Auton Agent Multi-Agent Syst (2017) 31:423-468 @ CroseMark
DOI 10.1007/510458-016-9327-7

Requirements specification via activity diagrams for
agent-based systems

Yoosef Abushark!(® - Tim Miller? -
John Thangarajah! . Michael Winikoff> - James Harland!

Published online: 9 February 2016
© The Author(s) 2016

Abstract Goal-oriented agent systems are increasingly popular for developing complex
applications that operate in highly dynamic environments. As with any software these systems
have to be designed starting with the specification of system requirements. In this paper, we
extend a popular agent design methodology, Prometheus, and improve the understandability
and maintainability of requirements by automatically generating UML activity diagrams
from existing requirements models; namely scenarios and goal hierarchies. This approach
aims to overcome some of the ambiguity present in the current requirements specification in
Prometheus and provide more structure for representing variations. Even though our approach
is grounded in Prometheus, it can be generalised to all the methodologies that support similar
notions in specifying requirements (i.e. notions of goals and scenarios). We present our
approach and an evaluation based on user experiments. The evaluation showed that the activity
diagram based approach enhances people’s understanding of the requirements, makes it easier
to modify requirements, and easier to check them against the detailed design of the agents
for coverage.

Keywords Requirements specification - AOSE - Prometheus methodology

B Yoosef Abushark
yoosef.abushark @rmit.edu.au

Tim Miller
tmiller @unimelb.edu.au

John Thangarajah
john.thangarajah @rmit.edu.au

Michael Winikoff
michael. winikoff @otago.ac.nz

James Harland
james.harland @rmit.edu.au

RMIT University, Melbourne, Australia
University of Melbourne, Melbourne, Australia

University of Otago, Dunedin, New Zealand

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-016-9327-7&domain=pdf
http://orcid.org/0000-0002-9166-5504

424 Auton Agent Multi-Agent Syst (2017) 31:423-468

1 Introduction

Intelligent agent technology is increasingly employed in the development of complex appli-
cations such as UAVs, military simulation systems, logistics and planning [30,31]. The
development of such systems requires appropriate design methodologies. To this end, numer-
ous agent-oriented software engineering (AOSE) methodologies have been proposed [22,44].
A fundamental aspect of all these methodologies is the specification of requirements. While
all these methodologies include requirements specifications, they vary in the approaches and
techniques applied.

Prometheus [33] is a well-established methodology that provides support for the complete
agent software development cycle. Currently, the requirements of the system are specified
via scenarios, goals and interfaces to the environment. A scenario is similar to a use case [24]
and describes a particular run of the system as a sequence of steps. These step types include
percepts,! actions or goals. Goals can be decomposed into sub-goals, using a goal-tree. The
combination of the scenarios together with the goal trees forms part of the requirements for
the system.

There are a number of limitations in the current representation: (i) scenarios only capture
a sequence of steps, which means that steps that could be performed in parallel can only be
shown as a sequence; (ii) variations to the scenario are captured informally as English text;
and (iii) the distribution of the requirements between scenarios and goal-trees means that it
is not always easy to understand and modify the requirements specification. This makes it
more difficult to check for coverage of the requirements, and can lead to potential design
errors (see Sect. 5).

In this work, we propose using UML activity diagrams as a more structured representation
of requirements specification to complement the process in the Prometheus agent design
methodology. Scenarios and goal-trees have their own advantages, and form an integral part
of the Prometheus methodology. Hence our proposal is not to replace these design artefacts
but to complement them with activity diagrams as a way of overcoming the current limitations.
We do this by taking a scenario and the corresponding goal-trees> and generating an equivalent
activity diagram. The activity diagram generated represents and models the flows of only one
scenario at time. The designer can use this activity diagram to: (i) illustrate which steps in the
scenario can be attempted in parallel or specify that the ordering does not matter; (ii) specify
variations to the scenario in a structured manner; and (iii) better understand and modify the
requirements, due to having a holistic view of the requirements specification in one diagram.

We performed a series of evaluations on fifteen participants, who were tasked with inter-
preting and modifying two different sets of requirements—one with an activity diagram and
one without—measuring their performance and asking for qualitative feedback. Our results
demonstrate that the participants were able to complete the tasks more correctly and faster
using an activity diagram, and that they unanimously preferred the addition of activity dia-
grams. Even though our approach is grounded in Prometheus, it can be generalised to all the
methodologies that support similar notion in specifying requirements (i.e. notions of goals
and scenarios).

This paper is organised as follows. Section 2 briefly introduces required background
prior to presenting our activity diagram based approach in Sect. 3. We discuss the potential
advantages of the approach in Sect. 4, and an empirical evaluation in Sect. 5. Finally, Sect. 6
outlines some related work, and Sect. 7 concludes.

! Events that represent inputs to the system from the environment.

2 That is, the goal-trees involving the scenario’s goal steps.

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 425

2 Background

In the context of this article, an agent system is a goal-oriented computer program that
acts on behalf of the user to achieve the goals desired. Such systems must be autonomous
in making the most suitable decisions based on their current environmental situation. The
level of abstraction that is offered by this paradigm helps system designers to manage the
complexity, and hence improve the construction of complex systems [25]. In addition, these
systems exhibit a set of characteristics that make this paradigm suitable for building systems
that operate in a highly dynamic and, often, unpredictable environments.

This section focuses on briefly explaining the related topics to this article. We first discuss
some of the most commonly used agent-oriented software engineering methodologies. This
involves requirements specifications as part of the process. The next section provides a brief
introduction to goal-oriented requirements engineering. We then explain the UML activity
diagrams and the adopted notations in our approach.

2.1 AOSE methodologies and requirements specifications

The agent-oriented software engineering field has a number of methodologies that assist
developers in structuring, planning and controlling the development process, including
MaSE [11], ROADMAP [26], Tropos [7], INGENIAS [35], Gaia [45,49], PASSI [8] and
Prometheus [33]. Also, there are a number of frameworks that allows process engineers to cre-
ate custom agent-oriented methodologies, such as FAML [4] and O-MaSE [14]. Each AOSE
methodology consists of a number of phases where a number of activities take place. The spec-
ification of requirements is usually the initial activity performed in the development lifecycle.
Whilst our method can be applied to a number of these methodologies, in this article we focus
on Prometheus, both due to our greater familiarity with this system and in order to provide
specific examples of our technique. However, we briefly explain some other methodologies
to show that they share similar design notions with respect to requirements specifications.

The Prometheus Methodology

The Prometheus methodology consists of three phases: the system specification phase,
the architectural design phase and the detailed design phase.

We now briefly introduce the relevant parts of Prometheus, using a trading agent system as
a running example.? This system models the processes that take place in a sales transaction,
and includes three agents: the seller, the buyer and the banker. The seller agent must send the
list of products to the buyer agent when it receives the “store opening” percept. The buyer
agent then selects a product. After that, the seller agent should send the buyer the price of
the selected item. The buyer agent should then proceed with the payment through the banker
agent. The banker agent then processes the payment and notifies both the seller and the buyer
about the payment process outcomes (approved or denied). The order of these notifications
is not important (e.g. seller first and buyer second or the other way around). In the case of an
approved payment, the seller must send the item to the buyer.

In the system specification phase (Fig. 1), a translation of the problem that the intended
system needs to solve is done based on the user requirements. Briefly, the requirements are
taken as an input and the initial specification of the system drawn defining the goals and the
scenarios. Additionally, the external entities (actors), system inputs (percepts) and system
outputs (actions) of the intended system are defined. The primary outputs from this phase

3 The description here is very brief, and we refer the reader to the literature for a full description [33].

@ Springer

426 Auton Agent Multi-Agent Syst (2017) 31:423-468

--------------------------------- > Initial

o reom I _ || Functionality
- ystems goals —lf descriptors

Actions, Percepts

Scenarios

System
specification

® : Agent Data ——.

3¢ Interaction acquaintance coupling 9

o O || diagrams

Se shared data ||<—

£ 3 \J

< Protocols System Agent
Overview descriptors

Legend
(C)final design artefact [__J] Intermediate design tool <&—-—# crosscheck — derivesJ

Fig. 1 Phases of the Prometheus methodology

Fig. 2 Sale transaction scenario

description Type Name Role
Percept | Store_Opening Seller
Goal | Send_ltem_List Seller
Goal | Select_ltem Buyer
Goal | Send_ltem_Price | Seller
Goal Make_Payment Buyer
[6]| Goal | Validate_Card Banker
Goal | Notify_Participants | Banker
Goal Send_ltem Seller

are a goal overview diagram, definition of the interface between the system-to-be and its
environment, and a collection of scenarios (see Fig. 1). In the Prometheus methodology,
scenarios consist of a sequence of steps, where each step can be an action (i.e. something the
agent does), a percept (i.e. an input from the environment), a goal to achieve, or a sub-scenario.
Each step is associated with a number of roles. Figure 2 shows a scenario in the trading agent
system. Note that the aim of the scenario is to capture an example trace through the system’s
behaviour, and it therefore does not specify a complete set of execution traces. However, as
we shall see in Sect. 3, we can use the information in scenarios and goal overview diagrams
to construct constraints that must be met by the detailed design of a multi-agent system
designed to meet these requirements. Goals are commonly modelled using a goal diagram
that shows the relationship between goals, including how goals are decomposed into sub-
goals. There are three types of goal decompositions (only two are shown in Fig. 3): disjunctive,
undirected conjunctive or directed conjunctive. The disjunctive decomposition (denoted by
OR) implies that a parent goal is realised if any of its children is realised. The undirected
conjunctive decomposition (denoted by AND) implies that a parent goal is realised if all its
children are realised in some, unspecified, order. The directed conjunctive decomposition
(denoted by AND with dashed arrows between the children) implies that a parent goal is
realised if all its children are realised in the specified order. The dashed arrows between the
children indicates the ordering constraints (e.g. Validate Card before Notify Participants).

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 427

Perform_Sale

AN {l
Confirm_Sale_Details Manag
AND,

AND

‘ Send Item_Price \
Make_Payment - Validate_Card -->_Notify_Participants
AND
Send Item List %
Notifiy_Buyer Notify_Seller

Fig. 3 Goal overview diagram for the trading agent system

Table 1 Notions adopted in specifying requirements in the seven AOSE methodologies

Goals Use cases/scenarios Other notations and models

Prometheus v 4 Role overview diagram

Tropos v X Actor diagram and rationale
diagram

MaSE v 4 Sequence diagrams and
concurrent task model

INGENIAS v v Organisation model and task
model

Gaia X X Environmental, role, protocol and
interaction models

ROADMAP v (4 Environmental, knowledge, role,
protocol and interaction models

PASSI X v UML packages, sequence

diagrams and activity diagrams

To distinguish between the two ANDs, we refer to the directed-conjunctive with SEQ in this
article. Figure 3 shows a goal overview diagram for the trading agent system,* which outlines
the goals and sub-goals required to successfully achieve a sales transaction.
Other AOSE methodologies and requirements specifications

AOSE methodologies provide the necessary framework to organise the development activ-
ities and guide designers throughout the development life-cycle. We briefly explain six
methodologies other than Prometheus to show that they share similar notions in specify-
ing requirements. This is not intended to serve as a comprehensive list of methodologies.?
As Table 1 shows, all the methodologies except for Gaia capture requirements using artefacts
that include a goal hierarchy and/or activities to be executed by agents (scenarios).

These six methodologies were chosen based on the approach adopted in [9]. The authors
n [9] adopted a multi-stage selection approach, in which the set of methodologies is reduced
through applying the following three criteria:

— Documentation the selected methodology should be well established and described in
detail.

— Tool support a methodology that is supported by a computer aided software engineering
tool has more value than the one without.

4 The provided goal overview is a possible design and it does not necessarily represent a good one.

5 We refer the reader to [18] for a more comprehensive comparison between AOSE methodologies.

@ Springer

428 Auton Agent Multi-Agent Syst (2017) 31:423-468

— Maturity the selected methodology should be well recognised by the agent community,
and has been continuously improved.

In [9] the authors stated that seven methodologies out of the AOSE methodologies in the
literature meet these three criteria. We include all of them, but ADEM [41, Sect. 7.2], since it
provides a framework rather than a methodology. Also, we include ROADMAP even though
it is weak on the maturity criterion, since it represents an extension to Gaia, and supports
similar notions like Prometheus.

Tropos has five phases [7]: early requirements, late requirements, architectural design,
detailed design and implementation phase. In the early requirement phase, the system’s
stakeholders are identified as well as the systems objectives, which leads to the systems’
actors and goals. Then, the obligation of the system towards its environment is determined as
the main activity of the late requirement phase. Tropos adopts the i* organisational modelling
framework in modelling the requirements [7], since the i* framework supports the notions
of goals, actors and their dependencies [46]. Even though Tropos does not have the notion
of scenarios as part of requirements specifications process, the use of use-cases has been
proposed in its extended version the secure Tropos methodology [3].

The INGENIAS methodology enables agent designers to develop an agent-based system
through its five viewpoints [35]: organisation, agent, goals/tasks, interactions, and environ-
ment. The methodology, through its viewpoints, promotes a number of abstraction concepts,
such as agent, goal and mental states. The requirements specification process takes place in
the first three viewpoints. In the organisational view point, the goals of the intended system
are defined. Also, the fasks which the agents need to execute to achieve the desired goals
are specified in this viewpoint. In the goals/tasks viewpoint, the goals and tasks are decom-
posed and refined further. The tasks are to be defined in terms of what, why, input, output
and goals to be achieved and affected. Given that, we can claim that tasks are similar to
scenarios.

