
Auton Agent Multi-Agent Syst (2015) 29:495–536
DOI 10.1007/s10458-014-9255-3

Distributed constraint optimization for teams of mobile
sensing agents

Roie Zivan · Harel Yedidsion · Steven Okamoto ·
Robin Glinton · Katia Sycara

Published online: 18 April 2014
© The Author(s) 2014

Abstract Coordinating a mobile sensor team (MST) to cover targets is a challenging problem
in many multiagent applications. Such applications are inherently dynamic due to changes
in the environment, technology failures, and incomplete knowledge of the agents. Agents
must adaptively respond by changing their locations to continually optimize the coverage
of targets. We propose distributed constraint optimization problems (DCOP)_MST, a new
model for representing MST problems that is based on DCOP. In DCOP_MST, agents main-
tain variables for their physical positions, while each target is represented by a constraint
that reflects the quality of coverage of that target. In contrast to conventional, static DCOPs,
DCOP_MST not only permits dynamism but exploits it by restricting variable domains to
nearby locations; consequently, variable domains and constraints change as the agents move
through the environment. DCOP_MST confers three major advantages. It directly represents
the multiple forms of dynamism inherent in MSTs. It also provides a compact representation
that can be solved efficiently with local search algorithms, with information and communi-
cation locality based on physical locality as typically occurs in MST applications. Finally,
DCOP_MST facilitates organization of the team into multiple sub-teams that can specialize
in different roles and coordinate their activity through dynamic events. We demonstrate how
a search-and-detection team responsible for finding new targets and a surveillance sub-team
tasked with coverage of known targets can effectively work together to improve performance
while using the DCOP_MST framework to coordinate. We propose different algorithms to
meet the specific needs of each sub-team and several methods for cooperation between sub-
teams. For the search-and-detection team, we develop an algorithm based on the DSA that
forces intensive exploration for new targets. For the surveillance sub-team, we adapt several
incomplete DCOP algorithms, including MGM, DSA, DBA, and Max-sum, which requires

R. Zivan (B) · H. Yedidsion · S. Okamoto
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beersheba, Israel
e-mail: zivanr@bgu.ac.il

R. Glinton · K. Sycara
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
PA 15213, USA

123

496 Auton Agent Multi-Agent Syst (2015) 29:495–536

us to develop an efficient method for agents to find the value assignment in their local envi-
ronment that is optimal in minimizing the maximum unmet coverage requirement over all
targets. The disadvantage of dynamic domains based on physical locality is that adaptations
of standard local search algorithms tend to become trapped in local optima where targets
beyond the immediate range of the agents go uncovered. To address this shortcoming we
develop exploration methods to be used with the local search algorithms. Our algorithms are
extensively evaluated in a simulation environment. We use a reputation model to determine
the individual credibility of agents and consider both additive and submodular joint credi-
bility functions for determining coverage of targets by multiple agents. The performance is
measured on two objectives: minimizing the maximum remaining coverage requirement, and
minimizing the sum of remaining coverage requirements. Our results show that DSA and
MGM with the exploration heuristics outperform the other incomplete algorithms across a
wide range of settings. Furthermore, organizing the team into two sub-teams leads to signif-
icant gains in performance, and performance continues to improve with greater cooperation
between the sub-teams.

Keywords Multi-agent systems · Dynamic distributed problems · Distributed constraint
optimization

1 Introduction

Coordinating mobile sensor teams (MSTs) is at the core of many exciting multiagent sys-
tems such as rescue teams searching for survivors after a disaster, unmanned vehicles tracking
enemy targets on a battlefield, and mobile sensor platforms providing environmental mon-
itoring. The fundamental problem is to position the agents1 to adequately monitor points
of interest generally called “targets” (e.g., disaster survivors, military targets, or pollution
spills). Sensors have limited effective ranges and the quality of readings may depend on
the agents’ locations and environmental conditions. Furthermore, multiple agents must often
cooperate to provide sufficient coverage of individual targets, for example triangulating posi-
tion using readings from multiple sensors or providing redundancy to provide robustness
against sensor failure. Optimally choosing where to position agents to meet the coverage
requirements in a static setting is a known NP-hard optimization problem.

Distributed constraint optimization problems (DCOPs) are a general model of multiagent
coordination that has been successfully applied to several problems in sensor networks [11,
36,41,51]. A DCOP is constituted of agents, variables, and (soft) constraints between sets
of variables that reflect the costs of assignments to the variables. Each agent has exclusive
control over a subset of the variables and knows information relevant to its variables, such as
the values that can be assigned (their domains) and the constraints involving them. The goal
is to minimize the aggregated costs of the constraints.

In many ways DCOPs are a natural fit for MSTs, which are inherently decentralized. For
each agent there is a variable for its location and for each target there is a constraint with
costs equal to the unmet coverage requirements of the target for each joint positioning of the
agents. Each agent has exclusive control of its own location and has limited computational
and communication resources due to cost, size, and power restrictions. These limitations
necessitate that computation be distributed over the entire team in order to use all available

1 In this paper we assume that each agent resides on a mobile sensor and we use the terms agent and sensor
interchangeably.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 497

computational resources (which scales with the number of agents) and avoid a single point
of failure. It also allows agents to make use of local knowledge to avoid communication
bottlenecks or unacceptably long delays, which is important because agents can typically
only communicate directly with other nearby agents. The constraint-based formulation of
costs is general enough to model a wide variety of real-world objective functions.

However, DCOPs fall short in two ways. First, all constraints may involve all agents,
because every agent can be positioned anywhere in the environment and thus is eligible for
covering any of the targets. This results in an exponential-sized constraint structure, which
is difficult to solve. Second, DCOPs are static models [13,24,26,31,50]. In contrast, the
coverage problem confronting the agents in realistic applications is highly dynamic.

There are three types of dynamism in MSTs: changes in the environment external to the
agents, including targets arising, moving, and disappearing, or target coverage requirements
being modified by an outside authority; changes inherent to the agents, including sensor
failures [5,12] resulting in targets being missed or false information being disseminated [22];
and changes in the agents’ knowledge of the environment, such as the presence of targets and
the quality with which they can be sensed from different locations. Because of this last type
of dynamism, agents must balance “exploration” (e.g., finding new targets or better sensing
locations) with “exploitation” (e.g., deciding where to position themselves based on existing
information). This tradeoff is complicated by the fact that considering alternative locations is
not just an abstract computational step but involves a physical movement to the new location.

In this paper we propose a new model, DCOP_MST, that extends DCOP for the kinds of
dynamic changes encountered by MSTs, which may be arbitrary and unpredictable (e.g., the
designation of new targets by a human authority), while simultaneously exploiting structure
in the MST problem to improve locality in the constraint network. Instead of choosing
from among all possible locations, each agent considers only nearby locations. Constraints
thus need not involve all agents at all times but only the agents who are close enough to
possibly cover the target. The local environment of an agent is defined by its location, its
effective sensing range and the distance it can consider traveling (i.e. its mobility range).
Both domains and constraints change as the agents move. We note that such a dependency
between the selection of a value assignment by the agent to its variable and the content of its
local environment is novel but not necessarily unique to MST applications. Thus, we present
a more abstract DCOP model that allows the representation of assignment-dependent local
environment (ADeLE) problems, ADeLE_DCOP, which DCOP_MST is a specific instance
of.

The quality of agents’ sensing abilities (i.e., their “credibility”) in DCOP_MST is cal-
culated by a reputation model, a widely used technique in multiagent systems and sensor
networks2 [10,35,49]. Each constraint is efficiently represented as the remaining level of cov-
erage given the joint credibility of agents within sensing range. The environmental require-
ments specify the desired level of coverage for targets. Both the environmental requirements
and the agent credibilities are updated dynamically and distributedly.

Agents in DCOP_MST compute new positions using distributed constraint optimization.
Due to the dynamic nature of the problem and the large number of possible assignments (even
in the reduced DCOP_MST model), complete algorithms are not practical and we focus on
incomplete local search algorithms instead.

While agents in traditional DCOPs all execute the same algorithm, in this paper we demon-
strate that the tension between exploration and exploitation in DCOP_MST is better resolved
by using two different algorithms. We partition the agents into two sub-teams, the surveil-

2 We leave the problem of handling inconsistent information caused by malicious activity for future work.

123

498 Auton Agent Multi-Agent Syst (2015) 29:495–536

lance sub-team and the search-and-detection sub-team, and develop different algorithms for
each. The primary responsibility of the surveillance agents is to maintain coverage over the
known targets, with only minor exploration to find new targets or better sensing locations;
in a homogeneous team, all agents would be surveillance agents. The search-and-detection
agents are chiefly responsible for finding new targets and in an application would likely be
equipped with advanced mobility and accurate sensing equipment.

For the surveillance agents we develop two distributed, self-adjusting algorithms based
on the Maximum Gain Messages (MGM) algorithm [24,30] and the Distributed Stochastic
Algorithm (DSA) [50], two well-known DCOP algorithms with typically fast convergence,
an essential property in a dynamic environment. Both algorithms require agents to be able to
efficiently find the best alternative assignment (position), which in DCOP_MST is not trivial.
We propose a method that guarantees local optimality, in terms of the maximum remaining
coverage requirement, in polynomial time.

The drawback of these algorithms is that they tend to converge to local minima. We
show that existing techniques to escape local minima are unsuited for DCOP_MST as they
are unable to maintain high-level surveillance in the presence of dynamic events. We thus
develop alternative exploration methods that allow the mobile agents to explore the area while
maintaining a high level of coverage of the targets that were previously detected. Empirical
evaluation with both additive and non-additive (submodular) functions for calculating joint
coverage demonstrates the superiority of our algorithms over standard state-of-the-art DCOP
algorithms.

The search-and-detection team requires a higher level of exploration, but only limited
coordination because agents are individually capable of detecting new targets and no con-
vergence as agents should continually search for new targets. Thus, we design an innovative
algorithm based on DSA in which the agents use a function that initially includes only proba-
bilistic knowledge of the location of the targets. The agents update this function by reducing
the importance of areas that they recently visited to reflect the reduced probability of finding
new targets there. Agents select their next positions according to this function. Our experi-
ments show that in contrast to standard DSA, our algorithm does not suffer from thrashing
as the probability for changing locations increases.

Although the sub-goals of the two sub-teams are different and require different algorithms,
awareness of the global goal and the subtask of the other sub-team can enable agents to
contribute to the effort of agents in the other sub-team [15,16,38]. We propose several levels
of cooperation and evaluate their impact on the two sub-teams individually and the team
as a whole. Agents can easily make use of information they receive from agents of the
other team because the DCOP_MST algorithms are already robust to dynamic changes. Our
empirical evaluation reveals that a higher level of cooperation improves the performance of
both sub-teams and the overall performance of the global team.

The remainder of this paper is organized as follows. Section 2 formalizes the MST coverage
problem and presents the DCOP representation and our innovative DCOP_MST model.
Section 3 presents local search algorithms for DCOPs and describes in detail the local search
algorithms proposed for solving DCOP_MST, for both the surveillance and the search-and-
detection sub-teams. Section 4 proposes levels of cooperation between agents from the two
sub-teams. Section 5 includes an evaluation of the proposed algorithms performed by the
two sub-teams, the complete team performing together, and the effect of the increased levels
of cooperation on performance. Related work is presented in Sect. 6. Our conclusions are
presented in Sect. 7.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 499

2 Problem statement

In this section we formalize the problem confronting mobile sensor teams, then describe
the conventional DCOP representation followed by the description of the novel ADeLE
DCOP model. Finally we present our DCOP_MST formulation as a specific instance of
ADeLE_DCOP. A simple example problem that will serve to illustrate the different aspects
of the model is depicted in Fig. 1 and explained in Sect. 2.1. Definitions of commonly-used
notation defined in this section are summarized in Table 1.

2.1 Mobile sensor teams

The agents A = {A1, A2, . . . , An} in a mobile sensor team are physically situated in the envi-
ronment, modeled as a metric space with distance function d . The current position of agent

Fig. 1 DCOP_MST example with three agents. Faint outer rings around each agent depict the mobility range.
Dark inner rings show the sensing range with the numeric agent credibilities. Ovals represent the targets with
their coverage requirement. “X”s depict possible locations where the agents can position themselves

Table 1 Formal notation for DCOP_MST

Notation Description

A Set of agents, A = {A1, . . . , An}
cur_neii Current neighbors of agent Ai ,

cur_neii = {A j |d(cur_posi , cur_pos j) ≤ MRi + MR j + SRi + SR j }.
cur_posi Current position of agent Ai .

Credi Credibility of agent Ai .

Cur_REQ(p) Remaining coverage requirement of p, Cur_REQ(p) = max{0, ER(p) � F(SR(p))}.
d Distance function, with d(p, p′) ≥ 0 the distance between positions p and p′.
ER(p) Environmental requirement of p.

