Auton Agent Multi-Agent Syst (2014) 28:430-473
DOI 10.1007/s10458-013-9228-y

Medee Method Framework: a situational approach
for organization-centered MAS

Sara J. Casare - Anarosa A. F. Brandao -
Zahia Guessoum - Jaime S. Sichman

Published online: 15 June 2013
© The Author(s) 2013

Abstract This paper presents a situational approach, called Medee Method Framework,
which allows the development of organization-centered MAS in a disciplined way, even
though some agent organizational (AO) models are not currently incorporated into agent-
oriented software engineering (AOSE) methods. In order to do that, such a method framework
proposes the composition of MAS situational methods out of method fragments according
to a given project situation, by applying the principles proposed by situational method engi-
neering. The proposed approach provides a high degree of reuse and flexibility, allowing the
composition of new methods as well as the reengineering of AOSE methods based on the
standards proposed by SPEM. Furthermore, it allows the user to leverage advantages of both
AOSE methods and AO models in order to develop organization-centered MAS. The Medee
Method Framework offers a method repository that covers different development phases,
such as requirements, analysis, design, implementation, as well as the main components of a
MAS application, like agents, environments, interactions, and organizations. This repository
has been sourced from several AOSE methods and AO models, as Gaia, Tropos, Ingenias,
PASSI, MOISE, and OperA.

Keywords Organization-centered MAS - AOSE method - Method fragment -
Situational method

S.J. Casare - A. A. F. Brandao - J. S. Sichman ()

Laboratério de Técnicas Inteligentes (LTI), Escola Politécnica (EP), Universidade de Sao Paulo (USP),
Av. Luciano Gualberto, 158 trav. 3, Sao Paulo, SP 05508-970, Brazil

e-mail: jaime.sichman@poli.usp.br

S. J. Casare

e-mail: sjcasare@uol.com.br

A. A. F. Brandao
e-mail: anarosa.brandao @poli.usp.br

Z. Guessoum

Equipe SMA, Laboratoire d’Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie (UPMC),
4 place Jussieu, 75005 Paris, France

e-mail: zahia.guessoum @lip6.fr

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 431

1 Introduction

Multiagent systems (MASs) provide a new paradigm for conceptualizing, designing, and
implementing software systems, ranging from manufacturing to process control, air traf-
fic control, and information management. They are particularly attractive for creating soft-
ware that operates in distributed and open environments, such as the Internet, and which
simulates scenarios that serve as basis to create public policies and strategies to deal
with complex problems, such as rescue after natural disasters and evacuation of public
facilities.

Nevertheless, in order to be adopted by the software industry, a controlled and disciplined
way to conduct software development projects related to the aforementioned domains is
needed. Despite the research community efforts while proposing methods for structuring
and guiding the development of MAS [3,6,15,19,44,55,56], agent-oriented software engi-
neering (AOSE) methods are still at an early stage, mainly being applied in the context of
academic projects. Moreover, the development of complex systems using MAS requires spe-
cific methods and then situational method engineering [7,30] for MAS seems to be a good
solution for it.

Most AOSE methods adopt an agent-centered MAS approach, focusing on agent behavior,
such as Tropos [6], MaSE [55], Adelfe [3], and PASSI [15]. Nonetheless some of them
such as Gaia [56], Ingenias [44], and O-MaSE [19]—propose developing MAS based on the
notion of agent organizations.

Moreover, several agent organizational (AO) models have been proposed in the MAS
literature for developing organization-centered MAS (OC-MAS) [42] beyond AOSE meth-
ods, such as MOISE+ [33] and OperA [22]. Some of these AO models encompass aspects
that are not currently covered by AOSE methods. For instance, they allow the specification
of organizational characteristics during the development of the MAS application and possi-
bly changing at runtime. Such changes are accomplished by organizational acts, e.g., agent
actions that can modify the organization, such as adding roles or changing the organizational
structure [45].

Thus, let us consider a class of problems whose solutions depend on organization and
coordination and are suitable for adopting the MAS paradigm, and could benefit from using
an organization-centered approach. Currently, a project team that looks for a disciplined
way to develop a MAS application involving such organizational characteristics will not
find a method ready for use. An example of such a real application could be an informa-
tion system to support the adoption of strategies for evacuating huge facilities under bomb
threats.

In addition, using AOSE methods or AO models separately may cause some project
drawbacks. On one hand, AOSE methods offer a development cycle but may not support
the required organizational aspects. On the other hand, most AO models do not provide a
structured MAS development cycle in terms of phases, tasks, and work products, as exten-
sively accepted by the software industry. In order to overcome this issue, the possibility of
reusing parts of existing AOSE methods and AO models to build methods that suit spe-
cific project characteristics is very interesting. In fact, the AOSE and Method Engineering
research communities are also addressing issues related to building methods on demand
[1,7,16,23,29,30,32,40,46-51].

In this direction, this paper introduces the Medee Method Framework, a framework for
building methods on demand that supports the development of organization-centered MAS in
a controlled and disciplined way. Such a framework allows the user to build methods that may
cover the main MAS development phases and components, by combining the advantages of

@ Springer

432 Auton Agent Multi-Agent Syst (2014) 28:430—473

both AOSE methods and AO models. Nevertheless, it also suits building methods to support
the development of agent-centered MAS.

The Medee Method Framework is part of a broad approach—the Medee Framework [8]—
that aims to offer situational method composition embedded in a MAS method improvement
cycle. Nonetheless, this paper is focused on the method framework itself.

Itis important to note that Medee users are method engineers since our ultimate goal is that
it can be adopted by the software industry. Nowadays, these engineers are playing strategic
roles in the software industry. For instance, IBM adopts the role of “Method Champion”, who
is responsible for building and/or choosing appropriate methods to support software projects
considering their characteristics. Having this in mind, in order to define and develop the
framework we adopted the principles proposed by situational method engineering [7,30,40],
combined with software and system process engineering meta-model (SPEM) [43]—the de
facto standard for modeling software processes—and the open source tool built upon it, the
Eclipse Process Framework Composer (EPF Composer) [31].

This paper is organized as follows. Section 2 briefly presents background and related
work. Sections 3 and 4 describe theoretical foundations to the method framework def-
inition, while Sects. 5 and 6 describe the application of such foundations to imple-
ment and use the method framework. A comparison between the proposed framework
and other approaches is presented in Sect. 7, outlining the advancements achieved with
the Medee Method Framework. Finally, conclusions and future work are presented in
Sect. 8.

2 Background and related work

In this section, we present some basic notions that are essential for understanding the
main aspects of the Medee Method Framework, related to Situational Method Engineer-
ing, SPEM, EPF Composer, and Organizational-centered MAS. Moreover, we present sev-
eral approaches concerning Situational Method Engineering notions proposed in the AOSE
field.

2.1 Situational Method Engineering

The word ‘method’ comes from the Greek—methodos—that means way of investigation.
Roughly speaking, a software development method encompasses a set of integrated pro-
cedures, techniques, and product descriptions, which provide a consistent support for the
software development [7].

Kruchten [41] suggests that a software development method should not be used before
being customized according to current project characteristics. Otherwise, the project risks
wasting work already done and producing artifacts of little added value. On one hand, the
method might be made as lean as possible and, on the other hand, it must fulfill the objective
of producing high quality software. A suitable method for a small project, for example a
3 months project, may not fit a larger project, such as a 3-year project, given that during
a longer time period, the project environment (e.g. the problem to be solved and people
involved) will probably change.

Situational Method Engineering is the discipline concerned with a controlled construction
of software development methods according to a given project situation. In this context, a
situation may encompass specific aspects of the problem to be solved, expected project
deliverables, project team, and many other factors. Therefore, a situational method consists

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 433

of a method built according to a project situation by combining reusable parts of methods,
usually called method fragments [1,7,30].

The Situational Method Engineering research community has proposed several approaches
to deal with the notions related to method fragment and situational method building [1,7,
23,30,40,46]. Among these approaches there are the Method Fragment approach [7,30], the
Method Component approach [40], the Process Component approach [23], and the Method
Chuck approach [46].

The Medee Method Framework is strongly based on the first two approaches: the Method
Fragment and Method Component ones. The former proposes the specification of method
fragments into several layers of granularity and a bottom—up reuse mechanism for building
situational methods, by assembling the selected fragments. The Method Component approach
proposes the specification of exchangeable and reusable parts of the method that can be viewed
from two perspectives: an internal and an external view. Moreover, this approach proposes
a procedure to build situational methods—called configuration procedure—which involves
the notion of a base method: a method chosen as a starting point for such a procedure.
The configuration procedure offers a top—down reuse mechanism for building situational
methods that consists of eliminating method components from the base methods, as well
as adding and/or exchanging method components from it, using those captured from other
methods.

A general iterative procedure for building situational methods usually encompasses five
main steps: (i) management of the method repository, (ii) characterization of the project
situation, (iii) selection of method fragments, (iv) situational method building, and finally
(v) project execution [7,30,40,46].

The management of the method repository consists of elaborating method fragments
based on existing methods and techniques, as well as updating those fragments to take
into account lessons learned from previous projects. Therefore, the management of such a
repository presupposes the definition of method fragment. After characterizing the project
situation and then selecting method fragments appropriate to such a situation, the next step
consists of building the situational method out of selected method fragments, by adopting
a reuse mechanism for combining them (e.g. assembling, configuring). Finally, the last step
concerns the project execution itself, based on the situational method. Moreover, this step
involves gathering lessons learned from the adopted method, which are taken into account
to update the method fragments already stored, closing the iterative procedure.

The Medee Method Framework covers steps (i)—(iv) and adopts the term Situational
Method Composition for representing distinct approaches for building such methods, as such
assembling and configuration. The step (v), concerned with project execution and lessons
learned, is covered by the Medee Improvement Cycle, described in [8].

2.2 SPEM

Along with the notions proposed by the Situational Method Engineering discipline, sev-
eral meta-models, frameworks, and tools supporting software development methods have
emerged in the last decades. Among them we can cite the SPEM, the Software Engineering
Meta-model for Development Methodologies (SEMDM) [38], and the EPF Composer.

SPEM consists of a meta-model that provides the concepts for modeling, documenting,
managing, and enacting development methods and processes. It is the de facto standard for
managing methods in the Software Engineering field, and it was adopted as method meta-
model for the Medee Method Framework. Consequently, the EPF Composer has been used
for developing this framework.

@ Springer

434 Auton Agent Multi-Agent Syst (2014) 28:430—473

(TE ==)

Delivery Process

\ Activity /)
Category

Work
Product

Role

g g |
= \

Guidance

Fig. 1 SPEM main elements and their relationship

2.2.1 SPEM in a nutshell

The goal of SPEM is to allow the representation of a broad range of development methods of
different styles and cultural backgrounds, distinct levels of formalism, and different lifecycle
models (e.g. waterfall, iterative).

Figure 1 (lower frame) depicts SPEM’s method elements— task! work product, role, and
guidance—as well as the relationships between them (depicted through the arrows). A task
represents an assignable unit of work described step-by-step, generally executed from a few
hours up to a few days. A work product represents pieces of work that are used, modified,
and produced by a task. Roles are used to define who performs the tasks. Guidance represents
specific descriptions related to any SPEM concepts, such as work products, tasks, and roles.
SPEM offers several types of guidance, among them guidelines, reusable assets, whitepapers,
and concepfts.

Furthermore, tasks are grouped to form several types of work breakdown structures, such
as activities, iterations and phases (Fig. 1, upper frame). An activity represents the basic unit
of work within a process, which can be nested into phases and iterations. A phase represents a
significant period in a project, during which several deliverables are usually produced, while
iteration represents a set of nested activities that are repeated more than once during a project.
Category (Fig. 1, right) represents classification structures used to group elements based on
the user’s criteria.

Moreover, SPEM proposes two types of processes: process pattern and delivery process.
The former represents a reusable cluster of activities that provides a consistent development
approach to common problems, offering a building block for assembling processes, while
the latter represents a complete end-to-end project lifecycle. It is important to observe that
these two concepts are the backbones in specifying Medee method fragments and Medee
situational methods respectively, as described in detail in Sect. 3.

! In order to improve readability, the Comic Sans font is used in this paper from hereon in to designate SPEM
concepts.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 435

SPEM also offers management and reusability capabilities through concepts such as
method plugin, method library, method configuration, and variability. A method plugin pro-
vides a physical storage for modularization, extension, packaging, and deployment of tasks,
work products, activities, phases, process pattern and so on. A method configuration pro-
vides a visibility space of method plugins, offering a logical view that allows the filtering of
their elements, while a method library is a physical container for method plugins and method
configuration. Finally, variability provides mechanisms for tailoring method elements without
directly modifying their original content: it allows the definition of differences—Ilike replace-
ments and extensions—relative to the original method element, such as an original task or
work product. As explained in Sect. 5, the Medee Method Framework applies variability in
order to standardize method fragments.

2.2.2 EPF Composer overview

EPF Composer is the open source tool developed by the Eclipse Foundation, which imple-
ments SPEM. It consists of a content system that provides a common management structure
for SPEM elements. Therefore, the EPF Composer offers features for defining, tailoring,
and managing software development methods as well as their portions. Finally, the content
managed in the EPF Composer can be exported (or imported) as a set of method plugins, as
well as published on HTML pages and deployed to Web servers for distributed usage.

Our approach to define method fragment elements is fully based on SPEM, and using the
EPF Composer, without the introduction of any further element or association. Therefore,
the Medee Method Framework is totally SPEM and EPF Composer-compliant. Thanks to
this compliance, the Medee Method Framework concrete implementation consists of a set of
method plugins that can be imported in the EPF Composer,” and Medee situational methods
can be published on HTML pages, as illustrated in Sect. 6.

2.3 Organization-centered MAS

Lemaitre and Excelente [42] suggest that MAS research can be divided into two classes
according to the approach adopted for representing social aspects: agent-centered and
organization-centered MAS approaches.

The agent-centered MAS approach proposes representing the social aspects of MAS
through concepts focused on the agents’ behavior as a social entity: as social commitments
[13], as joint intentions [14], and using social reasoning [52]. This approach is strongly
focused on the agent notion. Moreover, it encompasses research on formalisms for rep-
resenting individual agent knowledge. However, this approach does not define explicitly
organizations.

Research concerning organization-centered MAS adopts a sociological and organizational
vision for modeling these systems, encompassing the specification of distinct types of agent
groups, such as organizations and teams. These groups establish rules and norms to constrain
agent behavior, as well as to specify agent’s rights and duties, independently of a particular
agent model.

