Auton Agent Multi-Agent Syst (2014) 28:682-719
DOI 10.1007/s10458-013-9238-9

An operational semantics for the goal life-cycle
in BDI agents

James Harland - David N. Morley - John Thangarajah -
Neil Yorke-Smith

Published online: 2 October 2013
© The Author(s) 2013

Abstract A fundamental feature of intelligent agents is their ability to deliberate over their
goals. Operating in an environment that may change in unpredictable ways, an agent needs to
regularly evaluate whether its current set of goals is the most appropriate set to pursue. The
management of goals is thus a key aspect of an agent’s architecture. Focusing on BDI agents,
we consider the various types of goals studied in the literature, including both achievement
and maintenance goals. We develop a detailed description of goal states (such as whether
goals have been suspended or not), and a comprehensive suite of operations that may be
applied to goals (including dropping, aborting, suspending and resuming them). We provide
an operational semantics corresponding to this detailed description in an abstract agent lan-
guage (CAN), and demonstrate on a detailed real-life scenario. The three key contributions
of our generic framework for goal states and transitions are (1) to encompass both goals of
accomplishment and rich goals of monitoring, (2) to provide the first specification of abort
and suspend for all the common goal types, and (3) to account for plan execution as well as
the dynamics of subgoaling. Our semantics clarifies how an agent can manage its goals, based
on the decisions that it chooses to make, and further provides a foundation for correctness
verification of agent behaviour.

J. Harland - J. Thangarajah
RMIT University, Melbourne, Australia
e-mail: james.harland @rmit.edu.au

J. Thangarajah
e-mail: johnt@rmit.edu.au

D. N. Morley
SRI International, Menlo Park, CA, USA
e-mail: morley @ai.sri.com

N. Yorke-Smith ()
American University of Beirut, Beirut, Lebanon
e-mail: nysmith@aub.edu.lb

N. Yorke-Smith
University of Cambridge, Cambridge, UK

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 683

Keywords BDI agents - Goal management - Operational semantics

1 Introduction

Intelligent agent-based systems have been used to develop software applications embedded
in complex dynamic environments as diverse as air traffic control, automated manufacturing,
electronic auctions, Mars rovers, and personalized museum guides [18,27]. Agent systems of
this kind are often designed and structured in terms of mental attitudes, such as beliefs, desires
and intentions (BDI) [29] which allows a natural specification of sophisticated software
systems in terms that are similar to human understanding.

Goals are a central aspect of BDI agent systems. Goals are a concrete realisation of the
mental attitude of desires, and they provide a natural link to human design methods (such as
business rules) [53]. The identification of goals naturally leads to iteratively asking questions
such as “Why?”, “How?”, and “How else?”. Further, goal decomposition leads to teasing out
many levels of requirements and helps to clarify and refine requirements. This is particularly
the case for non-functional requirements (such as saving as many humans as possible, or
minimizing the time spent on a particular task), which are initially difficult to make precise,
but can be specified as abstract goals to be refined later. We restrict ourselves to functional
requirements in this article.

A distinction can be made between system design goals and goals that are part of the
mental state of an agent at runtime. The former are specified a priori by the designer of the
agent system, and are usually static. In fact, the examples of goals just given are system
design goals. The latter goals, those part of the agent’s mental state, are considered and
adopted dynamically by the agent, such as a goal to explore a certain area, or to recharge a
battery. Our focus is on this latter type of goal in this article.

Due to the centrality of goals in agent systems, it is common to thus ascribe a set of goals
to an agent, which is equipped with various techniques to deliberate over and manage this
set. In order to free the designer to concentrate on high-level behaviours, agents designed
to work in dynamic environments must be able to reason about what actions they should
take. They must incorporate deliberation into their execution cycle so that decisions can be
reviewed and corrective action taken with an appropriate focus and frequency.

The centrality of reasoning over goals is seen in the literature. Aspects investigated include
subgoaling and plan selection [35], detection and resolution of conflicts [32,41,43] or oppor-
tunities for cooperation [41,44], checking goal properties to specification [25,45], failure
recovery and planning [5,15,30,34], and suspending and resuming [37], or dropping or
aborting goals [36].

A variety of goals are described in the literature, including goals of performance of a
task, achievement of a state, querying truth of a statement, festing veracity of beliefs, and
maintenance of a condition [7,49]. An agent must manage such a variety of goals, while
incorporating pertinent sources of information into its decisions over them, such as prefer-
ences, quality goals, motivational goals, and advice [26,45]. The complexity of agent goal
management—which stems from this combination of the variety of goals and the breadth
of deliberation considerations—is made more complex because each goal may be dropped,
aborted, suspended, resumed or fail at arbitrary times. While goal properties are usually static
(i.e., they are specified at design time in almost all systems and do not change during execu-
tion, although in principle they could change), crucially their behaviour is dynamic: a goal
may undergo a variety of changes of state during its execution cycle [25]. This evolution may
include its initial adoption by the agent, being actively pursued, being suspended and then

@ Springer

684 Auton Agent Multi-Agent Syst (2014) 28:682-719

later resumed, and eventually succeeding (or failing). A goal may also be arbitrarily aborted
or dropped by the agent. (Maintenance goals have a subtle life-cycle: the goal is retained
even when the desired property is true; it is possible that such goals are never dropped.)

This article presents a systematic analysis of the behaviour of the above types of goals. We
consider the complete life-cycle of goals, from their initial adoption by the agent to the time
when they are no longer of interest, and all stages in between, including being suspended
and resumed.

1.1 Scenario

To illustrate some of the complexity and richness of goal deliberation and management, we
take running examples from a real-life domain. We will detail the domain and demonstrate
our semantics in the sequel.

A Mars rover has landed on the planet’s surface. This semi-autonomous robotic agent has
initial tasks to perform, such as testing communications. Once diagnostics are successful,
the rover will pursue a dynamic set of science experiments. More precisely, each Martian
day (sol) it receives updates from Earth-based mission control on its goals, and it reports
its results to Earth at the end of each sol. The specific experiments to perform include, for
example, taking soil samples and performing various analyses with its built-in instruments.
These experiments take a certain amount of time, and involve a specific predicted resource
cost (such as energy). Further, resources may need to be reserved for communication, in
particular sending results to Earth at the end of the sol. This requires proactive management,
such as de-prioritizing tasks which will violate such resource requirements. The rover has
the freedom to act proactively, and certain events, such as observing a green rock [4] or
unusually high moisture content, trigger the rover to explore such ‘science opportunities’.
To pursue them may mean that the rover suspends any experiments or analyses that it is
currently undertaking. Besides its other responsibilities, the rover will also need to consider
maintenance conditions, such as maintaining a certain minimum amount of charge, or never
moving out of communication range with the lander.

1.2 Contribution

Our work extends previous efforts in three directions. These contributions come in two areas.
Our first area of innovation is to develop a rich and detailed specification of the appropriate
operational behaviour when a goal is pursued, succeeded or failed, aborted, suspended, or
resumed. Our first contribution is to include sophisticated maintenance goals, along the lines
of Duff et al. [16], that encompass proactive behaviour (i.e., anticipating failure of a given
condition) as well as reactive behaviour (i.e., waiting until the condition becomes false), and
allow for different responses in each case. This contrasts over most work on maintenance
goals, in which only the reactive behaviour is developed [25,49].

In the same area, our second contribution is to develop an appropriate set of states for goals
(which generalizes the two states of suspended and active of van Riemsdijk et al. [49]),
and a set of operations to move goals between these states. These operations are richer than
previous works, by including suspending and resuming for all the common goal types, and the
corresponding state transitions which can be non-trivial. We provide a detailed specification
and a formal operational semantics.

Our second area of innovation is to address execution of plans to achieve goals within
our semantics. The spirit of our work is shared by Morandini et al. [25], who build on van
Riemsdijk et al. [49] by providing operational semantics for non-leaf goals, i.e., semantics

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 685

for subgoaling and goal achievement conditions. In this area, our third contribution is to
encompass the same dynamic execution behaviour, but further consider plans as well as goals.
Thus we consider the execution cycle, not only the design phase like Morandini et al. By
expressing the formal operational semantics for our generic framework in the agent language
CAN [31], we remain independent of the specifics of particular agent implementation. We
have developed a prototype implementation of the CAN rules of the semantics, in Prolog,
as a proof of concept. Our semantics clarifies how an agent can manage its goals, based
on the decisions that it chooses to make, and further provides a foundation for correctness
verification of agent behaviour.

1.3 Previous work

A preliminary version of this work was discussed at the DALT’ 10 workshop [39,40], and a
brief summary appeared at the ECAI’ 10 conference [38]. This article expands the exposition
throughout, formalizes the concept of plans, extensively reworks the operational semantics,
extends the discussion of related work, and includes a significantly more detailed and for-
malized scenario. The new or extensively revised material approximates 50 % of the article.

1.4 Organization

The article is organized as follows. In Sect. 2 we provide background, including the intro-
duction of various types of goals, and then in Sect. 3 describe the Mars rover domain. In
Sect. 4 we specify goal management behaviours, in terms of a life-cycle of goal states and
the transitions between them. In Sects. 5 and 6 we develop the operational semantics for our
proposal and illustrate with a worked example. In Sect. 7 we discuss related work, and in
Sect. 8 we present conclusions and directions for further work.

2 Background

In this section we give necessary background. We define the notion of goals and review
mechanisms for goal suspension and resumption, enumerate the types of goals, and define
the notion of plans that we will use.

2.1 Goals and goal manipulation

The popular Belief-Desire-Intention model of agency ascribes a set of propositional attitudes
to the agent: traditionally, BDI [29]. In the BDI and other contemporary models of agency
designed for cognitive agents, goals and their management hold a central role [11,49].

Winikoff et al. [52] argue for the importance of both declarative and procedural represen-
tations of goals. We follow their syntax of goals, using the above robot rescue scenario as a
running example. Goals have a specification with both declarative and procedural aspects.
We suppose that a goal g has a context (or precondition) that is a necessary condition before
the goal may be adopted, a success condition S that denotes when the goal may be considered
to have succeeded, and a failure condition F that denotes when it may be considered to have
failed. The precondition of a goal can be seen as stating when the goal is applicable. It may
be empty, i.e., always true. We say that a goal is applicable if its context is true, and not
applicable otherwise.

@ Springer

686 Auton Agent Multi-Agent Syst (2014) 28:682-719

For example, consider an autonomous rover on Mars. As it operates best during sunlight
hours, the rover may be required to return to its base at dusk. This can be achieved by having a
goal that requires the rover to return with a precondition that it is nearly dusk. When the time
is reached, this goal is applicable, and hence becomes active. Similarly, ‘science opportunity’
goals, such as investigating a particular type of landscape if it is observed, can be modelled
by an appropriate use of preconditions. Further discussion on these points is in Sects. 3 and 6.

2.1.1 Mechanisms for abort, suspend, and resume

Thangarajah et al. studied mechanisms by which an agent can correctly drop or abort [36],
or suspend and resume [37] goals and plans. Since our treatment of the goal life-cycle allows
for the agent performing these operations on its goals, we provide a brief summary of that
work in order to make this article self-contained. We describe primarily the mechanisms
for goals; those for plans are similar. For details, we refer to the original papers. A detailed
understanding of the operation of the mechanisms is not required for this article.

First, should an agent decide to drop a goal, it simply does so. The goal and any plans
related to it are halted; the goal is discarded with no clean-up and no further action. Second,
by contrast, should an agent decide to abort a goal, the agent performs any clean-up actions
that might be required, before dropping the goal. These clean-up actions are described in the
goal’s abort method. For example, the rover notifies mission control that it is abandoning
some science goal, before it drops the goal. Aborting a goal thus given opportunity to ensure
that any plans being executed for it are properly aborted, rather than being immediately
discarded.

Third, should an agent decide to suspend a goal, it executes the suspend method attached
to the goal. This will suspend any plans in execution for it. When suspended, a goal waits
until the agent decides that it should resume (the agent may also decide to drop or abort a
suspended goal). To do so, it executes any resume method attached to the goal. The change
in world state since the goal was suspended means that plans that were in execution may or
may not be valid. It is the responsibility of the resume method either to check and re-activate
any previously suspended plans, or to drop them and restart the goal.

It is worth noting that suspend and resume methods, like abort methods, are assumed not
to fail [37]. We also note that these methods, provided by the agent designer, are optional:
the agent has default methods that apply if not overridden. Again, for details we refer to the
cited works.

Finally, the decision of an agent to change the state of a goal will be indicated by an
appropriate addition to its beliefs (as described below). This means that, for example, an
agent’s decision to suspend a goal g will be made apparent by the agent adding a formula
suspend(g) to its beliefs. The advantage of this approach is that it makes it straightforward
to combine such top-level decisions (see Sect. 4.3) with other changes to be made, such as
suspending a subgoal when its parent goal is suspended.

2.2 Goal types

Braubach et al. [7] are among those who survey the types of goals found in agent systems.
The consensus in the literature agrees that perform, achieve, query, test, and maintain
cover the widespread uses of goals [7,13,49,52].

We observe that querying and testing goals can be reduced to achievement and performance
goals, respectively [49], and do not dwell on them. As noted, often a query goal reduces to

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 687

a simple test on the state of the agent [49]. This is why some agent programming languages,
which have a construct for testing, do not call this a test goal. We remark that, as constructed
in some languages, query goals can unify variables in plans.

We note the additional and compound goal types proposed in by Winikoff et al. [51].
These goal types are defined using Linear Temporal Logic (LTL). Chief among them is an
‘achieve and maintain’ goal type. Extending our work to such compound goals is reserved
for the future.

Next we consider the goal types achieve and perform, and then goal type maintain.
Let B denote the beliefs of the agent, represented for example as a set of formulae over a
language ¢. Let = : £ — ¢ be an implication operator with the natural extension to sets of
formulae, such as B, treating them as a conjunction. We assume the existence of belief update
operators, which we will write as B U {¢} and B\{¢} and which make ‘minimal’ changes to
the belief sets such that B U {¢} = ¢ and B\{¢} ¥~ ¢. The precise form of B, ¢, and the
update operators will not be central to our semantics. Our examples assume that standard
first-order logic will be used; richer logics such as epistemic logics could be used, but apart
from a minimum class of formulae that can be used as beliefs, the precise nature of the logic
used is immaterial.
achieve(k, S, F): reach a state S These goals, sometimes called goals-to-be, demand that
some state of the world S be reached. The goal is applicable if its context « is true. When
the goal is applicable, an agent may adopt it, whereupon to reach S, the agent generates and
executes plans. The goal should not be dropped until the state is achieved or is found to be
unachievable, signified by the failure condition F. k, S, and F are drawn from the language
£ as B.