F(S) Joint credibility of S ⊆ A.

MRi Mobility range of agent Ai .

SRi Sensing range of agent Ai .

SR(p) Agents within sensing range of p, SR(p) = {Ai ∈ A|d(p, cur_pos|i) ≤ SRi }.
� Environmental requirement reduction operator, � : R × R → R

123

500 Auton Agent Multi-Agent Syst (2015) 29:495–536

Ai is denoted by cur_posi ; we assume that this position is accurately known by the agent.3

We assume that the locations (or positions) that can be occupied by agents are a finite set of
discrete points that form a subset of the total environment. These points can either be a dis-
cretization of the underlying space or locations that dominate other nearby points in terms of
the sensing quality they afford agents located there. In Fig. 1 the environment is the Euclidean
plane, agents are depicted by small robots, and possible locations are shown by “X”s.

We assume that time is discretized so that agents compute movements between possible
positions. The maximum distance that Ai can travel in a single time step is its mobility range
MRi . The mobility range of each agent is shown in Fig. 1 by the fainter, outer circle centered
on the agent. All “X”s within the circle are locations that the agent can move to in a single
time step from its current position.

Agents are only able to effectively sense targets within a limited sensing range. Agents
may be equipped with different kinds of sensors, resulting in heterogeneous sensing ranges;
the sensing range of agent Ai is denoted by SRi . Because of the sensing range constraint, each
agent Ai can observe all targets within a distance SRi from cur_posi , and cannot observe
any target that is farther away. The sensing ranges are depicted in Fig. 1 by the darker, inner
circle centered at each agent.

Agents may also differ in the quality of their sensing abilities, a property termed their
credibility. The credibility of agent Ai is denoted by the positive real number Credi , with
higher values indicating better sensing ability. We assume that Credi is exogenously provided
(for instance, calculated by a reputation model) and accurately represents the agent’s sensing
ability; dealing with inaccurate scores is of interest but beyond the scope of this work. When
using reputation models in multiagent systems, e.g., SPORAS [49], agents grade each other
according to previous actions and use these grades to tune their expectations of each other. In
our model, for example, an agent that carries expensive, accurate sensing equipment will start
with a high credibility grade. However, if it would transmit conflicting reports, its credibility
grade will drop. An agent’s credibility changes over time due to sensor failures, environmental
conditions, and movement of the agent. A major consequence of this is that an agent cannot
know its credibility at a location without moving to that location. In Fig. 1, the credibility of
each agent is shown as a white number in a blue square on the agent’s sensing range circle.

The individual credibilities of agents sensing the same target are combined using a joint
credibility function F : 2A → R, where 2A denotes the power set of A. We require that F be
monotonic so that additional sensing agents can only improve the joint credibility. Formally,
for two sets S, S′ ⊆ A with S ⊆ S′, we require that F(S) ≤ F(S′).

The targets are represented implicitly by the environmental requirement function ER which
maps each point in the environment to a non-negative real number representing the degree
of coverage (as we define shortly) required for that point to be adequately sensed. In this
representation, targets are the points p with ER(p) > 0. Because targets may arise, move,
and disappear, ER changes dynamically. Moreover, ER can change as the agent team becomes
aware of new targets. A major aspect of the mobile sensing team problem is to explore the
environment sufficiently to be aware of the presence of targets. In the example presented in
Fig. 1 there are five targets shown as red/dark ovals and their numbers represent their ER
values.

Agents within sensing range of a target p are said to cover the target. Given a target p,
the set of agents within sensing range of p is

SR(p) = {Ai ∈ A|d(p, cur_posi) ≤ SRi }.

3 This is a reasonable assumption considering that GPS receivers are used.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 501

The remaining coverage requirement of target p is the environmental requirement of p
diminished by the joint credibility of the covering agents, down to a minimum value of 0:

Cur_REQ(p) = max{0, ER(p) � F(SR(p))},
where � : R × R → R is a binary operator (written in infix notation) that decreases the
environmental requirement by the joint credibility. For x, y, z ∈ R with y > z, we require
that x � y < x � z, so that decreasing the environmental requirement by a higher joint
credibility results in a lower remaining coverage requirement.

The global goal of the agents is to position themselves in order to minimize the values of
Cur_REQ for all targets. In some cases it may be possible to reduce the values of Cur_REQ
to zero for all targets, reflecting perfect coverage. However in other cases this may not be
possible, either because of insufficient numbers or quality of agents, or by definition of F
and � (we will see an example of this in Sect. 2.1.1). For these cases we consider two
specific objectives. The first is to minimize the sum of remaining coverage requirements for
all targets, while the second is to minimize the maximum remaining coverage requirement
over all targets.

Minimizing either of these objectives is NP-hard [46], as seen by reduction from the set
cover problem [29]. In the set cover problem, there is a set of elements (called the universe)
and a family of subsets of the universe whose union contains all elements of the universe. A set
cover is a subfamily of these subsets whose union contains all elements of the universe. The
set cover problem is to find the set cover containing the minimum number of subsets. The idea
of the reduction is to create a target for each element and a location for each subset, defining
distances so that the location is within sensing range of all elements in its corresponding
subset. A set cover of size k then exists if and only if it is possible to minimize either the sum
or maximum of Cur_REQ to 0 using k agents.

2.1.1 Examples

We now consider three specific choices of F and � that may arise in different applications.
The sum joint credibility function simply sums the individual credibility of agents:

Fsum(S) =
∑

Ai ∈S

Credi

This can be used to model applications of tracking targets with simple sensors such as
received signal strength indicators (RSSIs) capable of determining distance but not direction.
Triangulating the position of a target requires readings from three different agents, represented
by ER(p) = 3 for each target p, binary credibilities of 1 for functioning sensors and 0 for
non-functioning sensors, and choosing � to be the standard subtraction operator. The sum
joint credibility function can also be used to protect against sensor failure with ER(p) being
the desired level of redundancy for target p. This approach can be extended to sensors that
may have different failure rates, as reflected by non-binary credibilities.

A more nuanced approach for robustness models sensor failures probabilistically and
seeks to guarantee that each target is covered by a working sensor with some minimum,
target-specific probability. In this case, Credi is the probability that the sensor on Ai will not
fail and ER(p) is the minimum desired probability that target p is covered by at least one
working sensor. This is represented with the complementary probabilistic joint credibility
function

123

502 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fcprob(S) = 1 −
∏

Ai ∈S

(1 − Credi)

to compute the probability that at least one working sensor covers the target and choosing �
to be the subtraction operator.

A related approach can be used for applications that detect sporadic events with sensors
that may give false negatives. The goal is to minimize the probabilities that events occur
without being detected. In this case Credi is the probability of an accurate reading from
Ai and ER(p) is the probability that the event occurs at p. This is modeled using Fcprob

to compute the probability that no sensor detects an event, and the probabilistic reduction
operator, �prob :

ER(p) �prob F(SR(p)) 	→ ER(p) · (1 − F(SR(p))),

so that Cur_REQ(p) is the probability that an event occurs at p without being detected. Note
that it is not possible to reduce Cur_REQ(p) to 0 for targets with this choice of F and �.

2.1.2 Sensor Team Organization

As explained earlier, the ER function represents the targets in the environment. In practice
the agents’ knowledge of the targets will be neither static nor complete, due to the limited
observational abilities of agents in MSTs and the inherent dynamism in the problem. We
assume that if targets appear, disappear, or move, this can only be directly detected by
agents within sensing range of the target; if no agent is within range, the change will not
be detected. Thus agents must move not only to optimize their coverage of known targets,
but also to explore unobserved parts of the environment in order to detect changes in the ER
function. Because the purpose of this exploratory movement is very different from that of
coverage-optimizing movement, it is reasonable to expect different algorithms to be better
suited for the different purposes.

One way to implement this in an MST is to organize the team into two disjoint sub-teams
of agents running different algorithms specialized to each purpose. The surveillance sub-team
is primarily responsible for optimizing coverage of targets assuming that their knowledge of
the ER function is accurate. The search-and-detection sub-team is primarily responsible for
exploring the environment and communicating detected changes in the ER function to the
rest of the team. The exact mechanism of disseminating these changes to the rest of the team
is dependent on the specific communication capabilities of the agents and is beyond the scope
of this paper. The simplest approach is to broadcast the change to all agents if possible, or to
propagate via flooding if an ad hoc network is used for communication. More sophisticated
approaches may restrict changes to specific parts of the team based on geographic location [9]
or may utilize the search-and-detection agents as data ferries to physically carry data between
parts of the team that are not in communication range [17].

While the two-sub-team approach can be used with homogeneous agents, agent hetero-
geneity offers the possibility of specialization according to relative strengths of the different
agents. In general, determining target importance often requires more sophisticated capa-
bilities than merely covering the target. For example, in a military application, determining
importance may require a high-resolution camera to identify the potential target and perform
a threat assessment, while covering the target can be performed with a lower resolution cam-
era. Thus we assume that search agents have superior technology and can therefore perform
surveillance with relatively high credibility, while surveillance agents cannot determine the
importance of a target.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 503

2.2 The DCOP_MST Model

2.2.1 Standard DCOP

Distributed constraint optimization is a general formulation of multiagent coordination prob-
lems that has previously been used for static sensor networks and many other applica-
tions. A distributed constraint optimization problem (DCOP) is a tuple 〈A, X , D, R〉 where
A = {A1, A2, . . . , An} is a finite set of agents, X = {X1, X2, . . . , Xm} is a finite set of vari-
ables (with m ≥ n), D = {D1, D2, . . . , Dm} is the set of finite domains for the variables, and
R is a finite set of relations, also called constraints. Each variable Xi is held (or owned) by an
agent who chooses a value to assign it from the finite set of values Di ; each agent may hold
multiple variables. Each constraint C ∈ R is a function C : Di1 × Di2 ×. . .× Dik → R+∪{0}
that maps assignments of a subset of the variables to a non-negative cost. The cost of a full
assignment of values to all variables is computed by aggregating the costs of all constraints.
Addition is the aggregation operator most commonly considered so that the total cost is
the sum of the constraint costs, but other operators, such as the maximum, have also been
considered [26,37]. The goal of a DCOP is to find a full assignment with minimum cost.

Control in DCOPs is distributed, with agents only able to assign values to variables
that they hold. Furthermore, agents are assumed to know only of the constraints involving
variables that they hold, thereby distributing knowledge of the structure of the DCOP. In
order to coordinate, agents must communicate via message passing. It is commonly assumed
that agents can only communicate with agents who hold variables constrained with their
own variables, called their neighbors [26,30,48,51]. While transmission of messages may
be delayed, it is assumed that messages sent from one agent to another are received in the
order that they were sent.

2.2.2 DCOP with assignment-dependent local environment (ADeLE_DCOP)

The model we propose for representing problems that include teams of mobile sensing agents
is based on the standard DCOP model presented above and includes multiple dynamic ele-
ments. Some, e.g., a change in the utility derived when the sensor is located in some position
due to the failure of a sensor, were formalized in previous work on dynamic distributed prob-
lems as changes in the problem’s data, which are independent of the assignment selection
of agents [32,47]. However, other dynamic elements in our model change due to the value
assignment selection of agents. While this property is inherent in applications that include
teams of mobile sensing agents, it exists also in other scenarios and applications; for example,
when planning a trip the decision to stop in a city can raise multiple concerns and possibilities
that were not considered if this stop were avoided.

Thus, we formalize an innovative framework, ADeLE_DCOP, that is based on DCOP
and can represent problems in which the content of the local environment of agents depends
on their value assignment selection. Then, we will detail DCOP_MST as a specific instance
of this framework. In ADeLE_DCOP there is a general domain of values g-domi for each
agent i that includes all values that it can take. An agent i also holds a current domain
cur_domi ⊆ g-domi that includes all the value assignments that an agent can assign to its
variable with respect to its current value assignment (denoted by cur_assi).4 The content
of cur_domi is determined by a function Ψ (i, v) that takes into consideration the current

4 For simplicity of presentation and without loss of generality we assume that each agent holds a single
variable

123

504 Auton Agent Multi-Agent Syst (2015) 29:495–536

value assignment v of agent i to its variable. Furthermore, for each value v ∈ g-domi there
is a set of values it is constrained with that are included in the g-doms of other agents. Two
agents i and j in ADeLE_DCOP are considered neighbors if and only if there exists values
v ∈ cur_domi and v′ ∈ cur_dom j that are constrained.

Thus, the local environment of an agent i includes two dynamic sets, its current domain
(cur_domi) whose content is dependent on the agent’s current assignment (cur_assi), and
the set of current neighbors (cur_neii) that depend on the context of cur_domi . Hence, the
content of both sets is dynamic and determined by the value assignment selection of the
agent.

