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Abstract Novel systems allocating coalitions of humans and unmanned heterogeneous vehi-
cles will act as force multipliers for future real-world missions. Conventional coalition for-
mation architectures seek to compute efficient robot coalitions by leveraging either a sin-
gle greedy, approximation, or market-based algorithm, which renders such architectures
inapplicable to a variety of real-world mission scenarios. A novel, intelligent multi-criteria
decision making framework is presented that reasons over a library of coalition formation
algorithms for selecting the most appropriate subset of algorithm(s) to apply to a wide spec-
trum of complex missions. The framework is based on influence diagrams in order to handle
uncertainties in dynamic real-world environments. An existing taxonomy comprised of mul-
tiple mission and domain dependent features is leveraged to classify the coalition formation
algorithms. Dimensionality reduction is achieved via principal component analysis, which
extracts the most significant taxonomy features crucial for decision making. A link analysis
technique provides the mission specific utility values of each feature-value pair and algorithm
in the library. Experimental results demonstrate that the presented framework accurately
selects the most appropriate subset of coalition formation algorithm(s) based on multiple
mission criteria, when applied to a number of simulated real-world mission scenarios.

Keywords Coalition formation · Influence diagrams · Link analysis · Multi-criteria
decision making

1 Introduction

Complex mission requirements are often greater than the capabilities of a single robot. Coali-
tion formation can intelligently group heterogeneous unmanned vehicles (robots) to perform

S. D. Sen (B) · J. A. Adams
Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37240, USA
e-mail: sayan.d.sen@vanderbilt.edu

J. A. Adams
e-mail: julie.a.adams@vanderbilt.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-014-9276-y&domain=pdf


1062 Auton Agent Multi-Agent Syst (2015) 29:1061–1090

tasks collectively. Coalition formation is an NP-complete problem [1], which is also hard
to approximate within a factor of O(m1−ε) for m tasks (ε > 0) [2]. This computational
intractability has led to the development of a number of greedy [3–6], anytime [1,7,8],
design-to-time [9], and market-based [10–12] algorithms; however, all of these algorithms
have drawbacks. Greedy algorithms generate solutions quickly, but do not guarantee solution
quality and often result in suboptimal solutions. Anytime algorithms guarantee solution qual-
ity and permit premature termination, but require O(nn) worst case run-time to obtain quality
solutions. Conversely, design-to-time algorithms must run to completion in order to generate
near-optimal solutions, but have a better worst case run-time (O(3n)) when compared to any-
time algorithms. Market-based approaches suffer from high communication overhead, longer
convergence time, and are highly sensitive to bidding parameters. Against this background,
real-world critical missions requiring real-time coalitions may have a greater propensity
towards using heuristic-based algorithms that can generate solutions of acceptable quality
within the stipulated mission time.

Conventional coalition formation systems typically incorporate a single algorithm tailored
for specific mission scenarios, which make such systems fragile and inapplicable to a wide
spectrum of highly dynamic and complex real-world missions. Heuristic algorithms have been
shown experimentally to be effective only in compatible real-world missions [13]. However,
the dynamics and uncertainties of real-world environments do not guarantee the availabil-
ity of such information in every mission scenario; thus, a single heuristic algorithm based
system will be rendered less applicable. Conversely, despite guaranteeing solution quality,
approximation approaches do not scale well to large robot teams due to their exorbitant worst
case run-time complexities. Therefore, time constrained, critical real-world missions cannot
be accomplished using a single approximation algorithm based coalition formation system.

These limitations motivate the primary contribution, which is the development of the
intelligent-Coalition Formation framework for Humans and Robots (i-CiFHaR) that incor-
porates a library of coalition formation algorithms, each employing a different problem solv-
ing approach. Equipped with probabilistic reasoning based on influence diagrams, i-CiFHaR
reasons over the library and selects the most appropriate algorithm(s) to apply in accordance
with multiple mission criteria and environmental constraints when generating robot coali-
tions. The unified library coupled with the intelligent algorithm selection process allows
i-CiFHaR to generate robust solutions for a wide variety of real-world missions and provide
effective decision support to human mission supervisors. Experimental results demonstrate
that i-CiFHaR successfully chooses the most suitable subset of algorithm(s) by optimizing
the expected utility score, when applied to a number of simulated mission scenarios.

Consider a first response mission after a bomb blast, where a single algorithm requiring
high communication bandwidth may be rendered inapplicable. Reports suggest that mul-
tiple victims have been injured and there is a high likelihood of unknown bombs in the
area. Coalitions of robots assess the situation and report back the victim locations and any
potential threats. The wireless connectivity can be negatively impacted due to the increased
electromagnetic activities. During such a mission, i-CiFHaR can dynamically re-evaluate the
environmental constraints and refine the algorithm selection procedure, thereby selecting an
alternative algorithm applicable to the mission’s new low communication criterion.

i-CiFHaR leverages a coalition formation algorithm taxonomy [14] that classifies coalition
algorithms along multiple dimensions. Complex real-world missions can have high uncer-
tainty; therefore, i-CiFHaR employs an influence diagram to address uncertainties during
decision making. Influence diagrams are an extension of Bayesian networks that model deci-
sion making under multiple, uncertain criteria [15]. i-CiFHaR generates an influence diagram
online based on a subset of prominent taxonomy features extracted via Principal Component
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Analysis. The smaller subset of features addresses the combinatorial explosion issue asso-
ciated with an increase in the number of taxonomy features. This problem dimensionality
reduction, along with a built-in mathematical model for computing the utility table, renders
i-CiFHaR scalable and flexible.

i-CiFHaR is most similar to the autonomous squadron formation framework for unmanned
aerial vehicles [13], which leverages three coalition formation algorithms to compute the
necessary teams. The brute force algorithms search through all possible (2n−1) combinations
of n vehicles, rendering the framework impractical for large values of n. Coalitions are
computed by all three algorithms and the best coalition is selected based on a utility metric
[13]. i-CiFHaR differs in two ways: (1) a library of nineteen diverse and intelligent algorithms
is incorporated, which renders i-CiFHaR more adaptable to a wide range of domains; and
(2) an intelligent algorithm selection process chooses the most appropriate algorithm(s) to
apply, instead of applying all available algorithms, many of which may not be applicable.

Section 2 provides an overview of the related work. i-CiFHaR’s design and implementation
are detailed in Section 3. Experimental design and results are provided in Section 4. Section 5
presents the conclusion.

2 Related work

A number of coalition formation algorithms have been proposed to address the combina-
torial optimization problem, each tailored for specific mission conditions. The presented
framework, i-CiFHaR is the first system to leverage a library of diverse coalition formation
algorithms as one of its many built-in components. This section summarizes a subset of
existing coalition formation algorithms from the literature, a majority of which have been
incorporated into i-CiFHaR’s library.

Shehory and Kraus’ heuristic-based coalition formation algorithm uses group-rational
agents to generate both overlapping and disjoint coalitions by minimizing the overall system
cost [4]. The algorithm runs in polynomial time by leveraging a heuristic that permits coali-
tions up to a maximum size, k. Vig and Adams [6] extended Shehory and Kraus’ algorithm
for multirobot domains by modeling resources as non-transferable entities and each task as
a constraint graph. This algorithm utilizes arc-consistency to validate potential coalitions
and constrains the coalition sizes up to a maximum limit, k; however, it does not permit
overlapping coalitions.

Overlapping coalitions in real-world situations can lead to better efficiency and reduced
resource usage. In addition to Shehory and Kraus’ approach, Zhang et al.’s particle swarm
optimization based coalition formation algorithm also generates overlapping coalitions [16].
Particle swarm-based heuristic techniques mimic behaviors, such as bird-flocking, where a
collection of potential problem solutions (particles) move through the problem search space
according to domain specific mathematical models, ultimately aiming to converge towards
the optimal solution.

Abdallah and Lesser’s coalition formation algorithm utilizes an underlying organization
hierarchy as the heuristic for computing coalitions in polynomial time [3]. The leaf nodes
represent the robots and the non-leaf nodes represent computational units (managers) that
control respective sub-trees of the organization, representing subsets of robots. The managers
use Q-learning with neural networks to optimize and improve local decisions over time.
Tošić and Agha [5] demonstrated a clique-based, distributed coalition formation algorithm
that bounds the sizes of robot coalitions to a maximum upper limit, k. This algorithm uses a
topology network representing inter-agent communications and generates modest sized robot
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coalitions that form maximal cliques. This algorithm has low communication bandwidth
requirements, given the sparse topology network.

Weerdt et al.’s greedy, distributed coalition formation algorithm leverages an underlying
social network derived from the inter-agent communication in order to compute coalitions
[17]. The greedy algorithm finds task coalitions in O(nm) run-time, requiring low O(n2m)

communication messages for n tasks and m agents. However, despite the heuristic, the task
allocation problem with node degree (agent connections) greater than three remains NP-
complete.

Gaston and desJardins [18] proposed a similar greedy coalition formation algorithm using
an agent-oriented network, where each agent in the network possesses a single skill set.
Globally advertised tasks seeking agent coalitions are introduced at fixed time intervals for a
fixed time duration. This greedy algorithm’s performance is determined by two factors: (1)
global performance, defined as a ratio of the number of successful task coalitions formed to
the total number of tasks introduced, and (2) local performance of each agent. This algorithm
generates time-extended task allocations.

Real-world tasks involve inter-task constraints (e.g., precedence dependencies), intra-
task constraints (e.g., task deadlines), and spatial constraints that require robots to plan and
schedule tasks. A two-stage, distributed coalition formation algorithm specific to unmanned
aerial vehicles (UAVs) concentrates on: (1) minimizing coalition sizes, and (2) minimizing
task completion time [19]. The UAV that discovers a given task becomes the task leader
and broadcasts the task’s resource requirements to all other UAVs. Addressing the spatial
constraints in real-time, each UAV calculates its traveling cost by using Dubin’s curve based
on its location and the task location. The UAV leader computes small sized coalition of aerial
vehicles to accomplish each task.

A communication less multi-agent task allocation algorithm was presented that allows
agents to leverage their past experience, while making task assignments [20]. Campbell et
al. adopt the multiprocessor scheduling problem for task allocations in order to address the
intra-task constraints. The shortcoming of this approach is that only a single sized coalition
is allocated for each task.