The Multi-Agent System Engineering (MaSE) methodology allows the development of
agent-based systems through two main phases: analysis and design [11]. Each phase has its
own steps that result in different artefacts. In the context of this article, we are concerned
with the analysis phase, where the system goals and roles are identified. This phase has
three steps: (1) capturing goals, where the goal hierarchy is generated, (2) applying use
cases, where the use-cases and sequence diagrams are constructed; and (3) refining roles,
where the concurrent tasks and roles are modelled. As a first step, the designer needs to
identify what the intended system wants to achieve (system’s goal). Then, the system’s
roles and their tasks are specified in a form of use-cases that define the desired behaviour.
In fact, use-cases are elicited from the context of the intended system into positive and
negative use-cases. The positive use-cases state the normal behaviour of the system, whilst
the negative ones describe the broken or erroneous behaviours. These use-cases are then
converted into sequence diagrams to visualise the flow of events between different roles.
Finally, a transformation of the goal hierarchy and the use-cases, via sequence diagrams,
into roles and their associated tasks takes place. Similar to Prometheus, MaSE uses a goal
hierarchy to model the goals of the intended system. In MaSE use-cases are specified using
sequence diagrams that capture the flow of steps, which are richer representation of scenarios
in Prometheus.

The Gaia methodology [45,49] models requirements by using four models [49]: an envi-
ronmental model, preliminary role and interaction model, and organisational rules. We are
concerned with the second model in this article (role models). Roles are identified through
two types of attributes: (1) their permissions and rights; and (2) their responsibilities or

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 429

functionality. Responsibilities are similar to scenarios, as they focus on the functions to be
executed by agents.

The ROADMAP methodology extends the Gaia methodology for developing open systems
[26]. One of Gaia’s weaknesses is the lack of support of the goal notion (e.g. social goals
of the intended system) in the modelling process. The ROADMAP methodology, on the
other hands, overcomes this issue by introducing a number of extensions. First, it introduces
an initial phase that concerns the requirement elicitation process via use-cases. Second, the
methodology includes the definition of the local social goals as part of the role modelling
process.

PASSI (Process for Agent Societies Specifications and Implementation) is a step-
by-step methodology that guides designers throughout the development life-cycle. The
methodology has five process component referred to as models: (1) system requirements
model, (2) agent society model, (3) agent implementation model, (4) code model and (5)
deployment model. Each model is composed of a number of phases [8]. In this work
we concerned with system requirements model. This model consists of four phases: (1)
domain requirement description, (2) agent identification, (3) role identification and (4)
task specification [8]. In the domain requirement description the functionalities of the
system are identified through using use case diagrams. The responsibility of each agent
is attributed in the agent identification as UML packages. Then, the responsibilities of
each agent based on a role-specific scenarios are explored via sequence diagrams. In the
task specification phase activity diagrams are used in specifying the capabilities of each
agent.

As we have seen, in the agent-oriented software engineering methodologies discussed,
requirements specifications generally include [44, Sect. 4] scenarios, which are instances
of the desired execution behaviour, and goals, which are intended states of the system.
Note that that idea of using goals (and scenarios) is not unique to AOSE, but has also been
used more broadly in requirements engineering [10,42,46], which we discuss in the next
section.

2.2 Goal-oriented requirements engineering

A fundamental aspect of any software engineering methodology is the specification of require-
ments and the related area of requirement engineering (RE). Requirements engineering is a
process that provides systematic techniques to ensure the quality of the system requirements
[37, p. 5]. This process encompasses a number of activities including: requirements elicita-
tion, analysis, specification, verification and management. Many requirements engineering
methodologies have been proposed to organise the activities of the process. While these
methodologies are common in their inclusion of the analysis and design activities, they may
vary in the approaches and techniques applied [28].

In goal-oriented RE, the intended system is defined and analysed in terms of goals, which
are the objectives the system must attain [43, p. 259]. These goals are classified, based on
the type of concerns, into two categories [42]: (1) functional goals that concern the services
provided by the system; and (2) non-functional goals that specify the quality of these services,
such as the reliability of the system. These goals can be modelled through the following
[42,43]: (i) their types (e.g. functional and non-functional), (ii) attributes, such as the goals
priority; and (iii) their associations to other entities in the model including the inter-goals
links. The main purpose behind these modelling techniques is to facilitate reasoning about
goals [42]. In the context of agent-oriented paradigm, most of the methodologies we discussed
earlier (all but Gaia) use goals in specifying the requirements [12].

@ Springer

430 Auton Agent Multi-Agent Syst (2017) 31:423-468

2.3 UML activity diagrams

Activity diagrams are a type of behavioural model that describes the dynamic aspects of a
given system [32]. They visualise processes (sequence of steps) and model the work- and
data- flows of the system. UML provides designers with a range of graphical notations for
modelling activity diagrams including activity nodes and activity edges. The creation of these
diagrams must conform with the the UML activities metamodel to ensure their semantics.
In fact, this metamodel provides an enormous number of entities to enhance the semantics
of activity diagrams. Figure 4 shows a subset of the activity diagram metamodel that defines
the entities considered in our approach described in Sect. 3. As Fig. 4 illustrates, we adopt
six entities out of the UML activity diagram notations in our approach as follows (Fig. 5):

(1) Action Node the fundamental atomic node in the activity diagrams (Fig. 5a). It is notated
by a rectangular shape with rounded edges.

(2) Regular Activity Edge a directed connection that shows the control flow between the
different actions within an activity diagram (Fig. 5b). These edges can optionally have
conditions (guards) to constrain their flow.

(3) Initial Node a control node that initiates the execution of an activity/scenario (Fig. 5c).
We restrict the activity diagrams to have only one initial node.

(4) Final Node a control node that shows the end of an activity/scenario (Fig. 5d).

(5) Fork/Join acontrol node that splits the execution flow into multiple threads to be executed
independently, and then synchronises them (Fig. Se).

(6) Decision/Merge a control node that splits the execution of an activity into multiple
alternate flows with only one flow to be executed, based on the guards on the outgoing
activity edges from the decision point (Fig. 5f).

0.1 Activity 0..1
activity' | name : String | activity

edge |1..* node [1..*

ActivityEdge 1'iTC°ming Soume1 ActivityNode

guard : String [-2192" LEL
[
ExecutableNode ControlNode
ActivityFinalNode > <+ JoinNode
i . 1 1 1
Action IntialNode DecisionNode | | MergeNode | | ForkNode
label : String

Fig. 4 Activity diagrams metamodel

Fig. 5 Adopted UML activity [Guard]
diagram notations a action node .
b regular activity edge c initial
node d final node e fork/join f @ (®) ©
decision/merge
® e BERG
(d) (e) (f)

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 431

3 Method

In this section, we present our approach for automatically constructing an activity diagram
from a scenario and goal overview diagram, and briefly discuss a prototype implementation.
We use the trading agent described in Sect. 2 as a running example.

Our approach aims to provide agent-based software designers with an activity diagram
that complements the scenario and goal overview diagram by modelling the possible paths in
a given scenario, with consideration of information from the goal overview diagram relevant
to that scenario. The activity diagram includes alternatives of the goal steps in the scenario
according to the goal overview diagram.

Although a scenario is a single sequence of steps there may be different ways to realise
the same scenario. This is because when there are goal steps, the goals may also be realised
(and hence, the requirement specified) through its children from the goal overview diagram.
For example, the goal step “Notify Participants” in Fig. 2 could be implemented through
the step itself, the step with its children, or just the children, (“Notify Buyer” and “Notify
Seller”, see Fig. 3).

The construction process of the intended activity diagram involves two phases:

(1) Step-wise activity diagram generation this phase takes one step—of a given scenario—at
a time, and construct its equivalent activity diagram structure. Then, it concatenates the
different structures to form the complete activity diagram corresponding to the specified
scenario.

(2) Activity diagram reduction the generation phase results in an activity diagram with dupli-
cate nodes. This phase intends to reduce these duplicates, if possible, while preserving
the semantic of the original activity diagram.

3.1 Step-wise activity diagram generation phase

The purpose of this phase is to construct an activity diagram from the specified scenario by
combining it with the the relevant information from the goal overview diagram to each goal
step, if any. Such a description reflects the transformation of the steps in a given scenario
into activity diagram control fragments.

Since the proposed approach is grounded in the Prometheus methodology, it assumes
scenarios include four types of steps: action, percept, goal, and sub-scenario. We transform
every step into a control fragment based on the type of the step. For the first two types
(actions and percepts), they are transformed into sequential control fragments. The goal steps
are transformed into combination of alternative, parallel, and sequential control fragments,
depending on the decomposition of these goal steps in the goal overview diagram. We flatten
sub-scenario steps by including their steps in the main scenario.

Each control fragment in the activity diagram includes action nodes that represent the
steps in the scenario considered. Note that usually action nodes in activity diagrams model
the execution of behaviour, such as operation invocations. However, we are using activity
diagrams as part of requirements specification, and so an activity diagram with a certain
sequence of steps represents a requirement that the subsequently designed system must fulfil.
Specifically, where a goal step in a scenario appears as a corresponding action node in an
activity diagram, it does not denote the execution or achievement of the corresponding goal,
but a requirement that the designed system be able to achieve the goal. This distinction is
important because the design process may end up refining the goals. For example, consider a
scenario S that has a single step, Goal1. This yields an activity diagram with one action node

@ Springer

432 Auton Agent Multi-Agent Syst (2017) 31:423-468

in a sequential control fragment. This does not mean that Goall is executed, but that the
design needs to be able to achieve Goall. In the case that Goall has child goals, a designer
may choose to design a system that does not implement Goall directly, but rather, achieves
its children.

Therefore, in mapping the goal steps in a given scenario to an activity diagram we take
into account the goal hierarchy (as depicted in the goal overview diagram). The reason is that
the process of designing a system relative to a given scenario may focus on parent or children
goals of the scenario goal steps. For example, step 7 in the Sale Transaction Scenario (Fig. 2)
is Notify_Participants. It is possible that the design realises this step by adopting the goal
itself. However, it is also possible that the design refines the scenario into more detail, and that
instead of adopting the goal Notify_Participants, instead its two children Notify_Buyer and
Notify_Sender are adopted, as such adoption will realise the parent goal (Notify_Participants)
as desired.

This means that when mapping a scenario to an activity diagram, a goal step may be
mapped to a process that combines the goal with its parent or children. In developing the
rules for this mapping we follow the underlying principle that the scenario specifies design
decisions, and that these decisions must be honoured.

For example, consider a variant scenario that replaced Notify_Participants with
Notify_Buyer followed by Notify_Seller. The scenario specifies a specific order on these two
goals. If we allow the design process to replace these two goals with their parent then subse-
quent refinement might re-introduce the two sub-goals, but without the ordering constraint
specified by the scenario. This fails to be consistent with the scenario’s constraint on the order.

Another example is where a goal G has two children G| and G, that are OR-refined. In
this case, if we replace a scenario step G with G, then we are losing the information that
the scenario designer chose to use G rather than G».

We now proceed to define the rules for mapping the goal steps in a scenario to an activity
diagram, being guided by the above principle.

Goal steps merging rules

The reason for this merging process is to provide designers with various ways to realise
goal steps in their design, by considering the information from the goal hierarchy that is
relevant to these goal steps. It depends on the level of abstraction a designer wants their
design to capture. For example, a designer may opt to realise a goal step through the goal
itself. Or, if the designer considers the goal step in a scenario to be too low-level and detailed,
then that may realise the step in terms of its parent goal. On the other hand, if the designer
considers the goal step to be too high-level, then they may refine the goal, and realise it in
their design in terms of the goal step’s descendants.

Recall that we consider a goal in an activity diagram to represent a requirement that must
be realised in the subsequent design, rather than the achievement of the goal. This means that
the presence of a goal’s children does not subsume the goal itself. For example, consider a
goal G with three AND-refined children, G1, G», and G3. One possible design would have
a plan for achieving G that makes use of sub-goals G to G3, each with their own plan.

Let us first consider the possibility of mapping a goal step G in a given scenario in terms
of its descendants from the goal overview diagram. If instead of designing (and adopting) G,
we design its children from the goal overview diagram, then the constraints that are captured
by the scenario are not violated. To see this we consider three cases, corresponding to the
decomposition type in the goal overview diagram. There are three different decompositions
captured by the goal overview diagram (OR, SEQ, AND):

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 433

| Goal Tree (c)

A

Fig. 6 Activity diagram control fragments equivalent to the goal step transformation

(1) Disjunctive decomposition (OR) If a goal step G has, in the goal hierarchy, as children
G1 OR G», we can either end up realising this step through designing a design that can
adopt either G or G, (perhaps deciding on which at run-time), or we can make a design
time decision to select one of them and, say, only design G». Either option is fine: if
either G or G, is adopted, then G is known to be realised as desired. In this case, the
transformation is to an alternative fragment between:® the goal step G; the goal step G
with one of its children in sequence, for each child; and each of its children (refer to
Fig. 6a).