An achieve goal checks its success condition during plan execution and after a plan com-
pletes. If the success condition S is true (at any point during execution), the goal terminates
successfully; if the failure condition F is true (at any point during execution), the goal ter-
minates with failure. Otherwise, the goal must return to plan selection or generation, even if
the previous plan completed successfully.

Example Task the rover to explore a rock called Souf £1é. Formally, the goal is:
achieve(dawn, explored(Soufflé), dusk A —explored(Soufflé))

where dawn and dusk are conditions about the Martian day, and explored (X) denotes the
completed exploration of Martian feature X.

Performance goals, sometimes called goals-to-do, demand that at least one plan in a given
set of plans be successfully executed. They do not require any particular state of the world
be achieved. A perform goal succeeds if one or more of its plans complete execution; it fails
otherwise, such as if no plan is applicable or all applicable plans fail to execute. Hence, the
difference between a performance goal and an achievement goal is that in the former the
agent aims to accomplish some plan, while in the latter the agents aims to reach some state.

We observe that performance goals can be modelled using achievement goals, by means
of a success condition that is the success of one or more of the plans. At the same time, it
is worth noting that achievement goals can be simulated by performance goals provided the
agent language has a mechanism to check whether a particular belief is true [47]. Hence,
although perform goals are useful in practical agent programming languages, in the sequel
we distinguish between two types of goals: achievement and maintenance.

Achievement goals are goals of accomplishment: they all directly result in activity. Main-
tenance goals, by contrast, are goals of monitoring, in that they may give rise to other goals

@ Springer

688 Auton Agent Multi-Agent Syst (2014) 28:682-719

when particular triggering conditions are met, but they do not themselves directly cause
activity. We remark further on the achievement—-maintenance dichotomy in Sect. 7.

Letm : £ x B — {T, L} be some prediction mechanism, for example using lookahead
reasoning (e.g., [20,44]). The prediction mechanism of an agent predicts whether a given
formula will be true in the future, in light of its current beliefs. We leave the details of the
temporal extent of 7 to previous works [3,16]. We will abbreviate 7 (p, B) where p € ¢ as
(p).

We can now define a maintenance goal as follows.

maintain(x, C, R, P, S, F): keep a condition C true Maintenance goals monitor a main-
tenance condition, C, initiating a recovery goal (R or P: see below) to restore the condition
to true when it becomes false. The maintenance condition is specified by the agent designer.
The maintenance goal is applicable if its context « is true. S and F are the success and failure
conditions, respectively.

Note that a recovery goal is initiated, not a plan. More precisely, as introduced by Duff
et al. [16], we allow a maintain goal to be reactive, waiting until the maintenance condition
is found to be false, i.e., B |= —C, and then acting to restore it by adopting a reactive
recovery goal R; or to be proactive, waiting until the condition is predicted to become false,
i.e., B = w(—C) and then acting to prevent it by adopting a proactive preventative goal P.
Although not specified in prior work, for simplicity and clarity we will insist that R and P
be achieve goals. The maintenance goal continues until either the success condition S or
failure condition F become true, whereupon it may be dropped.

Duffetal. specified R and P explicitly in their formulation of maintenance goal. We follow
their work, noting that the agent designer might want to specify a goal R (respectively, P)
to be triggered when B = —C (respectively, B = 7 (—C)). Of course, the designer could
specify R to have its success condition as the achievement of C (similarly for P) as a default
behaviour. Our approach in this article is agnostic on how the agent finds a plan (or sequence
of plans) to achieve a particular goal. In particular, this applies to R and P. The agent could
look up plans in a plan library, or generate plans at run-time, or both, or neither.

Example Ensure that the rover is always adequately charged. Formally, the goal is:
maintain(rover_online, battery_level > 10%, R, P, false, battery_failure)

where battery_level denotes the rover’s present charge level, and 10 % is a threshold level
above the critical low charge level. The recovery goal R is achieve(true, b, a)ttery_level >
30 %battery_failure. The preventative goal P is achieve(true, charge > 60 %, battery)
_failure. This maintenance goal is persistent for the life of the rover: hence it has no success
condition (it continues for ever) and no failure condition other than hardware failure (indeed,
if it fails, the rover is left at a critical low charge, whereupon emergency programming will
override the agent executive).

We remark that in future work, it could be interesting to define an alternative semantics for
proactive maintenance goals, namely to try R should P fail, and only drop the maintenance
goal should R also fail. Such behaviour could be achieved with the current semantics of
Duff et al., by programming the agent’s plan to achieve P as: try to prevent violation of
maintenance condition C, and if that fails, then try to restore it.

2.3 Plans

A goal states the outcome to be achieved, but not how to do it. A plan specifies how to
achieve a goal. Put another way, the procedural aspect of goals is represented by plans,

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 689

which describe ways of realizing the goals. Since we have focus on the two goal types,
achievement goals and maintenance goals, and since maintenance goals trigger plans indi-
rectly through achievement R or P goals, we only need consider plans for achievement
goals.

Many BDI-agent systems specify a particular mechanism for finding a plan to achieve
a given achievement goal. These often involve friggers (a change of state that causes
the plan to be performed), and a context or precondition that specifies the conditions
under which the plan is applicable. Instead, we simply assume that given an achieve-
ment goal, we can abstract away the process of means-end reasoning to derive a plan
using a procedure mer, which is used to associate plans with goals. As there may be sev-
eral possible choices of plan for a given goal, depending on the agents beliefs and the
agent’s other goals, mer takes as input the given goal, the agent’s beliefs, and the agent’s
goals.

For our purposes, a plan consist primarily of a plan body, a specification of things to do.
Because of this, we will often use the terms plan and plan body interchangeably. A plan
body consists of a combination of goals and atomic actions that are performed to achieve an
achievement goal. When executed, a plan may either succeed by running to completion, or
it may fail at some point.

While a plan does not itself have success and failure conditions, as these are specified by
the achievement goal, a plan may have procedural success and failure methods (i.e., subplans
which must not fail) that are invoked upon its success and failure respectively [52]. A plan
may have other dedicated procedural methods attached, such as an abort clean-up method
[36], and suspend and resume methods [37].

In order to evaluate the conditions used in plans (and other formulae), it is necessary to
have an appropriate reasoning system, so that we can evaluate whether the agent’s beliefs
imply a given condition or formula. The precise specification of such a reasoning system is
not required for the purposes of this article, but it would be reasonable to assume that the
conditions used in plans are a subset of the formulae that can be used in the language of the
beliefs B of the agent, so that such conditions can be evaluated. First-order classical logic
will suffice for the examples used in this article.

We will use the CAN language to describe plan bodies [31]. We introduce CAN more
widely in Sect. 5 where we use it for our operational semantics. A plan body consists of any
of the following:

— An achievement goal as described above.

— A request to perform a primitive, atomic action a. To simplify the semantics, we assume
that the success or failure of an action can be accurately predicated using a precondition
predicate, pre(a). The precondition is such that execution of the action will succeed if
the precondition follows from the beliefs of the agent at the time the action is performed
and will fail otherwise.

— The nil plan body always succeeds.

— The fail plan body always fails.

— The belief update plan bodies +¢ and —¢, where ¢ € £ is a condition in the beliefs
language, which change the agent’s beliefs B by applying the belief update operators to
make the condition ¢ true or false respectively.

— The test plan body ?¢, where ¢ is some condition, will succeed if ¢ is true at the time ?¢
is executed and fail if it is not.

— The wait plan body ¢ : P, where ¢ is a condition and P is a plan body, will delay execution
of P until ¢ is true.

@ Springer

690 Auton Agent Multi-Agent Syst (2014) 28:682-719

— The sequential construct P; P>, where Py and P, are plan bodies, executes P; and if that
completes successfully, executes Ps. If either of those fail, then the sequential combination
fails.

— The parallel construct P || P>, where P; and P, are plan bodies, concurrently executes the
two subplans.

— The ‘or-else’ construct P; > P,, where P; and P, are plan bodies, first executes P; and
then, only if P; fails executes P,.

— The construct (¢; : P1,¢2 : P, ... | contains a set of plan bodies guarded by conditions.
Execution of this construct selects a guard ¢; that is currently true and executes the
corresponding P, if that fails, a different guard condition ¢; that is now true is selected
and P; executed, and so on until there are no remaining guard conditions that are true, at
which point it fails.

For example, the plan body consisting of three subgoals:

achieve(true, Loc(rockl), false);
achieve(rrue, SampleCollected, false);
achieve(true, Sample Analysed, false)

will sequentially create subgoals to move the rover to the location rock1, collect a sample,
and analyse it.

It should also be noted that we have not included CAN’s ‘event plan body’, which adds
an event to the agent’s beliefs, and which is commonly used in conjunction with the above
plan constructs. We will discuss this further in Sect. 5.

Finally, recall that we do not specify any particular mechanism for associating a plan with
an achievement goal. As noted earlier, we only assume that an agent has some mechanism
that generates a plan for a given achievement goal.

3 Scenario domain

In 1997, the US space agency NASA landed the robotic rover Sojourner on Mars. This was
the first successful US lander since the Viking missions of the 1970s, and the first successful
Mars rover (although the Soviets were close in 1971 [1]). In 2004, NASA landed the pair
of rovers, Spirit and Opportunity. Like, Sojourner, Spirit and Opportunity could travel up
to 100 m per sol (Martian day). Communication with Earth is intermittent (the Deep Space
Network communication system is only available a few times during each sol) and delayed
(round trip communication time between Earth and Mars is between 8 and 42 min). Hence,
since there is no prospect of teleoperation control, the rovers were tasked with higher-level
command sequences and endowed with some autonomous wayfinding capability and other
functions [2].

More recently, NASA landed the rover Curiosity on Mars in 2012. Curiosity is a step
forward in terms of size, capability, and autonomy. It is powered by a nuclear radioisotope
thermoelectric generator rather than by solar energy, for instance, and can travel up to 200 m
per day, and has greater processing power, storage, and scientific capability [22].

One motivation for increased autonomy is greater robustness. “Several high-level goals
and decisions could be taken into the work environment rather than made on Earth” state
Siebra et al. [33]. Consider the example human error in specifying a (high-level) command
sequence, which would result in the rover being outside of communications range with its
lander. In this case, a maintenance goal can automatically trigger, causing the rover driving

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 691

back towards the lander [33]. Further, increased autonomy gives increased robustness and
agility in responding to unexpected events.

Bordini et al. [4] summarize a scenario inspired by a real incident that occurred with
Sojourner [50]. The rover was commanded the following high-level sequence for one sol:

. Back up to the rock named Soufflé;

. Place the arm with the spectrometer on the rock;
. Do extensive measurements on the rock surface;
. Perform a long traverse to another rock.

AW N =

“In this particular sol operation, it turned out that the rover did not position itself correctly
to approach the rock with the spectrometer arm. The misplaced spectrometer meant that no
useful data was collected, and that particular rock could not be visited again, hence a science
opportunity was lost.” The authors point out the need for flexibility in rover operation.

Further, “an important kind of unexpected event is the detection of science events. The
rover planner needs to decide if it will respond autonomously to such events, adding them to
its agenda. If the rover is not prepared to deal with this new event, questions raised as a result
of its analysis can be explicitly sent for additional analysis by ground teams” [33]. Hence,
another motivation for increased autonomy is the amount of science that can be achieved.

The stated medium-term goal of NASA is to send manned human missions to Mars
[21,33]. The intention is to progress from single agent rovers (current art), to multi-agent
rover teams (future), to human and multi-agent teams working together on Mars (eventual).
Thus, intelligent agent techniques are both warranted and required for deployed rovers.

3.1 Curiosity scenario

We use the Mars rover domain [4,17,50] as a running example in this article, culminating
in a detailed execution trace of our semantics on a goal-rich vignette. We consider a single
rover like Curiosity. The rover only operates during the Martian daytime, as its cameras and
imaging devices function in light; however, because of its nuclear power, the rover is not
dependent on sunlight or stored charge for communication. Each sol the rover receives new
high-level goals from mission control. It has autonomy to prioritize among goals of the same
priority. The first main type of achievement goal is movement (go to a location), which the
rover achieves by lower-level waypoint planning and movement. The second type of goal is
science (analyze a rock, obtain and analyze a soil sample, take imagery, etc). The third type
of goal is communication (upload data and results). In addition, the rover is on the lookout
for ’science opportunities’, as described earlier. An important mission goal is investigating
whether environmental conditions have ever been favourable for microbial life.

Besides achievement goals, the rover has various maintenance activities to perform, either
autonomously or as specifically tasked. These can include to stay within a certain area, stay
within communication range of the lander or orbiters, maintain within tilt limits, maintain
battery levels, keep within temperature bounds, and perform daily maintenance activities.

The rover’s resource include active and passive heating and cooling capabilities, a pair
of batteries, a nuclear power source, multiple communication antenna (low and high x-band
which can both communicate with Earth, and UHF which can communicate with relay
orbiters), a robotic arm with sensors and a drill bit, multiple imaging devices (hazard avoid-
ance cameras, navigation cameras, wide-angle mast camera, cameras on its robotic arms, etc),
a suite of scientific instruments (spectroscopy, meteorological, radiometer, x-ray diffraction),
and flash storage memory. Different activities may require different resources (instruments,

@ Springer

692 Auton Agent Multi-Agent Syst (2014) 28:682-719

Experiment

o
&
o
»
o
&
o
EN
0
>
Q
=
o
(1]
EY
(@]
>
Q
=
o
1]
©
(%)
&
n
N

Fig. 1 Goal-plan trees for basic Curiosity scenario

communication), generate different amounts of heat, and have energy and storage require-
ments.

Clearly, modelling the complete functionality of Curiosity is a task of considerable com-
plexity; in this article, we adopt a set of simplified examples based on the following scenario.
Curiosity has been tasked with an achievement goal Experiment, which will involve it mov-
ing to a specific location and performing particular analyses on what it finds there. Curiosity
has a maintenance goal Charge which ensures that its batteries contain a certain minimum
level of charge, and a science opportunity goal Sci Opp, which is triggered when its mast or
arm cameras detect a particular colour of rock, which it will then approach and investigate
for signs of microbial life. The basic operation of Curiosity will thus involve moving to a spe-
cific location to carry out experiments and communicating their results to Earth, recharging
batteries when necessary, and watching for opportunities to pursue its science opportunity
goal.