Koes et al.’s centralized anytime algorithm is based on Mixed Integer Linear Program-
ming and addresses the real-world scheduling issues for search and rescue missions [21].
This algorithm finds near optimal solutions for problems involving path planning, online
scheduling, and tasks with temporal and spatial constraints; however, task deadlines are not
considered. Addressing this drawback, Ramchurn et al. [22] proposed coalition formation
that considers spatial and temporal constraints, but determined the problem is NP-hard. Ram-
churn et al. provided an optimal solution to the problem for small sized teams using Mixed
Integer Programming. New anytime heuristics were devised to approximate solutions faster
for larger problem instances.

The aforementioned greedy algorithms sacrifice coalition quality in order to reduce com-
putational time. Approximation algorithms; however, guarantee solution quality and fall
into two categories: (1) Anytime and (2) Design-to-time. Service and Adams [2] pre-
sented a dynamic programming based anytime algorithm that generates optimal coali-
tions for agents that are drawn from given fixed types. This algorithm runs in O(nm)

time for a team of homogeneous agents, and in O(n jm) time for heterogeneous agents
of fixed j types (n robots and m tasks). Given the fixed categories of agents, this algo-
rithm is applicable in multi-robot domains, where there is a high likelihood of similar
robots in a team. Service and Adams extended Shehory and Kraus’ heuristic approach
by proposing two greedy approximate algorithms for multi-robot domains with bounded
coalitions of size k [2]. The Resource Model-based algorithm is applicable to robots
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that possess resources, such as camera, sonar, laser, etc., while the Service Model-based
extension is presented for robots that perform services (e.g., sentry-duty, mapping, sur-
veillance). Both algorithm generate coalitions within a constant factor from the optimal,
in terms of total utility. Additionally, the Service Model-based algorithm offers excellent
scalability improvement over Vig and Adams’ algorithm [6] with a time complexity of
O(n3/2m).

Unlike anytime algorithms, design-to-time algorithms must run to completion in order
to generate optimal solutions, but have better worst case run-times. Service and Adams
presented a hybrid r (r > 2) factor approximation algorithm that exploits the advantages of
both the design-to-time and anytime algorithms to generate high quality coalition structures
with better worst case run-time than O(3n) [23].

Market-based approaches offer effective and decentralized coalition formation. One of the
earliest market-based distributed, fault-tolerant architectures is MURDOCH [10], an auction-
based task allocation system that incorporates a resource centric publish/subscribe messaging
protocol, where messages are addressed by subject. Task allocations are calculated via auc-
tion with the robot submitting the lowest cost bids for a task being awarded the task. A major
limitation is MURDOCH’s assumption that real-world tasks can be sub-divided into multi-
ple single-robot, independent tasks. CoMutaR, a distributed fault-tolerant framework handles
overlapping coalitions with low communication requirements [11]. The robots’ capabilities
are expressed as actions and each task is defined as a set of robot actions. The framework
allows virtual sensor sharing by incorporating share-restricted resources. Single-round auc-
tions are leveraged to compute the robot coalitions. Conventional auction-based algorithms
require robots to bid for tasks; however, during complex missions, the global task information
is often unavailable. Therefore, RACHNA [12] reverses this traditional bidding process and
the tasks bid for robots using tasks’ utilities. RACHNA exploits the resource redundancies
in real robots to generate more computationally tractable coalitions and allows task preemp-
tion by rerunning the bidding process; however, RACHNA requires high communication
bandwidth. RACHNA’s ascending auction methodology introduces a drawback, when an
on-going task can be reassigned to a different robot coalition, despite the current coalition’s
ability to complete the task. Service et al.’s recent simultaneous descending auction based
task allocation procedure offers task preemption and addresses RACHNA’s unnecessary task
reassignment shortcoming [24].

Owing to the strengths and weaknesses of individual coalition formation algorithm, no
single algorithm will be suitable for application to a wide spectrum of critical real-world
mission situations. Therefore, i-CiFHaR incorporates a broad and expandable set of coalition
formation algorithms in its library, such that the most appropriate subset of algorithm(s) can
be selected dynamically in accordance with multiple mission constraints. The breadth of
the algorithms considered for i-CiFHaR’s library include the reviewed algorithms that are
broken into three clusters: (1) Greedy [2–6,16–22], (2) Market/Auction-based [10–12,24],
and (3) Approximation [2,23] approaches.

3 System design

i-CiFHaR is a three-tiered framework (see Fig. 1) that selects appropriate algorithm(s) to
apply to given missions and provides decision support to human mission supervisors. i-
CiFHaR integrates three tiers: (1) a User Interface, (2) the Middle Level Logic Tier, and (3)
a Library of coalition formation algorithms.

123



1066 Auton Agent Multi-Agent Syst (2015) 29:1061–1090

USER INTERFACENew/Revised Multiple
Mission Criteria

Robot
Details

LIBRARY OF COALITION FORMATION
ALGORITHMS

Robot
Descriptor

Taxonomy
Table

Utility
Calculation

Feature
Extraction

Influence
Diagram

Decision Making Module

MIDDLE
LEVEL
LOGIC TIER

Ranking of
algorithms

Databases
containing
robot
descriptions

HUMAN
SUPERVISOR

Description
of Taxonomy

Fig. 1 The i-CiFHaR architecture

3.1 User interface

The Graphical User Interface (see User Interface in Fig. 1) will allow a human supervisor to
provide task descriptions, environment constraints, and multiple mission criteria. The inter-
face will provide: ongoing task progress (e.g., executing, waiting, finished), robot coalition
and task allocations, individual robot status (e.g., engaged, idle, faulty), and newly discovered
tasks.

3.2 Middle level logic tier

The Middle Level Logic Tier reasons over the mission requirements and constraints, the
robotic assets’ descriptions, and the library of coalition formation algorithms in order to
probabilistically select the most appropriate algorithm(s) to apply. The Middle Level Logic
Tier is the focus of this paper.

3.2.1 Decision making module

The primary component of the Middle Level Logic Tier is the Decision Making Module
that chooses the most appropriate coalition formation algorithm(s) to apply to a given situ-
ation. This module classifies the coalition formation algorithms in i-CiFHaR’s library along
multiple dimensions, or features based on an existing taxonomy [14]. The Decision Making
Module is comprised of the: (1)Taxonomy, (2)UtilityCalculation, (3)FeatureExtraction, and
(4) Influence Diagram. The taxonomy table stores the taxonomy features and the respective
domain values that facilitate classification of the coalition algorithms. TheUtility Calculation
determines the feature-value pair utility scores that are essential for creating the influence
diagram’s utility table (see Sect. 3.2.1.2). Feature Extraction determines the most impor-
tant features that discriminate the algorithms, thus reducing the problem dimensionality (see
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Sect. 3.2.1.3). The InfluenceDiagram builds the system’s influence diagram/decision network
dynamically at run-time based on the extracted prominent features (see Sect. 3.2.1.4).

3.2.1.1 Taxonomy table i-CiFHaR employs Service and Adams’ existing coalition formation
algorithm taxonomy that defines multiple dimensions, or features for algorithm classifica-
tion [14]. A number of multirobot taxonomies exist [25–28], each defining multiple dimen-
sions/features along which algorithms can be classified. Gerkey and Matarić proposed one of
the earliest and most widely used taxonomies that was designed for task allocation in multi-
robot systems [28]; however, the taxonomy dimensions are highly abstracted and not broad
enough to classify coalition algorithms effectively. Dudek et al.’s taxonomy presents a num-
ber of dimensions, some of which include the communication topology, number of robots,
team composition, etc [26]. Cao et al.’s taxonomy provides the theoretical bases for coop-
erative multiple robots [25]. The dimensions include: (1) group composition, capturing the
characteristics of the agents (homogeneous/ heterogeneous), (2) group architecture (central-
ized/decentralized), (3) communication structure of the agents, (4) modeling of other agents
(aware/ unaware), (5) learning, which renders systems adaptive to environment dynamics,
etc. Farinelli et al. proposed a hierarchical taxonomy comprised of two major dimensions
(coordination and system) [27]. The coordination dimension, which captures the degree of
agent cooperation is divided into three sub-classes: (1) knowledge, capturing agent aware-
ness, (2) coordination, required in tightly coupled tasks, and (3) organization, denoting the
centralized or distributed robot architecture. The system dimension, on the other hand is
divided into four sub-classes: (1) communication topology, (2) team composition, (3) sys-
tem architecture, representing the system’s level of responsiveness towards environmental
changes, and (4) team size.

Service and Adams’ taxonomy encapsulates a broad set of features/dimensions for the mul-
tirobot task allocation problem and borrows many of the dimensions from the aforementioned
taxonomies. The taxonomy dimensions are partitioned into four relation-based categories:
(1) agent, (2) task, (3) domain, and (4) algorithm. Service and Adams classified a number of
coalition formation algorithms according to the taxonomy dimensions. Table 1 categorizes
the taxonomy features into the four categories and highlights the respective domain values.

Let F be a set that contains the N taxonomy features (N = 18), where each feature has
its respective non-empty domain set (see Table 1). Let Dom be a collective set containing all
the respective domain sets of N taxonomy features. All this information is captured by Eq.
1, which is defined as:

∀Fi ∈ F, ∃Di ∈ Dom | 1 ≤ i ≤ N , Di �= ∅, (1)

where Di is the domain value set of feature Fi . A feature Fi ∈ F can be instantiated with
any particular value of its domain value set, Di .

3.2.1.2 Utility calculation Influence diagrams contain chance nodes representing random
variables, decision nodes, and a single utility node. The utility node has a utility value table
(degree of preference) for all possible parent node configurations. The parents of the utility
node in i-CiFHaR’s influence diagram are: (1) a set of chance nodes representing the subset
of important taxonomy features and (2) a decision node with its domain containing all the
coalition formation algorithms. Since i-CiFHaR’s built-in mathematical model computes
the utility table entries, the utility scores of the feature-value pairs and the algorithms need
to be determined. The utility calculation is based on link analysis, which has previously
been used to capture the connections or associations in social networks among friends,
computers in computer networks, webpages on the internet, etc. The exploration of link
analysis in world wide web led to the notable applications: HITS [29] and PageRank [30]
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Table 1 Taxonomy features and respective domain values

Category Taxonomy features (F) Feature domain values (Dom)

Agent Agent Orientation (F1) {Group Rational, Self-Interested}

Agent Type (F2) {Homogeneous, Heterogeneous}

Agent Capability Model (F3) {Resource, Service}

Agent Awareness (F4) {Aware, Partially, Unaware}

Agent Structure (F5) {Social Network, Organization Hierarchy, None}

Task Inter-Task Constraints (F6) {Yes, Prerequisite, No}

Task Preemption (F7) {Yes, No}

Task Requirement Model (F8) {Resource, Service}

Intra-Task Constraints (F9) {Yes, No}

Task Coupling (F10) {Tightly, Loosely, Intermediate}

Domain Performance Criterion (F11) {Maximize Utility, Minimize Cost, Maximize Task}

Communication Overhead (F12) {High, Low}

Task Allocation (F13) {Instantaneous, Time-Extended}

Spatial Constraints (F14) {Yes, No}

Overlapping Coalitions (F15) {Yes, No}

Algorithm Algorithm Technique (F16) {Greedy, Auction-based, Approximation}

Implementation (F17) {Centralized, De-Centralized}

Coalition Size Constraint (F18) {Single, None, Fixed Upper Limit}

Fig. 2 Link graph connecting
four coalition formation
algorithms to three feature-value
pairs of the taxonomy feature,
Agent Structure

{Agent Structure,  
organization hierarchy} 

{Agent Structure,  
Social network} 

{Agent Structure,  
none} 

Coalition Formation  
Algorithm 1 

Coalition Formation  
Algorithm 2 

Coalition Formation  
Algorithm 3 

Coalition Formation  
Algorithm 4 

that compute composite numerical scores for web pages with the intent of measuring their
relative importance. Query web pages (called hubs) are linked to multiple query relevant web
pages (called authorities) in a hyperlinked environment [29].

