j , a j , ω j)). (27)

5.2 Solving subintentional I-POMDPs with Monte Carlo methods

From Eq. 26, we observe that there is no recursion into j’s intentional models. In fact, we can
formalize a subintentional I-POMDP as a single-agent POMDPwhere the transition function
is defined as in Eq. 27. In other words, a subintentional I-POMDP can be flattened into a
POMDP, by extending the state space to include the other agent’s models. It follows that
standard POMDP algorithms can be adapted in order to compute a solution.

Note however that the size of the interactive state space can be very large, even for simple
problems, sinceweare considering a potentially large number ofmodels of agent j . Therefore,
exact POMDP solving techniques are surely doomed to fail in this case due to the problem’s
dimensionality. A faster, approximate solution method is necessary.

In this paper, we propose an adaptation of the POMCP algorithm, introduced in [58]
and summarized in Sect. 2.4, to solve subintentional I-POMDPs. An attractive feature of this
algorithm is that its running time of does not directly depend on the size of the problem, since
it makes use of a generator implementation of the I-POMDP rather than a flat or factorized
specification. In other words, it avoids enumerating each single interactive state, or even
a factorized, propositional description of S × Mj . We note, however, that larger problems
will likely need more simulations to explore the forward search tree, and therefore may still
require a higher computation time to achieve best performance.

We consider two modalities for applying I-POMDPs to interactive scenarios, described
in the following sections.

5.3 Two-phase approach

The first method we consider is a two-phase approach, in which agent i first collects data
about the behavior of agent j , learns a set of candidate PDFCs C j , and then exploits the
learned models in its own decision making process by embedding C j into the I-POMDP’s
interactive state space.

This approach works under the assumption that j’s model is static, i.e. does not change
throughout its interaction with the environment, and in particular remains the same from the
observation phase into the interaction phase. This implies that j is oblivious to i’s presence,
or that j plans against a model of i that is given a priori.

While an approach that separates learning from planning may sometimes be unrealistic,
it is applicable to some scenarios in which interaction data about agent j is available. For
example, in [11] the authors describe a two-phase approach to learning and planning for
interactive dynamic influence diagrams [16], with application to learning opponent models
in videogames from replay data. Moreover, a two-phase approach allows us to examine the
properties of learning and planning in isolation.

5.4 Interleaved learning and planning

Endowing the agent with the capability of interleaving learning and planning is crucial for
maximizing its rewards when facing unknown, possibly adaptive opponents. The methodol-

123

882 Auton Agent Multi-Agent Syst (2017) 31:861–904

ogy we propose combines the PDFC inference method described in Sect. 4 with the POMCP
algorithm for POMDPs.

As described in Sect. 2.4, the POMCP algorithmmaintains a particle representation of the
agent’s belief about the state of the environment. For a subintentional I-POMDP, this means
that each particle is a triple (s, c j , q j). As we saw above, the element c j belongs to a set of
candidate PDFCs C j , that are either given to the agent before the interaction or have been
previously learned. In order to allow the agent to adapt to changing opponents, agent i needs
to be able to modify the set C j of possible models. This is done by periodically re-train the
PDFCs based on newly available information.

One possibility is for the agent to update the set of PDFCs at fixed time intervals.We hence
introduce the parameter ΔTupdate, that represents the number of timesteps that separates two
updates, which are performed by invoking Algorithm 1. However, instead of initializing the
learning with a single-node PDFC, one of the current elements of C j is used instead to “hot-
start” the MCMC sampler. As a heuristic, we choose the PDFC that results from the majority
vote among the current particles in agent i’s belief state, that is, the current maximum a-
posteriori. The choice of hot-starting the sampler means that the models learned in the past
are not completely discarded.

The data that is used for re-training the models at each update is is i’s most recent history,
going back W steps, i.e., at time t , zt−W+1:t

i = (at−W :t−1
i , ωt−W+1:t

i). Note that W and
ΔTupdate do not necessarily have the same value. The choice of these parameters might
depend on several factors, mainly based on the time available to the agent to re-train models
during interaction. Ideally, agent i would like to update j’s models frequently, so to keep up
to speed even with an opponent that changes at a quick pace, but may not be able to do so
because of runtime constraints.

5.4.1 Resampling j’s PDFCs in the POMCP algorithm

As described above, a new set of PDFCs is obtained every ΔTupdate timesteps, by executing
the MCMC algorithm with the observations gathered by agent i in the last W timesteps. We
assume that the agent’s interactionwith the environment is on hold during the execution of the
learning algorithm. In order for the learned PDFCs to be synchronized when the interaction
resumes, it is important to know what node of the PDFC is occupied by agent j at time t , that
is, at the end of the training sequence. Note that this is usually different from the initial node
q1 of a PDFC, defined as the node agent j occupies at the beginning of the training sequence.
In our setting, we assume that the sequence resampling procedure (Sect. 4.2.3) stores the
sampled value of qtj , so that it is readily available when interaction resumes. Moreover, we
store the last value st of the world state sequence that gets sampled by the algorithm (see
Eq. 22). This is necessary because st and ctj are not independent variables: different models
of j induce different probabilities over S, and vice versa.

Accordingly, we represent –slightly abusing notation– the learned PDFCs at time t as a
set Ct

j of triples (st , c j , qtj), where c j is a PDFC, q
t
j is the node occupied at time t , and st is

the sampled state of the world at time t .
Once a new set Ct

j has been obtained, the set of unweighted particles Bt
i that represents

agent i’s belief in the POMCP algorithm needs to be refreshed, in order to take into account
the newly learned models. As mentioned above, the particles in Bt form the empirical joint
distribution b̂ti (s

t , c j , qtj) over the set of world states and models of j , i.e.

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 883

Fig. 5 One step of the execution of the POMCP algorithm for subintentional I-POMDPs, including retraining
and resampling of j’s PDFCs

b̂ti = 1

|Bt
i |

∑

(st ,c j ,qtj)∈Bt
i

δD(st , c j , q
t
j), (28)

where δD is the Dirac delta function.
The set of particles is refreshed by re-sampling each particle uniformly at random from

Ct
j . Note that C

t
j is the result of the MCMC learning algorithm, and therefore represents an

empirical approximation of the posterior belief over agent j’s PDFCs and the world state,
i.e.:

p(st , c j , q
t
j |z1:ti) ≈ 1

|Ct
j |

∑

(st ,c j ,qtj)∈Bt

δD(st , c j , q
t
j), (29)

where again δD is the Dirac delta. Note that Equations 28 and 29 have the same form.
Therefore, sampling uniformly at random fromCt

j corresponds to sampling from the posterior
distribution over agent j’s PDFCs and the world states, and produces a belief consistent with
agent i’s history of observations.

After resampling the belief state, one last operation needs to take place before resuming
execution. Recall that in the POMCP algorithm the current belief is the root of a belief
subtree (the search tree starting from the current belief) that was previously expanded and
stored during the execution of the algorithm’s forward search.

Normally, this subtree is retained in POMCP so that the newMonte Carlo search from the
current node does not start from scratch, and utilizes the portion of the tree that had already
been expanded under the current root.

However, after the set of j’s PDFC is periodically retrained, the subtree thatwas previously
expanded contains nodes that are no longer compatible with the newly sampled belief state.
This is because the domain |Ct

j | of possible models of j has changed. In other words, the
previously explored belief subtree extends into a state space that is different from the current,
updated one. When this happen, therefore, the belief subtree must be discarded to avoid
incompatibility, and the forward search for the optimal action must restart from scratch.

Figure 5 depicts one step of execution of the POMCP algorithm adapted to our case,
including retraining and resampling of j’s PDFCs. At time t − 1, agent i performs a ran-
domized forward search according to the POMCP procedure, eventually choosing action

123

884 Auton Agent Multi-Agent Syst (2017) 31:861–904

at−1
i = g and receiving observation ωt

i = h from the new world state. Agent i’s updated

belief state at time t corresponds to the node here denoted as b̂ti (g, h). At this point, i uses
its recent observation history (of length W) to re-train the set of j’s models, and refreshes
its belief state by sampling from the output of the MCMC algorithm according as described
above. At this point, the existing subtree of node b̂ti (g, h) is no longer compatible with the
resampled belief, and must therefore be discarded.

