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Abstract Some of the most interesting questions one can ask about early societies, are
about people and their relations, and the nature and scale of their organization. In this work,
we attempt to answer such questions with approaches introduced by multiagent systems.
Specifically, we developed a generic agent-based model (ABM) for simulating ancient soci-
eties. Unlike most existing ABMs used in archaeology, our model includes agents that are
autonomous and utility-based. Our model can (and does) also incorporate different social
organization paradigms and technologies used in ancient societies. Equipped with such par-
adigms, our model allows us to explore the transition from a simple to a more complex
society by focusing on the historical social dynamics—i.e., the flexibility and evolution of
power relationships depending on social context and time. As a case study, we employ our
model to evaluate the impact of the implemented social and technological paradigms on an
artificial Early Bronze Age “Minoan” society located at a particular region of the island of
Crete. Model parameter choices are based on archaeological evidence and studies, but are
not biased towards any specific assumption. Results over a number of different simulation
scenarios demonstrate an impressive sustainability for settlements consisting of and adopting
a socio-economic organization model based on self-organization, and which was inspired by
a recent framework for modern self-organizing agent organizations. This is the first time a
self-organization approach is incorporated in an archaeology ABM system.
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1 Introduction

Agent-basedmodeling (ABM)1 began as the computational armofartificial life some20years
ago. The essential features of artificial life models are translated into computational algo-
rithms through ABM, since it is concerned with exploring and understanding the processes
that lead to the emergence of order through computational means. The past decade has seen
archaeology taking an increasingly high interest in ABM [16,20,36,43]. Its emerging pop-
ularity is due to the ABM’s ability to represent individuals and societies, and to encompass
uncertainty inherent in archaeological theories or findings. Indeed, the unpredictability of
interaction patterns within a simulated agent society, along with the strong possibility of
emergent behaviour, can help archaeology researchers gain new insights into existing the-
ories; or even come up with completely novel explanations and paradigms regarding the
ancient societies being studied. ABM is therefore seen by archaeologists as a powerful tool
for assessing the plausibility of alternative hypotheses regarding ancient civilizations, their
social organization, and social and environmental processes at work in past ages.

Now,multiagent systems (MAS) research has always been advocating thatABMs should be
providing a higher level of abstraction than the one offered by object-oriented systems [39].
Modeled agents should be capable of autonomous action, and of maintaining high-level
interactions and organizational relationships with other agents, while being potentially “self-
ish” [69]. However, most multiagent-based simulation models used in archaeology, simply
do not define agents in the way these are defined in AI or MAS research. Unfortunately,
“agents nowadays constitute a convenient model for representing autonomous entities, but
they are not themselves autonomous in the resulting implementation of these models” [21].
To the best of our knowledge, and with the possible exception of only two approaches,
mentioned in Sect. 2 below, existing ABMs used in archaeology do not incorporate truly
autonomous, utility-maximizing agents in their models. Moreover, while certain ABMs used
in archaeology have demonstrated an ability to both describe population dynamics within a
specific region, and reproduce existing archaeological records, they have also been criticized
for allowing to be entirely driven by input data, or for adjusting the carrying capacity of
the simulated landscape in order to better fit a given hypothesis (see, e.g., such a discussion
in [36]).

By contrast, two central aims of our work in this paper were (a) to put forward a model
that is generic, in the sense that it can be employed for the study of practically any society
of choice, and can easily incorporate and help test any theories proposed by archaeologists
(or social scientists); and (b) to showcase how MAS-originating concepts, techniques, and
algorithms can be incorporated in archaeology ABMs. Thus, unlike most existing ABM
approaches in archaeology, which employ a simple reactive agent architecture, we apply a
utility-based agent architecture in our model.2 Our agents act autonomously towards utility
maximization, and can build and maintain complex social structures. Furthermore, though
it is inspired by existing models and specific case studies, our model is quite generic, can
(demonstrably) incorporate a number of different social organization paradigms and various
(e.g., agricultural) technologies, and does not aim to prove or disprove a specific theory.
Indeed, using agent-based models that were built on knowledge derived from archaeological
research, but do not attempt to fit their results to a specific material culture, allows for the

1 We will be using the acronym ABM to refer to both “agent-based modeling” and “agent-based model(s)”.
2 We note that by doing so we do not mean to argue that utility is the main factor driving human behaviour or
the advance of human societies. Nevertheless, utility-based agents and utility theory have long been adopted
as useful tools in the MAS community [56,68].
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emergence of dynamics for different types of societies in different types of landscapes, and can
help derive knowledge of socio-economic and socio-ecological systems that are applicable
beyond a specific case study.

In more detail, in this work we have developed a functional ABM system prototype3 for
simulating an artificial ancient society of autonomous agents residing at theMalia area of the
island of Crete during the Early Bronze Age. In our work, the ABM allows us to explore the
sustainability of specific agricultural technologies in use at the time, and examine their impact
on population size and dispersion; and it allows for the incorporation of any other technology
that needs to be modeled. In addition, it allows us to assess the influence of different social
organization paradigms on land use patterns and population growth. Importantly, the model
incorporates the social paradigm of agents self-organizing into a “stratified” social structure,
and continuously re-adapting the emergent structure, if required. To this purpose, we devel-
oped and tested a self-organization algorithm that builds on the work of Kota et al. [44,45] on
modern self-organizing agent organizations (used for problem-solving and task execution).
The self-organization algorithm incorporates a set of agent relations influencing the various
social interactions, and a decentralised structural adaptation mechanism, suitable for open
and dynamic organizations. We note that this is the first time a self-organization approach is
incorporated in an ABM used in archaeology.

Simulation results demonstrate that self-organizing agent populations are the most suc-
cessful, growing larger than populations employing different social organization paradigms.
Specifically, self-organization is compared to egalitarian-like and static hierarchical organi-
zation models. The success of this social organization paradigm that gives rise to stratified,
that is, non-egalitarian societies, provides support for so-called “managerial” archaeological
theories which assume the existence of different social strata in Neolithic/Early Bronze Age
Crete; and consider this early stratification a pre-requisite for the emergence of the Minoan
Palaces, and the hierarchical social structure evident in later periods [9,24]. Moreover, we
analyze the effects of the concept of “power distance” on self-organization in this society.

The rest of this paper is structured as follows: Sect. 2 below provides a review of the exist-
ing literature on ABM and MAS applied in archaeology. Section 3 presents our multiagent
model, by describing its environmental representation, the agents and their interactions, and
their various social organization-related characteristics. Following that, Sect. 4 describes the
self-organization framework incorporated in this work; and presents an appropriate evalua-
tion mechanism that measures the utility for agent re-organization decisions. Section 5 then
presents our specific case study of early Minoan societies, and records the empirical evalua-
tion of our approach, by first detailing the comparisonmethods and the simulation parameters
for the various scenarios considered, and then analysing the obtained results. Finally, Sect. 6
concludes this work, and discusses future research directions.

2 Background and related work

In this section we provide some background on important concepts and approaches relevant
to our work. Specifically, we discuss the question of understanding the social organization
of a given society, as viewed in archaeology and MAS research; and provide a brief review
of existing ABMs used to aid archaeological research.

3 A sketch of this model appeared in a short AAMAS-2014 paper [10].
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2.1 Social organization through the prism of Archaeology

Social Archaeology [54] seeks to understand the social organization of past societies at many
different points in time. To this purpose, it has strived to define the right questions to ask, and
to devise the means of answering them. It is only natural that different kinds of society raise
different kinds of meaningful questions. For instance, a mobile group of hunter–gatherers is
unlikely to have exhibited a complex centralized organization. Thus, in order to determine
the way many aspects of a societal organization behaves in practice, one needs a frame
of reference—a plausible classification of societies against which to test hypotheses and
ideas.

A society classification system that has found much support in archaeology was the one
proposed by E. R. Service [54,59]: Bands, small-scale societies of hunters and gatherers, less
than 100 people, who move seasonally to exploit resources and lack formal leadership so
that there are no marked economic differences in status among their members. Segmentary
societies are larger than bands, but rarely number more than a few thousand. Their diet or
subsistence is based on cultivated plants and domesticated animals and are typically settled
farmers or nomad pastoralists with a mobile economy (which exploits resources in an inten-
sivemanner).Chiefdoms, on the other hand, operate on the principle of ranking and difference
in social status between their members. There are lineages, graded on a scale of prestige,
and the society governed by a chief; there is no true stratification into classes, however. A
chiefdom generally has a center of power and may vary in size. Early states, finally, preserve
many of the features of chiefdoms but the ruler has the explicit authority to establish laws
and enforce them by the use of a standing army. The society is stratified into different classes
and is viewed as a territory owned by the ruling lineage, and populated by tenants who have
the obligation of paying taxes and tolls, developing a complex re-distributive system. Such
societies often exhibit a pronounced settlement hierarchy.

The classification system above can admit a given society into more than one category.
Moreover, it is far from clear that one should assume societies inevitably evolve from bands to
segmentary societies, or from chiefdoms to states [54]. Earle and Johnson [40] chose a more
evolutionary typology, based on social and political organization, where the mobilization
and exchange of goods and services between “families” and the interconnected processes of
technological change and population growth drive social change and transformation of human
societies over time. Lull andMico [47], on the other hand, review political philosophies from
Greek antiquity to contemporary evolutionism, and offer an alternative classification system
based on historicalmaterialism. In any case, there are sufficientlymarked differences between
simple andmore complex societies, as increased specialization and intensification takes place
among different aspects of their culture.

Social archaeology asks a great number of additional questions regarding the nature and
internal organization of the society under study. For instance, are the main social units,
individuals or groups, forming it on a more-or-less equal base, or do prominent differences
in status, rank, prestige within the society, or perhaps even different social classes exist?
A number of important characteristic features that different kind of societies exhibit have
been described by existing research, but many more are yet to be discovered [54,59]. There
are many methods for acquiring information regarding the internal social organization of an
early society. Beyond field survey—which aims to discover mainly a presumed hierarchy of a
settlement—making use of settlement pattern information, written records, oral tradition and
approaches from ethno-archaeology are included as well [54]. Clearly, the variety of methods
used and the inherent uncertainty of the domain gives rise to a rich space of hypotheses for any
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given question regarding the social organization of early societies. This is where multiagent
systems research can potentially offer a helping hand.

2.2 Social organization through the prism of multiagent systems

Multiagent system approaches towards organizational design can be considered to be either
agent-centric or organization-centric [46]. In organization-centric approaches, the focus of
design is the organization which has some rules or normswhich the agents must follow. Thus,
the organizational characteristics are imposed on the agents. The former focus on the social
characteristics of agents like joint intentions, social commitment, collective goals and so on.
Therefore, the organization is a result of the social behaviour of the agents and is not cre-
ated explicitly by the designer. While a lot of re-organization framework models have been
proposed in the MAS community (Opera [18], OMNI [62], Norms based [48], ODML [33],
KB-OR [60]), such reorganization methods need to be provided with a particular set of
requirements to produce an agent organization suitable for the respective problem solving
process; agents are not permitted to modify their organizational characteristics that have been
pre-designed, or do not allow flexibility in the interactions. In the work of Dignum et al. [19],
re-organization issues in agent societies are discussed, such as how and why organizations
change, and how can reorganization be done dynamically, with minimal interference from
the system designer. As argued there, one of the main reasons for having organizations, is to
achieve stability. However, environmental changes and natural system evolution (e.g. pop-
ulation changes), require the adaptation of organizational structures. Thus, re-organization
may be the answer to changes in an artificial environment of agent societies, if it leads to
increased capacity for survival (vitality) or power to live and grow (energy or utility); the
reorganized instance should perform better in some sense than the original situation, not only
for the organization but for the agent itself, given the assumption and essential characteristic
of agent autonomy in multiagent systems or models.