(2) Directed-conjunctive decomposition (SEQ) If a goal step G has, in the goal hierarchy,
as children G SEQ G», then adopting G| followed by G, will realise G as desired.
In this case, the transformation is to an alternative fragment between: the goal step G;
the goal step G with all of its children in the sequence specified; and all of its children
in the sequence specified (refer to Fig. 6b).

(3) Undirected-conjunctive decomposition (AND) If a goal step G has, in the goal hierarchy,
as children G; AND G, then a detailed design that adopts the children (either in
parallel, orin a specified order) will realise G, as required. In this case, the transformation
is to an alternative fragment between: the goal step G; the goal step G followed by all
of its children as a parallel fragment; and all of its children as a parallel fragment (refer
to Fig. 6¢).

6 We include the option of having both the goal as well as its children because in the case where the design
targets a BDI platform one typically posts the parent goal, which leads to the posting of the children (for an
OR, one of the children) goal, so both parent and children are possible.

@ Springer

434 Auton Agent Multi-Agent Syst (2017) 31:423-468

Fig. 7 Mapping a goal step in
terms of its parent

:/Activity Diagram (d) | ,Goal Tree (d)

E:
<—E<—o <@

We now consider the possibility of mapping a goal in terms of its parent. We consider
four cases: where the goal G being mapped is an “only child” (i.e. its parent P satisfies
children(P) = (G)), and where it has siblings, in which case there are three cases, corre-
sponding to the decomposition of P in the goal overview diagram (OR, AND, SEQ). We
now consider the four cases.

Case 1: G is an only child—In this case if we replace G with P and the detailed design
subsequently refines this, then because P only has G as child, the only possible refinement
is back to G, which is consistent with the scenario. So it is safe to replace G with P in
this case: subsequent refinement can not be inconsistent with the scenario (Fig. 7a).
Case 2: G has OR siblings—In this case if we replace the step G with P then subsequent
refinement of P at the detailed design could choose to replace G with one of its siblings.
This is inconsistent with the scenario, since adopting P implies the adoption of one of the
children, which may not necessarily the one specified in the scenario. Thus, we cannot
replace G with P in this case (Fig. 7b).

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 435

Case 3: G has AND siblings—Suppose that G has a parent P and a single sibling G’ and
that the scenario includes G as well as G’. Suppose we replace “G and G”” with P. This
creates a problem because the scenario specifies an ordering: G before G’. however, if
we replace G and G’ with P, then subsequent refinement may end up violating the order
specified in the scenario. So in general, we cannot replace “G and G’ with P in this case
(Fig. 7¢). Note that the order specified in the scenario may not actually be significant: it
may only be there because the scenario must specify an order. However, the point is that
we do not, and cannot, know whether the order of G and G’ is significant or not.
Case 4: G has SEQ siblings—Suppose that G has a parent P which is SEQ- decomposed
into G followed by G'. As per case 3, we assume that the scenario includes both G
and G’ as steps, and furthermore, that G and G’ appear in the scenario in the order that
is consistent with their SEQ decomposition. If we replace G and G’ with P then any
subsequent refinement would re-introduce G and G’ in the correct order, and so will be
consistent with the scenario. In this case, we can allow for mapping a goal step G in terms
of its parent under a number of conditions: that the scenario includes all its siblings, that
they appear contiguously in the correct order (with respect to the goal overview diagram),
and that we map all the children of P as an option to design P instead (Fig. 7d).

Since our approach processes the scenario one step at a time, we address this case by simply

pre-processing the scenario, finding consecutive goals in the scenario that are SEQ siblings

in the goal overview diagram, and replacing them in the scenario with their parent.

So, to summarise, a goal step in the scenario is a non-leaf goal (a parent goal) in the goal
overview diagram, the scenario should, in some cases, include the children as alternatives,
as such a step can be realised through the children in the detailed designs. Similarly, under
certain situations, a goal step can be realised in terms of its parent goal.

We note here that, whilst there are subtle variations to these cases that do indeed comply
with the scenario, our aim is not to provide the designer with all possible cases, but rather
present some intuitive variations that they can work with.

3.2 Formalising the generation approach

We now formalise the merge and the transformation process of the goal steps in a given
scenario, since the transformation of other steps is straightforward as discussed in Sect. 3.1. A
scenario comprising steps Si . . . S, is translated to a sequence of activity diagram fragments,
where each step is the translation of the corresponding S;. Action and percept steps are
transformed into sequential fragments. However, goal steps are transformed into different
fragments based on the different decompositions in the goal overview diagram. Let G be
the goal corresponding to the goal step being mapped, let P denote its parent, children(G)
denote its children as a sequence of labels (where the order is the order of execution for a
directed-AND decomposition, and is arbitrary otherwise), and let decompose(G) denote the
decomposition type of the children of G, i.e., one of the following:

(1) Disjunctive decomposition (OR) G has children G;{ OR --- OR G, (Fig. 8a).

(2) Directed-conjunctive decomposition (SEQ) G has children GiAND — --- AND —
G, (Fig. 8b).

(3) Undirected-conjunctive decomposition (AND) G has children Gy AND ---AND G,
(Fig. 8c).

(4) Leaf G is a Leaf if it has no children (Fig. 8d).

For brevity we also define a simple abstract notation for depicting activity diagram control
fragments: a name is short hand for a step and we use seq(ay, ..., a,) to denote the action

@ Springer

436 Auton Agent Multi-Agent Syst (2017) 31:423-468

e e e e e e e e e e e e e m e mm . e m e mm— e ————————————
I
1

Goal Tree (a)

(OR) (SEQ)

Goal Tree (c)
(AND)

Goal Tree (d)
(LEAF)

>
zZ
w)
a

Fig. 8 Goal tree decomposition types

nodes within the activity diagram where the a; are joined sequentially; par(ay, ..., a,) to
denote the action nodes within the activity diagram where all the a; are triggered to run in
parallel ; and alt(ay, ..., a,) to denote the action nodes within the activity diagram where
there is a decision point: exactly one of the g; is selected. Each outgoing activity edge from
the decision point is guarded to ensure that only one flow is selected. These guards are formed
during the generation process based on what is included in each flow. For example, suppose
a goal step G being mapped is the only child of its parent P and it has one child G’. This
goal step can be realised through its parent followed by the goal step G followed by the child
G’, and hence the activity diagram should capture this as one of the flows that realise G. To
restrict the selection of this flow, a guard like [Flow = Parent . Step .Child] should be
placed on the outgoing activity edge from the decision point that belongs to that flow. It is
worth noting that activity diagrams are meant to be processed by designers (human beings)
and not by machines. Thus, guards do not need to be in formal notation.

We transform a scenario S, consisting of steps named Sj ... S, to the activity diagram
description denoted by seq (SAl, el SA,,). We use S; to denote a step in a scenario, and §, to
denote the corresponding action node in the activity diagram.

First, we pre-process the scenario and substitute any SEQ decomposition siblings that
appear in the scenario with their parents, as discussed in Case 4 above:

seq(S1, G, Sp) if children(G) = (G;, ..., G})
seq(S1,Gi,...Gj,S) = A decompose(G) = SEQ
seq(Sy,Gi,...Gj,S,) otherwise

in which S7 and S, are (possibly empty) sequences of scenario steps.

Next, we analyse each step and in some cases, replace goals with parents or children. If S;
is the name of a goal step then S; (i.e. G) depends on the decomposition type of G, formalised
as:

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 437

a4_Confirm a9_Manage
[F=S] _ltem Payment
._> a2_Send a3 Select =S.Ch]
Item List Item
[F=S.Ch] a5_Confirm a6_Send a7z_Select a10_Manage
_ltem Item List Iltem Payment
[F=Ch]

[a15_Notify a16_Notify
\ Participants Participants
|

a25_Notify
Seller

Fig. 9 Activity diagram that merges the scenario in Fig. 2 with the goal tree in Fig. 3 (F flow, S goal step,
Ch children, P parent)

seq(G) if Gisa Leaf
alt(G, seq(G, alt(M)), alt(M)) if DG = OR
alt (G, seq(G, par(M)), par(M)) if DG = AND
alt (G, seq(G, seq(M)), seq(M)) if DG = SEQ
where DG = decompose(G)
and (Gy, ..., G,) = children(G)
andM=6\1,...,é;

Q)
Il

We define the auxiliary function G, which merges the goal itself, G, with its parent P, to
get the sequence seq (P, G) when it is permissible to do so (see earlier discussion), and all
other goals to themselves. The goal step G is to be merged with its parent P if and only if
the goal step G has no siblings.

el seq(G, P) if children(P) = (G)
I Ke: otherwise

where P = parent(G)

Applying the merging rules the Trading Agent system (Figs. 2, 3) results in the activity
diagram shown in Fig. 9.

As the figure depicts, all the action nodes are prefixed with a unique identifier to ensure
that duplicate nodes are with different incoming and outgoing vertices and are not merged.
For example, consider the activity diagram in Fig. 10. If node A2 is represented as a single
node on the printed graph, then the sequence A1, A2, A5 would be permitted, which is not the
intended semantics. However, this causes duplicates in the graph, which we discuss further
in the following section.

@ Springer

438 Auton Agent Multi-Agent Syst (2017) 31:423-468
B
[A4]—7[A2]—)[A5

Fig. 10 Example of a non-reducible sub-graph

3.3 Activity diagram reduction phase

As it is shown in Fig. 9, the diagram includes several duplicate nodes, and in some
cases, duplicate sub-graphs, which affects its readability. Duplicate nodes are semantically
equivalent—that is, they refer to the same event—but are prefixed with unique identifiers; for
example, in Fig. 9, nodes al9_Notify Seller and a20_Notify Seller refer to the same event,
but the prefixes are unique. This is done so that the nodes are not merged as one node by the
graph drawing tool, which in many cases, would alter the semantics of the activity diagram.
The reduction mechanism that we present merges some nodes (in fact, some sub-graphs) by
removing the prefixes in a sound manner, such that the semantics of the original diagram is
maintained.

In this section, we briefly describe how to simplify the original activity diagram generated
by the merging rules to improve the readability, while maintaining the same semantics. Our
approach is a set of rules to eliminate, if possible, repeated action nodes in the diagram. Thus,
we consider such points along with their merges in the reduction mechanism.

The following specifies the reduction mechanism as a set of rules on activity diagrams.
These rules do not reduce the nodes that have predecessors, successors or both, as that will
change the semantics of the original activity diagram. For instance, “A2” node in Fig. 10 can
not be reduced. Thus, we make no claims on the completeness or optimality of the approach,
however, the rules have worked to simplify the models we have been using them on.

In the following, we use the notation S = S, to note that two sub-graphs are semantically
equivalent; that is, they refer to the same set of events, but have different prefixes on the nodes;
for example, al9_Notify Seller = a20_Notify Seller are unique but semantically-equivalent
actions.

Rule 1 Remove duplicate prefixes in alt: This rule removes duplicate sub-graphs at the start
of an alt fragment in the activity diagram. A duplicate sub-graph prefix Sy is removed by
merging the sub-graph with its semantic duplicate Sy, and then inserting an alt fragment
immediately after S1. Formally:

alt(seq(S1, Sn), alt(seq(Sy,
SeQ(SL Sn)v :> alt(Sma Sﬂ))v
Sr) Sr)

in which S1 = Sy, and Sy,, Sy, and S, are (possibly-empty) graphs.

As an example, consider the following activity diagram with duplicate node A1:

After

" \ AN ’ \
Q- Al D> A2 r_]
\ 7 N \ ’

Before

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 439

Rule 2 Remove duplicate suffixes in alt: This rule removes duplicate sub-graphs at the end
of an alt fragment in the activity diagram. It is essentially the reverse of Rule 1. A duplicate
sub-graph suffix Sy is removed by merging the sub-graph with its semantic duplicate Sy, and
then inserting an alt fragment immediately before S1. Formally:
alt(seq(Sm, S1), alt(seq(alt (Sp, Sn)),

Se‘I(Sn,SZ), :> Sl)a

$,) S)
in which S1 = S», and Sy,, S, and S, are (possibly-empty) graphs.

As an example, consider the following activity diagram with duplicate node A4:

Before After

Rule 3 Remove unnecessary alts: This rule removes alt fragments that have only option.
Formally:

alt(S)) = 51

This rule is useful after an application of Rule 1 in which all children nodes of the decision
point are the same. For example, consider the example of Rule 1 above, but in which the third
option containing only A2 was not in the original activity graph. Applying Rule 1 would
result in a graph in which the first decision point had only one option: Al. Rule 3 would
remove the unnecessary decision point.

Rule 4 Remove embedded duplicate sub-graphs: This rule removes duplicate sub-graphs
(typically sequences) that occur after a decision point, with the duplicate occurring after a
subsequent decision point.

alt(seq(Sp, alt(Sy, Sp)), alt(seq(Sp, alt(Sy, Sp)),
S2, - S1,
Sr) Sr)

in which S1 = $», and S, S, and S, are (possibly-empty) graphs.

Note here that the only difference between the left- and right-hand side of this rule is the
replacement of S; with S;. While abstractly, there are still two nodes represented, these will
be drawn as a single node.

