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Abstract Kemeny Rank Aggregation is a consensus finding problem important in many
areas ranging from classical voting over web search and databases to bioinformatics. The
underlying decision problem Kemeny Score is NP-complete even in case of four input
rankings to be aggregated into a “median ranking”. We analyze efficient polynomial-time
data reduction rules with provable performance bounds that allow us to find even all optimal
median rankings. We show that our reduced instances contain at most 16/3 · da candidates
where da denotes the average Kendall’s tau distance between the input votes. On the theoreti-
cal side, this improves a corresponding result for a “partial problem kernel” from quadratic to
linear size. In this context we provide a theoretical analysis of a commonly used data reduc-
tion. On the practical side, we provide experimental results with data based on web search
and sport competitions, e.g., computing optimal median rankings for real-world instances
with more than 100 candidates within milliseconds. Moreover, we perform experiments with
randomly generated data based on two random distribution models for permutations.

Keywords Kemeny score · NP-hardness · Parameterized algorithmics · Preprocessing ·
Average parameterization · Partial problem kernel · Experiments

Electronic supplementary material The online version of this article (doi:10.1007/s10458-013-9236-y)
contains supplementary material, which is available to authorized users.

A preliminary version of this work appeared under the title “Partial Kernelization for Rank Aggregation:
Theory and Experiments” in Proceedings of the 5th International Symposium on Parameterized and Exact
Computation (IPEC-2010), Chennai, India, December 2010, volume 6478 in Lecture Notes in Computer
Science, pp. 26–37, Springer. This journal version expands on the conference version by siginificantly
revising the theoretical part, extending the range of test data, and by using state-of-the-art ILP-solvers. This
work was started while all authors were with Friedrich-Schiller-Universität Jena, Germany.

N. Betzler · R. Bredereck (B) · R. Niedermeier
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin, Germany
e-mail: robert.bredereck@tu-berlin.de

R. Niedermeier
e-mail: rolf.niedermeier@tu-berlin.de

123

http://dx.doi.org/10.1007/s10458-013-9236-y


722 Auton Agent Multi-Agent Syst (2014) 28:721–748

1 Introduction

We investigate the effectiveness of polynomial-time data reduction for computing optimal
solutions of the NP-hard Kemeny Rank Aggregationproblem. Kemeny’s corresponding
voting scheme can be described as follows. An election (V, C) consists of a set V of n votes
and a set C of m candidates. A vote or a ranking is a total order of all candidates. For instance,
in case of three candidates a, b, c, the order c > b > a means that candidate c is the best-liked
one and candidate a is the least-liked one. For each pair of votes v,w, Kendall’s tau distance
(also known as “inversion distance” since it measures the number of inversions between two
permutations) between v and w is defined as

KT-distance(v,w) =
∑

{c,d}⊆C

dv,w(c, d),

where dv,w(c, d) is set to 0 if v and w rank c and d in the same order, and is set
to 1, otherwise. The score of a ranking r with respect to an election (V, C) is defined
as

∑
v∈V KT-distance(r, v). A ranking r with a minimum score is called a Kemeny ranking

of (V, C) and its score is the Kemeny score of (V, C). The central problem considered in this
work is as follows:

Kemeny Rank Aggregation
Input: An election (V, C).
Task: Find a Kemeny ranking of (V, C).

Its decision variant Kemeny Score asks whether there is a Kemeny ranking of (V, C) with
score at most some additionally given positive integer k. The Kemeny Rank Aggrega-
tionproblem has numerous applications, ranging from building meta-search engines for the
web or spam detection [16] over databases [17] to the construction of genetic maps in bioin-
formatics [22]. Kemeny rankings are also desirable in classical voting scenarios such as the
determination of a president (see, for example, http://www.votefair.org) or the selection of
the best qualified candidates for job openings. The wide range of applications is due to the
fulfillment of many desirable properties from the social choice point of view. For example,
the Kemeny rule is the unique preference function that is neutral, consistent, and satisfies the
Condorcet property [40]. These three properties are defined as follows.

Neutrality: The candidate names do not influence the Kemeny ranking, that is, given a Kemeny
ranking r for an election ({v1, v2, . . . , vn}, C), for every permutation π : C → C , π(r) is a
Kemeny ranking for ({π(v1), π(v2), . . . , π(vn)}, C).1

Consistency: Let (V1, C) and (V2, C) be two elections with disjoint vote sets, that is,
V1 ∩ V2 = ∅. If r is a Kemeny ranking for (V1, C) and for (V2, C), then r is also a Kemeny
ranking for (V1 ∪ V2, C).

Condorcet property: If there is a candidate (Condorcet winner) who is better than every other
candidate in more than half of the votes, then this candidate is also ranked first in every
Kemeny ranking.

Previous work. First computational complexity studies of Kemeny Score go back to
Bartholdi et al. [3], showing its NP-completeness. Dwork et al. [16] showed that the prob-
lem remains NP-hard even in the case of four votes—small errors in their proof have been

1 Let r = x1 > x2 > · · · > xm . Then, π(r) is the ranking π(x1) > π(x2) > · · · > π(xm ).
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corrected by Biedl et al. [8]. Moreover, Dwork et al. [16] demonstrated the usefulness of
Kemeny Score in aggregating web search results and provided several approximation and
heuristic algorithms. In earlier work, Hemaspaandra et al. [21] derived computational com-
plexity classifications for generalized versions of Kemeny Score. Recent papers showed
constant-factor approximability [1,41] and an (impractical) PTAS [24]. Schalekamp and van
Zuylen [35] provided a thorough experimental study of approximation and heuristic algo-
rithms. Another extensive experimental study compares 104 (mostly heuristic) algorithms
solving Kemeny Rank Aggregation in different situations [2]. Due to the importance of
computing provably optimal solutions, there have been experimental studies in this regard as
well [13,14]: An integer linear program and a branch-and-bound approach were applied to
random instances generated under a noise model. Another line of research concerns the inter-
pretation of Kemeny rankings as maximum likelihood estimators and several generalizations
thereof [19,29,30,39].

From a parameterized complexity perspective [15,20,31], the following is known. First
fixed-parameter tractability results have been shown with respect to the single parameters
number of candidates, Kemeny score, maximum range of candidate positions, and average
KT-distance da [6]. The average KT-distance

da :=
∑

v,w∈V

KT-distance(v,w)/(n(n − 1)),

will also play a central role in this work. The range of positions of some candidate x is defined
as the difference between its maximum position and its minimum position where the position
of x in a vote is defined as the number of candidates that are ranked better than x . Kemeny
Score remains NP-hard when the average range of candidate positions is two [6], excluding
hope for fixed-parameter tractability with respect to this parameterization. Simjour [36]
further introduced the parameters “Kemeny score divided by the number of votes” (which is
identical to da up to some constants factors [36]) and “maximum KT-distance between two
input votes” also showing fixed-parameter tractability and improved the running times for the
fixed-parameter algorithms corresponding to the parameterizations by average KT-distance
and Kemeny score. Very recently, Nishimura and Simjour [32] developed a fixed-parameter
algorithm with respect to the parameter “Kemeny score divided by the number of votes” that
enumerates all Kemeny rankings. Karpinski and Schudy [23] and Fernau et al. [18] devised
subexponential-time fixed-parameter algorithms for the parameters Kemeny score, average
KT-distance, and Kemeny score divided by the number of votes. Mahajan et al. [26] studied
above guarantee parameterization with respect to the Kemeny score. Finally, introducing the
new concept of partial kernelization, it has been shown that with respect to the average KT-
distance da one can compute in polynomial time an equivalent instance where the number
of candidates is at most 162d2

a + 9da [7].
Formally, the concept of partial kernelization is defined as follows. Let (I, k) be an instance

of a parameterized problem P , where I ∈ �∗ denotes the input instance and k a parameter. Let
d : �∗ → N be a computable function such that P is fixed-parameter tractable with respect to
d(I ). Then P admits a partial kernel if there is a polynomial-time algorithm that computes an
instance (I ′, k′) of P such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,
k′ ≤ g1(k), and d(I ′) ≤ g2(k) for computable functions g1 and g2. A (partial) problem
kernel is called enumerative if there is a one-to-one correspondence between solutions to the
original instances and solutions to the kernel [37].

Our contributions. Our central focus is on mathematically analyzing and empirically
evaluating polynomial-time executable data reduction algorithms for Kemeny Rank
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Aggregation. These rules preserve the possibility to find optimal (not only approximate)
solutions on the one hand, and provide an efficient and effective preprocessing with provable
performance guarantee on the other hand. We remark that a similar data reduction has been
used by Cohen et al. [12] to improve the approximation quality (but not running time) of a
heuristic algorithm for a closely related (more general) problem. In our setting, however, data
reduction is shown to be the key to significantly improve the running time of exact solution
strategies.

