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Abstract In the aftermath of major disasters, first responders are typically overwhelmed
with large numbers of, spatially distributed, search and rescue tasks, each with their own
requirements. Moreover, responders have to operate in highly uncertain and dynamic envi-
ronments where new tasks may appear and hazards may be spreading across the disaster
space. Hence, rescue missions may need to be re-planned as new information comes in, tasks
are completed, or new hazards are discovered. Finding an optimal allocation of resources to
complete all the tasks is a major computational challenge. In this paper, we use decision the-
oretic techniques to solve the task allocation problem posed by emergency response planning
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and then deploy our solution as part of an agent-based planning tool in real-world field trials.
By so doing, we are able to study the interactional issues that arise when humans are guided
by an agent. Specifically, we develop an algorithm, based on a multi-agent Markov decision
process representation of the task allocation problem and show that it outperforms standard
baseline solutions. We then integrate the algorithm into a planning agent that responds to
requests for tasks from participants in a mixed-reality location-based game, called Atomi-
cOrchid, that simulates disaster response settings in the real-world. We then run a number
of trials of our planning agent and compare it against a purely human driven system. Our
analysis of these trials show that human commanders adapt to the planning agent by taking
on a more supervisory role and that, by providing humans with the flexibility of requesting
plans from the agent, allows them to perform more tasks more efficiently than using purely
human interactions to allocate tasks. We also discuss how such flexibility could lead to poor
performance if left unchecked.

Keywords Human–agent interaction · Human–agent collectives · Disaster response

1 Introduction

In the aftermath of major disasters (man-made or natural), first responders (FRs), such as
medics, security personnel and search and rescue teams, are rapidly dispatched to help save
lives and infrastructure. In particular, FRs, with different skills, capabilities and experience
may be required for the different tasks that need to be performed. For example, finding out
where the civilians are trapped requires search and rescue teams and medics, transporting
them to safe houses requires ambulances and security personnel and medics, while removing
dangerous material from the environment requires safety experts and security personnel.
While performing such tasks, FRs often operate in a very dynamic and uncertain environment,
where, for example, fires spread, riots start, or the environment floods. Given this, FRs find
it difficult to determine the best course of action and which task should be allocated to which
team.

To assist in such situations, over the last few years, a number of algorithms and mecha-
nisms have been developed to solve the coordination challenges faced by emergency respon-
ders (see Sect. 2 for more details). For example, [45] provide an algorithm to compute the
optimal teams of emergency responders to allocate to tasks that require specific types of
skills to complete, while [12,43] distribute such computations in an attempt to reduce the
bandwidth required to coordinate. However, none of these approaches consider the inher-
ent uncertainty in the environment or in the first responders’ abilities. Crucially, to date,
while all of these algorithms have been shown to perform well in simulations, none of
them have been exercised to guide real human responders in real-time rescue missions. In
turn, studies on the deployment of such intelligent technologies in the real-world reveal that
they typically impose a cognitive burden on the first responders [37,38] and disrupt task
performance. Hence, it is important to develop real-world simulations of disaster response
where such technologies can be trialled so that the interactional issues between humans and
agents may be explored. Moreover, only through such trials will it become clear whether
these algorithms will cope with real-world uncertainties (e.g., communication breakdowns
or changes in weather conditions), be acceptable to humans (i.e., take into account their
capabilities and preferences to perform certain tasks), and actually augment, rather than hin-
der, human performance (e.g., providing useful guidance and support rather than intrusive
ones).
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Against this background, we develop a novel algorithm for team coordination under uncer-
tainty and evaluate it within a real-world mixed-reality game that embodies the simulation of
team coordination in disaster response settings. Specifically, we consider a scenario involving
rescue tasks (involving carrying a specific object to a safe zone) distributed in a physical space
over which a (virtual) radioactive cloud is spreading. Tasks need to be completed by pairs of
FRs with specific roles (e.g., medic, soldier, fire fighter, or transporter) that need to plan paths
from their individual locations to meet at specific points in the disaster space to undertake
these tasks. Moreover, they have to do so before the area is completely covered by the cloud
(as FRs will die from radiation exposure) which is spreading according to varying wind speed
and direction (that may result in highly uncertain radiation level predictions). Our algorithm
captures the uncertainty in the scenario (i.e., in terms of environment and player states) and
is able to compute a policy to allocate responders to tasks that minimises task completion
time and plans routes for responders to ensure they not exposed to significant radiation. In
order to be responsive, our algorithm is designed to return approximate solutions rather than
optimal ones (that would take too much time to return solutions in a real-time setting). The
algorithm is then used by a planning agent, working alongside a human commander, to guide
FRs on the ground. Specifically, the planning agent is integrated into our test platform, Atom-
icOrchid,1 that structures the interaction between FRs (i.e., players on the ground), a human
commander, and the planning agent in a mixed-reality location-based game. In particular, the
planning agent is designed to take over the burden of computing team plans from the human
commander (who takes up a more supervisory role) while being responsive to requests to
change plans from FRs (e.g., in case they are tired or prefer to do other tasks). By so doing,
we are able to study, both quantitatively and qualitatively, the performance of a human–agent
collective (i.e., a mixed-initiative team where control can shift between humans and agents)
and the interactions between the different actors in the system [24]. In particular, we advance
the state of the art in the following ways:

(1) We develop a multi-agent Markov decision process (MMDP) to represent the problem
of team coordination (i.e., path planning and task allocation) under uncertainty [7] and
provide a novel algorithm to compute approximate solutions to the MMDP. We embed
the mechanism to drive a planning agent in the AtomicOrchid game to evaluate it with
users in a real-world setting.

(2) We present a novel mixed-reality game, AtomicOrchid, to evaluate team coordina-
tion under uncertainty, focussing particularly on human–agent collaboration. In Atomi-
cOrchid, human players in the field are supported by our planning agent in their mission
to coordinate rescue tasks efficiently by communicatingwith headquarters and each other
via a mobile phone application.

(3) We run field trials of our planning agent in AtomicOrchid where it instructs field respon-
ders through mobile messages in a disaster response scenario in multiple field trials.
Our quantitative and qualitative analysis of the results show that providing flexible inter-
actions between human participants and the planning agent improve task performance,
particularly when the agent can rapidly respond to human requests for tasks.

When taken together, our results show, for the first time, how agent-based coordination
algorithms for disaster response can be integrated and validatedwith human teams.Moreover,
these results allow us to derive a methodology and guidelines for systems involving human–
agent collaboration.

The rest of this paper is structured as follows. Section 2 presents related work and provides
some background on the techniques used in later parts of the paper. Section 3 formalises the

1 http://bit.ly/1ebNYty.
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disaster response problem as an MMDP. Section 4 describes the algorithm to solve the
path planning and task allocation problems presented by the MMDP. Section 5 details the
AtomicOrchid platform. Section 6 presents our pilot study and the field trial evaluation.
Finally, Sect. 7 presents our design guidelines and concludes.

2 Background and related work

In this section we discuss related work and provide a short background on the techniques
used in this paper. As our work lies at the intersection between multi-agent coordination
and human–computer interaction (HCI) for disaster management applications, we discuss
relevant algorithms for multi-agent coordination to support emergency responders and then
describe the HCI techniques and approaches for the same purpose. We then go on to discuss
the challenges relevant to human–agent collaboration and then justify our use of mixed-
reality games to evaluate this form of collaboration. Through our analysis we also identify the
challenges that pertain to the coordination of human emergency responders under significant
uncertainty and therefore, concludewith a survey on decision-theoretic approaches to solving
the coordination problem under uncertainty in order to justify our agent-based solution for
the team coordination problem.

2.1 Human team coordination for disaster response

Team coordination focuses on managing interdependencies between activities performed by
individual team members to achieve the team’s goal [34]. In emergency response situations,
failures in team coordination can often occur due to the complexities of such interdependen-
cies, and such failures are widely acknowledged as the most significant factor that can cost
human lives [59, p. 2]. In particular, related work studies the challenges that arise when team
members aim to create a shared understanding (e.g., of what needs to be done) [14], develop
situation awareness (i.e., knowledge of the environment and the actors within it) [3], and
align cooperative action through on-going communication [59].