The concept of self-organization can be considered as a specific instance of the agent
systems re-organization notion. It is inspired by the spontaneous re-organization observed in
natural systems functioning without any external control, and has subsequently successfully
been applied in MAS research [17]. Such mechanisms function without any external control
and adapt to changes in the environment through spontaneous reorganization. This self-
organizing ability makes these natural systems robust to changing environmental conditions,
thus enhancing their survivability. In the context of computing systems, self-organization
refers to the process of the system autonomously changing its internal organization to handle
changing requirements and environmental conditions. Several approaches have been explored
by researchers for developing self-organizing MAS. Intuitively, in social self-organization
methods like the one in the work of Kota [44,45], adaptation targets organization-wide
characteristics, such as structure, rather than the individual agent ones. Changing the char-
acteristics and internal configurations of specific agents may not be possible on all occasions
due to physical and accessibility limitations, and such changesmight be beyond the control of
the agents themselves. Moreover, in dynamic environments modeling real human societies,
continuous structural self-adaptation is, predictably, almost a necessity in the face of uncer-
tainty and ever-present change [19]. Therefore, a structural adaptation method is preferable
to methods modifying particular agent properties, and enables the agents to choose when and
how to adapt—especially when placed in real world, ever-changing environments. In Sect. 4
we will present in detail a self-organization method developed for our work here, one which
adopts aspects of and builds on the approach of Kota mentioned above.
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2.3 Agent-based models of ancient societies

In recent decades, archaeologists have used computer and agent-basedmodels to test possible
explanations for the rise and fall of simple or complex ancient societies. One example of such
a system is the study conducted for the region of the Long House Valley in Arizona, on the
reasons why there have been periods when the Pueblo people lived in compact villages, while
in other times they lived in dispersed hamlets [43]. The model results show the importance of
environmental factors related to water availability for these settlement changes. However, the
results for 30 different (parameterisation) scenarios of one run each are presented. Moreover,
as inmost of the existingmodels, agents actions in themodel aremainly cultivation or farming
and migration, not based on utility maximisation but rather on threshold rules. Finally, agents
do not interact with each other but act independently.4

A similar (quitewell-known)ABMstudy involved the cause of the collapse of theAnasazi,
around 1300 CE in Arizona, USA [4,16]. Scholars have argued for both a social and an envi-
ronmental cause (drought) for the collapse of this society. Simulating individual decisions
of household agents on a very detailed landscape of physical conditions of the local envi-
ronment, Dean et al. [16] indeed confirm the hypothesis that environmental factors alone
cannot account for the collapse. Agents in the Anasazi model (of the same environmental
area with the work of Kohler et al. [43]), however, once again do not interact with each other.
Agents are simple reactive (i.e., incorporate simple condition-action rules [56]), and their
actions mirror a rather nomadic style of social organization, instead of the more complex one
that the Anasazi actually evolved until they abandoned the region around 1300 CE [25]. A
further cause of concern regarding the model’s accuracy and fairness is that Axtel et al. [4]
apparently calibrated the model by minimizing the difference between the simulated and
historical data, using only 15 simulations, and published the best fit, notwithstanding the
apparent great variation in their results [36].

The study of the long-term dynamics of human society and in particular the spontaneous
transition from a relatively simple hunter–gatherer society to one with a more complex
structure has been also tried in the past [20]. The aim of this social simulation system—
Evolution of organized Society (EOS) project—was to investigate the causes of the emergence
of social complexity in Upper Palaeolithic France. Each agent is endowed with a symbolic
representation of its environment, its beliefs, about other agents (the social model) or about
resources in the environment (the resource model). An agent also has a set of cognitive rules,
whichmap old beliefs to new ones. To decide what action to perform, agents have action rules
which map beliefs to actions. Agents inhabit a simulated two-dimensional environment (grid
of cells) and have associated skills. The idea is that an agent will attempt to obtain resources
situated in the environment that come in different types, and only agents of certain types
are able to obtain certain resources. The basic form of social structure that emerges, does
so because certain resources have a skill profile associated with them. This profile defines,
for every type of capability that agents may possess, how many agents with this skill are
required to obtain the resource. A number of social phenomena were observed in running the
EOS model, as for example “overcrowding” or “clobbering”, when too many agents attempt
to obtain resources in the same locale. However, agents in the model are autonomous only
in the sense of simple reactive agents. Neither learning/adaptation nor a “utility” function
of the agent’s state or actions is introduced. Agents in the EOS model are rather forced by
rules to change their independent state in favour of a recursive development of a hierarchical
structuring of agent groups. Moreover, the authors mention that there are more than 60 rules

4 Mortality and fertility rates in [43] depend on age, rather than on production.
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including both cognitive and action rules, while none of them is described; at least for the
cognitive part of the agents, there is no reference on the internal information processing of
the agent, including tasks like reasoning, planning or problem solving. In order to study the
transition from a simple societal organization to a more complex structure (without adding
any bias), simulations should exhibit the emergence of such a phenomenon, rather than
introducing it to the model a priori. In addition, while population dynamics is an important
consideration for the accuracy and fairness of any ABM modeling a given society [14], this
is not mentioned at all in the work of Doran et al. [20].

Archaeologists are now beginning to make use of spatial information in their models,
through data provided by Geographical Information Systems (GIS). Models like the Cyb-
Erosion framework overcomes the limitation of existing landform evolution models which
use an agent-based approach to simulate the dynamic interactions of people with their land-
scapes but have typically failed to include human actions, or have done so only in a static,
scenario-based way [64]. The interactions it simulates relate to a few main processes of
food acquisition (hunting, gathering and basic agriculture) in prehistoric communities. Sim-
ulations demonstrate the value of this approach in supporting the vulnerability of landform
evolution to anthropic pressure, and the limitations of existing models that ignore human
and animal agency, and which are likely to produce results that are both quantitatively and
qualitatively different. Although the ABM’s goal-based agents do not interact with each other
they can decide at each time-step what action to select (hunt, forage, collect firewood, other
activities) based on their stored energy and the remaining daylight length.

TheMason–Smithsonian Joint Project on Inner Asia [12] is a complex social simulation
project aimed at developing a better interdisciplinary scientific understanding of the rise and
fall of polities—national territorial societies with their own system of government—over a
very long time period, in order to examine the social effects of climate and environmental
change. A next model of this project is the Mason Hierarchies model, developed by adding
social and natural features to the simulation. Hierarchies rather than “households” agents
are now present for modeling the explicit emergence of political entities in the socio-natural
landscape. Themodel-building is based on the “canonical theory of social complexity” which
is formally derived from the authors’ general theory of political uncertainty rather than on a
representative MAS or ABM architectural framework.

ENKIMDU [11] is a celebrated societal modeling framework. Since its conception, it
has been employed in several “spin-off” projects, due to its ability to create a virtual world
on which to run simulations based on environmental and social parameters. The original
ENKIMDU work focused on the study of the Bronze Age Mesopotamian settlement system
dynamics. The system can represent settlement populations that are demographically and
socially plausible, and detailed models of social mechanisms that can produce and maintain
realistic textures of social structure and dynamics over time. Agent decisions are influenced
by natural and social circumstances such as low crop yields, endogamous or exogamous
marriage patterns, and rates of death. As such, agent autonomy is somewhat limited.

MayaSim [31] is a very recent example of a simulation model integrating an agent-based,
cellular automata, and network model of the ancient Maya social–ecological system. The
purpose of the model is to better understand the complex dynamics of social–ecological sys-
tems, and to test quantitative indicators of resilience as predictors of system sustainability or
decline. The ancient Maya civilization is presented as an example. The model examines the
relationship between population growth, agricultural production, pressure on ecosystem ser-
vices, forest succession, value of trade, and the stability of trade networks. These combine to
allow agents representingMaya settlements (rather than households), to develop and expand
within a landscape that changes under climate variation and anthropogenic pressure.
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MayaSim agents are utility-based in the sense that they estimate the utility of the various
actions at hand. However, they choose actions whose utility has reached some thresholds that
are in fact hard-coded by the modeller. For instance, decisions on migrating or adding new
and degrading existing trade route links between the agents, are based on threshold rules.
Specifically, settlement agents may migrate when population levels decrease below a certain
threshold required to maintain subsistence agriculture, while their utility function combines
weighted functions for agriculture, ecosystem services, and trade benefit. The later is affected
by agent resource exchange that occur between settlement agents since they are connected
via a network of links that represent trade routes. It is assumed that when an agent reaches (or
drops below) a certain size, it will add routes (or allow routes to degrade) to agents in nearby
cells within a Moore neighbourhood (spatial ties). A larger network produces greater trade
benefits, and also the more central an agent is within the network (centrality), the greater the
trade benefits for that individual agent. The model was able to reproduce spatial patterns and
timelines somewhat analogous to that of the ancient Maya, although this proof of concept
stage model requires refinement and further archaeological data for better calibrations; and
although the temporal extent is only a few hundred time steps, each representing roughly
2years.

The second model we are aware of that can be considered utility-based, even though
the author does not use the term utility explicitly, is the one proposed by Janssen [37] for
understanding how prehistoric societies adapted to the American southwest landscape of
their era. The ABM could explore to some extent how various assumptions concerning social
processes affect the population aggregation and size, and the dispersion of settlements. Agent
interactions in that simple model, however, are largely determined by rules that are built in
the system. Our model in this paper shares several basic features with that of Janssen, but is
also in many ways distinct from that model, as we will be detailing in Sect. 3.6.

In summary, ABM and MAS nowdays can integrate geospatial information with archae-
ological evidence and theories, and help researchers gain a better understanding of ancient
social organization and environmental processes. However, as mentioned earlier, most of
existing models do not define agents in the way these are defined in the MAS community,
perhaps because domain experts in social sciences do not define such models in computa-
tional terms. Thus, essential agent features such as autonomy or interaction capability are
considered as “metaphors” in the design level only, and do not appear in the actual system
implementation. Social scientists and archaeologists are interested in understanding human
societies, in particular the mechanisms that allow these systems to self-regulate, and in the
processes that shape and modify rules of behaviour. To aid them in this endeavour, computer
scientists have to build ABMs that are flexible and open; agent behaviours should be allowed
to evolve over time, rather than being pre-determined at design-time. This does not imply
that the ABMs need to be highly complex; rather, it implies a need to develop and study
system-regulating mechanisms that are actually emergent from some form of evolution and
self-organization of the underlying agent society. The model that we will now present is such
an open one, and can incorporate self-organization mechanisms that allow for flexible agent
interactions and the dynamic modification of organizational characteristics.

3 A utility-based multiagent model for artificial ancient societies

In this work we have developed a functional ABM system prototype for simulating an artifi-
cial ancient society of agents evolving in a 2D grid environmental topology. The grid is also
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equipped with attribute fields that register information regarding the availability of water,
elevation, and slope. The agents correspond to households, which are considered to be the
main social unit of production for the period [65], each containing up to a maximum number
of individuals (household inhabitants). Each household agent resides in a cell within the
environmental grid, with the cell potentially shared by a number of agents. Adjacent cells
occupied by agents make up a settlement—and there is at least one occupied cell in a settle-
ment. Each agent cultivates a number of cells located next to the settlement. The number of
those “fields” depends on the agent household size, as we explain further below.

The model then determines how the agent society evolves as follows. At every time step
corresponding to a period of 1year, agents (i.e. households) first harvest resources located in
nearby cells (corresponding to the fields they are cultivating). They then check whether their
harvest (added to any stored resource quantities) satisfies their minimum perceived needs. If
not, they might ask others for help (depending on the social organization behaviour in effect),
or they might even eventually consider moving to another location or settlement. When the
self-organization social paradigm is in use, agents within a settlement continuously re-assess
their relations with others, and this affects the way resources are ultimately distributed among
the community members, leading to “social mobility” in their relations.

Population size affects the land productivity in two ways: positively, since the continuous
occupation or cultivation of an area by a large populace leads to experience and subsequent
higher crop yield; and negatively, since the soil quality of lands cultivated continuously by
a large population degrades due to erosion processes. Population levels at a given area are
affected by migration, as well as natural population change by birth and death of agents.
Lower amount of resources reduces birth rate and thus leads to a reduced population size and
threatens the agents with extinction. An abstract overview scheme of the dynamics between
the main model elements is presented in Fig. 1. The arrows in the figure show how one
element affects another in the MAS simulation model.