On the theoretical side, we improve the previous partial kernel size [7] from 162d2
a +

9da candidates to 16/3da candidates. More specifically, we investigate data reduction rules
exploiting majorities, ending up with an enumerative partial kernel consisting of at most
16/3da candidates. Next, we show that in case of dropping the quest for an enumerative
kernel, our previous data reduction rules are subsumed by a data reduction rule based on the
well-known Extended Condorcet Criterion [38]. We note that, very recently, Simjour [37]
showed a further improvement for the enumerative kernel to 4da candidates and for the
relaxed case to even (2 + ε)da candidates for ε > 0.

On the practical side, we provide empirical evidence for the usefulness of data reduction
rules associated with the above mentioned kernelization. An essential property of the data
reduction rules is that they can break instances into several subinstances to be handled inde-
pendently, that is, the relative order between the candidates in two different subinstances
in a Kemeny ranking is already determined. This also means that for hard instances which
we could not completely solve we were still able to compute “partial rankings” of the top
and bottom ranked candidates. After exhaustive application of our data reduction rules, we
employ some of the known fixed-parameter algorithms [6,11,36] and a known integer linear
program formulation [13] to solve small parts of the instances remaining after data reduc-
tion. Our experiments showed that the data reduction rules allow for significantly decreased
running times; they are crucial to solving larger instances. For example, using data reduction
rules decreased the running time with the Gurobi ILP-solver for a test instance from winter
sports with 69 candidates from 3.9 to 0.11 s. Furthermore, an instance generated from web
search with 240 candidates, which could not be solved within 70 s without data reduction,
was solved in 3 s.

2 Data reduction and a linear partial problem kernel

In this section, we examine two simple properties of Kemeny rankings which directly yield
data reduction rules. In Sect. 2.2, we analyze natural extensions of a majority-based property
including limitations of the corresponding data reduction rules. In Sect. 2.3, we show that
the data reduction from Sect. 2.2 provides a linear partial kernel for the parameter average
KT-distance that preserves all Kemeny rankings. In Sect. 2.4, we analyze a known extension
of the Condorcet property and show how the corresponding data reduction rules relate to the
data reduction from Sect. 2.2. In Sect. 2.5, we briefly discuss the tightness of our kernelization
upper bound and highlight some practical consequences of our theoretical findings. We start
in Sect. 2.1 with some definitions and sketch some relevant previous results [7].

2.1 Definitions and previous results

As to the notation of rankings, we write the list of candidates separated by the >-symbol in
the corresponding preference order. For example, a > b > c indicates that a is preferred
to b and c, and b is preferred to c. When we express partial information about the preference
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order we use quotation marks. For example, “a > b” means that candidate a is preferred
to b, without giving further information about other candidates. Furthermore, let #v(a > b)

denote the number of votes with “a > b”. A candidate pair {a, b} is called a conflict pair if
#v(a > b) > 0 and #v(b > a) > 0.

The data reduction framework from previous work [7] introduces a “dirtiness concept”
and shows that one can delete some “non-dirty candidates” by a data reduction rule leading to
a partial kernel with respect to the average KT-distance. The “dirtiness” of a pair of candidates
is measured by the degree of agreement of the votes for this pair. To this end, we introduce
the following notation. For an election (V, C), two candidates c, c′ ∈ C , and a rational
number s ∈ ]0.5, 1], we write

c ≥s c′,

if at least �s ·|V |
 of the votes prefer c to c′, that is, #v(c > c′) ≥ s ·|V |. A candidate pair {c, c′}
is dirty according to the ≥s -majority if neither c ≥s c′ nor c′ ≥s c. The remaining pairs
are called non-dirty according to the ≥s -majority. This directly leads to the parameter ns

d
denoting the number of dirty pairs according to the ≥s-majority. To simplify matters, we
write “>2/3” instead of “≥s with s > 2/3”. In this sense, let n>2/3

d denote the maximum
number of dirty pairs according to ≥s-majorities with s > 2/3. When the value of s is clear
from the context, then we speak of “dirty pairs” and omit “according to the ≥s-majority”.
Previous work only considered >2/3-majorities and provided a data reduction rule such that

the number of candidates in a reduced instance is at most quadratic in min{n>2/3

d , da}. In this
work, we provide a linear partial kernel with respect to ns

d according to the ≥s-majority for
s ≥ 3/4 and show that this leads to a linear partial kernel with respect to da .

We say that c and c′ are ordered according to the ≥s -majority in a ranking l if c > c′
in l and c ≥s c′. If all candidate pairs are non-dirty with respect to the ≥s-majority for
an s > 2/3, then there exists a ≥s -majority order, that is, a ranking in which all candi-
date pairs are ordered according to the ≥s-majority [7]. Furthermore, the corresponding
>2/3-majority order can be found in polynomial time and is a Kemeny ranking [7]. Can-
didates appearing only in non-dirty pairs according to a ≥s-majority are called non-dirty
candidates and all remaining candidates are dirty candidates according to the ≥s-majority.
Note that with this definition a non-dirty pair can also be formed by two dirty candi-
dates. See Table 1 for an overview of partial kernelization results versus polynomial-time
solvability.

We end with some notation needed to state our data reduction rules. For a candidate
subset C ′ ⊆ C , a ranking fulfills the condition C ′ > C\C ′ if every candidate from C ′ is
preferred to every candidate from C\C ′. A subinstance of (V, C) induced by a candidate
subset C ′ ⊆ C is given by (V ′, C ′) where every vote in V ′ one-to-one corresponds to a vote
in V keeping the relative order of the candidates from C ′.

Table 1 Partial kernelization and polynomial-time solvability

Value of s Partial kernel result No dirty pairs: ns
d = 0

2/3 < s < 3/4 Quadratic partial kernel w.r.t. ns
d [7, Theorem 2] Polynomial-time solvable

3/4 ≤ s < 1 Linear partial kernel w.r.t. ns
d (Theorem 1) [7, Proposition 3]

The term dirty refers to the ≥s -majority for the respective values of s. The number of dirty pairs is ns
d .

A linear partial kernel with respect to the average KT-distance follows directly from the linear partial kernel
with respect to ns

d (Theorem 1)
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Table 2 Properties “induced” by ≥s -majorities for different values of s

Value of s Properties

1/2 ≤ s ≤ 2/3 a ≥s -Majority order does not necessarily exist (Example 1)

2/3 < s < 3/4 a ≥s -Majority order exists (follows from [7, Theorem 4])

but a non-dirty candidate and a dirty candidate do not have to be ordered

according to the ≥s -majority in a Kemeny ranking (Proposition 1)

3/4 ≤ s ≤ 1 a ≥s -Majority order exists (follows from [7, Theorem 4])

and in every Kemeny ranking every non-dirty candidate is ordered according

to the ≥s -majority with respect to all other candidates (Lemma 1)

2.2 Exploiting ≥3/4-majorities

We generalize a well-known property of Kemeny rankings to develop data reduction rules:
If there is a specific candidate a such that all voters agree on each relative ordering of a and
some other candidate, then in every Kemeny ranking the relative ordering of a and any other
candidate is consistent with the votes. Formally, we have the following observation.

Observation 1 Let a ∈ C be a non-dirty candidate with respect to the ≥1-majority and b ∈
C\{a}. If a ≥1 b, then in every Kemeny ranking “a > b”; if b ≥1 a, then in every Kemeny
ranking “b > a”.

This observation directly implies a simple data reduction rule which may split the instance
into two subinstances: one containing all votes restricted to the candidates that are preferred
to a by all votes and one containing all votes restricted to the remaining candidates (except
a). In the remaining part of this subsection, we show how to extend this observation with
respect to ≥s-majorities, that is, to cases where only a ≥s-majority of the voters instead of all
voters agree on the relative orderings. We investigate to which ≥s-majorities Observation 1
extends. An overview of properties for a Kemeny ranking for different values of s is provided
in Table 2.
The 3/4-Majority Rule. It is easy to see that Observation 1 cannot hold for arbitrary ≥s-
majorities. For example with s = 1/2 the observation would already be contradictory for
the election consisting of two votes: a > b and b > a. The following lemma shows that
Observation 1 can be generalized for all ≥s-majorities with 3/4 ≤ s ≤ 1.

Lemma 1 Let a ∈ C be a non-dirty candidate with respect to the ≥s -majority and b ∈ C\{a}
with 3/4 ≤ s ≤ 1. If a ≥s b, then in every Kemeny ranking “a > b”; if b ≥s a, then in every
Kemeny ranking “b > a”.