5.5 Note: generalization to more than two agents

It is possible to generalize learning and planning to more than one opponent. Consider that
each of the other agents has its own actions A j and observations Ω j . We can define sets
A−i = × j �=i A j andΩ−i = × j �=iΩ j . The combined observation function of the other agents
would then be O−i (ai , a−i , ω−i , s) = p(ω−i |ai , a−i , s) = ∏

i �= j O j (ai , a−i , ω−i, s),
which works under the reasonable assumption that the individual agents’ observations are
conditionally independent given state and actions. Given this, and the other elements of the
I-POMDP, the modeling agent i could learn a single combined PDFC of the other agents, by
applying the same method described in this paper.

This approach is simple, but it can be impractical if there are a lot of agents with large
actions and observation sets. Under the same assumption above, which implies that the
PDFC nodes Q j of each of the other agents are also conditionally independent, we can have
a learning setup that involves multiple PDFCs. Obviously, the learning problem is in this
case more complex, and the issue of non-discernible configurations of variables with respect
to the modeling agents’ own stream of observation is potentially exacerbated.

While both of the above approaches are theoretically sound and are relatively simple
generalizations of the methodology presented in this paper, we have not yet explored their
practical limitations experimentally.

6 Experimental results

Our experimental evaluation has the following main objectives:

1. Demonstrate that, under ideal observability conditions, Algorithm 1 learns PDFCs that
approximate the true controllers generating the modeled agent’s behavior.

2. Quantify the performance increase provided by the integration of the learned PDFCs
in the modeling agent’s I-POMDP, both in the two phase and interleaved learning and
planning approach.

3. Analyze the dynamics emerging in case both agents are interacting and simultaneously
learning each others’ model via interleaved learning and planning.

The following section introduces the three experimental domains that are used in our
experiments, while the subsequent sections cover each of the three objectives above sepa-
rately.

6.1 Experimental domains

6.1.1 Multiagent tiger problem

This domain is the two-agent extension of the well-known Tiger Problem [33] introduced
in [23]. There are two rooms, one hiding a ferocious tiger and the other hiding some gold.

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 885

(a) (b)

Fig. 6 aMaze and b AUAV domains from agent j’s perspective

Each agent can either listen (L), open the left door (OL), or open the right door (OR). Upon
listening, an agent hears a growl coming from the direction where the tiger is with 0.85
probability, and from the other direction with 0.15 probability (GR, GR). Moreover, each
agent hears a creak coming from the direction of the door opened by the other agent, or no
creak (silence) if the other agent does not open a door (CL, CR, S). The observation set of both
agents is hence composed of 6 possible observations. Upon opening a door, each observation
is perceived with 1/6 probability (uninformative). When both agents listen, the state of the
tiger persists onto the next timestep, while when either agent opens a door the position of the
tiger is reset with uniform probability. For both agents, listening costs 1, opening the door
hiding the tiger costs 100, and opening the door with the gold has a reward of 10. The formal
specification of this problem is provided in Table 1, that can be found in “Appendix 2”.

6.1.2 3 × 4 maze

In the single-agent version of this problem adapted from [56], an agent, j , tries to reach the
top-right (+1) corner of the 3x4 grid in Fig. 6a, starting from a random, unknown location,
trying to avoid getting caught (-1) by the monster lurking in the center-right. The agent can
move up, down, left, or right, with 0.8 success rate, and 0.1 probability of slipping to either
side, and each move costs 0.04. In general, the agent does not know its own position with
certainty, but receives some signals: its location is revealed in the cell marked with a light
bulb, and the monster’s smell is perceived in the locations with the exclamation mark with
accuracy 0.8. When reaching the goal or meeting the monster, agent j is re-spawn randomly
for a new round. In the two-agent version of the problem, agent i is themonster that j believes
stationary, that is tasked with catching j . It receives a reward of 1 when co-located with j and
has the same transition model. It perceives i’s position with 0.9 accuracy at each timestep.

6.1.3 AUAV reconnaissance

This problem, adapted from [63], models a fugitive agent, j , trying to reach a safe house,
with reward 1, located on a 5 × 5 grid as in Fig. 6b. The agent can move deterministically
in four directions, with cost 0.04. The agent can sense its position with respect to the safe
house, namely whether it is north of it (N), south of it (S), or at the same level (L). These

123

886 Auton Agent Multi-Agent Syst (2017) 31:861–904

observations are received with accuracy 0.8, and only when the agent is adjacent to it. When
the agent reaches the safe house, it receives and “end” signal and its position is reset to a
uniformly random location for a new round. In the two-agent version, agent i is an autonomous
unmanned aerial vehicle (AUAV), to whose presence agent j is oblivious. The AUAVmoves
deterministically and perceives the fugitive’s position with 0.9 accuracy. It receives a reward
of 1 when co-located with j , causing j’s position to be reset at random, and a penalty of 0.04
otherwise.

6.2 Learning PDFCs from observable trajectories

Weevaluate how similar the learned PDFCs are to j’s true controller, when i is able to observe
perfectly j’s action and observation sequences (making line 12 in Algorithm 1 superfluous.)
Although this may be in some cases an acceptable assumption (see for example the work
in [11],) it is often unrealistic; however, it allows to evaluate the performance of the PDFC
learning algorithm under ideal conditions. We assume that j’s behavior is prescribed by the
optimal policies computed assuming that j is oblivious to the presence of agent i . For the
Tiger Problem, this produces an optimal finite controller with 5 nodes (depicted in Fig. 11a);
for the Maze problem, j’s controller has 42 nodes; for the UAUV problem, 36 nodes.

To derive a similarity measure between PDFCs, suppose that a hypothetical agent operates
according to the true controller cT , and another does so according to the learned controller cL .
Let us denote as ηqLqT the co-frequency, or probability of the two agents being simultaneously
in nodesqL andqT of the respective controllers.We then define theweightedKullback-Leibler
distance between the two controllers as:

wK L(cL , cT) =
∑

(qL ,qT)∈QL×QT

ηqLqT K L(θqL , θqT), (30)

which is a measure of similarity between the distributions over actions sequences induced by
the two controllers [28], hence reflecting a behavioral similarity between PDFCs. Note that
this measure does not compare the actual PDFCs: in fact, there may exist different models
that induce the same distribution over the action sequence.

For each of the considered problems and for different lengths of observed history (Tlearn),
we performed 10 learning trials. The following parameterswere used for theMCMCsampler:
M = 50, R = 50, S = 2. In each trial, the MCMC sampler was run for 5000 iterations,
and the second halves of the generated sample chains were subsampled every 100 iterations,
resulting in ensembles of 25 PDFCs per trial. We computed the overall mean wK L across
trials, which is reported in Fig. 7 along with the median size of the learned PDFCs.

For the Tiger problem, we see that the wK L quickly approaches zero (Tlearn ≥ 64) and
the number of nodes stabilizes at 5, the size of the true controller. For the other two problems,
the wK L decreases more gradually, eventually converging towards zero. For the AUAV
problem, the number of nodes approaches the size of the true controller (36 nodes) for long
sequences. In theMaze problem, the size of the PDFCs grows steadily but remains lower than
the true size (42 nodes), even when the wK L approaches zero. While it seems that for this
problem we may need an impossibly long sequence to eventually learn the true number of
nodes, the learned PDFCs are behaviorally very close to j’s true controller. In order to shed
some light over this result, Fig. 8 reports the fraction of time spent in each node of the true
controller, sorted in decreasing order. We can see that the distribution decreases rapidly for
the Maze problem, with less than 1% of the time spent in more than 50% of the nodes. This
means that most of the complexity of the observed agent’s behavior can be captured with
fewer nodes. For the AUAV problem, the distribution decreases more gradually, meaning that

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 887

0 5 10 15 20
0

10

20

30

#
N
od

es
(b
ar
s)

0 5 10 15 20
0

0.5

1

1.5
3x4 Maze

log2(Tlearn)

w
K

L
(l
in
e)

0 3 6 9 12 15
0

2

4

6

#
N
od

es
(b
ar
s)

0 3 6 9 12 15
0

0.5

1

1.5

w
K

L
(l
in
e)

log2(Tlearn)

Tiger

0 5 10 15 20
0

10

20

30

40

#
N
od

es
(b
ar
s)

0 5 10 15 20
0

0.5

1

1.5

2
5x5 AUAV

w
K

L
(l
in
e)

log2(Tlearn)

0 5 10 15 20
0

1000

2000

3000

4000

log2(Tlearn)

Running Time

T
im

e
(s
)

Tiger
AUAV
Maze

Fig. 7 Weighted KL distance between the learned and the true controllers (line) and number of nodes of
learned PDFC (bars). The fourth panel reports the timing results

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2
AUAV

Nodes (sorted)
0 5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

N
od

e
oc
cu

pa
nc

y

Maze

Nodes (sorted)

Fig. 8 Node occupancy for Maze and AUAV problems. The vertical line indicates the 99% percentile

more nodes are required to accurately describe the observed behavior. The relation between
node occupancy and convergence to the true controller is important to establish theoretical
properties or learning, and will be explored more in depth in future work.