Each coalition formation algorithm can be linked to a subset of related feature-value pairs
that govern the algorithm’s applicability (Fig. 2); therefore, the algorithms and the feature-
value pairs can be visualized as hubs and authorities, respectively. Let V be a set of size d
containing all possible feature-value pairs derived from the set, F of taxonomy features and
their corresponding domain sets Dom, such that
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V = {(Fx , di ) | Fx ∈ F, di ∈ Dx , Dx ∈ Dom}. (2)

The size of the feature-value pair set V is defined as d = ∑N
x=1 |Dx |, where |Dx | represents

the domain size of Fx ∈ F . A feature-value pair, FV Pφ ∈ V when associated with a
particular taxonomy feature, Fx ∈ F is represented as FV Px

φ . Based on the associations
between i-CiFHaR’s coalition formation algorithms and feature-value pairs, a link structure
can be derived. For example, the taxonomy feature Agent Structure (F5), with domain D5
= {organization hierarchy, social network, none}, and |D5| = 3 results in three possible
feature-value pairs: (1) {Agent Structure, organization hierarchy}, (2) {Agent Structure,
social network}, and (3) {Agent Structure, none} (see Fig. 2). For instance, let i-CiFHaR
incorporate four random algorithms (Coalition Formation Algorithms 1 through 4 in Fig. 2)
and leverage only the single taxonomy feature Agent Structure for algorithm classification.
The algorithms are connected manually to the respective feature-value pairs, thereby forming
a link structure, as shown in Fig. 2. Building on this idea, i-CiFHaR generates a complete link
graph between the coalition formation algorithms in the library and all possible feature-value
pairs in set, V in accordance with Service and Adams’ taxonomy.

Let C be the set containing p coalition formation algorithms in i-CiFHaR’s library. The
complete link graph is represented by a bipartite directed graph G(C, V, E), which is con-
structed using C and V as the two disjoint node sets of G. A directed edge elo ∈ E from a
coalition formation algorithm, Cl ∈ C to a feature-value pair, FV Po ∈ V associates Cl with
feature-value pair FV Po.

Algorithm 1: Utility Calculation algorithm
Input: pxd matrix, AMat ; constant, const ; Number of iterations, i tr
Output: FV PBaseScore of size 1xd
1: algoV ector ← 1 x p vector of 1s
2: FV PVector ← 1 x d vector of 1s
3: for i = 1 to i tr do
4: FV PVector ← algoV ector × AMat // Vector-Matrix Multiplication
5: FV PVector ← FV PVector

2−Norm(FV PVector)

6: algoV ector ← FV PVector × AMatT // Vector-Matrix Multiplication

7: algoV ector ← algoV ector
2−Norm(algoV ector)

8: end for
9: FV PBaseScore ← const ×FV PVector
10: Return FV PBaseScore

Motivated by the HITS algorithm [29], the Utility Calculation algorithm (Algorithm 1)
computes the base utility score of each feature-value pair. A p × d matrix, AMat = {ai j }
is computed based on the complete link structure. The rows of AMat represent the coali-
tion formation algorithms, while the columns represent all possible feature-value pairs. An
element, ai j ∈ AMat (1 ≤ i ≤ p, 1 ≤ j ≤ d) is defined as,

ai j =
{

1 if Ci ∈ C is associated with FV Pj ∈ V
0 otherwise.

(3)

The link structure node weights are initialized to 1 and are updated iteratively until they
converge to steady-state utility values. The convergence is guaranteed because the feature-
value pair utility scores constitute the principal Eigen vector of AMatT × AMat [29].
During each iteration of Algorithm 1, the vectors, algoV ector and FV Pvector are nor-
malized using an Euclidean norm (2-Norm), such that

∑p
i=1 algoV ector2

i = 1, and
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∑d
j=1 FV PVector2

j = 1. The constant, const scales the normalized utilities. The time
complexity of Algorithm 1 is O(i tr × p×d) and the utilities converge to steady-state values
very quickly, with i tr ≈ 20. The generated feature-value pair base utility scores are purely
a function of the link structure. Given the feature-value pair set V containing all possible
feature-value pairs (FVPs), the base utility scores (FV PBaseScore) are calculated using
the Utility Calculation algorithm (Algorithm 1) and

∀FV Pφ ∈ V, ∃FV PBaseScoreφ ∈ FV PBaseScore, | 1 ≤ φ ≤ d, (4)

where FV Pφ is the φth feature-value pair. These base utility scores are weighted dynamically
in accordance with the mission requirements (see Sect. 3.2.1.4).

3.2.1.3 Feature extraction i-CiFHaR leverages eighteen features; however, many features do
not contribute to classifying the algorithms. For example, the feature Agent Orientation is
assigned the same value (Group Rational) for all algorithms currently in the library. Feature
extraction removes redundant features and reduces the problem dimensionality. Principal
Component Analysis has been demonstrated for feature selection [31,32]. i-CiFHaR extracts
prominent features that discriminate between algorithms using a Feature Extraction algorithm
similar to Song et al.’s approach for image processing [32]. i-CiFHaR’s feature selection
algorithm differs in that it rejects all taxonomy features that result in zero coefficient factors
across all major principal components. The procedure is formally proven in Lemma 1.

The selection algorithm leverages a p×N matrixU , where p is the number of algorithms
in i-CiFHaR’s library and N is the number of taxonomy features. An element, ui j ∈ U is the
base utility score (computed by Algorithm 1) for the specific feature-value pair, with feature j
associated with algorithm i . i-CiFHaR’s feature selection algorithm requires O(p×N 2) time
to generate the covariance matrix, covC of U and uses the Singular Value Decomposition
technique to compute the Eigen vectors; therefore, the total time complexity of i-CiFHaR’s
feature selection algorithm is O((p × N 2) + N 3).

Each eigenvector accounts for some variance in the original data set and is expressed as
a linear combination of the N taxonomy features. The κth eigenvector, pcκ is defined by

pcκ = zκ1F1 + zκ2F2 + · · · + zκN FN =
N∑

i=1

zκi Fi = FZ, (5)

where F is the row feature vector of size N with Fi ∈ F representing the i th taxonomy feature.
Z is a matrix of size N × N containing the weight coefficients of all the N eigenvectors. The
κth column of Z consists of all the weight coefficients of the κth eigenvector (κ ∈ [1, N ]).

The primary statistics resulting from the κth eigenvector constitute the associated variance
(λκ ) and the weight vector (zκ1, zκ2, . . . , zκN ). The relative sizes of the coefficients (zκi ) in
the weight vector indicate the relative contributions of the corresponding feature, Fi ∈ F in
the original feature data set to the variance (λκ ) of the eigenvector, pcκ [33].

Lemma 1 If a feature, Fi ∈ F produces zero coefficient factors consistently for all the major
principal components, then Fi contributes nothing towards the variance of the entire data
set, σdata.

Proof Let N be the total number of taxonomy features, then σdata = ∑N
i=1 σ 2

i , where
σ 2
i is the variance of the i th feature, Fi . Let λκ represents the variance of the eigenvector,
pcκ . The eigendecomposition generates eigenvector pcκ , such that the variance of pcκ =∑N

i=1 zκi Fi is maximized under the constraint,
∑N

i=1 z
2
κi = 1. The weight coefficient, zκi

also represents the correlation coefficient between feature Fi and the principal component
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Table 2 Weight coefficients of the first six principal components or Eigen Vectors (EigVecx)

pcκ ; therefore, zκi = 0 means the angle between pcκ and a unit vector along Fi is 90
degrees (∵ cosine(90◦) = 0); therefore, the vectors are orthogonal. zκi = 0 means no linear
dependencies exist between Fi and pcκ , and Fi does not contribute to the variance of pcκ ,
because λκ = ∑N

i=1
∑N

j=1 zκi zκ jσi j . Since,
∑N

i=1 λκ = ∑N
i=1 σ 2

i = σdata ; therefore, Fi
does not contribute to the variance of the entire data set. ��

Eighteen Eigen Vectors or principal components are computed by i-CiFHaR’s feature
extraction algorithm. Six components (the EigVecx in Table 2, where 1 ≤ x ≤ 6) account
for approximately 94 % of the total variance in the original data set. These six principal
components and their associated variances (Eigen Values) are enumerated in Table 2. Each
principal component comprises a weight vector containing eighteen weight coefficients cor-
responding to the taxonomy features. The weight coefficients of the taxonomy features F1,
F2, F4, and F10 are zero for all of the major principal components and do not contribute
significantly to the classification (shaded gray in Table 2). The remaining features become
chance nodes in the influence diagram.

3.2.1.4 Influence diagram construction Once the Feature Extraction algorithm identifies the
most prominent features, the influence diagram is built dynamically at run-time. An influence
diagram augments a Bayesian network by introducing decision variables and a utility function
that characterizes the decision maker’s (here i-CiFHaR) preferences. i-CiFHaR solves the
decision problem by determining the optimal strategy that maximizes the expected utility
score for the framework.