Proof Let the partial score of a candidate subset C ′ be the Kemeny score of the subinstance
induced by C ′. We consider the case a ≥3/4 b; the case b ≥3/4 a and the proof for ≥s-majorities
with s > 3/4 follow in complete analogy. The proof is by contradiction. Assume that there is a
Kemeny ranking l with “b > D > a” for some D ⊆ C\{a, b}. Since a is non-dirty, for every
candidate d ∈ D it must either hold that a ≥3/4 d or d ≥3/4 a. Let D1 := {d ∈ D | a ≥3/4 d}
and D2 := {d ∈ D | d ≥3/4 a}. Consider the ranking l ′ obtained from l through replacing

“b > D > a” by “D2 > a > b > D1”,

where the positions of all other candidates remain unchanged and the candidates within D1

and D2 have the same relative order as within D.
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We show that the score of l is greater than the score of l ′, contradicting that l is a Kemeny
ranking. The only pairs of candidates that have different orders in l and l ′ and thus can
contribute with different partial scores to the scores of l and l ′ are {a, d1} and {d2, d1} for
all d1 ∈ D1 ∪ {b} and all d2 ∈ D2. Consider any d1 ∈ D1 ∪ {b} and d2 ∈ D2. Since
|{v ∈ V | d2 ≥3/4 a}| ≥ 3/4 · |V | and |{v ∈ V | a ≥3/4 d1}| ≥ 3/4 · |V |, the intersection of
these two sets must contain at least |V |/2 elements, that is, there must be at least |V |/2 votes
with “d2 > a > d1”. Thus, the partial score of {d2, d1} in l is at least as high as its partial
score in l ′. The partial score of every pair {a, d1} with d1 ∈ D1 ∪ {b} in l ′ is strictly less than
the partial score in l. Since |D1 ∪ {b}| ≥ 1, the score of l ′ is smaller than the score of l and
thus l cannot be a Kemeny ranking, a contradiction. ��

As a direct consequence of Lemma 1 we can partition the candidates of an election (V, C)

as follows. Let N := {n1, . . . , nt } denote the set of non-dirty candidates with respect to the
≥3/4-majority such that ni ≥3/4 ni+1 for 1 ≤ i ≤ t − 1. Then,

D0 := {d ∈ C\N | d ≥3/4 n1},
Di := {d ∈ C\N | ni ≥3/4 d and d ≥3/4 ni+1} for 1 ≤ i ≤ t − 1, and

Dt := {d ∈ C\N | nt ≥3/4 d}.
3/4-Majority Rule. Let (V, C) be an election and N and D0, . . . , Dt be the sets of non-
dirty and dirty candidates as specified above. Replace the original instance by the t + 1
subinstances induced by Di for i ∈ {0, . . . , t}.

The soundness of the 3/4-Majority Rule follows directly from Lemma 1. It remains to
discuss the running time of one application of the data reduction rule. The application of the
3/4-Majority Rule works as follows. In a first step, compute for each pair of candidates the
majority ratio, that is, for each candidate pair {a, b} determine how many votes prefer a to b
and vice versa. This takes O(|V |·|C |2) time and a table storing this information takes O(|C |2)
space. In a second step, decide with O(|C |) table lookups for each candidate whether it is
dirty or non-dirty according to the ≥3/4-majority. This gives the candidate set N as specified
above. A third step is to compute the candidate sets D0, . . . , Dt . For each set, we need at
most O(|C |) table lookups. Finally, computing the t + 1 new instances takes O(|V | · |C |2)
time, because one just copies the original instance, leaving out the candidates that are not in
the corresponding candidate sets. Since t ≤ |C |, the overall running time is O(|V | · |C |2).

Rules for weaker majorities. The existence of a data reduction rule analogously to the 3/4-
Majority Rule for ≥s-majorities for s < 3/4 would be desirable since such a rule might
be more effective: There are instances for which a candidate is dirty according to the ≥3/4-
majority but non-dirty according to a ≥s-majority with s < 3/4. Hence, for many instances,
the number of dirty pairs according to the ≥3/4-majority is higher than according to smaller
values of s. In the following, we discuss why an analogous s-Majority Rule with s < 3/4

cannot work. The decisive point of the 3/4-Majority Rule is that, in a Kemeny ranking, every
non-dirty candidate must be ordered according to the ≥3/4-majority with respect to every
other candidate.

To this end, we start with the introduction of the concept of the ≥s -majority order.

Definition 1 Let (V, C) be an election and r be a ranking over C and s ∈ [0, 1]. We say r
is a ≥s-majority order if the following holds:

∀{a, b} ⊆ C : a ≥s b ⇒ “a > b” in r.

Informally speaking, a ≥s-majority order fully respects all ≥s-majority relations.
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For the >2/3-majority, instances without dirty candidates are polynomial-time solvable [7].
More specifically, the >2/3-majority order is a Kemeny ranking. However, a simple example
shows that, for any s ≤ 2/3, a ≥s-majority order does not always exist.

Example 1 Consider the election consisting of the three candidates a, b, and c and the three
votes a > b > c, b > c > a, and c > a > b. Here, a ≥2/3 b, b ≥2/3 c, and c ≥2/3 a. No
linear order fulfills all three relations.

When the ≥s-majority order does not exist, then the ordering for the non-dirty candidates
is not clear. Hence, it is not even possible to compute the sets D1, . . . , Dt as described in the
3/4-Majority Rule. It remains to study s-values for s ∈]2/3, 3/4[. We show that in such cases
a pair consisting of a dirty and a non-dirty candidate needs not be ordered according to the
≥s-majority.

Proposition 1 Consider a ≥s -majority for any rational s ∈ ]2/3, 3/4[. For a non-dirty
candidate x and a dirty candidate y, x ≥s y does not imply x > y in a Kemeny ranking.

Proof Let s1 and s2 be two positive integers such that s = s1/s2. We construct an election
such that there is a non-dirty candidate x and a dirty candidate y with x ≥s y but “y > x”
in every Kemeny ranking. The set of candidates is {x, y} ∪ A with A := {a1, a2, . . . , al}
being the set of dummy candidates. The number l of dummy candidates directly depends
on s and will be discussed later. For now, let l be a fixed integer greater than one. We have
the following votes, where A stands for a1 > a2 > . . . > al :

• s1 · s2 − s2
1 votes of type 1: x > y > A,

• 2s2
1 − s1 · s2 votes of type 2: A > x > y,

• s1 · s2 − s2
1 votes of type 3: y > A > x .

We first show that there is a positive number of votes of every type and the total number
of votes is s1 · s2: The total number of votes is

s1 · s2 − s2
1 + 2s2

1 − s1 · s2 + s1 · s2 − s2
1 = s1 · s2.

Considering the number of votes of types 1 and 3, recall that 3/4 > s1/s2 and thus s2 >

4/3 · s1. Hence, for both types the number of votes is

s1 · s2 − s2
1 > s1 · (4/3 · s1 − s1) > 0.

Regarding votes of type 2, we use the trivial bound that s1/s2 > 1/2 and thus their number
is

2s2
1 − s1 · s2 > s1 · (2s1 − 2s1) = 0.

Now, we show that x is non-dirty and x ≥s y: The number of votes with “a > x” for
a ∈ A is

2s2
1 − s1 · s2 + s1 · s2 − s2

1 = s2
1 = s · |V |

and the number of votes with “x > y” is

s1 · s2 − s2
1 + 2s2

1 − s1 · s2 = s2
1 = s · |V |.

Thus, x is non-dirty according to the ≥s-majority and x ≥s y.
In the following, we show that the score of “y > A > x” is smaller than the score of

every other ranking and, hence, there is no Kemeny ranking in which x and y are ordered
according to the ≥s-majority.
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Having “a1 > a2 > . . . > al” in every vote, we also have “a1 > a2 > . . . > al” in
every Kemeny ranking (see, e.g., [6]). Distinguishing three cases, we first show that in every
Kemeny ranking “ai > x” if and only if “a j > x”, and “ai > y” if and only if “a j > y”
for every i, j ∈ {1, . . . , l}. After this, we can treat A like one candidate of “weight” l. Thus,
there remain only six rankings for which the score has to be investigated in order to show
that “y > A > x” is the only ranking with minimum score.

Case 1: Consider the ranking . . . > ai > x > a j > . . ., that is, candidate ai is directly
followed by candidate x and x is directly followed by candidate a j . Such a ranking
cannot have minimum score since swapping x and a j leads to a ranking with smaller
score since “a j > x” in more than s · |V | > 2/3 · |V | votes.