The bottom-right panel of Fig. 7 reports the running time of theMCMC algorithm,9 which
is at most linear in the amount of data considered. Notice that the growth rate for the AUAV
problem is almost constant for large values of Tlearn, while it increases for theMaze problem,
indicating higher dependence on the PDFC’s size than on Tlearn. This is due to optimizations
in the computation of the quantities d used in Eq. 21, which contains the only dependency
of running time on Tlearn (since line 12 is not executed here.)

9 Implemented in MATLAB® and running on an Intel® Xeon® 2.27 GHz processor.

123

888 Auton Agent Multi-Agent Syst (2017) 31:861–904

0
1
2
3
4
5
6
7
8

#
N
od

es
(b
ar
s)

U P 4 6 8 10 T
20
22
24
26
28
30
32
34
36

i’s model of j

R
ew

ar
d
(c
ir
cl
es
)

Tiger

U P 8 10 12 14 T
8

8.5

9

9.5

10

10.5

11

R
ew

ar
d
(c
ir
cl
es
)

i’s model of j

3x4 Maze

0

10

20

30

40

50

60

#
N
od

es
(b
ar
s)

0

10

20

30

40

#
N
od

es
(b
ar
s)

U P 8 10 12 14 T
0

20

40

60

80

R
ew

ar
d
(c
ir
cl
es
)

i’s model of j

5x5 AUAV

4 6 8 10 12 14
0

5000

10000

15000
Running Time (learning)

T
im

e
(s
)

log2(Tlearn)

Fig. 9 Reward by agent i with different models of agent j (lines) and number of nodes of learned PDFCs
(bars). The fourth panel reports learning time results

6.3 Learning offline and planning

In this section, we drop the assumption of perfect observability of agent j’s behavior. Even
so, we show howPDFC learning allows agent i to improve its performance. In our setting, j is
oblivious to i’s actions, and always operates according to its true controller. We consider the
reward collected by agent i with respect to the amount of observations used for learning j’s
models, and compare it against the following baselines: (U) i models j’s actions uniformly
at random, p(a j) = |A j |−1 ; (P) i predicts j’s action proportionally to their long-term
frequency; and (T) i knows j’s true PDFC. For each problem and observation size, we
performed 20 learning and planning trials; for each trial, the MCMC algorithm was run
for 5000 iterations and 25 sample PDFCs were retained as before, which constitute C j

in our I-POMDP model. The performance of the resulting I-POMDPs was then computed
by averaging the total reward collected during 1000 runs of the POMCP algorithm, with
discount factor 0.9 and using 210 simulations for exploring the search tree at each step; all
other POMCP parameters were set as in [58].

Figure 9 reports agent i’s mean total reward for the three problems and the median size of
j’s PDFCs. Numbers along the x-axes indicates the base-2 logarithm of the observation size,
while letters identify baseline models. Notice that, since the Tiger problem is much smaller,
we consider shorter training sequences. For all problems, the performance obtained when
using the learned models of j is always higher than using uniform or proportional models,
and approaches the upper bound (known j’s true model) with longer training sequences. This
is because, withmore information available, agent i is able to learnmore accurate models that
better predict j’s actions. This is also reflected in the size of the inferred controllers, which
as expected grows with the amount of data. However, the PDFCs learned in this settings are

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 889

usually smaller than the ones learned with perfect observability of j’s behavior (previous
section.) This is because now i’s perception of j’s behavior is filtered by noisy world’s
dynamics, and therefore longer observations are needed to allow identification of the same
behavioral patterns.

We underline how, evenwith shorter observation sequences, agent i is able to learnmodels
that provide a large performance gain over the random or proportional models. In particular
for the Maze problem, using only 256 observations for learning, agent i’s performance
grows to about 90% of the difference between using the true model and the random model.
Similar, albeit less extreme jumps are also observable for the other problems. This is a
demonstration that, even though learning the exact model of another agent is in general
unattainable, especially with realistic observability assumptions, i can still largely improve
its performance by recognizing behavioral patterns that are statistically significant and encode
them in a compact model.

The fourth panel of Fig. 9 reports the learning times. With respect to the previous section,
we observe that sampling sequences makes the procedure more time consuming. Unfor-
tunately, this sampling is an iterative procedure that cannot be vectorized or optimized
algorithmically. However, other choices of implementation language can make the proce-
dure much faster, and preliminary results have shown no noticeable loss in performance if
sequences are sampled less frequently than every iteration.

6.4 Learning and planning online

6.4.1 Interacting with a stationary opponent

The experiments described in this section consider a learning agent, i , facing a stationary
opponent j , with the goal of determining how the agents’ rewards change during interaction
as a result of i learning. With respect to the results in the previous section, it is important to
note that here i collects observations while itself interacting, and therefore has to consider
the effect of its own actions during learning.

We slightly modify the two-agent Tiger Problem from the previous section by making the
rewards directly dependent on both agent actions: in this version, the agents get a reward of 50,
instead of 10, when they find the gold and the other agent also open the same door. Intuitively,
the agents are happier sharing the gold than finding it by themselves. This modification
increases the importance of accurately predicting the other agent’s action. Moreover, we
assume that the agents observe each others’ last action perfectly at each timestep, that is, the
creaks are perceived with 100% accuracy for any action. Note that, even though actions are
observable, the agents do not perceive each others’ observations. The complete specification
for this domain is provided in Table 2 in “Appendix 2”.

For this domain, two types of agent j are considered (Fig. 10):

1. Agent j is implemented by the finite controller in Fig. 11a, which is the optimal policy for
the single-agent Tiger Problem, corresponding to j assuming that agent i always listens,
or being oblivious to i’s presence. We refer to this policy as ctiger .

2. Agent j plans online with POMCP, assuming that i’s model is ctiger . This is denoted as
POMCP(ctiger).

Agent i initially considers a uniform random PDFC of j , and subsequently updates j’s
models everyΔTupdate = 500 timesteps, using the lastW = 500 observations, and the whole
interaction has a duration of 2500 timesteps. All the parameters of the POMCP and MCMC
algorithms were set as in the previous section, except the number of iterations of the MCMC

123

890 Auton Agent Multi-Agent Syst (2017) 31:861–904

0 500 1000 1500 2000 2500
0

2

4

6

8

10

t

A
vg

.
re
w
ar
d

Agent i
Agent j

(a)

0 500 1000 1500 2000 2500
0

2

4

6

8

10

t

A
vg

.
re
w
ar
d

Agent i
Agent j

(b)

Fig. 10 Rewards for the Tiger domain: i learns j’s model during interaction, with j being either a PDFC or
an online planning agent that assumes a fixed model of i . a f j = ctiger . b f j = POMCP(ctiger)

L

L L

OR OL

GL,∗

GR,∗

GL,∗

∗

GR,∗

GL,∗

GR,∗

∗

(a)

L

OR OL

GL,∗ GR,∗

∗ ∗

(b)

Fig. 11 Controllers for the tiger problem: a solution to the single-agent domain (ctiger), and b aggressive
synchronization strategy

sampler, which is here set to 2000. After each update, the set of PDFCs C j
t is obtained by

subsampling the second half of the MCMC realization every 100 iterations (20 PDFCs.)
Figure 10 reports the mean average rewards over 50 runs for each of agent j’s types,

aggregated in segments of 500 timesteps, so to align with ΔTupdate. We can see that, in both
cases, the rewards of the two agents rapidly grow after i learns about j’s policy, due to i’s
increasing ability to predict j’s actions. This is a noteworthy result: PDFCs appear to be
suitable to describe j’s behavior even when the true policy is not implemented by a finite
controller.