As an example, consider the following activity diagram with duplicate node A2:

Before

It may not be immediately obvious as to whether Rule 4 would be so useful. However,
these structures occur regularly due to the OR-decomposition rule defined in Sect. 3.1. For
example, in the example above, A1 is a parent goal and A2 and A3 are children nodes.

@ Springer

440 Auton Agent Multi-Agent Syst (2017) 31:423-468

._> Store [F=8S] Confirm Send
Opening Item Item Price
[F=Ch]
[F=Ch [F=M [F=Ch]
Send.]] Make D
Item List Payment ¢
Select
Item
Notify [F=Ch]
Buyer ‘ !
- Notify
Notify Participants
Seller [F=M]
»{ M

Ll <
Send]
Item

Fig. 11 Refined activity diagram from Fig. 9 (F flow, S goal step, Ch children, P parent, M merge)

A A

[F=M]

In essence, this simplification is done by identifying repeated sub-graphs, and merging
them through applying the aforementioned rules. For example, in Fig. 9 the nodes a11 and
a6 are followed by portions of the graph that are identical to each other in terms of structure,
and the labels of nodes (ignoring the numerical prefix on the labels). Figure 11 shows the
refined version of the original activity diagram in Fig. 9.

We now prove that the four reduction rules defined above are sound. That is, that they
preserve the semantics of the original activity diagram. In proving this we make use of the
following notations and concepts.

Given two sequences, s = (S1,...,8,) and t = (t1,...,t,) we use s - ¢ to denote the
result of concatenating the two sequences, i.e. s - t = (S1,..., Sy, 11, - . - I;y). We extend the
concatenation operator to also apply to sets of sequences: S- T ={s - t|se SAteT}.

We use [S] to denote the meaning of S, which is the set of all traces specified by activity
diagram diagram S. Specifically, [S] is a set of sequences. We assume that S is specified in
terms of the constructs seq(...), par(...) and alt(...), and that the semantics satisfies the
following two properties:

lalt(Ry, Ry)] = [Ri] U [R2]
[seq(Ri, R2)] = [Ri] - [R:]

In other words, the semantics of alz(. . .) is the union of the semantics of each of the alterna-
tives, and the semantics of seq (. . .) is the concatenation of the semantics of the components.
Since the reduction rules do not mention par (. ..) we do not need to specify [par(R1, R2)].
We now proceed to prove soundness.

Theorem 1 Reduction rules 1-4 are sound, i.e. for each rule of the form L = R we have
that [L] = [R].

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 441

Proof For Rule 1, consider the following:

lalt(seq(S1, Sm), seq(S2, Sp), Sr)]

= [seq(S1. Sm)] U [seq(S2. S0)] U [S/]

= ([Si1]- [SmD U ([S2] - [SuD) U [S/]
(since S§1 = S»)

= ([$1] - [SwD U ([Si] - [SaD) U [S]
(since (S-T)U(S-R) = S-(TUR))

= ([[Sl]] : ([[Smﬂ U [[Sn]])) U [[Sr]]

= [seq(St. alt Sy, SNV [S]

= [alt(seq(S1, alt(Sm, Sn)), Sr)]

Similarly for rule 2:

[alt(seq(Sm, S1), seq(Su, S2), Sr)]

= [[56(](5"1,51)]] U [[Se(](Sn,Sz)ﬂ U [[Srﬂ

= ([Su] - [$ID U ([Sa] - [S2D) U [S/]
(since S1 = $7)

= ([Sw] - [$1D U ([Sa] - [S1D Y [S/]
(since (T -SYU(R-S) = (TUR)-S)

= (([Sn]V[ShD - [$1D U [S/]

= [seq(alt(Sp, Su), SD] U [S/]

= [alt (seq(alt(Sm, Sn), S1). S)]

which shows soundness for rule 2. For rule 4 soundness is trivial, since the only change is
replacing S; with S1 when S = S5. For rule 3 soundness is also trivial. O

3.4 Prototype implementation

We have implemented the mapping from scenario and goal overview diagram to activity
diagram as an eclipse plug-in that integrates with the Prometheus Design Tool (PDT). The
tool takes the agent design file in an XML format, and tokenises all scenarios and the goal
overview diagram out of the design file. The tool applies the merging rules on the specified
scenario to generate the abstract description. Then, it uses the abstract description to generate
a DOT Graph source script,” which can than be used to generate a graphical depiction of the
activity diagram (the Graphviz tool does automatic layout of nodes).

4 Potential benefits of the activity-diagrams

The aim of our approach is to provide diagrams that act as coherent structures that merge
given scenarios with their related goal decomposition trees. This transformation has a number
benefits beside enhancing the way of analysing scenarios, since graphical notations tend to
better support tasks that involve comprehension of the overall structure [6,40]. This section

7 See http://www.graphviz.org/Documentation.php.

@ Springer

http://www.graphviz.org/Documentation.php

442 Auton Agent Multi-Agent Syst (2017) 31:423-468

discusses some benefits of complementing scenarios and goal overview diagrams with activity
diagrams. In fact, the usefulness of supplementing the requirements specification process with
activity diagram has been studied in the literature [5,20]. However, in this article we show
the benefits of activity diagrams as a complementary artefact to the existing agent oriented
software engineering artefacts, which include other notions in addition to the ones existed in
the general software engineering.

4.1 Structured representation of scenario steps and their variations

A scenario is a sequence of steps that describe a particular run of the intended system. In
some cases, based on the context of a given scenario, there may be a need to go beyond a
sequence of steps. Approaches for specifying scenarios in Prometheus and some other agent-
oriented methodologies limit the ability to include additional information, such as variations,
in a structured way. For example, Prometheus scenarios do not support parallel steps, and
variations are specified through natural language description. Using UML activity diagrams
provides a more structured way to visualise and specify control fragments in requirements
models. Returning to the running example, consider the following variation to the scenario
in Fig. 2: “after the buyer agent receives the item list (step 2) from the seller agent, it may
select a product (step 3) or show its disinterest”. Thus, the flow of this scenario should branch
after posting the second step (“Send Item”) into two choices: (1) posting “Select Item” or (2)
posting “Show Disinterest”. A natural language description of this may faithfully capture the
semantics, but interpreting this in the context of the goal overview diagram is non-trivial, as it
requires some mental effort. However, an activity diagram can capture this in a straightforward
and unambiguous manner, such as the solution in Fig. 12.

The existing approach (text-based) does not offer a structured way to specify parallel steps.
Consider the following requirement from the Trading Agent System: “The banker agent then
processes the payment and notifies both the seller and the buyer about the payment process
outcomes (approved or denied)”. Based on the specification, the banker agent needs to send
notification to both buyer and seller agents, but the order of posting these two notifications
is not important. In Prometheus, this can be modelled by including a parent goal in the
scenario, and then specifying two children nodes with an undirected-AND. However, the
variations introduced by these may require some mental effort from a designer to conceptu-
alise. Constructing an activity diagram to represent this through fork/join nodes can help in
this conceptualisation.

4.2 Understandability

In Prometheus, the specification of the intended system is distributed across two artefacts:
scenarios and a goal overview diagram. The merged activity diagram provides a holistic view
about how to design a given scenario, and enables a more straightforward understanding of the
behaviour of the system in the context of a given scenario. Importantly, the activity diagram
explicitly represents the possible alternate sequences of the two models. For example, the
activity diagram in Fig. 12 has seven possible execution runs after posting the “Send Item
Price” step, which requires more mental effort to derive from the scenario (Fig. 2) and
goal overview diagram (Fig. 3). According to the experiments we conducted (Sect. 5.3),
participants were quicker in eliciting the possible alternatives for a given step using activity
diagram than the existing approach (scenario and goal overview).

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 443
Store Confirm Send Manage
Opening _ltem Item Price Payment
[F=Ch] *
[F=Ch] C [F=M] &

B\ [F=Select ltem]

\

’

N 7

B

(0]

8

£

8

[a)

z [F=Ch]
o

<

(4]

3 F=M
v [F=M]

M Show \\I
_ Disinterest

~ -

v (>
Send \ \/
ltem /)

Fig. 12 Activity diagram for the scenario in Fig. 2 with variation

[F=M]

4.3 Maintenance

Scenarios may evolve both throughout and after the analysis phase. For instance, a designer
may introduce a variation that includes new goals. For example, the variation to the sce-
nario in Fig. 2 mentioned earlier in sect. 4.1 introduces “Show_ Disinterest”as a new
goal.

Based on the user study we conducted (Sect. 5.3), incorporating the newly introduced
goals by considering the text-based variation requires more mental effort from designers
than the activity diagram. The activity diagram provides designers with a context that helps
them associating the goals with the existing goal trees.

5 Evaluation

In this section, we outline a controlled experimental evaluation to measure the usefulness
that having a complete activity diagram has on a software engineer analysing a Prometheus
goal model and scenario. We recruited fifteen participants with varying levels of experience
in Prometheus, and gave them several tasks to complete on simple requirements documents,
measuring aspects of their performance.

We are primarily interested in evaluating the activity diagrams for understandability—that
is, how much the presence of an activity diagram impacts a person’s ability to understand
the requirements models—and maintainability—that is, how straightforward a design is to
maintain given an activity diagram.

@ Springer

444 Auton Agent Multi-Agent Syst (2017) 31:423-468

5.1 Experimental design

We recruited a total of fifteen participants in the experiment. A pre-evaluation questionnaire,’
consisting of nine questions, was used to measure their experience with software engineering
in general, with agent-oriented software engineering, and the Prometheus methodology. All
participants were familiar with intelligent agents (researchers or practitioners in a related area)
and most had some experience in requirements analysis; eleven participants had experience
in the Prometheus methodology and all but one had experience using some agent-oriented
methodology, including Prometheus. All but one of the participants were experienced soft-
ware developers, with the final participant still holding a degree in computer science.

Each participant was then given several tasks to perform.” The tasks asked participants
to interpret, verify, and modify a set of requirements models for two simple systems. The
presence or absence of the additional activity diagram in the requirements provided was
the independent variable. This was the only difference: the remainder of the content in the
requirements documents did not change. It is worth noting that the activity diagram provided
was automatically generated from the scenario and the goal overview diagram. Then, all the
modifications were applied manually on that activity diagram.

To mitigate experience bias, for each participant, exactly one of the requirements doc-
uments contained an activity diagram. Thus, each participant was asked to complete three
tasks without the aid of an activity diagram for one system, and the same three tasks, as well
as an additional fourth task, with an activity diagram for the other system (see below for
discussion of the tasks).

To mitigate participant bias, participants were divided into two groups, G1 and G2. Gl
received system S1 with an activity diagram, and system S2 without, while G2 received
system S1 without an activity diagram, and S2 with an activity diagram.

As Table 2 shows, some participants were more familiar with UML behavioral models
(Q2.2)'% than Prometheus (Q1.3).'! To mitigate this familiarity bias, all participants were
given an optional material to read prior to the experiment (refer to Appendix 2). These
two pages short explain the relevant parts of both Prometheus and Activity diagram to the
experiments. Also, all the participants were given the opportunity to clarify any point in
that optional material prior to the experiment. Note that the aim of this evaluation was
to evaluate the benefits of supplementing Prometheus with activity diagram, rather than
comparing Prometheus with activity diagram.

Finally, within each group, we balanced out in which order the participants received the
systems, to avoid a potential bias in which participants used their experience from the first
system to answer questions on the second. That is, half of the participants received the activity
diagrams in the first set of tasks, and half received them in the second set.

We measured two dependent variables: time and correctness. For time we simply measured
the clock time from start to completion for each task as a proxy for both maintainability and
understandability; that is, how much the activity diagram aids software engineers to come
up to speed with the semantics of the requirements models, and to modify them. There were
no time limits on tasks. For correctness we assessed the participants’ answers to each task

8 Refer to Appendix 1.
9 Refer to Appendix 2.

10 Participants were asked to rate their experience with UML behavioural models on a scale of 1-5, with 1
being inexperienced and 5 being expert.

11 Participants were asked to rate their familiarity with Prometheus on a scale of 1-5, with 1 being very
unfamiliar and 5 being very familiar.

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 445

Table 2 Summary of the pre-evaluation questionnaire outcomes (refer to Appendix 1)

ID QI1 QL2 QL3 Q21 Q22 Q3 Q24 Q3 Q4 Qs
1 2 5 3 2 2 3 4 1120 1120 No
2 4 4 4 4 3 3 4 1-5 1-5 No
3 4 4 3 4 4 4 3 6-10 1-5 No
4 2 5 4 3 2 2 4 1120 1-5 No
5 4 4 3 3 3 3 3 1120 1-5 No
6 3 3 2 3 3 3 2 6-10 1-5 Yes
7 4 4 1 4 4 5 4 30+ 11-20 Yes
8 3 4 1 4 3 4 4 30+ 1-5 No
9 5 4 3 5 5 5 3 1120 1-5 Yes
10 4 5 5 4 3 3 5 1-5 6-10 No
1 4 4 1 4 4 5 1 1120 1-5 No
12 s 3 3 5 3 4 2 30+ 1-5 No
13 4 4 4 5 5 5 3 1120 1-5 No
14 3 4 4 4 3 2 4 1-5 1-5 No
15 5 4 3 5 4 5 3 2129 0 No

to determine whether they had completed the task correctly. This is also used as a proxy
for measuring maintainability and understandability; that is, how much the activity diagram
impacts the ability to understand and modify the requirements models correctly.