Case 2: Consider the ranking . . . > ai > y > a j > . . ., that is, candidate ai is directly
followed by candidate y and y is directly followed by candidate a j . This ranking
cannot have minimum score since swapping ai and y leads to a ranking with smaller
score. This can be seen as follows. Since s1 < 3/4 · s2, the number of votes with
“y > ai ” is

2s1s2 − 2s2
1 > 2s1(s2 − 3/4 · s2) = 1/2 · s1s2 = |V |/2.

Case 3: This case consists of ranking . . . > ai > x > y > a j > . . . and the same ranking
with x and y swapped. The latter ranking would clearly have a larger score than the
former so it suffices to analyze the former. We show that “ai > a j > x > y” has
a smaller score than “ai > x > y > a j ”. The only pairs that change the score are
{a j , y} and {a j , x}, contributing with

#v(a j > y) + #v(a j > x) = 2s2
1 − s1s2 + 2s2

1 − s1s2 + s1s2 − s2
1 = 3s2

1 − s1s2,

to the old score and with 2|V | − #v(a j > y) − #v(a j > x) to the “new” score.
Hence, it remains to show that the difference between the old and the new score is
positive, that is,

3s2
1 − s1s2 − 2s1s2 + 3s2

1 − s1s2 = 6s2
1 − 4s1s2 > 6 · 2/3 · s1s2 − 4s1s2 = 0.

Finally, consider the scores of all possible remaining six ranking types r1, . . . , r6:

r1 : A > x > y r3 : x > A > y r5 : y > A > x,

r2 : A > y > x r4 : x > y > A r6 : y > x > A.

Let t (r) denote the score of a ranking r . It is easy to verify that t (r1) < t (r2), t (r1) < t (r3),
and t (r4) < t (r6). Hence, to show that r5 has the smallest score, it remains to compare the
score of r5 with the scores of r1 and r4. This shows that r5 has a smaller score than r1 and r4:
Since A represents l candidates, we count the corresponding pairs l times in the following.

t (r4) − t (r5) = #v(y > x) + l · #v(A > x) + l · #v(A > y)

− l · #v(A > y) − l · #v(x > A) − #v(x > y),

= #v(y > x) + l · #v(A > x) − l · #v(x > A) − #v(x > y),

= s1s2 − s2
1 + ls2

1 − ls1s2 + ls2
1 − s2

1 ,

= 2(l − 1)s2
1 − (l − 1)s1s2.
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In the following, we show that this term is positive. Note that s1/s2 > 2/3 ⇔ s1 > 2/3 · s2

and l > 1.

0 < 2(l − 1)s2
1 − (l − 1)s1s2 ⇔

0 < 2s2
1 − s1s2 ⇐

0 < 4/3 · s1s2 − s1s2 ⇔
0 < 1/3 · s2

1 .

Thus, t (r5) < t (r4) and, therefore, t (r5) < t (r6).

t (r1) − t (r5) = l · #v(x > A) + l · #v(y > A) + #v(y > x) − l · #v(A > y) − l

·#v(x > A) − #v(x > y),

= ls1s2 − ls2
1 + 2ls1s2 − 2ls2

1 + s1s2 − s2
1 − 2ls2

1 + ls1s2− ls1s2+ ls2
1 − s2

1 ,

= (3l + 1)s1s2 − (4l + 2)s2
1 .

Again, we show that this term is positive. Note that s1/s2 < 3/4. Hence, there is a fixed and
positive number ε such that s2/s1 = 4/3 + ε, that is, s2 = (4/3 + ε)s1.

0 < (3l + 1)s1s2 − (4l + 2)s2
1 ⇔

0 < (4/3 + ε)(3l + 1)s2
1 − (4l + 2)s2

1 ⇔
0 < 4l + 3lε + 4/3 + ε − 4l − 2 ⇔
2 < 3lε + 4/3 + ε.

For l > 1/ε, one has t (r5) < t (r1) and, hence, t (r5) < t (r2) and t (r5) < t (r3).
As we can see in the above terms, it remains to use a number of dummy candidates l that

only depends on the number s. Our counterexample works for

l >
1

ε
= 1

1
s − 4

3

= 3s

3 − 4s
.

Altogether, we showed that r5 is the only Kemeny ranking. Thus, there is an election with
x ≥s y for every s ∈ ]2/3, 3/4[ such that every Kemeny ranking fulfills “y > x”. ��

2.3 A linear partial kernel preserving all Kemeny rankings

Lemma 1 shows that the 3/4-Majority Rule preserves the possibility to find all optimal solu-
tions. After exhaustive application (at most |C | times) of the 3/4-Majority Rule the remaining
instances contain only dirty candidates. Making use of a simple relation between the number
of dirty candidates and the average KT-distance as also used previously [7], we achieve the
following.

Theorem 1 Let da be the average KT-distance and ns
d be the number of dirty pairs according

to the ≥s -majority with s ≥ 3/4. Kemeny Rank Aggregationadmits a partial problem
kernel with less than min{16da/3, 2ns

d} candidates. Moreover, every Kemeny ranking of the
original instance contains a Kemeny ranking of the reduced instance and every Kemeny
ranking of the reduced instance can be extended in polynomial time to a Kemeny ranking of
the original instance.

Proof The partial kernel derives from applying the 3/4-Majority Rule, which is (easily)
adapted to work for the decision problem: An instance is reduced by deleting all candidates
from N , reordering every vote such that D0 > D1 > · · · > Dt where, inside Di , 0 ≤ i ≤ t ,
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the order of the candidates remains unchanged, and decreasing the Kemeny score appro-
priately. After having applied the adapted reduction rule, an instance containing only dirty
candidates remains. Let their total number be i . Since every dirty candidate must be involved
in at least one candidate pair that is not ordered according to the ≥3/4-majority, there must
be at least i/2 candidate pairs that contribute to the average KT-distance. To analyze the
contribution of such a pair, we take a look at the definition of the average KT-distance.

da =
∑

v,w∈V

KT-distance(v,w)/(|V |(|V | − 1)),

=
∑

{v,w}⊆V

KT-distance(v,w) · 2/(|V |(|V | − 1)),

=
∑

{v,w}⊆V

∑

{c,d}⊆C

dv,w(c, d) · 2/(|V |(|V | − 1)),

=
∑

{c,d}⊆C

∑

{v,w}⊆V

dv,w(c, d) · 2/(|V |(|V | − 1)).

That is, each candidate pair contributes to the average KT-distance with
∑

{v,w}⊆V

dv,w(c, d), (1)

normalized by the factor 2/(|V |(|V | − 1)). The sum in Eq. (1) is the number of votes that
prefer c to d times the number of votes that prefer d to c. In general, this value can be between
(|V |/2) · (|V |/2) (as many votes prefer c to d as votes prefer d to c) and 0 (all votes agree).
However, for our considered candidate pairs the contribution is at least (|V |/4) · (3|V |/4),
since they are not ordered according to the ≥3/4-majority. By definition of the average KT-
distance, it follows that

da ≥ i

2
· 2

|V |(|V | − 1)
· |V |

4
· 3|V |

4
>

3

16
· i ⇒ 16/3 · da > i.

As a consequence, the reduced instance has less than 16da/3 candidates. The upper bound
2ns

d for the number of remaining (dirty) candidates is trivial.
The relation between Kemeny rankings of the original and of the reduced instance follows

with Lemma 1 and the polynomial-time computability of the data reduction. ��

2.4 Exploiting the Condorcet property

In this subsection, we analyze a well-known data reduction rule of practical relevance [12].
We show that it reduces an instance at least as much as the 3/4-Majority Rule, but it does not
preserve all Kemeny rankings. The reduction rule is based on the following lemma which
is known as the Extended Condorcet Criterion [38]. We give a short proof for the sake of
completeness.

Lemma 2 Let C ′ ⊆ C be a candidate subset with c′ ≥1/2 c for every c′ ∈ C ′ and every
c ∈ C\C ′. Then there is a Kemeny ranking fulfilling C ′ > C\C ′.

Proof If there is a Kemeny ranking l not fulfilling C ′ > C\C ′, then replace it by the ranking l ′
with C ′ > C\C ′ such that the relative order within the candidates of C ′ and C\C ′ remains
unchanged. Now, comparing the scores of both rankings, they can only differ for pairs of
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candidates c′, c′′ with c′ ∈ C ′ and c′′ ∈ C\C ′. However, every such pair contributes with at
most as many points to the score of l ′ as to the score of l. Thus, l ′ must also be a Kemeny
ranking. ��

A straight-forward implementation of Lemma 2 already leads to a data reduction rule
running in O(|V | · |C |3) time. However, it may happen that it is applicable several times. The
following data reduction rule runs in O(|V | · |C |2) time and computes (in one application)
the same output as the exhaustive application of the straight-forward rule. To formulate the
rule, we need the concept of a majority graph.