When j is of type 1, we observe that its utility is actually higher that i’s, despite i being
the one that enables coordination. If we were to assume that i knew with certainty that j’s
policy was ctiger beforehand, the resulting flattened I-POMDP would be simple enough to
be solved exactly; i’s best response would be in this case a 10-node FSC (not depicted for
brevity.) The agents’ expected average rewards, computed analytically, would be 8.33 and
9.26 respectively for i and j , which are the values that we observe in the plot, although in our
case i has to learn j’s policy. When j is of type 2, the agents’ rewards observed in Fig. 10b
mirror the ones in Fig. 10a. This is quickly explained by the fact that j is here providing
a best response to ctiger , and therefore its behavior should be similar to the best response

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 891

0 500 1000 1500 2000 2500

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

A
vg
.
re
w
ar
d

t

Agent i
Agent j

(a)

0 500 1000 1500 2000 2500
−8

−6

−4

−2

0

2

4

A
vg
.
re
w
ar
d

t

Agent i
Agent j

(b)

Fig. 12 Average rewards for the two agents as i learns, in the aMaze and b AUAV domains

that i provides in the previous case. Now, if i is able to learn a PDFC of j that accurately
encodes this behavior, we already know that it should obtain an average reward that is at
least as high as the one obtained by j in the previous case. The fact that this is indeed the
case demonstrates the quality of i’s learning and planning. In both situations, we see how
i , despite being initially completely uninformed about j’s policy, quickly learns an accurate
predictive model, and then behaves approximately optimally with respect to this subjective
belief.

In both the Maze and AUAV domain, we consider the case in which j uses the POMCP
algorithm to make decisions, assuming a completely random model of agent i . The experi-
mental setup is the same as for the Tiger domain. The rewards depicted in Fig. 12 show that in
both domains agent i drastically increases its rewards as a result of learning, thus causing j’s
rewards to decrease. Note that i’s observation set has cardinality 144 and 625, respectively
for theMaze and AUAV domain, making the backward filtering operation in Eq. 23 very time
consuming. For this reason, an ad-hoc particle filter implementation [18] of this operation is
used in Algorithm 1 for these two larger domains.

Learning about j’s policy allows i to better predict j’s future trajectory. By planning its
own actions according to such predictions, agent i is able to move toward locations where j
will be in the future, instead of just chasing erratically after j . Two representative examples
of i’s behavior in the AUAV domain before and after having learned j’s PDFC are depicted
in Fig. 13a, b, respectively. In the left figure, we see that i moves in the general direction of j ,
but does not succeed in being co-located. In the right figure, instead of chasing blindly after
j , i smartly moves towards the left of the grid, where it intercepts j and collects its reward.

6.4.2 Self-play in the multiagent tiger domain

In this section, we focus on the multiagent Tiger domain and analyze the dynamics that
emerge when the two agents are simultaneously acting and learning about each other, that is,
when our approach is used in self-play.

We consider two types of agents, whose only difference is in the reward function. The first
type, that we call “altruistic”, receives the same payoff as in the previous section. The second
type, denoted as “selfish”, receives a reward of 50 when finding the gold if the other agent
does not open the same door (i.e. it opens the other door or listens), and 10 otherwise. All

123

892 Auton Agent Multi-Agent Syst (2017) 31:861–904

(a) (b)

Fig. 13 Sample trajectories in the AUAV domain, before and after i learns j’s model. a Before learning. b
After learning

other I-POMDP parameters are the same as before. The reward functions described above
are formalized in Table 3 in “Appendix 2”.

We consider the three combinations of agents being of the two types above, namely,
both agents being altruistic or selfish, and one being selfish and the other altruistic. The two
agents’ payoffs are clearly compatible when both are altruistic; we expect that they will want
to synchronize their actions in order to open the same door at the same time. When both
are selfish, we expect that the agents will try to “avoid each other”, whilst still trying to
accumulate optimal rewards. In the third case, the agents have conflicting goals. One will try
to synchronize, while the other will try do the opposite.

The agents do not know each others’ type. More strongly, they do not even know that the
other might be of one of the two types above. Indeed, the other agent’s preferences are never
modeled explicitly. Coordination, or lack thereof, will exclusively be the effect of the two
agents’ learning, and not of prior knowledge.

Figure 14 shows the results of our experiments. The plots in the top row report the agents’
average rewards, while the bottom charts depict the mean size of the learned PDFCs. The
simulations were run with the same parameters as before, only this time with a duration of
5000 timesteps.

When both agents are altruistic, their average rewards increase quickly and then stabilize
slightly above 10. The behavior of the two agents at this regime consists of iteratively listening
for one timestep, then immediately opening the door opposite the direction of the growl. This
behavior is synchronized: both agents listen, then open, and so on. This policy, here obtained
as a result of online planning, can be encoded as a finite controller with 3 nodes, shown in
Fig. 11b. The I-POMDP in which the other agent’s model is represented by such policy can
be solved analytically, and it can be shown that the best response is in fact the same 3-node
controller. This means that this policy is a best response to itself, hence an equilibrium.
Moreover, the expected utility of such strategy pair is 10.7, which is the value the rewards
converge to experimentally. The fact that the agents achieve an equilibrium without any prior
knowledge of each others’ payoffs or policy is remarkable and shows that, in this setting,
cooperation emerges naturally from our methodology. In the bottom of Fig. 14a we can see
that the average size of the inferred PDFCs initially grows and then decreases to about 4
nodes. While there might be some redundant nodes, it is evident that the size of the learned
models does not grow indefinitely, instead adjusting to the complexity of observed behavior,
due to the use of a Bayesian nonparametric prior.

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 893

0 1000 2000 3000 4000 5000

0

2

4

6

8

10

12

14

A
vg

.
re
w
ar
d

t

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

K

t

i’s model of j
j’s model of i

Agent i
Agent j

(a)

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

K

t

0 1000 2000 3000 4000 5000

0

2

4

6

8

10

12

14

t

A
vg

.
re
w
ar
d

Agent i
Agent j

i’s model of j
j’s model of i

(b)

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

K

t

0 1000 2000 3000 4000 5000

0

2

4

6

8

10

12

14

A
vg

.
re
w
ar
d

t

Agent i
Agent j

i’s model of j
j’s model of i

(c)

Fig. 14 Average rewards and number of nodes in the learned PDFCs in the Tiger domain, for different
combinations of agent types. a i altruistic, j altruistic. b i selfish, j selfish. c i selfish, j altruistic

Since two selfish agents want to avoid each other, their best combined strategy is arguably
to open doors every other timestep, as before, only now in an anti-synchronization pattern.
This is exactly the behavior generating the rewards reported in Fig. 14b, where the agents
quickly learn about each others’ policy. This pair of strategies can be encoded with two
3-node controllers of the type showed in Fig. 11b, with different starting nodes, that is, one
agent starts listening, while the other starts by opening either door, yielding an expected
average utility of 13.15. Consider that with this strategy pair, an agent that opens a door
cannot speculate about what growl the other agent receives. Therefore, the only significant
pattern in the observed behavior of the opponent is the alternation of listening and (any)
opening, which can be encoded in a PDFC with two nodes. This is why the size of the
inferred controller drops to slightly above two in this case.

When the two agents have conflicting goals, their behavior is not easily predicted, and
their policies do not seem to converge to an equilibrium. The spikes in the initial part of the
reward plot in Fig. 14c are caused by the agents taking advantage of each others’ model in an
alternate pattern: first, the altruistic agent j takes advantage of i’s initial aggressive policy by
synchronizing door openings; after the next learning cycle, j recognizes this behavior and is
able to respond by delaying opening doors. As time progresses, the combined behavior of the
two agents starts to vary from run to run and becomes more difficult to analyze. This is due to
the stochastic nature of the environment, and of the planning and learning algorithms. How-
ever, looking at individual runs, one could observe that the reciprocal exploitation dynamics
described above re-emerge at irregular intervals. The agents exhibit a more complex behavior
than in the previous two cases, which is reflected in the size of the learned PDFCs.

Figure 15 reports the rewards for all three cases when reducing the size of the re-train
sequence and intervals from 500 to W = ΔTupdate = 200. We can see that for this problem
the reward dynamics remain the same even when using shorter and more frequent updates.
While this is true in this specific domain, we cannot claim that in general the results are

123

894 Auton Agent Multi-Agent Syst (2017) 31:861–904

0 1000 2000 3000

2

4

6

8

10

12
A
vg

.
R
ew

ar
d

t

(a)

0 1000 2000 3000
6

8

10

12

14

A
vg

.
R
ew

ar
d

t

(b)

0 1000 2000 3000

0

2

4

6

8

10

A
vg

.
R
ew

ar
d

t

(c)

Fig. 15 Average rewards in the Tiger domain for different combinations of agent types, with ΔTupdate =
W = 200. a i altruistic, j altruistic. b i selfish, j selfish. c i selfish, j altruistic

qualitatively unaffected by varying the size of observation window and update frequency.
We defer the investigation of this important aspect to future research.