Moreover, we note the work of [13] that highlighted that a key characteristic of large-scale
disasters is the presence of multiple, spatially distributed incidents. To deal with multiple
incidents, the disaster response team has to coordinate spatially distributed resources and
personnel to carry out operations (e.g., search, rescue, and evacuation). Therefore, it is nec-
essary to optimise the coordination of teams by allocating tasks to teams in time and space
efficiently and sufficiently. Given this, a number of tools and system architectures have been
developed to support such team coordination [14,36,41]. However, while these approaches
focus on providing tools to human teams to better share information and formulate plans, they
do not consider how such team coordination could be optimised using agent-based planning.
Hence, in the next section, we survey a number of agent-based solutions to the task allocation
problem in disaster response.

2.2 Agent-based planning for disaster response

Kitano et al. [27] were the first to propose disaster response as a key application area for
multi-agent systems. Since then, a number of algorithms and simulation platforms have
been developed to solve the computational challenges involved. For example, algorithms
have been developed to efficiently allocate emergency responders to rescue tasks (e.g., to
rescue civilians, extinguish fires, or unblock roads) for (i) decentralised coordination: where
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emergency responders need to choose their actions based on local knowledge [12,43], (ii)
coordination by a central authority: where a command centre is able to choose actions (against
potentially adversarial agents) for all the members of the team given complete knowledge of
the system [26,30,50,58], and (iii) coalition formation: where sub-teams can perform tasks
with different levels of efficiency, as defined by the synergies between their capabilities (e.g.,
when two policemen help rescue a civilian from rubble they would be less effective than
a fire and rescue officer and a medic) [45]. Similar to [26,30,50], in our work, we adopt a
centralised approach to the coordination problem to and additionally consider the uncertainty
in the environment (see more details in Sect. 2.5).

Now, many of the above algorithms are actually evaluated in simulation using the Robo-
CupRescue disaster simulation platform [56]. In this platform, emergency response tasks
are modelled computationally (e.g., functions describing speed and efficiency of agents at
completing tasks) and the emergency responders are modelled as agents that automatically
implement the outputs of a given task allocation algorithm [28,45]. On a related note, [40]
present a system to simulate evacuations duringmajor disasters and showhowhuman subjects
using mobile phones can be influenced by the movement of artificial agents. However, they
do not attempt to optimise the evacuation process. While such evaluations are useful to
determine extreme scenarios (e.g., best case when all agents implement all tasks perfectly or
worst case when they do not), they are prone tomisrepresentations of human decisionmaking
since they do not capture all the subtleties of human interactions and perception. In particular,
they assume that all the actors in the system perfectly understand the messages exchanged,
the information presented on their communication devices, and that they always follow the
instructions received perfectly. In contrast, in a disaster response setting, responders may not
always understand the plans computed by an agent nor obey instructions they receive from
an agent (e.g., if they are part of different agencies, misunderstand the instructions, or are
just tired).

2.3 Challenges for human-agent collaboration

Many multi-agent coordination algorithms have the potential to be applied to support task
assignment of responder teams. However, before we use those algorithms to build agent-
based planning support systems, there is a need to understand how humans and agents can
effectively collaborate. Controlled experiments designed by the Human Factors community
have sought to identify key aspects of human–agent collaboration [10,15,57,60], propose
transfer-of-control policies to shift control between humans and agents [52], and evaluate
strategies of agent support for teams [33]. In particular, prior research has recognised that
interaction design is vital for the performance of socio-technical human–agent systems [38],
particularly where an agent directly instructs humans [37]. In particular, the latter argue
that, with inappropriate interaction design, agent-based planning support may function inef-
ficiently, or at worst, hinder the performance of human teams. This is echoed by [9] who have
shown that an ill-designed work-flow management/automation system can lead to undesir-
able results, not only fail to improve work efficiency but also hinders human performance.
Bowers et al. found that extreme difficulties might be encountered when introducing new
technology support for human teams. Thus, new technologies might not support, but disrupt
smooth workflow if they are designed in an organisationally unacceptable way [1]. In some
cases, people not be able to access agent-based guidance simply because they do not wish to
share their context with a centralised autonomous system [61].

Although there is much literature in planning support, task assignment, and human–agent
collaboration, to the exception of [51,53], no real world studies of how human emergency
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response teams actually handle agent support have been carried out. In fact, [51,53] mainly
focus on humans acting as peers to agents in computational simulations rather than real-world
deployments in the field. This further highlights the need to evaluate these technologies with
human users before they are deployed in real-world settings. In particular, in this work, we
turn to the use of gamification to run such evaluations.

Recent work by Tambe et al. [58] has shown how humans may be able to implement plans
computed as solutions to a Stackelberg game. While their solutions have been deployed
with various human teams (e.g., guards at LAX airport or security teams in the Boston/New
York/LA harbours), they do not consider how such plans can be generated in real-time in
collaboration with humans (i.e., internalising human input dynamically).

2.4 Disaster simulation and games

Computational simulations, particularly agent-based simulations, are the predominant
approach in the computing literature to predict the consequences of certain courses of action
in disasters [22], to model information flow among first responders [49], to model the logistic
distribution of emergency relief supplies [32]. However, as hinted above, these simulations
are a poor substitute for real-world field trials. For example, Simonovic highlights that sim-
ulations may rely on unrealistic geographical topography, and most importantly, may not
“account for human psychosocial characteristics and individual movement, and (. . .) learning
ability” [55]. Moreover, the impact of emotional and physical responses likely in a disaster,
such as stress, fear, exertion or panic [17] remains absent in most approaches that rely purely
on computational simulation.

To combat this, in our study, we adopt a serious mixed-reality game approach to provide a
setting in which people experience realistic cognitive and physical stress [18]. Mixed-reality
games are recreational experiences that make use of pervasive technologies such as smart
phones, wireless technologies and sensors with the aim of blending game events into a real
world environment [5]. Arguably, they have become an established vehicle to explore socio-
technical issues in complex real world settings [16]. The major advantage of mixed-reality
games is the fact that they are situated in the real world, which leads to increased efficacy of
the behavioural observations when compared to computational simulations.

By adopting the mixed reality games approach, for the first time, we are also able to run
repeated trials of interfaces for humans to use to control and receive instructions from an
agent in real-time. In our particular context, the planning agent works alongside a human
commander at central command (who can visualise its outputs and override them) in order to
instruct human players on the ground. This arrangement of humans being guided by an agent
in collaboration with a supervisor is novel in itself and raises issues related to trust in the
planner agent, delegation of control (to humans on the ground, to agent at headquarters, or
to human at headquarters), and interaction design for human–agent systems that can support
collaborative work in real-time settings.

2.5 A short background on decision-theoretic multi-agent planning

Decision theoretic planning is typically solved using Markov Decision Processes [35]. A
Markov decision process (MDP) is amathematical framework for sequential decisionmaking
under uncertainty where the problem is specified as a set of states and transition functions
(specifying links between these states based on the actions taken). Then, the solution to
an MDP specifies what action should be taken in each state given the possible transitions
from a given state. In the presence of multiple agents, this model has been extended to
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multi-agent MDP (MMDP) [7] where the action chosen at any state consists of individual
action components performed by the agents. Theoretically, any algorithm such as linear
programming, value iteration, or policy iteration that can solve MDPs can also be used to
solveMMDPs. However, these are likely to be very inefficient because the action space grows
exponentially with the number of agents. In an attempt to combat this complexity, [8] show
how domain structure can be exploited and thus introduced the factored MDP (FMDP) in
which the state space is described by a set of variables and the transition model is defined by
a dynamic Bayesian network (DBN). When the agents can only observe partial information
about the state, this problem can be modelled by multi-agent partially observable MDPs
(MPOMDP) [44]. Similar to MMDP, MPOMDP can be treated as an extension of single-
agent POMDP to multi-agent domains. This analogy is useful because MPOMDPs can be
solved as belief-state MMDPs where a belief state is a probability distribution over the states.
All the above models assume that there is a centralised unit that will select a joint action for
the team and distribute each action component to the corresponding agent. Decentralised
POMDP (DEC-POMDP) [6] is a more general model where the agents are controlled in a
decentralised manner. In other words, there is no centralised unit for distributing the actions
and each agent must choose its own action based on the local observation.