There are many ways in which this simplified scenario could be extended, such as adding
concurrent goals of achievement, more maintenance goals (such as temperature control, or
requiring Curiosity to roam within a certain area), and ‘scheduled’ goals, such as commu-
nicating with Earth at a certain time or performing regular maintenance tasks. Section 6
examines this scenario in detail as a worked example of our operational semantics.

Figure 1 depicts goal-plan trees [41] for the scenario. A goal-plan tree (GPT) consists of
alternating levels of goal nodes and plan or primitive action nodes. The default semantics of
child nodes of a goal node is OR: that is, the goal is satisfied if any one of the child plan
nodes succeeds. The default semantics of child nodes of a plan node is AND: that is, the plan
succeeds if all of its child goal nodes are satisfied.

In the Curiosity scenario, the robot has three top-level goals, Experiment, Charge (a
maintenance goal), and Sci Opp described earlier. We can see the plan that can achieve
Experiment, a four-step sequence, and the plan that can achieve SciOpp, a two-step
sequence. Being a maintenance goal, Char ge has a different semantics. The dashed lines indi-
cate that its children are adopted as necessary to maintain the goal’s maintenance condition.

4 Goals states and transitions

We now move towards a characterization of goal states and the transitions a goal undergoes
between these states. Our focus is the life-cycle of each particular goal that the agent has.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 693

activate (A)

respond

Monitoring Active
reactivate (M)

@ consider
O

activate (M)

reconsider

suspend reactivate
(M)

feactivate (A)
re-respond (M)

suspend

abort
suspend
Suspended preen

Fig. 2 Goal life-cycle composed of abstract states. A—achieve goal, M— maintain goal

Hence, our perspective is that of an individual goal, rather than the overall agent per se.
This means that we will not be concerned with issues such as the agent’s overall deliberation,
generation of goals (see, e.g., [11]), prioritization of goals, or reasoning behind goal decisions
(e.g., the reason why to suspend or resume a goal). These relevant topics are outside the scope
of this article.

4.1 Abstract goal states

Our objective is to specify the life-cycle of goals and the mechanisms of the agent on its
goals, i.e., how the agent can manipulate its goals. The life-cycle we capture as four states,
Pending, Monitoring, Active, and Suspended, shown in Fig. 2, together with the auxiliary
state Aborting, the initial state (left), and the terminal state (right).

The drop transition is depicted by a single arrow from the outer enclosing box to the
terminal state. This single arrow indicates that the same transition to the terminal state occurs
from each of the four states within the enclosing box. As explained below, states Pending
and Monitoring share the same abort transition directly to the terminal state, while states
Active and Suspended both transition to Aborting by their abort transitions. Note that
transitions for succeed and fail are not shown explicitly, because when a goal succeeds or
fails, it is dropped, i.e., it follows the drop transition.

Some transitions are essentially controlled by conditions, while others depend on an
explicit agent decision (or a combination of conditions and a decision), as will be made
precise in our formal semantics.

A new candidate goal may arise from a source external or internal to the agent’s control
cycle [29]. External to the control cycle, it may arise from obligations or commitments
concerning other agents, or from the agent’s own motivations. Internal to the control cycle, it
may arise from subgoaling within an executing plan. Either way, a new candidate goal begins
life in the Pending state once the agent has decided to consider the goal.

It should be noted that the states and transitions in Fig. 2 refer to goals only. In general,
when there is at least one goal in the Active state, there will be at least one plan executing.
Note that plan execution only takes place when there are no changes in goal states, so that
any change in the state of any goal takes preference over any executing plan. This point is
made explicit in our semantics (see Sect. 5).

In the next section we overview the possible operations on goals. Then we describe the goal
control cycle in detail, including the mechanisms to perform the goal operations of interest.

@ Springer

694 Auton Agent Multi-Agent Syst (2014) 28:682-719

4.2 Goal operations

Goal operations are the mechanisms of an agent on its goals, i.e., how the agent can manipulate
its goals. They correspond to transitions between states, as we detail in the next section. The
transitions can be seen in Fig. 2.

We first informally summarize the set of goal operations that we consider:

— consider. Adopt a goal.

— activate. Begin activity on a goal. The nature of ‘activity’ differs between achieve and
maintain goals.

— respond (maintain goal). Act to restore or prevent violation of the maintenance condition.

— suspend. Pause activity on a goal.

— reconsider. Resume (in state Pending) a goal which had no activity when suspended (i.e.,
was Pending).

— reactivate (achieve goal). Resume activity on a suspended goal.

— reactivate (maintain goal). Resume monitoring activity on a goal whose maintenance
condition is not violated and not predicted to be violated.

— re-respond (maintain goal). Resume activity on a suspended goal, whose maintenance
condition is violated or is predicted to be violated.

— abort. Terminate a goal, performing clean-up operations as may be necessary.

— drop. Immediately discard a goal, without performing any clean-up. This includes termi-
nating a goal after success or failure.

4.3 Transitions between states

The heart of our work is the effects of different operations that an agent may apply to its
goals of different types, in each of the four basic states introduced. We next describe in detail
the life-cycle of goals over these states.

Each operation corresponds to a transition between states. There are two types of such
transitions. The first type of transitions are operations that follow from a top-level command:
a decision by the agent’s deliberation to impose an operation upon a goal. For instance, an
agent might choose to abort a goal that (otherwise) it might have continued with.

The second type of transitions are operations that are mandated by the life-cycle of the
goal or the nature of the agent’s design. These transitions are triggered by conditions; the
agent does not make a deliberate decision. For instance, consider a goal that has a plan
attached, which the agent is executing. A common design for an agent implies that if the goal
is aborted, the plan should be dropped: there is no deliberative decision required.

Recall that each operation on a goal that results in a change of the goal’s state is manifest
by an addition to the agent’s beliefs about the goal (Sect. 2.1). For example, for a decision to
suspend a goal g, the agent adds a formula suspend(g) to its beliefs. Note that it is beyond
the scope of this article to consider how the agent comes to this conclusion: our focus is on
managing the consequences of such decisions, rather than on the reasons for making them.

Before we discuss the goal states, we remark further about dropping goals. To any goal in
any state except Aborting, the drop operation implies that the goal g and any plans related to
the goal are halted; the goal is discarded with no further action. That is, any plans in execution
in service of g are stopped immediately and removed from the agent’s mental state, and g
itself is removed from the agent’s mental state. Figure 2 depicts by the grouping oval that the
drop operation can apply to any of the four goal states within the oval. The agent may choose
to drop a goal if, for example, it believes the goal is accomplished, is no longer required,

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 695

impossible, or if it inhibits a higher priority goal. Note that there are three essential cases
here: the goal is dropped because it has succeeded, dropped because it has failed, or dropped
because the agent has decided to drop it; the last is a top-level command.

4.3.1 Pending state

Goals in the Pending state are inactive, awaiting the agent to deliberate over them and
execute a particular operation. The activate operation on an achieve goal transitions the
goal to the Active state where the goal is pursued. By contrast, the activate operation on a
maintain goal transitions the goal to the Monitoring state where the agent will monitor the
goal’s maintenance condition. (The agent does not monitor the condition while the goal is
Pending.)

The suspend operation takes a goal to the Suspended state. The abort operation does
not require any clean-up in this case, since no plans for the goal are in execution. Hence in
this case, as the abort method is trivial, the goal transitions immediately to the terminal state.
Finally, if the success or failure condition of an active goal become true in the Pending state,
the goal is dropped.

4.3.2 Monitoring state

The Monitoring state is shown in italics in Fig. 2 to emphasize that it exclusively applies
to goals of monitoring: maintain goals that (actively) check for a triggering condition to be
known. Recall that this triggering can be the violation of the maintenance condition (reactive)
or its predicted violation (proactive). In this state, as in Pending, no plans are being executed.

Maintain goals transition into the Monitoring state when they are (1) activated from
Pending, (2) reactivated from Suspended, or (3) reactivated from Active when the recovery
or preventative subgoal succeeds. Should the maintenance condition be violated—or, in the
proactive case, should it be predicted to be violated—then the goal transitions to the Active
state with the respond operation. Note that respond is not a top-level command but a triggered
transition. The suspend operation moves the goal to the Suspended state, whilst (as for
Pending), abort will immediately drop the goal since no plans are in execution and no hence
clean-up is required. The goal may also be dropped if the success or failure condition becomes
true.

4.3.3 Active state

Goals in the Active state are in pursuit of the performance of a task, the achievement of a state,
or the maintenance of a condition. They may therefore have one or more plans associated.
In earlier work, we specified the detail of substates within Active and Suspended states
[40], thus providing additional detail on how the plan or plans associated with the goal are
managed.! Here we restrict our attention to the abstract states of Fig. 2.

4.3.3.1 Maintenance goals. Maintain goals enter the Active state in two ways. First, they
enter Active from the Monitoring state when the triggering condition is true, via the respond
operation. In this transition, the agent posts and activates the preventative or recovery achieve-
ment subgoal. A maintain goal posts a recovery goal R if the maintenance condition was
violated or a preventative goal P if the maintenance condition is predicted to be violated.

' Some minor points of clarification can be added to that workshop paper.

@ Springer

696 Auton Agent Multi-Agent Syst (2014) 28:682-719

Recovery and preventative goals are always achieve goals, and themselves commence in the
Active state.> Note that no goal selection is required, since in the semantics of maintenance
goals we adopt, R and P are fixed and pre-defined. Further, note that a recovery or mainte-
nance goal, when activated by the agent, will have its own instance of the goal life-cycle. That
is, the states and transitions shown in Fig. 2 pertain to the parent maintain goal and again
forits R or P subgoal. Detail of how the agent manages these subgoals would go beyond the
level of detail of Fig. 2; see [40].

The second way that maintain goals enter the Active state is from the Suspended state
via the re-respond operation. In this transition, the agent posts and activates the preventative
or recovery achievement subgoal.

4.3.3.2 Achievement goals. Achieve goals also enter the Active state in two ways. First,
they enter Active from the Pending state via the activate operation. Second, achieve goals
enter Active from the Suspended state via the reactivate operation. Either way, the agent
will seek an applicable plan for the goal, e.g., by means-ends reasoning.

In the case that no plan can be found for an achievement goal, there are only two options:
to drop the goal, or to suspend it. In principle, it is possible to argue for suspending the goal
in this circumstance, as it may be possible that a plan may be found later (or that a plan
that is currently inapplicable may become so) due to changes in the environment. However,
this assumes that the results of the process to find a plan will vary significantly over time,
and may result in a large number of suspended goals. Hence it seems simplest to us to
drop an achievement goal when no plan can be found for it. Note that this applies only to
achievement goals, as there is always a plan for a maintenance goal, namely to adopt the
appropriate achievement goal as a subgoal.

4.3.4 Suspended state

The final of the four basic states, Suspended, contains a goal of any type that is suspended,
monitoring its reconsideration condition, awaiting possible resumption. Goals transition to
this state when the suspend operation is applied to them. The suspended goal may have one
or more plans associated. Additional details of their management is again given in [40]. The
operational semantics in Sect. 5 does not have suspend and resume methods.

Besides from Pending, a maintain goal g can be suspended from the Active state, or
from the Monitoring state. In the latter case, since the goal g comes from Monitoring, it
can have no plan or subgoal attached.> Should the goal be aborted or its success or fail-
ure condition become true, it is dropped; otherwise, the goal remains suspended until the
agent decides to resume it—most commonly, because its reconsideration condition becomes
true.*

In more detail, upon the resumption of a goal, the agent’s deliberation has several options.
The agent may opt to (1) leave the goal suspended (no change of state), (2) reconsider the

2 In our formal semantics, the goals technically commence in Pending but transition immediately to Active
due to their activation conditions.

3 In the former case, the goal can have a plan or subgoal attached. Therefore a goal g suspended from Active
should have suspend methods run for g and its subgoals, if any. This ideal is not reflected in our formal
semantics, since it is a substate detail described in [40].

4 That is, resume is a top-level command. Hence, the reconsideration condition is a ‘note’ from the agent to
itself to guide its deliberation over the suspended goal: a sufficient but not necessary condition for when the
agent should next look at the goal.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 697

goal (back to Pending state, first aborting the subgoal, if any), (3) reactivate the goal (back
to Monitoring, again aborting the subgoal, if any), (4) re-respond by resuming the subgoal
(if one exists; otherwise, activate a new subgoal as above in state Active) and continue to
attempt to uphold the maintenance condition (to state Active), or (5) abort the goal.

Achieve goals suspended from the Active state or from the Pending state. As with main-
tain goals, if not aborted prior to resumption, a goal may be resumed when its reconsideration
condition becomes true, or when the agent decides to resume it.

For an achievement goal, the agent’s options are to (1) leave the goal suspended (no
change of state), (2) reconsider the goal (back to Pending state, first aborting any plans), (3)
reactivate the goal by performing resume methods before transitioning to the Active state, or
(4) abort the goal. Recall that suspend and resume methods, like abort methods, are assumed
not to fail.

4.3.5 Aborting state

Goals in this state are goals that have been aborted, but for which the abort methods are in
execution. Once the abort method has completed, the goal is dropped. If the goal has a trivial
abort method, then it simply transitions immediately to the terminal state.

Note that once the goal is in the Aborting state, the only possible outcome is that the goal
is dropped (once the abort methods have completed). Hence it is not possible to suspend—or
perform any other operation on—a goal that is in the Aborting state.

5 A formal operational semantics of goal life-cycles

We now describe the formalisation of our approach to goals. We present here the formalisation
for the goal transitions of Fig. 2. We formalize in an operational semantics all of the proceeding
Sect. 4, except for the few specific points noted in that section.

5.1 Design issues

In order to use Fig. 2 as a specification of a goal deliberation process, we need to determine
what information is required for each goal, and how this information is used to make decisions
about when the transitions of Fig. 2 should be applied. Some transitions are essentially
controlled by conditions, while others depend on an explicit agent decision (or a combination
of conditions and a decision), as is made precise in our formal semantics.