6.4.3 Social dynamics: “Follow the Leader”

In this section, we consider a further variation of the multiagent Tiger Problem, in which both
agents are “indifferent” with respect to sharing or not sharing the gold with the other agents.
In this case, however, the agents are endowed with asymmetric growl observation functions:
agent i perceives growls with accuracy 0.96, while j has a hearing accuracy of only 0.7.
Moreover, when either agent opens a door, the tiger persists in its current location with 0.96
probability, instead of being relocated uniformly at random. The complete specification for
this domain is provided in Table 4 in “Appendix 2”.

Given its high hearing accuracy, agent i only needs to hear one growl in order to be
sufficiently confident about the position of the tiger and open the opposite door. On the other
hand, agent i becomes confident enough about the tiger’s position only after the number of
growls coming from one door is 5 more than the growls coming from the other door. As a
result, the interaction between these two agents is initially very asymmetric, with i opening
doors frequently and collecting high rewards, and j acting more timidly and gathering very
little.

However, we see in Fig. 16 that there is a significant improvement in j’s rewards after
learning about i’s model. This is due to j’s ability to perform inference about the location
of the tiger from observing i’s actions. Intuitively, j’s reasoning is that, if agent i (who j
knows has good hearing) opened a door, it means that the gold was probably there, and it
likely still is, given that it persists with high probability in its location. This dynamics has
previously been analyzed from an I-POMDP perspective using intentional models [50], and
given the name “Follow the Leader.” In the intentional case, however, it is assumed that j
knows i’s reward function, and therefore knows that i wants to avoid the tiger, making it
straightforward to deduce that the door it opens likely leads to the gold.

In our case, instead, j does not know agent i’s preferences, and in fact never attempts at
modeling them. Yet, j is able to increase its performance as a result of learning about i’s
policy in the form of a PDFC. This is somewhat surprising: j’s observation function does not
change as a result of learning, yet j is able to better locate the tiger by “piggy-back riding”
on i’s behavior, even though j does not know about i’s preferences. This is possible because,
using its own (very uncertain!) past observations, j is able to recognize a pattern between the
growls, that are stochastically related to the position of the tiger, and the creaks, that depend

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 895

Fig. 16 Average rewards for the
“follow the leader” scenario. The
gray area represents the 95%
confidence interval

0 1000 2000 3000 4000 5000
−1

0

1

2

3

4

5

A
vg
.
re
w
ar
d

t

Agent i
Agent j

on i’s actions. This establishes a relation between i’s actions and the state of the world, that
is implicitly encoded in the learned PDFCs. Agent j then exploits this pattern to effectively
augment its feeble hearing.

7 Conclusion and future work

In this paper, we presented a novel approach to interactive POMDPs where other agents are
modeled as probabilistic deterministic finite controllers (PDFCs). In order to do so, we con-
structed a suitable Bayesian nonparametric prior on the space of PDFCs that allows the size of
the controllers to scale with the complexity of the observed behavior. We designed an ad-hoc
MCMC learning algorithm that allows to learn accurate PDFCs representing agents’ policies
from a sequence of observations, that is in general only a noisy realization of the modeled
agent’s behavior. We showed how to embed the learned PDFCs in the modeling agent’s own
decision making process, specializing the general I-POMDP framework to subintentional
models. Moreover, we provided a methodology that allows an agent to interleave learn-
ing about other agents and planning during execution, by combining our MCMC learning
algorithm with an online POMDP solver.

Our experimental results validate the proposedmethodology. For three domains of varying
complexity, we show that the MCMC algorithm learns PDFCs that converge behaviorally to
the true controllers generating the data, under perfect observability of the modeled agents’
behavior trajectory. Even removing this assumption, the agent is able to learn models that
when exploited in an I-POMDP framework allow its rewards to increase, by capturing relevant
patterns in observed agent’s behavior. We demonstrate how this continues to be true even
when learning and planning are interleaved at execution time. Moreover, we analyze the
dynamics emergingwhen two agents simultaneously learn about each other in one interaction
domain, showing that cooperation, if beneficial, emerges naturally from our approach. Lastly,
we provide an example of how learning another agent’s PDFC allows to augment one’s
observation capabilities, by performing indirect inference via the modeled agents’ behavior.

There are several directions for future work. While we provide a method for interleaving
learning and planning periodically, a fully online learning method would update the other

123

896 Auton Agent Multi-Agent Syst (2017) 31:861–904

agent’s models at every timestep, instead of just updating the belief over an ensemble of
PDFCs as in the current approach. Even though online nonparametric Bayesian inference is
currently still a niche in its early development, we believe that particle-based learners [39]
are a promising avenue to achieve this goal and would integrate fully with particle-based
planning algorithms such as POMCP. We believe that particle-based methods can provide as
much speedup in the learning phase as they do in online POMDP planning, thus allowing
our methodology to be applied to more complex problems.

Throughout this work, we assume that the observation function of other agents is known.
However, if this is not true, and especially if their observation function is completely unknown,
it should also be the subject of learning. At the current time, it is unclear whether an agent
would be able to learn separately another agents’ observation function and its policy, since the
impact of these two elements may not be discernible from the point of view of the observer.
Learning a combined model that directly maps the observer’s actions and the state of the
world to the other agents’ actions might be a better approach in this situation.

As mentioned before, our approach makes no assumption of knowledge about the other
agents’ preferences. This makes the approach general, but the learned PDFCs are hardly
applicable outside the domain where they were obtained. On the other hand, learning explic-
itly about an agent’s preferences would generate transferable knowledge that the agent can
exploit in different situations. This problem is similar to inverse reinforcement learning, that
has been extensively studied in the context of (fully observable) MDPs [44,54,64]. Although
there are less results for inverse reinforcement learning in partially observable domains, we
believe that recent approaches, such as [9], can be applied to our case, making it possible to
back-engineer information about an agent’s utilities from the learned PDFC policies.

Appendix 1: Derivation of the induced prior probability on the number of
nodes

We want to obtain the probability of K , the number of nodes that gets “instantiated” when
drawing from the prior in Eq. 12 as a function of the concentration parameter α, the number
of actionsG and observations H .We can view the process of sampling a PDFC from the prior
recursively, starting from one single node and drawing its outgoing transitions according to
Eq. 13, some of which may point to new nodes; we then do the same with the second node,
if any, and so on. By “instantiated” nodes, we refer to the nodes drawn as a result of this
procedure. Since the prior is an exchangeable probability distribution, there is no loss of
generality in interpreting a draw from p(τ |α) sequentially as above.

Let us now derive the probability over the number of nodes K induced by this sequential
drawing procedure.Weobserve that K is the index of the first nodewhose outgoing transitions
τK ·· all point to already existing nodes (including node K itself.) We will start from K = 1,
K = 2, K = 3, and then derive a general rule. Let us denote as Y = GH the number of
outgoing transitions from each node. In the following, we index the transitions in the order
that they are sampled in our schema, so that transitions 1 ≤ y ≤ Y are from the first node,
transitions (Y + 1) ≤ y ≤ 2Y are from the second node, and so on. From what we described
above, we know that K = 1 if and only if all of the first node’s outgoing transitions point to
itself, i.e., no new node is generated besides the first, which is created with probability one
(α
α
). According to the CRP rule, the probability of this happening is:

p(K = 1|α) = α

α

1

(1 + α)

2

(2 + α)
. . .

Y

(Y + α)
= αY !

α(Y+1)
, (31)

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 897

where α(Y+1) is the Pochhammer symbol indicating the rising factorial α(Y+1) = α(α +
1)(α + 2) . . . (α + Y).

For K = 2, it must be the case that at least one of the first node’s outgoing transitions
points to the second node, and the second node’s transitions all point to the first or second
node. The transition from the first to the second node with the lowest index, that is, the one
that “generated” the second node when sampled, can be any of the first node’s Y outgoing
transitions, therefore:

p(K = 2|α) = α

α(2Y)

(2Y)!
Y !

(
α · 2 · . . . · Y + 1 · α · . . . · Y + . . . + 1 · 2 · . . . · α)

. (32)

The sumof products between roundbrackets is the combinatorial quantitywhose computation
is critical in the general case.