Definition 2 Let (V, C) be an election. The strict (weak) majority graph of (V, C) is a
directed graph with C being the set of vertices that contains an arc from x to y if and only if
“x > y” in more than half of votes (in at least half of votes).

Extended Condorcet Rule Let (V, C) be an election and let C1, . . . , Ct ⊆ C be the vertex
sets forming the topologically ordered strongly connected components in the strict majority
graph of (V, C). Replace the original instance by the subinstances induced by Ci with
|Ci | ≥ 2, i ∈ {1, . . . , t}.

Constructing the strict majority graph takes O(|V | · |C |2) time. Computing the strongly
connected components (in topological ordering) takes O(|C |2) time. Computing the subin-
stances takes O(|V | · |C |2) time. Hence, the total running time of the Extended Condorcet
Rule is O(|V |·|C |2). Alternatively, one can find the set C1, . . . , Ct as defined in the Extended
Condorcet Rule by recursively applying Lemma 2. Formally, the Extended Condorcet Rule
is sound due to the following lemma (in combination with Lemma 2).

Lemma 3 Let (V, C) be an election and let C1, . . . , Ct ⊆ C be the candidate sets as
computed by the Extended Condorcet Rule. Then, ci ≥1/2 c j for every ci ∈ Ci and every
c j ∈ C\C j with 1 ≤ i < j ≤ t . Given a Kemeny ranking for each subinstance induced by
Ci , i ∈ {1, . . . , t}, one can compute a Kemeny ranking of (V, C) in O(|V | · |C |2) time.

Proof The sets C1, . . . , Ct ⊆ C represent the strongly connected components of the strict
majority graph in topological ordering, that is, by definition of the topological ordering there
is no arc from some vertex in Ci to some vertex in C j for 1 ≤ i < j ≤ t . By the definition
of the strict majority graph, it follows that ci ≥1/2 c j for every ci ∈ Ci and every c j ∈ C\C j

with 1 ≤ i < j ≤ t . Hence, by iteratively applying Lemma 2 one obtains a Kemeny
ranking for the original instance by concatenating the Kemeny rankings of the subinstances
induced by the vertex sets C1, . . . , Ct . (This includes to concatenate candidates represented
by components consisting of one single vertex.) ��

Remarkably, already in 1999 Cohen et al. [12] basically used what we now call the
Extended Condorcet Rule for improving the solution quality (but not running time) of a
greedy algorithm providing approximate results.

Although not explicitly stated, the Extended Condorcet Rule or a similar rule has been
used by Schalekamp and van Zuylen [35] as preprocessing. To the best of our knowledge,
in the context of exact algorithms neither its theoretically provable performance guarantees
have been analyzed nor its practical effectiveness has been evaluated.

Note that Brandt et al. [10] used a similar preprocessing procedure for computing so-
called tournament solutions. Similarly to the components in the Extended Condorcet Rule ,
they compute “dominating sets”, that is, subsets of alternatives such that all alternatives from
this set have the same relationship to all alternatives not in the set.
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The following proposition shows that the Extended Condorcet Rule is at least as powerful
as the 3/4-Majority Rule, implying that the Extended Condorcet Rule provides a partial kernel
with less than 16/3 · da candidates.

Proposition 2 An instance where the Extended Condorcet Rule has been exhaustively
applied cannot be further reduced by the 3/4-Majority Rule.

Proof The proof is by contradiction. Assume that there is an instance reduced by the Extended
Condorcet-Set Rule where the 3/4-Majority Rule successfully applies. Then, there must be
a non-dirty candidate x and a subset C ′ ⊆ C with c′ ≥3/4 x for c′ ∈ C ′ and x ≥3/4 c′′ for
c′′ ∈ C ′′ with C ′′ := C\(C ′ ∪{ni }). Clearly, in the strict majority graph there is no arc from x
to a vertex in C ′ and no arc from a vertex in C ′′ to x .

We can assume that C ′ and C ′′ are nonempty since otherwise the Extended Condorcet Rule
would obviously reduce this instance as x forms a strongly connected component in the strict
majority graph. Since |{v ∈ V : c′ ≥3/4 x}| ≥ 3/4 · |V | and |{v ∈ V : x ≥3/4 c′′}| ≥ 3/4 · |V |,
the intersection of these two sets must contain at least |V |/2 elements, that is, there must be
at least |V |/2 votes with “c′ > · · · > x > · · · > c′′” for c′ ∈ C ′ and c′′ ∈ C ′′. Hence, in
the strict majority graph of the instance there is no arc from a vertex in C ′′ to a vertex in C ′.
Thus, x forms a strongly connected component in the strict majority graph, a contradiction
to the fact that the Extended Condorcet Rules was applied. ��

Note that the proof of Proposition 2 works analogously if one extends the 3/4-Majority
Rule to search for “subsets of non-dirty candidates”, that is, to search for a subset C ′ ⊆ C
such that 3/4 of the votes agree on the relative ordering of every two candidates c′ ∈ C ′
and c′′ ∈ (C\C ′). That is, the Extended Condorcet Rule also subsumes this extended data
reduction rule which clearly reduces some instances that are not reducible by the 3/4-Majority
Rule .

Finally, we remark that the partial kernel obtained by the Extended Condorcet Rule as
defined above does not preserve the possibility to compute all Kemeny ranking from the
kernelized instance. Consider the simple election consisting of the vote a > b and the vote
b > a. When computing the partial kernel, the Extended Condorcet Rule has to fix some
topological ordering. Moreover, candidates represented by strongly connected components
of size one have to be removed in order to obtain the kernel size upper bound (see Theo-
rem 1). Hence, the partial kernel obtained by the Extended Condorcet Rule cannot distinguish
between the simple election above and the election consisting of two votes a > b, although
the former has two Kemeny rankings and the latter has only one Kemeny ranking. Of course,
by providing the kernelized instance with additional information one may find all Kemeny
rankings, but the partial problem kernel itself (which must be an instance of the original
problem) provided by the Extended Condorcet Rule does not preserve all Kemeny rankings.
Note that this observation is not only of theoretical interest since a (partial) problem kernel
has the nice property that one can apply every algorithm that solves the original problem on
the (partial) problem kernel. If one needs additional information to find all Kemeny rankings,
then such an algorithm must be able to handle this additional information.

Replacing the strict majority graph by a weak majority graph in the Extended Condorcet
Rule , one obtains a slightly modified reduction rule. Following an argumentation analo-
gous to Lemma 2 and Lemma 3 it is easy to verify that this modified Extended Condorcet
Rule preserves all solutions. The following example shows that the 3/4-Majority Rule reduces
instances that are not reduced by this modified rule.

Example 2 Consider the election consisting of the three candidates a, b, and x and the
following votes:
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a > x > b, a > x > b, b > a > x , x > b > a.

The 3/4-Majority Rule identifies and removes the non-dirty candidate x (preserving the only
Kemeny ranking a > x > b). The modified Extended Condorcet Rule constructs the weak
majority graph with one single strongly connected component consisting of a, b, and x and,
hence, does not reduce anything.

Example 2 shows that Proposition 2 does not extend to this case and it is unclear whether
the upper bound for the size of the partial kernel preserving all Kemeny rankings transfers
to this modified rule. A deeper analysis of kernels preserving all Kemeny rankings, so to say
enumerative kernels, is a topic of independent interest [32,37].

2.5 Tightness of the kernel bound and practical consequences

Tightness of the kernel bound. As main theoretical contribution of this section, we showed
that Kemeny Rank Aggregationadmits a partial problem kernel where the number of
candidates is linear in the average KT-distance even if we require that the partial kernel
preserves all Kemeny rankings for a given election. The upper bound of 16/3 · da for the
number of candidates in the reduced instance, where da denotes the average KT-distance,
already holds when applying the “weaker” 3/4-Majority Rule . As the following example
shows, this bound is tight for the 3/4-Majority Rule .

Example 3 Consider an election with the candidates a and b such that �3/4|V |
 − 1 votes
have “a > b” and the remaining votes have “b > a”. The 3/4-Majority Rule does not reduce
this instance. The average KT-distance of this election is asymptotically

lim|V |→∞
3/4|V | · 1/4|V |/(|V | · (|V | − 1)/2) = 6/16.

The number of candidates in this election is two. This meets the upper bound for the partial
kernel of m = 16/3 · da = 16/3 · 6/16 = 2.

Proposition 2 shows that the Extended Condorcet Rule may yield a better upper bound for
the size of the partial problem kernel since it may reduce instances that cannot be reduced
by the 3/4-Majority Rule . The following example shows that this bound cannot be smaller
than 2da .