Our approach is to follow that of van Riemsdijk et al. [49], which will provide formal
definitions of the transitions for each goal. A similar approach has been used by Morandini
et al. [25]. From our perspective, this provides a means of specifying the behaviour of the
agent without having to consider all implementation details, which would be necessary if we
were to use a specific agent programming language such as Jadex or JACK. Put another way,
we are interested in the operational semantics of the agent execution, rather than presenting
a programming solution in a specific language.

Besides the choice of formal language, two of the key differences in our work from that
of van Riemsdijk et al. and Morandini et al.—which enable us to support the full variety
of goal types and operations upon goals—are that we have four basic goal states (Pending,
Monitoring, Active and Suspended) rather than two, and that not all transitions are possible
(for example, goals of accomplishment can never be in the Monitoring state). This allows us
to deal with suspended goals in a more detailed and realistic manner, as well as providing

@ Springer

698 Auton Agent Multi-Agent Syst (2014) 28:682-719

a more natural semantics for maintenance goals. Further, unlike Morandini et al. [25], our
semantics deals with plans as well as goals. This means that we can incorporate subgoals
into plans, allowing the agent designer a richer and more natural way to specify the system’s
behaviour.

Our semantics allows for goal transitions to occur both due to mandated semantics (e.g.,
achievement of the success condition of a goal)—the triggered by conditions for which the
agent does not make a deliberate decision—as well as due to agent deliberation: the fop-level
commands which are a decision by the agent’s deliberation to impose an operation upon a
goal. The latter case will be indicated by a change in the agent’s beliefs, and specifically
the addition of formulae such as drop(g), indicating that the agent has decided to drop goal
g. The precise means that an agent uses to come to such decisions is beyond the scope of
this article; here we are concerned with the consequences of such a decision. It is an item
of future work to determine when it is appropriate to drop (or abort or suspend, or perform
any operation on) a particular goal, and hence in what follows we indicate the results of such
reasoning by updating the agent’s beliefs.

5.2 Overview of CAN rules

Following van Riemsdijk et al. [49] and Morandini et al. [25], we will give an operational
semantics for the goal transitions of Fig. 2 in the formal system CAN [15,30,31,52]. This
approach has the further benefit that we can study properties of the semantics at an appropriate
level of abstraction. For example, we do not need to concern ourselves with the details of the
way in which goals are implemented, or how the agent notifies itself that a plan has succeeded
(possibly by posting an internal event).

CAN was developed with the intention of expressing the required behaviours, rather
than a specific implementation. We choose CAN because it allows the specification of the
operational semantics, which could then be implemented in an agent programming language
such as JACK, Jadex, etc. In this sense, our use of CAN is intended as an artefact of the
detailed design of an agent system, rather than an implementation. In other words, the role
of CAN in our work is to specify how the interactions between goals operate, which in our
contribution includes plan-level detail.

Using CAN as a basis means that we describe the agent behaviour as formal transitions
between agent configurations of the form (B, G), where B is the agent’s beliefs, and G is
the set of goals the agent is pursuing. The rules defining these transitions are written in the
form:

Condition

(B,G) — (B'.¢) €]

The behaviour of an agent is determined by the initial state of the agent and a fixed
set of transition rules of the above form. These rules (described in detail in the following
subsections) may be divided into three groups as follows. We use abbreviated forms of the
transition labels of Fig. 2.

1. Goal transition rules corresponding to the states and transitions of Fig. 2:
act(A), act(M), respond, re-respond, drop, abort, abort_start, abort_end, suspend, recon,
react(A), react(M)

2. Planning rules: (plan;, plany, plan_abort, fail)

3. Execution rules (the remaining rules)

We believe that this is the first time that these three aspects have been combined into one
semantics. The goal transition rules are essentially derived from Fig. 2, and are most directly

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 699

comparable to those of van Riemsdijk et al. [49] and Morandini et al. [25]. These rules are
discussed in Sect. 5.3. The planning rules are also based on the framework of van Riemsdijk
etal., and are used to determine the relationship between goals and plans. These are discussed
in Sect. 5.4 The execution rules are those which deal with the execution of plans, which in
this context can only take place if there are no changes in the status of the goals. These are
discussed in Sect. 5.5.

It should be noted that an achievement goal is dropped on success, and also on failure.
Accordingly, there is no explicit notion of success and failure for such goals in the following
subsections; only whether the goal should be dropped or not. For maintenance goals, if the
maintenance condition is violated and later restored, it is appropriate to return the goal to the
Monitoring state rather than dropping it, although there may be circumstances under which
it is appropriate to drop the maintenance goal altogether. Thus the main difference in terms
of the formal semantics between achievement goals and maintenance goals is that the latter
have a more elaborate sequence of possible transitions.

5.2.1 Assumptions

Our assumptions about the deliberation process represented by these transitions are:

— All goals are given unique identifiers. This ensures that goals can explicitly refer to other
goals, allowing the agent designer to specify transitions such as one goal being suspended
when another specific goal is activated.

— Any change in any goal’s state has preference over any executing plans. This means that
execution can only take place when the set of goal contexts (defined below) is stable, i.e.,
none of the transitions in Fig. 2 are currently able to take place. This is somewhat conserv-
ative, but it allows the agent designer the freedom to specify whatever interaction between
goals is desired (such as making all achieve goals inactive whenever any maintain goal
becomes active), knowing that any change in any goal’s status will result in the status of
all goals being reconsidered. This, in turn, may result in a corresponding change in what
is being executed.

— Plans are not necessarily known in advance, but may be generated online. This means that

we do not assume that the agent necessarily has a plan library (although this is a perfectly
valid option). This also means that we have to explicitly allow for plan generation in our
formal definition; we leverage previous techniques [49]. This is done in the rules below
by the abstract procedure mer, which captures means-end-reasoning (see rules plan; and
plan; below), as introduced by van Riemsdijk et al. This approach may be regarded as
not being prescriptive about the way in which plans are associated with goals.
In many BDI systems, such means-ends-reasoning is accomplised by means of event-
condition-actionrules,i.e.,rules of the forme : ¢ — A, in which when event e is perceived,
if condition c is true, then action A is performed. This would mean that when a goal is
activated, an event is raised which will lead to the goal being activated. Whilst such rules
can be accommodated in CAN, we believe the mer approach provides both flexibility and
an appropriate level of abstraction, leaving us free to concentrate on transitions between
goal states and the consequences of them. For instance, the procedure mer may select an
applicable plan from a pre-written plan library (as in the earliest agent systems from the
late 1980°s). Alternatively, mer may use real-time planning algorithms to generate plans
on-the-fly, or some combination of pre-written plans and plans generated as required. The
important point from our perspective is that our approach does not specify or depend on
a particular means to determine a plan to be executed for a given goal.

@ Springer

700 Auton Agent Multi-Agent Syst (2014) 28:682-719

— No restriction is made on the number of goals that may be active at once. Different agent
applications may have different requirements or preferences for the number of goals that
are active ata particular time. For example, Curiosity may allow a number of experiments to
proceed concurrently whilst in a particular location, but when returning to base, it seems
sensible that only the Return goal is active. From the perspective of our operational
semantics, this means that we need to be able to allow an arbitrary number of goals to
be active at any time, but also to potentially allow means to enforce properties such as
no other goals being active when a particular goal is active. Hence we provide the agent
designer with mechanisms to enforce restrictions if desired, but not to build them into the
CAN rules. Accordingly we will have a standard pattern for goal transition rules, which
can be tailored by the designer to suit the particular application.

— Achievement goals may be used as subgoals in plans. This means that a plan may contain
an achievement goal as a step, at which point the goal is executed, with the only difference
being that success and failure are treated in the same way as success and failure for
actions. We do not allow maintenance goals as subgoals of a plan; to establish the intended
semantics and its implications is left for future work. Note however that the agent retains
flexibility to manipulate maintenance goals, in that a plan can modify the beliefs relevant
to the context of a maintenance goal.

5.2.2 Goal representation and state

In our semantics, each goal ¢ € G is described by a corresponding goal context tuple
(I, G, Rules, State, Plan), in which

— [is a unique identifier for the goal

— G is the type, either achieve or maintain

— Rules s a set of condition-action pairs of the form (c, A), where c is a condition drawn from
the language ¢ (used also for representing beliefs), and A is one of { activate, reactivate,
reconsider, respond, re-respond, suspend, drop, abort }

— State is one of {P, M, A, S, B} representing the states Pending, Monitoring, Active,
Suspended, and Aborting respectively.

— Plan is either: (1) the current plan body (if any) being executed for this goal, (2) the null
value, €, indicating the absence of any plan body for this goal (as distinct from the trivially
successful or failed plan bodies, nil and fail), or (3) the special plan constant abort,
indicating that an applicable abort method should be found and executed (as detailed in
Sect. 5.3.3).

Note that our notation for g from this point on differs from the informal notational con-
venience used in Sect. 4. The existence of unique identifiers ensures that we can distinguish
goals of the same type and ensures that goals can refer to each other. I, G and Rules are fixed
throughout execution. State and Plan are dynamic and may change during execution. Hence
we need only record the tuple (I, State, Plan) in order to specify the status of a goal at any
point, as G and Rules can be determined from /. However, when describing rules, it is often
simpler to use the full form (I, G, Rules, State, Plan).

Changes of state. There are four phases that take place in the execution cycle:

1. Updating beliefs and determining transitions for each goal
2. Performing state transitions for each goal

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 701

Table 1 Applicable operations

by goal type and state Operation Goal type States

Activate Achieve, Maintain ~ Pending

Respond Maintain Monitoring

Suspend Achieve, Maintain ~ Pending, Monitoring, Active

Reconsider Achieve, Maintain ~ Suspended

Reactivate Achieve Suspended

Reactivate Maintain Suspended, Active

Re-respond Maintain Suspended

Abort Achieve, Maintain ~ Pending, Monitoring, Active,
Suspended

Drop Achieve, Maintain Pending, Monitoring, Active,
Suspended

3. Determining plans for active goals, if necessary
4. Executing plans

It should be noted that each of the goal operations are only applicable in certain specific
states. For example, there is no point in performing the activate action on a goal which is in
the Active state. For this reason we specify via Table 1 the states and goal types for which
each action is applicable. (Note that there are no applicable actions in the Aborting state.)
We need to define formal rules only for the combinations listed in the table. We say a goal
operation Op is applicable in state S on goal type G if there is an entry for Op, S, and G in
Table 1; otherwise it is inapplicable.

An issue to be addressed is to determine when a change of goal state should occur. As
discussed at the beginning of Sect. 4, we do not model the entire deliberation of the agent
in this article, but only the changes of goal state that occur as a consequence of the agent’s
deliberation. We achieve this by the use of the distinguished set of facts in (2) below, in which
I is a goal identifier:

drop(I),abort(1l), suspend(l), reconsider(l), activate(l), reactivate(I) 2)

Note that these correspond to the goal operations in Table 1, with the exception of respond
and re-respond. The reason that these two operations are exempted is that the decision to
activate a maintenance goal is one that is determined purely by the maintenance condition,
and not by the decision making of the agent.

The decision to change the state of a particular goal is signified by asserting the corre-
sponding fact into the beliefs of the agent. This means that we focus on the changes of goal
state implied by such facts, rather than the process by which the decision to change state has
occurred. For example, if the agent decides to suspend a particular goal g, then any subgoals
of g should also be suspended. In our framework, this would be signified by the assertion
of the form suspend(g) into the agent’s beliefs, and the rules for the subgoals of g would
be used to determine that the subgoals should also be suspended. Typically, these facts are
handed by the rules attached to each goal, as an input to the process to determine what action
should be taken for each goal.

Once an operation has been chosen, there is no difference in the agent’s behaviour between
decisions based on internal conditions (such as the success condition of a goal becoming
true) and those based on a top-level decision by the agent (such as dropping a goal because
it conflicts with another one). This is very much by design, in that once a decision to drop

@ Springer

702 Auton Agent Multi-Agent Syst (2014) 28:682-719

(or abort, or suspend, or resume) a goal has been made, the consequences of doing so are the
same regardless of the reason for the change.

5.3 Goal transition CAN rules

We first describe the goal transition rules. Formalization of the semantics of state transitions
hinges on the appropriate definition of Rules for each goal. These definitions follow the same
general principles, and can be tailored for individual goals.

General approach. Given an action A in Fig. 2, which under condition ¢ takes goal g =
(I, G, Rules, Sy, P1) from state S; to S», we ensure that there is a rule in R of the form
(c, A) and that there is a transition to operate on that rule of the general form:

(c, A) € Rules B kE=c
(B,GU{{I, G, Rules, S1, P1)}) = (B,GU{{I, G, Rules, S», P»)}) 3)

where g € G.
‘We will abbreviate (3) as

(c, A) € Rules B kE=c
(I, G, Rules, S1, P1) —> (I, G, Rules, S», P) 4)

where A ¢ {drop, abort}.

In some cases, the agent wants a condition c to be evaluated ‘autonomously’, i.e., without
any further deliberation. In other cases, the agent wants an explicit condition. Thus, we require
that all activations conditions for goals contain a formula of the form activate(I), so that
it is possible to specify conditions of the form ¢ = Cond A activate(I). This means that
for the goal to change state, not only must Cond hold, we must also have that the agent has
explicitly decided to activate the goal by adding activate(I) to its beliefs. This mechanism
further allows us to provide for the possibility that the agent may decide to drop any goal
at any time: it can do so by adding drop(I) to its beliefs. The same holds for any of the
distinguished facts in (2) above.

In particular, as noted in Sect. 4, it is common to include an activation condition of the
form (Cond A activate(I), activate). Hence, we will denote by standard (I, Succ, Cond),
where Succ is a set of conditions, the following set of rules:

{{(s, drop)|s € Succ} U
{{(drop(I), drop), (abort(I), abort), (suspend(I), suspend),
(Cond A activate(I), activate)} U
{(reactivate(I), reactivate), (reconsider(I), reconsider)} 5)

We now create parametrized rules within this framework for achieve and maintain goals.

5.3.1 Initial state of goals
Each goal g known to the system is initially in the Pending state and thus represented

by a goal context g = (I, G, Rules, P, €) where € denotes the empty plan. Let « be the
pre-condition, S the success condition, and F the failure condition of g.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 703

— For achieve(k, S, F), Rules is: standard(1, {S, F}, k)
— For maintain(x, C, R, P, S, F), Rules is:
standard(I, {S, F}, k) U{{{—=C, C A (—=C)}, respond), (rerespond(I), re—respond)}

Note the form of the respond rule, in which we have an explicit condition for each of
the two cases, i.e., when the maintenance condition is believed to be false (—C), in which
case a reactive goal is activated, or when the maintenance condition is true but is predicted
to become false in the future (C A 7w (—=C)). It would be possible, as with any of the rules,
to re-write several conditions into one disjunctive condition, which in the case of respond
would be =C V (C A w(—C)). While this would mean that there is exactly one condition for
every rule, we believe it is more intuitive and natural to write an implicit disjunction of the
conditions, as above.