Let us now consider K = 3: we know that there must be one transition from the first
node, having index say y ≤ Y , that points to the second node (and contributes “one α”)
and one transition indexed y < y′ ≤ 2Y that goes to the third node. This transition may
come from either the first or second node. The sum of products resulting from all such
possible configurations of new transitions to the second and third node is needed to compute
p(K = 3|α). For a generic K , we have to consider all the “legal” configurations of the
(K − 1) “α’s” that occur in the nodes previously sampled. We formalize this concept by
introducing some definitions.

Definition 1 A configuration for a PDFC with K nodes is a binary vector wK =
(wK

1 , wK
2 , . . . , wK

(K−1)Y) of length (K − 1)Y , containing exactly (K − 1) zeros. Intuitively,
the position of the first zero in this sequence identifies the first transition that was sampled
to point to the second node, the second zero indicates the transition that first points to the
third node, and so on. We denote as Lk the position of the kth zero in a configuration. By
convention, L(0) = 0.

Therefore, LK−1 is the first transition that points to node K in a PDFC with K nodes. We
know that this transition must be drawn after the first transition to node (K − 1) is drawn.
This leads to the the definition of “legal” configuration.

Definition 2 A configuration wK is legal if, for all 0 < k < K , we have that Lk−1 < Lk <

Y (K − 1). We denote as WK the set of all legal configurations for a PDFC with K nodes.

Each legal configuration wK is associated to a quantity z(wK), that is the product of the
positions of ones in the configuration, i.e. z(wK) = ∏Y (K−1)

i=1 i · wK
i . The combinatorial

quantity that we need for computing the probability of having K nodes, denoted as φ(K), is
the sum of such quantities for all legal configurations, i.e.

φ(K) =
∑

wK∈WK

z(wK). (33)

If φ(K) is known, then the probability of having K nodes is given by

p(K |α) = αK

α(KY+1)

(KY)!
((K − 1)Y)!φ(K), (34)

where:

– αK are the numerators of the CRP terms corresponding to transition draws that resulted
in the creation of new nodes, including the α in the first vacuous term α

α
that “creates”

the first node;

123

898 Auton Agent Multi-Agent Syst (2017) 31:861–904

– α(KY+1) = α(α + 1)(α + 2) . . . (α + KY) is the rising factorial, resulting from the
product of the denominators of the CRP conditional distributions;

– (KY)!
((K−1)Y)! = (

(K − 1)Y · ((K − 1)Y + 1) · . . . · KY
)
are the numerators of CRP terms

for transitions outgoing from the last node K , that did not result in the creation of any
new node;

– φ(K) is the sum of products of legal configurations, described above.

Efficient computation

Abrute-force computation of the φ terms in Eq. 15, according to the formula in Eq. 33, would
have exponential complexity. In the following, we instead describe a way to compute φ(K)

more efficiently. Let us introduce the quantity φ(K , l), that represents the sum of products
z(wK) for legal configurations having the last zero in position l, i.e. LK−1 = l. Since the last
zero in a legal configuration for a PDFC with K nodes can occur between positions K − 1
and Y (K − 1), we have that φ(K) = ∑Y (K−1)

l=K−1 φ(K , l). In order to make its manipulation
easier, we decompose φ(K , l) into the sum of products of the configurations truncated at
index l included, denoted as φ̄(K , l), and the remaining product of the configuration (which
does not contain any zero), i.e.:

φ(K , l) = φ̄(K , l) (l + 1)(l + 2) . . . ((K − 1)Y). (35)

It follows that:

φ(K) =
Y (K−1)∑

l=K−1

q̄(K , l)
((K − 1)Y)!

l! . (36)

We can now derive a recursive relation for φ̄(K , l) from φ̄(K , l − 1). When “moving”
the position of the last α from (l − 1) to l, we have to multiply the previous φ̄ by (l − 1),
since in the corresponding configuration the element wK

l−1 switched from 0 to 1. Moreover,
by shifting the position of the last α to l, we must acknowledge that there are now potentially
more configurations that are legal for the first (K − 2) α’s, that is to say LK−2 can now
take the value l − 1. This is only true when l − 1 is a legal value for LK−2, i.e. when
(l − 1) < (K − 2)Y . Putting all this together, we have:

φ̄(K , l) = (l − 1) φ̄(K , l − 1) +
{

φ̄(K − 1, l − 1) if (l − 1) < (K − 2)Y

0 otherwise.
(37)

Computing the values ofφ in thisway has a complexity ofO(K 2), much lower thanO(2K)

that results from direct computation of Eq. 33. Moreover, these values can be pre-computed
and stored, since they are not dependent on α, and used when needed.

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 899

Appendix 2: Tiger problem specifications

Table 1 Specification of the “standard” multiagent Tiger problem

Transition function i’ s reward function j’ s reward function

(ai , a j) s TL TR (ai , a j) TL TR (ai , a j) TL TR

(L , L) T L 1 0 (L , ∗) −1 −1 (∗, L) −1 −1

(L , L) T R 0 1 (OL , L) −100 10 (L , OL) −100 10

(OL , ∗) ∗ 0.5 0.5 (OL , OL) −100 10 (OL , OL) −100 10

(OR, ∗) ∗ 0.5 0.5 (OL , OR) −100 10 (OR, OL) −100 10

(∗, OL) ∗ 0.5 0.5 (OR, L) 10 −100 (L , OR) 10 −100

(∗, OR) ∗ 0.5 0.5 (OR, OL) 10 −100 (OL , OR) 10 −100

(OR, OR) 10 −100 (OR, OR) 10 −100

i’s observation function
Growls Creaks

(ai , a j) s GL GR (ai , a j) s S CL CR

(L , ∗) T L 0.85 0.15 (∗, L) ∗ 0.9 0.05 0.05

(L , ∗) T R 0.15 0.85 (∗, OL) ∗ 0.05 0.9 0.05

(OL , ∗) ∗ 0.5 0.5 (∗, OR) ∗ 0.05 0.05 0.9

(OR, ∗) ∗ 0.5 0.5 (OL , ∗) * 1/3 1/3 1/3

(OR, ∗) * 1/3 1/3 1/3

j’s observation function
Growls Creaks

(ai , a j) s GL GR (ai , a j) s S CL CR

(∗, L) T L 0.85 0.15 (L , ∗) ∗ 0.9 0.05 0.05

(∗, L) T R 0.15 0.85 (OL , ∗) ∗ 0.05 0.9 0.05

(∗, OL) ∗ 0.5 0.5 (OR, ∗) ∗ 0.05 0.05 0.9

(∗, OR) ∗ 0.5 0.5

The observation function is factored into growls and creaks

123

900 Auton Agent Multi-Agent Syst (2017) 31:861–904

Table 2 Specification of the cooperative multi-agent Tiger Problem with observable actions

Transition function i’s reward function j’s reward function

(ai , a j) s TL TR (ai , a j) TL TR (ai , a j) TL TR

(L , L) T L 1 0 (L , ∗) −1 −1 (∗, L) −1 −1

(L , L) T R 0 1 (OL , L) −100 10 (L , OL) −100 10

(OL , ∗) ∗ 0.5 0.5 (OL , OL) −100 50 (OL , OL) −100 50

(OR, ∗) ∗ 0.5 0.5 (OL , OR) −100 10 (OR, OL) −100 10

(∗, OL) ∗ 0.5 0.5 (OR, L) 10 −100 (L , OR) 10 −100

(∗, OR) ∗ 0.5 0.5 (OR, OL) 10 −100 (OL , OR) 10 −100

(OR, OR) 50 −100 (OR, OR) 50 −100

i’s observation function
Growls Creaks

(ai , a j) s GL GR (ai , a j) s S CL CR

(L , ∗) T L 0.85 0.15 (∗, L) ∗ 1 0 0

(L , ∗) T R 0.15 0.85 (∗, OL) ∗ 0 1 0

(OL , ∗) ∗ 0.5 0.5 (∗, OR) ∗ 0 0 1

(OR, ∗) ∗ 0.5 0.5

j’s observation function
Growls Creaks

(ai , a j) s GL GR (ai , a j) s S CL CR

(∗, L) T L 0.85 0.15 (L , ∗) ∗ 1 0 0

(∗, L) T R 0.15 0.85 (OL , ∗) ∗ 0 1 0

(∗, OL) ∗ 0.5 0.5 (OR, ∗) ∗ 0 0 1

(∗, OR) ∗ 0.5 0.5

The changes from the standard version are highlighted in bold

Table 3 Alternative reward
models for the multiagent Tiger
Problem

“Altruistic” agent “Selfish” agent

(ai , a j) TL TR (ai , a j) TL TR

(L , ∗) −1 −1 (L , ∗) −1 −1

(OL , L) −100 10 (OL , L) −100 50

(OL , OL) −100 50 (OL , OL) −100 10

(OL , OR) −100 10 (OL , OR) −100 50

(OR, L) 10 −100 (OR, L) 50 −100

(OR, OL) 10 −100 (OR, OL) 50 −100

(OR, OR) 50 −100 (OR, OR) 10 −100

The differences from the standard
formulation are highlighted in
bold

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 901

Table 4 Specification of the cooperative multi-agent Tiger Problem in the “Follow the Leader” scenario