In this paper, we restrict ourself to model our problem as theMMDP because other models
do not fit the characteristics of our domain or are too difficult to be solved with the size of our
problem. Specifically, in our domain, we consider a central controller (at headquarters) that
will collect all the information anddistribute the commands to eachfield responder. Therefore,
it is not necessary to assume that the information is only partial (as in MPOMDPs) or the
decision must be made locally by the responders (as in DEC-POMDPs). Furthermore, those
models are much harder than MMDPs and the existing algorithms can only solve very small
problems.Moreover, we do not use the FMDP becausemost of the algorithms for solving this
model require that the value function can be factored additively into a set of localized value
functions [20,21,31] and our problem does not have such structures. For example, in our
domain, several tasks may depend on the same responder. If she is delayed in one task, this
may affect the completion of the other tasks. In other words, the completion of one task may
depend on the completion of the other tasks, and so, the value function can not be factored
on the basis of the local task states. Our settings are also different from the one in [12] where
they assume that the responders are self-interested and need to negotiate with each other on
the task that they want to perform next.

As discussed above, any algorithm that can solve largeMDPs can be used to solveMMDPs.
However, most of the existing approaches are offline algorithms (see the most recent sur-
vey [35] for more detail). The main disadvantage of offline algorithms is that they must
compute a complete action mapping for all possible states in the policy. This is intractable
for problems with huge state space as in our domain. In contrast to offline approaches, online
algorithms interleave planning with execution and only need to compute the best action for
the current state instead of the entire state space. Specifically, we adopt the basic framework
of Monte-Carlo tree search (MCTS) [29], which is currently the leading online planning
algorithm for large MDPs, and divide our online algorithm into two levels: task planning
and path planning. It is worth pointing out that our method is different from the hierarchical
planning for MMDPs [39] because it requires the task hierarchy to be part of the model and
our problem does not have such task hierarchy for the responders. Indeed, our problem is
more closely related to the coalition formation with spatial and temporal constraints (CFST)
problem where agents form coalitions to complete tasks, each with different demands. How-
ever, existing work on CFST often assumes that there is no uncertainty on the agents’ actions
and the environment [45].
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3 The disaster scenario

To develop a scenario for the evaluation of agent-based planning support, we held a num-
ber of consultations with emergency response organisations such as Rescue Global2 and
Hampshire County Council.3 Specifically, these discussions informed the design of decision-
making challenges (e.g., hazard avoidance, path planning, team coordination) that mimic
those that pervade real-world disaster response planning and execution while making rea-
sonable assumptions about the environment and the participants.4

In more detail, we consider a disaster scenario in which a satellite, powered by radioac-
tive fuel, has crashed in a sub-urban area.5 Debris is strewn around a large area, damaging
buildings and causing accidents and injuring civilians. Moreover, radioactive particles dis-
charged from the debris are gradually spreading over the area, threatening to contaminate food
reserves and people. As the movement of this radioactive cloud is dependent on wind speed
and direction, radiation levels may change drastically across the disaster space over time (see
Appendix 1 for more details of the model we use). Hence, emergency services (including
medics, soldiers, transporters, and fire-fighters) are deployed to evacuate the casualties and
key assets (e.g., food reserves,medication, fuel), each requiring different teams of FRs, before
they are engulfed by the radioactive cloud. In what follows, we first model this scenario for-
mally. Second, we describe the use of a planning agent at headquarters to help coordinate the
team. Third, we formalise the optimisation problem faced by the planning agent in trying to
coordinate the team of FRs on the ground (i.e., including fire-fighters, medics, and soldiers)
with the objective o save as many lives and assets as possible while minimising the risk of
being exposed to harmful radiation.

3.1 Formal model

Let G denote a grid overlaid on top of the disaster space, and assume the satellite debris,
casualties, assets, and actors are located at various coordinates (x, y) ∈ G in this grid.
The radioactive cloud induces a radioactivity level l ∈ [0, 100] at every point it covers
(100 corresponds to maximum radiation and 0 to no radiation). While the exact radiation
levels can be measured by responders on the ground (at a given location) using their geiger
counter, we assume that additional information is available from existing sensors in the
area.6 However, this information is uncertain due to the poor positioning of the sensors and
the variations in wind speed and direction (we show how this uncertainty is captured in
the next section). A number of safe zones G ′ ⊆ G are defined where the responders can
drop off assets and casualties (i.e., targets to be rescued). Let the set of FRs be denoted as
I = {p1, · · · pi · · · , pn}, where |I | = n and the set of targets to be rescued (i.e., rescue
tasks) be denoted as T = {t1, · · · , t j , · · · , tm}, where |T | = m. A rescue task is performed
by picking the target up, carrying it to a safe zone, and dropping it off. As FRs perform rescue

2 http://www.rescueglobal.org.
3 http://www3.hants.gov.uk/emergencyplanning.htm.
4 As access to emergency responders is either limited or costly for field trials, it was considered reasonable
to hire volunteers that were taught to use the tools we gave them. The design of a fully-fledged training tool
for disaster responder would be beyond the scope of this paper.
5 Given the invisibility of radiation, it is possible to create a believable and challenging environment for the
responders to solve in our mixed-reality game (see Sect. 5).
6 This assumption is not central to our problem and only serves to inform the decision making of the agent as
we see later. It is also possible to obtain similar information about radiation levels by fusing the responders’
geiger counter readings, but this is beyond the scope of the paper.
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tasks, they may become tired, get injured, or receive radiation doses that may, at worst, be
life threatening. Hence, we assign each responder a health level hi ∈ [0, 100] that decreases
based on its radiation dose (hi is decreased by 0.02 × l per second given a radiation level
l) and assume that its decision to pick up and carry the target allocated to it is liable to
some uncertainty (e.g., they may not want to pick a target because it is too far away or it is
unclear how long it is going to take them to carry it back to a safe zone). Moreover, let Θ

denote the types of responders (e.g., fire brigade, soldier, transporter, or medic) and assume a
responder’s type determines the capabilities she has and therefore the tasks she can perform.
We denote as θi ∈ Θ the type of responder pi . In turn, to complete a given task t j , a set of
responders C ⊆ I with specific types Θt j ⊆ Θ is required to pick up t j . Thus, a task can
only be completed by a team of responders C j if Θt j ⊆ {θi |pi ∈ C j }. Given the distribution
of responders across the physical space, different sub-teams will perform to different levels
(as they have to travel different distances) and this poses a challenge for the commander to
find the best teams needed to perform the tasks.

3.2 Human–agent collaboration

In line with practice in many countries, we assume that the FRs are coordinated from a
headquarters (HQ) headed by a human coordinator H . In our case, H is assisted by an agent-
based planning agent PA (more details in Sect. 4), that can receive input from, and direct,
the FRs. Both H and PA can communicate their instructions (task plans to pick up targets)
directly to the responders using an instant messaging system (or walkie talkie). While these
instructions may be in natural language for H , PA instructs them with simple requests such
as “Pick up target X at position Y with team-mates Z” messages. In turn, the responders may
not want to do some tasks (e.g., if they are too tired, prefer to work with specific peers, or
are prioritise some tasks over others) and may therefore simply accept or reject the received
instruction from PA or H .7 However, H can query the responders’ decisions and request
more information about their status (e.g., fatigue or health) and goals (e.g., meeting with
team-mate at position X or going for task Y). Instead, if a task is rejected by the responders,
PA records this as a constraint on its task allocation procedure (see details in Sect. 4.1.3) and
returns a new plan. Thus on the one hand, richer interactions are possible between H and the
first responders than between them and PA. On the other hand, PA runs an sophisticated
task allocation algorithm that can compute an efficient allocation, possibly better than the
one computable by H (particularly when many responders need to be managed). Note that,
in contrast to previous work that suggested transfer-of-control regimes [52], our approach to
handling requests from FRs to change the agent-based plan, does not constrain transfers of
control to target specific decision points in the operation of the system. Rather, our interaction
mechanisms are designed (see Sect. 5) to be more flexible to allow human control at any
point (and our results in Sect. 6 validate this approach), along with human supervision (to
implement possible corrective actions) by H .

3.3 The optimisation problem

Previous agent-based models for team coordination in disaster response typically assume
deterministic task executions and environments [45,50]. However, in order to evaluate agent-
guided coordination in a real-world environment, it is important to consider uncertainties
due to player behaviours and the environment (as discussed in the previous section). Given

7 While some agencies may be trained to obey orders (e.g., military or fire-fighting), others (e.g., transport
providers or medics) are not always trained to do so [23].
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this, we propose a new representation for the task allocation problem in disaster response
that does take into account such uncertainties. More specifically, we represent this problem
using an MMDP that captures the uncertainties of the radioactive cloud and the responders’
behaviours. We model the spreading of the radioactive cloud as a random process over the
disaster space and allow the actions requested from the responders to fail (because they
decline to go to a task) or incur delays (because they are too slow) during the rescue process.
Thus in the MMDP model, we represent task executions as stochastic processes of state
transitions, while the uncertainties of the radioactive cloud and the responders’ behaviours
can be easily captured with transition probabilities. More formally, theMMDP is represented
by tupleM = 〈I, S, {Ai }, P, R〉, where I = {p1, p2, · · · , pn} is the set of actors as defined
in the previous section, S is the state space, Ai is a set of responder pi ’s actions, P is the
transition function, and R is the reward function. In the MMDP, the state is Markovian and
represents all the information that is sufficient for the agent to make decision. The transition
function models the dynamics of the system and how it reacts to the responders’ actions. The
reward function specifies the objective of the system (e.g., saving as many lives as possible
or minimising the radiation dose received). We elaborate on each of these below.