2.2.3 DCOP_MST

In formulating the MST problem as an ADeLE_DCOP, each agent Ai holds a single variable
for its position with a general domain g-dom that includes all possible locations. For each
target p there is a constraint C p that relates the agents’ positions to the remaining coverage
requirement Cur_REQ(p). Because every agent can take a position within sensing range of
p in some combination, C p is an n-ary constraint. The cost of C p for each combination of
values is equal to Cur_REQ(p) given the agents positions.

The inherent dynamism of the MST problem means that the DCOP problem changes over
time. The set of constraints R changes over time as targets arise and disappear and agents
discover new targets. The cost functions represented by the constraints also change over time
due to target movement, sensor failures, and changing agent understanding of sensing quality
at different locations due to changing environmental factors.

Even as a static problem this is a very challenging DCOP due to the n-ary constraints,
which are known to be problematic for many DCOP algorithms in practice. Furthermore, the
standard assumption of communication locality based on constraint participation is rendered
meaningless, with every agent able to communicate with every other. This is in stark contrast
to actual mobile sensing applications, where communication between agents is usually limited
by physical distance.

The DCOP_MST model is a dynamic ADeLE_DCOP formulation that exploits the struc-
ture of MST problems without requiring an explicit model of the dynamics. Instead, the
agents consider local changes in their position, and react to changes as they occur. As an
instance of the ADeLE_DCOP framework presented above, agents hold variables that take
value assignments from a dynamic domain. Specifically, each agent Ai holds a variable for
its position that can take a value from a dynamic domain. The function Ψ (i, v) includes in
cur_domi all locations within MRi of cur_posi ; Thus, as the agent moves locations, the
content of the current domain changes.

Dynamic domains induce a change in the constraints. Because of the restricted domains,
not all variables can take values within sensing range of all targets, and hence the constraints
need no longer be n-ary. Instead, the constraint C p for a target p only involves those agents
Ai whose domains include a location within SRi of p. As the domains change, the constraints
change as well.

The local environment of agent Ai is the joint area within SRi from all positions within
MRi from cur_posi , i.e., it includes all targets that the agent can cover after a single move.

A consequence of this is that the set of neighbors for each agent is no longer the full team
and it changes over time as the agents move. In DCOP_MST, two agents are considered
neighbors if their local environments overlap, i.e., their sensing areas overlap after they
both move as much as possible in a single time step toward each other. Denoting the set of
neighbors of Ai by cur_neii , we formalize this by cur_neii = {A j |d(cur_posi , cur_pos j) ≤

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 505

MRi +MR j +SRi +SR j }. Because agents can only communicate with their neighbors, agents
in DCOP_MST can only communicate with other agents who are physically nearby, which
is more realistic than the conventional DCOP formulation. As with domains and constraints,
neighborhoods in DCOP_MST are dynamic.

3 Algorithms for solving DCOP_MSTs

After defining a model for representing MST problems, the next step is to propose algorithms
for agents in the DCOP_MST model to use in order to select their position.

The choice of local search for solving DCOP_MST problems is supported by the common
standard considerations for selecting local over complete search, namely time limitations and
the limit on the size of problems that can be practically solved by complete algorithms. In
addition, the following special properties of MST problem also encourage the choice of a
local search algorithm:

1. Exploring the entire search space, as required for complete search, would mean that
agents take each and every possible position. This is not practical for sensors with limited
mobility in a large area.

2. Dynamic changes limit the time that agents have to execute a complete algorithm, because
changes that occur during the search for the optimal solution render the computed solution
obsolete.

3. The algorithm is expected to maintain reasonable coverage while adjusting to the changes
in the problem [19,25]. While complete search is guaranteed to find the optimal solution
in finite time, this may take a very long time and there are no guarantees on the degree
of coverage while the optimal final configuration is being computed.

The simplicity of the framework of local search algorithms makes it compatible with
a dynamic environment. Many local search algorithms (such as MGM and DSA [30,50])
evaluate only the current state in each iteration, while in complete algorithms, agents consider
information that was inferred in previous steps of the algorithm (e.g., nogoods [39]). This
information might not be valid after the problem changes.

3.1 Local search algorithms for solving DCOPs

The general design of most state-of-the-art local search algorithms for DCOPs is synchronous.
The MGM algorithm is a simpler version of DBA [48,50]. In every synchronous step, each
agent sends its current value assignment to its neighbors and collects their current value
assignments. After receiving the assignments of all its neighbors, the agent computes the
maximal improvement (reduction in cost) to its local state it can achieve by replacing its
assignment and sends this proposed reduction to its neighbors. After collecting the proposed
reductions from its neighbors, an agent changes its assignment only if its proposed reduction
is greater than the reductions proposed by all of its neighbors (ties are broken by agents’
indices). A sketch of the MGM algorithm is depicted in Fig. 2. After selecting a random
value to its variable (line 1), the agent enters the loop where each iteration is a step of the
algorithm. After sending its value assignment to its neighbors and collecting their assignments
(lines 3, 4), the agent calculates its best cost reduction and sends it to its neighbors (lines 5, 6).
After receiving the possible cost reductions of all of its neighbors the agent decides whether
to replace its assignment and on a positive decision reassigns its variable (lines 7–10).

123

506 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fig. 2 Standard MGM

Fig. 3 Standard DSA

DSA is very simple and requires fewer messages than MGM for each possible change of
value. After an initial step in which agents pick a value for their variable (randomly according
to [50]), agents perform a sequence of steps until some termination condition is met. In each
step, an agent sends its value assignment to its neighbors in the constraint graph and receives
the assignments of its neighbors. After collecting the assignments of all its neighbors, an
agent decides using a stochastic strategy whether to keep its value assignment or to change
it. A sketch of DSA is presented in Fig. 3. The differences from the MGM algorithm are
that largest reductions (LR-values) are not exchanged and that the replacement decision (in
line 5) is stochastic. More specifically, in DSA, the replacement decision takes into account
whether a replacement of assignment will improve the local state of the agent. If so, a change
is made with probability defined by parameter p. Zhang et al. [50] showed that the value of
p has a major effect on the quality of solutions found by DSA.

3.2 Algorithms for the surveillance sub-team

In this section we assume that the ER function used by the surveillance team is complete
and accurate, and we develop algorithms for the agents in the surveillance team. Note that
locality (i.e. the partial information held by agents) in DCOP_MST is implied by the positions,
mobility ranges, and sensing ranges of the agents. Thus, only by taking the assignment and
physically moving to the position can an agent compute and adjust its domains and constraints.

3.2.1 Selecting the optimal position in range

A crucial requirement for distributed local search algorithms such as MGM or DSA is for
agents to be able to efficiently evaluate alternative positions and select the optimal one
from among them. While this evaluation of values is trivial in standard DCOPs, it is not
straightforward in DCOP_MST. Moreover, the selection algorithm should serve the global
objective of the entire team, heuristically guiding the local search process toward high-
quality local optima. In this section we propose a method that is optimal for the objective of

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 507

Fig. 4 Method for selecting the best alternative position

minimizing the maximum remaining coverage requirement, allowing us to effectively adapt
local search algorithms to DCOP_MST.5

An immediate, trivial algorithm would be for each agent to choose a position from its
domain that covers a target with the highest Cur_REQ. However, there may be multiple
positions that enable coverage of such a target and the agent must choose between them.
The intuitive heuristic that we apply is that the agent should choose the position that further
enables coverage of additional targets with a smaller Cur_REQ. To this end, we propose a
recursive method, select_pos, for an agent to select its position; pseudocode is presented in
Fig. 4. There are two inputs: pos_set is the set of possible positions to be considered, and
f unc is a function that specifies a value for each target within sensing range of the positions
in pos_set . The algorithm behaves as follows:

1. In the first call, pos_set is the set of all positions within the agent’s mobility range MRself

of its current position, and f unc = T emp_RE Q, the current coverage requirement
function excluding the coverage of the agent performing the calculation (Aself). Formally,

T emp_RE Q(p) =
{

max{0, ER(p) � FAi ∈(SR(p)\Aself)Credi } if Asel f ∈ S R(p)

Cur_REQ(p) otherwise.

2. A set target_set containing all targets with maximum f unc value within sensing range
of a position is computed (line 3).

3. Two termination conditions are checked:

(a) If there is only one possible position, it is selected (lines 1–2).
(b) If there are no remaining targets (target_set = ∅), then any possible position can

be selected (lines 4–5).

4. If neither of the termination conditions is met, the agent computes a new set of possible
positions, possible_pos. Ideally, these are positions from which the agent can cover all of
the targets in target_set , but it may be that no such location exists. In this case, the agent
chooses a subset of targets to cover (lines 6–7). In particular, the agent chooses the largest
subset of target_set that can be covered from a single position in pos_set . This can be
accomplished be iterating over all pairs of pos ∈ pos_set and target ∈ target_set and
checking if d(pos, target) ≤ S Rself ; this takes |pos_set | · |target_set | time. The agent

5 In Sect. 5 we present experimental results showing that our approach is also effective for the objective of
minimizing the sum of remaining coverage requirements.

123

508 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fig. 5 Local method example. a Elimination of irrelevant positions and identification of the most important
target in range, b Second elimination of irrelevant positions and mutual targets, c Third elimination of irrelevant
positions and mutual targets, d Final selection

then computes possible_pos to be the positions in pos_set within sensing range of all
targets in the possibly reduced target_set (line 8).

5. A new function new_ f unc is then computed, equal to f unc but excluding targets that
are covered from all positions in possible_pos (lines 9–10).

6. The final step is a recursive call to select_pos using possible_pos and new_ f unc
(line 11).

Figure 5 presents an example of the local method described above. Figure 5a shows the
first call to select_pos, with the circle representing the agent’s sensor range and the framed
number its credibility (5). Points marked by “X” are alternative positions in pos_set . Targets
(as identified by f unc) are depicted by ovals with a number showing their importance, and the
shaded oval (for the target with importance 7) indicates target_set . In the second invocation
of select_pos (Fig. 5b), target_set contains the two targets with importance 5 and pos_set
is limited to those positions that were within sensing range of the importance 7 target in the
previous call. In the third call (Fig. 5c), pos_set contains only two positions, neither of which
is within sensing range of the target with importance 4. As a result, the target_set contains
the two targets with importance 3. Because neither of these allows coverage of both targets,
target_set will be further reduced to a single target in line 9, and hence in the following
invocation of select_pos, pos_set will contain a single location and the first termination
condition will hold. Figure 5d shows the final selection of the algorithm, along with the
sensing range around that point and the four targets that are covered from there.

3.2.2 Theoretical properties and bounds

The first bound that needs to be established is that the local method performed by each
agent in each iteration is efficient, otherwise it is not realistic to assume that agents

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 509

can complete computation of the optimal alternative position in a single iteration of the
algorithm.6

Lemma 1 Assuming the maximum number of possible positions within distance MR of an
agent is m, the maximum number of calls to method select_pos that this agent will make in
a single iteration of the algorithm is m + 1.

Proof When method select_pos is called for the first time, the set of possible positions
includes a maximum of m members. In each further call to the method, the values of points
which are covered from all possible positions (the intersect_area) are not included in the
function (lines 9–10 of Fig. 4). Consequently, the points in the next generated target_set
cannot be in sensing range from all possible positions. Because only positions that are in
sensing range from all the points in target_set are included in the next generated set of
possible positions (line 8), in every recursive call the set of possible positions is smaller.
Thus, the function can be called m + 1 times at most. Note that pos_set is not allowed to
become empty due to the second termination condition (lines 4–5). ��

Lemma 2 Assuming the maximum number of possible positions in the SR of an agent from
any target point is s, the number of calls to method select_pos this agent will make in a single
iteration of the algorithm is s + 1.

Proof In each call of method select_pos a target set is generated. Only positions within
sensing range from all the points in the target set are considered when the function is called
again. Therefore, after the first call, the set of possible positions generated cannot be larger
than the number of positions within SR from the points in the target set. The rest of the proof
is similar to the proof of Lemma 1. ��

The conclusion from Lemma 1 is that in the worst case, the running time complexity
of a single iteration is m2 · |target_set | (where m is defined as in Lemma 1), since in each
recursive call each possible position is checked to see if it affords coverage of the target_set .
Furthermore, the conclusion from Lemma 2 is that the worst case running time complexity
of a single iteration is (m + s2) · |target_set | (where m and s are defined as in Lemmas 1
and 2). Thus, the running time of a single iteration is the minimum of the two.7

Next, the (local) optimality of the method for selecting an agent’s position is established (it
is optimal if only the actions of a single agent are considered). The locally optimal selection
is essential to ensure the maximum gain property in the MGM algorithm, which is needed to
guarantee convergence. We call a position optimal if it minimizes the coverage requirements
according to the Cur_REQ function, i.e., if it minimizes the maximum Cur_REQ value
among all points within the sensing range of all the positions that are in the mobility range
of the agent.