After the tasks had been completed, participants were asked to complete a four question
survey!? asking about their experience, and their perception of the usefulness of activity
diagrams. We asked the following four questions, each on a scale of “Strongly Disagree”
to “Strongly agree”, with a “Neutral” option: Q1: The activity diagram enables an easy
extraction of a possible behaviour path relative to a particular scenario; Q2: The time taken
to grasp what the entire activity diagram shows is reasonable; Q3: It is easy to maintain
activity diagrams (easy to incorporate changes including: adding, removing and modifying
entities); and Q4: Activity diagrams would be useful in designing the agents of a particular
scenario. Participants were also asked which approach they preferred, and why.

5.2 Tasks

Each participant was asked to perform the following tasks: (1) verify a set of five traces,
assumed to be extracted from an execution of the system, against the requirements models;
(2) specify three traces that are valid with respect to the requirements models; (3) modify
a goal overview diagram based on new requirement proposed by a stakeholder; and (4)
modify an activity diagram based on new requirement proposed by a stakeholder (only for
the system for which an activity diagram was provided). Since the tool developed generates
a static diagram, we asked participants to hand-draw the modifications.

The purpose of the first two tasks is to measure understandability of models, while the
latter two aim to measure maintainability.

For example, task 1 asked participants to verify whether the following trace from the Sale
Transaction system is valid:

12 Refer to Appendix 3.

@ Springer

446 Auton Agent Multi-Agent Syst (2017) 31:423-468

Store_Opening, Send_Item_List, Select_Item, Send_Item_Price, Make_Payment, Val-
idate_Card, Notify_Participants, Send_Item.

Task 3 asked participants to modify the goal overview diagram given the new requirement:
“After the Buyer agent receives the item list event from the Seller agent, it may select a
product or may show its disinterest.”

In real terms, these tasks are small, in that each task took only a few minutes to complete.
However, while small, they are not trivial—as indicated in the results, a significant proportion
of the participants made mistakes.

5.3 Results

In this section, we present and discuss our experiment results.

5.3.1 Task analysis results

Table 3 presents a breakdown of the results for each task. Numbers in each cell for columns
labeled 0-5 represent the percentage of participants who scored that number. Scores refer
to the number of traces correctly identified. Task 1 had 5 traces, whilst Task 2 had 3 traces;
e.g. for task 1 performed without the activity diagram (“X”"), 27 % of the participants scored
two out of five. With regards to Task 3 and Task 4, ‘score 0’ means that the task was not
achieved, whilst ‘score 1’ means that the task was achieved. The mean and standard deviation
for scores and completion time are presented as well. These results show a clear trend that
participants scored higher on tasks if they had the help of activity diagrams.

Understandability Recall that tasks 1 and 2 aim to measure the understandability of require-
ments models with and without activity diagrams. The average score on tasks 1 and 2 are over
one point higher when aided by an activity diagram—and there are only a total of three points
in task 2. Further to this, with the aid of an activity diagram, almost all of the participants
obtained all sub-tasks correct over tasks 1 and 2, compared to only a handful for when not
using an activity diagram.

Table 3 Task analysis results

Task AD Scores (number as %) Mean SD Mean SD
0 1 2 3 4 5 score score time time

Tl X 0 0 27 7 40 27 3.67 1.18 4:16 2:49
4 0 0 0 0 13 87 4.87 0.35 2:39 1:19

T2 X 27 7 27 40 1.8 1.26 3:04 0:48
4 0 7 7 87 2.8 0.56 2:50 1:01

T3 X 67 33 0.33 0.49 3:08 1:38
(4 27 73 0.73 0.46 2:18 1:08
T4 4 0 100 1.0 0.00 1:17 1:04

AD Activity diagram

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 447

Further to higher scores in correctness, participants completed task 1 on average around
two minutes faster with an activity diagram than without, and with less variation. Completion
times for task 2 was slightly faster with the activity.

The reason for these results is clear: with an activity diagram, the specified behaviour
of the system can be easily inferred. With just a goal overview diagram and scenario, the
interplay between the two models can introduce subtle variations in behaviour that are not
obvious. Adding an activity diagram helps to remove much of the ambiguity related to
this.

However, the standard deviation in time for task 1 was large due to one participant taking
over 6 minutes to complete the task. Further, this participant took the longest out of all
participants in all four tasks using the activity diagram, and also took longer in tasks 1-3
with activity diagram than without, as the participant was using both the activity diagram
and the scenario with the goal tree. This indicates that the addition of an activity diagram
may not always be useful.

Maintainability Recall that tasks 3 and 4 aim to measure the maintainability of requirements
models with and without activity diagrams. For task 3, the percentages and average scores
show that when aided by an activity diagram, participants were able to correctly modify the
goal overview to consider new requirements more often than without the activity diagram.
In addition, the average time taken was 50 seconds faster with an activity diagram.

Interestingly, in task 3, one participant did not even commence the task for the system
without the activity diagram, despite having done task 3 with the aid of activity diagram
already for the other system. The participant commented that they just did not know where
to start.

These results add evidence to our hypothesis that activity diagrams are useful aids
when maintaining/modifying requirements models. We attribute this mostly to the fact
that the participants had a better understanding of the specified behaviour, as also demon-
strated by tasks 1 and 2. However, task 3 asks participants to modify the goal overview
diagram, so the results provide evidence that the activity diagram is not just useful for
characterising specific behaviour traces in the requirements models, but also for consid-
ering sets of behaviours, which is what they needed to do to update the goal overview
diagram.

Task 4 asked participants to modify the activity diagram, so there is no comparison to be
made. To assess the correctness of this, we checked whether the updated activity diagram
captured the two additional traces, and only those two additional traces. Our conclusion for
Task 4 was based on the fact that all participants were able to correctly modify the activity
diagram as instructed. The results here clearly provide support that maintaining the activity
diagrams does not add a large amount of complexity.

Figure 13a shows a box-plot of the scores (out of nine) for all scores. These plots demon-
strate that participants did better in the activity-based approach with a median value equals to
nine (the maximum score), compared with a median of six in the non-activity approach. Also,
the minimum score of the activity-based approach is greater than the median of the score
in the non-activity one (7 > 6). With respect to the time taken in each approach (Fig. 13b),
the activity-based approach takes less time than the non-activity approach. All the mini-
mum, median and maximum values (4:37, 7 and 15:25 respectively) of the time taken in
the activity-based approach is less than the non-activity approach (5:06, 10:30 and 22:14
respectively).

@ Springer

448 Auton Agent Multi-Agent Syst (2017) 31:423-468

o = [0}
s
5 °] T ‘ 8
Prid ' =
5] ‘ =
5 7 - g o- 0
&£ = —
o © 7 c)
o = —_
g - 2 2 5
2 =
B =
' o = - -
o — e —_
T T T T
Non.Activity Activity Activity Non.Activity
(a) (b)

Fig. 13 Box-plots for total scores and total time. a Scores (out of nine). b Time (minutes)

Table 4 Post-evaluation Qst SD(%) D(%) N%) A% SA(%) Mean SD

questionnaire

Responses: [SD] Strongly Q1 0 0 7 20 73 467 0.62
Disagree = 1, [D] Disagree =2, Q2 0 0 0 53 47 447 052
[N] Neither = 3, [A] Agree =4,

[SA] Strongly Agree = 5. See Q0 0 0 47 53 4.53 052
Sect. 5.1 for the questions Q4 0 0 0 40 60 4.6 0.51

5.3.2 Post-evaluation questionnaire

Table 4 shows the results for the post-evaluation questionnaire. As stated in Sect. 5.1, we
asked participants to rank their experience through answering the following four questions:

(1) The activity diagram enables an easy extraction of a possible behaviour path relative to
a particular scenario.

(2) The time taken to grasp what the entire activity diagram shows is reasonable.

(3) Itis easy to maintain activity diagrams (easy to incorporate changes including: adding,
removing and modifying entities).

(4) Activity diagrams would be useful in designing the agents of a particular scenario.

The results here demonstrate a strong preference for the inclusion of activity diagrams, and
that participants felt the diagrams were useful for understanding behaviour, were straightfor-
ward to use, and would aid with the design process.

Answers to the open-ended question also further confirm these results:

“The approach with the activity diagram is preferable. While I prefer (I think) to
design agents using the goal overview, analysing possible interactions between agents,
sequence of actions etc. is made easier with the activity diagram. Design flow would
be easier to find through analysis of activity diagram, as you have a single line to follow
rather than multiple goal trees.”—Study participant 1.

Some participants noted that it is not the activity diagram itself that is useful, but the
activity diagram in combination with the goal overview diagram:

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 449

“The one with activity diagram is more helpful, but it is not a substitute for goals. It just
makes the trace analysis easier because the sequence of events is integrated regardless
of the agent by whom they are caused.”—Study participant 7.

Three other participants noted that the usefulness of including the activity diagram is not
limited on understanding the behaviour, rather it facilitates the communication between the
system analyst and the stakeholders.

“I would prefer to use the approach that uses activity diagram, because it was very
useful to understand the behaviour of the system in simple way that could help the
requirements analyst to share it with the stakeholders which will help to mitigate the
problem of communicating the requirements with clients.”—Study participant 12.

5.4 Statistical significance

This sections presents the results of significance tests on our results. Recall that the two
measures taken are the (correctness and time).

Table 5 lists the scores, times, and the means of the scores (out of 9) and time taken
for all the participants in the first three tasks of each approach, as well as the confidence
intervals at 95 %. Note that we excluded the fourth task from the activity-based approach in
this comparison, as it does not have its equivalent task in the other approach.

Table 5 Summary of the total results for each participant in both approaches

Participant_ID Activity diagam Non-activity
Scores (out of 9) Time (in min) Scores (out of 9) Time (in min)

1 9 15:25 8 8:15
2 9 7:33 4 11:35
3 9 8:41 8 22:14
4 8 8:35 4 5:06
5 8 11:36 7 13:30
6 9 11:34 6 13:33
7 8 5:10 3 7:00
8 9 4:37 8 10:17
9 9 5:38 4 12:15
10 7 5:51 8 7:27
11 9 7:21 5 12:33
12 9 7:24 3 6:24
13 8 4:19 7 10:04
14 7 8:54 5 10:17
15 8 6:05 7 6:49
Mean 8.4 7:55 5.8 10:29
CI 0.373 1:41 0.96 2:20
Upper confidence bound 8.77 9:36 6.76 12:49
Lower confidence bound 8.02 6:13 4:84 8:08

CI confidence interval value at a confidence level of 95 %

@ Springer

450 Auton Agent Multi-Agent Syst (2017) 31:423-468

Given the estimated range of the scores of the activity-based approach (8.02 < mean <
8.77) and the non-activity one (4.84 < mean < 6.76), it is noted that these intervals do not
overlap, therefore, we can conclude that the results for the scores are significant at the 95 %
level of confidence.

Regarding the time taken in each approach, it is clear that the participants took less
time with the activity-based approach, on average, compared to the non-activity approach.
However, the confidence intervals for these samples overlap, so further analysis is required.

The sample under analysis is a paired sample, as all the fifteen participants dealt with
both approaches. Using a Shapiro test [36], we concluded that the data was not normally
distributed. Thus, we used the Wilcoxon-signed-rank non-parametric test [23] for our samples.
The null hypothesis (Hp) is that there is no difference between the times in the activity-based
approach and the non-activity approach, while the alternative (H) is that there is a significant
difference.

We ran the test in R with a significance level of 95 % (« = 0.05). The resulting p-value
is 0.044 (p value < 0.05), so we reject the null hypotheses (Hp). Thus, there is a significant
difference between the times in both approaches.

5.5 Threats to validity

A main threat to external validity in our experiment is the scale of the designs used. The
systems used in the study were not large in scale. Larger systems may perhaps result in a
more complicated activity diagram that requires more time to understand than the original
approach. Thus, further experimentation on larger systems are required to provide more
generalisable results.

Since the first two tasks require participants to deal with behavioural runs, maturation
is an internal threat to the validity of the experiments. The first task asks participants to
validate behavioural runs, whilst task 2 requires them to specify possible behavioural runs
given the same scenario and goal tree. Thus, participants may use their experience from task
1 in achieving task 2, and hence the correctness and time taken for task 2 may be affected. As
aresult, the experiments need to distinguish task 1 from task 2, by either varying the goal tree
or the scenario, to obtain more reliable results. However, we distinguished these two tasks
through rearranging the choices (refer to Appendix 2). We observed all participants, and all
of them tackled both tasks independently (i.e. they did not rely on their experience from task
1 in achieving task 2). In fact, all the participants specified different behavioural runs in task
2 than the ones mentioned in task 1.

6 Related work

In the context of AOSE, there has been a strong focus on models for requirements, but little
research into the relationships between these models. Considering the six AOSE methodolo-
gies mentioned in Sect. 2, they all support the requirements gathering and analysis process.
Further, most of the methodologies share similar requirements specification elements [12].
Such processes results in a variety of artefacts, and hence the information is scattered across
these artefacts. Despite the fact that these methodologies do offer development environments
through their supported tools [2,17,19,29,34], they do not offer the ability to merge this
information from the different artefacts into one cohesive structure. Further, some of them,
such as Prometheus and ROADMAP do not provide a structured approach for specifying
variations to the requirements, whilst other, such as MaSE, do.