The ABM allows us to explore the use of various technologies that could potentially be
used by the agent society, and thus test their impact on population size and dispersion (e.g.,
on the civilization’s viability). In our work, it allows the use of two agricultural technologies:
intensive farming (“garden” cultivation with hand tillage, manuring, weeding, and watering)
and extensive cultivation (large-scale tillage by ox-drawn ards).5 Additionally, the ABM
attempts to assess the influence of different social organization paradigms on population
growth and settlement societies distribution. Importantly, the model allows us to evaluate
the social paradigm of agents self-organizing into an implicit stratified social structure, and
continuously re-adapting the emergent structure, if required.

3.1 Model environment and resources

Agents and resources in the multiagent model are located within a 20 × 25 km area with
a 100 × 100 m cell size for the grid space. Thus, the landscape consists 50K cells, while
the time slot investigated is ≈2000years (ca. 3100–1100 BCE), with annual time steps. The
environment has also various data layers (see Fig. 2) representing various aspects of the
model landscape contributing indirectly in agent’s decision-making process, like where to
settle and/or cultivate. The input spatial information are derived from modern data and are
concerning the topography, which is today’s Digital Elevation Model (DEM), slope and
aquifer locations (rivers and springs).

5 These are the agricultural technologies in use at the period of interest for our case study [27,35].
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Fig. 1 Multiagent model overview

Fig. 2 Environmental data layers of the multiagent model

Resources exist in cells at fixed locations, and they may vary with respect to the amount
of energy they embody, and their availability through time. The productivity of an individual
cell (in kg) is a function of the cell’s geo-morphological characteristics (in particular, land
slope) given its location on the map, and the soil fertility, which depends on the amount of
labour applied on the cell by the agents. With more labour applied on a given cell, there is
an increase in cell farming output (as agents get better in working the land and harvesting
their crops). On the other hand, the more a cell is used, the more its “soil quality” is reduced
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(due to various erosion processes). Thus, the rate of soil depletion depends on the settlement
population size: a higher population puts more anthropic pressure on the land.

To model these dependencies, we devised a function Ri to describe the agricultural pro-
duction quantity or reward associated with cultivating a land cell i :

Ri (P) = αi

(
2μ − 4μmax

Pmax
2 P2+4μmax − 3μ

Pmax
P+μ

)
(1)

where P is the current population size of the corresponding settlement (i.e., number of indi-
viduals residing in the settlement, not the number of household agents),6 μ is the initial
amount of resources of the cell, μmax is the maximum resource level per cell, Pmax is the
maximum possible settlement population size, and αi is a real valued weight in [0, 1] char-
acterizing the agricultural production of cell i . Intuitively, αi represents the land suitability
of a cell for agriculture. There are no agricultural activities in areas with slope more than
45◦ (this is actually a generous assumption, especially considering the era being modelled).
Thus, αi is used to represent the decay of agricultural land suitability with increasing slope.

Equation 1 captures the fact that labour applied on a field increases crop yield up to a
point, but at the same time a household cannot productively use a location forever (due to
soil depletion). It was inspired by the logisticmap equation, the discrete version of the logistic
differential equation,widely used tomodel population growth [63]. In our simulations, a cell’s
production output Ri at a given run (corresponding to period of 2000years) is multiplied with
a sample from a standard normal distribution, and thus varies across runs.

3.2 Agents and their actions

Households are utility-based autonomous agentswho can settle (or occasionally re-settle) and
cultivate in a specific environmental location. They also possess an explicit representation of
the environmental grid (migration radius), and use this to choose the best available migration
location they can move to, in order to improve their utility. Thus, the actual agent architecture
is a hybrid one, combining properties from a reactive and a deliberative agent architecture,
but they can eventually be classified as utility-based agents, since they seek to maximise
the expected value of a given utility function via their actions (e.g., choosing a migration
location, or asking others for help).

In particular, agents optimize their decisions with respect to the (long-term) value of
being at a given state (corresponding, e.g., to being at a particular location while possessing
a specific amount of stored resources, and so on). This value is provided, as is standard
in decision theory, by a state and action-dependent value function [50,51]. We begin our

6 In Eq. 1 we let the agents organization population P influence the amount of labour applied on a cell, even
though any given cell contributes to the utility of a single agent only (cf. Eq. 3), since field cultivation was in
many respects communal in those times [61]. Regardless of that assumption’s validity, this value is essentially
normalized by the maximum possible population; thus the Ri function’s desired behaviour would have been
entirely similar had we used the household size instead of the settlement population.
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description of agent decision-making deliberations in this paper, however, by assuming that
an agent takes decisions by considering only the outcomes of its immediate actions, which
are relevant to its current state only. Thus, there is no need to include the state as a parameter
of the value function. Therefore, though we will explicitly consider states in Sect. 5.2.4, for
now we simply letUx (b) denote a function describing the immediate value of some action b
to agent x . Then, at every time step, x picks the best action b′ in the set of actions Actionsx
at its disposal:

b′ = argmaxb∈ActionsxUx (b) (2)

Themain preoccupation of the agents is to stay alive by acquiring and consuming resources. If
an agent fails to acquire enough energy it will eventually die out, since it will stop procreating,
as explained in Sect. 3.3 below. Acquiring energy is the only inbuilt goal of the agents. In
the case study considered in the current paper, agents acquire energy only via harvesting
the lands. This can be done (a) either at the agent’s current location (via employing the
cultivation action described below); or (b) at some other location to which the agent migrates
(cf. migration action below). Therefore, since there are only two actions to consider, the
(expected) utility Ux of the agent x can be simply described as follows (assuming the agent
cultivates n environmental cells):

Ux=max

{
n∑

k=1

Rk,U
′
x

}
(3)

Equation 3 thus determines that the utility of agent x depends on the expected agricultural pro-
duction of the cells it cultivates (its total harvested resource amount), as well as the expected
utility U ′

x of a new candidate migrate location, which in turn depends on the agricultural
production quality of the new position (immediately after migration). The number of cells
n that a given agent x needs to (and is able) to cultivate at a given position, depends on the
number of its (household) individuals, and the agricultural technology in use, as we detail
below. Notice however that, as described in Eq. 3 the utility function is rather myopic, taking
into account as it does only the immediate reward R from cultivating a specific location
(either the current one, or the one the agent migrates to). Nevertheless, Eq. 3 can be readily
extended to incorporate the long-term quality of agent decisions. To illustrate this fact, in
Sect. 5.2.4 we describe how to determine the value of non-myopic, long-term settlement or
migration policies via the use of Markov Decision Processes (MDPs) [50].

Now, an agent x needs to be receiving some minimum utility from its cultivated cells, in
order to be fit enough to procreate (see Sect. 3.3). This minimum utility (minimum level of
resources) for household agent x containing j individuals is calculated as:

uthresx = j×resmin (4)

with resmin being the minimum amount of resources (in kg) required by an individual per
year. The value of the resmin can be set based on archaeological research estimating the
average yearly food consumption per person during the era in question.

As mentioned, agents employ actions by which they may interact with the environment.
We term these agent-environment actions, to distinguish them from the actions that agents
may use to interact with other agents in the environment. The currently implemented primary
(agent-environment) actions include land cultivation and migration to another location, if an
agent’s current location does not fulfil the agent demands:

Action: Cultivation An agent may cultivate the land within a specified range from
its settled location, and is able to store any surplus resources in its storage, for up to
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yrs years. The number of cells a household cultivates depends on its size, and the out-
put of the agricultural technology currently in use (cf. Sect. 3.4 below). The agents are
assumed to be “settled farmers” who, however, do not aim to expand their farming terri-
tory more than what they require it to be in order to be able to sustain themselves. This
is because during that era farming activities relied mainly or entirely on human labour,
thus entailing a high cost, and ease of access to the cultivated lands had to be taken into
account [35]. Thus, agents in our work, decide, on a yearly basis, to cultivate only the
number of cells deemed necessary in order to sustain themselves for another year. A farm-
ing area thus contains a number of cells n = number of household inhabitants ×
resmin(kg)/(maximum) harvest amount provided by the agricultural regime in use
(kg/ha). Moreover, ifUx > uthresx that year, then the surplus resource amount ofUx −uthresx
is kept in the agent’s storage for future use. If an agent does not receive the minimum level
of resources it requires, uthresx , for yrs years in a row (Ux < uthresx ) and the storage is empty
(storage = 0), it considers migrating to another location or settlement.

Action: Migration An agent moves to another location only when it finds a location
within a radius rmax that is better than its own location. At time step t , the agent calculates
its expected utility U ′

x for the new location at time step t + 1, as the average agricultural
production of the neighbouring cells which is defined by Eq. 1, considering the agent moved
to the respective unused cell (i.e., a cell that does not correspond to cultivated land from any
other agent). An agent may also migrate to a cell within another established settlement; in
that case, it first considers the average expected utility of agents in the settlement in question.
If the expected utility U ′

x of the agent for the new location is higher than the agent’s current
utility Ux , the location is considered to be an option for migration. If there are many such
locations, the agent migrates to the one perceived to be the most favourable; considering the
small modeling landscape area, agent’s migration radius was set to full environmental view
with negligible resettlement cost (see Sect. 5.1).

Apart from the aforementioned actions, yet another agent-environment interaction that
is not, however, under the direct control of the agent, is that of hatching—i.e., generating
offspring. Hatching does have an impact on the agent utility (since this is affected by the
overall population, via Eq. 1), but the agent can only affect its probability of generating
offspring by making sure that it is accumulating enough utility via the rest of its actions.
Hatching takes place once a year (per agent), with some probability, which corresponds to
an agent-specific population growth rate (cf. Sect. 3.3) below. Whenever an agent generates
an offspring, a newborn individual is added. If the new size of the household is higher than
the defined maximum number of individuals per household, a new agent is created (agent
offspring) by splitting the old household in two random sizes in the same environmental
cell. If, by so doing, the maximum number of agents per cell is reached, the newly created
household (agent) is located in any adjacent cell that has fewer agents than the maximum
possible. The maximum number of agents per cell is derived by the maximum number of
individuals per cell, as well as the maximum number of individuals per household. These
parameters are set using existing archaeological estimates.

3.3 Population dynamics

The total number of agents in the system changes over time, as individuals belonging to
households are born or die. The death rate7 for an individual belonging to a household is
given by a variable rdeath , whose value in our “case study” simulations was set to 0.002;

7 Certainly, however, when a household agent’s utility and storage values reach zero, all individuals in the
household inevitably “die”, and the agent is removed from the system (and organization).
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Fig. 3 Number of cultivating cells (left) and maximum expected resources in storage (right) for a household
agent wrt. intensive and extensive agricultural technology

while the agent procreation ability (determining the annual levels of births) is based on the
amount of energy consumed by the household agent during the year. Specifically, the birth
rate is defined to be:

rbir th ∗ Ûx/u
thres
x

with rbir th equal to 0.003 for our simulations, where Ûx is defined as follows:

Ûx = min{Ux , u
thres
x }

As such, Ûx/uthresx is at most 1, and the agent-specific birth rate is at most rbir th . How-
ever, whenever Ux < uthresx , the agent attempts to “replenish” Ux by acquiring energy by
its storage (or, if the self-organization social behaviour is in use, maybe by acquiring energy
from other agents). These rates, given the specific rdeath and rbir th values used in our simu-
lations, produce a population growth rate (=birth rate−death rate) of 0.001 = 0.1%, when
households consume adequate resources (i.e., when they acquire utility equal to uthresx or
more). This corresponds to estimated world-wide population growth rates during the Bronze
Age according to Cowgill [14].8

3.4 Technologies

Our model can be readily incorporate any ancient technologies that the agents might have
had access to, depending on the era and location being modeled. Currently, the technologies
implemented correspond to two distinct (Early) Bronze Age agricultural regimes [27,42]:

Intensive agriculture, where agents cultivate intensively the neighbouring land area,
leading to greater production per hectare.

Extensive agriculture where agents can expand their cultivated areas, using more land,
but producing less per hectare when compared to the intensive agricultural practice.

The output associated with intensive agriculture in our model is 1500kg/ha, while the
production associated with extensive agriculture is 1000kg/ha. These values are appropriate
estimates for these two regimes, given the period modelled [35]. Then, the number of can-
didate cultivation (or field) cells and the expected maximum energy stored for any agent in
the model, depending on the agricultural regime in use, is shown in Fig. 3.