The prominent taxonomy features are the most influential and uncertain criteria that can
be leveraged to discriminate between the coalition formation algorithms. The influence dia-
gram’s decision node contains the decision alternatives that are mutually exclusive, finite,
and exhaustive. Since i-CiFHaR seeks to select the most optimal algorithm(s) to apply at a
specific time, the decision node’s domain consists of all the coalition formation algorithms
in its library. The random chance nodes and the decision node become the parents of the
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single utility node, which holds a utility table for all possible configurations of the parent
nodes. During a real-world mission scenario, the incomplete information regarding the situ-
ation is captured in terms of probability values for each of the chance nodes. Given that all
the chance nodes and decision node are parents of the the utility node; the utility function
represents all the taxonomy features and the algorithm scores. The utility table values are
usually obtained by consulting domain experts or through intuition and preferences of the
system designer [34]; however, i-CiFHaR calculates the utility table entries automatically.
The number of entries is exponential in size to the number of parents to the utility node. The
influence diagram’s utility table size (Usize) is given by:

Usize = p ×
Nextr∏

x=1

|Dx |, Dx ∈ Dom, Fx ∈ FProm, (6)

where Nextr is the number of extracted taxonomy features; Dx is the domain set of feature
Fx ; and FProm is the Prominent Feature Set containing all prominent taxonomy features,
with |FProm | = Nextr .

The exponential utility table size prohibits calculating the entries based on designer prefer-
ences or intuitions. Two approaches are implemented. First, the most prominent features are
used to construct the influence diagram, reducing the problem dimension. Second, a mathe-
matical model automatically generates the utility table entries by leveraging the base utility
scores of the feature-value pairs, as computed by the Utility Calculation module. However,
a direct use of the base scores for the utility table entry calculation, as demonstrated in a
previous implementation [35] has a major drawback. The link-analysis algorithm computes
the feature-value pair utility scores based on the link structure; thus, the more in-links to
a feature-value pair, the higher its score. The feature-value pairs with low endorsements,
i.e., a feature-value pair not associated with many algorithms receives a very low utility
score. When feature-value pairs with low utility scores are required for a mission, the corre-
sponding coalition algorithm is often not selected because i-CiFHaR seeks to maximize the
system’s expected utility score. Moreover, the previous implementation [35] of i-CiFHaR
incorporates an influence diagram with a persistent utility function that makes it susceptible to
inconsistencies in decision making. Addressing the stated drawbacks, i-CiFHaR’s presented
implementation employs an adaptive utility function. Under the neoclassical approach, only
the probabilities of the chance nodes vary with new information; however, no such provision
exists for modifying the decision maker’s preferences. Therefore, adaptive utility functions
have been advocated [36–38] and it has been shown that the expected utility hypothesis still
holds [39].

An adaptive utility function through dynamic scoring of the feature-value pairs addresses
the aforementioned drawbacks, where the base utility scores (computed by Eq. 4) are dynami-
cally weighted in accordance with the mission requirements. This approach renders i-CiFHaR
more responsive to real-world mission scenarios. Each mission is described in terms of
the feature-value pair assignments (FV P) for the prominent features. The mission uncer-
tainties are captured using probability values (Pr ) for each feature-value pair assignment.
The mission dependent utility score (FV PMissionScoreiς ) of the ς th feature-value pair
(FV Pς ∈ V ) that corresponds to the feature Fi ∈ FProm is defined by:

∀FV Pς ∈ V, FV PMissionScoreiς = exp{α× β
√|Prς−avgi |} ×FV PBaseScoreiς , (7)

where α = sgn(Prς − avgi ) is the signum function, β = |Di | is the domain size of the
feature Fi ∈ FProm , and avgi = 1/β is the equal likelihood of Fi being assigned to any
one of its domain values. The probability assigned to the feature-value pair is denoted by
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Fig. 3 i-CiFHaR’s Dynamic Weighting Function. For illustration purposes, two pairs of curves are high-
lighted: one for a feature with domain size = 2 (shown with circle markers), and the other for a feature with
domain size = 3 (shown with triangle markers). i-CiFHaR’s weighting function (in red) is compared to an
exponential function (in green) and a base line linear function (in blue) for each of the features. It is noted that
for the random features with domain sizes 2 and 3, the corresponding curves intersect at weight value = 1 for
probabilities 0.5 and 0.33, respectively. Under such circumstances, the base utility scores of the feature-value
pairs are not scaled, because each of the possible values in the features’ domains has equal likelihood of being
selected (Color figure online)

Prς . The motivation for leveraging the aforementioned scaling approach stems from the
fact that the mutual exclusion property of each taxonomy feature’s domain values permits
the calculation of the deviation for a particular feature-value pair FV Pς ∈ V from avgi
of the corresponding feature, given the mission criteria. Based on the nth-root exponential
function (Eq. 7), the weighting factor is greater than 1 when the deviation is positive and
when the deviation is negative, the base feature-value pair score is weighted by a factor <1.
Figure 3 illustrates the effectiveness of i-CiFHaR’s nth-root exponential weighting function,
when compared to a conventional exponential function (exp{Prς −avgi }) and a base linear
function. The figure demonstrates that for the two exemplary features with domain sizes two
and three, i-CiFHaR’s weighting function generates a larger variation in the weight factors
of the domain values, given their probabilities.

Consider a single taxonomy feature, Fi=Task Preemption with the domain set Di =
{Yes, No}. The mean assignment value (avgi ), assuming equal probability for assigning Fi
to one of its two domain values, is avgi = 0.5. For example, let a mission require the feature-
value pair {TaskPreemption, Yes}. Assume a high confidence in this assignment, then the
assignment probability value, Prς = 0.8. The base utility score of {TaskPreemption, Yes}
is very low, as computed by the Utility Calculation algorithm (Algorithm 1), because only
two coalition formation algorithms permit task preemption. The low utility score increases
the likelihood of false positives; however, if the mission requirements are considered, the low
utility score is weighted by the factor exp{1× 2√|0.8−0.5|} = 1.73. Consider another mission
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scenario in which task preemption is not required. Let the probability value Prς be 0.2. The

mission dependent utility score is weighted by exp{−1× 2√|0.2−0.5|} = 0.57.
Once the mission dependent feature-value pair utility scores are generated, each coalition

formation algorithm is assigned a utility score. The intermediate utility score is derived using
only the associated feature-value pairs that belong to the prominent taxonomy features, as
calculated by:

∀Cl ∈ C, algoScorel =
∑

ς

alς × FV PMissionScoreiς

| 1 ≤ l ≤ p, Fi ∈ FProm, FV Pi
ς ∈ V, (8)

where alς ∈ AMat and p is the number of coalition formation algorithms in i-CiFHaR’s
library. Equation 8 leverages the adjacency matrix, AMat that captures the associations
between the algorithm and the feature-value pairs (Eq. 3). The intermediate utility scores
depend on the complete link structure used by Algorithm 1 to calculate the base utility scores.
Once the algorithms’ intermediate utility scores are calculated, the final mission dependent
utility scores are obtained by normalizing the intermediate scores:

∀Cl ∈ C, algoMissionScorel = const × algoScorel
2 − Norm(algoScore)

| 1 ≤ l ≤ p, (9)

where 2 − Norm(algoScore) =
√∑p

i=1 algoScore
2
i is the Euclidean norm leveraged for

the normalization (similar to that in Algorithm 1). The constant, const scales the normalized
mission dependent utility scores and is set to the same value as that in Algorithm 1. The
dynamic utility scores are mission specific, which result in i-CiFHaR being more adaptable
to a wide-range of real-world missions.

Based on the mission dependent utility scores of the coalition algorithms and the feature-
value pairs, i-CiFHaR’s adaptive mathematical model generates the utility table entries auto-
matically for the influence diagram, as defined by:

∀Stυ ∈ W,U (Stυ |Acti ) = algoMissionScorei ×
Nextr∑

j=1

aiς ×FV PMissionScore jς , (10)

where algoMissionScorei is the mission dependent utility score of the i th coalition for-
mation algorithm (defined by Eq. 9) and FV PMissionScore jς is the ς th feature-value pair
associated with the j th prominent feature, Fj ∈ FProm (defined by Eq. 7). Each state of the
world, Stυ ∈ W is defined in terms of feature-value pairs of the prominent taxonomy features.
The mathematical model (Eq. 10) requires a p × d adjacency matrix, AMat = aiς , where
aiς ∈ AMat is defined by Eq. 3. The number of prominent taxonomy features extracted by
i-CiFHaR’s Feature Extraction module is Nextr . i-CiFHaR’s utility function, U (Stυ |Acti )
maps from every state Stυ of the hypothetical world W to a value, when an action Acti is
taken. Acti indicates that the decision node chooses the i th coalition formation algorithm,
Ci ∈ C .

The i-CiFHaR framework behaves as a self-interested decision making agent and consid-
ers all the possible hypothetical states of the world as outcomes (χ) of a lottery. According
to microeconomic utility theory, such a rational agent models its interest by quantifying
each possible outcome using a utility/reward value that captures the agent’s preference. A
utility function, U : χ → R maps from the world states to real numbers. Given a par-
ticular coalition formation algorithm, i-CiFHaR has a preference for each of the possible
world states; therefore, ∀(Sti , St j ) ∈ W, ∃Sti � St j , or St j � Sti or Sti ∼ St j , where �

123



Auton Agent Multi-Agent Syst (2015) 29:1061–1090 1075

denotes strict preference, while ∼ denotes indifference. This completeness of i-CiFHaR’s
preferences over all possible world states represents that i-CiFHaR either strictly prefers one
state to the other, or is indifferent between the two, given a particular coalition formation
algorithm. Moreover, the preference is transitive, i.e., if Sti � St j and St j � Stk , then
Sti � Stk . Since all the possible world states represent outcomes of a lottery, there exists
a probability distribution over the states expressed as [p1 : St1, p2 : St2, . . . , pk : Stk],
where

∑
k pk = 1. The von Neumann–Morgenstern expected utility model [40] states that

if an agent’s preference relation satisfies completeness, monotonicity, and transitivity, then
there exists a utility function that satisfies: (1) U (St1) > U (St2), iff St1 � St2, and (2)
EU ([p1 : St1, p2 : St2, . . . , pk : Stk]) = ∑

k pk × U (Stk), where EU (•) denotes the
Expected Utility of a given lottery/gamble.

i-CiFHaR’s utility function (Eq. 10) maps every possible world state to a preference utility
score ∈ R+, given the algorithms. Seeking to solve the multicriteria decision problem at hand,
each state Stυ ∈ W is expressed in terms of feature-value pairs of the taxonomy features;
therefore, Stυ is a conjunction of Fi ∈ FProm . Additionally, the probabilities associated with
each state, Stυ are translated into the joint probability distribution over all the prominent
taxonomy features.

Theorem 1 i-CiFHaR’s utility function represents its preferences over all possible choices.