Example 4 Consider an election with the candidates a, b, c, and d and the following votes:

x votes: a > b > c > d ,
x votes: c > d > a > b,
1 vote: b > c > d > a.

We consider the contribution of each candidate pair to the average KT-distance. The pair {a, b}
contributes with 2x , the pair {c, d} with zero, and every other pair with x(x + 1). Hence, for
an arbitrary large number x the average KT-distance of this election is asymptotically

lim
x→∞(2x + 4x(x + 1))/((2x + 1) · 2x/2) = lim

x→∞
4

2x + 1
+ 2 = 2.

Simjour’s recent PhD thesis [37] shows that slightly modifying the Extended Condorcet
Rule yields an upper bound arbitrarily close to 2da .
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Practical consequences. From the practical point of view our kernelization results show that
by applying a relatively simple data reduction rule one obtains reduced instances where the
number of candidates is small if the average Kendall Tau distance is small. This gives a
theoretical explanation why this kind of preprocessing is very effective for elections where
the votes do not “differ too much on average”.

If one is only interested in finding one Kemeny ranking instead of all Kemeny rankings,
the Extended Condorcet Rule subsumes a lot of data reduction rules, including

– a rule that detects and removes Condorcet winners (resp. Condorcet losers),
– the 3/4-Majority Rule, and
– an extension of the 3/4-Majority Rule to non-dirty candidate sets as discussed above.

It seems reasonable to assume that any preprocessing for Kemeny Rank Aggrega-
tion should at least handle Condorcet winners and Condorcet losers. Since the worst-case
time complexity of O(|V | · |C |2) for finding Condorcet winners is the same as for apply-
ing the Extended Condorcet Rule , we suggest to solely implement the Extended Condorcet
Rule for the scenario of finding one Kemeny ranking.

Since our practical focus is computing one optimal Kemeny ranking, in the next section,
we analyze the effectiveness and the efficiency of the Extended Condorcet Rule in practice.

3 Experimental work

In this section, we first provide a detailed overview of the data sets, implementation works, and
test series that are used in our experiments. Then, we summarize for each data set interesting
specific results. Finally, we discuss the suitability of our approach to exactly compute a
Kemeny ranking with respect to the specific data sets. Further tables with our experimental
results can be found in Supplementary Material.

All experiments were carried out on a standard-PC with 3.4 GHz and 4 GB RAM (CPU:
Intel(R) Core(TM) i3-2130) running under Debian 6.0 (64 bit) Linux. Source codes and test
data are freely available under the GPL Version 3 license at http://www.akt.tu-berlin.de/
menue/software/.

3.1 Data sets

Our test data consist of four sets of real-world data and two sets of synthetic data. We used
standard applications in sport competitions and web search to obtain real-world rankings and
two statistical model for random permutations to generate synthetic rankings.

3.1.1 Winter sports

Given rankings in sports for several seasons, one may ask for an overall ranking. This can
be easily interpreted as ranking with individuals or teams as candidates and the seasonal
rankings as votes. We generated one such election for ski jumping and one election for ski
cross. To this end, we considered the world cup rankings from the seasons 2005/2006 to
2008/2009,2 ignoring candidates not appearing in all four rankings. We ended up with an
election consisting of four complete votes ranking 33 candidates for ski jumping and with an
election consisting of four complete votes ranking 69 candidates for ski cross (see Table 1 in
Supplementary Material).

2 Obtained from the German server http://www.sportschau.de/sp/wintersport/.
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3.1.2 Formula 1

Similarly to winter sports, determining the winner of a Formula 1 season can be interpreted
as an election where the candidates are the drivers and the votes are the single races. We
considered the seasons from 1970 till 2008. Since our current algorithms and their imple-
mentation can neither handle ties nor partial rankings, we only considered candidates that
have competed in all races. Candidates that dropped out of a race are ordered according to the
order determined by how long the drivers participated in the race. The generated instances
have around 16 votes and up to 28 candidates (see Table 5 in Supplementary Material).

3.1.3 Web search

A prominent application of Kemeny Rank Aggregation is to aggregate search result
rankings obtained from different web search engines. We queried the same 37 search terms
as Dwork et al. [16], Schalekamp and van Zuylen [35], and Ali and Meilă [2] to generate
rankings. We used the search engines Google, Lycos, MSN Live Search, and Yahoo to
generate rankings of 1,000 websites. We considered two search results as identical if their
URL is identical up to some canonical form (cutting after the top-level domain). Results
not appearing in all rankings are ignored. Ignoring the term “zen budism” with only 18
candidates, this results in 36 instances having between 55 and 163 candidates (see Table 9 in
Supplementary Material).

3.1.4 Web impact

We generated rankings that measure the “impact in the web” of different search terms. For
a search engine, a list of search terms is ranked according to the number of the hits of each
single term. We used Ask, Google, MSN Live Search, and Yahoo to generate rankings for
all capitals (240 candidates), all nations (242 candidates—we obtained more nations than
capitals because some capital names appeared twice), and the 103 richest people of the world
(see Table 13 in Supplementary Material).3

3.1.5 Mallows model

Our first source of synthetic instances are samples from the Mallows model [27]. This is an
exponential model over rankings (resp. permutations in the original setting). The Mallows
model consists of a central ranking r0 of m elements and a dispersion parameter θ ∈ R+
which quantifies the concentration of the rankings around the peak r0 with respect to some
distance measure (Kendall’s tau distance in our case). The probability of a ranking r is

Pr0,θ (r) = e−θ ·d(r,r0)

Z
and Z =

∑

r∈Sm

e−θ ·d(r,r0),

where d is Kendall’s tau distance and Sm denotes the symmetric group of order m, that is, the
set of all rankings of m elements. Note that the normalization constant Z is actually indepen-
dent of r0 and that Kemeny Rank Aggregation is a log-likelihood estimator for r0 [28].
We remark that the expected KT-distance between a ranking generated by the Mallows model

3 http://en.wikipedia.org/wiki/List_of_national_capitals, http://en.wikipedia.org/w/index.php?title=Forbes_
list_of_billionaires_%282008%29&oldid=335542552
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and its central ranking is linearly upper bounded by the number of candidates [19]. Since the
KT-distance is a metric, this upper bound transfers to the average KT-distance.

We used the following parameters to create our test instances:

– number of votes n: 4, 5, 10, 20;
– number of candidates m: 10, 20, . . . , 100, 125, 150, 175, 200;
– dispersion parameter θ : 0.005, 0.01, 0.05, 0.1, 0.2, . . . , 0.9, 0.95, 0.99, 0.995.

For each parameter combination, we created ten instances.

3.1.6 Plackett–Luce model

Our second source of synthetic instances are samples from the Plackett–Luce model [25,33].
The model parameter is a set of weights S = {s1, . . . , sm} ∈ R

m+. The probability of a
ranking r of m elements is

PS(r) =
m∏

i=1

sr−1(i)

Zi
and Zi =

m∑

i≤ j

sr−1( j),

where r−1( j) denotes the j th elements of ranking r . In a sense, si denotes the “importance” of
element i . The Plackett–Luce model has not an as nice interpretation as the Mallows model,
but it is easy to see that the mode of this distribution ranks the candidates decreasingly with
respect to their importance. The votes should be less divergent (and thus easier to solve) when
the weights decrease faster.

We used the following parameters to create our test instances:

– number of votes n: 4, 5, 10, 20;
– number of candidates m: 10, 20, . . . , 100, 125, 150, 175, 200;
– importance weights S: poly1 = {m, m − 1, . . . , 1}, poly2 = {m2, (m − 1)2, . . . , 1}, poly3 =

{m3, (m − 1)3, . . . , 1}, exp2 = {2m, 2m−1, . . . , 2}.
For each parameter combination, we created ten instances.

3.2 Implementation and test series

Our algorithms are implemented in C++ using several libraries of the boost package.4 Our
implementation consists of about 4,000 lines of code.

Data reduction. For the sake of completeness, we implemented all data reduction rules that
are discussed in this paper including the 3/4-Majority Rule extended to non-dirty candidate
sets, the modified Extended Condorcet Rule (restricted on the weak majority graph) and a
rule that removes Condorcet winners and Condorcet losers. Preliminary tests showed that
it is most efficient to only run the Extended Condorcet Rule —confirming our theoretical
findings. Thus, we restrict our evaluation to analyzing the efficiency and the effectiveness of
the Extended Condorcet Rule compared to running no data reduction.