Lemma 3 In each recursive call of the select_pos method, the set of possible positions
includes the optimal position.

6 In our proof we assume that there are no plateaus (continuous areas with the same ER value) and that the
number of points of the same (highest) value can be found efficiently. If plateaus do exist, the proof is still
valid; however, there is a need to use geometric computation in order to evaluate areas instead of points.
7 In contrast to the assumptions made, in case the initial possible position set or target set are too large and
the method cannot be completed in reasonable time, the method can be stopped and one of the positions in
pos_set can be selected. However, in this case local optimality is not guaranteed.

123

510 Auton Agent Multi-Agent Syst (2015) 29:495–536

Proof In the first call for the select_pos function, all positions within mobility range are
considered. Thus, the optimal position is considered as well. Assume that the selection of
possible positions in the i th call to the recursive method select_pos by agent A j is the first
that does not include the optimal position.
We differentiate two cases:

1. There exists at least one possible position in the possible positions set of the i − 1 call
that is within the sensing range of all the points in the target_set generated in the i − 1
iteration.

2. No possible position in the possible positions set of the i − 1 call is within the sensing
range of all points in the target_set generated in the i − 1 iteration.

The consequence of the first case is that there exists an optimal position pos′ that was
included in the possible positions of the i − 1 call and is not selected to be included in the
new set of possible positions. This means that pos′ is not within SRsel f (the sensing range
of A j) of all points in the target set (line 6 of Fig. 4). However, the goal is to minimize the
Cur_REQ function and the target_set includes the points with the largest Cur_REQ values
not within sensing range from all possible positions found in the i − 1 iteration. Thus, the
fact that there exists a position that enables coverage of all points in target_set contradicts
the optimality of pos′.

For the second case, any selection of position will give the same largest remaining require-
ment. Thus, any selection is locally optimal and the choice of selecting the position that covers
the largest number of points in the target_set is a heuristic, which hopefully would help in
most cases to achieve the global goal. ��

The optimality of the select_pos function is an immediate corollary from Lemma 3. Since
the select_pos method returns either a position that was left last in the possible positions
set or one position from a set of positions from which the agent does not have any coverage
differences, this selection is optimal with respect to the position selection of a single agent.

The intuition for the heuristic we use in the method is that covering the largest number of
points with maximum coverage requirement would leave fewer such points to cover by the
other agents and will contribute more to the joint effort.

3.2.3 Adapting local search algorithms to DCOP_MST

After designing an efficient method for finding the optimal position within range for each
agent, we can complete the adaptation of the MGM and DSA algorithms to DCOP_MST. It is
important to mention that as self-adjusting algorithms, the algorithms should run indefinitely,
i.e., after the algorithm converges to a solution it remains active in order to be sensitive to
changes [8].

Figure 6 presents the code of the MGM_MST algorithm. The main loop of the algorithm
remains almost unchanged from standard MGM presented in Fig. 2. The agents send their
assignments (current positions) to the agents that are currently their neighbors. We assume
that agents can detect the agents whose ranges overlap with its own as defined in Sect. 2 and
update its set of current neighbors.8

Method BestPossibleLocalReduction calls method select_pos to find the best alternative
position. After it is found, the method returns the improvement that would be achieved

8 If not, agents would need to inform all other agents when they change position so that they can update their
set of neighbors accordingly.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 511

Fig. 6 MGM_MST

Fig. 7 DSA_MST

by changing to the selected alternative position. This improvement (or ”reduction”) is the
difference between the highest Cur_REQ values, not including the credibility variable of
Asel f (T emp_RE Q), which are covered by the agent when it is located in one of the two
positions (the current and the new) and uncovered when it is located in the other (lines 13–15).
The possible improvement cannot be larger than the agent’s credibility variable, Credsel f ,
since that is the agent’s maximal contribution to the coverage of any point in the area (line 16).

Figure 7 presents the code of the DSA_MST algorithm. The decision of whether to change
position is stochastic and does not require agents to exchange their largest reductions (LR
values). The replacement decision used is the same as in standard DSA.

3.2.4 Runtime example

Figure 8 presents an example of a DCOP_MST solved by the MGM_MST algorithm. The
team includes five mobile sensors. The dashed lines circling each of the sensors depicts their
sensing range. This example uses the sum joint credibility function, Fsum and the standard

123

512 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fig. 8 Runtime example. a initial state, b credibility change for some of the sensors, c first step of adjustment,
d second step of adjustment, e environmental change, f final adjustment

subtraction operator for �. The mobility range for each agent is considered to be twice the
sensing range (this range was left out of the figures in order to simplify the presentation). The
agents are required to cover a number of target areas, which are depicted by complete circles
each containing a number. The number represents the environmental requirement function
ER. In the initial state of this example (Fig. 8a), there are three target areas with ER = 3 and
one with ER = 10. The initial credibility assigned to each agent is 5 (depicted as a framed
digit above each dashed circle). In the initial state presented in Fig. 8a, all targets are covered
as required. The example includes two events. Figure 8b presents the state after the first
event, which is a conflict in the reports that triggered a decrease in the credibility of sensors
1 and 2. As a result, the difference between the requirements on the target and the sum of the
credibilities of agents 1 and 2 is 4. Agent 5 is currently covering a target with ER value of
3. Thus, it moves to a position where it covers the target that is considered more important.
The resulting state is presented in Fig. 8c. Agent 4 can improve its local state by moving to
a position from which it covers the target it covered before and the target that agent 5 left
uncovered (resulting in the state presented in Fig. 8d). Notice that agent 4 moves although
it is already covering a target with ER = 3, since even though it is covering the point with
the largest Cur_REQ value in its range, the recursive function requires it to keep considering
the different positions that cover this point and possibly additional points with a similar or

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 513

smaller Cur_REQ value. Figure 8e presents the state after an environmental change (the
second event). A new target was added with ER = 3. Agent 1 changes its position since its
contribution to the coverage of the target it is currently covering is less than its contribution
when covering the new target. The final state is presented in Fig. 8f.

3.2.5 Exploration methods

Classic local search combines exploitation methods in order to converge to local optima
with exploration methods in order to escape them [52]. The proposed MGM_MST algorithm
is strictly exploitative. It benefits from quick convergence and avoids costly moves by the
sensors. However, once a target is beyond the agent’s range it remains uncovered. DSA_MST
has an inherent exploration element. However, the results presented in Sect. 5 will reveal
that this element is not enough to escape local optima in MST problems. Algorithms that
implement methods that enhance local search were proposed for standard DCOPs [24,30,50].
However, some of the methods that are most effective in standard DCOP are not expected to
be effective for DCOP_MST.

For standard DCOPs, a K-opt solution that can be found by a K-opt algorithm [30] gives an
upper bound on the distance from the optimal solution. This guarantee is achieved by allowing
any group of K agents to consider all the constraints they are involved in. As a result, all of
the problem’s constraints are considered by groups of K agents. In DCOP_MST, if a target
is not in the range of any agent it will not be considered. Therefore, a K-opt algorithm is
expected to allow agents to converge to a deployment that results in better coverage of the
targets in range, but it cannot offer the same guarantees as in standard DCOPs when there
are targets outside of the agents’ ranges.

Another method that is most effective for standard DCOPs is the anytime framework
proposed in [53]. In this framework, agents store the best solution that was explored and
this solution is reported when the algorithm is terminated. In DCOP_MST, agents change
their physical position and are expected to maintain coverage of targets that were detected.
Changing to the best solution can require agents to travel a long distance and at the same
time leave targets uncovered. In addition, the method is effective only for static problems
since there are no guarantees on the quality of the solution when the problem changes. Thus,
holding the best position found so far in memory while exploring for new targets is not
expected to be effective for DCOP_MST.

In order to explore the area for new targets while maintaining coverage of targets that
were previously detected we propose three simple but powerful exploration methods. Two
are combined with the MGM_MST algorithm and one with DSA_MST. These three methods
change the parameters of the algorithm temporarily in order to escape local minima. This
approach was found to be successful for local search in DisCSPs [3].

1. MGM with Periodic Double Mobility Range (MGM_PDMR) allows an agent to consider
points within a larger (double) range than their MR for a small number of iterations. This
method assumes that a wider range is possible even though the iteration will take longer.
Therefore, the agents consider a wider range only in some of the algorithm’s iterations,
which repeat periodically (in our experiments, for example, for two iterations out of every
five we used 2 · MR instead of MR).

2. MGM with Periodic Incremented Largest Reduction (MGM_PILR) allows agents in
some iterations to move to a position that results in an increase of the Cur_REQ function
up to a constant bound c. More specifically, line 8 of the algorithm is changed in these
iterations to:

123

514 Auton Agent Multi-Agent Syst (2015) 29:495–536

8. if (L R + c > 0)

Again, this reduced condition is only temporary and is applied periodically. This would
mean that for a small number of iterations the importance (coverage requirement) of
targets in the area is reduced. Notice that the c parameter defines by how much they are
reduced and thus, fine tuning it would avoid abandoning targets.

3. DSA_PILR is similar to MGM_PILR, only here the same approach of periodic reduced
condition is implemented within the DSA algorithm and not within MGM. More specif-
ically, in the iterations where the condition is reduced, the algorithm performs moves
even if the reduction is negative up to c.

In all of the proposed methods, agents are not expected to leave targets with high impor-
tance in order to search for new targets. This is obvious in MGM_PDMR since, as in the case
of MGM_MST, only moves that result in a gain are performed. In the case of MGM_PILR
and DSA_PILR, the c parameter defines the reduced importance of the targets that are already
covered. Thus, in MGM_PILR c is a bound on the increase to the Cur_REQ function that
the method can create by a single move.

3.2.6 Adapting incomplete inference algorithms to DCOP_MST

The algorithms discussed until now have been local search algorithms. Another family of
approaches for solving DCOPs are inference algorithms, in which agents do not propagate
assignments but rather calculate utilities (or costs) for each possible value assignment of their
neighboring agents’ variables. One of the most popular incomplete algorithm at present is
Max-sum, which has been the subject of intensive recent study [11,41,54]. Max-sum operates
on a cyclic, bipartite factor graph of variable-nodes and function-nodes which represent the
agents’ states and constraints, respectively. The complexity of a single iteration of Max-
sum is exponential in the degree of the function-nodes (i.e., the constraint arities).9 We note
that in Max-sum agents act on behalf of variable-nodes and function-nodes in the factor
graph. Commonly, agents act on behalf of variable-nodes representing their own variables.
Function-nodes can be allocated to agents arbitrarily, deterministically, e.g. by index (as
in [54]) or by representing the allocation problem itself as a DCOP and solving it using local
search methods (as suggested in [28]). In any case, the allocation does not affect the actions
performed by the algorithm. However, if the allocation is not balanced then the complexity
of an iteration can increase (when many function-nodes are allocated to the same agent).

Previous work that investigated applications including mobile sensors that need to fol-
low a path and gather information, modeled such scenarios using the DCOP framework by
representing mobile sensors as agents that need to select locations and their tasks/targets
as constraints, and suggested to solve them using the Max-sum algorithm [41]. However, if
all possible future moves of dynamic agents are considered, then all agents are considered
for each task and the constraints’ arity is linear in the number of agents. Thus, the problem
becomes unsolvable for Max-sum even though it is an incomplete algorithm. Previous work
deals with the inherent dynamism of such scenarios by suggesting an iterative process. In each
iteration a DCOP instance is built representing the current situation (e.g., sensor positions)
and in which only limited movements of the agents are considered. Agents run a distributed
algorithm (that might involve several communication cycles) to decide what would be the
best next joint move. After they execute the selected joint move, they build a new DCOP
instance considering their new positions [41]. This approach generates inherent locality for

9 The details of Max-sum are beyond the scope of this paper. The reader is referred to the following papers
for a description of the algorithm [11,54].

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 515

agents, i.e., in each iteration an agent only considers alternative positions it can move to (in
this iteration) and tasks it can fulfill (targets it can cover) when located at these positions.

Thus, we apply Max-sum to DCOP_MST by adjusting the framework suggested in [41]
as follows:

1. Select a random assignment.
2. Generate a factor graph according to the current assignment where each sensor is a

variable-node and each target is a function-node. Variable-node i is connected by an
edge to a function-node if and only if the distance between them is less than or equal to
the sum of MRi + SRi , i.e., the sensor can cover the target after a single move.

3. The agents execute the Max-sum algorithm for a predefined number of iterations.
4. The sensors move to the best position (value assignment) as calculated by the algorithm.
5. A new factor graph is generated according to the new assignment selection and the process

repeats itself.

In general this algorithm could consider targets that can be covered after multiple moves
by an agent. However, this would result in more sensors in range of each target, thereby
increasing the degree of each function-node. This is problematic for Max-sum as it would
exponentially increase the running time of each Max-sum iteration.