Proof Equation 10 defines U (Stυ |Acti ), which calculates the utility value of every pos-
sible world state Stυ ∈ W , given an algorithm choice, Acti . The base utility score
(FV PBaseScore jς as computed by Algorithm 1) of each feature-value pair is const (See
Algorithm 1) times the weight coefficient of the corresponding pair in the principal Eigenvec-
tor of AMatT × AMat , where AMat is the adjacency matrix representing the connections
in the link graph. Each algorithm’s utility score is derived from Eqs. 8 and 9 and is given by
algoMissionScorei = k×∑

ς aiς × FV PMissionScore jς , where k = const
2−Norm(algoScore)

is a constant, and j corresponds to Fj ∈ FProm . FV PBaseScore jς is probabilistically scaled

to achieve FV PMissionScore jς ; therefore, the algorithm utility score, algoMissionScorei
is constant (Ki ) for a given mission instance. i-CiFHaR’s utility function can be re-written
as U (Stυ |Acti ) = Ki × ∑Nextr

j=1 aiς × FV PMissionScore jς , where aiς is 1 if algorithm
Acti is connected to ς th feature-value pair in the link graph, 0 otherwise. The world states
in W are expressed by every possible configuration of the prominent taxonomy features. A
state, Stα receives a higher utility than that of Stβ , only if the former contains the conjunction
of feature-value pairs that are connected to Acti in the link graph. A valid utility function
depends on the ordinality, rather than cardinality of the states; therefore, i-CiFHaR’s pref-
erences over possible world states are correctly modeled by U (Stυ |Acti ), which generates
U (Stα) > U (Stβ), if and only if Stα � Stβ for algorithm Acti . ��

Once the utility table entries are generated (Eq. 10), i-CiFHaR leverages the influence
diagram to optimize the algorithm selection process by maximizing its expected utility score.
The expected utility score (EU (Acti )) for each algorithm decision (Acti ) is:

EU (Acti ) =
|states|∑

υ=1

Pr(Stυ |Acti ) ×U (Stυ |Acti ), (11)

where states is the subset of all possible hypothetical world states in the hypothetical world
W , where the action Acti can be selected; U (Stυ |Acti ) is the utility of the particular world
state Stυ ∈ states is derived from the network’s utility table (Eq. 10). i-CiFHaR selects the
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most appropriate algorithm (Act∗) to apply to a given mission scenario that maximizes the
expected utility score i.e.,

Act∗ = argmax
Acti∈C

EU (Acti ), (12)

where C is the set containing p coalition formation algorithms.
The objective is to provide decision support to a human mission supervisor; therefore,

i-CiFHaR may select a subset of algorithm(s) most applicable to the mission scenario when
a single algorithm does not meet all mission requirements. This set of algorithm(s) includes
Act∗ and all other algorithms with expected utility scores greater or equal to the threshold
(EU∗), defined by:

EU∗ = γ × max
Acti∈C

EU (Acti ), (13)

where γ is the desired fraction of the maximum expected utility score that is required by the
mission supervisor. A supervisor requiring 100 % performance will obtain the best algorithm
that has the maximum expected utility score, while a 90 % performance will select all algo-
rithms that have their expected utility scores greater than EU∗ = 0.9×maxActi∈C EU (Acti ).

3.3 Library of Algorithms

Nineteen coalition formation algorithms have been selected to be incorporated into i-
CiFHaR’s library that are associated with all possible feature-value pairs generated from the
taxonomy features. This broad collection of algorithms increases the likelihood of i-CiFHaR
applying to a wide spectrum of missions based on the taxonomy features. The algorithms
have been classified into three major categories (greedy, approximation, and auction-based)
and are associated with their respective feature-value pairs corresponding to the fourteen
prominent features extracted by Algorithm 2 (see Table 3).

4 Experiments

An evaluation assessed the efficiency of selecting appropriate coalition formation algo-
rithm(s) based on multiple mission criteria and constraints. The current i-CiFHaR frame-
work has been implemented on a Linux platform (Ubuntu-12.04, 64-bit) with an Intel Core
i5, 2.30 GHz processor using C++ and Qt framework (version 4.8) [41]. Five algorithms (A15
through A19 in Table 3) are not yet implemented. The purpose of this experiment is to evaluate
the Decision Making Module’s ability to choose appropriate coalition formation algorithms,
not actually forming the coalitions, thus it is only necessary to characterize the algorithm’s
capabilities and parameters for purposes of this evaluation. The influence diagram imple-
mentation leverages the Netica-C API [42], a Bayesian network development software tool
that uses a junction tree algorithm to evaluate influence diagrams. Twenty-four missions were
created and the hypothesis is that i-CiFHaR will select a set of most suitable algorithm(s) to
apply for each mission scenario by maximizing the system’s expected utility score.

4.1 Experimental design

The total number of possible mission scenarios is 124,416. Many of these mission scenarios
include feature-value pairs that are not realizable for real-world scenarios. The twenty-four
mission scenarios delineated in Table 4 represent the subset of realistic situations that were
used to evaluate i-CiFHaR’s algorithm selection process.
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Each mission scenario has a set of feature-value pair assignments for each prominent
feature and a probability value. The twenty-four scenarios were simulated in two ways. First,
the domain value assigned to each prominent feature was altered, denoted by the Feature-
Value pair assignments (FV P) in Table 4. Second, the uncertainty related to each mission

Table 3 Taxonomy Features versus Coalition Formation Algorithms (A1–A19). See Table 1 for feature
domains. Please refer to the key after the last subtable

Taxonomy
features

Coalition formation algorithms

A1 A2 A3 A4 A5 A6 A7
Algorithm category

Greedy Greedy Auction Greedy Greedy Greedy Greedy

F3 Res Res Ser Res Res Res Res

F5 None None None Org SNet SNet None

F6 PReq PReq PReq PReq No No PReq

F7 No No Yes No No No No

F8 Res Res Ser Res Res Res Res

F9 No No No No No No Yes

F11 MC MC MU MU MU MU MT

F12 H H H L L L L

F13 IA IA IA TE IA TE IA

F14 No No No No No No No

F15 Yes No No No No No No

F16 Gr Gr Auc Gr Gr Gr Gr

F17 DC DC DC DC DC DC DC

F18 k k None None k None Sngl

Taxonomy
features

Coalition formation algorithms

A8 A9 A10 A11 A12 A13
Algorithm category

Greedy Greedy Auction Greedy Approx Approx

F3 Res Res Res Ser Ser Ser

F5 None None None None None None

F6 No PReq PReq PReq No No

F7 No No No No No No

F8 Res Res Res Ser Ser Ser

F9 No No No No No No

F11 MT MU MU MU MU MU

F12 L H L H H H

F13 TE IA IA IA IA IA

F14 Yes No No No No No

F15 No No No No No No

F16 Gr Gr Auc Gr Approx Approx

F17 DC DC DC DC C C

F18 None k Sngl k None None
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Table 3 continued

Taxonomy
features

Coalition formation algorithms

A14 A15 A16 A17 A18 A19
Algorithm category

Auction Greedy Greedy Greedy Auction Greedy

F3 Ser Ser Ser Ser Ser Res

F5 None SNet None None None None

F6 PReq PReq Yes Yes PReq PReq

F7 Yes No No No No No

F8 Ser Ser Ser Ser Ser Res

F9 No No Yes Yes No No

F11 MU MT MU MT MU MU

F12 H L H H L H

F13 TE TE TE TE IA IA

F14 No No Yes Yes No No

F15 No No No No Yes Yes

F16 Auc Gr Gr Gr Auc Gr

F17 DC DC C C DC DC

F18 None None None None None None

Feature Domain Key

Approx:Approximation k:Bounded Size Res:Resource-Model

Auc:Auction-based L:Low Communication Ser:Service-Model

C:Centralized MC:Minimize Cost SNet:Social Network

DC:Decentralized MT:Maximize Tasks Completed Sngl: Single Sized Coalitions

dednetxE-emiT:ETytilitUezimixaM:UMydeerG:rG

H:High Communication Org:Organization Hierarchy

IA:Instantaneous PReq:Prerequisite

Algorithm Key

A1:Shehory and Kraus [4] A2:Vig and Adams [6]

A3: Vig and Adams [12] A4:Abdallah and Lesser [3]

A5: Tošić and Agha [5] A6:Weerdt et al. [17]

A7:Campbell et al. [20] A8:Sujit et al. [19]

A9:Service and Adams [2]-Resource Model A10:Gerkey and Matarić [10]

A11:Service and Adams [2]-Service Model A12:Service and Adams [23]-Approximation

A13:Service and Adams [2]-Dynamic Programming
Agent-Types

A14:Service et al. [24]-Simultaneous
Descending

A15:Gaston and desJardins [18] A16:Koes et al. [21]
A17:Ramchurn et al. [22] A18:Shiroma and Campos [11]
A19:Zhang et al. [16]
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Table 3 continued

Taxonomy Feature Key
F3: Agent Capability Model F5: Agent Structure
F6: Inter-Task Constraints F7: Task Preemption
F8: Task Requirement Model F9: Intra-Task Constraints
F11: Performance Criterion F12: Communication Overhead
F13: Task Allocation F14: Spatial Constraints
F15: Overlapping Coalitions F16: Algorithm Technique
F17: Algorithm Implementation F18: Coalition Size Constraint

was varied by varying the probability value associated with each feature-value pair, denoted
by Pr in Table 4. System users can establish domain and mission appropriate probabilities
based on domain knowledge, prior mission deployments, intelligence, etc. Feature domain
values are mutually exclusive; therefore, the sum of the feature-value probability assignments
is 1. Additionally, the mission scenarios were partitioned into clusters (see Table 5), such
that within each cluster, certain taxonomy feature(s) were instantiated to constant domain
values, while the remaining features were altered in order to distinguish between each of the
grouped missions.

Let us consider two mission scenarios, MS1 and MS3 in order to illustrate the simulation
of two different real-world situations. Both missions are based on the resource model, where
the robots’ capabilities and tasks’ requirements are described in terms of resources (e.g.,
camera, sonar, laser). Therefore, the features Agent Capability and Task Requirements were
assigned to Resource with a high probability value, 0.8 for both missions. However, the
missions differ in many aspects. MS1’s objective is to maximize utility, thus Performance is
assignedMaximizeUtility (MU)with a probability of 0.6. Conversely, MS3 seeks to minimize
cost, thus Performance is assigned to Minimize Cost (MC) with a high probability of 0.9.
Additionally, MS1 does not require overlapping coalitions, thusOverlapping is set toNowith
probability 0.8. MS3 seeks to reduce resource losses; thus, requiring overlapping coalitions,
so Overlapping is set to Yes with a high likelihood of 0.8.