Implementation of the exact algorithms. To solve (hopefully small) parts of the instances
remaining after the application of the data reduction, we implemented three exact algorithms.
First, an extended version of the search tree algorithm showing fixed-parameter tractability

4 http://www.boost.org/
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with respect to the Kemeny score [6,11]. Second, a dynamic programming algorithm running
in O(2mm +nm2) time for m candidates and n votes [6,34]. Third, the integer linear program
(ILP) [13, Linear Program 3] which was the fastest exact algorithm in previous experimental
studies [13,35]. We used the freely available ILP-solver GLPK5 in version 4.43 as well as
the two commercial ILP-solvers CPLEX6 in version 12 and Gurobi7 in version 4.6.1 to solve
the ILP.

Test series. Generally speaking, the algorithms supported by high-end ILP-solvers turned
out to be the fastest. Although the dynamic programming approach is provably fast for small
instances up to 23 candidates and the search tree algorithms are able to beat the dynamic
programming algorithm in several instances, we recommend to use the commercial ILP-
solvers: Dynamic programming and search tree algorithms are only faster than the ILP-solvers
in some small instances which could be solved by all considered approaches in less than 1 s.
The commercial solvers are significantly faster than GLPK for all considered instances. Since
the corresponding results leave no doubt, we omit a detailed evaluation and we restrict our
analysis in the following to the ILP-solver approach with the two commercial ILP-solvers
CPLEX and Gurobi. However, we will see that the Extended Condorcet Rule (see Sect. 2)
significantly speeds up all approaches, thus confirming our theoretical findings.

In the next subsections, we discuss the results of our experiments. To this end, we compu-
tationally analyzed several properties of the input instances. As already discussed in Sect. 2,
the data reduction is able to split input instances into smaller subinstances which can be
solved independently. Hence, the effectiveness of the data reduction reflects in the structure
of these subinstances. To quantify this, after application of the data reduction we determined
the profile of the reduced instances. Basically, a profile is a string (consisting of numbers
separated by “>”) that expresses the sizes of the subinstances as well as the way of combining
the solutions of the subinstances to get the overall solution. The profiles are be to read as
follows. Every “1” stands for a trivial subinstance with one candidate, that is, the position of
the candidate in the overall Kemeny ranking was determined by the data reduction. Higher
numbers stand for groups of candidates whose “internal” order could not be determined by the
data reduction, that is, non-trivial subinstances that can be solved independently. Sequences
of i number 1s are abbreviated by 1i . The ordering of the numbers corresponds to the order-
ing in which one concatenates the Kemeny rankings of the subinstances to get the overall
Kemeny ranking.

For example, the profile “12>3>1>2” expresses that we know the best and the second best
candidate, we know the set of candidates that must assume positions 3-5 without knowledge
of their relative orders, we know the candidate in position 6, and we know the two candidates
that must assume positions 7 and 8 without knowledge of their relative order. Thus, in this toy
example two non-trivial subinstances remain, one with three and one with two candidates.

We performed the following test series on all instances in our data sets:

Properties. We computed basic properties of our instances: the number of candidates and
votes, the percentage of conflict pairs, the percentage of candidate pairs ordered
according to the ≥3/4-majority, simple lower and upper bounds of the Kemeny
score, the maximum position range of a candidate, the average KT-distance, and
a maximum likelihood estimation for the dispersion parameter θ of the Mallows
model.

5 http://www.gnu.org/software/glpk/
6 http://www.ibm.com/software/integration/optimization/cplex-optimizer/
7 http://www.gurobi.com/
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Reduction. We computed the profiles (as discussed above) of the reduced instances and
other reduction quality indicators such as the number of subinstances after pre-
processing, the maximum number of candidates among the subinstances, the
average number of candidates among the subinstances, and the percentage of
conflict pairs whose ordering in the consensus could be determined by the data
reduction,.

Speedup. We computed a Kemeny consensus for each instance, once without using data
reduction and once with data reduction as preprocessing. We compared both
running times, computed the speedup gained by applying the data reduction, and
state the Kemeny scores of the instances.

3.3 Experimental results

In this section, we summarize results from our test series applied to the six ranking data sets.

Winter sports. Without data reduction, the ski cross instance, consisting of 69 candidates,
was solved by the ILP-solver Gurobi in about 3.9 s. In contrast, the instance was solved in
0.11 s when using the Extended Condorcet Rule from Sect. 2 as preprocessing and then
applying Gurobi for the unresolved subinstances. This speedup is possible because the
data reduction solves the main part of the instance in milliseconds and leaves two rela-
tively small subinstances containing 12 and 15 candidates. Clearly, these subinstances can
be quickly solved by all ILP-solvers. Furthermore, the ski jumping instance, consisting of
33 candidates, could be fully solved in milliseconds by only applying the data reduction.
The speedup through applying data reduction is at least 8 with respect to both instances
and both ILP-solvers. Details concerning the experimental results of this data set can be
found in Tables 1–4 in Supplementary Material. Speedup and running times are illustrated in
Fig. 1.

Formula 1. The data reduction was successful for most Formula 1 instances. Except for one
instance, namely the instance corresponding to the season 1983, the data reduction ended
up with subinstances with at most 13 candidates each. Notably, also for 1983, for more
than 20 % of the candidates their exact positions could be already determined by the data
reduction. More details about the structure of the reduced instances can be found in the

CPLEX
Gurobi

winter sports instances
0

5

10

15

20

25

30

35

40

sp
ee

du
p 

th
ro

ug
h 

da
ta

 r
ed

uc
tio

n

CPLEX without data reduction
CPLEX with data reduction
Gurobi without data reduction
Gurobi with data reduction

winter sports instances
0

1

2

3

4

5

6

ru
nn

in
g 

tim
es

 in
 s

ec
on

ds

Fig. 1 Speedup (left) and running times (right) of the two winter sports instances (arbitrarily ordered)
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Fig. 2 Speedup (left) and running times (right) of the Formula 1 instances (seasonal ordering)

Fig. 3 Comparing the computed Kemeny consensus ranking with the official Formula 1 ranking of season
2008

profiles table (Table 7 in Supplementary Material). As we can learn from Fig. 2 and from
Table 8 in Supplementary Material, applying the data reduction gives a significant speedup
for the overall running time in most cases. However, all Formula 1 instances are still small
enough to solve them without data reduction in less than 1 s.

Currently, the winner determination in the Formula 1 is based on a “scoring rule”, that
is, in a single race every candidate gets some points depending on the outcome, and the
candidate with highest total score wins. To compare with the official winners, we computed
Kemeny winners for the seasons from 1970 till 2008.

The Kemeny winner in most of the considered seasons is the same as the candidate selected
by the scoring rule used by the FIA. In 2008, however, Lewis Hamilton was elected as world
champion (beating Felipe Massa by only one point) whereas Massa was the “Condorcet
driver” and thus the first candidate in every Kemeny ranking (see Fig. 3). Since in contrast to
Kemeny’s voting system there is no scoring-based rule fulfilling the Condorcet property [40],
such a difference in outcomes is no real surprise.

Web search. Applying the data reduction as preprocessing helps to significantly speed up
the running times of solving the Kemeny Rank Aggregationproblem by the ILP-solvers
(illustrated in Fig. 4). All details concerning the experimental results for this data set can be
found in Tables 9–12 in Supplementary Material.

For all instances with more than 100 candidates, the results of the data reduction are
displayed in Table 3: the Extended Condorcet Rule is not only able to reduce candidates at
the top and the last positions but also partition some instances into several smaller subin-
stances. Out of the 36 instances, 22 were solved directly by the reduction and one of the
other algorithms in less than five minutes. Herein, the data reduction always contributed
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Fig. 4 Speedup (left) and running times (right) of the web search instances (alphabetical ordering according
to the search terms)