We will use the notation G = achieve or G = maintain to indicate whether G is an
achieve goal or maintain goal respectively.

5.3.2 Activate transition rules

The transition rules for activation are straightforward. achieve goals go to the Active state:

G = achieve (c, activate) € Rules B =c
(I, G, Rules, Pending, ¢) —> (I, G, Rules, Active, €)

act(A)

By contrast, instead of going directly to the Active state on activation, maintain goals
go to the Monitoring state, in which the maintenance condition is being monitored, but no
action is being taken yet.

G = maintain (c, activate) € Rules B =c
(I, G, Rules, Pending, ¢) — (I, G, Rules, Monitoring, ¢)

act(M)

Note that when a maintain goal is in the Monitoring state, the maintenance condi-
tion is being actively monitored, meaning that if the maintenance condition (i.e., C in
maintain(x, C, R, P, S, F)) is violated (or predicted to be violated), then the maintain goal
transitions to the Active state (see the rule for the respond transition in Sect. 5.3.5 below). We
model this by ensuring that the respond action is triggered when the maintenance goal is in
the Monitoring state. This ensures that any maintenance condition which can be expressed
as a formula in the logic of the agent’s beliefs can be used.

5.3.3 Drop and abort transition rules

The drop action transition simply drops the goal:

{(c,drop) € Rules B Ec
(B,GU{{I, G, Rules, State, t)}) — (B, G)

drop

Note that this can take place in any of the four basic states.

When an abort transition occurs in the Pending or Monitoring state, there is no need for
abort methods, as nothing has been executed. When the abort takes place in the Active or
Suspended states, abort methods are needed, as the goal may have plans or subgoals in
execution. This means that there are two types of abort transition: one that simply drops the
goal, and one that calls the abort methods.

@ Springer

704 Auton Agent Multi-Agent Syst (2014) 28:682-719

The first abort transition is just like the drop transition above:

(c,abort) € Rules B =c¢ State € {P, M}
(B,GU{{I, G, Rules, State, 7)}) — (B, G)

abort

The second abort transition involves two stages: first, putting the goal into the Aborting
state, and then executing any appropriate abort method.

(c,abort) € Rules B = c State € {A, S}
(B,GU{{I, G, Rules, State, r)}) — (B, GU{(I, G, Rules, Aborting, abort)})

abort_start

Once the goal is thus in the Aborting state with the special plan constant abort as the
plan, an appropriate abort method is found by the same means-end-reasoning process that is
used to find appropriate plans for active goals (see the plan_abort rule in Sect. 5.4). This
means that the agent designer is free to choose whether to use real-time planning to find the
abort method, or to allocate pre-defined abort methods (as is done in [36]).

Once the abort method has been executed, the goal is dropped. Since abort methods are
assumed to never fail [37], executing an abort method will always terminate with nil (see
Sect. 5.5 below). The abort_end rule is therefore unconditional.

(B.G U (1. G. Rules, Aborting, nil)}) — (B, g) “Port-end

5.3.4 Suspend transition rule

For the suspend action, the main issue to resolve is how to determine which state the goal
should be returned to on resumption. We assume that the agent will indicate this by adding
either reactivate(l), reconsider (1), or rerespond(I) to its beliefs, as appropriate. Note
that these conditions are evaluated as part of the rules for the actions reactivate, reconsider,
and rerespond.

(c,suspend) € Rules B = c State € {P,A, M}
(I, G, Rules, State, m) —> (I, G, Rules, Suspended, 7)

suspend

5.3.5 Respond, subgoal and re-respond transition rules

The respond and re-respond actions pertain to maintain goals. When a maintenance goal
becomes active, it triggers the adoption of a new achievement goal (either the recovery goal or
preventative goal) with the intention that when this new goal is achieved, the violation of the
maintenance condition (either actual or predicted) will be overcome. Hence for a maintain
goal Gy = maintain(x, C, R, P, S, F) the respond action (which is only available to
maintain goals) results not only in the maintenance goal G s becoming active, but also in
the adoption of a new achievement goal, which we will denote as Gg. If the achievement
goal G g succeeds, then we reactivate Gy (i.e., Gy returns to the Monitoring state). We can
ensure this by making the success condition Ssg of G 5 the only condition for the reactivate
rule. If G g fails or is dropped or aborted, we drop G js. In addition, Gy, is dropped if either its
success condition S or failure condition F' becomes true. These properties are all reflected in
the rules for the maintenance goal, and in particular the conditions for the actions reactivate
and drop.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 705

As noted previously, there is not a single subgoal G s which is applicable in all circum-
stances; in particular, a different subgoal may be pursued depending on whether the main-
tenance condition was violated, or predicted to be violated in the future. In the former case,
we adopt a recovery goal R; in the latter, we adopt a preventative goal P. We express this
variation in the respond rule by executing the plan (6) below for G js, where C is the mainte-
nance condition, and 7 is a predictive function, i.e., one that can predict that the maintenance
condition will be violated in the near future.

(=C : R, (C A(=C)): P) (©6)

This plan is essentially a notational convenience, in that the conditions —=C and C A (—C)
will be evaluated at the same time as the condition of the respond action (see the rule below).
This means that we only need to specify one rule, rather than one for adopting R and a near-
identical one for adopting P. Note also that once the appropriate goal is chosen, it will
immediately transition from the Pending state to the Active state, as its activation condition
is =C for R and C A w(—=C) for P.

G =Maintain (c, respond) € Rules B = c
(B,GU{(I1, Gy, Rules,M, €)}) — (B, G U {{I1, Gy, Rules, A, (—C : R, (C A7 (—=C)) : P))})

respond

where R is the recovery goal of G and P is the preventative goal of G .

The case for a subgoal is closely related (i.e., when the current plan step is a subgoal),
and so we discuss it here, rather than with the other plan execution rules (see Sect. 5.5). The
subgoal is executed sequentially, i.e., the parent goal waits until the subgoal has completed
before moving on. If the subgoal succeeds, the subgoal is dropped, and execution proceeds
(just as in the case of any other successful step). If the subgoal fails, or is dropped (other than
after it has succeeded) or aborted, then this is treated as a plan failure, i.e., that the step failed
and hence (by default) an alternative, if available, should be pursued. Hence the plan for the
parent goal is to wait for one of the success or failure conditions to become true, or for the
subgoal to be dropped or aborted, and then query whether the subgoal succeeded. The parent
goal’s step then succeeds only if the success condition of the subgoal is true.

stable
(B,GU{{Ip, G1, Rules, A, G2)}) — (B, G U {{Ip, G1, Rules, A, SGP)} U {{Ic, G2, Rulesy, P, €)})

goal

where
— SGPis S, Vv F. Vv drop(Ic) Vv abort(Ic) :?S,
— Rulesy is standard(Ic, {S., F.}, true) U {{drop(Ip), drop), (abort(Ip), abort),
(suspend(Ip){suspend)}
U{(reactivate(Ip), reactivate, (reconsider(Ip), reconsider)}
— stable denotes the condition that there are no applicable actions to change the state of a
goal (see Sect. 5.4 for more details).

Note also the presence of the extra rules (i.e.in addition to the standard rules) for drop,
abort, suspend, reactivate and reconsider. The presence of these rules means that when-
ever the parent goal is dropped, aborted, suspended, reactivated or reconsideed, then the same
action is applied to the subgoal. This does not imply the reverse, i.e.that if a subgoal under-
goes any of these transitions, this does not mean that the parent goal necessarily undergoes
the same transition. Hence the behaviour of the subgoal will mirror that of its parent goal,
but may also undergo further transitions.

It follows that the subgoal transition will only be applicable when there are no changes
of goal state, and it will add a new goal to the goal context. This is precisely the behaviour
required by the respond action.

@ Springer

706 Auton Agent Multi-Agent Syst (2014) 28:682-719

Note also the addition of the rules below to the subgoal beyond those from the standard
set:

(drop(Ip), drop), (abort(Ip), abort), (suspend(Ip), suspend),
(reactivate(Ip), reactivate)(reconsider(Ip), reconsider) (@)

In particular, note the id /p which ensures that if the parent goal is dropped, aborted,
suspended, reactivated or reconsidered, then the subgoal will also undergo the corresponding
transition. The ability to specify rules of this nature is one of the features of our approach, as
this mechanism ensures that the subgoal behaves appropriately, simply by ensuring that the
appropriate rules are in place.

The rule for re-respond is similar to the rule for respond. The main issue is that there
are two goals that need to be made active again, namely the maintain goal and the previously
active subgoal (since re-respond can only apply if the maintain goal was in the Active state
before being suspended).

G) =Maintain (c, re — respond) € Rules| B = ¢
(B, GU{{I1, G, Rulesy,S,SGP), (I3, G, Rulesy, S,)})—> (B, GU{(I], Gy, Rules| ,A,SGP),(I,Gg, Rulesy, A, €)})

re-respond

where we denote by SG P the same expression as in the goal rule, i.e., SGP is S. Vv F, vV
drop(Iy) Vv abort(Iy) :1S.. Recall that S, is the success condition of the subgoal, and this
means that executing SG P means waiting for the goal to terminate, and then testing whether
or not it succeeded.

5.3.6 Reconsider and reactivate transition rules

Finally for the goal transition rules, we have the pair of rules related to suspended goals.
The rule for reconsider is:
(c, reconsider) € Rules B = c
(I, G, Rules, Suspended, 7) —> (I, G, Rules, Pending, ¢€)

recon

The rule for reactivate differs between achieve goals and maintain goals. For the former,
we have the rule
G = achieve (c, reactivate) € Rules B k= c
(I, G, Rules, Suspended, 7) —> (I, G, Rules, Active, €)

react(A)

whereas for the latter we have the rule
State € {A, S} G = maintain (c, reactivate) € Rules B =c
(I, G, Rules, State, t) —> (I, G, Rules, Monitoring, €)

react(M)

5.4 Planning transition CAN rules

Having described the goal transition rules, we next describe the planning transition rules.
We denote by stable(B, G) that for all goals g in G we have that if (c, action) € Rules
and B [= c, then action is not applicable (where Rules is the rules for g). In other words,
for all goals g € G, either there is no {c, action) € Rules such that B |= ¢, or that for all
(c, action) € Rules such that B = ¢, action is not applicable in the current goal state, as
defined in Table 1. For example, the activate action is only applicable in the Pending state.
This definition is needed to allow for the possibility that B = ¢ where (c, activate) € Rules

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 707

when g is already in the Active state, and so the action will have no effect. In other words,
an action only takes place if its preconditions are believed, and the action is applicable (as
defined by Table 1) in the current state of the goal. We will often abuse notation and write
just stable when the beliefs and goals are clear from the context.

Once all changes in goal state have occurred—and hence the goal states are ‘stable’—the
next step is to determine whether there are goals for which plans need to be found. We do
this by inspecting the final element of the goal context tuple; if this is the empty plan, this
indicates that a plan needs to be found. Otherwise, the existing plan is used. When a plan
needs to be found, following van Riemsdijk et al. [49] we make use of a means-end-reasoning
procedure mer, i.e., a means of generating a plan for a given goal (as introduced in Sect. 2.3).
This means may depend on the goal itself, the agent’s beliefs, and the other goals of the
agent. The advantage of this mechanism is that it abstracts the rules away from any particular
method of associating plans with goals. In particular, this approach will be applicable for
pre-existing libraries of plans (a traditional agent-oriented programming technique), or for
agents with online planning ability, or a combination of both.

It may not always be possible to find such a plan; in this case, we assume that the mer
procedure will return the empty plan €. Hence the first two rules below deal with when a
non-empty plan is returned (plani) and when an empty plan is returned (plany).

It is also possible that the plan found may fail; in this case, having executed the plan, we
update the current plan for the goal to €, as a ‘signal’ that a new plan needs to be found (the
fail rule below). This effectively signals the mer procedure to attempt to find a further plan,
i.e., to reconsider the rules plan; and plan; at the appropriate time.

Hence the planning transition rules as follows:

stable T1 = mer (G, B, GU {{I, G, Rules, Active, €)}) Tl # ¢
(B,GU{(I, G, Rules, Active, €)}) — (B, G U {(I, G, Rules, Active, TT)})
stable T1 = mer(G, B, G U {{I, G, Rules, Active, ¢)}) Tl =¢
(B,GU{{I, G, Rules, Active, €)}) — (B, G)
stable T1 = mer(G, B, G U {{I, G, Rules, Aborting, abort)})

(B,GU{{I, G, Rules, Aborting, abort)}) — (B, G U {{I, G, Rules, Aborting, IT)})
stable w #¢€ (B,GU{{I, G, Rules, Active, n)}) — (B’, G U {(I, G, Rules, Active, fail)})

(B,GU{{I, G, Rules, Active, r)}) — (B’, GU {(I, G, Rules, Active, ¢)})

plany

plany

plan_abort

fail

Note that we assume that mer will never return € when called as part of the plan_abort
rule; if there is no abort method, in this case mer will return nil.

Finally, note that the fail rule is merely a means of ensuring that the result of plan exe-
cution is the empty plan €. As the success and failure conditions for a goal are given sepa-
rately, there is no need for the execution mechanism to ‘signal’ the failure (or success) of a
plan. In other words, € only signifies that another plan needs to be found if execution is to
continue.

5.5 Execution transition CAN rules

Finally, we describe the execution transition rules. We refer to Sect. 2.3 for an introduction to
CAN’s execution transition rules. Recall that the plan P;; P, executes Py, and then executes
P, if Py succeeds; the plan P > P> executes Py and then executes P, if Pj fails; the plan
Py || P, executes the subplans Py and P, concurrently, and fails if either of P; and P, fails;
the plan nil always succeeds; and the plan fail always fails.

@ Springer

708 Auton Agent Multi-Agent Syst (2014) 28:682-719

The execution rules are based on the standard CAN rules [15], with two extensions.
Specifically, the wait construct (i.e., ¢ : P where P is not executed unless ¢ is true) and the
rule goal (see above) which deals with the case when goals (of any type) can occur in plans
(and hence as subgoals of another goal). These two minor extensions are introduced here,
but they do not change the essential nature of CAN.