The number of iterations that Max-sum performs before each assignment (position) selec-
tion must be selected with care. On one hand, we would like to allow the information regarding
the coverage capabilities of sensors to propagate to other sensors. On the other hand, selecting
a large number of iterations can cause a deterioration in the quality of the solution as a result
of cycles as reported in [11,54]. Furthermore, these iterations of Max-sum constitute only
a single iteration in the global, multi-iteration deployment algorithm, thus, we do not want
to generate unnecessary delays. In our experiments we found that Max-sum converges very
quickly and thus, a small number of iterations (5) was sufficient to get best performance.

As mentioned above, the complexity bottleneck of Max-sum is the generation of messages
by the function-nodes (targets in the case of DCOP_MST). This complexity is known to be
exponential in the number of neighboring agents where, in standard Max-sum, the base in the
power formula is the domain size and the exponent is the number of variables involved in the
function (the degree of the constraint). A number of papers proposed techniques to reduce the
complexity of the calculation required for the generation of messages by the function-nodes
in Max-sum [23,41]. We implemented all of the proposed methods in Max-sum_MST, the
version of Max-sum we adjusted to DCOP_MST. It is important to note that while these
techniques reduce the effective domain size to two, they do not reduce the exponent of the
complexity and thus, the effective number of neighboring sensors that a target can have is
limited (and small).

3.3 Algorithm for the search-and-detection sub-team

The first step toward including a search-and-detection team in DCOP_MST is relaxing the
assumption that there exists an ER function that includes the accurate importance of every
point in the area. Instead, we assume that the function initially includes some distribution
that reflects the probability over the existence of targets in the area. This assumption makes
the model compatible with any level of uncertainty from complete entropy (as in [19]) to
complete knowledge (as we assume in the section above).

Figure 9 illustrates the initial state of a problem. The example includes two types of agents
with different credibility variables. The search-and-detection sub-team is composed of the
agents with the higher credibility while the agents with the lower credibility are in the surveil-

123

516 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fig. 9 Example of the initial state of the full scenario

lance sub-team. The distribution over the probability to find targets in the area is not uniform.
The darker areas are the areas with higher probability. The locations of the targets in this exam-
ple are as in Fig. 8, but are concealed at this point. The initial ER function includes this prob-
abilistic information, giving points in areas with higher probability for a target a larger value.

The initial E R function containing the probabilistic information is copied to another
(initially identical) function we refer to as the search map (SM). Search agents use the SM
when they decide on their path in order to detect targets, and they generate and update a new
ER function with the targets they find. The surveillance agents use only the new ER function,
in the same way as described in Sect. 3. Thus, the new ER function is the device used for
communication between the two teams.

The search agents use the SM function to communicate to each other where they have
recently visited and therefore the probability of the existence of a new target is low. This is
done as follows:

1. The base value of a point in the SM function, Basep , is equal to the value in the initial
E R function. Thus, initially, all points in the SM function are equal to their base value
(notice that these points may have different base values according to the probability for
a target to exist at them).

2. A search agent sa located at some point p at iteration t , causes a decrease in the value
of all points p′ within the sensor range of p. The new value of these points is:
SM(p′, t) = max{0, Basep′ − Credsa}.

3. At each iteration t in which there is no search agent in sensing range from point p, the
SM value of p is incremented as follows:
SM(p, t) = min{SM(p, t − 1) + z, Basep}.
The selection of the value of z determines the intensity in which agents will revisit
locations in the area. It should be adjusted to the expected frequency of target appearances.

Figure 10 presents the adjusted DSA algorithm for a Search Agent Team (DSA_SAT)
in DCOP_MST. As in the case of the Distributed Simulated Annealing algorithm [2], in
DSA_SAT the coordination among agents does not rely on a constant probability alone. In
each iteration of the algorithm the SM value of all points within sensor range of the agent
are set to a lower value according to the agent’s credibility (lines 3, 4). In addition, the agent
updates the ER function with the true importance of the points in its sensing range.10 Then,

10 importance(p) in line 5 is the true importance of point p sensed by the agent.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 517

Fig. 10 DSA_SAT

the agent selects the best position it can move to by calling function get_best_pos(). The
agent moves to this position with probability prob (lines 7, 8).

Function get_best_pos() selects the point within mobility range for which the sum of the
SM values of points within sensing range from it, is maximal.

4 Cooperation between sub-teams

In the previous sections we described two sub-teams performing in the same area, each with
its own task, and a means for communication between them via the E R function. However,
it is reasonable to assume that cooperation between agents from different sub-teams can lead
to better results for the following reasons:

1. Although each sub-team has its own task, they are both working towards a common goal.
2. Agents’ efficiency depends on their location. Therefore, it may be the case that an agent

from one sub-team is in a position that allows it to serve the task of the other sub-team
best.

Common practice in multiagent systems include hierarchical plan structures that allow
agents to assist others when working towards a common goal [15,16,38]. Specifically to the
applications at hand, we assume that search agents have superior technology and can there-
fore perform surveillance with relatively high credibility, while surveillance agents cannot
determine the importance of a target. Thus, we describe the following possible collaborations
between the two teams:

1. Search support (SS): search agents take an active role in the surveillance of targets within
their sensing range. In practice, we consider the credibility of the search team agents when
calculating the current requirement for coverage of targets within the sensing range of
search agents.

2. Alert : agents from the surveillance team increase the value of points in the search map
where they suspect there might be a target. Thus, search agents are encouraged to search
at these locations. In more detail, a monitoring (surveillance) agent that suspects that

123

518 Auton Agent Multi-Agent Syst (2015) 29:495–536

there is a target within its sensing range changes the value of this point in the search map
SM to be very large. As a result, search agents are drawn to it.

3. Avoid Abandoning (AA): search agents do not move to a new location when they are
covering targets which are not reasonably covered by surveillance agents, i.e., search
agents that locate a target wait for it to be covered by surveillance agents before they
continue their search.

All three modes of cooperation described above require agents to be aware of the task
of the other team. The Alert and AA modes further require that agents communicate with
agents in the other team via either the ER or the SM functions.

5 Experimental evaluation

The proposed DCOP_MST model was evaluated using a simulator for MST problems. The
problems simulated are of an area in which the possible positions are a 100-by-100 grid. Each
of the points in the area has an ER value between 0 and 100. The ER function initially included
10 random points with maximum requirement of 100. Each problem features 50 agents with
their initial positions chosen uniformly at random. The mobility and sensing ranges are given
in terms of distance on the grid and are varied in our experiments to demonstrate their effect on
the success of the algorithms. We consider the Fsum joint credibility function with subtraction
operator and Fcprob joint credibility function with �prob operator (Sect. 2.1.1).

In experiments using Fsum, the credibility of surveillance agents was initially set to 30 and
the credibility of search-and-detection agents was initially set to 50. These values were chosen
so that targets with maximum importance (100) require the cooperation of multiple agents.
In addition, this setup allows complete coverage (i.e., Cur_REQ = 0) in the optimal case
and thus we can evaluate the success of the proposed algorithms relative to the optimum. In
experiments using Fcprob, the credibility of surveillance agents was 0.3 and the credibility of
search agents was 0.5. The importance of targets was again set to 100 (i.e., events occur with
probability 1, expressed as a percentage). Notice, Fcprob is not additive but rather submodular.

The reputation model used in our experiments was inspired by SPORAS [49]. As in
SPORAS, all agents are initiated with similar credibility (or ”reputation value” [49])11 and
the effect of the events on the credibility of agents is with respect to their current level of
credibility. The experiments included three types of events:

1. An environmental event that increases a point in the area to a maximum ER value. This
event can represent an intelligence report that some enemy activity is about to happen at
a specific location.

2. The credibility of two neighboring agents decreases by 25 % (to 75 % of what they had
before the event). This event represents a conflict in the reports of the two neighboring
agents.

3. The credibility of a single agent decreases by 50 %. This event represents an agent
suffering from some technical problem.

All results presented in this section are averaged over 50 runs of the algorithm solving
50 independently-generated random problems; most graphs include error bounds, except for
dense graphs where they were omitted for readability. The random elements in each problem
were the location of the targets and the initial location of the agents. Dynamic events were
also selected randomly.

11 In contrast to SPORAS, the initial credibility is not zero since in MSTs we are not concerned with agents
using different pseudonyms.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 519

5.1 Evaluation of the surveillance sub-team

In the experiments described in this section only the surveillance team was evaluated, i.e.,
the ER function that the agents used was accurate and was updated after each dynamic
event. Although agents used methods that find a locally optimal assignment in terms of the
maximum current coverage, we present two global metrics, the maximum remaining coverage
requirement over all targets in the area and the sum of remaining coverage requirements over
all targets.

5.1.1 Effects of technology on MGM_MST

The first set of experiments examined the effect that technology (i.e., the sensing and mobility
ranges) had on the quality of the basic MGM_MST algorithm. These experiments used
problems with 15 dynamic, random events. After each event, we allowed the agents 15
iterations to adjust their positions, then recorded the remaining coverage requirements. The
results when joint credibility is calculated using Fsum are shown in Figs. 11 and 12. Figure 11a
shows the maximum remaining coverage requirement for teams of agents with different
mobility ranges and a fixed sensing range, while Fig. 11b presents the sum of the remaining
coverage requirements for the same teams. Similar results for teams with a fixed mobility

Fig. 11 Effect of varying mobility range on MGM_MST with additive joint credibility function Fsum. a Max
remaining coverage requirement, b sum of coverage requirements

Fig. 12 Effect of varying sensing range on MGM_MST with additive joint credibility function Fsum. a Max
remaining coverage requirement, b sum of coverage requirements

123

520 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fig. 13 Effect of varying mobility range on MGM_MST with submodular joint credibility function Fcprob.
a Max remaining coverage requirement, b sum of remaining coverage requirements

Fig. 14 Effect of varying sensing range on MGM_MST with submodular joint credibility function Fcprob. a
Max remaining coverage requirement, b sum of remaining coverage requirements

range and varying sensing ranges are shown in Fig. 12. Figures 13 and 14 present similar
results when the method used for calculating joint coverage is Fcprob.

It is clear from these figures that in order for the MGM_MST algorithm to perform well, at
least one of the parameters MR or SR should be high. Otherwise, the algorithm cannot handle
events beyond the agents’ ranges and the difference between the coverage requirements
and the actual coverage remains high. In other words, in order to benefit from the quick
convergence and monotonicity of the MGM algorithm, the agents must be equipped with
technology that enables either a large sensing range or a large mobility range. When the
technology is limited, exploration methods are required.

Figures 15 and 16 demonstrate the convergence of the sum of remaining coverage require-
ments by presenting the result for 25 iterations with no dynamic events.12 In Fig. 15 the
sensing range is fixed and the mobility range varies; in Fig. 16 the sensing range varies while
the mobility range is fixed. The results demonstrate a different pattern in convergence. When
the sensing range is static and the mobility range grows, the improvement is approximately
steady throughout the run. This is because the fixed mobility range results in a fixed domain
size, i.e., a fixed number of alternative positions are considered. Thus, the effect of a larger
sensing range from each of them is immediate. On the other hand, when the sensing range
is static and mobility range changes, the number of alternative positions available for agents

12 We omit the maximum remaining coverage here because the effect is not notable until all targets are located.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 521

Fig. 15 Effect of mobility range on convergence of MGM_MST for sum of remaining coverage requirements.
a Additive joint credibility function Fsum, b submodular joint credibility function Fcprob

Fig. 16 Effect of sensing range on convergence of MGM_MST for sum of remaining coverage requirements,
a additive joint credibility function Fsum, b submodular joint credibility function Fcprob

Table 2 Number of messages per iteration of MGM_MST for varying mobility ranges

SR/MR

10/3 10/6 10/9 10/12 10/15

Messages 932 1298 1673 2054 2432

Table 3 Number of messages per iteration of MGM_MST for varying sensing ranges

SR/MR

3/10 6/10 9/10 12/10 15/10

Messages 918 1273 1659 2057 2455

is different; thus, multiple iterations may be required for an agent to detect high quality
locations.

Tables 2 and 3 demonstrate that these ranges also have an effect on the communication
load. When the ranges are larger, agents may have more neighbors and therefore the number
of messages per iteration grows. The results in both tables are similar because the neighboring

123

522 Auton Agent Multi-Agent Syst (2015) 29:495–536

agents are determined by the sum SR +MR. These results were not dependent on the method
used for calculating joint coverage.