Each mission scenario differs in terms of mission criteria (defined by feature-value assign-
ments and probability values). An exhaustive set of missions cannot be evaluated, thus the
twenty-four missions represent a good subset of potential real-world scenarios focused on
the prominent taxonomy features and their respective domain sets. The impact of const was
assessed by varying its value from 25 to 250, in increments of 25; however, this change in
value resulted in no variance in the algorithm rankings (Table 7). Therefore, the Utility Cal-
culation algorithm (Algorithm 1) and Eq. 9 const value was set to 100 as a designer choice.
The variable, γ in Eq. 13 was set to 90 %, based on designer selection.

4.2 Experimental results

i-CiFHaR selects a subset of the most appropriate algorithms for each mission scenario by
optimizing the expected utility score. Table 6 presents all the coalition formation algorithms
and the missions for which each algorithm was chosen. Table 7 ranks the most appropriate
algorithms for each mission scenario, where algorithms are ordered by decreasing expected
utility scores and the algorithm with the highest score is deemed the most appropriate. A
high expected utility score indicates the corresponding algorithm’s ability to satisfy the
mission’s criteria. The subset of the most applicable algorithm(s) is determined by the cutoff
threshold, which is a 90 % lower bound of the maximum expected utility score. For instance,
i-CiFHaR selects Service and Adams’ heuristic algorithm (A9) for MS1 with the maximum
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expected utility score of 9467.4 as the most suitable algorithm (see Table 7). Additionally,
the framework selects two additional algorithms with expected utility scores higher than the
threshold, EU∗ = 0.9 × 9467.4 = 8520.67.

The experimental results show that i-CiFHaR selects appropriate algorithms for each
mission scenario. This section discusses the mission scenario results and justifies the selection
of the particular algorithms.

Mission scenario 1 (MS1 in Table 4) simulated a mission focused on maximizing total
utility that consisted of independent tasks requiring small sized coalitions. All the mission’s

Table 4 Mission Scenarios (MS1–MS24) characterized by Feature-Value Pairs. Each mission is defined in
the format (Feature-value assignments (FV P), Assignment Probability (Pr ))

Taxonomy
features

Mission scenarios

MS1 MS2 MS3 MS4 MS5 MS6

F3 Res,0.8 Res,0.8 Res,0.8 Res,0.8 Ser,0.6 Res,0.8

F5 None,0.8 None,0.8 None,0.8 None,0.8 None,0.8 SNet,0.6

F6 PReq,0.7 PReq,0.7 PReq,0.7 PReq,0.7 PReq,0.7 No,0.6

F7 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8

F8 Res,0.8 Res,0.8 Res,0.8 Res,0.8 Ser,0.6 Res,0.7

F9 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8

F11 MU,0.6 MC,0.9 MC,0.9 MU,0.7 MU,0.7 MU,0.7

F12 H,0.8 H,0.8 H,0.8 H,0.8 L,0.7 L,0.9

F13 IA,0.7 IA,0.7 IA,0.7 IA,0.7 IA,0.7 IA,0.6

F14 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8

F15 No,0.8 No,0.8 Yes,0.8 Yes,0.9 Yes,0.9 No,0.8

F16 Gr,0.7 Gr,0.7 Gr,0.7 Gr,0.7 Auc,0.6 Gr,0.7

F17 DC,0.8 DC,0.8 DC,0.8 DC,0.8 DC,0.8 DC,0.8

F18 k,0.6 k,0.6 k,0.6 None,0.7 None,0.7 k,0.5

Taxonomy
features

Mission scenarios

MS7 MS8 MS9 MS10 MS11 MS12

F3 Res, 0.8 Ser, 0.7 Res, 0.8 Ser, 0.7 Ser, 0.7 Ser, 0.7

F5 SNet, 0.6 SNet, 0.8 Org, 0.7 None, 0.7 None, 0.7 None, 0.7

F6 No, 0.7 No, 0.5 PReq, 0.6 PReq, 0.7 PReq, 0.7 No, 0.6

F7 No, 0.8 No, 0.8 No, 0.8 Yes, 0.9 Yes, 0.9 No, 0.8

F8 Res, 0.7 Ser, 0.7 Res, 0.7 Ser, 0.8 Ser, 0.8 Ser, 0.8

F9 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8

F11 MU, 0.7 MT, 0.6 MU, 0.8 MU, 0.8 MU, 0.8 MU, 0.8

F12 L, 0.9 L, 0.9 L, 0.8 H, 0.8 H, 0.8 H, 0.8

F13 TE, 0.7 TE, 0.8 TE, 0.8 IA, 0.6 TE, 0.8 IA, 0.7

F14 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8

F15 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8

F16 Gr, 0.7 Gr, 0.7 Gr, 0.7 Auc, 0.8 Auc, 0.8 Approx, 0.8

F17 DC, 0.8 DC, 0.8 DC, 0.8 DC, 0.8 DC, 0.8 C, 0.6

F18 None, 0.5 None, 0.6 None, 0.5 None, 0.8 None, 0.8 None, 0.8
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Table 4 continued

Taxonomy
features

Mission scenarios

MS13 MS14 MS15 MS16 MS17 MS18

F3 Ser, 0.9 Res, 0.8 Ser, 0.7 Ser, 0.7 Res, 0.8 Ser, 0.9

F5 None, 0.7 None, 0.7 None, 0.7 None, 0.7 None, 0.7 None, 0.7

F6 PReq, 0.6 No, 0.7 Yes, 0.9 Yes, 0.9 PReq, 0.6 Yes, 0.7

F7 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 Yes, 0.7

F8 Ser, 0.9 Res, 0.8 Ser, 0.7 Ser, 0.7 Res, 0.8 Ser, 0.9

F9 No, 0.8 No, 0.5 Yes, 0.8 Yes, 0.8 No, 0.7 Yes, 0.8

F11 MU, 0.8 MT, 0.9 MU, 0.6 MT, 0.7 MU, 0.6 MU, 0.7

F12 H, 0.8 L, 0.9 H, 0.6 H, 0.6 L, 0.8 H, 0.8

F13 IA, 0.7 TE, 0.6 TE, 0.8 TE, 0.8 IA, 0.7 TE, 0.8

F14 No, 0.8 Yes, 0.6 Yes, 0.8 Yes, 0.8 No, 0.8 Yes, 0.8

F15 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8

F16 Approx, 0.8 Gr, 0.6 Gr, 0.8 Gr, 0.8 Auc, 0.6 Gr, 0.6

F17 C, 0.6 DC, 0.7 C, 0.6 C, 0.6 DC, 0.7 DC, 0.5

F18 k, 0.6 None, 0.5 None, 0.6 None, 0.6 Sngl, 0.8 None, 0.7

Taxonomy
features

Mission scenarios

MS19 MS20 MS21 MS22 MS23 MS24

F3 Ser, 0.9 Ser, 0.9 Ser, 0.9 Ser, 0.9 Res, 0.8 Res, 0.8

F5 None, 0.7 None, 0.7 SNet, 0.7 None, 0.7 None, 0.7 SNet, 0.8

F6 Yes, 0.7 PReq, 0.7 PReq, 0.7 No, 0.5 No, 0.5 No, 0.6

F7 Yes, 0.7 Yes, 0.8 Yes, 0.8 No, 0.7 No, 0.7 No, 0.7

F8 Ser, 0.9 Ser, 0.9 Ser, 0.9 Ser, 0.9 Res, 0.8 Res, 0.8

F9 Yes, 0.8 Yes, 0.8 No, 0.7 No, 0.7 No, 0.7 No, 0.7

F11 MT, 0.7 MU, 0.7 MT, 0.7 MU, 0.7 MT, 0.6 MT, 0.6

F12 H, 0.8 L, 0.6 L, 0.7 L, 0.7 L, 0.7 L, 0.9

F13 TE, 0.8 TE, 0.5 TE, 0.7 IA, 0.7 TE, 0.7 TE, 0.7

F14 Yes, 0.8 No, 0.7 No, 0.7 No, 0.7 Yes, 0.7 Yes, 0.7

F15 No, 0.8 Yes, 0.9 Yes, 0.9 Yes, 0.9 Yes, 0.9 No, 0.8

F16 Gr, 0.6 Auc, 0.7 Auc, 0.6 Approx, 0.6 Gr, 0.7 Gr, 0.7

F17 DC, 0.5 DC, 0.5 DC, 0.5 DC, 0.5 DC, 0.8 DC, 0.8

F18 None, 0.7 None, 0.5 None, 0.5 None, 0.5 None, 0.5 None, 0.6

Feature Domain Key

Approx:Approximation k:Bounded Size Res:Resource-Model

Auc:Auction-based L:Low Communication Ser:Service-Model

C:Centralized MC:Minimize Cost SNet:Social Network

DC:Decentralized MT:Maximize Tasks Completed Sngl: Single Sized Coalitions

dednetxE-emiT:ETytilitUezimixaM:UMydeerG:rG

H:High Communication Org:Organization Hierarchy

IA:Instantaneous PReq:Prerequisite
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Table 4 continued

Taxonomy Feature Key

F3: Agent Capability Model F5: Agent Structure

F6: Inter-Task Constraints F7: Task Preemption

F8: Task Requirement Model F9: Intra-Task Constraints
F11: Performance Criterion F12: Communication Overhead

F13: Task Allocation F14: Spatial Constraints

F15: Overlapping Coalitions F16: Algorithm Technique

F17: Algorithm Implementation F18: Coalition Size Constraint

criteria were satisfied by Service and Adams’ heuristic algorithm (A9) that generates bounded
robot coalitions, while maximizing the utility. Shehory and Kraus’ heuristic algorithm (A1)
and Vig and Adams’ algorithm (A2) were also appropriate (Table 7). Both algorithms A2

and A9 extend A1, but A9 maximizes utility, while A2 minimizes system cost. The expected
utility scores of A1 and A2 were almost identical because neither can satisfy the mission
criterion of maximizing utility.

Mission Scenario 2 (MS2) was the same as MS1 except that MS2 minimized system cost
as the performance objective. i-CiFHaR selected Shehory and Kraus’ heuristic algorithm
(A1) as the best algorithm and Vig and Adams’ algorithm (A2) as the second most suitable
algorithm. Since both algorithms satisfied all the mission criteria and are associated with
the the same feature-value pairs, except overlapping coalitions, they have similar expected
utility scores. A2 extends A1 for real-robot domains and both seek to minimize cost. Service
and Adams’ algorithm (A9) ranked third because it satisfied all mission requirements, but
the minimize cost requirement.