The basic conceptual entity in the organization-centered MAS approach is the agent orga-
nization as a whole. It is composed of a set of goals, norms, and functionalities, as well
as an internal structure of components, like subsystems [42]. Moreover, MAS development

2 This is made by creating a new method library using the following sequence of commands from the EPF
Composer toolbar: File>Import>Library Configuration. See EPF Composer Help and EPF Composer Tutorial
for more information about this feature.

@ Springer

436 Auton Agent Multi-Agent Syst (2014) 28:430—473

approaches that deal with organizations can be classified according to the evolution of the
organization during the MAS life cycle. They are divided into two categories: agent-oriented
engineering and organization-oriented MAS [45].

The first category encompasses those approaches that deal with organizational specifica-
tion during MAS application design time, by involving an explicit model for representing
organizations. However, these approaches do not allow agents to modify core aspects of their
organizations during runtime, such as creating or eliminating roles, modifying organization
hierarchy or goals. Examples of such approaches are mainly found among the AOSE methods,
such as Gaia, Ingenias, and O-MaSE. For instance, Gaia suggests analyzing and designing
the MAS application based on organizational aspects, as roles, structure, and norms. How-
ever, Gaia does not specify how to add new roles or change the organizational structure
dynamically, after the MAS implementation.

The organization-oriented MAS category classifies those MAS development approaches
that allow both specifying organizational aspects during MAS application development and
possibly changing them over the course of the MAS application execution. Such changes are
made through agent actions—called organizational acts—that can modify the organization,
for instance by changing the organizational structure and adding roles. Examples of these
approaches, found among the AO models, are MOISE+ and OperA.

Since some fundamental characteristics of AO models are not currently incorporated into
AOSE methods, like reorganization during application runtime, someone who adopts an
organization-oriented MAS approach may not take advantage of AOSE methods and AO
models together.

2.4 Situational Method Engineering for MAS

Several approaches concerning Situational Method Engineering for MAS have been proposed
inthelastdecade[16,17,19,24,32,47-51]. Most of these approaches are related to at least one
of the five steps of a general procedure for building situational methods—covering from the
method repository management to the situational method building and project execution—as
described in the following paragraphs.

As mentioned in Sect. 2.1, a clear definition of MAS method fragments is required
whenever one defines an approach to manage such fragments in a method repository.
In the AOSE field, some method fragment notions had already been proposed. Among
them, we can cite the approach proposed by Seidita et al. [50], as well as the fragment
description for adaptive methods proposed by Rougemaille et al. [47]. In general, such
works propose the use of SPEM as a common meta-model for representing MAS method
fragments.

The approach presented in [SO] proposes the term process fragment for designating a part
of method, instead of method fragment. In such an approach a MAS meta-model is in the
core of the process fragment definition, which involves notions like the MAS meta-model
elements and the relationships between them. Moreover, a process fragment encompasses
elements as such activities, work products, roles, guidelines, and can be defined in three
levels of granularity: phase, composed, and atomic. These granularity levels are based on the
work products delivered by a process fragment: (i) a phase fragment aims to deliver a set
of work products generated during a development phase; (ii) a composed fragment delivers
a work product; and (iii) an atomic fragment delivers part of a work product. Therefore,
although involving SPEM concepts (e.g. activities, roles, work products) a process fragment
cannot be represented using only SPEM elements, since the MAS meta-model concepts are
out of SPEM scope.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 437

Based on such a process fragment definition, the approach presented in [51] proposes
guidelines for extracting fragments from AOSE methods, while Process for the Design of
Design Processes (PRoDe) [49] consists of a procedure for building situational methods,
covering from the method repository management to project execution. Thus, these three
approaches, along with that presented in [16], are strongly based on one broad meta-model
that underpins a MAS application. Moreover, MAS meta-model elements are the starting
point for fragments extraction in [50,51], and for fragments selection and situational method
building in [49].

As discussed in Sect. 7, presupposing the existence of a common MAS meta-model for
defining fragments sourced from several MAS development approaches might postpone (or
even prevent) the use of Situational Method Engineering principles in AOSE, since there is
no consensus in the MAS research field concerning multiagent key concepts, and notations
to represent the agency notion [18].

Moreover, other approaches have been proposed in the AOSE field, such as the one pre-
sented in [48], which contains fragments sourced from some AOSE methods (e.g. PASSI,
Tropos, Adelfe) and the OPEN Process Framework (OPF) [23,32]. The latter is a framework
for building software development methods initially proposed for dealing with the object-
oriented paradigm and later extended to manage agent-oriented development methods. Thus,
some methods—among them Tropos, PASSI, MaSE, and Gaia—have been incorporated in
this framework. Such methods were represented in terms of process components, which is
the notion used by OPF to designate a part of method. However, OPF is not based on SPEM.

Furthermore, there are some work in the literature concerning the extension of spe-
cific AOSE methods in order to incorporate organizational notions, as ASPECS [17] and
O-MaSE [19,24]. The latter extends MaSE in order to support organization-centered MAS
development, while ASPECS consists of a method for the development of MAS based on
a holonic organizational meta-model, which has been built following PRoDe and involving,
among others, fragments captured from PASSI.

Finally, IEEE-FIPA has recently proposed a template [37] for designing and document-
ing full AOSE methods, which suggests describing methods using SPEM elements such as
process, phase, activity, role, task, work product, and guideline. The use of this template for
documenting AOSE methods may facilitate the extraction of fragments from these methods.
However, this template does not deal with method fragment management nor addresses the
standardization of AOSE methods elements by, for instance, stating a common set of MAS
development roles (e.g. developer, architect, tester), although suggesting that this step should
be done.

In the next section, we present the Medee Method Framework that allows you to take
advantage of both AOSE methods and AO models characteristics for building MAS based
on a well-established development method.

3 Medee Method Framework

3.1 Overview

As previously mentioned, the Medee Method Framework covers four steps of a general
procedure for building situational methods, from managing the method repository to building
methods according to a given project situation.

Figure 2 depicts how a method engineer could use the Medee Method Framework: she/he
could start analyzing the existing AOSE methods as well as the AO models in order to

@ Springer

438 Auton Agent Multi-Agent Syst (2014) 28:430—473

Medee Method
Fragments

Elaborating method
fragments

AOSE
Methods

Organizational \
Models

HERED Medee Method

Conceptual Model R ;
epository MAS
Medee Medee Sl?trOJi{ct
Composition <+ Delivery > N,@ ituation
Model Process =

OC-MAS Project

Characterizing project
Execution Selecting fragment ——
LF 3. ’ Composing Situationd v
— s =S Method

S

Medee Situational Method
published as HTML pages

Fig.2 Using the Medee Method Framework for composing organization-centered MAS methods on demand

describe them as a collection of Medee method fragments and store these fragments in the
method repository, i.e. elaborating method fragments. Having this repository, the method
engineer could then select the appropriate fragments based on a given MAS project situation
characterization and compose the Medee situational method.

In order to offer such a situational method composition based on AOSE methods and
AO models, the Medee Method Framework encompasses four components, as depicted in
Fig. 2 (central frame). Firstly, it underpins the Medee Conceptual Model that defines MAS
method fragments and MAS situational methods. Secondly, it provides the Medee Method
Repository for managing method fragments and situational methods. Thirdly, it provides the
Medee Composition Model that aims to support the identification of appropriate fragments
during the situational method composition. Finally, the Medee Delivery Process specifies in
a step-by-step manner the whole process from the Medee method fragments elaboration to
the deployment of the Medee situational method to Web servers in order to be used during
the project execution.

The four components of the Medee Method Framework are represented in terms of SPEM
elements. Moreover, excepting the Medee Conceptual Model, these components were built
upon the EPF Composer. For example, the Medee Delivery Process is itself described using
SPEM, built upon the EPF Composer, and published on HTML pages currently available at
the Medee website.3

Next section presents the Medee Conceptual Model, which is an improved version of
[11,12]. The remainder Medee components are presented in Sects. 4 and 5.

3 http://www.medee.poli.usp.br/.

@ Springer

http://www.medee.poli.usp.br/

Auton Agent Multi-Agent Syst (2014) 28:430-473 439

3.2 Medee Conceptual Model
3.2.1 Definitions

In order to build MAS situational methods, we propose a definition for a MAS Method Frag-
ment* and another one for a MAS Situational Method. These definitions are strongly based on
the Method Fragment approach [7,30] and the Method Component approach [40], briefly
described in Sect. 2.1.

Moreover, we used SPEM 2.0 as meta-model for describing MAS method fragments,
and adopted some concepts proposed by Jacobson et al. [39], which is among the
most popular software development processes. Thus, we propose the following defini-
tions:

A Medee MAS Method Fragment is a standardized building block that represents a coherent part of a MAS
development approach, in the sense that it is consistent and clearly stated

A Medee MAS Situational Method is a sequence of Medee MAS Method Fragments, possibly nested within
phases and iterations, which describes how a MAS project shall be executed according to a specific project
situation

The coherence and standardization of Medee MAS method fragments aims to improve the
elaboration of method fragments as well as the composition of situational methods.

The following aspects assure the coherence of Medee MAS method fragments and situational
methods: (i) method fragments and situational methods are described in terms of SPEM 2.0
elements (e.g. task, work product, role, process pattern, delivery process) and their associ-
ations; (ii) method fragments must pertain to one of the four granularity layers—activity,
phase, iteration, and process; and (iii) method fragments are defined through internal and
external views.

The standardization of Medee MAS method fragments, and consequently the standardiza-
tion of situational methods composed out of them, is based on the following notions: (i)
encapsulation of work products and milestones generated by a method fragment using a
common framework, the Medee MAS Work Product Framework; (ii) utilization of a common
set of development roles (e.g. system analyst, developer, tester) for defining who performs the
work described in a method fragment, provided by the Medee Common Roles; and (iii) classi-
fication of method fragments based on a semiotic criterion, made available by the Medee MAS
Semiotic Taxonomy. The Medee MAS Work Product Framework and Medee Common Roles are
described in the course of this section, while the Medee MAS Semiotic Taxonomy is presented
in Sect. 4.3, since it plays an important role during the composition of Medee situational
methods.

3.2.2 Main concepts

The Medee Method Framework main concepts and corresponding relations are illustrated in
Fig. 3 asa UML class diagram. Such a diagram shows the four layers in which a MAS method
fragment can be defined—activity, phase, iteration, process—represented as its subclasses:
MAS Activity Method Fragment, MAS Iteration Method Fragment, MAS Phase Method Fragment,
and MAS Process Method Fragment (Fig. 3, lower).

4 In order to improve readability, hereon in this paper uses the Arial Narrow font to show Medee concepts, and
continues to show SPEM concepts using Comic Sans font.

@ Springer

440 Auton Agent Multi-Agent Syst (2014) 28:430—473

MAS Semiotic Taxonomy

’ MAS Situational Method ‘

MAS Method Fragment External View ‘

1.* +compositionStartPoint

MAS Base Method

0.*

+fragmentResultStandardization

’ MAS Work Product Framework ‘

’ MAS Method Fragment InternalView ‘

MAS Activity Method Fragment ‘

’ MAS Phase Method Fragment ‘

’ MAS lteration Method Fragment ‘

trbaseMethodProvider
1

’ MAS Process Method Fragment ‘

Fig. 3 Main concepts of the Medee Method Framework

Medee Method Fragment Medee
External : Situational
view Internal view —— Method
Proces< Pattern ——
Logical S t"—
Container _-_-_.A ity ":3"
ctivi :
Medee MAS \ E:L::::
Semiotic o
Iteration
Medee
MAS Work Phase
Product
Framework Milestone, f
(for inputs, .._.'_!
outputs & Guidance
objectives) L =
Work / Task Role
Product

Fig. 4 Main elements of Medee MAS Situational Method and Medee MAS Method Fragments

Several method fragments may be combined to form a larger one, as represented by the
MAS method fragment auto-association in Fig. 3 (center). For instance, a MAS Phase Method
Fragment may contain several MAS Activity Method Fragments.

Furthermore, Fig. 3 (upper right) shows how a MAS Situational Method may be composed:

it might involve several MAS Method Fragments as well as a MAS Base Method, which in turn
is provided by a MAS Process Method Fragment. Following the base method notion proposed
by Karlsson [40], a MAS Base Method offers a starting point for the MAS situational method
composition in a top—down fashion.

Finally, Fig. 3 (upper left) shows that a MAS Method Fragment encompasses external and
internal views. The internal view involves only SPEM concepts (Fig. 4), while the external

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 441

view involves two Medee concepts, the MAS Work Product Framework and the MAS Semiotic
Taxonomy.

As previously mentioned, the use of SPEM 2.0 concepts (and their relationships) to
describe MAS Method Fragments and MAS Situational Methods consists of the first step towards
a coherent definition. Thus, as depicted in Fig. 4 from a diagrammatical perspective, a Medee
MAS Situational Method encompasses a delivery process, which describes a complete end-to-
end project lifecycle, while a Medee MAS Method Fragment encompasses a process pattern,
which offers a logical container for the SPEM elements pertaining to the fragment. By means
of such a process pattern and depending on the layer of granularity, a method fragment con-
tains several SPEM elements, such as activities, tasks, steps, work products, roles, categories,
phases, iterations, milestones, and guidance.

The remainder of this section presents the MAS method fragment granularity layers in detail,
followed by the Medee MAS Work Product Framework and the Medee Common Roles. We also
define the main differences between the external and internal views of MAS method fragments
next.

3.2.3 Fragment granularity layers

The four granularity layers for Medee Method Fragments— activity, iteration, phase, and
process—contribute to reach a coherent definition. In order to define these four layers, we
adopted the notions of Jacobson et al. [39] and SPEM homonym concepts.

A Medee MAS method fragment in the activity layer, called Medee MAS Activity method
fragment, consists of the smallest fragment that composes a MAS situational method. Such
a method fragment is built on the SPEM homonym element—activity—and allows you to
represent a small portion of work that is performed by roles in order to generate one or more
work products.

Furthermore, a Medee MAS method fragment in the phase layer (Medee MAS Phase method
fragment) encompasses work that is performed during a significant project period. Also, a
Medee MAS method fragment in the iteration layer (Medee MAS lteration method fragment)
offers a way to organize work that is executed more than once during the MAS development
lifecycle in repetitive cycles. Both encompass Medee MAS Activity method fragments.

Finally, in the process layer, a Medee MAS Process method fragment represents a whole
MAS development lifecycle, by encompassing MAS Phase method fragments and/or MAS
Iteration method fragments. Fragments in this layer can provide Medee MAS Base methods,
which may be used as a starting point for the composition of Medee MAS situational methods.

3.2.4 Medee MAS work product framework

The Medee MAS Work Product Framework allows to define method fragments inputs, outputs,
and objectives in a standardized way.