Transition function i’s reward function j’s reward function

(ai , a j) s TL TR (ai , a j) TL TR (ai , a j) TL TR

(L , L) T L 1 0 (L , ∗) −1 −1 (∗, L) −1 −1

(L , L) T R 0 1 (OL , L) −100 10 (L , OL) −100 10

(OL , ∗) T L 0.96 0.04 (OL , OL) −100 10 (OL , OL) −100 10

(OL , ∗) T R 0.04 0.96 (OL , OR) −100 10 (OR, OL) −100 10

(OR, ∗) T L 0.96 0.04 (OR, L) 10 −100 (L , OR) 10 −100

(OR, ∗) T R 0.04 0.96 (OR, OL) 10 −100 (OL , OR) 10 −100

(∗, OL) T L 0.96 0.04 (OR, OR) 10 −100 (OR, OR) 10 −100

(∗, OL) T R 0.04 0.96

(∗, OR) T L 0.96 0.04

(∗, OL) T R 0.04 0.96

i’s observation function
Growls Creaks

(ai , a j) s GL GR (ai , a j) s S CL CR

(L , ∗) T L 0.96 0.04 (∗, L) ∗ 1 0 0

(L , ∗) T R 0.04 0.96 (∗, OL) ∗ 0 1 0

(OL , ∗) ∗ 0.5 0.5 (∗, OR) ∗ 0 0 1

(OR, ∗) ∗ 0.5 0.5

j’s observation function
Growls Creaks

(ai , a j) s GL GR (ai , a j) s S CL CR

(∗, L) T L 0.7 0.3 (L , ∗) ∗ 1 0 0

(∗, L) T R 0.3 0.7 (OL , ∗) ∗ 0 1 0

(∗, OL) ∗ 0.5 0.5 (OR, ∗) ∗ 0 0 1

(∗, OR) ∗ 0.5 0.5

The position of the tiger is persistent upon openings with probability 0.96 and the agents have asymmetric
growl hearing abilities. The changes from the standard version are in bold

References

1. Albrecht, S., Crandall, J., & Ramamoorthy, S. (2016). Belief and truth in hypothesised behaviours. Arti-
ficial Intelligence, 235, 63–94.

2. Balle, B., Quattoni, A., & Carreras, X. (2011). A spectral learning algorithm for finite state transducers.
In D. Gunopulos, T. Hofmann, D. Malerba, M. Vazirgiannis (Eds.) Machine learning and knowledge
discovery in databases, Lecture Notes in Computer Science, vol. 6911, (pp. 156–171). Berlin, Heidelberg:
Springer.

3. Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decentralized
control of Markov decision processes. Mathematics of Operations Research, 27(4), 819–840.

4. Bowling, M., & Veloso, M. (2002). Multiagent learning using a variable learning rate. Artificial Intelli-
gence, 136, 215–250.

5. Brown, G. W. (1951). Iterative solutions of games by fictitious play. In Activity analysis of production
and allocation, (pp. 374–376). London: Wiley.

6. Carmel, D., Markovitch, S. (1996). Learning models of intelligent agents. In Proceedings of the 13th
national conference on artificial intelligence, (pp. 62–67).

123

902 Auton Agent Multi-Agent Syst (2017) 31:861–904

7. Celeux, G., Hurn, M., & Robert, C. P. (2000). Computational and inferential difficulties with mixture
posterior distributions. Journal of the American Statistical Association, 95(451), 957–970.

8. Chakraborty, D., & Stone, P. (2008). Online multiagent learning against memory bounded adversaries.
In Machine learning and knowledge discovery in databases, European conference, ECML/PKDD 2008,
Antwerp, Belgium, September 15–19, 2008, Proceedings, Part I, (pp. 211–226).

9. Choi, J., & Kim, K. E. (2011). Inverse reinforcement learning in partially observable environments.
Journal of Machine Learning Research, 12, 691–730.

10. Conitzer, V., & Sandholm, T. (2007). Awesome: A general multiagent learning algorithm that converges
in self-play and learns a best response against stationary opponents.Machine Learning, 67(1–2), 23–43.

11. Conroy, R., Zeng, Y., Cavazza, M., & Chen, Y. (2015). Learning behaviors in agents systems with
interactive dynamic influence diagrams. InProceedings of the twenty-fourth international joint conference
on artificial intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, (pp. 39–45).

12. Dennett, D. C. (1971). Intentional systems. Journal of Philosophy, 68(February), 87–106.
13. Doshi, P.,&Gmytrasiewicz, P. J. (2006).On the difficulty of achieving equilibrium in interactivePOMDPs.

InProceedings of the 21st national conference on artificial intelligence, vol. 2, AAAI’06, (pp. 1131–1136).
AAAI Press.

14. Doshi, P., & Gmytrasiewicz, P. J. (2009). Monte Carlo sampling methods for approximating interactive
POMDPs. Journal of Artificial Intelligence Research, 34(1), 297–337.

15. Doshi, P., & Perez, D. (2008). Generalized point based value iteration for interactive POMDPs. In D. Fox,
& C. P. Gomes (Eds.) AAAI, (pp. 63–68). AAAI Press.

16. Doshi, P., Zeng, Y., & Chen, Q. (2009). Graphical models for interactive POMDPs: Representations and
solutions. Autonomous Agents and Multi-Agent Systems, 18(3), 376–416.

17. Doshi-Velez, F., Pfau, D., Wood, F., & Roy, N. (2013). Bayesian nonparametric methods for partially-
observable reinforcement learning. In IEEE transactions on pattern analysis and machine intelli-
gence99(PrePrints), 1.

18. Doucet, A., & Johansen, A.M. (2009). A tutorial on particle filtering and smoothing: Fifteen years later. In
D. Crisan & B. Rozovsky (Eds.), The oxford handbook of nonlinear filtering. Oxford: Oxford University
Press.

19. Escobar, M. D., & West, M. (1994). Bayesian density estimation and inference using mixtures. Journal
of the American Statistical Association, 90, 577–588.

20. Fudenberg, D., & Levine, D. K. (1998). The theory of learning in games. InMIT Press series on economic
learning and social evolution. The MIT Press, Cambridge (Mass.), London.

21. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis (2nd ed.). London:
Chapman and Hall/CRC.

22. Gmytrasiewicz, P. J. (1995). On reasoning about other agents. In Intelligent agents II, agent theories,
architectures, and languages, IJCAI ’95, workshop (ATAL), Montreal, Canada, August 19–20, 1995,
Proceedings, (pp. 143–155).

23. Gmytrasiewicz, P. J., & Doshi, P. (2005). A framework for sequential planning in multi-agent settings.
Journal of Artificial Intelligence Research, 24(1), 49–79.

24. Green, P. J., & Richardson, S. (2001). Modelling heterogeneity with and without the Dirichlet process.
Scandinavian Journal of Statistics, 28(2), 355–375.

25. Hansen, E. (1998). SolvingPOMDPsby searching in policy space. InProceedings of the 14th international
conference on uncertainty in artificial intelligence, (pp. 211–219).

26. Harsanyi, J. (1967). Games with incomplete information played by “Bayesian” players. Management
Science, 14(3), 159–182.

27. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1), 97–109.

28. de la Higuera, C. (2010). Grammatical inference: Learning automata and grammars. New York, NY:
Cambridge University Press.

29. Hjort, N. L., Holmes, C.,Müller, P., &Walker, S. G. (Eds.). (2010).Bayesian nonparametrics. Cambridge:
Cambridge University Press.

30. Jain, S., & Neal, R. M. (2004). A split-merge markov chain Monte Carlo procedure for the Dirichlet
process mixture model. Journal of Computational and Graphical Statistics, 13(1), 158–182.

31. Jain, S., & Neal, R. M. (2007). Splitting and merging components of a nonconjugate Dirichlet process
mixture model. Bayesian Analysis, 2(3), 445–472.