5.1.2 Comparison of algorithms and exploration methods

While monotonicity has its benefits, e.g., fast convergence and minor movement by the
agents, a monotonic algorithm like MGM_MST is limited (and performs poorly) when targets
are beyond the agents’ ranges. In order to overcome this limitation, we implemented the
three exploration methods—MGM_PILR, MGM_PDMR, and DSA_PILR—described in
Sect. 3.2.5 and compared them to three alternative, explorative DCOP_MST algorithms and
four baseline algorithms. In this set of experiments, the ranges for all agents were SR = 5
and MR = 10. The parameter c in the PILR algorithms was set to 20. In all the figures in this
set we have the experiments in which Fsum was used depicted on the left of the figures and
the experiments in which Fcprob was used depicted on the right.

The first alternative DCOP_MST algorithm was DSA_MST, described in Sect. 3. In
our experiments the replacement decision was made with probability p = 0.6 when the
alternative position had positive reduction (i.e., DSA-A [50]). The second was DBA [50],
adapted to DCOP_MST. In DBA_MST, agents that detect that they are in a quasi-local minima
(i.e., their L R is non-positive and so is the L R of their neighbors) change the E R function by
reducing the value of all the points in their sensing range by one. The third was DSAN_MST,
an adaptation DSAN [2], a distributed simulated annealing algorithm for DCOPs. Under this
algorithm, each agent chooses a random alternative position within their mobility range in
each iteration. If this improves local coverage, the agent moves to the alternative position. If
this does not improve local coverage, the agent moves there with a probability that depends
on the magnitude of worsened coverage and a temperature which decreases over time. When
new events are detected, the temperature is reset.

Speaking generally, DSA_MST is the least explorative of these algorithms, always con-
sidering the most locally improving position and only decreasing coverage when neighboring
agents both update their positions at the same time. DBA_MST is more explorative, possi-
bly decreasing coverage after becoming trapped in a quasi-local minimum. DSAN_MST is
the most explorative, considering random locations and decreasing coverage when neigh-
boring agents simultaneously move or if an agent stochastically decides to take a locally
non-improving step.

The first baseline algorithm was a naive, random algorithm (“Random”) in which agents
move to a random alternative position within their mobility range in each iteration. The second
was a naive, greedy algorithm (“Greedy”) in which agents move to the position within their
mobility range that offers the local best coverage in each iteration, given their local knowledge.
The other two baselines were greedy algorithms very similar to the approach taken by Krause
et al. [20]. In the centralized baseline (“Centralized”), agents were sequentially placed at the
positions that minimize the remaining coverage requirement given the collective knowledge
of all agents in the team. These positions did not have to be within the mobility range of
the agent placed there, and agents were assumed to be instantaneously positioned in the new
locations, without needing to travel from their old positions. Thus, the centralized solution
is presented as a purely theoretical approximation of the optimal solution at each point in
time, without considering whether that configuration of agents could have been achieved. The
full knowledge baseline (“Full knowledge”) is similar to Centralized but assumes complete,
accurate information of the environmental requirements, including any targets which have
not been detected by any agent.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 523

Fig. 17 Comparison of DCOP_MST algorithms for maximum remaining coverage requirement. a Additive
joint credibility function Fsum, b submodular joint credibility function Fcprob

Fig. 18 Comparison of DCOP_MST algorithms for sum of remaining coverage requirements. a Additive
joint credibility function Fsum, b submodular joint credibility function Fcprob

The results in Fig. 17 present the maximum remaining coverage requirement for all eleven
algorithms. As in the previous set of experiments, after each of the 15 events, the DCOP algo-
rithms ran for 15 iterations and the results presented are the remaining coverage requirements
at the end of these 15 iterations. Unsurprisingly, Random does the worst with at least one
target completely uncovered. DBA_MST initially does well but finds progressively worse
solutions as its objective function becomes distorted by trying to escape quasi-local minima.
DSA_MST, Greedy, and MGM_MST all perform comparably and are generally outperformed
by DSAN_MST, although this gap becomes insignificant after 14 random events with the
additive joint credibility function.

The three proposed exploration methods, MGM_PILR, MGM_PDMR, and DSA_PILR,
perform similarly and outperform the other approaches by a large amount. Coverage quality
also converges to that of Centralized, supporting the conclusion that the proposed approaches
move sensors into effective placements. However, the substantial gap in performance between
the Centralized and Full knowledge algorithms indicates that in some problems at least one
target that could theoretically be covered is still not covered, even with increased exploration.

Figure 18 presents the sum of remaining coverage requirements for ten of the eleven
algorithms; Random performed very poorly and is omitted. These results verify that the
proposed exploration methods considerably outperform the classic DCOP algorithms. As
before, DBA_MST and DSA_MST did not outperform MGM_MST, while DSAN_MST

123

524 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fig. 19 Comparison of local search algorithms and Max-sum for sum of remaining coverage requirements.
a) Additive joint credibility function Fsum, b submodular joint credibility function Fcprob

did. The proposed exploration methods all significantly outperformed DSAN_MST, with
DSA_PILR performing the best. The differences between the algorithms are less apparent in
the experiments using Fcprob, but the same order is maintained on the quality of the results
produced by the algorithms. Furthermore, the relative difference between the Full knowledge
performance and DSA_PILR (which converges to the Centralized coverage quality) is much
smaller than in Fig. 17, indicating that although DSA_PILR occasionally does not cover
every target, it does not leave many targets uncovered.

Figure 19 compares the standard local search algorithms, local explorative algorithms,
baseline algorithms, and Max-sum. The setup in these experiments is the same as in the
experiments presented in Fig. 18 except that the sensing and mobility ranges have been
reduced to SR = 3 and MR = 3. This was necessitated by the running time of Max-sum,
which is exponential in the number of agents that can sense a target after a single move. We
present only the sum of coverage requirements results because the use of small sensing and
mobility ranges resulted in targets being uncovered; thus, all algorithms had similarly large
maximum remaining coverage requirements.

The results indicate that Max-sum performs similarly to standard local search algorithms
while the explorative algorithms produce sensor deployments of much higher quality. The
differences are substantial for both joint credibility functions. It is important to note that
while Max-sum produced similar results to standard local search algorithms in these exper-
iments the standard local search algorithms are able to benefit from larger sensing and
mobility ranges while Max-sum cannot due to its computational limitations. Surprisingly,
MGM_PILR, MGM_PDMR, and DSA_PILR all outperform Centralized after several ran-
dom events. This is because the small values of SR and MR cause many targets to remain
undetected with the Centralized algorithm, which is purely exploitive. By performing explicit
exploration, MGM_PILR, MGM_PDMR, and DSA_PILR can detect these new targets and
thus adjust positions to cover them.

In the next set of experiments, the importance of dynamic domains and dynamic sets
of neighbors (constraint network) in the proposed model was evaluated. Figures 20 and 21
compare the MGM_MST algorithm and the two exploration methods, MGM_PILR and
DSA_PILR, which were found to be successful in the experiments of the proposed model
(presented in Figs. 17 and 18), only using a fixed constraint network and fixed domains.13

13 Notice that the MGM_PDMR method reduces to MGM_MST when the domains are fixed and therefore
is not evaluated in this experiment.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 525

Fig. 20 Maximum remaining coverage requirements of intensive exploration methods when domains and
neighbors sets are fixed. a Additive joint credibility function Fsum, b submodular joint credibility function
Fcprob

Fig. 21 Sum of remaining coverage requirements of intensive exploration methods when domains and neigh-
bor sets are fixed. a Additive joint credibility function Fsum, b submodular joint credibility function Fcprob

Table 4 Average distance an agent moves in 15 iterations for different exploration methods

F MGM_MST MGM_PDMR MGM_PILR DSA_PILR

Fsum 0.3 5.5 53.9 52.4

Fcprob 0.36 5.5 41.8 42.6

The results indicate that when fixed domains and a fixed constraint network are used,
as in the standard model, the exploration methods are not effective. In fact, MGM and the
explorative algorithms produced similar results. It is clear that the dynamic elements in the
proposed model enable efficient exploration.

The success of the proposed exploration methods has a cost as well. Table 4 presents
the average distance an agent moves in 15 iterations for the different exploration methods,
which improve the performance of MGM_MST and for MGM_MST itself. This measure
is important since autonomous mobile sensors are expected to have limited battery power.
Unsurprisingly, we observe a large difference between the movement in the monotonic algo-
rithms and the PILR algorithms. It is interesting to notice that although MGM_PDMR allows
larger mobility ranges in some iterations, the average motion is much smaller than both PILR
versions.

123

526 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fig. 22 Effect of varying period of DSA_PILR. a Max remaining coverage requirement, b sum of remaining
coverage requirements

Fig. 23 Performance of DCOP_MST algorithms relative to the optimal deployment for additive joint cred-
ibility function Fsum. a Max remaining coverage requirement, b sum of remaining coverage requirements

We further evaluate the success of the algorithm that offered the best results in terms
of coverage (DSA_PILR) with respect to the frequency of dynamic events. Figure 2214

presents the results of an experiment in which events were triggered with different but constant
frequency.15 When the number of iterations of the algorithm between events is small (5), the
algorithm produces a lower quality solution (larger remaining coverage requirements). It is
apparent that a larger number of iterations allows the agents to detect the targets and cover
them. On the other hand, as more targets are added, there are fewer “free” agents, and thus
the advantage of additional iterations becomes minor.

In order to investigate the success of our proposed algorithm with respect to the optimal
solution, we ran experiments on much smaller scenarios for which we were able to solve
the problem optimally using brute force search. We considered problems with 4 agents in a
12-by-12 grid world, with with 2 initial targets and 5 other targets that were added as dynamic
events. The rest of the details of the experiments were similar to the previously-presented
experiments. Figure 23 presents the solution quality as a percentage from the optimal solution.
For example, if the sum of the remaining coverage requirements of the optimal solution was

14 Beginning with this experiment, we present only the results for the Fsum method. The results in the
experiments using Fcprob were consistently similar with less apparent differences between the algorithms.
15 We do not present error bars in this graph because they make the figure unreadable due to the similarity of
the results.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 527

10 and the sum for the MGM_MST algorithm was 15, we report 150 %. Obviously, when
we add enough targets, even the optimal algorithm cannot produce a high quality solution;
thus, the differences became smaller with additional targets.

5.2 Evaluation of the complete team

In the following experiments, the performance of the complete team including the search-
and-detection sub-team was evaluated. The problem simulated is similar to the problems in
the experiments above, only in most of the experiments presented in this section, 10 of the
50 agents were search agents and 40 were surveillance agents. The ER function initially had
all points equal to 0 (no known targets). The credibility of search agents was set to 50 and the
credibility of surveillance agents was set to 30. The sensing ranges of search agents was set to
8, and for surveillance agents set to 5 as before. The mobility range of search agents was set
to 15 while the mobility range of surveillance agents was set to 10. The surveillance agents
executed DSA_PILR, while the DSA_SAT algorithm was executed by the search agents.
There were 20 targets with importance 100 which were only revealed once a search agent
was located within sensing range of them. Surveillance agents could only cover targets that
were previously detected by search agents. However, a target that was not yet detected by a
search agent raises the suspicion of a surveillance agent.

In order to present the convergence speed of the algorithms using different levels of
cooperation, the following graphs include results according to the agents’ locations after
each iteration of the algorithm.

In the next set of experiments we evaluated the success of the algorithm we proposed for
the search agent team, DSA_SAT, with respect to the value of the prob parameter, which
determines the level of concurrency and exploration. Figure 24a presents the number of
targets detected by the search agents as a function of the number of iterations performed
since the search started. The different lines represent different prob values used by the
search agents in the DSA_SAT algorithm. It is clear that the algorithm is most successful for
high values of prob. In contrast to standard DSA, high level of exploration does not cause
thrashing. This is because the search agents are not required to converge to a solution, as in
standard DCOP, but rather keep on searching for additional targets. In standard DCOPs, a
high probability to change an assignment causes neighboring agents to change assignment
concurrently. As a result, the algorithm fails to converge since a change in an assignment
does not result in the desired decrease in cost when neighboring agents change assignments
as well. Here, the task of all agents is to explore the area and the success of agents decisions

Fig. 24 Number of targets found by search agents using different levels of exploration. a Without Alert , b
with Alert

123

528 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fig. 25 Total remaining coverage requirements for different levels of cooperation (no search)

Fig. 26 Sum of remaining coverage requirements for different levels of cooperation

is less dependent on the decisions of others. However, for large prob values (e.g., 0.7 and
0.9), there is no notable difference in performance. Figure 24b presents the same phenomenon
when Alert cooperation mode is used. This figure demonstrates the benefit of using this mode
of communication between the surveillance agents and the search agents for faster detection
of targets.

Figure 25 presents the sum of the coverage requirements over all targets in the area.16

In this set of experiments, the initial E R function included all targets. Thus, there was no
need to perform search. The results in Fig. 25 demonstrate the effect of the different levels
of communication on the performance of the surveillance team. It is clear from the result
that when the search agents participate in the surveillance procedure (SS mode) but are not
committed to it, the improvement in performance is minor. However, when the search agents
are aware of the level of coverage on targets found and leave targets only if they are reasonably
covered (AA mode), the performance in terms of surveillance substantially improves.