In order to achieve such a goal, this framework involves the following elements: Agent,
Environment, Interaction, Organization, and User Requirements. The first four elements
are used to encapsulate the work products and milestones related to the homonym MAS
components proposed by the Vowel paradigm [20,21]. The last one deals with the notion of
system-to-be requirements, and allows the method engineer to encapsulate work products
and milestones, mainly generated during the MAS requirement phase, which describe the set
of capabilities the MAS application is expected to provide.

Hence, using such a framework, a method engineer can state the work products that
are involved in a Medee MAS Method Fragment in a standard manner, independently of the

@ Springer

442 Auton Agent Multi-Agent Syst (2014) 28:430-473

notation adopted by the MAS development approach from which the fragment was sourced.
For instance, this framework allows clearly stating that the Role model sourced from Gaia
and the Role identification model sourced from PASSI are not related to the same MAS
component, as their names could suggest: the former is related to the organization component,
while the latter is related to the agent component.

3.2.5 Medee common roles

The Medee Common Roles allow you to define, in a standardized way, the staff that is respon-
sible to perform the pieces of work encompassed in a fragment. Therefore, it consists of a
set of roles that are used for specifying the primary and additional performers assigned to
a task in a MAS method fragment. They are: System Analyst, MAS Designer, MAS Developer,
and MAS Tester.

These four roles subsume those commonly referred by AOSE methods. For instance,
concerning requirements activities, PASSI proposes the System Analyst role and Tropos the
Requirements Engineer role. Nonetheless, such a set of Medee roles may incorporate new
ones whenever needed. For example, a new Medee common role may be defined to represent
the role played by the MAS project team member responsible for planning the project and
keeping the team focused on the project objectives, e. g. the MAS Project Manager role.

3.2.6 Medee method fragment views

The External and Internal views aim to improve standardization and coherence of the proposed
MAS Method Fragment definition by depicting, respectively, the fragment interface and the
set of SPEM elements that compose each fragment. They have been inspired by the concept
of method component views proposed by Karlsson [40].

Thus, the Internal View offers a detailed and deep representation of SPEM elements involved
in a method fragment elaboration, as well as the relationships between such elements.

In contrast, the External View allows method fragments to be analyzed as standard black
boxes: it uses process patterns as a kind of logical containers for MAS Method Fragments;
it applies categories for classifying method fragments according to semiotic criteria; and it
encapsulates milestones and work products in terms of the Medee MAS Work Product Framework.

4 Medee composition model
4.1 Overview

In order to build MAS situational methods out of method fragments, it is important to describe
how such fragments can be select according to a project situation. Therefore, the Medee
Composition Model constitutes a key component of the Medee method framework: it allows
the situational method to be tailored focused on leveraging project situation strengths and
mitigating project situation weaknesses.

This model involves two taxonomies—the Medee Project Factors Taxonomy and the Medee
MAS Semiotic Taxonomy—that are connected through the Medee Composition Guidelines. On
one hand, the Medee Project Factors Taxonomy provides a structured way to characterize the
MAS project situation through a set of project factors that covers four dimensions—people,
problem, product, and resource—as proposed by Basili [2]. On the other hand, the Medee
MAS Semiotic Taxonomy provides a broad categorization of MAS method fragments taking
into account their semiotic aspects, among them pragmatic, semantic, and syntactical ones.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 443

Finally, joining these two taxonomies, the Medee Composition Guidelines indicate the method
fragment category that better deals with each project factor.

The path between a given project situation and a suitable Medee Situational Method encom-
passes several steps. Firstly, the project situation is assessed using the Medee Project Factors
Taxonomy, by identifying a set of project factors that characterize the project. For instance,
it involves a small team (people factor) and a short deadline (resource factor). Secondly, the
guidelines associated with the identified project factors should be analyzed. Such guidelines
suggest which aspects of a given situational method are suitable to handle these specific
factors, and provide a list containing the Medee MAS Semiotic Taxonomy categories that cover
such aspects. For instance, a guideline may indicate that a short deadline usually requires
high productivity levels from the project team members, and thus shows the semiotic cat-
egories dealing with this aspect. Thirdly, the method fragments classified using the MAS
semiotic categories can be selected as suitable candidates for being considered in the Situ-
ational Method. Finally, the MAS situational method can be composed out of the selected
fragments, which aim to leverage project situation strengths and mitigate its weaknesses.

As previously mentioned, the Medee Composition Model is represented in terms of SPEM
elements—namely, categories and guidelines—and built upon the EPF Composer. Therefore,
the Medee Project Factors Taxonomy consists of a set of categories that are organized into a
hierarchal structure of project factors, while the Medee Composition Guidelines consists of
a collection of guidelines classified into those categories. The MAS Semiotic Taxonomy con-
sists of a collection of nested categories that form a hierarchal semiotic structure, which are
used to categorize MAS Method Fragments. Such categories are then pointed by the guidelines
(through hyperlinks), closing the path between the project factors and the method fragments.

The Medee Project Factors Taxonomy, Medee MAS Semiotic Taxonomy and the Medee Com-
position Guidelines are presented next, while their use during the situational composition is
described through the Medee Delivery Process, presented in Sect. 5.2.

4.2 Medee project factors taxonomy

The Medee Project Factors Taxonomy allows a MAS project situation to be characterized
according to several aspects. It is based on the project factors proposed by Basili [2] as part
of the QIP paradigm, which suggests that a project situation should be characterized according
to several project factors organized into six dimensions: people, problem, process/method,
product, resource, and tool factors.

Thus, on one hand, the Medee Project Factors Taxonomy used five out of these six factor
dimensions, giving rise to the following four project factor categories: people, problem,
product, and resource categories. The process/method dimension was not taken into account
since it corresponds to the MAS situational method itself. Moreover, the resource and tool
dimensions were collapsed into one category, since the MAS field does not encompass a high
variety of resources and tools that justify treating them separately.

On the other hand, the project factors proposed in [2] were adapted to deal with MAS
development aspects. For instance, some product related factors were tailored to reflect agent
architectures, instead of dealing with general-purpose software architectures.

Figure 5 depicts the factors that form the Medee Project Factors Taxonomy as a UML class
diagram, where People factors concern the MAS project team characteristics such as team
size, application domain experience, etc.; Problem factors allow the characterization of the
problem to be solved by the MAS application using the class of problem, state of problem
definition, problem susceptibility to change, and problem related constraints; Product fac-
tors are those related to the software product itself and include aspects such as the number

@ Springer

444 Auton Agent Multi-Agent Syst (2014) 28:430-473

Project Factors Taxonomy
% <
[
People factors | Product factors
iy . T
MAS 9.‘."'.'.3.?.?['.‘..9.“.[F_f?_?'_’i_e[‘ff_ Application Domain Experience I_Deliwrab_le Prr._nduct] MAS Social Aspects Agent Architecture
UML Experience | Object-oriented Experience Team Size L Correctness Level ! M
Resource Factors | Problem Factors
e e S b J
| Agent Reusable Asset | Agent Development Platform Class of Problem T State of Definition
I . 1 ., !
Project Deadline | Project Budget Suscetibility to change | Related Constraint

Fig. 5 Medee project factors taxonomy

of expected deliverable products, among others; finally, Resource factors concern nonhu-
man elements that are involved or consumed during software development, such as project
deadlines.

4.3 Medee MAS semiotic taxonomy

The categorization of MAS method fragments sourced from several AOSE methods and AO
models is made by using the Medee MAS Semiotic Taxonomy [9, 10], which is briefly described
here. A detailed description is found in [10].

Semiotics deals with the syntactic (structure), semantics (meaning), and pragmatics
(usage) aspects of signs. Based on the Semiotic Ladder proposed by Stamper in [54], we
proposed the Medee MAS Semiotic Taxonomy to classify method fragments. This semiotic
ladder extends the traditional division of Semiotics—syntactic, semantic and pragmatic—by
including three new sign aspects called social, empirics, and physical. Thus, the proposed
taxonomy involves the following levels: Social, Pragmatic, Semantic, Syntactic, and Empir-
ical levels. The physical level is not taken into account because usually MAS development
approaches do not deal with physical issues, such as specific hardware platforms for MAS.

Using such a semiotic perspective, this taxonomy brings concepts together from three
main sources: (i) MAS specific development aspects originated from AOSE methods and
AO models, (ii) Situational Method Engineering related concepts, mainly those proposed by
Harmsen [30], and (iii) Software Engineering notions [39].

Given that MAS projects involve a group of developers embedded in a social context—
as a software company or an academic research group —the Social Level allows you to
distinguish MAS method fragments according to rules, preferences, and procedures related
to the development context. The Pragmatic Level allows MAS method fragments to be
distinguished based on their usage and intention. The Semantic Level allows MAS method
fragments to be classified based on their meaning in the composition of a situational method.
Therefore, this level is mainly concerned with the situational method engineering typical
aspects. The Syntactic Level allows MAS method fragments to be classified according to
their structure and format. This level takes into account categories related to the notation and
to the language used to structure and to express them. Finally, the Empirical Level allows MAS
method fragments to be classified according to their development standards and patterns.

The Medee MAS Semiotic Taxonomy use is twofold. Firstly, it is involved in a path between
the MAS project situation and the Medee MAS Situational Method, as described in Sect. 4.1.
Secondly, this taxonomy contributes to achieve standardization of Medee MAS method frag-
ments, as explained in Sect. 3.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 445

e T IOtEer T OMEWO I COMPOTET™

1w Whers am | | P Troe Sets |
Medee Method Framewark
* (2 Medes Composiion Guidelines.
(1 Medee MAS Semictic Taxcaceny
* (& Social Level

The Use Case based Category of
— method fragments that propose Usel

Madee MAS Semiotic Taxonomy contains
ase models ko represent MAS requirements.

= F Expand All Sections [=] Collapse All Sections

M

(|

I

" (]
* i@ MMF Detall Requirament with USDP (]
“I g MMF Ideniify Requirement with USDP (]
|

|

(|

(|

|

|

i

* MMF Detail Requirement with USDP
» MMF idently Requirement with USDP

= MMF Enhanced Inception Phase with Ingenias
= MMF PASS| Base Method using USDP

=l 4% MMF Enhanced inception Phase with Ingenias

% 425 MMF PASSI Basa Mathod using USDP |
W
= MAS Agproach Category

¥ [Agent Centared MAS Category I.'

= Organization Centared MAS Categary

2 Organization Oriented MAS Categary

¥ 5 MMF Analyze Organization with MOISE+

¥ % MMF Design Organization with MOISE+

= 45 MMF Design Agent Organizational Bahavior with MOISE+
4 MMF Analyze Organization and Interaction with OperA

= 4 MMF Design Agent Organizational Behavior with Operd,

= i% MMF Dasign Organization and Interaction with Opard

o ™ o]

+ Back to top

I}
I}
I}
I}
(4
I}
i

Fig. 6 Medee MAS Semiotic Taxonomy used to classify method fragments for developing MAS

For instance, in a pragmatic perspective, the taxonomy can be used to support the search for
fragments to model system requirements in terms of use cases and to deal with organization-
centered MAS (Fig. 6), since the project team is skilled in UML and the software product to
be built involves an agent organization.

4.4 Medee composition guidelines

The goal of the Medee Composition Guidelines is to show the association between project
factors and method fragment categories, providing a kind of glue that joins the Medee Project
Factors Taxonomy and Medee MAS Semiotic Taxonomy.

In order to do that, these guidelines offer a rationale that points out a suitable method
fragment category to deal with a specific project factor. They use informal inference rules
and best practices for developing software, mainly based on Software Engineering and AOSE
principles.

For example, the Unstable Requirements guideline (Table 1) states the following (infor-
mal) inference rule: changes in the problem to be solved during the software development
usually involve modifying the system requirements previously captured. Besides, it sug-
gests the following best practices—MAS method fragments that provide high user participa-
tion and high iteration can help handling continuous requirement changes during the MAS
project—which is part of the common knowledge of Software Engineering best practices:
iteration and user participation can mitigate the risks involved in unstable system requirements
[39,41,53].

Moreover, a composition guideline can be associated with one or more project factors.
For instance, the Unstable Requirements guideline is associated with two problem factors,
State of Problem Definition and Problem Susceptibility to Change, as illustrated in Table 1 and
Fig. 7. Thus, this guideline joins these two project factors to the following method fragment
categories—High User Participation and High Iterative Degrees from the Social Level—and the
Requirement Discipline Category from the Semantic Level of the Medee MAS Semiotic Taxonomy.

Currently, the Medee Composition Guidelines encompass 17 (seventeen) elements, as shown
in Table 1. Furthermore, this table shows the association between such guidelines and the

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430—473

446

oundwyg £103918D) S19SSY 9[qESNY QUI[OPIND) 19SSy J[qESNAY uoneziuedio Q0IN0SAY S19SSE 9[qesnal d[qe[IeAY

onewdeld K103918D) 21N SYIA QuI[pIND WAISAS uadp wa[qoid wopqoid jo sse[)

onueweg K103918)) 100 JUdWISRI] QuI[ApIND dUALIAAXF POYIRIA PAIUALIQ 199[q0 9rdoag douaradxe poyjow pAjudLIo 199[q0

Q0IN0SY qur[peap j0ofoig

jonpoig sjonpoid o[qeIdAT[

douaradxa yuswdo[aasp SYIN

onueWag K103are) aurpdiosiq QuI[apIND AUOWAI) POYIdA 9doag 9z1s wed) 109lo1g

onewdelq K10391e)) yororddy SYIN qurpepIng 30adsy [e190S SYIN jonpoid 10adse [B100S SYIA

onuewes K103918D 901N0G JUSWTeL] auraping duaredxy juswdojeasq SYIN 9rdoag douaradxa Juawdo[oadp SYIN

onewdeld K103912)) Juou0dwo) SYIN aurpeping juauodwo) SYIN 1onpoig jonpoud d[qeIdAIeq
K10391e)) 2dA], Juowdoroaag
K103918)) 92139(] UONLIA]

[e100S Je) 22139 uonedronied 19sn QuI[apInD duaLad Xy urewoq payury ardosg Qouanadxe urewop uonesrddy

onuewag K10301e)) Qurdrosi(y Juowder] 9Je)s UONIULYIP WI[qOI
K103918)) 90139(] UONBI)]

[e100S 18D 90139 uonedionred 10sn) qurpepIng syuawaanbar ojqeisun wo[qoid a3ueyd 03 A1iqndadsns wajqold
K103918D) 21N SYIA

onewdeld K103012)) yororddy SYIN QUITOPIND) SIUTEI)SUO)) JUSWUUOIIAUL wo[qoId SJUTEI)SUOD PAJE[aI WI[QOI]
onuewog K10391e) Qurdrosi(q yjuowder]
18D 22139 uonedronied 19sn