32. Kadane, J. B., & Larkey, P. D. (1982). Subjective probability and the theory of games. Management
Science, 28(2), 113–120.

33. Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101, 99–134.

123

Auton Agent Multi-Agent Syst (2017) 31:861–904 903

34. Kalai, E., & Lehrer, E. (1993). Rational learning leads to nash equilibrium. Econometrica, 61(5), 1019–
1045.

35. Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Proceedings of the 17th
European conference on machine learning, ECML’06, (pp. 282–293). Berlin, Heidelberg: Springer.

36. Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Pro-
ceedings of 11th international conference on machine learning, (pp. 157–163). Morgan Kaufmann.

37. Liu, M., Amato, C., Liao, X., Carin, L., & How, J. P. (2015). Stick-breaking policy learning in Dec-
POMDPs. In Proceedings of the twenty-fourth international joint conference on artificial intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, (pp. 2011–2018).

38. Liu, M., Liao, X., & Carin, L. (2011). The infinite regionalized policy representation. In L. Getoor,
T. Scheffer (Eds.) Proceedings of the 28th international conference on machine learning, (pp. 769–776).

39. Lopes, H., Carvalho, C. M., Johannes, M. S., & Polson, N. G. (2011). Particle learning for sequential
Bayesian computation. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, Smith,
A. F. M., West, M. (Eds.) Bayesian Statistics 9, (pp. 317–360). Oxford: Oxford University Press.

40. Mccallum,A.K. (1996).Reinforcement learningwith selective perception and hidden State. Ph.D. Thesis,
The University of Rochester

41. Meuleau, N., Peshkin, L., Kim, K. E., & Kaelbling, L. P. (1999). Learning finite-state controllers for
partially observable environments. In Proceedings of the 15th international conference on uncertainty in
artificial intelligence, (pp. 427–436).

42. Miller, J. M., & Harrison, M. T.: Mixture models with a prior on the number of components. CoRR
arXiv:1502.06241v1 [stat.ME] (2015). Preprint

43. Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of
Computational and Graphical Statistics, 9(2), 249–265.

44. Ng, A. Y., & Russell, S. (2000). Algorithms for inverse reinforcement learning. In Proceedings of the
17th international conference on machine learning, (pp. 663–670). Morgan Kaufmann.

45. Oncina, J., García, P., & Vidal, E. (1993). Learning subsequential transducers for pattern recognition
interpretation tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(5), 448–458.

46. Paisley, J., & Carin, L. (2009). Hidden Markov models with stick-breaking priors. IEEE Transactions on
Signal Processing, 57(10), 3905–3917.

47. Papadimitriou, C., & Tsitsiklis, J. N. (1987). The complexity of Markov decision processes.Mathematics
of Operations Research, 12(3), 441–450.

48. Pfau, D., Bartlett, N., & Wood, F. (2010). Probabilistic deterministic infinite automata. In Advances in
neural information processing systems, (pp. 1930–1938).

49. Pineau, J.,Gordon,G.,&Thrun, S. (2003). Point-based value iteration: an anytime algorithm for POMDPs.
In Proceedings of the 18th international joint conference on artificial intelligence, IJCAI’03, (pp. 1025–
1030). San Francisco, CA: Morgan Kaufmann Publishers Inc.

50. Polich, K., & Gmytrasiewicz, P. (2007). Interactive dynamic influence diagrams. In Proceedings of the
6th international joint conference on autonomous agents and multiagent systems, AAMAS ’07, (pp.
341–343). New York, NY: ACM.

51. Poupart, P., Boutilier, C. (2003). Bounded finite state controllers. In Advances in neural information
processing systems 16.

52. Powers, R., & Shoham, Y. (2005). Learning against opponents with bounded memory. In Proceedings of
the 19th international joint conference on artificial intelligence, IJCAI’05, (pp. 817–822). San Francisco,
CA: Morgan Kaufmann Publishers Inc.

53. Rabiner, L.R. (1989).A tutorial on hiddenMarkovmodels and selected applications in speech recognition.
In Proceedings of the IEEE, (pp. 257–286).

54. Ramachandran, D., & Amir, E. (2007). Bayesian inverse reinforcement learning. In Proceedings of the
20th international joint conference on artical intelligence, vol. 51, pp. 2586–2591.

55. Ross, S., Draa, B. C., & Pineau, J. (2007). Bayes-adaptive POMDPs. In Proceedings of the conference
on neural information processing systems.

56. Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Englewood Cliffs,
NJ: Prentice Hall.

57. Shoham, Y., & Leyton-Brown, K. (2008). Multiagent systems: Algorithmic, game-theoretic, and logical
foundations. New York, NY: Cambridge University Press.

58. Silver, D., & Veness, J. (2010). Monte-Carlo planning in large POMDPs. In J. Lafferty, C. Williams, J.
Shawe-Taylor, R. Zemel, & A. Culotta (Eds.), Advances in neural information processing systems 23 (pp.
2164–2172). Curran Associates Inc.

59. Sondik, E. J. (1978). The optimal control of partially observable Markov processes over the infinite
horizon: Discounted costs. Operations Research, 26(2), 282–304.

123

http://arxiv.org/abs/1502.06241v1

904 Auton Agent Multi-Agent Syst (2017) 31:861–904

60. Sonu, E., & Doshi, P. (2012). Generalized and bounded policy iteration for interactive POMDPs. In
International symposium on artificial intelligence and mathematics (ISAIM).

61. Wright, J. R., & Leyton-Brown, K. (2012). Behavioral game theoretic models: A Bayesian framework for
parameter analysis. In International conference on autonomous agents and multiagent systems, AAMAS
2012, Valencia, Spain, June 4–8, 2012 (3 Volumes), (pp. 921–930).

62. Yoshida, W., Dolan, R. J., & Friston, K. J. (2008). Game theory of mind. PLoS Comput Biol, 4(12),
e1000,254+.

63. Zeng, Y., & Doshi, P. (2012). Exploiting model equivalences for solving interactive dynamic influence
diagrams. Journal of Artificial intelligence Research, 43(1), 211–255.

64. Ziebart, B. D., Maas, A., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse reinforcement
learning. In Proceedings of the 23rd national conference on artificial intelligence, vol. 3, AAAI’08, (pp.
1433–1438). AAAI Press.

123

	Interactive POMDPs with finite-state models of other agents
	Abstract
	1 Introduction
	2 Context and background
	2.1 Related work: model-based multiagent learning
	2.1.1 Discussion: the case for explicit opponent modeling

	2.2 Interactive POMDPs
	2.2.1 Intentional I-POMDPs
	2.2.2 Discussion: intentional and subintentional I-POMDPs

	2.3 Probabilistic deterministic finite-state controllers
	2.4 Partially observable Monte Carlo planning for POMDPs

	3 A prior distribution for PDFCs
	3.1 The need of a suitable prior
	3.2 Prior distribution over the transition function
	3.2.1 Induced distribution over the number of nodes

	3.3 Distribution over the emission function
	3.4 Alternative priors and related work

	4 Bayesian learning of PDFCs
	4.1 Learning setup
	4.2 MCMC sampler for PDFC inference
	4.2.1 Incremental moves (Algorithm 1, line 8)
	4.2.2 Splitting and merging nodes (Algorithm 1, line 9)
	4.2.3 Sampling hidden sequences (Algorithm 1, line 12)
	4.2.4 Resampling hyperparameters (Algorithm 1, line 13)

	5 Planning against the learned models
	5.1 Subintentional I-POMDP with PDFC models
	5.2 Solving subintentional I-POMDPs with Monte Carlo methods
	5.3 Two-phase approach
	5.4 Interleaved learning and planning
	5.4.1 Resampling j's PDFCs in the POMCP algorithm

	5.5 Note: generalization to more than two agents

	6 Experimental results
	6.1 Experimental domains
	6.1.1 Multiagent tiger problem
	6.1.2 3times4 maze
	6.1.3 AUAV reconnaissance

	6.2 Learning PDFCs from observable trajectories
	6.3 Learning offline and planning
	6.4 Learning and planning online
	6.4.1 Interacting with a stationary opponent
	6.4.2 Self-play in the multiagent tiger domain
	6.4.3 Social dynamics: ``Follow the Leader''

	7 Conclusion and future work
	Appendix 1: Derivation of the induced prior probability on the number of nodes
	Efficient computation

	Appendix 2: Tiger problem specifications
	References