In more detail, S = SGr × Sp1 × · · · × Spn × St1 × · · · × Stm where:

– SGr = {l(x,y)|(x, y) ∈ G} is the state variable of the radioactive cloud that specifies the
radioactive level l(x,y) ∈ [0, 100] at every point (x, y) ∈ G.

– Spi = 〈hi , (xi , yi ), t j 〉 is the state variable for each responder pi that specifies her health
level hi ∈ [0, 100], her present position (xi , yi ), and the task t j she is carrying out, which
is null when she has no task.

– St j = 〈stj, (x j , y j )〉 is then the state variable for task t j to specify its status stj (i.e.,
the target is picked up, dropped off, or idle) and position (x j , y j ).

The three types of actions (in set Ai ) a responder can take are: (i) stay in the current
location (xi , yi ), (ii) move to the 8 neighbouring locations, or (iii) complete a task located
at (xi , yi ). A joint action a = 〈a1, · · · , an〉 is a set of actions where ai ∈ Ai , one for each
responder (a responder may just stay at its current position if it has no targets to rescue).

The transition function P is defined in more detail as: P = Pr × Pp1 ×· · ·× Ppn × Pt1 ×
· · · × Ptm where:

– Pr (s′
r |sr ) is the probability the radioactive cloud spreads from state sr ∈ SGr to s′

r ∈ SGr .
It captures the uncertainty of the radiation levels in the environment due to noisy sensor
readings and the variations in wind speed and direction.

– Ppi (s
′
pi |s, ai ) is the probability responder pi transitions to a new state s′

pi ∈ Spi when
executing action ai . For example, when a responder is asked to go to a new location, she
may not end up there because she is tired, gets injured, or receives radiation doses that
are life threatening.

– Pt j (s
′
t j |s, a) is the probability of task t j being completed. A task t j can only be completed

by a team of responders with the required types (Θt j ) located at the same position as t j .

Now, if task t j is completed (i.e., in stj ∈ St j , the status stj is marked as “dropped off”
and its position (x j , y j ) is within a safe zone), the team will be rewarded using function R.
The team is penalised if a responder pi gets injured or receives a high dose of radiation (i.e.,
in spi , the health level hi is 0). Moreover, we attribute a cost to each of the responders’ actions
since each action requires them to exert some effort (e.g., running or carrying objects).

Give the above definitions, a policy for the MMDP is a mapping from states to joint
actions, π : S → A so that the responders know which actions to take given the current state
of the problem. The quality of a policy π is measured by its expected value V π , which can
be computed recursively by the Bellman equation:
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V π (sτ ) = R(sτ , π(sτ )) +
∑

sτ+1∈S
P(sτ+1|sτ , π(st ))V π (sτ+1) (1)

where τ denotes the current time point and π(sτ ) is a joint action given sτ . The goal of
solving the MMDP is to find an optimal policy π∗ that maximises the expected value with
the initial state s0, π∗ = argmaxπ V π (s0).

At each decision step, we assume that the PA can fully observe the state of the environment
s by collecting sensor readings of the radioactive cloud and GPS locations of the responders.
Given a policy π of the MMDP, a joint action a = π(s) can be selected and broadcast to the
responders (as mentioned earlier).

4 Team coordination algorithm

Unfortunately, as in most MDP-based approaches to solving team coordination problems
(see Sect. 2.5), our MMDP model results in a very large search space, even for small-sized
problems. For example, with 8 responders and 17 tasks in a 50 × 55 grid, the number of
possible states is more than 2× 10400. Therefore, it is practically impossible to compute the
optimal solution. In such cases, we need to consider approximate solutions that result in high
quality allocations. To this end,we develop an approximate solution using the observation that
responders first need to cooperatively form teams (i.e., agree on who will do what), and that
they can then independently compute the best path to the task. In our planning algorithm, we
use this observation to decompose the decision-making process into a hierarchical structure
with two levels: at the top level, a task planning algorithm is run for the whole team to assign
the best task to each responder given the current state of the world; at the lower level, given
a task, a path planning algorithm is run by each responder to find the best path to the task
from her current location.

Furthermore, not all states of MMDPs are relevant to the problem (e.g., if a responder gets
injured, she is incapable of doing any task in the future and therefore her state is irrelevant to
other responders) and we only need to consider the reachable states given the current global
state s of the problem. Hence, given the current state, we compute the policy online only
for reachable states. This saves a considerable amount of computation because the size of
the reachable states is usually much smaller than the overall state space. For example, given
the current location of a responder, the one-step reachable locations are the 8 neighbouring
locations plus the current locations, which are 9 locations out of the 50 × 55 grid. Jointly,
the reduction is huge, from (50 × 55)8 to 98 for 8 responders. Another advantage of online
planning is that it allows us to refine the model as more information is obtained or unexpected
events happen. For example, given that the wind speed or direction may change, the uncer-
tainty about the radioactive cloud may increase. If a responder becomes tired, the outcome
of her actions may be liable to greater uncertainty.

Themain process of our online hierarchical planning algorithm is outlined in Algorithm 1.
The following sections describe the procedures of each level in more detail.

4.1 Task planning

As described in Sect. 3.1, each FR pi is of a specific type θi ∈ Θ that determines which
task she can perform and a task t can only be completed by a team of responders with the
required types Θt . If, at some point in the execution of a plan, a responder pi is incapable
of performing a task (e.g., because she is tired or suffered a high radiation dose), she will be

123



Auton Agent Multi-Agent Syst (2016) 30:82–111 93

Algorithm 1: Team Coordination Algorithm
Input: the MMDP model and the current state s.
Output: the best joint action a.

//The task planning
{t i } ← compute the best task for each responder pi ∈ I ;1
foreach pi ∈ I do2

//The path planning
ai ← compute the best path to task t i ;3

return a4

removed from the set of responders under consideration (that is I → I \ pi ). This information
can be obtained from the state s ∈ S. When a task is completed by a chosen team, the task
is simply removed from the set (that is T → T \ tk if tk has been completed).

Now, to capture the efficiency of groupings of FRs at performing tasks, we define the value
of a team v(C jk) that reflects the level of performance of team Ck in performing task t j . This
is computed from the estimated rewards the team obtains for performing t j (as we show
below). Then, the goal of the task planning algorithm is to assign a task to each team that
maximises the overall team performance given the current state s, i.e.,

∑m
j=1 v(C j ) where

C j is a team for task t j and {C1, · · · ,Cm} is a partition of I (∀ j �= j ′,C j
⋂

C j ′ = ∅ and⋃m
j=1 C j = I ). In what follows, we first detail the procedure to compute the value of all

teams that are valid in a given state and then proceed to detail the main algorithm to allocate
tasks. Note that these algorithms take into account the uncertainties captured by the transition
function of the MMDP.

4.1.1 Team value calculation

The computation of v(C jk) for each team C jk is challenging because not all tasks can be
completed by one allocation (there are usually more targets than FRs). Moreover, the policy
after completing task t j must also be computed by the agent, which is time-consuming
given the number of states and joint actions. Given this, we propose to estimate v(C jk)

through several simulations. This is much cheaper computationally as it avoids computing
the complete policy to come up with a good estimate of the team value, though we may not
be able to evaluate all possible future outcomes. According to the law of large numbers, if
the number of simulations is sufficiently large, the estimated value will converge to the true
v(C jk). This process is outlined in Algorithm 2.

In each simulation of Algorithm 2, we first assign the FRs in C jk to task t j and run the
simulator starting from the current state s (Line 4). After task t j is completed, the simulator
returns the sum of the rewards r and the new state s′ (Line 4). If all the FRs in C jk are
incapable of doing other tasks (e.g., suffered radiation burns), the simulation is terminated
(Line 5). Otherwise, we estimate the expected value of s′ using Monte-Carlo Tree Search
(MCTS) [29] (Line 8), which provides a good trade-off between exploitation and exploration
of the policy space and has been shown to be efficient for large MDPs.8 After N simulations,
the average value is returned as an approximation of the team value (Line 10).