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 451

In [2] a comparison between three methodologies (ROADMAP, Prometheus, and MaSE)
is conducted. The comparison shows that all these methodologies share the notions of goal
hierarchy and use cases in specifying requirements. However, they provide little, if any, sup-
port for structured specification of variations, and merging different artefacts into a single
representation. As shown in our evaluation, this single representation enhances the under-
standability and maintainability of the requirements.

Even though MaSE uses sequence diagrams to represent the textual use case scenarios.
In other words, it transforms the textual use case into sequence diagram. Even though the
methodology transforms the textual description into a diagrammatic representation, it does
not consider the goal hierarchy in this transformation process [15]. Also, the tool support
(agent tool [13]) does not automatically generate the sequence diagram equivalent to a given
scenario which can be error-prone. Also, the generated sequence diagram will lack the vari-
ations that are resulted by the relevant information to the scenario from the goal tree.

There is a single attempt, extending Prometheus, to enhance the approach of specifying
requirements. In [39] the authors proposed a more structured way for specifying requirements
in Prometheus. Their focus was on generating scenario-based test cases for run time testing
of agent systems. They provided a means for specifying variations in terms of actions and
percepts and also showed how scenarios may be traced to the detailed design of the agents
for coverage. Future work, would involve investigating a similar traceability approach to the
activity diagram based approach presented in this work.

InROADMAP/AOR [38], scenarios already support the structures considered in our work,
including sequence, branching and parallelism. The notation used is tabular rather than graph-
ical, but can be used to specify traces in a similar spirit to activity diagrams. However, these
scenarios are not linked directly to goal models, and hence the methodology does not merge
them.

With respect to Gaia, there is an attempt to extend the methodology through incorporating
the AUML modelling notations including sequence diagram and activity diagrams [16].
The authors presented such integration through the development of a flexible manufacturing
control system following the Gaia methodology. As stated in Sect. 2, in Gaia the roles
(functions) of the intended system are specified as role models as an initial step. Then, the
interaction models are used to model the interactions between agents, and the dependency
between the different roles. In [16], the AUML sequence diagrams are used to model the
interactions. However, these diagrams are manually generated. Also, the authors used activity
diagrams to manually model the internals of each agent based on its functions (roles).

Alam et al. in [3] propose guidelines in which to transform the early requirements models
in the secure Tropos into UMLsec'® use-case diagram. Such transformation is meant to
show the dependency between the actors and the functionalities that require security in
the intended system. Thus, they provided a mechanism to elicit information from a bigger
model (early requirements model) into one cohesive model (use-case diagram). They used
the Kent Modelling Transformation Language (KMTL) [1] in the transformation, however,
the authors did not indicate whether this transformation was automatic or not. Also, their
proposed approach does not allow designers to edit such models, and incorporate variations.

There is other relevant work on automating the transformation of use-cases into UML
activity diagrams. Yue et al. in [48] propose a sophisticated algorithm to automatically trans-
form use cases into UML activity diagrams. The use-cases supported in their approach must
follow a tabular format that includes the basic flow and the alternative ones. They adopt
different natural language processing techniques in analysing the free-text description of

I3 UMLsec is an extension to UML notation to enable the development of secure systems [27].

@ Springer

452 Auton Agent Multi-Agent Syst (2017) 31:423-468

the use-cases. Thus, the use-cases description must follow the RUCM template that has 26
well-defined restriction rules [47]. However, the format of scenarios in our approach does
not restrict designers in specifying the steps. Also, the proposal in [48] does not consider
other artefacts than the use-cases, whilst our approach considers the goal hierarchy.

In [21], the authors developed an approach to automate the process of generating
an activity diagram out of a use-case scenario. They used the QVT-rational language
(Query/View/Transformation) in the model transformation. The authors provide designers
with a metamodel that must be followed in specifying use-case scenarios. This metamodel
allows designers to specify the core elements of the intended scenario including: participants,
pre-conditions, post-conditions, the main flow of steps and any alternatives. Even though the
metamodel provided in their work is similar to the structure of scenarios in Prometheus, it
does not allow the specification of parallel steps. However, in Prometheus, scenarios can
implicitly capture parallelism through having a goal step in the scenario that has children
with the undirected-conjunctive decomposition. Also, and unlike our approach, the meta-
model does not allow designers to merge any relevant information to the specified use-case
scenario from other artefacts.

7 Conclusion

In this paper, we have proposed a new approach for specifying requirements in the Prometheus
methodology. The approach is to introduce activity diagram to be used as a coherent structure
that merges the steps of a given scenario along with their related information from the goal
overview diagram. Although our approach is grounded in Prometheus, it is applicable to any
methodology that link the notions of goal hierarchies and use case scenarios in the system
specification phase.

We discussed the benefits our approach offers designers with respect to different design
aspects. First, our approach enables designers to specify more control fragments such as
parallel and variations in a more structured manner. Second, it can be used to maintain
consistency between different artifacts.

Our evaluation showed that including activity diagrams leads to better understanding of
the specification by giving a more holistic view on what the intended system is meant to
achieve and how it should behave, and provides assistance when performing maintenance
on the system. Participants in our experiment unanimously agreed that the inclusion of the
activity diagram improved their ability to understand the requirements models. Given this,
we recommend the Prometheus methodology, and indeed the other AOSE methodologies, to
include activity diagrams as an integrated feature in the methodology.

As an extension to this work, we are investigating ways to provide round-trip engineering
in our approach through designing and implementing an algorithm to automate the process
for propagating information into the goal hierarchy from changes in the activity diagrams.
We also plan to investigate how the activity diagrams can be used for automated verification
of design models and implementations. Since scenarios may include alternatives and loops,
we are investigating the inclusion of swim-lanes in the approach to improve the readability
of the generated activity diagram. At this stage, our approach considers one scenario at a
time, as each scenario describes a basic run in the intended system, and is not linked to
other scenarios. In fact, Prometheus does not offer a way to associate different scenarios.
The inclusion of multiple scenarios in one activity diagram represents another extension to
our approach. According to the results of the evaluation conducted, some participants totally

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 453

relied on the activity diagram, whilst other participants used both activity diagram and goal
overview diagram. Thus, a potential item of further work would be to reconsider some aspects
of Prometheus.

Acknowledgments Y. Abushark acknowledges King Abdulaziz University for scholarship. J. Thangarajah
acknowledges the support of the Australian Research Council under Discovery Grant DP1094627.

Appendix 1: Pre-evaluation questionnaire

The main purpose of the pre-questionnaire is to assess the user’s experience in the filed of
AOSE, specifically the Prometheus methodology. Also, it aims to assess your experience in
the UML activity diagrams.

On a scale of 1-5 (with 1 being Very Unfamiliar, and 5 being Very Familiar) Please rate
your familiarity with:

(1a) Software Requirements Analysis Concepts: Very Unfamiliar 1 2 3 4 5§
Very Familiar

(1b) Intelligent Agents: Very Unfamiliar1 2 3 4 5 Very Familiar

(1c) The Prometheus AOSE Methodology: Very Unfamiliar 1 2 3 4 5 Very
Familiar

On a scale of 1-5 (with 1 being inexperienced, and 5 being expert) Please rate your
familiarity with:

(2a) Software Analysis and Design : inexperienced 1 2 3 4 5 expert

(2b) UML Behavioural Models: inexperienced 1 2 3 4 5 expert

(2¢) Use Case Scenarios: inexperienced 1 2 3 4 5 expert

(2¢) BDI-Agent System Modelling: inexperienced 1 2 3 4 5 expert

(3) How many software systems have you designed (not including agent-oriented)?

oo
d1-5
06-10
01120
02129
030+

(4) How many agent software systems have you designed?

o
O1-5
06-10
011-20
021-29
030+

(5) Do you have any expertise in other AOSE methodologies other than Prometheus?
List them if yes

O No
[Yes

@ Springer

454 Auton Agent Multi-Agent Syst (2017) 31:423-468

Appendix 2: Experiment sheet
Experiment prerequisite materials (Optional)

— Specifying requirements in the Prometheus methodology

In Prometheus, requirements are specified using goals and use case scenarios. A scenario is a
sequence of steps that describe a particular run of the system. These steps are of different types
ranging from sub-scenarios to the goals that need to be achieved by the system. Although a
scenario is a single sequence of steps, the result is a set of sequences, because a goal step
can be realised by implementing its children (more generally, its descendants), or its parent
from the goal model of the system (goal overview diagram). For example the scenario in
Fig. 14a, the “Invite_Reviewers” goal step could be realised either by the goal step itself
or along with “Invite_Reviewers_Via_Email”; or “Invite_Reviewers_Via_Portal” goal steps.
Also, a scenario may have some variations at some point. Such variations are specified in a
free-text manner. consequently, these variations may introduce new goals and/or modifying
the compositions of existing goals in the goal overview diagram.

— Review scenario of the conference management system

The conference management system is an agent-based system that helps in managing the
different phases of the international conferences including: submission, review, decision and
paper collection.In the submission phase, the system should be able to assign a number for
each submission and provide receipts to authors. After the specified submission deadline,
the system assigns papers to the reviewers. After receiving the reviews, a decision should be
made, by the system, about accepting or rejecting the papers with notifying authors. Then, the
system collects the accepted papers and prints them in a form of a conference proceeding.
As Fig. 14 shows, the review scenario (Fig. 14a) includes number of steps ranging from
percepts the system perceives to goals to pursue. Also, one text-based variation is specified
after the second step. Figure 23b outlines the goals and sub-goals required to successfully
review the papers. As can be seen in the figure, there are three types of goal decomposition:
OR, undirected-AND (denoted by AND) and directed-AND (denoted by AND with dashed
arrows between the child goals indicating the ordering constraints, e.g. Invite Reviewers to
Collect Prefs).

— UML activity diagrams
UML activity diagrams are typically used for business process modelling, for modelling the
logic captured by a single use case scenario. Activity diagrams provide designers with a range

(1| Percept | Review_Phase Review Management AND
2/ Goal Invite Reviewers Review Management
(3] Action | Send_lInvitations Review Management
:J‘ gzr:lem bollec(Pre}; 2:;’;’:‘"19“‘ (Get Papers) (Review) C Select Papers) C Print Proceeding)
&) Goal Assign Reviewers Assignment AND \)
7) Action | Give_Assignments Assignment nvite Reviewers m
8) Percept | Review_Report Review Management OR =
&) Goal Collect Reviews Review Management ‘ Collect Reviews
10 Goal Get PC Opinions Review Management (‘Assign Reviewers)’
Variali 3 . Invite_Reviewer Invite_Reviewer
At step 2, if the researches did not have access to the portal, _Via_Email _Via_Portal
the system should be able invite them through email

(a) (b)

Fig. 14 Review scenario and system’s goal overview diagram. a Scenario description. b Goal overview
diagram

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 455

Fig. 15 Adopted UML activity [Guard]
diagram notations ['

(a) (b) (c)
(d) (e) ()
Invite
Reviewers
Invite Reviewer
Via Email
Invite Reviewer
Via Protal
A
Get PC Collect Review Give Assign Collect
Opinion Reviews Report Assignments Reviewers Prefs

Fig. 16 Equivalent AD for the scenario in 14a

\

[

Review Send Reviewers
Phase Invitations Preferences

of graphical notations for modelling activity diagrams including: activity nodes and activity
edges. The following six notations (Fig. 15) are necessary for this project:

(1) Action Node it is the fundamental and the executable node in the activity diagrams.
It is notated by a rectangular shape with rounded edges.

(2) Regular Activity Edge 1t is a directed connection that shows the flow between the
different actions within an activity diagram.

(3) Initial Node 1t is a control node that initiates the execution of an activity.

(4) Final Node 1t is a control node that shows the end of an activity.

(5) Fork/Join It is control node that splits the execution flow into multiple threads to be
executed independently, and then synchronises them.

(6) Decision/Merge Itis control node that splits the execution of an activity into multiple
alternate flows with only one flow to be executed.

Revisiting the conference management system example, Fig. 16 shows the equivalent activity
diagram for the scenario along with its variation. In fact, Activity Diagram is a coherent
structure that merges the scenario steps along with their related information from the goal
overview diagram.

System1: Trading Agent System

The trading agent system is an agent-based system that captures the process that takes place in
a sale transaction. The system has three agents including: seller, buyer and banker. The seller
agent must send the list of products to the buyer agent when it receives the “store_opening”
percept. The buyer agent then selects a product. After that, the seller agent should send the
buyer the price of the selected item.

Then, the buyer agent should proceed with the payment through the banker agent. The
banker agent then processes the payment and notifies both the seller and the buyer about
the payment process outcomes (approved or denied). The order of these notifications is

@ Springer

456 Auton Agent Multi-Agent Syst (2017) 31:423-468

not important (e.g. seller first and buyer second or the other way around). In the case of an
approved payment, the seller must send the item to the buyer.

NOTE The provided designs across the tasks are possible designs and do not necessarily
represent good ones.

NOTE Activity Diagram is a coherent structure that merges the scenario steps along with
their related information from the goal overview diagram.