[e100S £103918D) 92139(] UONEPI[BA QUI[OPIND) SSAUIALI0D) Jonpoid SSQUOALI0D)

onewdeld K10391e)) yororddy SYIN aurepmn walsAg xoduwo) wa[qoid wopqoid jo sse[)

oundwyg K103912) uIopeld Juswdorossg QUITOPIND) WLIOJIR[J PAIUALIO-JUATY 90IN0SIY uropyeld Juowdooaap Juady

onewSeld £103012)) 01N309)IYOIY JUASY QUITOPIND) INJONIYOIY JUaSY jonpoid IM9IYoIe JUaS Y

[oA9T K103912) uorsuauwI(y 10308J 109l01g

Awouoxe) ononuas Sy

quraprng uonisodwod 9PN

Kwouoxe) s1039e) 303f01g

sauljeping uoisodwo) asps jo dajdwexy | d[qel

pringer

Ns

447

Auton Agent Multi-Agent Syst (2014) 28:430-473

ONORIUAS K103912)) 9Fen3ueT Juowder] aurapIny dduaredxg TINN ordoag Qouonadxe NN
K103918)) S19SSY d[qesnay

omdwyg K103918)) UOTIBIAUAL) IPOD) 1a8pnq 109fo1g
K103918)) 99139(] $S00NS

[e100§ K103918)) 92139 2SNy aurfepIny AjAnonpoId Q0IN0SAY aurjpeap 109lo1g
onoeruAg K10391e)) a3enSueT juswSery
K10391e) wope[d yuswdoroad

oundwyg A103912)) UOTRISUAL) 9POD) QUITOPIND QOUBWLIONID] 1onpoid [9AQ] QOUBWLIONID]

oA K103918D) uoIsuWI 10390] 309f01g

Awouoxe) dNorues SYA

auraping uonisodwod 9PN

KAwouoxe) s10)0e) J03f01g

ponunuod | Jqel,

pringer

Qs

448 Auton Agent Multi-Agent Syst (2014) 28:430—473

Medee Composition Mode! > Medee Project Faciors Taxonomy > Problem Factors > Problem
Susceptibility o Change > instable requirements Guidelines

Guideline: Instable requirements Guidelines

ﬁ‘m.. if this guideline is o guide of MAS
Methoas for MAS projects that should deal with instable requirements,

I Expand AN Sections [Collapsa All Sections
Protilem change: ult changes. Thus, MAS Method Fragments that provide
J] Instatée requirements Guidelnes high iterative degree and high user participation degree can help handling continuous changes
. Prablem Retated Constraints in the requi g the peoj
dl Environment Constraints Guideine MAS Method fragments in the following MAS Semiosc Category should be taken inko account
during the Situational Mathod composition ko develop big MAS projects:
[oo Compontin G g iioh HighUserParicpaon Dereo Calegor, High araton
1] Agent Archiechure Guideine Degres Catagory . Dl Cathgors
ﬂ ﬁqutmw#:wmwn Note: plain black text depicts an empty category (without method fragmenis)
Complex System Guideling
ol Correciness Guideline
] Declarative Language Guidaline

W Back to top
o] Environment Constraints Guidesng

ol Instable requirements Guidelines
] Limited Domain Experience Guideling o

Fig. 7 Unstable Requirements guideline and its inter-relationship with Medee Project Factors Taxonomy and
Medee MAS Semiotic Taxonomy

= Eclipse Process Framework Composer

Medee Composition Model > Medse Project Factors Taxonomy > Problem Faciors Class of
Problem > Open System Guideling
I3l Guideline: Open System Guideline

The purpose of this guideline is to guide the composition of MAS Situational Mathods
for problem factors that requires an open system.

¥ Expand ANl Sections | Collapse AN Sections

Open systems are characterized by a dynamic changing in their structure, such as the intemet. in
this ciass of systems agents are able 1o join and to leave the MAS during system runtime.

MAS Method fragment in the following MAS Semiotic Category should be taken inte account
during the Situational Method compaosition to develop open MAS:

|- Fragments categorized into the Open MAS . |
Note: plain black text depicts an empty category (without method fragments)

@ Back 1o wp

A& MMF Analyze Organization with MOISE+

% 4 MMF Design Organization with MOISE+

* 5 MMF Analy and | per.

1 5% MMF Design Agent Crganizational Behavior with Oper .
422 MMF Nasion (rmAanzaton and Intaractinn with OnerA 1

Fig. 8 Medee Composition Model elements and their relationships

project factors of the Medee Project Factors Taxonomy (see columns titled project factor and
dimension), as well as the semiotic categories indicated by them (see columns titled category
and level).

An important point to note is that the Medee Composition Guidelines are more of a place-
holder schema, instead of being a broad, complete, and exhaustive set of guidelines for MAS
composition. Rather, it aims to provide an initial sub-set of elements that should be completed
and refined through the experience of using the Medee method framework.

Summing up with the Medee composition model, Fig. 8 shows its three elements—the
Project Factors Taxonomy, Semiotic Taxonomy, and Composition Guidelines—built upon the EPF
Composer. On one hand, this figure (upper left frame) illustrates the categories from the
Medee Project Factors Taxonomy, showing that one of the product factors, the Class of Problem,

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 449

is related to the Open System Guideline and the Complex System Guideline. On the other hand,
the Open System Guideline (Fig. 8, right) indicates that one category of the MAS Semiotic
Taxonomy may encompass appropriate method fragments to deal with such a product factor,
the Open MAS category, which is part of the MAS Nature category at the Pragmatic Level (Fig. 8,
left down).

5 Medee method repository and delivery process

Having a well-founded definition of MAS method fragments, a well established way of
categorizing them, and a model for guiding the situational selection and composition of
those fragments, a repository and a process for managing fragments and situational methods
is needed. Therefore, a three-layered architecture was defined to describe the way in which
the Medee Method Repository is organized.

Moreover, the Medee Delivery Process was developed to specify how to capture method
elements, to elaborate method fragments, and to compose situational methods using this
repository (Fig. 9). Both were built upon the EPF Composer and are described in the next
subsections.

5.1 Medee Method repository architecture

As illustrated in Fig. 10, the Medee Method Repository is organized in a layered architecture,
in which the first pillar provides method elements to define MAS method fragments stored in
the second pillar, which in turn provides method fragments to compose the Medee Methods
stored in the third pillar.

The first pillar—Medee Elements Pillar—consists of the repository foundation: it stores
method elements captured from the MAS development approaches, such as AOSE methods
and AO models. The captured data is modeled, documented, and managed as a collection
of SPEM elements, such as activities, tasks, roles, work products, guidance, and categories.
Furthermore, this pillar may store whole AOSE methods represented in terms of these SPEM
elements, called AOSE method As Is, which offer a common basis for comparing such methods
since they are built without any reference to the method fragment related notions. Indeed,
this pillar does not store any MAS method fragment, since such fragments are stored in the
second pillar, the Medee Fragments Pillar.

Fig. 9 Medee Method Repository
layers and Delivery Process
phases

Medee Method Repository| Medee Delivery Proces:

Medee Elements Method Elemert Capture Phase

¥

Medee Fragments Method Fragment Elaboration Phase

|
:l=

Situational Method Composition Phase

Medee Methods

Eclipse Process Framework Composer, Web Site

@ Springer

450 Auton Agent Multi-Agent Syst (2014) 28:430—473

First Pillar
Medee Elements
= ;,] 0 | (BE] m 2
o g O B w
Captured Method Elements AOSE Methods As Is
Second Pillar l standardization
Medee Fragments = -
= || o " =]
Sl === Medee Medee Work
I Medee MAS Semiotic Common Roles Medee Product
Medee Method Fragments Taxonomy Variability Framework & Slot
Third Pillar l situational composition

Medee Methods Medee Project
5 Factor Taxonomy

Medee Composition
Guidelines

Medee Situational Methods Medee AOSE Methods

Fig. 10 Medee Method Repository layers content

Thus, MAS method fragments stored in the second pillar are built upon the SPEM elements
stored in the previous one, as depicted in Fig. 10. However, before being used as part of a frag-
ment, these SPEM elements are extended to achieve standardization and coherence required
by the MAS method fragment definition, as explained in Sect. 3.1. Therefore, the Medee
Fragments Pillar stores the four granularity layers of method fragments (Sect. 3.2) sourced
from AOSE methods and AO models, each of them categorized by the MAS Semiotic Taxon-
omy (Sect. 4.3), encapsulated by the MAS Work Product Framework (Sect. 3.2), and involving
MAS common development roles (Sect. 3.2). Moreover, this pillar stores the categories that
form the MAS Semiotic Taxonomy itself. Hence, the second pillar constitutes the kernel of the
Medee Repository.

Finally, the Medee Methods Pillar stores two kinds of methods: Medee Situational Methods
and Medee AOSE Methods. The former are composed according to a given project situation,
encompassing fragments usually sourced from several MAS development approaches. The
latter consist of AOSE methods that have been reengineered in terms of MAS method frag-
ments. Furthermore, this pillar stores the categories and guidelines that form the Medee Project
Factors Taxonomy and Medee Composition Guideline, respectively.

In brief, the third pillar constitutes the consumption-side of the Medee Method Repository,
while the first and second ones constitute its supply-side, storing the building blocks, i.e.
method elements and method fragments, for composing Medee methods, i.e. Medee situational
methods and Medee AOSE methods.

5.1.1 Method fragment standardization and situational composition

The following strategy—based on the extension of method elements—is adopted to stan-
dardize fragments sourced from several approaches in order to facilitate their composition in

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 451

situational methods. Firstly, method elements captured from MAS development approaches
are modeled and documented as SPEM elements following their original definitions, and
then stored in the Medee Elements Pillar.

Secondly, these method elements are extended to allow the elaboration of method
fragments standardized and suitable for situational use. Such an extension is due to
several reasons, among them (i) MAS development approaches may not adopt a stan-
dard nomenclature for designating work products generated during a MAS project, (ii)
AOSE methods may not adopt a common set of development roles, (iii) MAS devel-
opment approaches may not explicitly state tasks inputs and outputs, and finally (iv)
MAS development approaches may not clearly state how to share work products among
them.

Thus, along with the use of the Medee MAS Work Product Framework for encapsulating the
original work products, and the Medee Common Roles for replacing the original roles, the
following concepts are involved in the proposed strategy: Medee MAS task variability, Medee
MAS work product variability, and Medee MAS work product slot. The first two allow you to extend
tasks and work products stored in the Medee Elements pillar without modifying them. Roughly
speaking, it is done through a variability mechanism supplied by SPEM that allows method
elements (e.g. task, work product) to be extended. For instance, an original task captured
from Tropos may be extended to a new task that replaces the original roles by some of the
Medee Common Roles, and the original input work product by a new one defined according
to the Medee MAS Work Product Framework. At the end of this procedure we have two tasks
stored in the Medee repository: the original task captured from Tropos (in the first pillar) and
the new standardized task (in the second pillar).

Medee MAS work product slot allows work products to be shared among MAS method
fragments sourced from distinct MAS development approaches, offering a kind of glue for
concatenating fragments during situational method composition. In order to achieve such a
fragment concatenation, the Medee MAS work product slot concept is underpinned by a quasi-
homonym feature from the EPF Composer that handles work products: the work product slot.
In brief, it consists of an abstract work product that represents a placeholder for concrete ones.
The fulfillment of one work product slot by a concrete work product is dynamically performed
by the EPF Composer.

Furthermore, MAS work product slots may be fulfilled by some MAS work product variability
as well as be associated with MAS task variability as input and/or output. Such associations
provide great flexibility for handling MAS method fragments during method composition:
fragments inputs and outputs can be defined in terms of placeholders that are fulfilled by the
MAS work product variability available in the method configuration relating to the composition
of situational methods.

Indeed, such flexibility consists of one of the cornerstone of the situational method compo-
sition using the Medee Method Framework, since it provides a seamless flow of work products
between method fragments sourced from distinct MAS development approaches, as illus-
trated by the example presented in Sect. 6.4. A set of Medee work product slots was defined and
stored in the Medee Fragments pillar, among them the MPS? Agent-Analysis, MPS Environment-
Design, MPS Organization-Analysis, and MPS User Requirements. In this way, such Medee
strategy allows method elements to be captured once and then to be reused whenever needed.
For example, method elements such as tasks and work products captured from Tropos may
be used for (i) building Tropos As Is method in terms of SPEM elements, (ii) elaborating MAS

5 MPS stands for MAS work Product Slot.

@ Springer

452 Auton Agent Multi-Agent Syst (2014) 28:430—473

method fragments in several layers (e.g. activity, phase, process), and (iii) composing Medee
methods out of these fragments.

All of this strategy is documented and detailed in the Medee Delivery Process, as shown
next.

5.2 Medee Delivery Process

This section details the Medee Delivery Process, the component of the Medee Method Frame-
work in charge of specifying how to populate the three pillars of the Medee Method Repository
according to the characteristics and strategy shown in Sect. 5.1.

As previously mentioned, the Medee Delivery Process itself is defined in terms of SPEM
elements, elaborated in the EPF Composer, and published on HTML pages. Therefore, it is
built upon phases, activities, tasks, steps, work products, roles, and delivery process. Indeed,
the Medee Delivery Process encompasses 3 phases, 11 activities, 17 tasks, and 93 steps. Such
tasks involve 25 work products (as input and/or output), 3 roles (method engineer, MAS
development approach expert, project manager), and a couple of guidance. Thus, it describes
in detail how to manage the Medee Repository and how to use it for building and publishing
Medee situational methods on websites.

The Medee Delivery Process phases are: Medee Method Element Capture, Medee Method
Fragment Elaboration, and Medee Method Composition. As their names indicate, each phase
deals with a specific pillar of the Medee Method Repository. Moreover, the Medee Deliv-
ery Process has two workflows, as illustrated in Fig. 11 through an Activity diagram®:
one for capturing information from MAS development approaches, creating method ele-
ments and elaborating MAS method fragments, and the other for composing Medee
methods.

5.2.1 Medee method element capture phase

The purpose of the Method Element Capture phase is to populate the first pillar of the Medee
repository with the method elements captured from MAS development approaches. It involves
three activities: Capture method content, Build AOSE method as is, and Publish AOSE method
as is. The last two activities are performed whenever the MAS development approach is an
AOSE method, such as Gaia and Tropos. Otherwise, these activities are skipped. This phase
is conducted by a method engineer (primary role) with the optional support from an expert
on MAS development (additional role).