The basic idea of MCTS is to maintain a search tree where each node is associated with a
state s and each branch is a task assignment for all FRs. To implement MCTS, the main step

8 Other methods such as sequential greedy assignment or swap-based hill climbing [42] may also be useful.
However, they do not explore the policy space as well as MCTS [29].
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Algorithm 2: Team Value Calculation
Input: the current state s, a set of unfinished tasks T , and a set of free FRs I .
Output: a task assignment for all FRs.

{C jk } ← compute all possible teams of I for T ;1

foreach C jk ∈ {C jk } do2
//The N trial simulations
for i = 1 to N do3

(r, s′) ← run the simulation starting at state s until task k is completed by the FRs in C jk ;4

if s′ is a terminal state then5
vi (C jk ) ← r ;6

else7
V (s′) ← estimate the value of s′ with MCTS ;8

vi (C jk ) ← r + γ V (s′) ;9

¯v(C jk ) ← 1
N

∑N
i=1 vi (C jk ) ;10

return the task assignment computed by Eq. 3.11

is to compute an assignment for the free FRs (a FR is free when she is capable of doing tasks
but not assigned to any) at each node of the search tree. This can be computed by Eq. 3 using
the team values estimated by the UCB1 heuristic [2] to balance exploitation and exploration:

v(C jk) = v(C jk) + c

√
2N (s)

N (s,C jk)
(2)

where v(C jk) is the averaged value of team C jk at state s so far, c is a trade-off constant,
N (s) is the visiting frequency of state s, and N (s,C jk) is the frequency that team C jk has
been selected at state s. Intuitively, if a team C jk has a higher average value in the trials so
far or is rarely selected in the previous visits, it has higher chance of being selected in the
next visit of the tree node.

As we assume that the type of a FR and the role requirements of each task are static,
we can compute all possible team values offline. Therefore, in the online phase, we only
need to filter out the teams for completed tasks and those containing incapacitated FRs to
compute the team set {C jk}. Note that the expected health levels of the FRs after completing
tasks are considered during the simulations if they enter the radioactive cloud. To simplfy the
simulations, we assume that there is no rejections from the FRs when completing the tasks.

4.1.2 Coordinated task allocation

Given the team values v(C jk) computed above, we then solve the following optimisation
problem to find the best solution:

max
x jk

∑
j,k x jk · v(C jk)

s.t. x jk ∈ {0, 1}
∀ j,

∑
k x jk ≤ 1 (i)

∀i,∑ j,k δi (C jk) ≤ 1 (ii)

(3)

where x jk is the boolean variable to indicate whether team C jk is selected for task t j or not,
v(C jk) is the value of team C jk , and δi (C jk) = 1 if FR pi ∈ C jk and 0 otherwise. In the
optimisation, constraint (i) ensures that a task t j is allocated to at most one team (a task does
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not need more than one group of FRs) and constraint (ii) ensures that a FR pi is assigned to
only one task (a FR cannot do more than one task at the same time). This is a standard Mixed
Integer Linear Program (MILP) that can be efficiently solved using off-the-shelf solvers (e.g.,
IBM CPLEX or lp_solve).

4.1.3 Adapting to FR requests

An important characteristic of our approach is that it can easily incorporate the preferences of
the FRs. For example, if a FR declines a task allocated to it by the planning agent, we simply
filter out the teams for the task that contain this FR. By so doing, the FR will not be assigned
to the task. Moreover, if an FR prefers to do the tasks with another FR, we can increase the
weights of the teams that contain them in Eq. 3 (by default, all teams have identical weights
of 1.0). Thus, our approach is adaptive to the preferences of human FRs.

4.2 Path planning

In the path planning phase, we compute the best path for a FR to her assigned task. Our
approach accommodates the uncertainties in the radioactive cloud and the FRs’ actions.
We model this problem as a single-agent MDP that can be defined as a tuple, Mi =
〈Si , Ai , Pi , Ri 〉, where: (1) Si = SGr × Spi is the state space, (2) Ai is the set of pi ’s actions,
(3) Pi = Pr × Ppi is the transition function, and (4) Ri is the reward function. In this level,
FR pi only needs to consider the states of the radioactive cloud SGr and her own states Spi and
her moving actions. Similarly, the transition function only needs to consider the spreading
of the radioactive cloud Pr and the changes of her locations and health levels when moving
in the field Ppi , and the reward function only needs to consider the cost of moving to a task
and the penalty of receiving high radiation doses. This is a typical MDP that can be solved
by many existing solvers (see the most recent survey [35]). We choose Real-Time Dynamic
Programming (RTDP) [4] because it is simple and particularly fits our problem, that is, a
goal-directed MDP with large number of states. However, other approaches for solving large
MDPs could equally be used here.

There are several techniques we use to speed up the convergence of RTDP. In our problem,
the map is static. Thus, we can initialize the value function V (s) using the cost of the shortest
path between the current location and the task location on the map, which can be computed
offline without considering the radioactive cloud. This helps RTDP quickly navigate among
the obstacles (e.g., buildings, water pools, blocked roads) without getting trapped in dead-
ends during the search.

Since, in this paper, we focus on the integration and validation of the algorithm in a
real-world deployment, we leave the presentation of computational simulation results and
comparisons with other agent-based planning solutions (using our MMDP formulation) to
Appendix 3. As argued earlier (see Sect. 2.3), while computational simulations are useful
to exemplify extreme cases, they do not explain how human FRs and the planning agent
actually collaborate. We resolve this issue via a real-world trial of our algorithm as part of a
planning agent next.

5 The AtomicOrchid platform

In this section we describe the AtomicOrchid environment used to embed the planning agent
in order to trial mixed-initiative coordination. In more detail, AtomicOrchid is a location-
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Fig. 1 Mobile responder tool

based mobile game based on the fictitious scenario described in Sect. 3. First responders
are assigned a specific type: medic, fire-fighter, soldier, or transporter. Their mission is to
evacuate all four types of targets: victim (requires medic and fire-fighter), animal (requires
medic and transporter), fuel (requires soldier and fire-fighter), or other resource (requires
soldier and transporter) before the disaster space is covered by a radioactive cloud (which we
simulate using a diffusion process described in Appendices 1 and 2). The first responders are
supported by (at least) one person in a centrally located HQ room, and the planning agent PA
that sends the next task (as described in the previous section) to the team of first responders.
In what follows, we present the player interfaces used and the interactions with the planning
agent in the game. A video of the operation of AtomicOrchid can be viewed at: http://bit.ly/
1ebNYty.

5.1 Player interfaces

FRs are equippedwith a ‘mobile responder tool’ providing sensing and awareness capabilities
in three tabs (geiger counter, map, messaging and tasks; see Fig. 1). The first tab shows a
reading of radioactivity, player health level (based on exposure), and a GPS-enabled map of
the game area to locate fellow FRs, the targets to be rescued and the drop off zones for the
targets. The second tab provides a broadcast messaging interface to communicate with fellow
FRs and the commander H . The third tab shows the team and task allocation dynamically
provided by the agent PA that can be accepted or rejected. Notifications are used to alert
both to new messages and task allocations.

H has at her disposal an ‘HQ dashboard’ that provides an overview of the game area,
including real-time information of the players’ locations (see Fig. 2). The dashboard pro-
vides a broadcast messaging widget, and a player status widget so that the responders’
exposure and health levels can be monitored. H can further monitor the current team and
task allocations to individual responders by PA (by clicking on a button). The radioactive
cloud (see Appendices 1 and 2 formore details) is graphically depicted as a heatmap (‘Hotter’
(red) zones correspond to higher levels of radiation). Crucially, only H can ’see’ the entire
cloud, while field responders are restricted to seeing a reading for their current location on
their Geiger counters—this is a deliberate design choice to require frequent communication
between HQ and field responders.
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Fig. 2 HQ interface

5.2 System architecture

AtomicOrchid is based on the open-sourced geo-fencing game MapAttack9 that has been
iteratively developed for a responsive, (relatively) scalable experience. The location-based
game is underpinned by client-server architecture, that relies on real-time data streaming
between client and server. Client-side requests for less dynamic content use HTTP. Frequent
events (e.g., location updates and radiation exposure) are streamed to clients to avoid the
overhead of HTTP. In this way, FRs are kept informed in near real-time. Finally, to build the
mobile app, we adapted the existing MapAttack Android app.