Remember A goal step can be realised through its children, or in some cases through its
parent

Task 1

Assuming that the scenario description (Fig. 17) along with the goal overview (Fig. 18)
capture the specifications of the system, determine the valid and invalid traces.

Remember: Activity diagram acts as a coherent structure that merges the steps of the scenario
along with its related information from the goal overview diagram, and hence it can be used
in achieving the task (Fig. 19).

Fig. 17 Sale transaction scenario

description Type Name

Percept | Store_Opening
Goal Send_ltem_List
Goal Select_ltem

Send_ltem_Price

Goal Make_Payment

Goal Manage_Payment

N (o] [e] [+ [l [*] [-]
[
8

Goal Send_Item

(Manage_SaIe_Transaction)
TD
(Send_Item_List CSend_ltem_Price) Send_Item)
Buying_Iltem
Manage_Payment
AND

/AND N\
Validate_Card --+9{ Notify_Participants (Select_ltem) (Make_Payment)
A

ND
Notify_Buyer Notify_Seller

Fig. 18 System goal overview diagram

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 457

Store Send ltem Select Item Send ltem Make
Opening List Price Payment
Notify Validate
Participants ><< Card

Manage
Payment

< Notify Buyer > < Notify Seller >

Fig. 19 Activity diagram

Execution trace |~ Execution trace 2 Execution trace 3 ~ Execution trace 4 ~ Execution trace 5

Token 1 Store_Opening Store_Opening Store_Opening Store_Opening Store_Opening
Token 2 Send_Item_List Send_Item_List Send_Item_List Send_Item_List Send_Item_List
Token 3 Select_Item Buying_Item Select_Item Select_Item Select_Item
Token 4 Send_Item_Price Send_Item_Price Send_Item_Price Send_Item_Price Send_Item_Price
Token 5 Make_ Payment Make_Payment Make_Payment Make_Payment Make_Payment

Token 6 Validate_Card Manage_Payment Manage_Payment Manage_Payment Manage_ Payment
Token 7 Notify_Participants Validate_Card Validate_Card Validate_Card Validate_Card
Token 8 Send_Item Notify_Participants Notify_Participants Notify_Participants Notify_Participants
Token 9 - Send_Item Send_Item Notify_Seller Notify_Buyer
Token 10 - - - Notify_Buyer Notify_Seller
Token 11 - Send_Item Send_Item

Answer [0 Valid OlInvalid [Valid O Invalid O Valid OlInvalid O Valid O Invalid O Valid O Invalid

Task 2

According to the basic run (scenario in Fig. 20), “Manage_Payment”, “Send_Item” is one
of the possible paths after posting “Make_Payment” goal. Specitfy, if possible, another three
paths by numbering the tokens based on their order (refer to the example column) (Figs. 21,
22).

Fig. 20 Sale transaction scenario

description Type Name

Percept | Store_Opening

Goal Send_Item_List
Goal Select_ltem
Goal Send_Item_Price

Goal Make_Payment

Goal Manage_Payment

N [0 [o] [+ [« [¥] []

Goal Send_lItem

@ Springer

458 Auton Agent Multi-Agent Syst (2017) 31:423-468

(Manage_SaIe_Transaction)

ND,

(Send_ltem_List (Send_ltem_Price) Send_ltem

Buying_Iltem
Manage_Payment
AND
Validate_Card --# Notify_Participants (Select_ltem) Make_Payment)
A

ND
Notify_Buyer

Fig. 21 System goal overview diagram
Store Send ltem Select ltem Send ltem Make
Opening List Price Payment

f J

—/

\E.
b

)

Manage
Payment
Notify
Participants
—> Send Item @

Fig. 22 Activity diagram

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 459
Example (this path is Path 1 [INot Pos- Path 2 [INot Pos- Path 3 [INot Pos-
based on the basic run) sible sible sible

(___)Manage Sale
Transaction
(___)Validate Card

(___)Notify Seller
(___)Notify Partici-
pants

(___)Notify Buyer
(___)Buying Item
(__)Send Item List

(___)Select Item
(___)Send Item Price

(___)Make Payment

(1)Manage Pay-
ment

(2)Send Item
(___)Store Opening

(___)Manage Sale
Transaction
(___)Validate
Card

(___)Notify Seller
(___)Notify Par-
ticipants
(___)Notify Buyer
(___)Buying Item
(__)Send Item
List

(___)Select Item
(__)Send Item
Price

(__)Make Pay-
ment
(___)Manage Pay-
ment

(__)Send Item
(___)Store Open-
ing

(___)Manage Sale
Transaction
(___)Validate
Card

(___)Notify Seller
(___)Notify Par-
ticipants
(___)Notify Buyer
(___)Buying Item
(__)Send Item
List

(___)Select Item
(__)Send Item
Price

(__)Make Pay-
ment
(___)Manage Pay-
ment

(__)Send Item
(___)Store Open-
ing

(___)Manage Sale
Transaction
(___)Validate
Card

(___)Notify Seller
(___)Notify Par-
ticipants
(___)Notify Buyer
(___)Buying Item
(__)Send Item
List

(___)Select Item
(__)Send Item
Price

(__)Make Pay-
ment
(___)Manage Pay-
ment

(__)Send Item
(___)Store Open-
ing

Task 3

One of the stakeholders wants the buyer agent to be able to show its disinterest in a product.
Thus, a variation to the scenario is appeared as follows (Fig. 23).

Your task is to add the new goal/s introduced by the variation in the goal overview diagram
(Fig. 24).

@ Springer

460 Auton Agent Multi-Agent Syst (2017) 31:423-468

Type Name

Percept | Store_Opening
Goal Send_ltem_List
Goal Select_ltem
Goal Send_ltem_Price

Goal Make_Payment

N o] [o] [] [] [¥] []

Goal Manage_Payment
Goal Send_ltem
(a)

._> Store Send Select Send Item (Make)
Opening Item List Item Price Payment
Show
Disinterest ¥ D
Notify Validate Manage
Participants Card Payment

Send ltem
Notify
Seller I

Notify
(b)

Buyer
Fig. 23 Scenario and activity siagram. a Scenario. b Activity diagram

CManage_SaIe_Transaction)
TD
(Send_Item_List (Send_ltem_Price) Send_lItem >

Buying_Iltem
Manage_Payment
AND
AND / \
(Select_ltem) Make_Payment)

Notify_Seller

\{

Validate_Card Notify_Participants

AND

Notify_Buyer

Fig. 24 System goal overview diagram

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468

461

Task 4

Considering the two traces below, the appearance of Trace 2 is due to a change requested
by the stakeholders. Your task is to annotate the activity diagram in Fig. 27 to capture both
traces in the table below (Figs. 25, 26).

Token# Trace 1 Trace 2

1 Store_Opening Store_Opening

2 Send_Item_List Send_Item_List

3 Select_Item Select_Item

4 Send_Item_Price Send_Item_Price
5 Make_Payment Make_Payment

6 Manage_Payment Manage_Payment
7 Send_Item Cancel_Order

Fig. 25 Scenario description

Type Name
Percept | Store_Opening
Goal Send_ltem_List
Goal | Select_ltem
Goal Send_ltem_Price
Goal | Make_Payment
[6]| Goal Manage_Payment
Goal Send_ltem

(ManagefSaIe,Transaction

D

T

(Send_Item_List) CSend_ltem_Price)

Send_Item)

Manage_Payment

AND,

Validate_Card -- >

Notify_Participants

AND

Notify_Buyer Notify_Seller

Fig. 26 System’s goal overview

Buying_ltem

AND

N

(Select_ltem) (Make_Payment)

@ Springer

462 Auton Agent Multi-Agent Syst (2017) 31:423-468

Store Send ltem Select ltem Send Item Make
Opening List Price Payment

Validate Manage 4_l
Card Payment
9 ®

Fig. 27 Activity diagram

System2: Auction System

The auction system is a small agent-based system that simulates the activities that take place
in an auction. The system has five agents including: auctioneer, three bidders and banker.
The Auction has seven items to bid upon (one item at each round).

The Auctioneer agent should announce the start of the action to the bidders after it receives
the “new_auction percept from the environment. The percept includes information about the
item to bid and its reserve value.

Then, the bidders should calculate and place their bids. After that, the auctioneer agent
should decide on the winning bid and notify the bidders about its decision (who won). Bidders
should then update their beliefs with such decision (either winning or lost).

NOTE The provided designs across the tasks are possible designs and not necessarily
represent good ones.

Remember A goal step can be realised through its children, or in some cases through its
parent

Task 1

Assuming that the scenario description below along with the goal overview (Fig. 29) capture
the specifications of the system, determine the valid and invalid traces traces (Fig. 28).

Fig. 28 Auction scenario

description e NI
Percept | Start_Auction
Goal | Announce_New_Auction
Goal | Calculate_Bid
Goal | Place_Bid
Goal Identify_Winner
[6]| Goal | Announce_ Winner
Goal | Log_Decision

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468

Manage_Auction

| ID\
Announce_New_Auction
AND,

ety Winner
/ i \ /AID\
C Invite_Bidder1 }>< Invite_Bidder2 >>< Invite_Bidder3 >< Notify_Bidder1 > (Notify_Bidder2 > C Notify_Bidder3 >

Participate_in_Auction

463

Fropose B w
AND

C Calculate_Bid } +< Place_Bid >

Fig. 29 System goal overview diagram

Execution trace 1 ~ Execution trace 2 Execution trace 3 ~ Execution trace 4 ~ Execution trace 5
Token 1 Start_Auction Start_Auction Start_Auction Start_Auction Start_Auction
Token2 Announce_New_ Announce_New_ Announce_New_ Announce_New_ Announce_New_

Auction Auction Auction Auction Auction
Token 3 Calculate_Bid Invite_Bidderl Propose_Bid Calculate_Bid Invite_Bidderl
Token 4 Place_Bid Invite_Bidder2 Calculate_Bid Place_Bid Invite_Bidder3
Token 5 Identify_winner Invite_Bidder3 Place_Bid Identify_Winner Invite_Bidder2
Token 6 Announce_Winner Calculate_Bid Identify_Winner Announce_Winner Propose_Bid
Token 7 Log_Decision Place_Bid Announce_Winner Notify_Bidderl Calculate_Bid
Token 8 - Identify_Winner Notify_Bidderl Notify_Bidder3 Place_Bid
Token9 - Announce_Winner Notify_Bidder3 Notify_Bidder2 Identify_Winner
Token 10 - Log_Decision Notify_Bidder2 Log_Decision Announce_Winne
Token 11 - - Log_Decision - Log_Decision
Answer [Valid OlInvalid [Valid OInvalid O Valid O Invalid O Valid OlInvalid [Valid O Invalid
Task 2

According to the basic run (scenario in Fig. 30), “Announce_New_Auction”, “Propose_Bid”, “Iden-
tify_Winner”, “Announce_Winner” and “Log_Decision” is one of the possible paths after receiving
“Start_Auction” percept. Specity, if possible, another three paths by numbering the tokens
based on their order (refer to the example column) (Fig. 31).

@ Springer

464 Auton Agent Multi-Agent Syst (2017) 31:423-468

Fig. 30 Auction scenario

description Type Name

Percept | Start_Auction
Goal Announce_New_Auction
Goal Calculate_Bid
Goal Place_Bid
Goal Identify_Winner

Goal Announce_Winner

N o] [o] [+ [] [*] [-]

Goal Log_Decision

Manage_Auction
AND.
Announce_New_Auction

AND, AND,

Identify_Winner
C Invite_Bidder1 }>< Invite_Bidder2 >>< Invite_Bidder3 >< Notify_Bidder1 > (Notify_Bidder2 > C Notify_Bidder3 >

Participate_in_Auction

Propose B0 w
AND

C Calculate_Bid } *C Place_Bid >

Fig. 31 System goal overview diagram

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468

465

Example (this path is based on Path 1

the basic run)

I Not Possible Path 2

[Not Possible

Path 3 [Not Possible

(___)Manage_Auction
(1)Announce_New_
Auction
(___)Invite_Bidderl
(__)Invite_Bidder2
(__)Invite_Bidder3
(3)Identify_
Winner

(4)Announce_
Winner
(___)Notify_Bidderl
(___)Notify_Bidder2
(___)Notify_Bidder3
(___)Participate_in_
Auction

(2) Propose_Bid
(___)Calculate_Bid
(___)Place_Bid

(5)Log_Decision

(___)Start_Auction

(___)Manage_Auction
(___)Announce_New_

Auction
(___)Invite_Bidderl
(__)Invite_Bidder2
(___)Invite_Bidder3
(___)Identify_
Winner
(___)Announce_
Winner
(___)Notify_Bidderl
(___)Notify_Bidder2
(___)Notify_Bidder3
(___)Participate_in_
Auction
(___)Propose_Bid
(___)Calculate_Bid
(___)Place_Bid
()

Log_Decision
(___)Start_Auction

(___)Manage_Auction
(___)Announce_New_

Auction
(___)Invite_Bidderl
(__)Invite_Bidder2
(__)Invite_Bidder3
(___)Identify_
Winner
(___)Announce_
Winner
(___)Notify_Bidderl
(___)Notify_Bidder2
(___)Notify_Bidder3
(___)Participate_in_
Auction
(___)Propose_Bid
(___)Calculate_Bid
(___)Place_Bid
)

Log_Decision
(___)Start_Auction

(___)Manage_Auction
(___)Announce_New_
Auction
(___)Invite_Bidderl
(__)Invite_Bidder2
(___)Invite_Bidder3
(___)Identify_
Winner
(___)Announce_
Winner
(___)Notify_Bidderl
(___)Notify_Bidder2
(___)Notify_Bidder3
(___)Participate_in_
Auction
(___)Propose_Bid
(___)Calculate_Bid
(___)Place_Bid
()

Log_Decision
(___)Start_Auction

Task 3

One of the stakeholders wants the bidder agents to be able to request a loan from the banker
agent in the case of three successive losses (Fig. 33). Thus, a variation to the scenario in
Fig. 32 is appeared as follows:

In the case when a bidder agent successively loses the auction three times, it needs
to apply for bank loan, rather than proposing a new bid.