The purpose of the Capture method content activity is to analyze, model, and store
the knowledge captured from a given MAS development approach as a collection of
SPEM elements, such as task, work product, role, categories, and guidance. This activ-
ity encompasses two tasks: the Outline Method Content task involves a thorough analysis
of the MAS development approach literature to identify the main SPEM elements that
can be used to represent them, while the Detail Method Content task consists of mod-
eling such elements in detail. For instance, the documentation of AOSE methods fol-
lowing the IEEE FIPA template [37] is one of the input work products for this activ-
ity.

The purpose of the Build AOSE Method As Is activity is to build up the AOSE method as a
whole, based on SPEM elements captured during the previous activity. Finally, the Publish

5 An Activity diagram illustrates how the process elements (e.g. activities, phases, iterations) flow together.
Such diagrams are defined by SPEM and provided by the EPF Composer.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 453

Work Breakdown Structure
Medee Method Framework
1} Welcome - - -
i Medee Delivery Process
= hod Element Capture Phase

Capture Method Content .

{77 Build AOSE Method As Is
[Build AOSE method as is I \preoachl] Wino Capturing MAS Development Approach]

= (7] Publish AOSE Method As Is
> Publish AOSE Method As Is
= & Mathod Fragment Elaboration Phase
=] Create Activity Method Fragment Method Blement Caplure Phase
> Buikd MAS Variabilty
> Bulld Activity Method Fragment

I 7] Create Intermediate Fragment Layer faay
[Create Process Method Fragment —
= = Medes Method Composiion Phase Mathod Fragment Elaboration Phase

*I {77 Characterize MAS Project Situation aa
1 [F7] Select MAS Method Fragments)
] Compose MAS Situational Method Mades Method Compostion Phase
H LL’/‘ Publish MAS Situational Method
I] Generate Medee AOSE Method
* (2 Medee Composition Model
* & Medee Stuational Methods
% (= Medes Glossary

Fig. 11 Medee Delivery Process: workflows and phases

AOSE Method As Is activity aims to publish the AOSE method As Is built up during the previous
one as a fully hyperlinked collection of HTML pages.

5.2.2 Medee Method Fragment Elaboration phase

The purpose of the Medee Method Fragment Elaboration phase is to populate the sec-
ond pillar of the Medee Repository, the Medee Fragments Pillar, with method fragments
built on method elements stored in the repository first pillar (Sect. 5.1). This phase
involves three activities: Create activity method fragment, Create intermediate fragment layer,
and Create process method fragment. The latter is performed whenever the MAS devel-
opment approach is an AOSE method, such as Gaia and Tropos. Otherwise, it is
skipped.

The Create activity method fragment activity aims to elaborate Medee Method Fragments of
the activity layer (Sect. 3.2). It encompasses two tasks: Build MAS variability and Build activity
method fragment. The first consists of extending the captured elements stored in the first pillar
(like work products and tasks) so that they can be used to create new method fragments.
This is made through MAS work product variability and MAS task variability, as aforementioned.
The second task consists of using such MAS variability elements to elaborate Medee activity
method fragments. At the end of this activity, the Medee repository will contain the MAS activity
method fragments ready for use to elaborate fragments in the upper layers of granularity
(Sect. 3.2).

The purpose of the Create intermediate fragment layer activity is to elaborate MAS method
fragments in the phase and iteration layers of granularity, using existing MAS activity method
fragments.

Finally, the Create process method fragment activity aims to generate the fragments
that provide MAS Base Methods during a top—down situational method composition. At
the end of this activity, a new MAS process method fragment will be stored in the Medee
fragments pillar to be used for composing Medee situational methods using a top—down
approach.

@ Springer

454 Auton Agent Multi-Agent Syst (2014) 28:430—473

5.2.3 Medee Situational Method Composition phase

The Medee Situational Method Composition phase aims to populate the third pillar of the Medee
repository with two kinds of methods: Medee situational methods and Medee AOSE methods,
where the former are composed according to a given project situation and the latter represent
AOSE methods described as a set of Medee Method fragments. There are four activities in
charge of composing and publishing MAS situational methods: Characterize MAS Project
Situation, Select MAS Method Fragments, Compose MAS Situational Method, and Publish MAS
Situational Method. Moreover, there is only one activity in charge of building and publishing
a Medee AOSE method: the Generate Medee AOSE Method (Fig. 12).

This phase is strongly based on the Medee Composition Model, along with some aspects
inspired by Harmsen [30], Brinkkemper [7], and Karlsson [40].

The purpose of the Characterize MAS Project Situation activity is to analyze the characteris-
tics of a given project situation by assessing its relevant factors through the four dimensions
of the Medee Project Factors Taxonomy: people, problem, product, and resource. In summary,
this activity consists of determining the project factors that best characterize the MAS project.
For instance, the current project involves a small team (people factor), a dynamic MAS envi-
ronment (problem factor), a broad set of deliverables (product factor), and a short deadline
(resource factor).

Based on the Medee Composition Model, the Select MAS Method Fragments activity aims to
identify and to select those method fragments that are more suitable for the MAS project
situation. For this, it encompasses two tasks: Select Candidate MAS Method Fragment and Ana-
lyze MAS Base Method. The first consists of identifying appropriate fragments for the current
MAS project situation, based on the Medee composition guidelines. Thus, it involves analyzing
these guidelines, inspecting the semiotic categories indicated by them, and thus selecting the
candidate method fragments among those included in inspected categories. At the end, this
task generates a Method Fragment Preliminary List, which contains a preliminary selection of
MAS method fragments that should be considered during the situational composition. The

s Whom am | | I Troo Sets | E

Medee Method Framework

I Welcoma
St ot = [Stustional Compostion] 'y [not Stuational Composiion]
* & Method Element Capture Phase

5 Method Fragmant Elaboration Phase

* () Medee Method Composition Phase td)
[Characterize MAS Project Situation Charscterize MAS Project Stustion
> Characterize MAS Project Situation ‘L
[Select MAS Method Fragments o
> Select Candidate MAS Methad Fragment | i]
> Analyze MAS Base Method Select MAS Method Fragments

=] Compose MAS Situational Method
[+ Compose Situational Method - Top Down Approach
» Compose Situational Method - Bottom Up Approach (S

= [Publish MAS Situational Method Composs MAS Stuational Method
= Publish Situational Method |

1 Generate Medee ADSE Method o=

> Describe Medee ADSE Method =L

> Publish Medee AOSE Method Puitksh MAS Stustional Method

* 25 Medes Composition Model

* = Medee Sduational Methods

* (2 Medes Glossary ‘ ’@

Genarate Mades AUSE Method

w5

Fig. 12 Medee Method Composition Phase activities

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 455

Analyze MAS Base Method task aims to verify whether it is possible to choose a MAS base
method among the MAS process method fragments included in the Method Fragment Preliminary
List. If this is the case, such a list is refined—by eliminating fragments that already pertain
to the MAS base method and those that can be easily replaced by another one belonging to
it—giving rise to a Method Fragment Final list.

The Compose MAS situational method activity aims to build a MAS situational method accord-
ing to the definition presented in Sect. 3.2, by adopting a suitable composition mecha-
nism for the current project situation: top—down [40] or bottom—up [7,30]. The former
may be adopted whenever the Method Fragment Final List includes a MAS base method.
Otherwise, the latter may be used. A top—down composition consists of tailoring the
selected MAS base method, by adding MAS method fragments captured from other MAS
development approaches, and eventually eliminating those MAS method fragments that are
not required for the MAS project situation. Conversely, a bottom—up composition con-
sists of specifying a work breakdown structure for the new MAS situational method from
scratch, by outlining the sequence of iterations, phases, and milestones of the situational
method, and then assembling the selected method fragments into these work breakdown
elements.

Finally, the Publish MAS situation method activity aims to publish the composed situational
method as a fully hyperlinked collection of HTML pages.

5.3 Medee MAS method repository contents

Currently, the Medee Repository is populated with 260 (two hundred and sixty) Medee elements
and 64 (sixty four) Medee fragments sourced from AOSE methods such as Gaia, Tropos,
PASSI, and Ingenias, from AO models such as MOISE+ and Opera, and from general-
purpose development methods like Unified Software Development Process (USDP) [39],
as depicted in Table 2. Moreover, such a repository contains AOSE methods represented in
terms of SPEM elements (see column AOSE method As Is) and in terms of Medee fragments
(see column Medee AOSE methods).

It should be observed that our approach aims to provide method elements and method
fragments that can be easily modified and enhanced, instead of offering the best description
of them, since AOSE methods and AO models are among the software artifacts that should
be continually improved.

The remainder of this section presents examples involving the two first phases of the Medee
Delivery Process—Method Element Capture and Method Fragment Elaboration phases—while an
example of the Medee Method Composition is given in Sect. 6.

5.4 Examples of Medee elements and fragments

In this section, we present examples of Medee elements and Medee fragments captured
from MOISE+ and Tropos. They belong to the first and second pillars of the repos-
itory, respectively, and will be further used to compose a Medee situational method
(Sect. 6).

5.4.1 Medee elements captured from MOISE+
MOISE+ [33,35,36] is an agent organization model that proposes three organizational dimen-

sions to explain how a MAS organization can be described: a Structural Specification, a Func-
tional Specification, and a Deontic Specification. Moreover, MOISE+ literature proposes a

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430—473

4 ¥9 ¥ I 14! St ¥ 09¢ LTl 4! 65 09 TVLOL
0 € 0 0 0 € 0 8¢ 91 0 L S vI1do
0 S 0 0 0 S 0 8% I¢ 0 S S +dSION
0 C 0 0 0 [4 0 4! 4 0 8 4 ddsn
0 4! 0 0 C 01 ! or Cl 8 9 4! seruaguy
I L1 ! I S 01 1 9¢ (44 S SI 4! ISSvd
I €1 I 0 14 8 I 0s o€ I 6 01 sodoi,
C 4! C 0 € L I (33 14! 0 [§ 0l eren
jonpoxd
[e101, $59001J UoneId)| aseyq Ananoy [eoL, JouepIny a0y SHIOM ysel,
poyow ST yoeoidde
SOV Juowely St POYIRIA juowdo[oaap
PON poylowl SYA 99PN POIN0g ASOV sjuswof poypew pammde)) SVIN

456

SJUIUO AI103150daT poylow 9PN T dqeL

pringer

as

Auton Agent Multi-Agent Syst (2014) 28:430-473 457

[roiEe_method_element
= (2] Disciplines
=57 Uncategorized Tasks —
B3 Analyze MAS Organization
> Design Agent Organizational Behavior
[Design MAS Organization
[Implement Agent using Jason
[Implement MAS Organization

=] Collapse All Sections

= (8 Domains . e !
= (@8 Uncategorized { Outputs « MOISE+ Organizational Specification
[2] Agent Code for 3-MOISE
|| MOISE+ Organization Code | ¢ Back to top

= [5] MOISE+ Organizational Specification
[2] MOISE+ Deontic Specification
=] MOISE+ Functional Specification
|| MOISE+ Structural Specification

+ (25 Work Product Kinds i (+] Expand All Steps =] Collapse All Steps
L5 Role Sets # ldentifying organization purpose

._' A Tools # ldentifying groups of the collective level

! el Processes . # ldentifying roles of the individual level

* lmg, Custom Categories .

® L@ Guidance + ldentifying goals

ldentifying missions

Fig. 13 Tasks and work products captured from MOISE+, detailing the Analyze MAS Organization task

tool for simulating these specifications, called Organizational Entity Dynamic Simulator
[34], and reusable assets for implementing organizational management infrastructure: the
J-MOISE+ and the S-MOISE+ [35,36]. The former is developed on Jason [4,5], which is an
agent-oriented development platform.

The Method Element Capture phase was performed to populate the Medee Element pillar
with several tasks, work products, and guidance captured from MOISE+, as illustrated in
Figs. 13, 14.

As depicted in Fig. 13 (left down side), the work products captured from MOISE+
are the following: Agent Code for J-MOISE; MOISE+ Organization Code; and MOISE+
Organizational Specification, encompassing structural, functional, and deontic specifica-
tions. The first two are implicitly outlined in [36] while the last one is explicitly defined in
MOISE+ main references [33,35]. Moreover, Fig. 13 (left upper side) illustrates the five tasks
concerning the generation of these work products: Analyze MAS Organization, Design Agent
Organizational Behavior, Design MAS Organization, Implement Agent using Jason and Implement
MAS Organization. It is important to note that such tasks are not explicitly proposed in the
MOISE+ literature. Hence, they are the result of our analysis and interpretation of this liter-
ature.

Along with these tasks and work products, several guidance captured from MOISE+ were
also described as Method Elements, as illustrated in Fig. 14 (left side). Such guidance encom-
passes concepts for describing MOISE+ main notions, examples of MOISE+ specifications,
whitepapers that provide links to the MOISE+ literature, tool mentors describing the tools
available for dealing with the MOISE+ specifications, such as the Organizational Entity
Dynamics Simulator, and reusable assets that can speed up the development of a MOISE+
organization. One of these reusable assets, the Organizational management infrastructure for
Jason (J-MOISE+), is depicted in detail in Fig. 14 (right side): it is related to the Implement
MAS Organization and Implement Agent using Jason tasks. Additionally, three whitepapers offer
more information about this reusable asset: Jason manual [4], MOISE+ tutorial [36], and
MOISE+ Programming Issues [35].

@ Springer

458 Auton Agent Multi-Agent Syst (2014) 28:430—473

moise_method_element
=L@ Guidance ~
= &= Concepts |

& Compatibity MOISE+ Reusable Asset - Organization

& Deontic Relation Management Infrastructure for JASON
<+ Goal

for.

e

* Group Specification
= Link
= Mission
Mission Preference Order
= MOISE+ Main Concepts
= Qrganization Specification
* Organizational Entity ¥ Back to top
= Plan "
“ Role |2 Descrip

‘& Social Schema | = More Information
® |- Examples
= £ Reusable Assets Whitepapers * Jason Manual

50 0rg. Manag. Infrast, for JASON « MOISE+ Programming lssues

& Org. Manag, Infrast, for SACI * MOISE+ Tutorial
o) "% Tool Mentors & Ba
@ =} whitepapers bt

@

4 Expand All Sections =] Collapse All Sections

@

L]

Related s Implement Agent using Jason
Elements e Implement MAS Organization

©ee¢

[N

ck to top

Fig. 14 Guidance captured from MOISE+, detailing the Organization Management Infrastructure for Jason

5.4.2 Medee fragments sourced from MOISE+

Since MOISE+ does not offer phases, iterations, or a whole development process, the popu-
lation of the Medee Fragment pillar with MAS method fragments sourced from this AO model
only involved the first activity proposed by the Method Fragment Elaboration phase, the Create
Activity Method Fragment activity.