5.3 Integrating the planning agent

The planning agent PA takes the game status (i.e., positions of players, known status of the
cloud, and messages received from players) as input and produces a plan for each FR for
the current state. PA is deployed on a separate server. The AtomicOrchid server requests a
plan from the agent via a stateless HTTP interface by transmitting the game status in JSON
format. Polling (and thus re-planning) is triggered by two types of game events:

– Completion of task On successful rescue of a target, a new plan (i.e., allocation of tasks
to each FR) is requested from the agent.

– Explicit reject On rejection of a task allocation by any of the allocated FRs, a new plan is
requested.More importantly, the rejected allocation is, in turn, used as a constraint within
the optimisation run by the planner agent (as described in Sect. 4.1.3). For example, if
two FRs, one medic and one soldier, were allocated a task and the medic rejected it, the
planning agent would rerun the optimisation algorithmwith the constraint that this medic
should not be allocated this task. If another medic is free (and accepts) the soldier and
this medic can go ahead and complete the task. Otherwise, a new plan is created for the
soldier. We provide a depiction of the flow of control between between PA, H , and the
FRs in Fig. 3, highlighting the types of messages that may be sent (e.g., H will supervise

9 http://mapattack.org.
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Fig. 3 Interactions between PA,
FRs, and H

instructions sent by PA and advise FRs rather than instruct as in the case of the PA,
while FRs will simply reject P A’s instructions with a tap on the mobile responder tool
while they will normally respond over a chat interface to H ).

Once a plan is received from PA, the AtomicOrchid game engine splits the plan for a
given team into individual task allocations for each player and sends them to their mobile FR
app. The app presents the task allocation in the task tab, detailing: (i) the FR to team up with,
(ii) the allocated target (using target id), and (iii) approximate direction of the target (e.g.,
north, east). Once a player accepts a task, an acknowledgement is sent to their teammate,
while rejecting a task triggers a new assignment from PA.

Now, in order to create a challenging, dynamic and pressured setting for the game play-
ers, H , and PA, we simulate a radioactive cloud that moves according to simulated wind
conditions that mimics real-world cloud movement behaviours. The model we use for this
purpose is described in Appendices 1 and 2.

6 Field trialling AtomicOrchid

We ran three sessions of AtomicOrchid with participants recruited from the University of
Nottingham to trial mixed-initiative coordination in a disaster response scenario. The follow-
ing sections describe the participants, procedure, session configuration and methods used to
collect and analyse quantitative and qualitative data.

6.1 Participants and procedure

Our approach to field trials is strongly influenced by [11, p. 1663] who state that “participants
in field trials are used as experts on their own activity, attempting to predictwhatmight happen
with a particular technology, to develop insight based on their use”. In particular, they point
to the fact that running multiple trials (in an attempt to obtain statistically significant results)
has no relationship to insightfulness. Crucially, they suggest that participants can be seen as
investigators themselves in the trial. Hence, in line with this argument, we do not attempt to
run tens or hundreds of trials on many different scenarios to generate statistically significant
results. Rather, we focus on running enough trials to gain an insight into how participants
perceive and interact with our planning agent.

Hence, a total of 24 participants (17 males and 7 females) were recruited through posters
and emails, and reimbursed with £15 for 1.5–2 h of study. The majority were students. The
procedure consisted of 30 min of game play, and about 1 h in total of pre-game briefing,
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consent forms, a short training session, and a post-game group discussion. The participants
were told that their goal was to save as many targets as possible (out of a total of 20) before
being engulfed by the ‘radioactive cloud’. Observations in the trial (such as running and
screaming players) showed that this game mechanic put participants under the kind of stress
that incites a real visceral response, supporting the objective of our mixed-reality game
approach (see Sect. 2.4).

At the end of the briefing, in which mission objectives and rules were outlined, FR types
were randomly assigned to all participants (fire-fighter, medic, transporter, soldier). The HQ
was staffed by a different member of the research team in each session in order to mimic an
experienced H , while avoiding the same person running the HQ every time. Moreover, FRs
were provided with a smartphone and H with a laptop. The team was given 5 min to discuss
a common game strategy.

FRs were then accompanied to the starting point within the designated game area, about
1 min walk from headquarters. Once FRs were ready to start, H sent a ‘game start’ message.
After 30min of game play the FRs returned to theHQwhere a group interviewwas conducted,
before participants were debriefed and dismissed.

6.2 Game sessions

We ran one session without PA, and two sessions with PA to be able to compare team
performance in the two versions. Each session involved different sets of FRs (8 each). Thus,
players were unique to a session to avoid learning effects between sessions. While we cannot
rule out learning effects within sessions, we accept this as an integral part of working with
humans in the real world.

We also ran a pilot study for each condition to fine tune game configuration. The 8 FRs
in each session were randomly allocated a role so that the whole team had two of each of
the four types of FRs. The terrain of the 400 × 400 metre game area includes grassland, a
lake, buildings, roads, footpaths and lawns. There were two drop-off zones and 16 targets in
each session. There were four targets for each of the four target types. The target locations,
pattern of cloud movement and expansion were kept constant for all game sessions. The pilot
study showed that this was a challenging, yet not too overwhelming configuration of game
area size, and number of targets to collect in a 30 min game session.

6.3 Data collection and analysis

We collectedmore than 20 h of video of participants at the HQ, and participants on the ground
(using multiple cameras to follow multiple teams at the same time). Video recordings of field
action were catalogued to identify sequences (episodes) of interest through identification of
key decision points in teaming and task allocation. Interesting distinct units of interaction
were transcribed and triangulated with log files of relevant game activity for qualitative
interaction analysis, presented in detail elsewhere [25]. For the purposes of the analysis
presented here, we analysed the video data to classify how the agent task allocations were
handled by humans.

In addition, we developed a log file replay tool to triangulate video recordings of game
action with the timestamped system logs that contain a complete record of the game play,
including FRs’ GPS location, their health status and radioactive exposure, messages, cloud
location, locations of target objects and task status.

In what follows, we present an analysis of both PA’s task allocations and the messages
sent between FRs and H to support coordination in order to assess how humans interact with
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each other and with PA. In particular, we use speech-act theory [54] to classify the messages
composed by humans. We focus on the most relevant types of acts in this paper (which are
also the most frequently used in AtomicOrchid):

– Assertives speech acts that commit a speaker to the truth of the expressed proposition;
these were a common category as they include messages that contain situational infor-
mation (e.g., You are next to the radiation cloud or the task is North of your current
position).

– Directives speech acts that are meant to cause the hearer to take a particular action;
requests, commands and advice, including task and team allocation messages (e.g., X go
to task 1, Y go with X).

6.4 Results

The participants were seen to engage engage with the game scenario, showing signs of stress
when targets could not be saved, and at times, running to save targets before these were
covered by the radioactive cloud. This confirmed that the fun factor of the game helped to
incentivise the participants to optimise their task allocation plans. Figure 4a, b show two
example traces of player movements during the games that demonstrate different levels of
coordination and how it materialises in their choices to pair up with specific team-mates
and where they choose to go. Specifically, Fig. 4a shows an example of poor coordination
whereby players go multiple times to the same spot and different teams attempt to perform
the same task. Some of this confusion was seen to result from delays in communicating and
GPS jitter. On the other hand, Fig. 4b shows an example of good coordination where only
pairs of players go to individual positions and avoid trying to complete other teams’ tasks.

Overall, 8 targets were rescued in the non-agent condition (Session A), and respectively
12 targets (Session B) and 11 targets (Session C) were rescued in the agent condition. Teams
(re-)formed six times in session A, four times in session B and nine times in session C.
Average player health after the game was much higher (more than double) for the agent-
assisted sessions (91 for Session B and 72 for Session C) compared to the non-agent assisted
session (40 in Session A) (see Table 1). In fact, one FR ‘died’ in Session A. This suggests that
the agent’s more conservative approach not to send FRs into ‘harms way’ paid off. Moreover,
surprisingly this more conservative approach did also not result in fewer targets saved than
with a, perhaps, more risk seeking approach by HQ in Session A. This may be explained by
more timely instructions by the agent, as these were generated automatically after a target
had been dropped off.

PA dynamically re-planned 14 times in session B and 18 times in session C. Inmost cases,
this was triggered when a target was dropped off in the safe zone (24 times)—as this frees
up resources for PA to recompute an allocation. In the remaining cases, this was triggered
by a player declining the agent’s task allocation (8 times).