We obtain the set of twenty-four rules that follow in this subsection. Note the presence
of stable in each premise; this ensures that plans only execute when there are no changes
of goal state. Note also that plans can be executed when a goal is either in the Active state
(regular plans) or the Aborting state (abort methods).

In the rules below, we abbreviate both

(B,GU{(I, G, R, Active, P1)}) — (B',GU{(I, G, R, Active, P,)})
and
(B,GU{(I,G, R, Aborting, P)}) — (B’,GU{(I, G, R, Aborting, P>)})

to (B, P1) —> (B’, P). In other words, plan execution can take place in both the Active
and Aborting states, but there is no change in the goal configuration in either state apart from
the beliefs and the plan itself.

We are now ready to present the execution rules, as follows.

stable (B, P\) — (B’, P’) I stable (B, P,) — (B, P') I
1 2
(B, P1|P2) — (B', P'|| P,) (B, P1|P2) — (B', P{|| P')
stable (B, P|) — (B’, P') o
1
(B, Pi>P)) — (B, P'> P2)

stable (B, Pr) —> (B".fail) (B.P)) — (B'.P') stable (B,P))—> (B',P)

(B. P> Py) — (B, P') * (B.PiiPy) — (B PP
: stable il .stable nily : stable nils
(B, nil|P) — (B, P) (B, P|nily — (B, P) (B, nil; Py — (B, P)
Tvtable nily . stable — ils . stable — fail,
(B, P;nily — (B, P) (B, nil > Py —> (B, nil) (B, fail|P) — (B, fail)
.stable — fail, _ stable — fuils

(B, P|| fail) — (B, fail) (B, fail; Py — (B, fail)

stable

(B, fails P) — (B, Py /4l

We follow CAN’s approach to plans, in that if the precondition of an action is true, then
we assume that the action succeeds. In other words, the only way for an action to fail is for its
precondition to be false. Hence in the rules act; and act, below, we first test the precondition
(pre(a)); if this follows from the agent’s beliefs, then the action succeeds and the beliefs are
updated appropriately; otherwise the action fails. Itis possible to allow for more sophisticated
processing, such as sensory actions, for which it is possible to tell immediately after execution
whether it has succeeded or not. Designing rules for such actions is outside the scope of this
article; for now, we note that this is not an intrinsic limitation of CAN, but is purely a design
decision.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 709

In line with this approach, the remaining execution rules are as follows.

stable B = pre(a) ot stable B [~ pre(a)

(B,a) —> (B nil) "' (B.a) — (B, fail) “"

stable il stable dd stable del
(B, nil) — (B,e) ™" (B, +b) — (BU{b},e) “““ (B, —b) — (B\{b},€) *°

stable B = ¢ stable B = ¢

(B.%¢) — (B,e) 1"V 1B.7%¢) — (B, fail) 1"

stable Vi : Pie A B Ey;]
(B, (A)) — (B, P> (A\ i Py €€
stable B |=¢ (B, P) —> (B, P') . stable B [~ ¢ .

— wait] wait
(B,¢: P) —> (B, P') (B, :P) — (B,¢: P)

6 Illustrating the operational semantics: Curiosity scenario revisited

‘We now consider how to apply the transitions from Fig. 2 to the earlier Curiosity scenario. Our
purpose being to illustrate the semantics, we construct the scenario with certain simplifying
assumptions which we outline below.

6.1 Basic scenario

Curiosity’s initial goals are the achievement goal Exp, which performs various experiments,
the maintenance goal Battery, which maintains a certain battery level, and Sci Opp, which
investigates science opportunities as and when they arise. We also include a goal Return,
which will be triggered shortly before dusk to ensure that Curiosity returns to its base before
the end of the sol (Mars day). Hence Curiosity will have the goals shown below:

Name Goal type and signature

Exp achieve(dawn, S, dusk A =S)

Battery maintain(true, battery_level > 10 %, Charge, Charge, false, false)
Charge achieve(true, battery_level > 100 %, battery_failure)

SciOpp achieve(rock_seen, rock_analysed, analysis_failure)

Return achieve(nearly_dusk, at_base, movement_failure)

With the exception of Return, these goals are shown in Fig. 1. In the figure, Exp is written
out as Experiment.

For the purposes of the scenario, we will not need to make any more precise the latter three
failure conditions. Initially, all four goals are in the Pending state. Exp can commence at
dawn, and has a particular set of experiments to perform (denoted by S), which are considered
failed if they cannot be completed by dusk. Battery is a maintenance goal which is intended
to keep the battery level above 10 % (which is denoted by C in the rules below for brevity). If
the charge falls below this level (or is predicted to fall below this level), the subgoal Charge
will be triggered. Charge is an achieve goal, which is activated when there is a maintenance
goal violation, and succeeds when the battery is sufficiently charged. Sci Opp is a science
opportunity goal, applicable when a certain kind of rock is seen; it succeeds when the rock

@ Springer

710 Auton Agent Multi-Agent Syst (2014) 28:682-719

has been analysed. Return is an achieve goal, which is applicable when it is nearly dusk,
and hence time to return to the base.

Once Curiosity returns to its base, this will potentially trigger further actions, such as
performing regular maintenance tasks, and scheduling its next communication with Earth.
This communication will also include a fresh set of goals for the next sol. Hence in our
initial scenario, we will only consider the management of the goals during the Mars day; we
demonstrate more intricate goal management in Sect. 6.2.

For the five goals given above, Battery (and hence Charge) has the highest priority
(meaning that any other goals that are active when Battery is activated should be suspended),
Return the next highest, Sci Opp the next highest, and Exp the lowest priority of all.

This means that Curiosity’s initial goal context is as follows:

(i1, Exp, Ry, P, €), (iz, SciOpp, Ry, P, €), (i3, Battery, R3, P, €), (i4, Return, Ry, P, €)

where:
Ry = standard(iy, {S, dusk N =S}, {dawn}) U {{{active(is)}, abort), ({active(ir),
active(i3)}, suspend)},
Ry = standard(in, {rock_analysed}, {rock_seen}) U {{{active(i3)}, suspend)},
R3 = standard(is, {}, {true}) U {{{—C, C A 7(—C)}, respond), {({re — respond(i3)},
re — respond},
R4 = standard(is, {at_base}, {nearly_dusk}) U {({active(in), active(i3), suspend})}.
As Charge is triggered only when needed, we do not include it in the initial goal context.’
Observe that priority amongst the goals is reflected in the rules; for example, as Battery
has a higher priority than Exp, if Battery becomes active when Exp is active, then Exp
will be suspended. Naturally, if a different priority is desired by the agent designer, it is a
simple matter to re-arrange the rules to reflect this priority. The abort method for Exp (which
we do not write out in full) has been designed to include recording the information gathered
so far.
As noted above, given that the goals and their associated rules do not change during
execution, we can represent the initial goal context as:

(Exp, P, €), (SciOpp, P, €), (Battery, P, €), (Return, P, €)

(where we have chosen to retain meaningful goal identifiers, rather than ones systematically
generated).

For the sake of illustration, we suppose that the plan chosen to achieve Exp has four
sequential steps, and hence can be represented as pp; pa2; p3; pa. More complex plan struc-
tures can be accommodated in CAN, but do not add anything essential to this example.
Similarly we suppose that the plan for Sci Opp is s1; 52 (such as moving to the rock and then
analysing it), the plan for Charge is the single action Char ge, and that the plan for Return
is the single action return.

An illustration of the expected sequence of Curiosity’s goal states is given in Table 2. The
agent’s initial beliefs include that it is dawn. Its programming includes a default command to
consider and activate goal Battery at the start of each sol, and programming to ensure that
the agent keeps track of a clock, which updates beliefs such as dawn, dusk, and nearly_dusk
appropriately. Accordingly, the agent’s initial beliefs include that the goals Battery and Exp
should be activated.

5 An alternative would be to have it in the Pending state initially, with its activation condition being the
maintenance condition.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 711

Table 2 Curiosity’s sequence of goal states: each tuple contains the name of the goal, the current state
(P—Pending, A—Active, M—Monitoring, S—Suspended, B—Aborting), and the current plan to achieve the
goal, respectively

Stage Experiment Science Battery Return
1 (Exp, P, €) (SciOpp, P, €) (Battery, P, €) (Return, P, €)
2 (Exp, P, €) (SciOpp, P, €) (Battery, M, €) (Return, P, €)
3 (Exp, A, €) (SciOpp, P, €) (Battery, M, €) (Return, P, €)
4 (Exp, A, p1; p2; p3; p4) (SciOpp, P, €) (Battery, M, €) (Return, P, €)
5 (Exp, A, p2; p3; pa) (SciOpp, P, €) (Battery, M, €) (Return, P, €)
6 (Exp, A, p3; pa) (SciOpp, P, €) (Battery, M, €) (Return, P, €)
7 (Exp, A, p3; pa) (SciOpp, P, €) (Battery, A, MG P) (Return, P, €)
8 (Exp, S, p3; p4) (SciOpp, P, €) (Battery, A, MG P) (Return, P, €)
9 (Exp, S, p3; pa) (SciOpp, P, €) (Battery, A, Charge) (Return, P, ¢)
10 (Exp, S, p3; p4) (SciOpp, P, €) (Battery, A, SGP), (Return, P, €)
(Charge, P, €)
11 (Exp, S, p3; p4) (SciOpp, P, €) (Battery, A, SGP), (Return, P, €)
(Charge, A, €)
12 (Exp, S, p3; pa) (SciOpp, P, €) (Battery, A, SGP), (Return, P, €)
(Charge, A, charge)
13 (Exp, S, p3; pa) (SciOpp, P, €) (Battery, A, SGP), (Return, P, €)
(Charge, A, nil)
14 (Exp, S, p3; pa) (SciOpp, P, €) (Battery, A, SGP) (Return, P, €)
15 (Exp, S, p3; p4) (SciOpp, P, €) (Battery, M, €) (Return, P, €)
16 (Exp, A, €) (SciOpp, P, €) (Battery, M, €) (Return, P, €)
17 (Exp, A, p3; pa) (SciOpp, P, €) (Battery, M, €) (Return, P, €)
18 (Exp, A, pa) (SciOpp, P, €) (Battery, M, €) (Return, P, €)
19 (Exp, A, p4) (SciOpp, A, €) (Battery, M, €) (Return, P, €)
20 (Exp, S, ps) (SciOpp, A, €) (Battery, M, €) (Return, P, €)
21 (Exp, S, pa) (SciOpp, A, s1;52) (Battery, M, €) (Return, P, €)
22 (Exp, S, p4) (SciOpp, A, 57) (Battery, M, €) (Return, P, €)
23 (Exp, S, p4) (SciOpp, A, nil) (Battery, M, €) (Return, P, €)
24 (Exp, S, ps) (dropped) (Battery, M, €) (Return, A, €)
25 (Exp, B, save) - (Battery, M, €) (Return, A, €)
26 (Exp, B, nil) - (Battery, M, €) (Return, A, €)
27 (dropped) - (Battery, M, €) (Return, A, €)
28 - - (Battery, M, €) (Return, A, return)
29 - - (Battery, M, €) (Return, A, nil)
30 - - (Battery, M, €) (dropped)

The absence of a plan is denoted by e—empty. MG P is (—C : Charge, (C A 7(—=C)) : Charge|), SGP is
battery_charged v drop(Charge) Vv abort(Charge) :?battery_charged

Initially, Curiosity’s goals are all in the Pending state. Battery is then activated, and
moves into the Monitoring state, and then Exp is activated and moves into the Active
state. As Exp is the only active goal, a plan is generated for it (p1; p2; p3; pa) and starts
executing. During the execution of action ps3, a violation of the battery level is predicted, and
so Battery is activated. This triggers the activation of the goal Charge, which commences in
the Pending state but immediately moves to the Active state, and for which the plan Charge

@ Springer

712 Auton Agent Multi-Agent Syst (2014) 28:682-719

is executed. Note that the rules R and R; for the goals Exp and Sci O pp respectively ensure
that Exp and Sci Opp are suspended (if active) when Charge is activated. Once Charge
has succeeded (i.e., the battery is fully charged), it is dropped, and the goal Battery returns
to the Monitoring state. Exp then resumes execution, but before p4 is completed, Sci Opp
is activated, as Curiosity has spotted a rock which matches the science opportunity criterion.
Exp is suspended, until Sci Opp is achieved. Curiosity completes the latter goal but, before
it can resume Exp, the trigger for Return is activated, as Curiosity has determined it has
to leave now in order to return to the base by dusk. Hence Exp is aborted (which includes
saving internally the partial results that have been obtained during the sol, represented here
by the abort method save), and the action return is executed, which results in Curiosity being
back at the base for the night.

It can be seen how our approach makes available to the agent the range of goal operations,
and provides a formal specification for the goals over their lifecycles. Achievement (e.g.,
Exp) and maintenance (e.g., Battery) goals are accommodated, together with plans.

6.2 Extending the basic scenario

In the above basic scenario, Curiosity is programmed to return to its base at the end of
every sol. We now consider a more sophisticated programming. When dusk approaches,
Curiosity can stop its experiments and return to base as before. Alternatively, it can suspend
its experiments, secure its position, wait until dawn, and resume the experiments. This is
possible provided the rover has sufficient health status (e.g., battery level) for the night, and
that forecast weather conditions (e.g., dust storms) are permissible for it.

The new goal, Nighttime, has signature: achieve(nearly_dusk, A, calm_weather)
dawnsecuring_failure. Like Return, Nighttime is applicable when the end of the sol
is approaching. Unless otherwise instructed, it is up to Curiosity to decide which of the two
goals to adopt.

We suppose that the plan for Nighttime consists of four steps, n1; na; n3; ns, correspond-
ing to suspending any current experiments, moving to a stable position, waiting for dawn,
and then resuming any experiments. Other parts of Curiosity’s programming would accept
any new science targets instructed from Earth for the new sol. The new targets might preempt
some of previous targets (i.e., those not completed the previous day), since the highest pri-
ority science targets would be pursued. Further, since this plan does not include transmitting
the partial results of any experiments suspended at dusk, it is important that the suspend and
failure methods of Nighttime schedule the communication of any partial results.