One example of how these two different technologies are used by the agents is the
following. A household agent x with five individuals ( j = 5), needs to accumulate
uthresx = 5 × 250 = 1250kg of resources for the year, assuming resmin = 250kg (cf.

8 Others estimate growth rates in mainland Greece and the Aegean to be between 0.1 and 0.4% per year, for
long periods during the Neolithic Era and the Bronze Age [2,41].
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Eq. 4). If agent x adopts an intensive agricultural strategy (producing μmax = 1500kg/cell),
it chooses one (unoccupied) nearby cell (1 × 1500 = 1500kg) from its settled location
for cultivation, since that much is enough for sustaining its individuals for the current
year (uthresx < 1500). On the other hand, if agent x adopts an extensive agricultural strat-
egy (assuming that produces μmax = 1000 kg/cell), it chooses two (unoccupied) nearby
cells (2 × 1000 = 2000 kg) from its settled location for cultivation, since one cell is not
enough for sustaining its individuals for the current year (< uthresx ), thus expanding its
farmland.

3.5 Social organization paradigms

Agents also have actions by which they interact with each other. These agent-agent actions
correspond to distinct social 9 organization paradigms, determining the way by which distri-
bution of resources takes place among the population. In our work, we examine five different
social organization paradigms (“behavioural modes” or “resource distribution schemes”):
independent, sharing, egalitarian, hierarchical and self-organized; by so doing, we shed
some light on crucial aspects of the ancient societal organization, and the relation between
crop yield, resource allocation patterns, and the reproduction and legitimization of authority.
In more detail, the aforementioned paradigms are the following:

Independent Agents acquire (harvest) and consume resources independently. Although
there is no distribution of harvest among the agents, the actions (e.g., cultivation ormigration)
of the various agents have an impact to the welfare of others—the overall welfare of the
settlement (cf. Eqs. 1, 3).

Sharing Agents distribute energy amounts (produce) within a settlement based on reci-
procity.All stored and newly harvested resources are pooled each year, and distributed equally
among the agents—that is, resources are distributed equally among the households in the
community. This social paradigm is quite interesting, as it effectively allows the creation
of “poorer” or “wealthier” households, since agents with fewer individuals gain a survival
advantage, albeit a temporary one: they end up getting comparatively more resources due to
the distribution scheme, and can thus better sustain themselves throughout the next year—but
this is an advantage they will lose if their household size increases.

Egalitarian In this scheme, storage and harvest is pooled each year and distributed among
the agents, but now resource distribution is proportional to their household size—i.e., it
is proportional to the number of the actual individuals in each household. Therefore, this
paradigm mirrors a truly egalitarian society, and no agent gains an advantage because of the
resource distribution scheme.

Self-organizedAgents autonomously re-arrange their relations, and hence the underlying
social network structure describing these relations, without any external control. They do so
in order to adapt to changes in requirements and environmental conditions. In other words,
they constantly re-evaluate and possibly alter their relations or linkswith other agents. These
relations determine the way resources are ultimately distributed among the agents. In Sect. 4,
we provide a detailed description of this social organization paradigm.

(Static) Hierarchical Agents distribute resources based on a fixed hierarchical social
structure. The agents are linked to each other via static social relations, which determine the
amount of produce each agent acquires via the distribution scheme. The determination of the

9 More accurately: socio-economic.
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original relations, and the actual resource distribution takes place following the same rules
as those governing the self-organized social organization paradigm (described in Sect. 4).

3.6 Relation to existing models

Our model in this paper was originally inspired by that of Janssen [37], and thus shares
several basic features with that model. Just like [37], we also model population dynamics,
as a model should do—but via an entirely different population growth function. Our agents
also correspond to households, and they use a similar process to the one described in [37] for
deciding whether to migrate or not. Apart from these similarities, the models are different in
all other aspects.

To begin with, no individual members are actually introduced in that model as compo-
nents of the household agents. By contrast, individual household members are present and
key in our model, since (a) their number affects the estimated agricultural production (via
Eq. 1), and (b) for certain social organization models, they play a crucial role in determining
how the accumulated resources are to be dispersed among the agents (cf., the “egalitarian”
organization model described in our work). Second, the modeling area in [37] is not an
actual landscape, but a flat 20 × 20 grid (an arrangement which, of course, speeds up the
simulations); while agents cultivate just one cell, the one the agent is currently settling, or
the one it is migrating to where renewable resources can be found (after the agents have
consumed/exhausted harvested). Another notable difference between the two models, is that
ours can (and does) incorporate different technologies—our agents use either intensive or
extensive farming techniques, instead of cultivating just one cell.

Moreover, in [37] the production/harvest yield is exactly the same for each agent within
a settlement (same cell), thus potentially violating maximum resource levels of the occupied
cell. Production and thus agent utility is essentially affected only by resource regeneration
rates defined, and the agents make no attempt for active utility maximization, apart from
considering migration when resources at the current cell are exhausted. Indeed, the main
action of an agent appears to be “migration” rather than cultivation (or at least the use of
this action is rather pronounced in the simulation results), as the reported agent migrations
number is proportional to population size. This corresponds better to a nomadic hunter–
gatherer society, rather than one of “settled farmers” (notwithstanding the fact that [37]
is modeling a settled farmers society). By contrast, agents in our model take utility-based
decisions, at every time step, regarding the appropriate number of cells to cultivate, given
the number of their individuals and the agricultural strategy employed, or by migrating to
another location or settlement for farming purposes, if such an option is deemed beneficial
in terms of expected cultivation yield.

In addition, [37] estimates the utility-affecting expected agricultural production given
estimated rainfall, for the same period simulated in [4,16,43]. The rainfall estimates are
reconstructed using modern-day annual data obtained via the Palmer Drought Severity Index
(PDSI). By contrast, there is no climatic reconstruction in our model, and thus the annual
resource production (cf. Sect. 3.1) does not depend on the accuracy of any such method.

As a final note, the viability of an independent and an egalitarian-like social organization
model was examined in [37]. Interestingly, there was no observed statistically significant
difference among them, as the author notes. Our results, by contrast, indicate that there is in
fact a visible difference among these social organization paradigms. Of course, as outlined
in the text, many components and component parameters in our model are entirely different
to those of [37], and they are also instantiated on different modeling areas and historical
places/times, thus this discrepancy might not be surprising.
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4 Self-organization

The rise of complex societies presents itself as an evolutionary advance. Complex societies
have larger populations than their egalitarian predecessors, and deploymore powerful produc-
tive forces. The emergence of the “palaces” in the Middle Minoan period marks a transition
from an egalitarian to a more complex, state-like society with a clear hierarchical structure
crowned by a central, administrative authority [9]. There is also a belief that stratification in
Minoan Crete precedes the appearance of the palaces by several centuries [7,24]. In our work
here, we examine whether the adoption of a self-organized agent organization (settlement)
can indeed give rise to a dynamically stratified social structure that is be able to sustain itself
through time.

As mentioned in Sect. 2, the work of Kota [44] on “self-organizing agent organizations”
is an example of a recent decentralized structural adaptation mechanism originating in the
multiagent systems community. In that work, an abstract agent organization framework for
depicting distributed computing systems is introduced, along with a task environment repre-
sentation model and a suitable performance evaluation system. The organization consists of
agents providing services and having computational capacities. The structure of the organiza-
tion manifests the relations between the agents, and regulates their interactions. Crucially, the
proposed self-organization (structural adaptation) process is applied individually and locally
by all the agents, in order to improve the organization’s performance.

Our self-organization model here is inspired by the work of Kota. However, we modify
that model in several important ways, as described in detail in Sect. 4.2 below. In effect, and
in distinction from Kota’s approach, the self-organization technique presented here is one
that results to the continuous targeted redistribution of wealth (i.e., energy resources, so that
resources flow from the more wealthy agents to those more in need within the organization),
maintaining a dynamically stratified social structure. This will become clear below.

4.1 Relations and interactions

Agents may improve their performance as a “group” (vitality of the settlement) by modi-
fying the social structure through changes to their relations (re-organization) continuously
over time. They need to interact with one another for the proper allocation of resources.
A shortage in resource where uthresx − Ux> 0, gives rise to a task for agent x : the agent
needs to accumulate produce equal to the perceived deficit. Agents perform three types of
self-organization actions: (i) execution, (ii) allocation, and (iii) adaptation.

As mentioned, task execution involves the accumulation of produce to cover a perceived
deficit. An agent x may execute a task (by consuming energy from its storage), or re-allocate
the task (if its storage = 0) to another capable agent y; and executes it otherwise. Task
execution then means that agent y delivers to x some resource by taking that amount out
of its own storage. If agent y is only able to replenish a portion of the requested produce
allocation task, this is considered a subtask execution. Note that capable agents in our model
(i.e., thosewith storage> 0) related to agent x , always accept produce allocation or execution
tasks. This is due to an assumption of high degree of cooperation (sharing) among households
in Greece before the Middle Bronze Age [29]. Thereafter, agents reorganize and adapt their
relations, maintaining a dynamic stratified social structure. We will expand on the adaptation
process in the next subsection.

Interactions between agents are therefore regulated by the settlement’s social structure.
Relations among agents are classified into three types (i) acquaintance (aware of the presence,
but having no interaction), (ii) peer (low frequency of interaction); and (iii) authority (a
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superior—subordinate relation, where agents have a higher frequency of interaction). The
authority relation depicts “superior status” of an agent over the subordinate agent in the
context of their social organization, i.e. higher produce transfer amounts are possible than
the subordinate agent. The peer relation will be present between agents who are considered
more-or-less equal in status (i.e energy transfer amounts) with respect to each other and is
useful to expand vertically the assumed stratified social graph. When two agents are not
linked to each other by a relation like acquaintance, peer or authority, they are considered to
be strangers to each other (belong to another organization or settlement). Note that when the
hierarchical social organization paradigm is in use, the same relation types exist, but they
are static—that is, they do not change over time.

Whenever either the hierarchical and self-organized social organization model is in use,
agents are able to create relations with other agents within a community based on the fol-
lowing rules: (i) when an agent migrates to another settlement creates an authority relation
as a “subordinate” to the “superiors” of the settlement, and a acquaintance relation with the
rest (however, when the hierarchical social behaviour is employed, due to the agents rela-
tions being static, a peer relation is formed with non-superior agents rather an acquaintance
relation); and (ii) when an agent creates an “offspring” within the settlement , the new agent
creates an authority relation in which it takes up the role of a “subordinate” to its “superior”
parent agent, a peer relation with all its parent “subordinate” agents, and an acquaintance
relation with the rest.

Moreover, the relations aremutual between the agents; that is, an existing relation between
any two agents is respected by both. Therefore, during the social re-organization/ adaptation
process we describe below, both concerned agents will have to agree on changing the relation.

4.2 Task execution and allocation, and social re-organization

Mirroring thework ofKota et al. [44,45], our self-organization algorithmhas twomain stages:
the task execution and re-allocation mechanism, by which it is decided which agents will
receive produce (energy resources) from others to cover their needs, based on their relations;
and the re-organization (decentralized structural adaptation) one, used for re-evaluating and
potentially altering their relations at every time step.

Let us start by describing the task execution and task allocation stage. The steps of this
mechanism are as follows:

(i) When an agent needs to execute a task, i.e., when its current harvest is not enough to
cover its needs,10 it will allocate the task (or subtask) to itself if possible (storage > 0).

(ii) Otherwise, it will try to allocate the task to one of its capable superiors, i.e., those with
storage> 0, choosing among such superiors randomly. The intuition here is that agents
in need will be asking for help based on the related agent’s statuswithin the community.

(iii) If neither the agent itself nor its superiors are capable of executing the task, then the
agent tries to reallocate it (the whole task or the remaining subtask) to one of its peers.

(iv) If none of its peers is capable of executing the task either, the agent will try to allocate
it to one of its subordinates, who must in turn find other superiors or peers to allocate
the task to.