Mission Scenario 3 (MS3) required overlapping and bounded coalitions, while minimizing
the overall system cost. Four algorithms were selected with Shehory and Kraus’ algorithm
(A1) ranked as the most appropriate. A1 is the only algorithm that allows overlapping and
bounded coalitions, while also minimizing system cost. Vig and Adams’ algorithm (A2), the
second best caters to almost all the mission criteria, but does not permit overlapping coalitions,
despite being an extension of A1. Despite generating overlapping coalitions, Zhang et al.’s
algorithm (A19) was selected as the third choice, because it maximizes total utility. Service
and Adams’ algorithm (A9) ranked fourth, because it does not permit overlapping coalitions
and maximizes the total utility.

Mission Scenario 4 (MS4) required overlapping coalitions and the maximization of the
system utility, but did not restrict the coalition sizes. i-CiFHaR selected Zhang et al.’s algo-
rithm (A19) as the most suitable algorithm. The algorithm leverages particle swarm based
optimization technique in order to generate overlapping coalitions, while maximizing system
utility without incorporating the bounded coalition size heuristic. Service and Adams’ algo-
rithm (A9) ranked second, because it restricts the maximum coalition size and does not permit
overlapping coalitions; however, this algorithm satisfies the rest of the mission criteria.

The communication bandwidth availability was high for both MS3 and MS4; however,
Mission Scenario 5 (MS5) required a low communication footprint due to constrained band-
width. Moreover, MS5 required overlapping coalitions serves (e.g., box-pushing, foraging,
sentry-duty) were used to represent the agents’ capabilities and the tasks’ requirements .
Shiroma and Campos’ CoMuTaR (A18) is a service-based coalition formation algorithm that
permits overlapping coalitions and requires low communication bandwidth, as a result it was
ranked as the most appropriate algorithm. Zhang et al.’s algorithm (A19) was selected as
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Table 5 Clustering mission scenarios based on features

Clustering of mission scenarios

Constant features Impacted mission
scenarios

Features altered

F3, F5, F6, F7, F8, F9, F13, F14,
F15, F17

MS1 F11, F12, F16,F18

MS2

MS17

F5, F6, F7, F9, F13, F14, F15, F17 MS3 F3, F8, F11, F12,
F16, F18

MS4

MS5

F7, F9, F12, F14, F15, F16 F17 MS6 F3, F5, F6, F8,
F11, F13, F18

MS7

MS8

MS9

F3, F5, F6, F7, F8, F9 , F11, F12,
F14, F15, F16, F17, F18

MS10 F13

MS11

F3, F5, F7, F8, F9 , F11, F12, F13,
F14, F15, F16, F17

MS12 F6, F18

MS13

F5, F7, F13, F14, F15, F16, F18 MS14 F3, F6, F8, F9 ,
F11, F12, F17

MS15

MS16

F3, F8, F13, F17, F18 MS18 F5, F6, F7, F9,
F11, F12, F14,
F15, F16

MS19

MS20

MS21

MS22

F3, F6, F7, F8, F9, F11, F12, F13, F14, F16, F17, F18 MS23 F5, F15

MS24

Taxonomy Feature Key

F3: Agent Capability Model F5: Agent Structure

F6: Inter-Task Constraints F7: Task Preemption

F8: Task Requirement Model F9: Intra-Task Constraints

F11: Performance Criterion F12: Communication Overhead

F13: Task Allocation F14: Spatial Constraints

F15: Overlapping Coalitions F16: Algorithm Technique

F17: Algorithm Implementation F18: Coalition Size Constraint
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Table 6 Coalition formation algorithm selections for mission scenarios

Algorithms Mission scenarios

A1 Shehory and Kraus [4] MS1, MS2, MS3, MS23

A2 Vig and Adams [6] MS1, MS2, MS3, MS23

A3 Vig and Adams [12] MS10, MS11, MS18, MS19, MS20, MS21

A4 Abdallah and Lesser [3] MS6, MS7, MS9, MS24

A5 Tošić and Agha [5] MS6, MS7, MS9, MS24

A6 Weerdt et al. [17] MS6, MS7, MS8, MS9, MS24

A7 Campbell et al. [20] MS14

A8 Sujit et al. [19] MS14, MS16, MS23, MS24

A9 Service and Adams [2]-Resource Model MS1, MS2, MS3, MS4, MS6, MS9, MS17, MS23

A10 Gerkey and Matarić [10] MS17

A11 Service and Adams [2]-Service Model MS5, MS13, MS18, MS19, MS20, MS21, MS22

A12 Service and Adams [23]-Approximation MS12 , MS13, MS22

A13 Service and Adams [2]-Dynamic
Programming Agent Types

MS12 , MS13, MS22

A14 Service et al. [24]-Simultaneous Descending MS10, MS11, MS18, MS19, MS20, MS21

A15 Gaston and desJardins [18] MS8, MS21

A16 Koes et al. [21] MS15, MS16, MS18, MS19

A17 Ramchurn et al. [22] MS15, MS16, MS19

A18 Shiroma and Campos [11] MS5, MS20, MS21, MS22

A19 Zhang et al. [16] MS3, MS4, MS5, MS23

the second most appropriate alternative, but it does not satisfy two mission criteria, namely
the low communication and the service model-based requirements. Service and Adams’
algorithm (A11) ranked third, because it does not permit overlapping coalitions, generates
bounded coalitions, and requires a high communication bandwidth for its operation.

Consider the first response example from Sect. 1, where coalitions of robots assess the
situation. Such real-world environments often require low communications. Mission Sce-
nario 6 (MS6) depicts such a situation, where the communication bandwidth is restricted due
to environmental constraints and small-sized coalitions, bounded within a maximum limit
of k are preferred. Moreover, the critical situation demanded instantaneous task allocations
with robots forming a social network topology based on the limited inter-robot communi-
cation, resulting in a sparse network. Given the mission criteria, i-CiFHaR ranked Tošić
and Agha’s algorithm (A5) as the most appropriate, because it leverages a social network
and requires low communication bandwidth, when the underlying topology graph is sparse.
Weerdt et al.’s algorithm (A6) was ranked second, because it too leverages a team of social
networked robots to compute task coalitions under constrained communication requirements.
Service and Adams’ algorithm (A9) ranked third, because it computes bounded coalitions,
and requires a high communication bandwidth for its operation. Abdallah and Lesser’s heuris-
tic algorithm (A4) satisfies almost all the mission criteria and it was ranked fourth, because
it considers robots to be part of an organization hierarchy, rather than a social network.

Mission Scenario 7 (MS7) was very similar to MS6, except that MS7 required time-
extended allocations that stem from the need of task scheduling. Additionally, there was no
restrictions on the coalition sizes. Given the new conditions, i-CiFHaR ranked Weerdt et al.’s
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Table 7 Ranking of coalition formation algorithms by decreasing expected utility scores for each mission
scenario. Each mission describes the most appropriate subset of algorithms in the format, Algorithm (Expected
Utility Score)

Mission scenarios Rankings of algorithms

1st 2nd 3rd 4th 5th

MS1 A9 (9467.4) A1 (8914.5) A2 (8867.5) – –

MS2 A1 (9297.1) A2 (9248.4) A9 (9046.5) – –

MS3 A1 (8628.9) A2 (8373.3) A19 (8193.9) A9 (8173.8) –

MS4 A19 (9321.2) A9 (8421.3) – – –

MS5 A18 (7019.5) A19 (7013.9) A11 (6358.61) – –

MS6 A5 (7611.2) A6 (7122.5) A9 (7109.6) A4 (6937.9) –

MS7 A6 (7600.5) A5 (7404.9) A4 (6987.6) – –

MS8 A15 (6379.5) A6 (5845.6) – – –

MS9 A4 (7583.8) A6 (7124.1) A9 (7094.7) A5 (6835.6) –

MS10 A3 (8062.9) A14 (7326.3) – – –

MS11 A14 (7667.7) A3 (7598.2) – – –

MS12 A12 (7528.4) A13 (7528.4) – – –

MS13 A11 (7583.9) A12 (7008.3) A13 (7008.3) – –

MS14 A8 (5970.1) A7 (5469.9) – – –

MS15 A16 (5009.7) A17 (4716.5) – – –

MS16 A17 (4892.8) A16 (4817.2) A8 (4536.7) – –

MS17 A10 (7662.2) A9 (7492.2) – – –

MS18 A16 (4948.6) A14 (4709.4) A11 (4683.5) A3 (4634.7) –

MS19 A17 (4472.1) A16 (4396.7) A14 (4158.8) A11(4125.2) A3 (4083.33)

MS20 A18 (4727.8) A3 (4689.8) A14 (4342.6) A11 (4328.8) –

MS21 A15 (4002.3) A18 (3819.2) A3 (3660) A14 (3649) A11 (3635.7)

MS22 A18 (5472.8) A11 (5219) A12 (5150.5) A13 (5150.5) –

MS23 A8 (5547.2) A19 (5341.7) A1 (5334.9) A2 (5076.1) A9 (5037.3)

MS24 A6 (6072.1) A8 (5690.5) A5 (5687.8) A4(5524.0) –

algorithm (A6) as the most appropriate algorithm, because it provides time-extended task
allocations with a low communication overhead and leverages a social network. Tošić and
Agha’s algorithm (A5) was ranked second, because it did not meet the time-extended mission
requirement, while it computes only bounded coalitions. Abdallah and Lesser’s algorithm
(A4) ranked third, because it permits time-extended allocations with limited communication
bandwidth requirements and unbounded coalitions.

Mission Scenario 8 (MS8) differed from MS6 and MS7, but the robots’ communication
structure remained the same (Social network). This mission was different in that it required a
service-based model and the objective was to maximize the number of tasks to be completed
within a stipulated time frame, unlike the utility maximization objective of MS6 and MS7.
Time-extended allocation was also a criterion. Gaston and desJardins’ coalition formation
algorithm (A15) was selected as the most appropriate algorithm that satisfied all the mission
requirements. Weerdt et al.’s algorithm (A6) was ranked second, because it satisfies most
of the mission requirements, but fails in that it maximizes the total utility and leverages a
resource-based model.
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Mission Scenario 9 (MS9) was similar to MS6, but simulated a scenario where robots
are connected in an organizational hierarchy. Low communication was a mission constraint
and there was no bound on the coalition size. Time-extended allocations were necessary.
i-CiFHaR selected Abdallah and Lesser’s algorithm (A4) as the most appropriate algorithm,
because this is the only algorithm that utilizes an organizational hierarchy to compute time-
extended coalitions with no size restrictions. Weerdt et al.’s algorithm (A6) ranked second.
Service and Adams’ algorithm (A9-Resource Model) ranked third, while Tošić and Agha’s
algorithm (A5) was selected as the fourth alternative.