Figure 26 presents results of a complete experiment, i.e., target locations are not known in
advance and the results are in terms of surveillance coverage (both sub-teams need to perform
their sub-task). The results presented demonstrate how each additional level of cooperation

16 In the rest of the figures the error bounds were omitted due to the density of the graphs.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 529

Fig. 27 Sum of remaining coverage requirements for different levels of cooperation (a closer look)

Fig. 28 Sum of remaining coverage requirements for different divisions of agents between the sub-teams.
a 45 surveillance agents, 5 search agents, b35 surveillance agents, 15 search agents

Table 5 Number of messages per iteration for different levels of cooperation

Cooperation level

Plain SS SS + Alert SS + Alert + AA

Messages 1164 1171 1189 1191

between the two sub-teams improves the overall performance of the entire global team of
sensing agents (plain means no cooperation at all). It is notable that the SS mode by itself
results in a very small improvement. It turns out that the assistance of the search agents to
the surveillance process is effective only if they are somewhat committed to this task. The
effect of the Alert mode is more apparent in the first iterations when surveillance agents are
waiting for targets to be discovered. The AA mode triggers the most substantial improvement
in coverage. To emphasize the difference in performance, we take a closer look at the last
iterations in Fig. 27 and see that towards the end of the run, in the highest level of cooperation,
the coverage of the team is improved by a factor larger than two.

Figure 28 presents the results when there are different proportions between the sizes of
the search sub-team and the surveillance sub-team. The experiments presented on the LHS

123

530 Auton Agent Multi-Agent Syst (2015) 29:495–536

Fig. 29 Total remaining coverage requirements for different levels of cooperation when the initial search map
(initial E R) is non-uniform

Fig. 30 Total remaining coverage requirements for different levels of cooperation on problems with dynamic
events

included 45 surveillance agents and 5 search agents. The experiments presented on the right
included 35 surveillance agents and 15 search agents. It is clear that the number of search
agents affects the time until targets are detected and therefore a large search team allows
faster convergence.

Table 5 presents the average number of messages per iteration when using the different
levels of cooperation. As expected, the search support mode has a small impact on the total
communication and the alert mode has some additional impact as well. The avoid abandoning
mode has minimal impact since it does not require additional messages.

Figure 29 presents results of the same experiment on a non-uniform search map. In this
experiment the search map contained three 10-by-10 areas with higher probability for the
existence of a target. The probability for a target to exist in one of the points in the first special
area was twice that of the points outside the high probability areas; the probability for a target
in the second special area was three times as great as outside the high probability areas. In
the third area, the probability of a target in one of the points was four times that in standard
points. The results indicate that the targets are found very quickly and there is a smaller

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 531

difference in coverage between the different modes in the later iterations. Indeed, additional
information helps the search agents detect targets faster. Interestingly, it is apparent that the
alert mode is more successful in the early iterations than the plain and SS mode. One could
have expected that the alert mode will be less effective here since the search map includes
more information for the search agents. This can be explained as follows. There is still a
chance that targets will appear outside the special areas. These targets can be missed by the
search agents (which are drawn to areas with higher probability) unless there is an alert from
surveillance agents.

In the last experiment we investigated the effect of dynamic events on the performance
of the full team. The scenario was similar to the previous experiments with dynamic events,
however here, the search agents had to find additional appearing targets and add them to
the ER function. The results in Fig. 30 indicate that the higher levels of cooperation were
beneficial. The largest difference found was between the search support mode and the avoid
abandoning mode. Thus, the awareness of the global team objective allowed search agents
to balance between their support of the surveillance agents and their own task of detecting
new targets.

6 Related work

DCOP is a general model for distributed problem solving that has generated significant
interest from researchers [7,14,24,26,31,50]. A number of studies on DCOPs presented
complete algorithms [13,26,31,39]. However, since DCOPs are NP-hard, there has been a
growing interest in the last few years in local (incomplete) DCOP algorithms [30,42,44,50,
53]. Although local search algorithms do not guarantee that the obtained solution is optimal,
they are applicable for large problems and are compatible with real time applications. The
study of DCOP algorithms in dynamic environments is emerging recently [21,25,32,33].
Mailler adapted two distributed constraint satisfaction (DisCSP) algorithms to solve dynamic
problems [25]. This pioneering work was the first to evaluate algorithms according to their
performance through time and not just after convergence. On the other hand, the problems
on which the algorithms were compared were three coloring problems that included dynamic
constraints but no other dynamic elements. In this paper we address distributed optimization
problems that include more realistic dynamic elements. A short paper by Lass et al. [21] called
to the DCR community to show interest and propose models and algorithms for dynamic
DCOPs. Our work is clearly a reaction to their call. A different approach was taken by Petcu
and Faltings [32,33], which adjust a complete inference algorithm (DPOP) to a dynamic
environment by designing it as a continuous self stabilizing algorithm. Furthermore, by
adding costs to assignment changes dynamically, the stability of the solutions obtained was
increased [33]. Another study that investigates the adaptation of complete algorithms to a
dynamic DCOP is [47]. In this study the authors propose the use of bounds that were found
when running a branch and bound based asynchronous distributed algorithms (BnB-ADOPT)
when using the algorithm again after the problem changes, in case the dynamic events did
not affect their consistency. Obviously the approaches presented above of adjustments of
complete search algorithms cannot be applied to scenarios with large teams of mobile sensing
agents where agents have limited local environments as we address in this paper.

Previous attempts to cope with the dynamic properties of mobile sensors have focused
on a specific element of the problem. One example (mentioned above) is the detection of
failing agents, which can be solved by avoiding interaction with them [12]. Although in the
case of failure of agents, detection is a first and important step towards the generation of a

123

532 Auton Agent Multi-Agent Syst (2015) 29:495–536

robust network, detection alone may not be enough. First, the indications for a failure might
not be conclusive. Second, a change in the environment can cause the position of the agent
to no longer be adequate. Thus, it would probably be more effective to relocate the agent
than to avoid interactions with it. Third, in the case of an agent’s failure in an area with high
importance, it is not enough to avoid interactions with it. The goal of the team is to maintain
high level coverage on such delicate areas; thus, other functioning sensing agents should be
moved in that direction.

Another example is the deployment of sensors in an area in order to achieve maximal
coverage [18,34]. In these studies agents make use of virtual potential fields in order to
maintain an adequate distance from one another and, thus, maximize the area they cover.
In our work, a wider range of problems and tasks of mobile sensor teams is considered that
include areas of high importance that require overlapping coverage and sensors with different
level of credibility, etc. We note that the max-coverage problem (i.e., cover the largest area)
is a specific case of the problems to which our proposed model applies.

Placement of sensors in a static network was studied by Krause et al. [20]. Instead of
covering discrete targets, the goal was to maximize the mutual information of spatially dis-
tributed phenomena (such as temperature in a building) modeled as a Gaussian process. While
solving the problem is NP-hard, the authors presented a near-optimal polynomial-time algo-
rithm that exploited the submodularity of the objective function. This is an example of greedy
heuristics providing near-optimal solutions for maximizing submodular functions [27]. While
not directly applicable to the MST coverage problem, it may explain why the local search
algorithms we developed tend to find high quality solutions.

A number of papers considered DCOP for solving static sensor networks. Some examples
are [4,44]. In [19,43], the performance of DCOP local search algorithms when the reward
function is uncertain is investigated. This property is related to mobile sensor nets when
agents do not know the reward of taking a position (value assignment) before they actually
take it. Jain et al. [19] reported experiments in which DCOP algorithms were used to solve
a realistic problem of robots seeking to maximize radio signals were presented. In [43]
the trade-off between the choice to explore new territories vs. the choice to exploit the
available information to maximize performance was investigated. These studies clearly put
the focus on different elements of mobile sensor applications than our study. The assumption
made in our study is that two different teams of agents exist, one whose task is detection
and the other whose task is coverage. The search-and-detection team faces uncertainty and
provides accurate information for the surveillance team. We propose and evaluate means for
cooperation among the two teams.

Stranders et. al. [40,41] investigate scenarios in which mobile sensing agents must follow
a path and gather information. Their approach is similar to ours in the use of the DCOP
model having sensors represented by agents and sensing tasks by constraints. The solution
method they proposed stemmed from the Max-sum algorithm. Max-sum, however, is not
compatible for problems in which constraints have high arity (many agents involved). Thus,
in [41] an iterative framework was proposed in which only a limited movement for each
agent is considered in each iteration, hence the local environment of agents was limited and
the complexity bottleneck of constraint arity reduced. We demonstrate in our empirical study
that when applying Max-sum to DCOP_MST using this framework the resulting algorithm
outperforms other standard incomplete algorithms that are adjusted to DCOP_MST, but is
inferior to specially designed explorative local search algorithms. Moreover, in contrast to
local search algorithms, which benefit from a large local environment, Max-sum becomes
infeasible when the agent’s local environment grows and the constraint arity with it.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 533

The model presented in this paper is constructed on the ability of a reputation model to
detect the quality of agents’ reports (i.e., their credibility). Here we follow common practice
in multiagent systems in general and in sensor networks specifically [6,10,35,49]. The fol-
lowing description of the role of a reputation model explains our choice: ”Reputation models
enable agents to gather information in richer forms from their environment and make rational
inferences from the information obtained about their counterparts” [35]. The information in
a reputation model is shared via interactions of agents. This information takes the form of a
performance rating that is shared by the nodes in the network [35]. In this paper the rating is
used to determine the credibility of agents. Although we present in our experiments a simple
model based on SPORAS [49], any model that assigns a numeric scalar value to agents can
be used.

The problems we address in this paper and the model presented have some similar elements
to the Predator/Prey problem that is studied and draws interest in the multiagent systems
community [1]. The similarity comes from the need of multiple predator agents to be within
range of a prey in order to accomplish their tasks. In addition, a prey agent is dynamic,
as targets can be in our model. The difference is in the requirements of a solution that are
much more constrained in the Predator/Prey problem. In the model of Abramson et al. [1],
the predator agents are required to surround a prey from four different sides. Therefore, the
solutions proposed consider role allocation that defines which predator will be placed on
which side of the prey. For a single prey, the problem can be solved efficiently (by a tractable
algorithm) and therefore the most successful algorithm proposed involved predator agents
sharing their information and all agents computing the final allocation. The problem with
multiple prey agents is NP-hard.

Cooperation among heterogeneous sensors was found to be effective for static sen-
sor/camera networks [45]. Our investigation of cooperation between teams with different
types of mobile sensing agents with different tasks, while applying to a different scenario is
another indication that efficiency can be achieved via cooperation.

7 Summary and conclusions

In this paper we proposed a new model for representing dynamic coordination problems con-
fronting teams of mobile sensing agents. Our model, DCOP_MST, extends the well-known
distributed constraint optimization problem framework to dynamic settings, and allows the
agents to efficiently coordinate their actions while remaining robust to environmental changes,
modifications of the team’s sensing goals, and dynamic variability in the quality of agents’
reports as can be caused by technology limitations or hardware failures.

We demonstrated how the flexibility of DCOP_MST in representing and coping with
dynamic elements easily facilitates the organization of the agents into a surveillance sub-
team and a search-and-detection sub-team. This enables more efficient use of heterogeneous
agents (e.g., dedicating agents equipped with advanced mobility technology to finding new
targets) and allows the system designer to deploy algorithms that are suited to each sub-team’s
goal. We also develop several methods of increasing cooperation between sub-teams, and
empirically show how increasing levels of cooperation improves the performance of both
sub-teams individually as well as the team as a whole.

For the search-and-detection agents we proposed an algorithm based on DSA that our
results demonstrated was most successful with a high level of exploration. For the surveillance
team, we developed an efficient method that allows agents to find the (locally) optimal
alternative assignment/position. We showed how this method can be used to adapt incomplete

123

534 Auton Agent Multi-Agent Syst (2015) 29:495–536

DCOP algorithms such as MGM, DSA, DBA, and Max-sum to the DCOP_MST model.
Our experimental study found that the local search algorithms (MGM, DSA, and DBA)
became trapped in local optima due to insufficient exploration. We thus developed three
new exploration methods that enable agents to search for targets that are currently beyond
their sensing range while maintaining acceptable coverage on previously detected targets.
Our experimental results demonstrated the superiority of using these exploration methods
compared to the naive local search algorithms or Max-sum.