The initial goal context (in simplified notation, as before) is:

(Exp, P, €), (SciOpp, P, €), (Battery, P, €), (Return, P, €), (Nighttime, P, €)

An illustration of the expected sequence of Curiosity’s goal states is given in Table 3. We do
not show goal Return since Nighttime will be adopted instead. Stages 1-22 progress as
before. In stage 23, with dusk approaching, Curiosity activates Nighttime. It causes both
Exp and Sci Opp to be suspended. Being a critical health goal, Battery is not suspended.
When dawn comes, in stage 27, Curiosity resumes both science goals.

We could study further more sophisticated scenarios. For example, a return to base might
trigger other behaviour, such as a communication goal back to Earth that uses the base’s high-
bandwidth capability, and goals for scheduled maintenance tasks. Also, we may consider
making Sci Opp either a purely reactive maintenance goal, or a ‘permanently triggered’
achievement goal; the latter case can be specified in our semantics simply by altering the
rule that drops the goal when it succeeds to a rule that restores it to the Pending state. Our

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719

713

Table 3 Curiosity’s sequence of goal states in the extended scenario

Stage Experiment Science Battery Nighttime

1 (Exp, P, €) (SciOpp, P, €) (Battery, P, €) (Nighttime, P, €

2 (Exp, P, €) (SciOpp, P, €) (Battery, M, €) (Nighttime, P, €

3 (Exp, A, €) (SciOpp, P, €) (Battery, M, €) (Nighttime, P, €

4 (Exp, A, p1; p2; p3; pa) (SciOpp, P, ¢€) (Battery, M, €) (Nighttime, P, €

5 (Exp, A, p2; p3; pa) (SciOpp, P, €) (Battery, M, €) (Nighttime, P, €

6 (Exp, A, p3; pa) (SciOpp, P, €) (Battery, M, €) (Nighttime, P, €

7 (Exp, A, p3; pa) (SciOpp, P, €) (Battery, A, MG P) (Nighttime, P, €

8 (Exp, S, p3; p4) (SciOpp, P, €) (Battery, A, MG P) (Nighttime, P, €

9 (Exp, S, p3; p4) (SciOpp, P, €) (Battery, A, Charge) (Nighttime,P, e

10 (Exp, S, p3; p4) (SciOpp, P, €) (Battery, A, SGP), (Nighttime, P, €
(Charge, P, €)

11 (Exp, S, p3; p4) (SciOpp, P, €) (Battery, A, SGP), (Nighttime, P, €)
(Charge, A, €)

12 (Exp, S, p3; p4) (SciOpp, P, €) (Battery, A, SGP), (Nighttime, P, €)
(Charge, A, charge)

13 (Exp, S, p3; pa) (SciOpp, P, €) (Battery, A, SGP), (Nighttime, P, €)
(Charge, A, nil)

14 (Exp, S, p3; pa) (SciOpp, P, €) (Battery, A, SGP) (Nighttime, P, €

15 (Exp, S, p3; pa) (SciOpp, P, €) (Battery, M, €) (Nighttime, P, €

16 (Exp, A, €) (SciOpp, P, €) (Battery, M, €) (Nighttime, P, €

17 (Exp, A, p3; pa) (SciOpp, P, €) (Battery, M, €) (Nighttime, P, €

18 (Exp, A, pg) (SciOpp, P, €) (Battery, M, €) (Nighttime, P, €

19 (Exp, A, pa) (SciOpp, A, €) (Battery, M, €) (Nighttime, P, €

20 (Exp, S, ps) (SciOpp, A, €) (Battery, M, €) (Nighttime, P, €

21 (Exp, S, ps) (SciOpp, A, s1;52) (Battery, M, €) (Nighttime, P, €

22 (Exp, S, pa) (SciOpp, A, s3) (Battery, M, €) (Nighttime, P, €

23 (Exp, S, p4) (SciOpp, A, 52) (Battery, M, €) (Nighttime, A, €)

24 (Exp, S, p4) (SciOpp, S, 52) (Battery, M, €) (Nighttime, A, ny)

25 (Exp, S, p4) (SciOpp, S, 52) (Battery, M, €) (Nighttime, A, ny)

26 (Exp, S, ps) (SciOpp, S, 57) (Battery, M, €) (Nighttime, A, n3)

27 (Exp, A, p4) (SciOpp, A, s7) (Battery, M, €) (Nighttime, A, nq)

28 (Exp, A, p4) (SciOpp, A, 57) (Battery, M, €) (Nighttime, A, nil)

semantics ensures that Curiosity performs operations correctly on its goals, according to the
decisions that the agent’s reasoning makes.

6.3 Implementation

We have developed a prototype implementation of the full CAN rules for the four states
given in Fig. 2, and we have used it to verify the example described in this section. This
implementation, which we refer to as Orpheus, consists of around 750 lines of Prolog, and
has been tested under Ciao and SWI-Prolog. This has been a useful tool for testing our ideas,
and is available from the authors.°

6 http://www.cs.rmit.edu.au/~jah/orpheus.

@ Springer

http://www.cs.rmit.edu.au/~jah/orpheus

714 Auton Agent Multi-Agent Syst (2014) 28:682-719

It should be stressed that Orpheus is not intended as (yet another) agent programming
language. Rather, it is a tool to be used to explore the way in which changes of goal state can
be managed, and as a means of providing experimental evaluation. In particular, the main
focus of the implementation is in managing the states of goals, applying the appropriate
rules, and ensuring that the four phases discussed in Sect. 5.2 are followed. Once the CAN
execution rules were implemented, it was a simple task to translate the goal state transition
rules into executable code in Prolog.

In order to verify the examples in the Curiosity scenario, we chose to associate plans
with goals by means of some simple Prolog rules, and similarly for the handling of events.
However, this choice could easily be changed to more sophisticated mechanisms. The main
purpose of the implementation is to study the goal state changes, and not how plans are
generated. Hence, it seemed appropriate to keep simple the less important mechanisms.

7 Related work
In this section we survey related work and place our contribution in context.
7.1 Goal types

The distinction between achievement and maintenance goals has early roots in Al literature.
For instance, Cohen and Levesque [10] note that an agent adopts an achievement goal to
make true a state of the world (that it believes is currently false); whereas an agent adopts a
maintenance goals to keep true a condition in the world (that it believes is currently true). The
distinction parallels the distinction between liveness and safety properties in the verification
literature [12]. An agent’s attitude towards a goal, be it a goal of accomplishment or a goal of
monitoring, determines what is called a commitment strategy (see the discussionin, e.g., [42]),
i.e., what kind of conditions (for dropping, aborting, etc) are actually checked or ignored by
the agent.

The different types of goals found in the literature and in implemented agent systems
are surveyed by Braubach et al. [7]. While there is broad agreement about perform and
achieve goals, less attention has been directed towards maintain goals. The reactive and
proactive semantics for maintenance goals is explored by Duff et al. [16]. However, they do
not consider aborting or suspending goals, and do not give formal semantics for the behaviour
of maintenance goals. Other authors give proposals for the semantics of maintenance [3,49].

7.2 Goal states and transitions

Mechanisms for adopting and dropping goals, and generating plans for them, have been var-
iously explored at both the semantic theoretical and implemented system levels; we do not
cite here the extensive body of work. In our earlier work, we formalized the mechanisms
for the operations of aborting, suspending, and resuming goals [36,37]. However, that work
considered only achieve goals. Our analysis is that the literature lacks a state-transition
specification for all classes of goals that accounts for the current mechanisms for abort-
ing and suspending. Beyond our scope are recent examples of exploring goal failure and
re-planning [30,34].

Bordini and Hiibner [5] provide a semantics for the agent system Jason’s ‘internal actions’,
including its mechanism for handling plan failure. Inasmuch as they act to modify internal
state, these internal actions are akin to the internals of our abstract goal states [40].

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 715

/ Adopted \

1
el

Creation—) . | Qeememeeed cCont.e_xt R S Drop
Condition Sngition l : Condition
.—1 option H ,@
create adopt . 1 E drop
Option ! Suspended H

4

suspend Finished

Legend suspend

al Negated condition
[---0 Condition guards transition
D---o Condition triggers transition K

Fig. 3 Abstract goal state transition system of the Jadex framework (from [7])

activate

Braubach et al. [7] build the Jadex agent system [28] on an explicit state-based manipu-
lation of goals. Figure 3 (taken from [7]), illustrates the basic generic goal state transition
system that they propose. Goals begin in a New state and when adopted, they move to the
Option state (akin to our Pending). If the ‘context’ condition, that is, the condition which
captures the circumstances when the goal is applicable, is true, the deliberation mechanism
may initiate the goal processing and the goal transitions to the Active state (akin to our
own Active). The deliberation mechanism may also deactivate a goal which moves it back
to Option from Active. If the context is not true or becomes false, the goal moves to the
Suspended state, from which, it moves to the Option state when the context becomes
true again. They further specialise this basic transition system to the specific goal types.
Whilst there are similarities in their proposal to ours, there are a number of significant
differences:

— Their ‘suspend’ and ‘resume’ is based on an applicability condition whilst we propose
deliberation-directed suspension and resumption. This is necessary since goals may be
suspended due to the agent pursuing higher priority goals, lack of resources, or even user
intervention.

— When an achieve goal is suspended, in their framework all associated subgoals and plans
are terminated and a process history is maintained for determining which plans to restart
when the goal is resumed. They do not consider clean up actions which are often necessary
as we have argued [37]. Similarly for when goals are aborted [36]. The details of the Active
and Suspend states in the transition system we propose incorporates the mechanisms for
aborting, suspending and resuming goals described in [36,37].

— The process to re-establish the maintenance condition of a maintain goal is part of the
maintenance goal in their framework. In our approach, we generate a sub-goal of type
achieve to re-establish the condition which is treated as a normal achieve goal. This
allows for the sub-goal (or the plans/goals below it) to be suspended/resumed or aborted
independent of the maintain goal. The abort is of particular importance since aborting
a plan to re-establish the maintenance condition may result in a different plan being
executed.

The aim of Braubach et al. is to define a principled yet pragmatic foundation for the Jadex
system; no attempt is made for a generic formalization with a uniform set of operations on

@ Springer

716 Auton Agent Multi-Agent Syst (2014) 28:682-719

goals at an abstract representational level. Braubach et al. [6] discuss long-term goals, which
may be considered as an input for determining when a goal should be dropped, aborted or
suspended; here we are concerned with the consequences of such decisions, rather than the
reasons that they are made.

van Riemsdijk et al. [46,48] provide semantics for goals, based on default logic, empha-
sizing that, while the set of an agent’s goals need not be consistent, its set of intentions
must be. This and similar work is complementary to ours, in that we do not consider the
process by which the agent decides whether to adopt a goal and whether to adopt an inten-
tion (plan) for it. The same authors [13,14] expand their analysis of declarative goals to
perform goals, achieve goals, and maintain goals, providing a logic-based operational
semantics.

van Riemsdijk et al. [49] present a generic, abstract, type-neutral goal model consisting
of suspend and active states. Their two states can be thought of as “not currently executing
a plan” and “currently executing a plan”, respectively. Their work, which like ours encom-
passes achieve, perform, query, and maintain goals, has a less detailed accounting for
maintenance goals and for aborting and suspending than our work. Further, we argue that
the states of non-execution and suspension should be distinguished, and that goals should be
created into the Pending state, and not the Suspend state. Winikoff et al. [51] extend the
work of [49] with new types of time-varying goals, such as ‘achieve and maintain’, sketching
a semantics in LTL.

Contrary to van Riemsdijk et al., but agreeing with Braubach et al., it is worth remarking
on the value of Pending state as we see it. On the one hand, for achievement goals the state
distinguishes between a goal having in-execution plans associated (Active) and not (Pend-
ing). On the other hand, for maintenance goals it distinguishes between a goal monitoring
the maintenance condition (Monitoring; Active if responding) versus not (Pending). Indeed,
we see it as a natural state, in the sense that there are three natural states of a maintenance
goal: not monitoring the maintenance condition (Pending), monitoring but with no violation
(Monitoring), violation detected (Active). There are some interesting examples along the
lines of keeping Curiosity out of high winds. When there are no winds, there is nothing for
the rover to be concerned about. When there are high winds, the relevant maintenance goal
would be in the Monitoring state, and the proactive mechanism would prevent any action
taking place that would expose it to high winds.

Morandini et al. [25] use the generic goal model of van Riemsdijk et al. to reduce the
semantic gap between design-time goal models and run-time agent implementations. Their
operational semantics is focused on providing an account of the relationship between a
goal and its subgoals, including success conditions which are not necessarily the same as
those of the subgoals. Our work likewise encompasses dynamic achievement of a goal
according to logical conditions, enabled by a subgoaling mechanism. Crucially, since we
are concerned with execution, our semantics accounts for plans as well as goals. This
means that our goal states contain finer distinctions, and in particular the sub-division of
the Active and Suspended states. Our work is further distinguished by a richer range of
operations that may be applied to a goal (e.g., a richer semantics for suspending a goal
and its children; aborting as well as failing), and by the inclusion of proactive maintenance
goals.

Khan and Lespérance [23] tackle goal dynamics for prioritized goals through a logical
approach. Their focus is to ensure that active goals are consistent with each other and the
agent’s knowledge. Lorini et al. [24] study in detail the dynamics of goals and plans under
changes to the agent’s beliefs. Such works that enable an agent to reconsider its goals in the
light of belief updates are complementary to our work, and beyond our scope here.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:682-719 717

8 Conclusion and future work

Management of goals is central to intelligent agents in the BDI tradition. Through this article
we have provided an operational semantics for goal management across the common goal
types in the literature. The key contributions of our rule-based operational semantics for goal
states and transitions are (1) to encompass both goals of accomplishment and rich goals of
monitoring, (2) to provide a specification of abort and suspend for all the common goal types,
and (3) to account for plan execution as well as the dynamics of subgoaling. To the best of
our knowledge, this is the first time that these three aspects have been combined into one
semantics.

By developing the formal operational semantics for our generic framework in the agent
language CAN [31], we have not been tied to any particular agent implementation. An agent
system implementing the semantics we describe may correctly apply any of the permitted
operations to a goal of any type in any state. These operations include principled activation,
aborting, suspending, and resuming of goals. We have developed a prototype implementation
of the semantics in Prolog.