Firstly, the work products and tasks described in the previous section have been extended
using MAS work product variability and MAS task variability, before giving rise to the five MAS
activity method fragments sourced from MOISE+. We adopted prefixes to identify MAS Method
Fragments (MMF), MAS Task Variability (MTV),MAS work Product Variability (MPV), MAS work Prod-
uct Slot (MPS), and MAS work product Framework Element (MFE).

Figure 15 depicts one of these MAS work product variability, the MPV Organization Specifi-
cation, which extends MOISE+ Organizational Specification by stating that it fulfills two slots,
the MPS Organization Analysis and MPS Organization Design, since this work product covers
both the analysis and the design of a MAS organization. Moreover, it is encapsulated by
the MFE MOISE+ Organization. It also contains the MPV Deontic Specification, MPV Functional
Specification, and MPV Structural Specification.

In this way, MAS work product variability allows to clearly state two important situational
aspects of a work product: its standardization in terms of the MAS Work Product Framework,
and the particular slot that it can fulfill among those proposed by the set of Medee MAS work
product slots.

Moreover, through MAS task variability we have extended captured tasks. For instance, as
shown in Fig. 16 (right side), the MTV Analyze MAS Organization—that extends the quasi-
homonym task—has a primary performer’s role assigned out of the Medee common role set
(MAS designer and System analyst). Furthermore, it specifies that the MPS User Requirements is
its mandatory input, the MPS Environment-Analysis is its optional input, and the MPV MOISE+
Organizational Specification is its output (replacing the original task output by the related work
product variability).

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 459

fcie? ssconicaplba :
=5 Uncategorized Tasks A|
. [MTY Analyze MAS Organization "
i = mry Design Agent qua_nizﬁtmd Beha | [= Medee Work Product Variability of MOISE+
| £ MY Design MAS Organization (1 = Organizational Specification

= MTV Implement Agent using Jason

| = MTY Implement MAS Organization {
| =33 pomains "
| (g8 Uncategorized I
! =[] MFE MOISE+ Agent =
| [5) MPv Agent Code for J-MOISE I

| =[] MFE MOISE+ Organization ? Fulfilled » MPS Organization - Analysis
| () MPV Organizational Code (1 Slots s MPS Organization - Design

Expand all Sections

ISR MPY Organizational Specification
[Z] MPY Deontic Specification Container » MFE MOISE+ Organization
[Z] MPY Functional Specification = Artifact
[Z] MPY Structural Specification i
: Contained « MPY Deontic Specification
Artifacts » MPYV Functional Specification
o MPY Structural Specification

Fig. 15 MAS work product variability for MOISE+, detailing the MPV Organizational Specification

4 B: MOISE+ Method Fragment A Presentation Name Model Info

] g\ Method Content =l & MMF Analyze Organization with MOISE+

=l E'[ocesses = 2 analyze Organization with MOISE

& L. Capabity Patterns = L& MTY Analyze MAS Organization
(g MOISE Activity Layer & MAS Designer Primary Perforn

e» MMF Analyze Organization with MOISE+ & System Analyst Additional Perfc
“g+ MMF Design Agent Organizational Behavior [+ MPs User Requirement Mandatory Inpt
“g# MMF Design Organization with MOISE+ [MPs Environment - Analysis Optional Input
“gs MMF Implement Agent with MOISE [% MPv Organizational Specification Output

‘& MMF Implement Organization with MOISE+

Fig. 16 MAS Activity Method fragments sourced from MOISE+, detailing the MMF Analyze Organization with
MOISE+

Secondly, Medee Fragment pillar was populated with five MAS Activity Method Fragments
built upon these extended method elements: MMF Analyze Organization with MOISE+, MMF
Design Agent Organizational Behavior with MOISE+, MMF Design Organization with MOISE+, MMF
Implement Agent with MOISE+, and MMF Implement Organization with MOISE+ (Fig. 16, left
side).

Figure 16 (right side) presents the MMF Analyze Organization with MOISE+ in detail. It
consists of a process patter nesting a quasi-homonym activity that holds the MTV Analyze
MAS Organization with MOISE+. Moreover, it is performed by the MAS Designer and System
Analyst (primary and additional roles) and generates the MPV Organizational Specification as
output. Finally, it is important to highlight that this method fragment may dynamically receive
as mandatory input a work product that fulfills the MAS User Requirement slots, such as the
MPV Tropos Actor Diagram and MPV Tropos Goal Diagram. Moreover, it could dynamically
receive a work product as optional input fulfilling the MAS Environment Component, as the one
sourced from GAIA.

Finally, these five MAS activity method fragments have been categorized by the Medee MAS
Semiotic Taxonomy. For instance, MMF Analyze Organization with MOISE+ has been categorized
by the Organization Oriented MAS and Organization Component categories from the Pragmatic
Level, and by the Activity Method Fragment and Analysis Discipline categories from the Semantic
Level.

@ Springer

460 Auton Agent Multi-Agent Syst (2014) 28:430—473

Tropos Method Element

Disciplines A

.;9 Uncategorized Tasks e
[Analyze Goals and Plans "__> Tropos task
> Define System Actor . . § i
£ Design Agent Interactions +| Expand All Sections =] Collapse all Sections
> Design Capability Diagram o Purpo!
> Design Plan Diagram = Relati
> Extend Actor Diagram -t -
[Identify Actor Capability Roles Primary Performer: Additional Performers:
[1dentify Agent Capability * Requirement
[Identify Stakeholders Engineer
[Implement Agent using Jack
= (% Domains Outputs o Actor Diagram

= (% Uncategorized
&[] Actor Capaility List
[2) Actor Diagram
[) Agent Code
B Agent Interaction Diagram i+ Expand all Steps =] Collapse all Steps

-3 iliky Li - P - "
(E) Agent Type Capabilty List & ldentifying stakeholders and their intentions

L +

i || Capability Diagram e ko .

-) Extended Actor Diagram # ldentifying social actors
+
+

5[] Goal Diagram =+ Defining actors goals, plans and resources
[Plan Diagram

R RERRE®ER

+ Defining social dependencies

Fig. 17 Tasks and work products captured from Tropos, detailing the Identify Stakeholders task

5.4.3 Medee elements captured from Tropos

Tropos [6,25-27] proposes a development method for MAS involving the following phases:
Early Requirements, Late Requirements, Architectural Design, Detailed Design and Imple-
mentation. The goal of the first two phases is to provide a set of functional requirements, as
well as non-functional requirements, for the system to be built, while Architectural Design
and Detailed Design phases focus on the system specification. Finally, the Implementation
phase transforms the results of the preceding phases using an agent development platform to
code the MAS.

The Method Element Capture phase was performed to populate the Medee Element pillar
with elements captured from Tropos (Fig. 17): ten tasks, nine work products, and several
guidance, including guidelines, whitepapers, and concepts.

Moreover, Fig. 17 (right) depicts one of these tasks, the Identify Stakeholder, that repre-
sents the first piece of work proposed by Tropos. This task is performed by the Requirements
Engineer (primary role) and aims to produce the Actor Diagram following four steps (lower
right). Also, the Tropos As Is method was built upon these elements and published on HTML
pages using the EPF Composer. Figure 18 illustrates a delivery process containing the five
phases proposed by Tropos.

5.4.4 Medee fragments sourced from Tropos

The Medee Fragment pillar was populated with MAS method fragments built upon method
elements captured from Tropos according to activities proposed by the Method Fragment
Elaboration phase—Create Activity Method Fragment, Create Intermediate Method Fragment, and
Create Process Method Fragment.

Before creating MAS activity method fragments, the nine work products and ten tasks cap-
tured from Tropos were extended, as illustrated in Fig. 19 (right). For instance, the MPV

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 461

Eclipse Process Framework Composer

gm Where am | | Bf Tree Sets |

Tropos As Is

Tropos Method As Is | Delivery Process: Tropos As Is
E]
= & Early Requirements Phase This delivery p provides a representaton of
[Idertify Stakeholders Tropos in temrs of SPEM elements.
B Goals and Plan:
R Work Brealdown Stucture ZIEYTTETIN)
[Define System Actor
[Analyze Gosls and Plans = Workflow
E & Architectural Design Phase
= Extend Actor Diagram
£ Idertify Actor Capabilty = 5 2]
= identify Agent Capability R P Late R P
E ¢ Detaled Design Phase G
[Design Capability Diagram /
[Design Plan Diagram ;
[Design Agent Interactions sl f= ol
= milll'!l't!l'!l’ — —_— _ —_— _
2 Phiage Archieclural Design Phase Detaled Deszign Phase Implemertation Phase
[Implement Agent using Jack

Fig. 18 Tropos As Is published as HTML pages

LR T ——1 1 Artifact: MPV Tropos Actor Diagram

?@ Disciplines s
SR Domans] MAS Wk Product Varaily of
& (g8 Uncategorized Tropos Actor Diagram

=[5 MFE Tropos Agent
- = [0} MFE Tropos Analysis Agent Model
~[2) MPV Tropos Actor Capability List
MPY Tropos Agent Type Capability List
[] P Tropos Extended Actor Diagram
- = [2) MFE Tropos Design Agent Model
[MPY Tropos Capability Diagram

[Expand all Sections [=] Collapse All Sections

& Purpose
= Relationships

Fulfilled s MPS User Requirement

[Z] MP¥ Tropos Plan Diagram
| MPY Tropos Implementation Agent Model
= [5] MFE Tropos Interaction

Slots

Container s MFE Tropos Requirement

[) MPV Trapos Agent Interaction Diagram Artifact
= [Z] MFE Tropos Requirement
MPY Tropos Actor Diagram Roles Responsible: Moditied By:
[Z] MPV Tropos Goal Diagram + System
+ Analyst

Fig. 19 MAS Work Product Variability for Tropos, detailing the MPV Tropos Actor Diagram

Tropos Actor Diagram extends the Actor Diagram, by specifying the fulfillment of the MPS
User Requirements slot, and encapsulation by the MFE Tropos Requirements.

Figure 20 (right) details the MAS Task Variability called MTV Identify Stakeholders, by show-
ing its primary and additional performers (System Analyst replacing the Requirements Engi-
neer role), as well as its output work product (MPV Tropos Actor Diagram).

Hence, eight Medee fragments pertaining to the activity layer were built, as depicted in
Fig. 21 (left). Furthermore, this figure (right) offers a detailed view of one of these fragments,
the MMF Identify Initial Requirements with Tropos: it consists of a process patternnesting a quasi-
homonym activity for holding the MTV Identify Stakeholder; it is performed by the System
Analyst and MAS Designer (primary and additional roles); and the MPV Tropos Actor Diagram
as output. Nonetheless, this fragment does not require any input work product.

@ Springer

462 Auton Agent Multi-Agent Syst (2014) 28:430—473

tropos_second_pillar
| = |2 pisciplines
=57 Uncategorized Tasks

= MTV Analyze Goals and Plans

Medee Task Variability of Tropos |dentif
[MTY Defiine System Actor D Stakeholders Y P y

[MTV Design Agent Interactions
[MTV Design Capability Diagram
[MTV Design Plan Diagram
[MTV Extend Actor Model

'+ Expand all Sections = Collapse all Sectio

> MTY Identify Actor Capability
= MTV Identify Agent Capability

[TV IdentiFy Stakeholders Roles Primary Performer: Additional Periormsrs:
> v lmntge ng Jack » System Analyst » MAS Designer
52 Domains :
@ (g Work Product Kinds Outputs s MPV Tropos Actor Diagram
L5 Role Sets
® (% Tools Process ¢ MMF Identify Initial Requirement with Tropos
@ [Processes Usage > |dentify Initial Requirement with Tropos >

MTV Identify Stakeholders

Fig. 20 MAS Task Variability for Tropos, detailing MTV Identify Stakeholders task

- (b Tropos MMF Activity Layer I Presentation Name Mode! Info
"¢ MMF Analyze Agent with Tropos i | B “& MMF Identify Initial Requirement with Tropos
“gs MMF Analyze Architectural Style withTrop ||| = £ 1dentify Initial Requirement with Tropos
“g MMF Design Agent with Tropos I = Ly MTV Identify Stakeholders
ef MMF Design Interaction with Tropos : | ,'f;is System Analyst Primary Performer
“g» MMF Detail Requirements with Tropos b & MAS Desigrier Additional Performer
RS AMMF Identify Initial Requirement with Trossil [MPV Tropos Actor Diagram Output

S MMF Identify Additional Requirement with
‘& MMF Implement agent with Tropos

Fig. 21 MAS Activity Method fragments sourced from Tropos, detailing the MMF Identify Initial Requirements
with Tropos

Moreover, these eight MAS activity method fragments were categorized using the Medee
MAS Semiotic Taxonomy. For instance, the MMF Identify Initial Requirements with Tropos was
categorized as follows: (i) Goal based style category from Pragmatic Level; (ii) Activity Method
Fragment, Require-ments Discipline, and Tropos Method categories from Semantic Level; (iii)
Graphical Notation category from Syntactic Level.

Since Tropos does not propose any iteration, the elaboration of intermediate method
fragments concerned the creation of four MAS phase method fragments, as illustrated in Fig. 22
(left): MMF Requirements Phase with Tropos, MMF Analysis Phase with Tropos, MMF Design Phase
with Tropos, and MMF Implementation Phase with Tropos and one milestone.

As detailed in Fig. 22 (right), the MMF Requirements Phase with Tropos embodies three frag-
ments: MMF Identify Requirements with Tropos, MMF Detail Requirements with Tropos (occurring
twice), and MMF Identify Additional Requirements with Tropos.

The MAS process method fragment sourced from Tropos, called the MMF Tropos Base
Method, encompasses the four MAS phase method fragments aforementioned, as well as the Tro-
pos Base Method milestone. Indeed, Fig. 23 depicts the way in which MAS method fragments
sourced from Tropos are put together to form the MAS Tropos Base Method.