Mission scenario 10 (MS10) included a number of high priority tasks requiring frequent
task preemption. MS10 required a service model and an auction-based coalition formation
algorithm. Vig and Adams’ RACHNA (A3) ranked as the most appropriate algorithm, because
it satisfied all mission requirements, including task preemption. Service et al.’ simultaneous
descending auction-based algorithm (A14), an extension of RACHNA, was ranked second.

Mission Scenario 11 (MS11) required task preemption and a service-model similar to
MS10; however, MS11 required time-extended allocations. i-CiFHaR selected the simultane-
ous descending auction algorithm (A14) as the most appropriate algorithm, since it generates
both instantaneous and time-extended coalitions, while permitting online task preemption.
Vig and Adams’ RACHNA (A3) ranked second, because it allows only instantaneous allo-
cations.

Mission Scenario 12 (MS12) simulated critical tasks requiring high utility coalitions with
guaranteed solution quality, thereby requiring approximation algorithms. Agent capabilities
and task resource requirements were expressed in terms of services (e.g., patrolling, sentry-
duty, foraging), while robot coalition sizes were not constrained. i-CiFHaR selected the two
approximation algorithms, A12 and A13 with equal expected utility scores. The two algorithms
are equally applicable to MS12, since they are associated with the same feature-value pairs.

Mission Scenario 13 (MS13) differed from MS12 in that coalition sizes were restricted
by an upper bound, k and solution quality was not critical; therefore, there was an equal
likelihood that either a greedy or an approximation algorithm is applicable. The remaining
mission requirements were identical to MS12. Service and Adams’ service-model based
heuristic algorithm (A11) was selected the most appropriate algorithm, since it met all mission
requirements. i-CiFHaR selected the two approximation algorithms, A12 and A13 as the
remaining alternatives.

Real robots must travel to the assigned task’s location; therefore, satisfying spatial con-
straints in real-world conditions is essential. Mission Scenario 14 (MS14) required that robot
coalitions met spatial constraints and had a low communication footprint. Time-extended
task allocations were necessary and the performance objective was to maximize the number
of tasks completed in a given time. i-CiFHaR selected Sujit et al.’s algorithm (A8) as the
most suitable fit, because this algorithm satisfies spatial constraints using Dubin’s curves to
estimate the travel time to task locations. Moreover, A8 uses low inter-robot communica-
tion bandwidth (O(n × m)) with n robots and m tasks, and maximizes the number of tasks
completed. Campbell et al.’s heuristic algorithm (A7) ranked second, since it creates single
robot coalitions with no inter-agent communication at all, and models the coalition forma-
tion problem as a multi-processor scheduling problem to maximize the number of completed
tasks.

Mission Scenario 15 (MS15) simulated tasks with hard task completion deadlines. Addi-
tionally, MS15 involved tasks with dependencies, invoking the need to satisfy inter-task
precedence constraints. Consider two mission tasks: the first is to triage a victim and the sec-
ond is to clear debris covering an injured victim. The second task must be performed first. The
performance objective of MS15 was to maximize system utility, while time-extended allo-
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cations were preferred. i-CiFHaR selected Koes et al.’s algorithm (A16) as the best, because
it met all mission requirements. Ramchurn et al.’s algorithm (A17) was second, because it
maximizes the number of completed tasks.

Mission Scenario 16 (MS16) differed from MS15 in that it the performance objective was
to maximize the number of completed tasks, while the remaining mission requirements were
kept the same. i-CiFHaR selected Ramchurn et al.’s algorithm (A17) as the most appropriate
algorithm, as it satisfied all mission criteria. This time Koes et al.’s algorithm (A16) was
selected as the second most suitable alternative. Sujit et al.’s algorithm (A8) was chosen as
the third alternative.

Mission scenario 17 (MS17) depicted a situation where single robot coalitions were
necessary under low communication requirements, and auction-based algorithms were pre-
ferred. Gerkey and Matarić’s MURDOCH (A10) ranked as the best fit, followed by Service
and Adams’ resource-model based algorithm (A9). The latter was ranked lower, because it
requires high inter-agent communication messages for computing coalitions.

Mission situation MS18 was a conglomeration of several critical requirements, including
task preemption and addressing of inter- and intra-task constraints along with spatial con-
straints. Additionally, the mission required scheduling, thus time-extended allocation was
crucial for the team of service-based robots. i-CiFHaR considered all the critical criteria and
selected Koes et al.’s centralized coalition formation algorithm (A16), because this algorithm
addresses both inter- and intra-task constraints, alongside spatial constraints. Moreover, Koes
et al.’s algorithm permits time-extended allocations, but fails to allow task preemption. Ser-
vice et al.’s simultaneous descending auction approach (A14) was ranked second, on the
grounds that this algorithm allows task preemption and time-extended allocations; however,
fails to address the task and spatial constraints. Service and Adams’ service-model algorithm
(A11) was the third alternative, while RACHNA (A3) being a task preemptive approach was
ranked fourth.

The mission requirements of the next scenario (MS19) were almost identical to that of
MS18, except that the former sought to maximize the number of completed tasks that were
spatially distributed. i-CiFHaR re-evaluated the requirements and recommended Ramchurn
et al.’s coalition formation algorithm (A17), because it satisfies most of the mission criteria,
except task preemption. Koes et al.’s algorithm (A16) was ranked second, because it aims to
maximize the utility and does not permit preemption; however, it does satisfy the remaining
criteria. Service et al.’s approach (A14) was ranked higher than RACHNA (A3), because
the former allows time-extended allocations along with task preemption, whereas the latter
permits instantaneous allocations and task preemption. Service and Adams’ service-model
algorithm (A11) was the third alternative.

Mission Scenario 20 (MS20) demanded two additional criteria. Aiming to reduce resource
usage, the mission preferred overlapping coalitions. Low communication bandwidth was
required alongside the aforementioned criteria of MS18 and MS19. CoMutaR (A18) was
ranked first, owing to the fact that this service-model based algorithm computes overlapping
coalitions with low communication bandwidth requirements. RACHNA (A3) and Service et
al.’s algorithm (A14) were chosen as the next suitable alternatives, because these algorithms
allow task preemption and seek to maximize the utility. Service and Adams’ service-model
algorithm (A11) was ranked fourth.

The robots in mission scenario MS21 were connected in a communication social network
and task preemption was necessary. The objective was to maximize the number of completed
tasks and reduce the communication footprint. Time-extended allocations were also crucial.
i-CiFHaR selected Gaston and desJardins’ service-model algorithm (A15) that employs a
social network as a heuristic to perform the time-extended task allocations with reduced
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communication overhead. CoMutaR (A18) ranked second and falls short of maximizing
the completed task objective criterion, while catering to most of the mission requirements.
RACHNA (A3), along with its improved and extended successor (A14) ranked third and
fourth respectively, given the fact that both the algorithms permit task preemption. Service
and Adams’ service-model algorithm (A11) was the remaining alternative.

Mission scenario MS22 aimed for approximate overlapping coalitions along with low
communication overhead and the objective to maximize team utility. i-CiFHaR selected
CoMutaR (A18), because this algorithm allows overlapping coalitions with constraints on
communication bandwidth and maximizes total team utility. However, the approach is an
auction-based technique and fails to provide guarantees on the solution quality. i-CiFHaR
recommended Service and Adams’ two approximation algorithms, A12 and A13 as the next
two highest ranked algorithms, because they provide solutions within a fixed bound from the
optimal solutions. However, the approximation algorithms fail to allow overlapping coalitions
with a low communication footprint.

Mission scenario MS23 was designed for robots that follow the Resource-Model. The
mission requirements involved overlapping coalitions with time-extended allocations for
spatially distributed tasks. i-CiFHaR selected Sujit et al.’s coalition formation algorithm (A8)
that uses Dubin’s curves to address spatially distributed tasks and computes time-extended
allocations with low communication messages. However, this algorithm does not permit
overlapping coalitions. Zhang et al.’s particle-swarm based approach (A19) and Shehory and
Kraus’ algorithm (A1) were selected as the second and third choices respectively, since both
algorithms allow overlapping coalitions, but fail to provide time-extended allocations. Vig
and Adams’ algorithm (A2), which is an extension of A1 was ranked fourth, while Service
and Adams’ algorithm (A9) was the last alternative.

The last mission, MS24 was similar to MS23, except that the robots used a communication
topology as a social network. i-CiFHaR selected Weerdt et al.’s algorithm (A6) as the most
appropriate algorithm, based on the fact that this algorithm offers time-extended allocations
with low communication footprints and leverages a social network to compute coalitions.
Sujit et al.’s approach (A8) was ranked second, because it seeks to maximize the number of
completed tasks and provides time-extended allocations with low communication overhead,
few of the mission criteria. A5 and A4 were the remaining alternatives.

The results show that for all the simulated mission scenarios, i-CiFHaR successfully
selected the most appropriate algorithms to apply based on multiple mission criteria. When
a single best fit algorithm is not found, i-CiFHaR determines a subset of algorithms that are
most suitable. The highlighted missions represent a subset of all possible scenarios; however,
the number of all possible missions is exorbitantly large. The selected mission scenarios
exploited all taxonomy features and provided a good subset of the possible missions.

5 Conclusion

An intelligent framework is presented that reasons online over a library of coalition forma-
tion algorithms to select the most appropriate coalition formation algorithm(s) to apply to a
given mission scenario. i-CiFHaR is the first coalition framework to use a library of algo-
rithms, rather than a single heuristic based algorithm. The framework leverages an influence
diagram to make decisions online under multiple, uncertain mission criteria. A link analysis
based algorithm calculates the utility values of the feature-value pairs. The framework uses
a number of features to select the most suitable coalition formation algorithm(s). The curse
of dimensionality is addressed by extracting prominent features that discriminate the coali-
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tion algorithms. These prominent features are utilized to dynamically create the influence
diagram at run-time. The experimental results show that i-CiFHaR selects the appropriate
algorithm(s), given multiple mission criteria. When a single best fit algorithm is unavailable,
i-CiFHaR selects a subset of suitable algorithms. i-CiFHaR is applicable to missions with
frequent contingency occurrences that introduce changing mission requirements (e.g., over-
lapping coalitions resulting from robot failures, task preemption). The likelihood of handling
diverse situations increases with the inclusion of a broad set of algorithms. i-CiFHaR provides
a more robust approach to allocate task coalitions for dynamic, real-world scenarios.
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