10 Wenote that the notion of “lineages” for agent organization evolution has actually been implicitly introduced
in the order by which agents in need are given priority for asking for help. Specifically, the “older” an agent (in
need) is within the community, the higher in the energy distribution priority queue is placed. This is a social
norm mirroring an indirect “kinship” or “tradition” system, in use within the artificial families.
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(v) On the occasions when the agent does not have any superiors, and neither peers nor
subordinates are capable of the task, it checks among its acquaintances for a capable
agent, and tries to form a subordinate relation with an acquaintance agent.

In every assignment of a task to a capable agent, execution (offering of stored energy amount)
takes place, and the storage and utility values of the corresponding agents are updated. An
agent assigns tasks initially to its superiors. In this way, agents withU = uthres and storage>

0 shall always be on the top of the settlement structure (elite/authority), and will help support
subordinate (poorer) agents (i.e., agents with U < uthres and storage = 0). Therefore, an
agent in need mostly assigns tasks to its superiors and seldom to its peers or subordinates.
Thus, the structure of a settlement organization influences the resource exchanges among the
agents, and these exchanges in turn lead to the dynamic creation of an implicit (and non-static)
stratified social structure—through the social re-organization process we describe next.

To begin, every produce allocation task to a capable agent (i.e., every task execution
action) has an associated load. The total load lx,tot added onto agent x by all other agents
within the organization, is the sum of its resources that were given out to others in that
time-step:

lx,tot=
∑
t∈Tx

rest (5)

where rest is the resource amount expended by agent x for executing task t , and Tx is the set
of the total tasks executed by x in that time-step within the settlement organization. In what
follows, we denote by lx,y the load added onto agent x solely by assignments from y. Loads
on the various agents are assumed to be known to everyone in the community.

Agents use the information about all their past and current year allocations to re-evaluate
their relations with their subordinates, superiors, peers and acquaintances. This evaluation is
performed during the reorganization stage, and is based on the overall load between a pair
of agents, in case the relation had been different than the current one. An authority relation
means that there is a relative difference in the amount of load per assigned tasks between
them; a superior agent has more tasks assigned, while the subordinate agent (in need) has
less. A peer relation instead implies a relatively equal amount of load per agent.

It is, therefore, easy to draw a connection between an agent’s load and its perceived social
status. An agent that is able to serve tasks with a high load value, that is, has enough stored
food quantities to help others in need, should clearly be ranked higher in the social hierarchy.
Intuitively, a high load difference between two agents indicate a difference in social status.

To sum up, the relation between every pair of agents x and y has to be in one of the
following relation states: acquaintance, peer and authority. For each of these states, the
possible re-organization actions available to an agent y are as follows:

1. when agent y is an acquaintance of x :

(i) f orm_peer x,y , denoting the formation of a peer relation between the agents,
(ii) f orm_authx,y , denoting the formation of an authority relation, where y is subordi-

nate of x ; and
(iii) no_action.

2. when agent y is a subordinate of x :

(i) rmv_authx,y , denoting the removal of their authority relation and the formation
of an acquaintance relation,

(ii) rmv_authx,y + f orm_peer x,y , denoting the removal of their authority relation
and the formation of a peer relation between the agents; and
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(iii) no_action.

3. when agent y is a peer of x :

(i) rmv_peer x,y , denoting the removal of their peer relation and the formation of an
acquaintance relation,

(ii) rmv_peer x,y + f orm_authx,y , denoting the removal of their peer relation and the
formation of an authority relation between them, where y is subordinate of x ; and

(iii) no_action.

4. when agent y is a superior of x :

(i) rmv_authy,x , denoting the removal of their authority relation and the formation
of an acquaintance relation,

(ii) rmv_authy,x + f orm_peer x,y , denoting the removal of their authority relation
and the formation of a peer relation between the agents; and

(iii) no_action.

The above reorganization actions are either “atomic” (e.g., f orm_authx,y) or “composite”,
involving the removal of a relation and its replacement by another (e.g., rmv_authy,x +
f orm_peer x,y). The composite actions are necessary as a pair agents cannot have multiple
relations to each other simultaneously. The choice of a re-organization action is utility-based:
actions are selected by the agents according to their utility—that is, the re-organization action
with the higher utility value is executed. The utility of re-organization action a that modifies
the relation between agents x and y at a given state, is evaluated by agent y via the use of an
action evaluation function F with the general form:

F(a, x, y) = ±rdLoad(x, y)±L (6)

where rdLoadx,y is the relative difference between the load on x and y; and L , an adequate
limit ratio (%) for this difference to be evaluated in order to estimate the expected utility for
changing an existing relation. Intuitively, combined with L , the relative difference is used as
a quantitative indicator of quality assurance and control, for the repeated evaluation of agent
relations over time. The effects of the re-organization actions are deterministic, and result to
state transitions, depicted in Fig. 4.

Table 1 lists the evaluation functions for thefive atomic actions. In the case of the composite
actions, the value is simply the sum of the individual evaluations of the comprising actions.
As already mentioned, from all the possible re-organization actions available to agent y, the
one chosen for execution is that with the higher utility value. We note that the re-organization
action evaluation functions we use here are entirely distinct from those used in the work of
Kota [44].

To elaborate further on how the action evaluation functions work, let us consider the
following examples of their use, assuming L = 60%. Agents x and y may form an authority
relation as long as their relative “total” load difference is >60%, thus allowing a positive
output value F > 0 for re-organization action f orm_authx,y . That is, lx,tot is much larger
than ly,tot . They may form a peer relation (action f orm_peer x,y) when their relative “total”
load difference is less than 60%—i.e., they are of an approximately equal social status as
lx,tot is approximately equal to ly,tot , thus allowing a small output value be subtracted from
L . In a similar manner, agents x and y may dissolve an authority relation as long as their
relative current load difference allows an output value F > 0 for re-organization action
rmv_authx,y—i.e. lx,y is approximately equal to ly,x or ly,x is greater than lx,y (and thus
there is no reason to believe that agent x is superior to y). Finally, the agents may dissolve a
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Fig. 4 Relations state transition

Table 1 Atomic reorganization actions, and corresponding action evaluation functions

Action (a) Action evaluation function used

f orm_authx,y F(a) = (lx,tot − ly,tot )/max{lx,tot , ly,tot } − L

rmv_authx,y F(a) = −(lx,y − ly,x )/max{lx,y , ly,x } + L

f orm_peer x,y F(a) = −|lx,tot − ly,tot |/max{lx,tot , ly,tot } + L

rmv_peer x,y F(a) = |lx,y − ly,x |/max{lx,y , ly,x } − L

no_action F(a) = 0

peer relation (action rmv_peer x,y) when their relative current load difference is more than
60%, i.e., allowing an output value F > 0. We need to note here that no_action has a
default output value F = 0, thus a positive output value F > 0 is necessary for an action to
be selected.

Notice that the relative load difference between agents that are about to form an authority
relation (superior-subordinate) does not have an absolute value, as their relation expresses
inequality, unlike a peer relation which expresses equality. Moreover, when agents are con-
sidering the formation of another relation, the “total” lx,tot and ly,tot loads are used in the
calculation, while the pair’s lx,y and ly,x loads are used when some agent x considers dis-
solving a relation with some y. Intuitively, this is because dissolving an existing relation is
entirely up to the pair of agents that joined the relation in question. On the other hand, when
two agents consider establishing a relation, the aggregated load from all other agents they are
related to within the settlement has to be taken into account, since such a matter involves the
“status” of both agents within the organization—which is associated with the overall to-date
load of the agents.
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Notice also that, in reality, both agents x and y would agree on their deliberation on
F for any action: for instance, they would agree on the value of action f orm_authx,y
(i.e., on the utility of x being superior to y), as they would agree on their evaluation for
f orm_authy,x . However, these values need not be calculated twice. Instead, to avoid redun-
dancy, we ensure that y is the one calculating f orm_authx,y (and, similarly, rmv_authx,y ,
f orm_peer x,y , and rmv_peer x,y), while x is the one evaluating f orm_authy,x (and, sim-
ilarly, rmv_authy,x , f orm_peer y,x , and rmv_peer y,x ).

Now, given the central role of the limit ratio L used in the social re-organization decisions
above, this model parameter can be actually better understood as being associated with a key
social organization-related concept. Specifically, it can be easily linked to a “social barrier”
that agents need to overcome in order to achieve social mobility: the value of any potential
changes in social relations, is clearly linked to overcoming such a barrier (cf. Table 1). Thus,
the value of L represents the “height” of such a “social barrier”. To put it otherwise, L
can be viewed as a metric of the power distance characterizing a given society. According
to Andrighetto et al. [1], the power distance concept represents the extent to which the
less powerful members of a society expect and accept that power and rights are distributed
unequally, i.e., the extent to which stratification exists within a given social group.

The aforementioned re-organization process is continuous and employable by any agent
on every time step.Moreover, it is key to sustaining the settlement and improving its viability,
as also verified in our simulations.11

4.3 Self-organization algorithm modifications

Now, the mainmodifications12 with respect to the self-organization algorithm in the work of
Kota [44,45] are the following. First, during decision-making, an agent assigns tasks initially
to its superiors rather than its subordinates. This is because superiors correspond to the
emerging elite which possesses surplus resources that it could potentially distribute to the
poorer strata. Second, we use a simple, distinct reorganization actions evaluation function F .
Our self-organizationmethod aims to facilitate a targeted redistribution of wealth. Given this,
F employs the notion of a relative load difference among agents (unlike [44,45]). Finally, the
load associated with a task here is equal only to the resources amount offered. In particular,
there is no “reorganization load” when agents reason about changing a single relation with all
the agents in the settlement, neither a “management load”; agents in our model do not have
“limited computational capacities”, neither “communication costs”. This is natural, since
agents forge relations only with neighbours within the settlement.

5 A case study: simulating an Early Minoan Society

In this section, we describe the employment of the generic model presented above for the
simulation of agents residing at the Malia area at the eastern part of the island of Crete
during the Early Bronze Age. The exact modeling area is depicted in Fig. 5. It includes the
Malia–Sissi–Mochos area, and also the Lassithi Plateau (near its centre and to the south).

11 Note that dissolving “improper” existing relations, improves the efficiency of the agents’ decision-making
process, since there are fewer relations to consider when allocating tasks.
12 There are other minor differences with the work of Kota et al. [44,45]. For instance, in our model we
replace the notion of the number of time-steps that an agent has waiting tasks, with that of an agent having
U < uthres (and storage = 0). We do not list these minor differences here.
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Fig. 5 Modeling area including settlements near Malia, Sissi and the Lassithi Plateau

Several ancient civilizations existed in the Aegean Sea during the Bronze Age, with the
Crete island being associated with the Minoan civilization, which came to dominate the
islands and the shorelines of the Aegean Sea. A significant shift in the early Minoans human
existence and lifestyle was brought when crop farming was first developed. Previous reliance
on a nomadic hunter–gatherer way of subsistence, was in time replaced by reliance on the
produce of cultivated lands [30]. These developments are assumed to have had great impact
on the growth of settlements, encouraging the concentration of local population. As a result,
population density may have been relatively high, and agricultural activities more intense in
the vicinity of settlements, while at the same time more remote regions were probably losing
population, with land that was potentially quite productive going out of use [14].

From the sociological point of view, however, we do not have enough information about
what kind of relationships existed between the Minoans or how this ancient civilization
was organized before the “post-palatial” (Late Minoan) period.13 Archaeological evidence
strongly suggests that the Minoans were agriculturalists and pastoralists [32], as well as
traders, and their cultural contacts reached far beyond the island of Crete—from Greece to
Egypt to Anatolia [34].

Moreover, it is generally believed that there was little internal armed conflict in Minoan
Crete itself, until the following Mycenaean period. Starting from these points of departure,
there are several alternatives (originating in various traditional sociological approaches—
social conflict, functionalism, interactionism, etc.) that may be suggested for the Minoans’
social organization and subsistence [13]. Archaeologists still struggle to find if there are any

13 The “Eteocretans”, as they were called by Homer long time before the “Minoan” term that was coined
by Arthur Evans after the mythic “King Minos”, were farmers as well as traders in the whole Aegean [66],
who had survived a natural catastrophe, possibly an earthquake and an eruption of the Thera volcano (such an
eruption is often identified as a catastrophic natural event leading to the Minoans’ rapid collapse [49]). Unlike
what was the case in the Mellars model of the EOS project [20] (see Sect. 2), the wealth of environmental
resources sustaining the Minoan civilization is not our focus of attention here.
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signs of a “settlement hierarchy” in the “Prepalatial”, Early Bronze Age period, based on
the variation of settlement sizes within a region, or by the number of “tholos” graves in use
in each cemetery (which serve as an indirect way of estimating settlement population) [57].
Renfrew and Cherry [53,55] argue that interactions between different sociopolitical entities
are of a particular importance in the emergence of complexity within a society, while some
archaeologists argue that a strongly stratified society can be assumed to have existed well
before the end of the Neolithic period [8].