While the goal life-cycle is relatively simple at a high level (Fig. 2), pragmatic implemen-
tations of our framework will want to encapsulate as much of the complexity as possible—for
instance, detailed substates for the Active state—from the agent designer (programmer), by
encapsulation in the mechanisms of the agent execution framework (compare [5,6]). We
have developed our framework with flexibility in mind, so that an agent designer can use our
framework in a number of different contexts. For example, the use of the procedure mer for
means-end reasoning means that our framework can be used with any reasonable method
for associating goals and plans. Similar flexibility applies to the means by which the agent
makes decisions about whether to drop, suspend, resume, or abort one of its goals.

Our emphasis on goals exploits a natural synergy with goal-oriented software engineering
[45] and the modelling of business rules [8,9]. In both cases, the use of goals is fundamental
and a comprehensive semantics is important. Our semantics not only clarifies how an agent
can manage its goals, based on the decisions that it chooses to make, but it provides a path
for correctness verification of agent behaviour, through verification of Orpheus programs
(compare with other approaches formal verification of agents logics and systems [12]). Given
some agent decision-making behaviour, it would be beneficial in business and other settings
to be able to provide guarantees about the agent’s operation. This article has provided an
operational semantics for the agent’s goal operations, which will form an essential element
of a formal system in which such proofs can be developed.

We have accounted for the life-cycle of each goal type and have not sought to address
overall agent deliberation, plan deliberation, resource management, or plan scheduling. Thus
far we have examined the same questions as Braubach et al. [7]; future work is to address the
other questions they pose. Likewise, we have not considered failure handling and exceptions.
Our work is complementary to works that consider generic or application-specific reasoning
about goal interactions, such as Thangarajah and Padgham [41] and Shaw et al. [32], works
that consider goal generation, such as da Costa Pereira and Tettamanzi [11], and works that
consider goal and plan selection, such as Hindriks et al. [19] and Lorini et al. [24]. We think
there is potential in the exploration of such links.

Acknowledgments We are grateful to an anonymous reviewer for this point. We thank Lin Padgham,
Sebastian Sardifia, and the participants of the DALT’ 10 workshop for discussions. We thank the reviewers
of the earlier versions of this article for thoughtful and detailed comments which have improved the work.
JT acknowledges the support of the Australian Research Council and Agent Oriented Software Pty. Ltd.
under Grant LP0453486. NYS acknowledges the support of the University Research Board of the American

@ Springer

718 Auton Agent Multi-Agent Syst (2014) 28:682-719

University of Beirut, and thanks the Operations group at the Judge Business School and the fellowship at
St Edmund’s College, Cambridge. The work of DNM and NYS through SRI International was supported
in part by the Defense Advanced Research Projects Agency (DARPA) under Contract No. FA8750-07-D-
0185/0004. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of DARPA, or the Air Force Research Laboratory.

References
1. Anderson, C. (1990, August). The first rover on Mars—The Soviets did it in 1971. The Planetary Report.
2. Bajracharya, M., Maimone, M. W., & Helmick, D. (2008). Autonomy for Mars rovers: Past, present, and

future. Computer, 41(12), 45-50.

3. Baral, C,, Eiter, T., Bjaereland, M., & Nakamura, M. (2008). Maintenance goals of agents in a dynamic
environment. Artificial Intelligence, 172(12-13), 1429-1469.

4. Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2004). State-space reduction techniques in
agent verification. In Proceedings of AAMAS 04 (pp. 896-903), New York.

5. Bordini, R.H., Hiibner, J. F. (2010). Semantics for the Jason variant of AgentSpeak (plan failure and some
internal actions). In Proceedings of ECAI’10 (pp. 635-640), Lisbon.

6. Braubach, L., & Pokahr, A. (2009). Representing long-term and interest BDI goals. In Proceedings of
7th international workshop on programming multi-agent systems (ProMAS’09), Budapest.

7. Braubach, L., Pokahr, A., Moldt, D., & Lamersdorf, W. (2004). Goal representation for BDI Agent sys-
tems. In Proceedings of 2nd international workshop on programming multi-agent systems (ProMAS’04)
(pp- 9-20), New York.

8. Burmeister, B., Arnold, M., Copaciu, F.,, & Rimassa, G. (2008). BDI-agents for agile goal-oriented
business processes. In Proceedings of AAMAS’08 (industry track) (pp. 37-44), Estoril.

9. Chopra, A., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2010). Modeling and reasoning about service-
oriented applications via goals and commitments. In Proceedings of 22nd conference on advanced infor-
mation systems engineering (CAiSE’10) (pp. 113—128), Hammamet.

10. Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence, 42,
213-261.

11. da Costa Pereira, C., & Tettamanzi, A. (2010). Belief—goal relationships in possibilistic goal generation.
In Proceedings of ECAI’10 (pp. 641-646), Lisbon.

12. Dastani, M., Hindriks, K. V., Meyer, J. J. (Eds.). (2010). Specification and verification of multi-agent
systems. New York: Springer.

13. Dastani, M., van Riemsdijk, M. B., & Meyer, J. J. C. (2006). Goal types in agent programming. In
Proceedings of AAMAS’06 (pp. 1285-1287), Hakodate.

14. Dastani, M., van Riemsdijk, M. B., & Meyer, J. J. C. (2006). Goal types in agent programming. In
Proceedings of ECAI’06 (pp. 220-224), Riva del Garda.

15. Sardifia, S., de Silva, L., & Padgham, L. (2006). Hierarchical planning in BDI agent programming lan-
guages: A formal approach. In Proceedings of AAMAS’06 (pp. 1001-1008), Hakodate.

16. Duff, S, Harland, J., & Thangarajah, J. (2006). On proactivity and maintenance goals. In Proceedings of
AAMAS’06 (pp. 1033-1040), Hakodate.

17. Estlin, T., Rabideau, G., Mutz, D., & Chien, S. (2000). Using continuous planning techniques to coordinate
multiple rovers. Electronic Transactions on Artificial Intelligence, 4(A), 45-57.

18. Georgeff, M., & Rao, A. (1998). Rational software agents: From theory to practice. In Agent technology:
Foundations, applications, and markets (Chap. 8, pp. 139-160). New York: Springer.

19. Hindriks, K. V., van der Hoek, W., & van Riemsdij, M. B. (2009). Agent programming with temporally
extended goals. In Proceedings of AAMAS’09 (pp. 137-144), Budapest.

20. Hindriks, K. V., & van Riemsdijk, M. B. (2008). Using temporal logic to integrate goals and qualitative
preferences into agent programming. In Proceedings of 6th international workshop on declarative agent
languages and technologies (DALT’08) (pp. 173-189), Estoril.

21. Jet Propulsion Laboratory: Mars Science Laboratory: Mission science goals. (2012). http://mars.jpl.nasa.
gov/msl/mission/science/goals/. Retrieved August 2012.

22. Jet Propulsion Laboratory: Mars Science Laboratory/Curiosity. (2012). Tech. Rep. JPL 400-1491 8/12.
National Aeronautics and Space Administration, Pasadena.

23. Khan, S. M., & Lespérance, Y. (2010). A logical framework for prioritized goal change. In Proceedings
of AAMAS’10 (pp. 283-290), Toronto.

24. Lorini, E., van Ditmarsch, H. P., & Lima, T. D. (2010). A logical model of intention and plan dynamics.
In Proceedings of ECAI’10 (pp. 1075-1076), Lisbon.

25. Morandini, M., Penserini, L., & Perini, A. (2009). Operational semantics of goal models in adaptive
agents. In Proceedings of AAMAS’09 (pp. 129-136), Budapest.

@ Springer

http://mars.jpl.nasa.gov/msl/mission/science/goals/
http://mars.jpl.nasa.gov/msl/mission/science/goals/

Auton Agent Multi-Agent Syst (2014) 28:682-719 719

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

SI.

52.

53.

Myers, K. L., & Morley, D. N. (2001). Human directability of agents. In Proceedings of first international
conference on knowledge capture (K-CAP’01) (pp. 108-115), Victoria.

Padgham, L., & Winikoff, M. (2004). Developing intelligent agent systems: A practical guide. New York:
Wiley.

Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). Jadex: A BDI reasoning engine. In Multi-agent
programming (pp. 149-174). Heidelberg: Springer.

Rao, A. S., & Georgeft, M. P. (1992). An abstract architecture for rational agents. In Proceedings of
KR’92 (pp. 439-449), Cambridge.

Sardifia, S., & Padgham, L. (2007). Goals in the context of BDI plan failure and planning. In Proceedings
of AAMAS’07 (pp. 16-23), Honolulu.

Sardifia, S., & Padgham, L. (2011). A BDI agent programming language with failure handling, declarative
goals, and planning. Journal of Autonomous Agents and Multi-Agent Systems, 23(1), 18=70.

Shaw, P. H., Farwer, B., & Bordini, R. H. (2008). Theoretical and experimental results on the goal-plan
tree problem. In Proceedings of AAMAS’08 (pp. 1379-1382), Estoril.

Siebra, C., Tate, A., & Lino, N. Q. (2004). Planning and representation of joint human-agent space missions
via constraint-based models. In Proceedings of international workshop on planning and scheduling in
space (IWPSS’04).

de Silva, L., Sardifa, S., & Padgham, L. (2009). First principles planning in BDI systems. In Proceedings
of AAMAS’09 (pp. 1105-1112), Budapest.

Singh, D., Sardifia, S., & Padgham, L. (2010). Extending BDI plan selection to incorporate learning from
experience. Robotics and Autonomous Systems, 58(9), 1067-1075.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N. (2007). Aborting tasks in BDI agents. In
Proceedings of AAMAS’07 (pp. 8-15), Honolulu.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N. (2008). Suspending and resuming tasks in
BDI agents. In Proceedings of AAMAS’08 (pp. 405-412), Estoril.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N. (2010). On the life-cycle of BDI agent goals.
In Proceedings of ECAI'10 (pp. 1031-1032), Lisbon.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N. (2010). Operational behaviour for executing,
suspending and aborting goals in BDI agent systems. In Proceedings of 8th international workshop on
declarative agent languages and technologies (DALT’10) (pp. 1-17), Toronto.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N. (2011). Operational behaviour for executing,
suspending, and aborting goals in BDI agent systems. In A. Omicini, S. Sardina, & W. Vasconcelos (Eds.),
Declarative agent languages and technologies VIII. Lecture notes in computer science (Vol. 6619, pp.
1-21). Berlin: Springer.

Thangarajah, J., & Padgham, L. (2011). Computationally effective reasoning about goal interactions.
Journal of Automated Reasoning, 47(1), 17-56.

Thangarajah, J., Padgham, L., & Harland, J. (2002). Representation and reasoning for goals in BDI
agents. In Proceedings of twenty-fifth Australasian computer science conference (ACSC’02) (pp. 259—
265), Melbourne.

Thangarajah, J., Padgham, L., & Winikoff, M. (2003). Detecting and avoiding interference between goals
in intelligent agents. In Proceedings of IJCAI’03 (pp. 721-726), Acapulco.

Thangarajah, J., Padgham, L., & Winikoff, M. (2003). Detecting and exploiting positive goal interaction
in intelligent agents. In Proceedings of AAMAS’03 (pp. 401-408), Melbourne.

van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A guided tour. In Proceedings of
5th IEEE international symposium on requirements engineering (RE’01) (pp. 249-263), Toronto.

van Riemsdijk, M. B., Dastani, M., & Meyer, J. J. C. (2005). Semantics of declarative goals in agent
programming. In Proceedings of AAMAS’05 (pp. 133-140), Utrecht.

van Riemsdijk, M. B., Dastani, M., Meyer, J. J. C. (2005). Subgoal semantics in agent programming. In
Proceedings of 12th Portuguese conference on artificial intelligence (EPIA’05) (pp. 548-559), Covilha.
van Riemsdijk, M. B., Dastani, M., & Meyer, J. J. C. (2009). Goals in conflict: Semantic foundations of
goals in agent programming. Journal of Autonomous Agents and Multi-Agent Systems, 18(3), 471-500.
van Riemsdijk, M. B., Dastani, M., & Winikoff, M. (2008). Goals in agent systems: A unifying framework.
In Proceedings of AAMAS’08 (pp. 713-720), Estoril.

Washington, R., Golden, K., Bresina, J., Smith, D. E., Anderson, C., & Smith, T. (1999). Autonomous
rovers for Mars exploration. In Proceedings of IEEE aerospace conference (pp. 237-251), Aspen.
Winikoff, M., Dastani, M., & van Riemsdijk, M. B. (2010). A unified interaction-aware goal framework.
In Proceedings of ECAI’10 (pp. 1033-1034), Lisbon.

Winikoff, M., Padgham, L., Harland, J., & Thangarajah, J. (2002). Declarative and procedural goals in
intelligent agent systems. In Proceedings of KR’02 (pp. 470-481). Toulouse.

Wooldridge, M. (2002). An introduction to multiagent systems. Chichester: Wiley.

@ Springer

	An operational semantics for the goal life-cycle in BDI agents
	Abstract
	1 Introduction
	1.1 Scenario
	1.2 Contribution
	1.3 Previous work
	1.4 Organization

	2 Background
	2.1 Goals and goal manipulation
	2.1.1 Mechanisms for abort, suspend, and resume

	2.2 Goal types
	2.3 Plans

	3 Scenario domain
	3.1 Curiosity scenario

	4 Goals states and transitions
	4.1 Abstract goal states
	4.2 Goal operations
	4.3 Transitions between states
	4.3.1 Pending state
	4.3.2 Monitoring state
	4.3.3 Active state
	4.3.4 Suspended state
	4.3.5 Aborting state

	5 A formal operational semantics of goal life-cycles
	5.1 Design issues
	5.2 Overview of CAN rules
	5.2.1 Assumptions
	5.2.2 Goal representation and state

	5.3 Goal transition CAN rules
	5.3.1 Initial state of goals
	5.3.2 Activate transition rules
	5.3.3 Drop and abort transition rules
	5.3.4 Suspend transition rule
	5.3.5 Respond, subgoal and re-respond transition rules
	5.3.6 Reconsider and reactivate transition rules

	5.4 Planning transition CAN rules
	5.5 Execution transition CAN rules

	6 Illustrating the operational semantics: Curiosity scenario revisited
	6.1 Basic scenario
	6.2 Extending the basic scenario
	6.3 Implementation

	7 Related work
	7.1 Goal types
	7.2 Goal states and transitions

	8 Conclusion and future work
	Acknowledgments
	References