In particular, Fig. 5 shows how FRs handled task allocations in the agent and non-agent
conditions. In the non-agent condition, the HQ commander sent 43 task allocation directives
(see Table 2 for details of each run) . Of these, the recipient FRs addressed only 15 messages
(bringing them up in conversation). Of these 15, FRs chose to ignore the instructions only
once. The FRs ignored the instruction because they were engaged in another task and did not
want to abandon it. A further 4 H instructions were consistent with a decision to rescue a
certain target that had already been agreed locally by the FRs. In the remaining 10 cases, FRs
chose to follow the instructions. Although players were willing to follow H ’s instructions,
they failed to correctly follow the instructions due to confusion and misunderstanding in the
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Fig. 4 Traces of player movements during two games. a Players are seen to herd to different tasks with no
clear coordination. User ids in the game are shown in the legend. b Players are seen to pair up with different
partners at different times indicating good coordination

communication. In fact, only 2 instances of directives from H led to task completion. The
FRs performed 6 rescue operations (tasks) without being instructed by H .

In contrast, when task allocation was handled by the agent (52 tasks allocated in two
trials on average), FRs explicitly accepted 24 tasks, of which they completed 15 successfully.
Although there was either no response or no consensus between the FRs (in 17 tasks allo-
cated), they still completed 6 of these tasks successfully. In total, 20 task allocations were
withdrawn by the agent as a result of re-planning.

In terms of task rejections, FRs rejected PA’s task allocation 11 times in the agent version.
All of the rejections happened when the task allocation would have split existing teams, or
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Table 1 Health of FRs.

Minimum health Maximun health Average health Standard deviation

Session A 0 95 40 26.95

Session B 64 100 91 13.41

Session C 41 99 72 24.99

Fig. 5 How task allocations were handled by FRs in the version with agent (left), and without agent (right).
The ‘overridden’ box denotes the number of times an ‘accepted’ allocation in the non-agent case was not
carried out to its full extent and, instead, another task was chosen by H to be completed

Table 2 Message classification Speech acts No agent Agent Total

Session A Session B Session C

HQ FR HQ FR HQ FR

Directives 89 0 34 2 34 0 159

Assertives 33 6 26 16 24 16 121

Total 122 6 60 18 58 16 280

instructed FRs to team up with physically more distant FRs. In most cases (9 out of 11),
they triggered re-planning by rejection and adjusted the task allocation to become consistent
with the FR’s current team. In the other two cases, the FRs rejected the task allocation one
more time before receiving the desired task allocation. For accepted instructions, the average
distance between suggested teammates was 12 metres. For rejected instructions, the average
was 86 metres.

The results above show that the simplemechanism to get PA to re-plan (i.e., reject/accept)
was more successful (more tasks completed and less confusion) than the open-ended inter-
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actions between H and the FRs (that were open to confusion). Moreover, the fact that many
of the rejections were due to the long distance to travel and teammate preference, implies
that players chose to do the tasks they preferred rather than those deemed optimal by the
agent. This indicates there may be an issue of trust in the agent, but also that it may be
easier for a FR to impose (through a reject) such preferences on an agent (and indirectly to
other team members) rather than expressing this to H or directly to teammates. It is also
important to note that in the agent-assisted setting, H frequently monitored the allocation of
tasks returned by the agent (57 clicks on ‘show task’ in UI FR status widget). Whereas 43
directives out of 68 in the non-agent session were task allocations, only 16 out of 68 were
directly related to task allocations in the agent version. Out of these, H directly reinforced
the agent’s instruction 6 times (e.g., “SS and LT retrieve 09”), and complemented (i.e., added
to or elaborated) PA’s task allocation 5 times (e.g., “DP and SS, as soon as you can head to
20 before the radiation cloud gets there first”). H did ‘override’ PA’s instruction in 5 cases
(as depicted by the ‘overridden’ box).

In the agent version, most of H ’s directives (52 out of 68) and assertives (49 out of 51)
focussed on providing situational awareness and routing the FRs to avoid exposing them to
radiation. For example, “NK and JL approach drop off 6 by navigating via 10 and 09.”, or
“Radiation cloud is at the east of the National College”.

These quantitative results point to the fact that H used PA as an advisor and in the non-
agent case, H had to provide more information to FR on the ground. In fact, during the
debriefing session, H operators in the non-agent case explicitly mentioned being overloaded
by the number of variables under consideration when allocating tasks to FRs (e.g., providing
situational awareness and allocating tasks). However, when supported by PA, the participants
mentioned they trusted the agent tomake the right decision andmainly spent time supervising
its allocations or even improving the allocation in some cases. For example, in one instance,
H explicitly advised FRs to go for a task that PA calculated would be covered by the
radiation cloud before they could get there. However, PA’s estimates of FRs’ running speed
was obviously wrong in this case and the FRs were able to rescue the target.

In summary, these results suggest three key observations with regard to human–agent
coordination in the trial:

(1) FRs performed better (rescued more targets) and maintained higher health levels when
supported by the agent. These results echo those obtained under simulation (see Appen-
dix 3) and may reflect the better forward-planning capability of the planning agent
compared to human FRs in the specific task allocation context under consideration.
However, this result applies within the specific setting where the agent is able to model
the priorities of the FRs very precisely (as per our constrained scenario). In a more ill-
defined setting, it is likely that the precision of such a model may degrade and therefore
human-driven strategic decision making may take precedence over the agent (see point
3 below).

(2) Rejecting tasks was relatively frequently employed to trigger re-planning to obtain new
task allocations aligned with FR preferences. In each case, the planning agent was able
to adapt to provide an alternative that was acceptable to the FRs. Without this facility
we believe the FRs would have chosen to ignore the plan (as experienced in our pilot
studies). Task rejection seemed to be linked to changes to established teams, especially
when members were relatively distant. Consequently, these kinds of allocations may
need particularly support (e.g., explanation) or might be less preferentially selected by
PA.
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(3) When task allocation was handled by PA, H could focus on providing contingent and
vital situational awareness to safely route first FRs around danger zones: thus demon-
strating effective division of labour and complementary collaboration between humans
and agents. We suggest that this effective division of labour contributes substantially to
the observed performance increase of FRs when supported by the agent.

Given the above observation we argue that a planning agent for team formation should not
only model the uncertainty in player behaviours and in the environment, but that interactional
challenges also need to be addressed if such a technology is to be accepted in practice. In
the next section we elaborate on how our study results lead to new design guidelines for
human–agent collectives.

7 Discussion and conclusions

In this paper we developed a novel approach to evaluating human–agent collaboration in
uncertain, dynamic, and real-time environments.We developed a novel planning agent (using
an MMDP approach) that is able to allocate tasks to teams in real-time and showed how it
outperformed other baseline approaches. Furthermore we demonstrated how such a planning
agent could be used by a human commander in AtomicOrchid, a mixed-reality game that
simulates a real-world disaster and requires participants to collaborate and perform tasks in
a physical environment.