Thus, the MMF Tropos Base Method is ready for use during a situational composition,
as described in Sect. 6.4. However, before taking part in a situational composition, the MMF
Tropos Base Method was classified into several categories of the Medee MAS Semiotic taxonomy.
For instance, considering the Social level of this taxonomy, it was categorized as follows:

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 463

= (4 Tropos MMF Activity Layer A ||| Presentation Name Index | P..
“G MIMF Analyze Agent with Tropos | = “S MMF Requirement Phase with Tropos 0
“& MMF Analyze Architectural Style withT ||| @ &5 Requirement Phase with Tropos 1
“g MIMF Design Agent with Tropos 1 = S MMF Identify Initial Requirement with Tropos 2
"> MMF Design Interaction with Tropos | = B8 Koty Intia) Reguirement with Tropos 3
“& MMF Detail Requirement with Tropos | LS MIV Identify Stakeboiders 4
“g¢ MMF Identify Additional Requirementw | = “& MMF Detail Requirement with Tropos 5 2
“g MMF Identify Initial Requirement with1 | = B8 petai Reguirements with Tropos 5
) & MMF Implement agent with Tropos | LS MIV Analyze Goals and Plans 7
=l Tropos MMF Phase Layer 1 = & MMF Identify Additional Requirement with Tro 8 S
g MMF Design Phase with Tropos I = B8 rdentiy Addtional Reguirement with Trop 9
“ MMF Analysis Phase with Tropos 5 LS M1V Define System Actor 10
g MMF Implementation Phase with Tropos | = “g MMF Detail Requirement with Tropos 11 8
I 1P Requirement Phase with Tropos I | = B8 petai Reguirements with Tropos 12
ERF Tropos MMF Process Layer | s MV Analyze Goale and Plans i3
“© MMF Tropos Base Method 1 £l: Milestone - MAS Objectives Described with Tropos 14

Fig. 22 MAS Phase Method fragments sourced from Tropos, detailing the MMF Requirements Phase with
Tropos

|= [Tropos MMF Activity Layer # | || Presentation Name T
0 MMF Analyze Agent with Tropos = “& MMF Tropos Base Method 0
“g MMF Analyze Architectural Style wit ® “G MMF Requirement Phase with Tropos 1
&‘.’ MMF Design Agent with Tropos = ‘g MMF Analysis Phase with Tropos 16
“g} MMF Design Interaction with Tropos B B Analysis Phase with Tropos 17
0 MMF Detail Requirement with Tropos B S MMF Analyze Architectural Style with Tropos 18
¢ MMF Identify Additional Requiremenl B S MMF Analyze Agent with Tropos 21
g‘,o MMF Identify Initial Requirement wit el a5 architecture Outined Miestone 25
3 MMF Implement agent with Tropos = “& MMF Design Phase with Tropas 26
= Lgh Tropos MIMF Phase Layer & B3 Design Phase with Tropos 27
G} MMF Design Phase with Tropos) S MMF Design Agent with Tropos 28
0 MMF Analysis Phase with Tropos ® IS MMIF Design Interaction with Tropos 32
“© MMF Implementation Phase with Tro| El: mas Components Designed Miestone 75
& MMF Requirement Phase wiith Tropo: = “& MMF Implementation Phase with Tropos 36
= lgw Tropos MMF Process Layer B B mmplemencation Phase with Tropos 37
| RSy MMF Tropos Base Method v B S MvIF Implement agent with Tropos 38
3 | > 2l mas ready to be tested Miestone 47

———————— - £l Tropos Base Method Milestone - MAS ready to be tested 42

= A ==

Fig. 23 MAS Method Fragments sourced from Tropos, organized in the MMF Tropos Base Method

(i) High Utilization Degree Category, since it is well known and used; (ii) Low Reutilization Degree
Category, as it does not involve MAS component reuse; (iii) Low Validation Degree Category,
since it does not provide validation and verification activities; and (iv) Low lteration Degree
Category, as Tropos work breakdown structure does not deal with iterations.

Having given examples of Medee elements and fragments stored in the Medee Repository,
we are ready to describe the composition of a Medee MAS situational method, which is made
in the sequence.

6 Composing a MAS Situational Method using Medee

In order to validate the Medee method framework, we built MAS situational methods for a
project that involved students in a graduate course in charge of developing a MAS for the
Multiagent Contest.” The remainder of this section describes this case study in detail.

7 http://multiagentcontest.org/2010.

@ Springer

http://multiagentcontest.org/2010

464 Auton Agent Multi-Agent Syst (2014) 28:430—473

6.1 Case study overview

The goal of the Multiagent Contest is to develop a MAS to solve a cooperative task in a
highly dynamic environment. The environment of the MAS is a grid-like world in which
animals (e.g. cows) are moving around collectively in one or more groups showing swarm
like behavior. There are two corrals, each one belonging to an agent team (e.g. herder team),
which competed to lead cows to their own corral. The winning herder team is the one that
has a higher number of cows in its corrals.

This kind of application clearly fits the requirements we had in mind as a moti-
vation for creating the Medee method framework: it possibly needs combining AOSE
methods and AO models to produce a good solution for the problem. Particularly, stu-
dents followed a situational method to build a MAS application, i.e., their own team.
The experiment involved another MAS application, the control herder team, which com-
peted with those applications built by the students. This former was a simplified ver-
sion of a team that we have built to compete in previous editions of the Agent Contest
[28].

Two situational methods were composed using Medee fragments: the Tropos—MOISE+ sit-
uational method and the Gaia-MOISE+ situational method. Due to space limitations, only the
Tropos—MOISE+ situational method will have its composition described here. Both methods
are published at the Medee website.

The situational method composition was performed following the activities proposed in
the Medee Method Composition phase presented in Sect. 5.2—Characterize MAS project situa-
tion, Select MAS method fragments, Compose MAS situational method, and Publish MAS situation
method—as shown next.

6.2 Characterizing the MAS project situation

The current project situation was characterized through the factors provided by the Medee
Project Factors Taxonomy: people, problem, product, and resource. The project situation char-
acterization can be summarized as follows.

The people involved in the project (people factors) consist of small development teams
encompassing two or three students with little prior experience in the application domain, in
MAS development approaches, and in UML (including use cases).

The problem to be tackled (problem factors) involves agent cooperation and coordina-
tion. Furthermore, the problem is quite well defined, is not susceptible to change dur-
ing project development, and can be solved using closed MAS in a dynamic environ-
ment.

Concerning the product related factors, the project aims to deliver (deliverable product
factor) two final products: a scientific paper describing and discussing the several development
phases of the MAS application, and the execution code of the MAS application using a BDI
agent platform (Agent Architecture factor). Additionally, in order to deal with the cooperation
and coordination among agents, the MAS application should adopt an organization-centered
MAS approach (MAS social aspect factor).

Finally, the project teams had to manage the following resource factors to deliver such final
products: a short project deadline (ten weeks) and a low budget that roughly corresponds to
160 working hours. Nonetheless, the project could mitigate this restriction of time and effort
using the available reusable assets for leveraging the MAS application development, mainly
the J-MOISE+ tool [35].

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 465

§ The purpose of this g ine is to guide the of MAS Methoasfvm\swmu\al
_:J sPnuIddea]M“\aamﬁ:setofﬁnalmmrulaladlalhaMﬂS as agent,
I Welcome % \ and user requi
am :
= = Dby T ¥ Expand ANl Sections =| Collapse All Sectic
= Medee Composition Model IRRTRN =
< & Medee Project Factors Taxonomy - Description
: = F:u The Vowels paradigm (DEMAZEAU, 1995) prop a f rk for repr i Iti-agent
=y ek systems in a general way, by dividing them into four i the agents, the environment, |.he
= S ”_ z interactions, and the organization (A, E, I, 0). Thus, given a problem to solve using putational systems
- JI”"“” o) X (or a system to simulate), the development team should choose the more apprupnated components of each
= '_mm’ soeisoied type, cg. th: agcnl.s the enr the i i and the i 0 be i i or
] [ng to the context of the problem and the application dom.am
= Performance Level
5 Comectness Level For instance, a MAS project should generate the products related to the agent, organization, and interaction
_.‘ = Agent A because the P is already provided. Other project must deal just with the
= () MAS Social Aspect asml and interaction components, since it is based on the entomologic metaphor.
I MAS Soclal Aspect Guideline
+ & Resource Facion MAS Method in the 1g MAS iotic Category should be taken into account during the
5 25 Medes Corpoe Situational Method composition in order to deal with the comy of the MAS appli
: =12 hoctes LAS Gemiofh- T ronomy - Fragments categorized into the Agent C t Category, L C Category |
= Medee Situational Methods iComponent Category , Organization Compenent Categery.
= Medes Glossary

Fig. 24 Assisting the Method Engineer to generate the method fragments preliminary list through the Medee
Composition Model built upon EPF Composer

6.3 Selecting method fragments for the current situation

Based on the Medee Composition Model, this activity aimed to select those method fragments—
among the 64 fragments stored in the Medee Method Repository—that better suit for the project
situation already assessed in terms of project factors. It encompassed two tasks—Select
Candidate MAS Method Fragment and Analyze MAS Base Method.

The first task involved the selection of fragment candidates among all fragment layers in
order to produce a Method Fragment Preliminary List. Thus, this task consisted of analyzing
those Medee composition guidelines indicated by the project factors, as well as identifying and
then inspecting the semiotic categories indicated by them, and finally selecting the candidate
method fragments, as explained in Sect. 5.2.

For instance, the Deliverable product factor (scientific paper and running code) led to two
guidelines, MAS Component and Method Ceremony, while the MAS social aspect factor led to the
quasi-homonym guideline, as depicted in Fig. 24 (left). Moreover, Fig. 24 (lower right frame)
shows that the MAS Component guideline points out some semiotic categories that deal with
this product factor, among them Agent Component and Organization Component categories.
Then, the method engineer only had to click over these suggested categories of the Medee
MAS Semiotic Taxonomy to inspect them, i.e., to see the list of available fragments.

The Method Fragment Preliminary List contained the following method fragments, among
others: (i) MAS method fragments sourced from MOISE+, for analyzing, designing, and
implementing organizations, as well as for implementing agents; (ii)) MAS method fragments
sourced from Tropos, mainly the MMF Tropos Base Method; (iii) MAS method fragments
sourced from Gaia, involving the analysis and design of MAS components such as agents
and interactions.

The last task involved the analysis of such a list to verify whether it was possible to choose
a MAS base method among the MAS process method fragments included in it. Therefore, the
MMF Tropos Base Method had been adopted since it is suitable for dealing with several project
factors, among them: it encompasses the required development phases, including require-
ments; it offers two of the three required MAS components, i.e., agents and interactions.
Furthermore, a top—down situational method composition could add to the MMF Tropos Base

@ Springer

466 Auton Agent Multi-Agent Syst (2014) 28:430—473

%> Organization Centered MAS using Tropos and MOISE_v3 (3
|
| Presentation Name
| = B MAS Stustional Method using Tropos MOISE
= 3 Organization Centered MAS Situational Method using Tropos as Base Method
9GS MM Requiremant Phase nith Tropos

I Tropos Base Mathod Milestone - MAS ready to be lested
= %S Situational Analysis Phase
= £3 Analyss Phase using Tropos and MOISE+
[+ q.l*l'-FAndy’eOrwzatonwﬁh'fDISE-l-I
* 0’ F Analyze Archit e with Tropos *—
+ 'o H\F.AndyzeAgentmh Trnpos
i " Archtecture Cutihed . } Repfaced milestone
I Milestone - mnppkamoutm
_,A.Q-QQ 3 Sduatux\altesmﬂmm
m = B3 Design Phase using Tropos and MOISE+
o "¢ MMF Design Organization with MOISE+ |
% S MMF Design Agert with Tropos
+ q. MMF Design Interaction with Tropos
| ‘& MMF Desi Or ekmalscham with MOISE
b Hhs:one mas ﬂookdlonDesmed
= o Shtuational Implemertation Phase
= B8 .rrolerrmathhm with MOISE+

ll

} Replaced r m:lesrone |

® G M inplement agent with Tropos _e——tt Supressed fragment
+ omlmomnt nga‘nzammhmlsh-
I'-I\-F[mwm*msz

: o e m&m lm ed} Rqo!aced m;fecton&

b Miestone - MAS Appiication Ready to be Tested

Fig. 25 Top—down situational composition, detailing Situational phases using Tropos and MOISE+

Method those fragments sourced from MOISE+ in order to cover the Organization component,
as shown next.

6.4 Composing the Tropos—MOISE+ situational method

Composing the Tropos—MOISE+ situational method using a top—down approach consisted
of tailoring the MMF Tropos Base Method by adding MAS method fragments sourced from
MOISE+ and suppressing those fragments that were no longer needed in the situational
context.

Thus, as depicted in Fig. 25 and explained in the next paragraphs, the five MAS activity
method fragments sourced from MOISE+ were added to the MMF Tropos Base Method, while
some fragments had been suppressed from it.

Moreover, Fig. 25 illustrates how the EPF Composer counts on functionalities for tailoring
methods, i.e. tailoring delivery processes, such as suppressing process patterns (represented
in gray), keeping some of them unchanged (represented in green) and adding new ones.

As explained in Sect. 5.4, the MMF Tropos Base Method embodies four phases: MMF Require-
ments Phase with Tropos, MMF Analysis Phase with Tropos, MMF Design Phase with Tropos, and
MMF Implementation Phase with Tropos.

The MMF Requirements Phase with Tropos was kept in the situational method without any
modification, since it proposes a goal-based approach for dealing with requirements that is

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 467

: Situational Method for USP Farmer project. Top-down
MAS Situational Method - Top down compaosition “‘1.. Tropos & MOISE+.

Medee G!ussaryi Extends: MMF Tropos Base Method

E #3 MAS Situational Method using Tropos MOISE #
iy il usng s Work Breakdown Structure SUCETIRILT
Organization Centered MAS Situational Method usin,

5 4% MMF Requirement Phase with Tropos
¥ g5 Requirement Phase with Tropos
£l Milestone - MAS Objectives Described with Tro
1% Situational Analysis Phase ey
Bl @ Analysis Phase using Tropos and MOISE+ S QI
48 MMF Analyze Organization with MOISE+ MMF Requirement Phase with Tropos Milestone - MAS Application
H 4% MMF Analyze Agent with Tropos Ready to be Tested
£l) Milestone - MAS Application Outlined
El4& Situational Design Phase
E E Design Phase using Tropos and MOISE+
¥ 4% MMF Design Organization with MOISE+
® 4% MMF Design Agent with Tropos
B 4% MMF Design Interaction with Tropos
¥ 4% MMF Design Agent Organizational Behavior
¢l) Milestone - MAS Application Designed
| % Situational Implementation Phase
E & Implemenration Phase with MOISE+
4% MMF Implement Organization with MOISE+
4% MMF Implement Agent with MOISE
€|, Milestone - MAS Application Implemented e e e St

Situational Implementation Phase

Fig. 26 Tropos—MOISE+ situational method published as HTML pages

appropriate to teams that are not familiar with the UML. The remaining phases were tailored
to allow the development of the organization-centered MAS application using MOISE+.

Thus, Fig. 25 depicts that the MMF Analyze Organization with MOISE+ was added to the Sit-
uational Analysis phase, while the MMF Analyze Architectural Style with Tropos was suppressed,
since the MOISE+ Organizational Specification already encompasses a MAS architectural
style.

Moreover, given that the new Situational Analysis phase generates work products sourced
from Tropos and MOISE+, its milestone was replaced by a new one, which embodies
MOISE+ specification and Tropos diagrams as required results.