While our paper focused on applications that include teams of mobile sensing agents we
note that the special type of dynamism inherent in DCOP_MST, i.e., the ADeLE, is also
relevant in many other applications. Thus, we presented the more abstract ADeLE_DCOP
model for representing such problems, which DCOP_MST is a specific instance of. Our
results encourage further investigation of distributed AI applications that fall under this
category and can be represented as ADeLE_DCOPs, e.g., robot movement and distributed
planning, in which the set of alternative assignments and relevant constraints depend on the
current assignment of agents. Prior to our study, DCOP was not considered as an appropriate
choice for representing such applications because of its static model. We are convinced that
our main contribution is the broader set of applications for which DCOP will be used to
represent and solve in the future.

In future work we intend to relax some of the assumptions used in the model, e.g., the
accuracy of the reputation model and the ability of search agents to precisely evaluate the
importance of targets. Such inaccuracy is expected to require solutions that are more robust.

Acknowledgments This research has been supported by AFOSR FA9550-08-1-0356.

References

1. Abramson, M., Chao, W., & Mittu, R. (2005). Design and evaluation of distributed role allocation algo-
rithms in open environments. In Proceedings of the 2005 International Conference on Artificial Intelli-
gence 2005, IC-AI 2005 (pp. 565–571).

2. Arshad, M., & Silaghi, M. C. (2004). Distributed simulated annealing. In Distributed constraint problem
solving and reasoning in multi-agent systems, frontiers in artificial intelligence and applications series
(Vol. 112), November 2004.

3. Basharu, M., Arana, I., & Ahriz, H. (2007). Solving coarse-grained DisCSPs with Multi-DisPeL and
DisBO-wd. In IAT ’07: Proceedings of the 2007 IEEE/WIC/ACM international conference on intelligent
agent technology, Washington, DC, USA (pp. 335–341).

4. Bejar, R., Domshlak, C., Fernandez, C., Gomes, K., Krishnamachari, B., Selman, B., et al. (2005). Sen-
sor networks and distributed CSP: Communication, computation and complexity. Artificial Intelligence,
161(1–2), 117–148.

5. Braginsky, D. (2002). Rumor routing algorithm for sensor networks. In Workshop on wireless sensor
networks and applications (WSNA), Atlanta, Georgia, USA, September 2002 (pp. 22–31).

6. Buchegger, S., & LeBoudec, J. Y. (2005). Self-policing mobile ad-hoc networks by reputation. IEEE
Communication Magazine, 43, 101–107.

7. Chechetka, A., & Sycara, K. (2006). No-commitment branch and bound search for distributed constraint
optimization. In AAMAS ’06: Proceedings of the fifth international joint conference on autonomous agents
and multiagent systems, New York, NY, USA (pp. 1427–1429).

8. Collin, Z., Dechter, R., & Katz, S. (1999). Self-stabilizing distributed constraint satisfaction. Chicago
Journal of Theoretical Computer Science, 5.

9. Delot, T., Ilarri, S., Cenerario, N., & Hien, T. (2011). Event sharing in vehicular networks using geographic
vectors and maps. Mobile Information Systems, 7(1), 21–44.

10. Du, R., Xu, M., & Zhang, H. (2006). An extended hierarchical trusted model for wireless sensor networks.
Wuhan University Journal of Natural Sciences, 11, 1489–1492.

123

Auton Agent Multi-Agent Syst (2015) 29:495–536 535

11. Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In 7th International conference on autonomous agents
and multi-agent systems, AAMAS-08 (pp. 639–646).

12. Frye, L., Liang, C., Du, S., & Bigrigg, M. W. (2006). Topology maintenance of wireless sensor networks
in node failure-prone environments. In Proceedings of IEEE international conference on networking,
sensing and control, April 2006 (pp. 886–891).

13. Gershman, A., Meisels, A., & Zivan, R. (2006). Asynchronous forward-bounding for distributed con-
straints optimization. In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI
2006), August 2006 (pp. 103–107).

14. Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding. Journal of Artificial
Intelligence Research, 34, 25–46.

15. Grosz, B. J., & Kraus, S. (1996). Collaborative plans for complex group action. Artificial Intelligence,
86(2), 269–357.

16. Grosz, B. J., & Kraus, S. (1999). The evolution of SharedPlans. In A. Rao & M. Wooldridge (Eds.),
Foundations and theories of rational agency (pp. 227–262). Dordrecht: Kluwer Academic Publisher.

17. He, T., Lee, K.-W., & Swami, A., (2010). Flying in the dark: Controlling autonomous data ferries with
partial observations. In Proceedings of the eleventh ACM international symposium on mobile ad hoc
networking and computing, MobiHoc ’10 (pp. 141–150). New York, NY: ACM.

18. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self-deployment algorithm for
mobile sensor networks. Autonomous Robots Special Issue on Intelligent Embedded Systems, 13(2), 113–
126.

19. Jain, M., Taylor, M. E., Yokoo, M., & Tambe, M. (2009). DCOPs meet the real world: Exploring unknown
reward matrices with applications to mobile sensor networks. In Proceedings of the twenty-first interna-
tional joint conference on artificial intelligence (IJCAI-09), Pasadena, CA, USA, July 2009.

20. Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian processes:
Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9, 235–284.

21. Lass, R. N., Sultanik, E. A., & Regli, W. C. (2008) Dynamic distributed constraint reasoning. In Proceed-
ings of the Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, IL, USA (pp. 1466–1469).

22. Leskovec, J. (2008). Dynamics of large networks. Ph.D. Thesis, CMU, Pittsburgh, PA, USA.
23. Macarthur, K. S., Stranders, R., Ramchurn, S. D., & Jennings, N. R. (2011). A distributed anytime

algorithm for dynamic task allocation in multi-agent systems. In AAAI.
24. Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for DCOP: A graphical-

game-based approach. In Proceedings of parallel and distributed computing systems (PDCS), September
2004 (pp. 432–439).

25. Mailler, R. (2005). Comparing two approaches to dynamic, distributed constraint satisfaction. In AMAS
2005. Proceedings of the fourth international joint conference on autonomous agents and multiagent
systems, Utrecht, Netherlands (pp. 1049–1056).

26. Modi, P. J., Shen, W., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous distributed constraints
optimization with quality guarantees. Artificial Intelligence, 161(1–2), 149–180.

27. Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maximizing
submodular set functions-I. Mathematical Programming, 14(1), 265–294.

28. Ota, K., Matsui, T., & Matsuo, H. (2009). Layered distributed constraint optimization problem for resource
allocation problem in distributed sensor networks. In Principles of practice in multi-agent systems 12th
international conference, PRIMA 2009 (pp. 245–260).

29. Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization: Algorithms and complexity.
Englewood Cliffs: Prentice-Hall.

30. Pearce, J. P., & Tambe, M. (2007). Quality guarantees on k-optimal solutions for distributed constraint
optimization problems. In International joint conference on artificial intelligence (IJCAI), Hyderabad,
India.

31. Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In International
joint conference on artificial intelligence (IJCAI) (pp. 266–271).

32. Petcu, A., & Faltings, B. (2005). Superstabilizing, fault-containing multiagent combinatorial optimization.
In Proceedings of the national conference on artificial intelligence (AAAI) (pp. 449–454).

33. Petcu, A., & Faltings, B. (2007). Optimal solution stability in dynamic, distributed constraint optimization.
In Proceedings of the international conference on intelligent agent technology (IAT) (pp. 321–327).

34. Poduri, S., & Sukhatme, G. S. (2004). Constrained coverage for mobile sensor networks. In IEEE Inter-
national conference on robotics and automation (pp. 165–171).

35. Ramchurn, S. D., Huynh, D., & Jennings, N. R. (2004). Trust in multi-agent systems. The Knowledge
Engineering Review, 19, 2004.

123

536 Auton Agent Multi-Agent Syst (2015) 29:495–536

36. Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate decentralised
coordination via the max-sum algorithm. Artificial Intelligence, 175(2), 730–759.

37. Schiex, T., Hélène, F., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard and easy
problems. In International joint conference on artificial intelligence (IJCAI) (Vol. 1, pp. 631–639).

38. Sen, S., & Durfee, E. H. (1994). The role of commitment in cooperative negotiation. International Journal
of Cooperative Information Systems, 3, 67–82.

39. Silaghi, M. C., & Yokoo, M. (2006). Nogood based asynchronous distributed optimization (ADOPT
ng). In AAMAS 2006: Procedings of the fifth international joint conference on autonomous agents and
multiagent systems (pp. 1389–1396).

40. Stranders, R., Delle-Fave, F. M., Rogers, A., & Jennings N. R. (2010). A decentralised coordination
algorithm for mobile sensors. In Proceedings of the 24th conference on AI (AAAI).

41. Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralised coordination of mobile
sensors using the max-sum algorithm. In International joint conference on artificial intelligence (IJCAI)
(pp. 299–304).

42. Sun, X., Yeoh, W., & Koenig, S. (2009). Trading off solution quality for faster computation in DCOP
search algorithms. In Proceedings of the international joint conference on artificial intelligence (IJCAI),
July 2009 (pp. 354–360).

43. Taylor, M. E., Jain, M., Jin, Y., Yokoo, M., & Tambe, M. (2010). When should there be a ”me” in
”team”?: Distributed multi-agent optimization under uncertainty. In Proceedings of the 9th conference
on autonomous agents and multi agent systems (AAMAS 2010) (pp. 109–116).

44. Teacy, W. T. L., Farinelli, A., Grabham, N. J., Padhy, P., Rogers, A., Jennings, N. R. (2008). Max-
sum decentralised coordination for sensor systems. In AAMAS ’08: Proceedings of the 7th international
joint conference on autonomous agents and multiagent systems (pp. 1697–1698). Estoril: International
Foundation for Autonomous Agents and Multiagent Systems.

45. Ukita, N. (2007). Real-time cooperative multi-target tracking by dense communication among active
vision agents. Web Intelligence and Agent Systems, 5(1), 15–29.

46. Wang, G., Cao, G., Berman, P., & Laporta, T. F. (2003). A bidding protocol for deploying mobile sensors.
In Proceedings of IEEE ICNP (pp. 315–324).

47. Yeoh, W., Varakantham, P., Sun, X., Koenig, S. (2011). Incremental DCOP search algorithms for solving
dynamic DCOPs (Extended Abstract). In Proceedings of the international joint conference on autonomous
agents and multiagent systems (AAMAS) (pp. 1069–1070).

48. Yokoo, M. (2000). Algorithms for distributed constraint satisfaction problems: A review. Autonomous
Agents and Multi-Agent Systems, 3, 198–212.

49. Zacharia, G., Moukas, R., & Maes P. (1999). Collaborative reputation mechanisms in electronic market-
places. In Proceedings of the thirty-second Hawaii international conference on system sciences (HICSS-
99).

50. Zhang, W., Xing, Z., Wang, G., & Wittenburg, L. (2005). Distributed stochastic search and distributed
breakout: properties, comparishon and applications to constraints optimization problems in sensor net-
works. Artificial Intelligence, 161(1–2), 55–88.

51. Zhang, W., Xing, Z., Wang, G., & Wittenburg, L. (2003). An analysis and application of distributed con-
straint satisfaction and optimization algorithms in sensor networks. In Proceedings of the 2nd international
joint conference on autonomous agents and multi-agent systems (AAMAS-03), Melbourne, Australia, July
14–18 (pp. 185–192).

52. Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI Magazine, 17(3), 73–83.
53. Zivan, R. (2008). Anytime local search for distributed constraint optimization. In Proceedings of the 23rd

national conference on artificial intelligence, Chicago, IL, USA (pp. 393–398).
54. Zivan, R., & Peled, H. (2012). Max/min-sum distributed constraint optimization through value propagation

on an alternating dag. In Proceedings of the 11th international conference on autonomous agents and
multiagent systems, AAMAS ’12 (pp. 265–272).

123

	Distributed constraint optimization for teams of mobile sensing agents
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Mobile sensor teams
	2.1.1 Examples
	2.1.2 Sensor Team Organization

	2.2 The DCOP_MST Model
	2.2.1 Standard DCOP
	2.2.2 DCOP with assignment-dependent local environment (ADeLE_DCOP)
	2.2.3 DCOP_MST

	3 Algorithms for solving DCOP_MSTs
	3.1 Local search algorithms for solving DCOPs
	3.2 Algorithms for the surveillance sub-team
	3.2.1 Selecting the optimal position in range
	3.2.2 Theoretical properties and bounds
	3.2.3 Adapting local search algorithms to DCOP_MST
	3.2.4 Runtime example
	3.2.5 Exploration methods
	3.2.6 Adapting incomplete inference algorithms to DCOP_MST

	3.3 Algorithm for the search-and-detection sub-team

	4 Cooperation between sub-teams
	5 Experimental evaluation
	5.1 Evaluation of the surveillance sub-team
	5.1.1 Effects of technology on MGM_MST
	5.1.2 Comparison of algorithms and exploration methods

	5.2 Evaluation of the complete team

	6 Related work
	7 Summary and conclusions
	Acknowledgments
	References