Although any such specific hypothesis can of course be the subject of modeling, our main
concern here is to keep the model as generic as possible, in order to obtain clues about
the underlying organization of the society and its evolution. In the simulations below, the
simulated time interval (of 2000years) spans essentially the entire Minoan Bronze Age (ca.
3100–1100 BCE). However, we are interested in interpretations about the Early Minoan
(EM) period (ca. 3100/3000–2000 BCE) for which no clear evidence of social stratification
exists [26]; and not the Middle Minoan (MM) (ca. 2000–1600 BCE) or the Late Minoan
(LM) (ca. 1600–1100 BCE) periods, during which several localities on the island developed
into centers of commerce and handwork, such as the Minoan Palaces.14 Thus, we try to
explore the social organization in the micro-level of such an early (EM) society, i.e. the
organization evolution through interactions of individual “household” agents, about which
little or no evidence can be obtained, rather than interactions between “settlement” agents in
the macro-level (MM and LM period).15

The multiagent model can be implemented using a number of object-oriented languages,
modeling toolkits, and platforms, each bearing certain advantages and disadvantages. While
programming from the bottom up allows complete control over every aspect of the agent-
basedmodel, this can be a time-consuming option.Model implementation can be burdensome
and considerable time can be spent on non-content specific aspects such as graphical user
interfaces (GUI’s), visualization and data importing. Toolkits do not require substantial cod-
ing experience and provide conceptual frameworks and templates that allow the user to design
a customized model. Utilization of such software is particularly useful for rapid development
of basic or prototype models. The main drawback is that researchers are restricted to the
design framework supported by the software and may be unable to extend it or integrate
additional tools.

Our ABM was developed using the NetLogo modeling environment [67]. NetLogo runs
on the Java virtual machine, so it works on all current major computer platforms—while its
programming language is a Logo dialect extended to support agents. NetLogo has been used
to develop applications in various disciplines, such as biology, physics, and social sciences.

Regardless of the convenience and advantages offered by any specific modeling toolkit,
ABMs applied in social sciences and in particular in archaeological research, cannot be easily
validated via simulation results—especially in situations where little or no evidence is avail-
able (e.g., the social organization of Late Neolithic or Early Bronze Age societies). Simply
put, it is impossible to compare the model input–output transformations to the correspond-
ing ones of “a real system”, since only assumptions and theories actually exist. One should
always be very careful with parameter initialisation, so that these are based on archaeological

14 Archaeologists’ minimal definition of the Minoan “Palaces” describes them as regional centers or settle-
ments that mobilized resources through secondary rural centers i.e. redistribution centers or perhaps exchange
markets [5,28,52].
15 It is important to note that the early Bronze Age society we model here, is one relying on farming within an
environment that offered less than plentiful resources; and that, unlikemodern “egalitarian” societies like these
of Eskimos or Kalahari bushmen, the early Minoan society was one that in fact most probably transitioned
from an originally segmentary society to one possessing a state-like organization.
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research respectful to cultural and material evidence. Moreover, special attention should be
taken so that parameter calibration does not bias the results towards confirming a pre-adopted
theory or assumption.

Nevertheless, the validation of the structural assumptions of the model itself is an easier
task (if not a straightforward one). For example, we have already seen (cf. Fig. 3) that
employing extensive instead of intensive agriculture leads to lower amounts of resources in
storage, regardless of the social organization paradigm used. Thus, one would expect the
simulation results to confirm that employing an extensive agricultural technology will lead
to lower crop yield for the agents, compared to that of the intensive agricultural regime.

We now proceed to describe the parameter choices made for our specific case study.

5.1 Model instantiation

Model parameters were initialized to values set so that they correspond to estimates found
in archaeological studies relevant to the period of concern, as follows:
Number of agents The number of agents in a given settlement is initialised to a random
number between 1 and 10. This choice originates to the fact that the estimated per hectare
population in an agricultural settlement [35] during the modelled era was from 100 up to
300. Thus, the user-defined variable of maximum number of individuals per cell was set to
100; as a consequence, the maximum number of agents per settlement’s cell is 10,16 i.e., 100
divided by the maximum number of inhabitants per household (default: 10).
Settlement sizeA settlement initially occupies one cell. The number of cells that a settlement
occupies is the smallest integer greater than or equal to its current population size divided
by the maximum number of individuals (per cell). Thus, a settlement extends to a number
of cells proportional to that of its agents. Note that the settlement area is not the same as the
farming area corresponding to the settlement, which is as described in Sect. 3.4.
Resource amount stored and level of resources The agent can store some resource amount
for a (user defined) number of yrs years. This yrs also corresponds to a settlement period
at a specific location after which the agent might consider migrating to another location (if
during this periodUx is constantly less than uthresx ). In our experiments in this section we use
yrs = 5. Now, if the sum of a year’s production size and the amount of stored energy falls
below a critical “hunger” level (of uthresx kg), the agent will try to replenish it by asking others
for help. The figure of 250 kg was used as the minimum amount of resources required per
individual per year (resmin), based on [35]. The initial level of the environmental resources
is defined as the agricultural production Ri of a cell i (Eq. 1).
Agent locations Household and settlement locations are (pseudo) randomly initialized.
Number of settlements per scenario This parameter is user-defined. Its default value was
set, somewhat arbitrarily, to 2.
Agents migration radius This is the distance agents can migrate to in one time step. It is
also user-defined. In our experiments in this section we set it 25 km (i.e., the entire modeling
area), roughly the distance covered when traveling on foot in a day [6]. Thus, the resettling
cost rc for an agent was considered negligible—there is no requirement for extra time for
rest, stops, overnight stays, etc..
Agents agricultural strategy As mentioned in Sect. 3.4 above, intensive agriculture pro-
duces 1500kg/ha, while extensive agriculture leads to a production of 1000kg/ha [35].

16 NetLogo can support thousands of agents, though RAM limitations are inherent in the underlying Java VM
and/or operating system.
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Social organization paradigms As mentioned, an agent makes decisions based on one of
the following social organization paradigms: independent, sharing, egalitarian, hierarchical,
and self-organized. For the later, the ratio limit L is user-defined (default: L = 60%).

5.2 Simulations and results

Various scenarios were taken into account for the experimental setup, with different para-
meterisation for: five different behavioural modes (i.e., the social organization paradigms
used); two different agricultural regimes; and, since spring locations in current days still bear
some relationship to the location of springs during the Minoan times, the proximity of a new
location to an aquifer (spring, river or coast) was also taken into account in certain simula-
tions [22]. When this is the case, the initial production μ of a cell receives a penalty up to a
percent of its value, with cells located outside a 1250m radius from the aquifer receiving a
100% initial production penalty. The exact penalty value for cells within the aforementioned
radius, is provided by performing a density analysis of those locations, a spatial analysis
tool that can calculate the density of input features (springs, rivers, sea/coastline) within a
radius around each environmental cell. By calculating density, in a sense one spreads the
input values out over a surface. The magnitude at each aquifer location (line or point) is
distributed throughout the modeled area, and a density value is calculated for each cell in
the environment.17 Since there is no available past vegetation data, at the beginning of each
scenario resources where spread randomly over the land, but with resource amounts at a
particular cell depending on its slope (as discussed in Sect. 3.1).

Each scenario was simulated for thirty (30) runs, generating a total of 30×5 (behavioural
modes) × 2 (agricultural strategies) × 2 (settling near an aquifer required or not) = 600
simulation runs. In addition, we experimented further with the “self-organization” social
behaviour, testing overall four different values (10, 40, 60 and 90%) of the ratio limit L for
each agricultural strategy considered, and for 30 simulation runs each, under the assump-
tion that residing next to an aquifer is a required behaviour. We run many more simulations
for validation and sensitivity analysis purposes. Simulation results were averaged for each
time-step. In terms of time, the process can be quite expensive, since a single run (composed
of 2000 yearly time steps) takes approximately 90min on a 2.6GHz computer. However, by
employing additional computational power, the simulation process can be sped up signifi-
cantly (e.g., via allocating a dedicated single-core node of a cluster computer to a run, all
600 runs mentioned above can be completed in less than a day).

All data processing and analysis taskswere performedwith theModel ExplorationModule
(MEME) of MASS.18 Results visualization (charts or histograms) was done in MATLAB’s
(R2012a) environment. Moreover, the random number generators introduced in parts of the
model are obviously “pseudo-random”. Thus, via using the same random “seeds”, one may
introduce the same opportunities for agents in the model simulations (i.e., same “random”
initial agent locations of the various runs for each different scenario). In this way, our simu-
lations can be reproducible by any interested party.

We now proceed to discuss our findings with respect to agents social organization
behaviour and the agricultural schemes examined and try to present the advantages and
disadvantages of them for the various scenarios in account.

17 http://resources.arcgis.com.
18 http://www.aitia.ai/en/web/iaws/mass.
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Fig. 6 Agent population (number of households) over 2000yearly time-steps, wrt. intensive and extensive
agricultural strategy, without a requirement for settling near an aquifer. Error bars indicate 95% confidence
intervals

5.2.1 Civilization sustainability

We begin with presenting our findings regarding the effect of the different social organization
paradigms on the agent population. Simulation results are presented in Fig. 6 for both agri-
cultural strategies. There was no requirement for settling near an aquifer for these simulations
(i.e., there was no penalty for not settling near an aquifer location). Given the low population
growth rates of the period, and the fact that the geomorphological characteristics of the area
make resources scarce and energy production poor, it is clear that the population viability
and growth observed in the simulations depends solely on the social organization paradigm
in effect, and the agricultural regime used.

The simulation results of Fig. 6 indicate that population sizes in societies adopting the
self-organization paradigm thrive under both agricultural strategies. Since self-organization
results to a dynamic hierarchy governing the agents’ relations, this result appears to support
the case for archaeological theories assuming the existence of a “hierarchy-based” economy
and a stratified social model; and the belief that stratification in Minoan Crete precedes the
development of centers for higher-order regulation by several centuries [7,24].

Error bars corresponding to 95%confidence intervals regarding agent population averages
are also shown in that figure. In addition, we report that, for essentially any given simulation
run corresponding to a specific pseudo-random seed, at each of which agents are operating
in the same environment with the same opportunities, the ranking of the various social
organization paradigms observed in Fig. 6 is maintained. That is, at almost every specific
run, the self-organization social paradigm is better than the other social paradigms, egalitarian
ranks second, and so on.19

Figure 7a shows that the number of settlements increases over time in proportion to agent
population sizes; and that the number of agents per settlement seems to be higher when the
self-organization social behaviour is adopted, as shown in Fig. 7b. Distribution of energy
resources based on self-organization of agent relations, gives rise to dynamically emerging
stratified social organization, and appears to be better in sustaining higher population sizes
per settlement, especially when the extensive agricultural strategy (leading to less expected
production) is employed. By contrast, when agents adopt the “egalitarian” social organization

19 We do not show error bars for Figs. 7 and 8b, c (depicting settlements and agents per settlement). This
is to avoid overloading these figures, and because of the apparent overlaps. We can report however that the
standard error observed in those results is at most 1.
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Fig. 7 Number of a settlements and b agents per settlement—over 2000 (yearly) time-steps wrt. intensive
and extensive agricultural strategy, without a requirement for settling near an aquifer

paradigm, the emerging development of many “small-size” settlements seems to be the way
for survival over time. This fact is in contrast to archaeological evidence for larger settlements
(towns and “palaces”) eventually coming to existence during theMiddle/Late Minoan period
(ca. 2000-1100 BCE) [61].20 Thus, though the simulation results of Fig. 6 seem to not deny
the possibility of viability for an egalitarian societal model, it is highly unlikely that such a
model would have been able to sustain itself for 2000 years, given its observed “requirement”
for being developed primarily within small settlements.