Results from our field trials indicate the planning agent instructed players to carry out
successful plans (outperforming a no-agent setting in terms of tasks completed and responders
unharmed). The agent’s ability to re-plan as per responders’ preferences and constraints was
particularly effective as evidenced by the acceptance levels of agent-based instructions. In
particular, based on our analysis, we propose the following design guidelines for human–
agent collaboration in human–agent collectives:
Adaptivity Our experience with AtomicOrchid suggests that planning algorithms should be
designed to take in human input, andmore importantly, be responsive to the needs of the users.
As we saw in AtomicOrchid, players repeatedly requested new tasks and this would not have
been possible unless our algorithm was computationally efficient but could dynamically
assimilate updates, requests, and constraints. We believe this makes the algorithm more
acceptable to the users. However, this adaptivity does cost the system in terms of efficiency
as the rejection of tasks may lead the problem to be so constrained that the algorithm cannot
return any solutions. To alleviate such issues, we believe human mediation may be important
in nudging the players to justify their rejection of tasks or to nudge them not to do so too
frequently.
Interaction simplicity Our agent was designed to issue simple commands (Do X with Y)
and respond to simple requests (OK or Reject Task). Such simple messages were shown to
be far more effective at guiding players to do the right task than the unstructured human
communication in the non-agent assisted case that was fraught with inconsistencies and
inaccuracies. In fact, we would suggest that agents should be designed with minimal options
to simplify the reasoning users have to do to interact with the agent, particularly when they
are under pressure to act. However, interaction simplicity in this context, to us also means
providing human responderswith interactive abilities to dowhat they are good at: dealingwith
unforeseen contingencies. Hence, it is important to provide unconstrained communication
means such as chat, walkie talkies or mobile phones in addition to the ‘simple’ instructions
that the agent provides. In effect, we are designing an interactional setting in which the agent
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is dealingwith the routine and predictable aspects of the setting (repetitive tasks assignments),
and the human coordinators in the HQ are freed up to deal with contingencies and the less
predictable complexities as and when they arise.
Flexbile autonomy The HQ dashboard proved to be a key tool for the HQ coordinator H to
check and correct for the allocations of PA, taking into account the real-world constraints
that the players on the ground faced. In particular, letting the human oversee the agent (i.e.,
“on-the-loop”) at times and actively instructing the players (and bypassing the agent) at other
times (i.e., “in-the-loop”) as and when needed, was seen to be particularly effective. This was
achieved by H without the agent defining when such transfers of control should happen (as in
[52]) and, therefore, left the coordinator the option of taking control when she judged it was
needed. However, while this allows humans to choosewhat to do, it is not clear whether they
would have been better off going with the agent’s plan. Hence, we suggest that such deployed
autonomous systems should be built for flexible autonomy. Specifically, interfaces should
be designed to pass control seamlessly between humans and agents and the implications of
human-based “corrective” actions should bemade explicit to the humans to ensure they know
when to take control, and when to let the agent decide.

Much remains to be done to further validate agent-based planning in real-world disaster
response given that field trials of AtomicOrchid are limited to using volunteers and in settings
that only approximate the typical environments faced by emergency responders. Hence, in
future work, building upon our ethnographic studies of real-world training exercises [19], we
aim to deploy our planning agent to support expert emergency responders fromRescueGlobal
during their annual multi-national disaster response training exercise (Angel Thunder10). By
so doing, we will develop new requirements for agent-based technologies for settings where
users are highly trained and the actions taken by the agent can have major impact on the
performance of the team (e.g., leading to loss of lives or waste of real resources).
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Appendix 1: Radiation cloud modelling

The radiation cloud diffusion process is modelled using the Smoluchowski drift-diffusion
equation,

DRad(z, τ )

Dτ
= κ�2Rad(z, τ ) − Rad(z, τ )� · w(z, τ ) + σ(z, τ ) (4)

where D is the material derivative, Rad(z, τ ) is the radiation cloud intensity at location
z = (x, y) at time τ , κ is a fixed diffusion coefficient and σ is the radiation source(s) emission
rate. The diffusion equation is solved on a regular grid defined across the environment with
grid coordinates G (as defined in Sect. 3.1). Furthermore, the grid is solved at discrete time
instances τ . The cloud is driven by stochastic wind forces which vary both spatially and
temporally. These forces induce anisotropy into the cloud diffusion process proportional to
the local average wind velocity, w(z, τ ). The wind velocity is drawn from two independent
Gaussian processes (GP), one GP for each Cartesian coordinate axis, wi (z, τ ), of w(z, τ ).

10 http://www.dm.af.mil/library/angelthunder2013.asp.
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The GP captures both the spatial distribution of the wind velocity and the dynamic process
resulting from shifting wind patterns (e.g., short term gusts and longer term variations).

In our simulation, each spatial wind velocity component is modelled by an isotropic
squared-exponential GP covariance function [46], K , with fixed input and output scales, l
and μ, respectively (although any covariance function can be substituted),

K (z, z′) = μ2 exp−(z − z′)TP−1(z − z′)

where P is a diagonal covariance matrix with diagonal elements l2. This choice of covariance
function generates wind conditions which vary smoothly in both magnitude and direction
across the terrain. Furthermore, as wind conditions may change over time we introduce a
temporal correlation coefficient, ρ, to the covariance function. Thus, for a single component,
wi , of w, defined over grid G at times τ and τ ′, the wind process covariance function is,
Cov(wi (z, τ ), wi (z′, τ ′)) = ρ(τ, τ ′)K (z, z′). We note that, when ρ = 1 the wind velocities
are time invariant (although spatially variant). Values of ρ < 1 model wind conditions that
change over time.

Using the above model, we are able to create a moving radiation cloud. This poses a real
challenge both for the HQ (PA and H ) and the responders on the ground as the predictions
they make of where the cloud will move to will be prone to uncertainty both due to the
simulated wind speed and direction. While it is possible to use radiation readings provided
by first responders on the ground, as theymove in the disaster space, in our trials, we assumed
that these readings are coming from sensors already embedded in the environment to allow
the team to focus on path planning for task allocation (which is the focus of this paper) rather
than for radiation monitoring. Hence, using such sensor readings, the prediction algorithm
provided in Appendix 2 is then used to provide estimates of the radiation levels across the
disaster space during the game. These estimates are displayed as a heat map as described in
Sect. 5.

Appendix 2: Predictive model of radiation cloud

Predictions of the clouds location are performed using a latent force model (LFM) [47,48].
The LFM is a Markov model that allows the future state of the cloud and wind conditions to
be predicted efficiently from the current state. Predictions are computed using the Extended
Kalman filter (EKF) which has a linear computational complexity with regard to the time
interval over which the dynamics are predicted forward.11 The EKF estimates provide both
the mean and variance of the state of the cloud and wind conditions. Figure 6 shows example
cloud simulations for slow varying (i.e. ρ = 0.99) and gusty (i.e. ρ = 0.90) wind conditions.
The left panes in each subfigure show the ground truth simulation obtained by sampling from
the LFM. The middle panes show the mean of the cloud and wind conditions and the right
panes show the uncertainty in the conditions.

The radiation is monitored using a number of sensors on the ground that collect readings
of the radiation cloud intensity and, optionally, wind velocity every minute of the game.
These monitor agents can be at fixed locations or they can be mobile agents equipped with
geiger-counters that inform the user and commander of the local radiation intensity. The
measurements can be folded into the EKF and this refines estimates of both the radiation
cloud and wind conditions across the grid. Figure 6 shows the impact of such measure-
ments on the uncertainty of the cloud and wind conditions. Location of two monitors are

11 The EKF accommodates the nonlinearities in the radiation dynamics expressed through Eq. (4).
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Fig. 6 Radiation and wind simulation ground truth and EKF estimates obtained using measurements from
monitor agents (black dots). Left most panes are ground truth radiation and wind conditions, the middle
panes are corresponding estimates and right most panes are state uncertainties: a invariant and b gusty wind
conditions. The radiation levels are normalised to the range [0, 1]. a Slowly varying wind conditions. bGusty
wind conditions

shown as black dots in the upper row of panes in both subfigures. The right most panes
show the relative uncertainty in both the cloud and wind conditions as a result of cur-
rent and past measurements. Figure 6a shows slow varying wind conditions in which case
the radiation cloud can be interpolated accurately using sparse sensor measurements and
the LFM model. Alternatively, during gusty conditions the radiation cloud model is more
uncertain far from the locations where recent measurements have been taken, as shown in
Fig. 6b.
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Table 3 Experimental results for
the MMDP, myopic, greedy
algorithms in simulation

MMDP (%) Myopic (%) Greedy (%)

No. of completed tasks 71 65 41

No. responders alive at the end 100 25 0

Appendix 3: Simulation results of MMDP solution

Before deploying our solution (as part of PA) to advise human responders, it is important
to test its performance to ensure it can return efficient solutions on simulations of the real-
world problem. Given there is no extant solution that takes into account uncertainty in team
coordination for emergency response, we compare our algorithmwith a greedy and a myopic
method to evaluate the benefits of coordination and lookahead. For each method, we use our
path planning algorithm to compute the path for each responder. In the greedy method, the
responders are uncoordinated and select the closest tasks they can do. In the myopic method,
the responders are coordinated to select the tasks but have no lookahead for the future tasks
(Line 8 inAlgorithm2). Table 3 shows the results for a problemwith 17 tasks and 8 responders
on a 50×55 grid. As can be seen, ourMMDPalgorithm completesmore tasks than themyopic
and greedy methods (see Table 3). More importantly, our algorithm guarantees the safety of
the responders, while in the myopic method only 25% of the responders survive and in the
greedy method all responders are killed by the radioactive cloud. More extensive evaluations
are beyond the scope of this paper as our focus here is on the use of the algorithm in a field
deployment to test how humans take up advice computed by the planning agent PA.
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