Table 3 Web data instances with more than 100 candidates

Search term # Cand. Time (s) Profile of reduced instance

Affirmative action 127 0.18 127 > 41 > 159

Alcoholism 115 0.14 1115

Architecture 122 0.16 136 > 12 > 130 > 17 > 127

Blues 112 0.13 174 > 9 > 129

Cheese 142 0.23 194 > 6 > 142

Classical guitar 115 0.13 16 > 7 > 150 > 35 > 117

Death + valley 110 0.13 115 > 7 > 130 > 8 > 150

Field hockey 102 0.09 137 > 26 > 120 > 4 > 115

Gardening 106 0.10 154 > 20 > 1 > 1 > 9 > 18 > 4 > 19

HIV 115 0.14 162 > 5 > 17 > 20 > 121

Lyme disease 153 0.25 125 > 97 > 131

Mutual funds 128 0.18 19 > 45 > 19 > 5 > 1 > 49 > 110

Rock climbing 102 0.10 1102

Shakespeare 163 0.33 1100 > 10 > 125 > 6 > 122

Telecommuting 131 0.18 19 > 109 > 113

The first column denotes the search term, the second the number of candidates, the third the running time of
data reduction in seconds, and the last column the profiles remaining after data reduction

with less than 0.5 s to the running time. For all other instances we still could compute the
“top” and the “flop” candidates of an optimal ranking. For example, for the search term
“telecommuting” there remains a subinstance with 109 candidates but we know the best
nine candidates (and their order). The effectiveness in terms of candidates positions that
have been fixed by the reduction rules is illustrated in Fig. 5. For example, the data reduc-
tion was able to fix more than 50 % of the candidate positions for more than 70 % of the
instances.
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Fig. 5 Effectiveness and speedup for web search instances with more than 50 candidates. Left we use two
different measures of effectiveness: the percentage of candidate positions that could be determined by the data
reduction (crosses) and the percentage of conflict pairs that could be resolved by the data reduction (boxes).
The position on the x-axis gives the number of candidates and the position on the y-axis gives the value of the
corresponding measure. Right a cross (box) at position (x, y) means that at least x % of the candidate positions
(conflict pairs) could be determined by the data reduction for at least y % of the instances. For example, this
means that for 80 % of the instances with more than 50 candidates more than 65 % of the conflict pairs could
be resolved by the data reduction. Furthermore, 100 % of the candidate positions (that is, the instance was
solved) could be determined for more than 25 % of the web search instances with more than 50 candidates

Web impact. As for the capitals, in less than 2 s our algorithms (the data reduction and
the ILP-solvers) computed a Kemeny ranking. The data reduction performed very well; the
remaining subinstances correspond to the profile

17 > 5 > 110 > 9 > 114 > 34 > 15 > 6 > 13 > 6 > 17 > 9> 136 > 11 > 19 > 43 > 126.

Thus, only two harder subinstances of sizes 34 and 43 remained for the ILP-solvers.
The final Kemeny ranking starts as follows: London > Paris > Madrid > Singapore
> Berlin > . . . For aggregating the nation rankings, our algorithms were less success-
ful. However, we could still compute the top 6 and the flop 14 candidates with the data
reduction. Surprisingly, the best represented nation in the web seems to be Indonesia,
followed by France, the United States, Canada, and Australia. The instance consisting
of the 103 richest persons could be solved exactly in milliseconds by only applying the
data reduction. Details concerning the experimental results of this data set can be found
in Tables 13–16 in Supplementary Material. Speedup and running times are illustrated in
Fig. 6.

Mallows model. Confirming our findings for the real-world data sets, the data reduction was
also successful on this synthetic data set. For example, for instances with 100 candidates
and 10 rankings, the data reduction was able to reduce the instances into at least 26 subin-
stances with maximum 36 candidates on average when the dispersion parameter θ is 0.1 or
higher.

Interestingly, the data reduction was not only able to compute some top and flop candidates,
but usually, also the exact positions of candidates in the middle of the final ranking were
computed. Examples can be found in Table 4.
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Fig. 6 Speedup (left) and running times (right) of the web impact instances (arbitrary ordering)

Table 4 Typical structure of the reduced subinstances computed from the Mallows model instances

θ n m Time for data reduction (s) Profile

0.05 4 50 0.02 1 > 7 > 18 > 29 > 15

0.1 20 50 0.02 1 > 3 > 12 > 5 > 11 > 13 > 3 > 14 8 > 13 > 7

0.1 10 100 0.50 13 > 34 > 15 > 16 > 4 > 12 > 3 > 14 21 > 1 > 6 > 1

0.2 4 200 1.15 140 > 12 > 122 > 4 > 163 > 5 > 154

As expected, our test series also showed a correlation between the dispersion parame-
ter θ and the running time for solving Kemeny Rank Aggregation . When the number
of candidates and rankings is fixed, the running time is highest when θ is close to zero
(that is, all possible rankings are almost equally likely) and the running time is lowest
when θ is close to one (that is, every ranking differing from the central ranking is very
unlikely). Overall, the data reduction was quite successful for most test instances: For
100 candidates and 10 rankings, the data reduction enabled a speedup for θ = 0.01 and
greater. The speedup factor for CPLEX is more than 10 for θ ≥ 0.2. Similar effects can be
observed for 4, 5, and 20 rankings. The speedup factor for Gurobi is slightly higher for most
instances.

The observed effects are stronger with increasing θ as well as with decreasing number of
candidates and rankings, respectively. Furthermore, the effects are weaker with decreasing θ

as well as with increasing number of candidates and rankings, respectively. We illustrate
speedup and running times in Figs. 7 and 8.

However, even for 200 candidates, 20 rankings and θ ≥ 0.1, the data reduction caused
average speedup factors between 14 and 20 for CPLEX and between 22 and 59 for Gurobi.
A detailed collection of our results for these instances can be found in Supplementary
Material.

Plackett–Luce model. In contrast to the Mallows model, the data reduction was less successful
for instances sampled from the Plackett–Luce model. Especially for instances with 80 and
more candidates, the data reduction could often only compute some top and flop instances. The
data reduction could not break up the Plackett–Luce model instances into many subinstances
like the Mallows model instances. Examples can be found in Table 5.
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Fig. 7 Speedup (left) and running times (right) of the Mallows model instances. Upper diagrams instances
with 50 candidates and 4 votes. Lower diagrams instances with 50 candidates and 20 votes

However, computing some top and flop candidates also leads to some speedup. For exam-
ple, consider the instances with 70 candidates, 5 votes, and exponential decreasing weight
vectors. The average speedup through computing some top and flop candidates was 1.6.

The speedups tend to be stronger with increasing polynomial degree for polynomially
decreasing weight vectors as well as with decreasing number of candidates and rankings,
respectively. A detailed collection of our results for these instances can be found in Supple-
mentary Material.

4 Conclusion

Our experiments showed that the Extended Condorcet Rule allows for the computation of
optimal Kemeny rankings for real-world instances of non-trivial sizes within seconds. We
could find exact solutions for large real-world instances with more than 100 candidates by
means of data reduction within milliseconds while the corresponding instances could not
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Fig. 8 Speedup (left) and running times (right) of the Mallows model instances. Upper diagrams instances
with 100 candidates and 10 votes. Lower diagrams instances with 200 candidates and 4 votes

Table 5 Typical structure of the reduced subinstances computed from Plackett–Luce model instances

Weights n m Time for data reduction (s) Profile

Poly 1 20 50 0.03 22 > 3 > 13 > 122

Poly 2 4 50 0.01 122 > 8 > 13 > 8 > 19

Poly 3 10 100 0.47 13 > 97

Poly 3 4 200 9.24 15 > 193 > 12

be directly solved within 10 s by sole use of the ILP (the fastest exact algorithm [13]). A
key feature of the Extended Condorcet Rule is to break instances into smaller, independent
instances. In more general terms, algorithm engineering in combination with data reduction
and kernelization for NP-hard voting problems seems to be an area with several promising
challenges [5].
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On the theoretical side, we improved the previous partial problem kernel [7] with respect
to the parameter average KT-distance from quadratic to linear size. It is open whether there is
a linear partial kernel with respect to the ≥s-majority for any s < 3/4, thus potentially giving
data reduction rules that are not subsumed by the Extended Condorcet Rule . A natural step
in answering this question seems to investigate whether for two non-dirty candidates a, b
there must be a Kemeny ranking with a > b if a ≥s b.

An important extension of Kemeny Rank Aggregation is to consider “constraint
rankings”, that is, the problem input may additionally contain a prespecified order of some
candidate pairs in the consensus list [41]. Here, the considered data reduction cannot be
applied anymore. Extending the data reduction framework to rankings with ties or partial
rankings would be of high interest as well.

Kemeny Rank Aggregation with Partial Rankings seems to be the most inter-
esting extension. Unfortunately, considering majorities (as the 3/4-Majority Rule and the
Extended Condorcet Rule do) seems not to be promising for practically important instances
where the majority of the pairwise relations of the candidates is left unspecified. Furthermore,
the problem becomes more difficult: It is NP-hard already for two partial rankings [9] and even
if the maximum KT-distance between two input rankings is zero [4], destroying any hope
for fixed-parameter tractability or (partial) problem kernels for the parameter “maximum
KT-distance” or “average KT-distance”. Hence, a different approach and different parame-
ters seem necessary to obtain any provable guarantees for the effect of polynomial-time
preprocessing.

In contrast to Kemeny Rank Aggregation with Partial Rankings, for Kemeny
Rank Aggregation with Ties a quadratic partial kernel with respect to the parameter
“average KT-distance” is known [7]. It looks promising to investigate whether this can also
be improved to a linear partial kernel.
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