The independent and the sharing social behaviours also achieve numbers of agents per
settlement that are equally high to those achieved by the self-organization one. The fact,
however, is rendered meaningless, since they exhibit much lower numbers of agents and
settlements, and they are not able to reach the estimated population growth rates for that
period (see Sect. 3.3). Indeed, this is confirmed in our results of Table 2, considering an
average initial population size of N0 = 50 inhabitants over 30 simulation runs for any given
scenario, and a steady growth rate of r = 0.1%.21

20 During the Early Minoan period (3000-2000 BCE), however, reviews of archaeological evidence for the
Pre-palatial society visualize a “wholly undifferentiated” landscape, comprising “very small scale autonomous
local units” of a “small-scale intensive farming model”, with no convincing evidence for “wealthy elites” [26].
This society later gave its place to the “Palaces” of the Middle/Late Minoan periods.
21 The steady population growth rate r is achieved assuming agents are consuming adequate resources (cf.
Sect. 3.3). In that case, the expected population size N after t (yearly) time steps is given by the equation
N = N0 ∗ (1 + r)t (where N0 is the initial population).
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Table 2 Individuals population size (and corresponding achieved percentage of estimated expected population
size at the end of the modeled period) per social organization model, wrt. agricultural technology in use and
the requirement for settling near an aquifer being false or true

Aquifer requirement False True

Agricultural strategy: Intensive Extensive Intensive Extensive

Independent 238 (64%) 208 (57%) 183 (50%) 139 (39%)

Sharing 173 (48%) 111 (32%) 120 (34%) 75 (23%)

Egalitarian 262 (71%) 252 (68%) 220 (60%) 176 (49%)

Self-organized 278 (75%) 243 (66%) 233 (63%) 172 (48%)

As a final note, the overall agent population growsmuch larger when the intensive agricul-
tural strategy is used rather than the extensive one; this is expected, since resources harvested
each year by agents utilizing an extensive agricultural strategy are generally lower in quantity
(cf. Fig. 3).

The Importance of aquifers

Now, landscapes near aquifers are particularly valuable to archaeology, because these
environments were frequently the focus of human occupation and crucial to the rise of
irrigation, agriculture and urban civilisation [54]. In fact, archaeologists consider it very
unlikely that human settlements in theMinoan timeswere established far fromaquifers [3,22].
To this end, agents in our model might need to consider the proximity of an aquifer, when
settling to a new location. From this point onwards, all our simulation results will involve
scenarios where agents are required to settle near an aquifer, unless stated otherwise.

The simulation results of Fig. 8 are entirely similar to the results obtained in Figs. 6 and 7,
thereby corroborating the conclusions drawn above. There is, of course, one difference. As
described earlier, when an agent is required to settle near an aquifer location, there is a penalty
value introduced in the expected production for cells distant from aquifer locations. Thus,
there are limited choices for cells to settle in. Therefore, it is expected that regardless of the
social organization model adopted or agricultural strategy employed, agents and settlements
numbers will drop in this scenario. Results in Fig. 8 confirm this intuition.

We also report our findings regarding the agent utility in this scenario (Fig. 9a). Although
it is slightly decreasing over time,22 it is sustained in approximately stable and equal levels
for both the self-organized and egalitarian social behaviours, while it is considerably lower
for the “independent” and “sharing” one—hence explaining the lower agent population and
settlement organization sizes in Fig. 8.

Moreover, the produce stored by the agents in order to distribute and/or usewhen necessity
arises, seems to be considerably higher for the self-organized rather than the egalitarian social
organization paradigm for both agricultural strategies employed by the agents, as presented
in Fig. 9b. Higher storage values that are seen when agents employ an “independent” social
organization are due to their essentially “selfish”, non-distributive behaviour. Even when the
“sharing” social organization paradigm is in use, with a cooperative spirit present among
agent relations, higher storage values observed are due to unexploited resources stored by
“wealthier” agents exploiting their limited household sizes.

22 This is not unexpected, since, as the individuals’ population increases, soil erosion leads to a slowproduction
decrease (cf. Eq. 1), and thus to a decay in utility.
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Fig. 8 Number of a agents, b settlements, and c agents per settlement—over 2000 (yearly) time-steps wrt.
intensive and extensive agricultural strategy with a requirement for settling near an aquifer. Error bars indicate
95% confidence intervals

We close this section by noting that, regardless of aquifer proximity or agricultural strategy
employed, settlements are concentrated near actual (depicted) archaeological sites at the
coastal Malia regions, or at the Lassithi plateau (black coloured region in the middle of the
modeling area) presented in Fig. 10. This is a phenomenon imposed by the modeling area’s
geomorphological characteristics (see Eq. 1).23

23 For interest, we note that this is also in agreement to genetic evidence regarding the continuity of the
existence of a Minoan population at the Lassithi plateau [38].
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Fig. 9 a Utility and b storage values of (household) agents over 2000 (yearly) time-steps wrt. intensive and
extensive agricultural strategy with a requirement for settling near an aquifer

Fig. 10 Settlement locations proportional to agent population size after 2000 years; a with and b without a
requirement for settling near an aquifer, employing a self-organization behaviour

5.2.2 Self-organization: validation and insights

We now focus more on the self-organization social organization paradigm. The egalitar-
ian and sharing social behaviours, do not actually add any real complexity in the system’s
working process, since agents are essentially offered the same opportunities to survive. The
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Fig. 11 Average number of agent relation changes to a authority, b peer, and c acquaintance relation per
century for various power distance rates wrt. intensive and extensive agricultural strategy

re-organization of the agents’ relations on the other hand, based on their the past and cur-
rent experience on relative difference of exchanged energy and, hence, their “social status”,
generates a complexity that needs to be appropriately validated.

As such, it is only appropriate that the behaviour of the self-organization paradigm needs
to be studied and validated with respect to the “power distance” concept, which is central
to the essence of stratified societies. In our model, the parameter that is best associated with
the power distance concept is the limit ratio L employed in the re-organization actions’
evaluation process (cf. Sect. 4.2 above). Therefore, the main question we ask in this section
is the following. What is the agent organization’s response to different degrees of power
distance imposed upon the society?

As the power distance grows between superior and subordinate agents in an authority
relation, we expect more peer relations to be formed among agents in the organization,
expanding the (social) organization’s stratified structure both horizontally and vertically. This
is due to utility maximization considerations in the individual and organizational level, and
due to the produce redistribution process. Simulation results show exactly this phenomenon,
as we increase the society’s power distance (the L action evaluation parameter).

Specifically, relation changes to a peer relation within an organization increase propor-
tionally to the power distance rate considered, as shown in Fig. 11b. When agents (in need)
distribute produce with respect to to their (type) relations, higher power distance rates (e.g.,
90%) seem to promote the development of additional peer relations among agents, expanding
the emerging hierarchy “horizontally”, rather than “vertically” (as observed for lower power
distance rates), a phenomenon that is intuitively correct. The number of relation changes to an
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Fig. 12 a Load and b number of peer agents for various power distance rates over 2000 (yearly) time-steps
wrt. extensive agricultural strategy

authority relation (Fig. 11a) are at about equal level, regardless of variation in power distance.
On the other hand, relation changes to an acquaintance relation (Fig. 11c) are observed for
higher power distance rates, especially when the extensive agricultural strategy is employed
by the agents, where less resource production occurs. Moreover, the number of peer agents,
as well as their corresponding overall load of exchanges (which is linked to social status),
increase proportionally to the power distance, as presented in Fig. 12.

Now, although the agents may “expand” their cultivation areas under the extensive agri-
cultural strategy, they actually “gain” less energy amount harvested and stored (see Fig. 3).
Thus, the agents are “forced” to reorganize and change their relations among them even
more frequently than under the intensive agricultural regime, in order to stabilise their pro-
duce exchange network, and promote viability both in the individual and the organizational
level. This is evident in Fig. 11.

Overall, the range of power distance in a society, appears to have an impact on the number
of agents’ relation changes, the type of relations the agents create, and the volume of resources
agents hand over to others. We note, however, that there is a remarkably low average number
of relation changes over time, specifically, less than 3, as seen in Fig. 11.)

By contrast, the range of power distance within a stratified society seems to have a minor
impact on the overall welfare of the agents. As seen in Fig. 13a, agent utility remains almost
invariable to lower or higher power distance among agent relations. Similarly, the produce
stored by the agents (Fig. 13a), as well as the agents population size, shown in Fig. 13b, do
not appear to be influenced by the underlying societal power distance.
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Fig. 13 Agents a utility, storage and b population size for various power distance rates over 2000 (yearly)
time-steps wrt. extensive agricultural strategy

5.2.3 Further observations

Certainly, from the social sciences perspective, and in particular that of archaeology, there
can be several (subjective) explanations or interpretations arising from any given simula-
tion result. For example, our simulation results on population growth for the period under
examination, show that both the “egalitarian” and self-organized social models are able to
follow the underlying growth rate values. However, while the number of organization set-
tlements grows with an approximately equal rate for both the egalitarian and self-organized
social organization paradigms, the number of “household” agents per settlement does not.
This is in line with social, and especially, archaeological theories presuming that complex
communities have larger population sizes than their egalitarian predecessors [54].

In addition, considering that the Minoan Palaces and larger towns are unlikely to have
arisen under an “egalitarian” social organization of “small-size” settlements (see Figs. 7, 8c),
one could infer that a distributive social organization model which gave rise to a dynamic
social hierarchy, such as the self-organization one studied here, is more probable to have
existed for the 2000year period under study. Furthermore, the resource energy stored by
the agents in order to distribute and/or use when necessity comes, seems to be considerably
higher for the self-organized rather than for the egalitarian social organization paradigm in
both agricultural strategies employed by the agents.

From a socio-political point of view, it is interesting that a class of agents that are
exclusively “peers” does not actually exist among the agents, while an “authority” relation
does uniformly exist, representing a “genuine” agent type. (The term “genuine” or “non-
composite” agent type signifies that the agent is joined with other agents in the settlement
with the corresponding relation type only. For example, a “genuinely superior” agent is one
that has subordinate agents only, a “genuinely subordinate” agent is the one that has only
superior agents, and a “genuine peer” agent is the one that has only peer relations with other
agents.) That is, the society is divided among superiors and subordinates. This is obvious in
Fig. 14, where “genuine” peer agent types do not exist. Rather, forming a peer relation seems
to be the intermediate step in a social status redistribution process within the settlement.

Thus, with self-organization determining the social relations network, a “heterarchical”
social structure actually emerges, rather than a clear hierarchical structure evident in later
periods. A “heterarchy” is a system of organization where its elements are “unranked” (non-
hierarchical) or where they possess the potential to be ranked by a number of different
ways [15], e.g., in our case, by the exchanged load among agents throughout the organization’s
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Fig. 14 Percentage of agents with non-composite a superior, b peer, and c subordinate relation per centennial
time step, for various power distance rates wrt. both agricultural strategies

lifetime. Socially, a heterarchy distributes privilege and decision-making among the agents,
while a hierarchy assigns more power and privilege to the members higher in the structure. In
a heterarchical system, domination and subordinate relations can be reversed, and privileges
or status can be “redistributed” in each time-step, following the needs of the organization.

Self-organization versus static hierarchical structures

As archaeologists assume a hierarchical social structure in later periods of the Cretan civil-
isation [9,24], we now focus on a direct comparison of a social organization with “static”
hierarchical relations among agents, with the “heterarchical” social structure dynamically
emerging through the underlying self-organization behaviour.

Agent and settlement population sizes are presented in Fig. 15. Although the growth rate
and final population numbers are in general similar, we observe a great advantage for the self-
organization behaviour with respect to population growth, when settling near an aquifer is
not a required behaviour, and the intensive agricultural strategy is used (Fig. 15a). Settlement
numbers are at about the same levels for both social organization paradigms (Fig. 15b).