Your task is to add the new goal/s introduced by the variation above in the goal overview

diagram.

Fig. 32 Auction scenario
description

Type Name
Percept | Start_Auction
Goal Announce_New_Auction
Goal Propose_Bid
Goal Identify_Winner
Goal | Announce_Winner
[6]| Goal Log_Decision

@ Springer

466 Auton Agent Multi-Agent Syst (2017) 31:423-468

Manage_Auction

| ID\
Announce_New_Auction
AND,

ety Winner M
/ i \ AND
C Invite_Bidder1 }>< Invite_Bidder2 >>< Invite_Bidder3 >< Notify_Bidder1 > (Notify_Bidder2 > C Notify_Bidder3 >

Participate_in_Auction

AND,

AND

£

CCalcuIate,Bid }Wbc Place_Bid >

Fig. 33 System goal overview diagram

|
L

Appendix 3: Post-evaluation questionnaire

This post test questionnaire is designed to obtain the user’s feedback on their experience in
both approaches.

Using the following rating sheet, please select the number closest to the term that
most closely matches your feeling about the activity diagram as an extra artefact along
with scenario and goal overview diagram.

(1) Enables an easy extraction of a possible behaviour path relative to a particular
scenario

[IStrongly Agree []Agree []Neutral []Disagree []Strongly Disagree

(2) The time taken to grasp what the entire activity diagram shows is reasonable

[IStrongly Agree []Agree []Neutral []Disagree []Strongly Disagree

(3) It is easy to maintain activity diagrams (easy to incorporate changes including:

adding, removing and modifying entities)

[IStrongly Agree []Agree []Neutral []Disagree []Strongly Disagree

(4) Activity Diagram is useful in designing the agents of a particular scenario.

[IStrongly Agree []Agree []Neutral []Disagree []Strongly Disagree

In the experiment you followed two approaches in specifying requirements: the
approach without activity diagram and the one with activity diagram. Which Approach
would you prefer to use? and why.

References

1. Akehurst, D. H., Howells, W. G., & McDonald-Maier, K. D. (2005). Kent model transformation language.
In: Proceedings of model transformations in practice workshop (MTIP) at MoDELS conference, Montego
Bay.

2. Al-Hashel, E., Balachandran, B. M., & Sharma, D. (2007). A comparison of three agent-oriented soft-
ware development methodologies: ROADMAP, Prometheus, and MaSE. Knowledge-Based Intelligent
Information and Engineering Systems (pp. 909-916). Berlin: Springer.

@ Springer

Auton Agent Multi-Agent Syst (2017) 31:423-468 467

20.

21.

22.

23.
24.

25.

26.

27.

. Alam, M. N., Hossain, S., & Alam, K. N. E. (2015). Use case application in requirements analysis using

secure tropos to umlsec-security issues. International Journal of Computer Applications, 109(4), 21-25.

. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J. J., Pavo, J., et al. (2009).

FAML.: a generic metamodel for MAS development. IEEE Transactions on Software Engineering, 35(6),
841-863.

. Bolloju, N., & Sun, S. X. (2012). Benefits of supplementing use case narratives with activity diagramsan

exploratory study. Journal of Systems and Software, 85(9), 2182-2191.

. Bratthall, L., & Wohlin, C. (2002). Is it possible to decorate graphical software design and architecture

models with qualitative information?-an experiment. I[EEE Transactions on Software Engineering, 28(12),
1181-1193.

. Bresciani, P, Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented

software development methodology. Journal of Autonomous Agents and Multi-agent Systems JAAMAS,
8(3), 203-236.

. Cossentino, M. (2005). From requirements to code with the PASSI methodology. Agent-Oriented Method-

ologies, 3690, 79-106.

. Dam, H. K., & Winikoff, M. (2013). Towards a next-generation AOSE methodology. Science of Computer

Programming, 78(6), 684—694.

. Dardenne, A., Van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science

of Computer Programming, 20(1), 3-50.

. Deloach, S. (2004). The MaSE methodology. Methodologies and Software Engineering for Agent Systems,

11,107-125.

. DeLoach, S., Padgham, L., Perini, A., & Susi, A. (2009). Using three aose toolkits to develop a sample

design. International Journal of Agent-Oriented Software Engineering IJAOSE, 3(4), 416-476.

. DeLoach, S. A. (2001). Analysis and design using MaSE and agentTool. Technical report, DTIC Docu-

ment.

. DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-MaSE: A customisable approach to designing and

building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engi-
neering IJAOSE, 4(3), 244-280.

. DeLoach, S. A., Wood, M. F,, & Sparkman, C. H. (2001). Multiagent systems engineering. International

Journal of Software Engineering and Knowledge Engineering, 11(3), 231-258.

. Duran-Faundez, C., Ramos, M., & Rodriguez, P. (2015). Applying gaia and auml for the development

of multiagent-based control software for flexible manufacturing systems: addressing methodological and
implementation issues. Software: Practice and Experience, 45, 1719-1737.

. Garcia-Ojeda, J. C., DeLoach, S. A., et al. (2009). agentTool III: From process definition to code gener-

ation. In: Proceedings of the 8th international conference on autonomous agents and multiagent systems
(vol. 2, pp. 1393-1394). International Foundation for Autonomous Agents and Multiagent Systems.

. Gomez-Sanz, J. J., & Fuentes-Ferndndez, R. (2015). Understanding agent-oriented software engineering

methodologies. The Knowledge Engineering Review, 30(04), 375-393.

. Gomez-Sanz, J. J., Fuentes, R., Pavon, J., & Garcfa-Magarifio, I. (2008). INGENIAS development kit:

A visual multi-agent system development environment. In: Proceedings of the 7th international joint
conference on autonomous agents and multiagent systems: Demo papers (pp. 1675-1676). International
Foundation for Autonomous Agents and Multiagent Systems.

Gross, A., & Doerr, J. (2009). Epc vs. uml activity diagram-two experiments examining their usefulness
for requirements engineering. In: /7th IEEE international requirements engineering conference, 2009.
RE’09 (pp. 47-56). Atlanta: IEEE.

Gutiérrez, J. J., Nebut, C., Escalona, M. J., Mejias, M., & Ramos, I. M. (2008). Visualization of use cases
through automatically generated activity diagrams. Model driven engineering languages and systems (pp.
83-96). Berlin: Springer.

Henderson-Sellers, B. & Giorgini, P. (Eds). (2005). Agent-oriented methodologies. Hershey: Idea Group
Publishing.

Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods. New York: Wiley.
Jacobson, 1. (1992). Object-oriented software engineering: a use case driven approach., ACM Press
Series New York: ACM.

Jennings, N.R. (2001). An agent-based approach for building complex software systems. Communications
of the ACM, 44(4), 35-41.

Juan, T., Pearce, A., & Sterling, L. (2002). ROADMAP: Extending the GAIA methodology for complex
open systems. In: Proceedings of the first international joint conference on autonomous agents and
multiagent systems: part 1 (pp. 3-10).

Jiirjens, J. (2002). Umlsec: Extending uml for secure systems development. In: # UML 2002 the unified
modeling language (pp. 412—425). Berlin: Springer.

@ Springer

468 Auton Agent Multi-Agent Syst (2017) 31:423-468

28. Misra, S., Kumar, V., & Kumar, U. (2005). Goal-oriented or scenario-based requirements engineering
technique-what should a practitioner select? In: Canadian conference on electrical and computer engi-
neering (pp. 2288-2292).

29. Morandini, M., Nguyen, D. C., Perini, A., Siena, A., & Susi, A. (2008). Tool-supported development
with Tropos: The conference management system case study. In: Agent-oriented software engineering
VII (pp. 182-196). Berlin: Springer.

30. Miiller, J. P., & Fischer, K. (2014). Application impact of multi-agent systems and technologies: A survey.
In: Agent-oriented software engineering (pp. 27-53). Berlin: Springer.

31. Munroe, S., Miller, T., Belecheanu, R., Pechoucek, M., McBurney, P., & Luck, M. (2006). Crossing
the agent technology chasm: Lessons, experiences and challenges in commercial applications of agents.
Knowledge Engineering Review, 21(4), 345.

32. Object Management Group. 1. (2011). OMG Unified Modelling Language version 2.4 (OMG UML),
Superstructure. Needham, MA: Object Management Group.

33. Padgham, L., & Winikoff, M. (2004). Developing intelligent agent systems: A practical guide. Chichester:
Wiley.

34. Padgham, L., Thangarajah, J., & Winikoff, M. (2005). Tool support for agent development using the
Prometheus methodology. In: International conference on quality software (pp. 383—388). IEEE.

35. Pavon, J., Gomez-Sanz, J. J., & Fuentes-Fernandez, R. (2005). The INGENIAS methodology and tools
(Chap. IX). In: Henderson-Sellers and Giorgini [22] (vol. 9, pp. 236-276).

36. Royston, P. (1995). The w-test for normality. Applied Statistics, 44, 547-551.

37. Sommerville, I., & Sawyer, P. (1997). Requirements engineering: A good practice guide. New York:
Wiley.

38. Sterling, L., & Taveter, K. (2009). The art of agent-oriented modeling. New York: MIT.

39. Thangarajah, J., Jayatilleke, G., & Padgham, L. (2011). Scenarios for system requirements traceability
and testing. In: The 10th international conference on autonomous agents and multiagent systems (vol. 1,
pp. 285-292).

40. Tilley, S., & Huang, S. (2003). A qualitative assessment of the efficacy of uml diagrams as a form of graph-
ical documentation in aiding program understanding. In: Proceedings of the 21st annual international
conference on documentation (pp. 184-191). New York: ACM.

41. Trencansky, I., & Cervenka, R. (2005). Agent modeling language (AML): A comprehensive approach to
modeling mas. Informatica, 29(4), 391-400.

42. Van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A guided tour. In: Proceedings of
fifth IEEE international symposium on requirements engineering, 2001 (pp. 249-262).

43. van Lamsweerde, A. (2009). Requirements Engineering: From System Goals to UML Models to Software
Specifications. New York: Wiley.

44. Winikoff, M., & Padgham, L. (2013). Agent oriented software engineering (Chap. 15). In G. WeiB} (Ed.),
Multiagent Systems (2nd ed.). Cambridge: MIT.

45. Wooldridge, M., Jennings, N. R., & Kinny, D. (2000). The Gaia methodology for agent-oriented analysis
and design. Journal of Autonomous Agents and Multi-agent Systems JAAMAS, 3(3), 285-312.

46. Yu, E. (1995). Modelling Strategic Relationships for Process Reengineering. PhD Thesis, Department of
Computer Science, University of Toronto, Toronto.

47. Yue, T., Briand, L. C., & Labiche, Y. (2009). A use case modeling approach to facilitate the transition
towards analysis models: Concepts and empirical evaluation. Model Driven Engineering Languages and
Systems (pp. 484-498). Berlin: Springer.

48. Yue, T., Briand, L. C., & Labiche, Y. (2010). An automated approach to transform use cases into activity
diagrams. Modelling Foundations and Applications (pp. 337-353). Berlin: Springer.

49. Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003). Developing multiagent systems: The gaia
methodology. ACM Transactions on Software Engineering and Methodology (TOSEM), 12(3), 317-370.

@ Springer

	Requirements specification via activity diagrams for agent-based systems
	Abstract
	1 Introduction
	2 Background
	2.1 AOSE methodologies and requirements specifications
	2.2 Goal-oriented requirements engineering
	2.3 UML activity diagrams

	3 Method
	3.1 Step-wise activity diagram generation phase
	3.2 Formalising the generation approach
	3.3 Activity diagram reduction phase
	3.4 Prototype implementation

	4 Potential benefits of the activity-diagrams
	4.1 Structured representation of scenario steps and their variations
	4.2 Understandability
	4.3 Maintenance

	5 Evaluation
	5.1 Experimental design
	5.2 Tasks
	5.3 Results
	5.3.1 Task analysis results
	5.3.2 Post-evaluation questionnaire

	5.4 Statistical significance
	5.5 Threats to validity

	6 Related work
	7 Conclusion
	Acknowledgments
	Appendix 1: Pre-evaluation questionnaire
	Appendix 2: Experiment sheet
	Experiment prerequisite materials (Optional)
	System1: Trading Agent System
	Task 1
	Task 2
	Task 3
	Task 4

	System2: Auction System
	Task 1
	Task 2
	Task 3

	Appendix 3: Post-evaluation questionnaire
	References