Then, in Fig. 15c we observe that the self-organization social paradigm appears to have
a slight advantage against the static hierarchical one, with respect to settlement population
sizes—regardless of agricultural strategy employed, or of whether settling near aquifers is
a required behaviour. Self-organized agent societies appear, on average, to be giving rise to
larger settlements during their evolution. Note that both the static hierarchical and the self-
organization paradigms, maintain larger settlement population sizes than the “egalitarian”
distributive one (cf. Figs. 7b, 8c). However, agents utility as well as the produce stored by
the agents, is at approximately the same levels per scenario for both the self-organization and
the static hierarchical social organization paradigm as seen in Fig. 16.
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Fig. 15 Number of household a agents, b settlements and c agents per settlement over 2000 (yearly) time-
steps wrt. intensive and extensive agricultural strategy, and with settling near an aquifer being a requirement
or not

Overall, it seems that a static hierarchical structure exhibits a similar viability potential with
that of the ‘heterarchical” social structure emerging through self-organization behaviour.

However, the later appears to have an advantage in certain scenarios. Moreover, from an
archaeological and historical point of view, it is rather improbable that a static hierarchical
structure would have existed in Crete for the entire Bronze Age (the 2000 years period in
question), especially for the modeled Malia area [58].

Agent Migrations

Besides agent population, storage, utility and organization sizes, we also examined the pat-
terns of agent migrations related to the social organization paradigms under study. Overall,
the average number of agent migrations per (yearly) time-step is less than 0.05; specifically,

123



1108 Auton Agent Multi-Agent Syst (2016) 30:1072–1116

Fig. 16 Agents a utility and b storage over 2000 (yearly) time-steps wrt. intensive and extensive agricultural
strategy, and with settling near an aquifer being a requirement or not

Fig. 17 Histogram of number of agent migrations per time step for (left) egalitarian and (right) self-organized
social organization paradigms wrt. both agricultural strategies

it is less than 0.01 for most of the simulation’s time duration, with higher values recorded at
the end of the simulations where more agents are observed (Fig. 17).

Although the number of agent migrations seems to be increasing over time along with
population sizes, mainly for the self-organized behaviour and especially when an exten-
sive agricultural strategy is applied, agents migration activity can be considered trivial,
since an agent considers migrating only once in a millennium. Thus, the migration abil-
ity modeled, appears to truly serve as the ultimate workaround for agents, when no other
sustainability option is provided by their (social) organization (i.e., not enough resources
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are provided/distributed, or “overcrowding” is observed when organization is at maximum
carrying capacity). It is definitely not a major agent activity. Thus, the population indeed cor-
responds better to “settled agriculturalists”, rather than to agents with temporary settlements
only.

5.2.4 Non-myopic agent decision-making

In this section, we illustrate the fact that our model can readily support non-myopic agent
action selection. Specifically, we define a simple example for a (sophisticated) household
agent decision-making process, which uses an MDP [50] to decide on migration (or settle-
ment) policies, and compare the viability (in terms of population growth over 2000 years) of
the resulting agent societies against that of myopic ones.

At each time step of the agent decision-making problem, an agent once again needs
to decide on (a) whether it should stay, wait and thus, settle to its current location for at
least yrs years in a row, while cultivating the surrounding area, or (b) migrate to another,
more promising settlement location (and settling there for yrs years). However, the agent
decisions now take the long-term effects of agent actions into account, and arise as the results
of solving finite-horizon MDPs that determine their long-term value—assuming a specific
planning horizon of h decision time steps, or “stages”. Agent actions result to transitions to
specific locations, corresponding to MDP states (and which are potentially different than the
current one). As before, agents can only migrate to states that correspond to unused cells.
The long-term value of being at state s where one can choose to take some action a (i.e., to
settle at s or migrate to one of a number of candidate locations), can then be determined via
the solution of a system of Bellman optimality equations:

V (s)=max
a

{
∑
s′

Pa(s, s
′)(Ra(s, s

′) + V (s′))} (7)

where transitions from s to s′ range over the planning horizon h, Ra(s, s′) is the immediate
reward resulting from transition to state s′ (i.e., the value of cultivating the lands for yrs years
at s′, given the expected agricultural production of the corresponding “field” cells associated
with s′, as described in Sect. 3.2), and Pa(s, s′) is the transition probability to s′ when taking
action a at s. This V (s) state value essentially replaces its myopic estimate of Eq. 3. Thus,
the utility of an agent x at a given location s is now:

Ux = V (s) (8)

In our implementation, theMDP solution determining the optimal V (s) values and migra-
tion policies is provided by thewell-known value iteration algorithm [50]. However, in reality
the dynamics of the setting within which an agent takes decisions are not stationary in our
case. This is because the rewards related to a given environmental cell are not static, but
fluctuate over time, as a result of population growth and of the various agents settlement and
cultivation actions. Due to this fact, solving an MDP once cannot possibly provide a decisive
answer to the agent decision problem. In order to combat this, the agent should at least be
formulating and solving an MDP at every single time step.24 To keep things as tractable as
possible, however, we assume that the decision problem is only occurring (and, subsequently,
an MDP needs to be solved) if the agent storage = 0, and its utility from cultivating the
lands at the current location has been dangerously low, i.e., Ux < uthresx , for at least yrs in

24 We do not claim that this is the most appropriate way to tackle non-stationarity. Solving non-stationary,
multi-agent MDPs is not one of our goals in this paper.
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Fig. 18 Numbers of dynamically created MDPs in an average simulation run, along with corresponding
numbers of their states. Averaging was over 30 simulation runs

a row (in our experiments in this subsection, we set yrs = 10). Once an MDP solution has
been provided for an agent, it then follows the resulting policy for h decision steps (each
occurring every yrs simulation years); then, if the conditions above call for a re-evaluation of
a settlement policy, yet another MDP is formulated and solved. Figure 18 shows the numbers
of dynamically created MDPs in an average simulation run.

We have made several additional assumptions in order to ensure tractability while keeping
the decision problem as realistic as possible—given also that it is unlikely that Bronze Age
agents would have been able for very long-term planning, while they most probably would
be facing considerable movement difficulties. An agent’s migration options are assumed to
be restricted by both migration distance and terrain elevation. Thus, the states reachable from
a specific state s correspond to locations within a given migration radius rmax = 5 km. Even
with this restriction, an agent is still able to cover almost the entire environmental area within
3 migration “hops” (Fig. 19). Thus, in our experiments we assume a finite planning horizon
of 3 stages; and set the h parameter’s value to 3 also.

Moreover, we classify the states according to environmental elevation as low,medium, and
high elevation, and assume that agent movement is restricted given its current elevation state,
as shown in Fig. 20. For instance, if the current (state) agent location is at a low elevation
level, it can only transit to a low elevation or to amedium elevation state (within its migration
radius) only, and not to high elevation ones.

These restrictions reflect difficulty ofmovement and transport between less ormoremoun-
tainous areas. Finally, we assume that the agent is allowed to transit to m states per elevation
level at each time step; and state transitions are deterministic. In our experiments reported
below, m was set to value of 1 for computational efficiency purposes.

Despite these restrictions, it takes up to 3min to formulate an MDP and solve the decision
problem of just a single agent at one time step, on a 2.6GHz computer. However, solving
the MDP via value iteration is not the main computational bottleneck: executing the value
iteration algorithm takes only a few seconds—i.e. just a tiny fraction of the aforementioned
time. Rather, the delays are linked to building the MDP, i.e., mainly determining the cells’
immediate rewards, due to speed limitations of theNetlogo software.25 Further problems arise

25 See, e.g., https://github.com/NetLogo/NetLogo/issues/402.

123

https://github.com/NetLogo/NetLogo/issues/402


Auton Agent Multi-Agent Syst (2016) 30:1072–1116 1111

Fig. 19 An example of states
(red dots) and transition actions
(grey lines) for an agent’s MDP.
States of the optimal policy are
shown (white dots) (Color figure
online)

Fig. 20 States (circles), collections of states (multiple circles) and transition actions (arrows) for an agent’s
MDP considering a 3-stage planning horizon

from the fact that (a) multiple MDPs (corresponding to various agents planning problems)
have to be dynamically built at any time step, due to the setting’s non-stationarity; and (b) our
ABM employs a fine resolution actual digital elevationmodel of the 50K cells modeling area.
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Fig. 21 Agents population (number of households) over 2000 yearly time steps, wrt. intensive agricultural
strategy, with a requirement for settling near an aquifer, using an MDP for decision-making or not. Error
shading areas indicate 95% confidence intervals. Results are averages over 30 simulation runs

As a result, an entire 2000years simulation run takes on average 7h on a 2.6GHz computer,
when using the aforementioned parameter values.26

Even with these restrictions in place, our experimental results confirm the intuition that an
ability to “plan-ahead” is beneficial to the agents. Specifically, Fig. 21 shows that, when com-
pared to “myopic” agent societies, societies of agents that use MDPs for planning migration
policies achieve population numbers that are on average higher across the entire 2000years
period.27

6 Conclusions and future work

Agent-based modeling has been used in archaeology for about 15years now, because it
has the ability to reflect properties of the real world, along with their evolution. In this
work, we attempted to showcase how to incorporate MAS-originating concepts and algo-
rithms in archaeology-specific ABMs. To that end, we designed and implemented a generic
ABM system for archaeology research, adopting (as is common in the MAS literature) a
utility-based agent architecture. Moreover, we incorporated into our ABM an appropriately
modified self-organizationmethod, originally proposed for modern-day agent organizations.
Self-organization mechanisms have been observed in nature and biology and subsequently
successfully applied inMAS research. However, suchmechanisms had not been incorporated
and tested in an archaeology simulations system before this paper.

We employed our system in order to gain new insights into the social organization and
agricultural activities of Minoan households residing at the Malia area in Crete during the
Bronze Age. Our simulation results show that agent societies that adopt self-organization
exhibit an increased viability over the entire 2000years of this period. Now, self-organization
gives rise, naturally, to implicit agent hierarchies. As explained in Sect. 4, however, in our

26 Of course, several efforts could have been undertaken to speed-up the process of dynamically defining and
solving the MDPs—e.g., via re-using MDPs already solved for agents operating in nearby regions and nearby
time-steps. However, this is not the focus of our work here: our experiments in this section simply intended to
demonstrate that our model can readily incorporate non-myopic agent deliberations.
27 We have ran additional experiments which confirm that increasing the value of m can be beneficial when
state transitions are non-deterministic. Moreover, we can observe improvement when agents plan ahead more
often (e.g., every 5 yrs instead of 10). We do not report further on these findings in this paper.
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mechanism the wealthy are assumed to be helping out agents in need. Thus, our results in
this paper should by no means be interpreted as providing evidence for the sustainability of
exploitative hierarchical societies. Instead, they could rather be interpreted as an indication
that targeted wealth redistribution works better than a blind one.

Moreover, the simulation results indicate that a heterarchical social structure, having
emerged by the continuous re-adaptation of social relations amongMinoan households,might
well have existed in the area of study. This is in agreement with existing archaeological the-
ories and data. Specifically, our results could provide support for the so-called “managerial”
archaeological theories, which assume the existence of different social strata in Neolithic
and Early Bronze Age Crete; and which consider this early stratification a pre-requisite for
the emergence of the Minoan Palaces, and the hierarchical social structure evident in later
periods [7,9,24].

In terms of future work, we need to run more scenarios with a variety of initialization
setups (more28 or fewer agents with different ranges of migration capabilities; different
cell output values per agricultural technology, to model the use of advanced equipment or
variable manpower; different aquifer proximity radius and penalty values; etc.). In addition,
we intend to equip the ABMwith additional modules (vegetation data, soil depth, geological
information, other archaeological evidence or scenarios of interest) and additional types of
utility-generating activities. We are also interested in examining the economic and political
interactions among settlements (as opposed to those among households alone), since such
interactions were prevalent in later periods—perhaps via the employment of evolutionary
game-theoreticmethods. To this end, the topology of the underlying exchanges and commerce
network will most probably have to be taken into account, to the extent this is provided by
relevant historical records [23].

Finally, we plan to pursue the study of archaeological theories as the means to come up
with intuitions, ideas, and algorithms formodeling agent societies and the emergence of agent
collaboration; and to focus on devising novel algorithms for adaptation and self-organization
methods, with potential application on archaeology-related ABMs.
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