Furthermore, the Situational Design phase had two fragments sourced from MOISE+ added
to the original ones from MMF Design Phase with Tropos (for designing agents and interactions
with Tropos): MMF Design Organization with MOISE+ and MMF Design Agent Organizational
Behavior with MOISE+. Consequently, the previous milestone was conveniently replaced by a
suitable one.

Finally, the Situational Implementation phase only encompassed the two fragments sourced
from MOISE+ for implementing organizations and agents, MMF Implement Organization with
MOISE+ and MMF Implement Agent with MOISE+, since the fragment sourced from Tropos
related to agent implementation was suppressed. Consequently, a new milestone that could
represent the situational required work products replaced the previous one.

6.5 Publishing the Tropos—MOISE+ situational method

The Tropos—MOISE+ situational method was published as a fully hyperlinked collection of
HTML pages, as illustrated in Fig. 26.

Moreover, Fig. 26 (upper left) depicts that such HTML pages also contain the Medee
Glossary. The glossary was published in conjunction with the MAS situational method and

@ Springer

468 Auton Agent Multi-Agent Syst (2014) 28:430—473

it consists of a collection of term definitions that aims to facilitate the understanding of the
concepts used to define MAS method fragments and situational methods.

As mentioned before, the Tropos—MOISE+ Situational Method, as well as the Gaia-MOISE+
Situational Method, was used by our students to develop a MAS for the Multiagent Contest.
Due to space limitations, it is out of the scope of this paper to describe the MAS that were
generated, interested readers may refer to [8].

Having explained how to use the Medee method framework for composing situational
methods, the next section discusses the main aspects of our approach.

7 Discussion

As described in the course of this paper, the components of the Medee method framework—
the Conceptual Model, the Composition Model, the Method Repository, and the Delivery Process—
cover most of a typical situational method procedure: from managing the method repository
to building the situational method.

Furthermore, our approach is based on several aspects that constitute advancements in the
way of dealing with situational methods for AOSE. Firstly, it is fully compliant with SPEM.
Secondly, it offers fragments sourced from both AOSE methods and AO models. Thirdly, it
is independent of a given MAS meta-model. Finally, it offers a structured way for dealing
with AOSE special aspects. The remainder of this section presents a brief discussion about
these aspects, taking into account related work described in Sect. 2.4.

7.1 SPEM compliance

As previously explained, not only the Medee Conceptual Model and Method Repository are
represented in terms of SPEM elements—since we introduce neither new elements nor new
associations to define method fragment and situational methods—but also the Medee Delivery
Process and the Medee Composition Model are specified using SPEM. As explained in Sect. 2.4,
such a full compliance with SPEM is not offered by OPF [32], which is not based on SPEM,
neither by the other approaches based on the process fragment definition [49-51], since they
involve elements not provided by SPEM, like those pertaining to a MAS meta-model.

In our opinion, the full compliance with SPEM offers important benefits and represents
advancement in the current state of the art in AOSE. Firstly, SPEM is the de facto standard for
method meta-modeling in Software Engineering as a whole and in AOSE field in particular.
Thus, on one hand, we can leverage SPEM skills available in the software engineering
community in order to build situational methods for AOSE and, on the other hand, we may
accelerate the dissemination of AOSE concepts in the software industry, by using this standard
for representing development methods.

Secondly, SPEM covers more than modeling and documenting methods aspects, since it
also offers elements for managing and enacting methods and fragments, providing sophis-
ticated mechanisms for reusability, modularization, extension, packaging and deployment
of methods, as explained in Sect. 2.2. Therefore, being SPEM compliant allows the use of
SPEM-based tools, such as the EPF Composer. This has the advantage of supporting several
procedural steps for building situational methods, from the MAS method repository man-
agement to the MAS project execution, since the project team can use the MAS situational
method deployed to website during the project, as illustrated in this paper. Finally, Medee
method framework users skilled in EPF Composer can easily manage, configure, publish,
and distribute AOSE situational methods through websites.

@ Springer

Auton Agent Multi-Agent Syst (2014) 28:430-473 469

7.2 Putting together AOSE methods and AO models

The Medee method framework provides fragments from both AO models and AOSE methods.
As explained in Sect. 2.4, some approaches are concerned with the extension of a particular
AOSE method to incorporate organizational concept, like O-MaSE and ASPECS. However,
they do not offer a whole situational environment for dealing with fragments sourced from
several AOSE methods and AO models, nor for composing situational methods out of those
fragments.

Therefore, putting together method fragments sourced from several AOSE methods and
AO models—by storing them in the same method repository and composing situational
methods out of them—consists of an innovative approach in the AOSE field.

7.3 Independency of any MAS meta-model

The Medee method framework does not depend on the availability of a common meta-model
for representing concepts used by both AOSE methods and AO models.

As explained in Sect. 2.4, other approaches [16,49-51] are strongly dependent on a given
MAS meta-model. Thus, typical steps for building situational methods, such fragment elabo-
ration, fragment selection, and situational method building, are based on such a meta-model.
Unfortunately, the AOSE community has not yet achieved a consensus about the main MAS
concepts [18]. In fact, most of the MAS development approaches provide their own meta-
model. Thus, the Medee Method Framework offers an important benefit: it allows the AOSE
community to take advantage of Situational Method Engineering principles for building
MAS situational methods out of fragments sourced from several AOSE methods and AO
models even though a consensus concerning a common MAS meta-model was not yet (if
ever) achieved.

7.4 Adopting an integrated way to deal with AOSE particularities during the situational
composition

AOSE development approaches involve particular aspects, such as specific system archi-
tecture, development platform, design and programming languages. The Medee method
framework takes these aspects into account in an integrated way, from the method repos-
itory management to the situational composition. Firstly, the Medee user can standardize
method fragments by using common MAS development roles—like MAS Developer and
MAS Tester—as well as Medee semiotic categories, as such MAS component (e.g. agent,
environment, organization), MAS nature (e.g. open/closed), design language (e.g. UML,
AUML), and programming language (e.g. Java, AgentSpeak).

Secondly, the Medee user can clearly state the project characteristics—in terms of peo-
ple, problem, product, and resource factors—taking into account AOSE aspects. Possi-
ble examples are: the project team has no previous experience with developing MAS
although having some skills related to object-oriented methods and UML; the product to
be delivered involves an organization-centered approach, the agent architecture is based on
BDI.

Thirdly, both MAS project factors and method fragment categories are integrated into
the Medee Composition Model, while the way how to proceed for characterizing the project,
selecting fragments and putting them together in a situational method is described in the
Medee Delivery Process.

@ Springer

470 Auton Agent Multi-Agent Syst (2014) 28:430—473

Summing up, to the best of our knowledge, in the AOSE field there is no currently such a
broad and integrated approach for situational composition, totally SPEM compliant and built
upon an open source tool, the EPF Composer.

8 Conclusions and future work

We presented a situational approach for the development of MAS projects, the Medee method
framework. Such an approach encompasses new definitions for MAS Method Fragment
and MAS Situational Method, a model for leveraging project situation strengths during the
situational composition, as well as a method repository and a process that describes in detail
how to elaborate method fragments and build methods on demand according to MAS project
characteristics.

The Medee method framework is full SPEM compliant and built upon an open source tool,
the EPF Composer. Currently, it contains more than two hundred elements, including 64 (sixty
four) Medee method fragments sourced from Gaia, Tropos, Ingenias, PASSI, MOISE+, and
OperA, as well as the representation of these four AOSE methods in terms of SPEM elements.
It is worth noting that the Medee Method Repository may be extended with method fragments
sourced from other AOSE methods and AO models. The step-by-step work necessary to
perform such an extension is described in the Medee Delivery Process, presented in Sect. 5.2.

Finally, we illustrated how such an approach could be used to compose a situational
method for developing a MAS project using method fragments sourced from Tropos and
MOISE+.

Our future work is concerned with three main aspects. Firstly, we want to extend the Medee
Method Repository in order to offer method fragments for testing MAS applications. However,
the most popular AOSE methods do not provide activities related to MAS testing. Thus,
this method fragments could be sourced from research dealing especially with the testing
discipline. Secondly, we are currently developing a tool to facilitate and speed up the selection
of MAS method fragments. Finally, we intent to enhance the Medee Composition Model to deal
with MAS project success performance indicators, since the achievement of some success
performance indicators can be limited by project factors [30]. Thus, it is important to identify
those project factors that can negatively impact the desired success indicators and try to
mitigate their effect over project success, using the appropriate method fragments.

Acknowledgments This research has been mostly supported by FAPESPS, Brazil. Jaime Sichman is partially
supported by CNPq, Brazil. Sara Casare was partially supported by CAPES, Brazil. Zahia Guessoum s partially
supported by CNRS, France. We would like to thank the invaluable work from the reviewers that helped us to
improve the paper quality and readability.

References

1. Agerfalk, P. J., Brinkkemper, S., Gonzalez-Perez, C., Henderson-Sellers, B., Karlsson, F., Kelly, S., et al.
(2007). Modularization constructs in method engineering: Towards common ground? In J. Ralyté, S.
Brinkkemper, & B. Henderson-Sellers (Eds.), IFIP situational method engineering: Fundamentals and
experiences (pp. 359-368). Boston: Springer.

2. Basili, V. R. (1993). The experience factory and its relationship to other improvement paradigms. In
I Sommerville & P. Manfred (Eds.), Fourth European Conference on Software Engineering ESEC 93
(pp. 68-83). doi:10.1007/3-540-57209-0_6.

8 Regular research project 2009/10121-4 and international cooperation FAPESP-CNRS project 2009/54773-5.

@ Springer

http://dx.doi.org/10.1007/3-540-57209-0_6

Auton Agent Multi-Agent Syst (2014) 28:430-473 471

20.

21.

22.

23.

24.

. Bernon, C., Camps, V., Gleizes, M. P., & Picard, G. (2005). Engineering adaptive multiagent systems:

The ADELFE methodology. In B. Henderson-Sellers & P. Giorgini (Eds.), Agent oriented methodologies
(pp. 172-202). London: Idea Group Publishing.

. Bordini, R., & Hubner, J. (2007). Jason : A Java-based interpreter for an extended version of AgentSpeak.

Retrieved February 25, 2013 from http://jason.sourceforge.net/Jason.pdf.

. Bordini, R. H., Hubner, J. F., & Wooldridge, M. (2007). Programming multiagent systems in agentspeak

using Jason. New York: Wiley.

. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004). Tropos: An agent-oriented

software development methodology. Journal of Autonomous Agents and Multiagent Systems, 8(3), 203—
236.

. Brinkkemper, S. (1996). Method engineering: Engineering of information systems development methods

and tools. Information and Software Technology, 38(4), 275-280.

. Casare, S. J. (2012). Medee: A method framework for multiagent systems. Ph.D. Thesis, Universi-

dade de Sao Paulo, Sao Paulo, Brazil. Retrieved February 22, 2013 from http://www.teses.usp.br/teses/
disponiveis/3/3141/tde-05032012-162517/en.php.

. Casare, S.J., Branddo, A. A. F.,, & Sichman, J. S. (2010). A semiotic perspective for multiagent systems

development. In Proceedings of 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2010) (pp. 1373-1374). Toronto, Canada.

. Casare, S. J., Branddo, A. A. F,, & Sichman, J. S. (2010). A semiotic taxonomy to support multiagent

systems situational development. In /st Workshop on Autonomous Software Systems at CBSoft 2010,
Salvador. AUTOSOFT 2010—I Workshop on Autonomous Software Systems—Anais CBSoft 2010. SBC,
2010, Vol. 10 (pp. 31-40). Retrieved February 26, 2013 from http://www.autosoft.pcs.usp.br/images/
cbsoft2010_autosoft_anais.pdf.

. Casare, S.J., Guessoum, Z., Branddo, A. A. F.,, & Sichman, J. S. (2010). Towards a new approach for MAS

situational method engineering: A fragment definition. In O. Boissier, A. E. F. Seghrouchni, S. Hassas,
& N. Maudet (Eds.), Proceedings of The Multiagent Logics, Languages, and Organizations Federated
Workshops 2010, Vol. 627 (pp 3-16). Lyon-France, Aachen: CEUR-WS. http://ceur-ws.org/Vol-627/
fipa_1.pdf.

. Casare, S. J., Guessoum, Z., Branddo, A. A. F. & Sichman, J. S. (2010). Devising situational method

fragments for organization centered MAS development. In Proceedings of the 8th European Workshop
on Multi-Agent Systems—EUMAS 2010. Paris, Vol. 1 (pp. 1-16).

. Castelfranchi, C. (1995). Commitments: From individual intentions to groups and organizations. In

T. Ishida (Ed.), Proceedings of the First International Conference on Multiagent Systems (ICMAS 95)
(pp. 41-48).

. Cohen, P., & Levesque, H. (1990). Intention is choice with commitment. Artificial Intelligence, 42,213—

261.

. Cossentino, M. (2005). From requirements to code with the PASSI methodology. In B. Henderson-Sellers

& P. Giorgini (Eds.), Agent oriented methodologies (pp. 79—106). London: Idea Group Publishing.

. Cossentino, M., Gaglio, S., Garro, A., & Seidita, V. (2007). Method fragments for agent design method-

ologies: From standardization to research. International Journal on Agent Oriented Software Engineering
(IJAOSE), 1(1), 91-121.

. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., & Koukam, A. (2010). ASPECS: An agent-oriented

software process for engineering complex systems. Autonomous Agents and Multiagent Systems, 20(2),
260-304.

. DeLoach, S. (2009). Moving multiagent systems from research to practice. International Journal of

Agent-Oriented Software Engineering, 3(4), 378-382.

. DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-MaSE: A customizable approach to designing and

building complex, adaptive multiagent systems. Intl Journal on Agent Oriented Software Engineering
(IJAOSE), 4(3), 244-280.

Demazeau, Y. (1995). From interactions to collective behavior in agent-based systems. In Proceedings of
the 1st European Conference on Cognitive Science (pp. 117-132) Saint-Malo.

Demazeau, Y. (2010). Purposive multiagent systems. In Proeedings of the International Conference on
Agents and Artificial Intelligence, ICAART (pp. 22-24), Vol. 1—Aurtificial Intelligence, Valencia, Spain,
January.

Dignum, V. (2004). A model for organizational interaction: Based on agents, founded in logic. Ph.D.
Thesis, Universiteit Utrecht, Utrecht, The Netherlands

Firesmith, D., & Henderson-Sellers, B. (2002). The OPEN process framework—An introduction. Harlow:
Addison Wesley.

Garcia-Ojeda, J. C., Deloach, S. (2010). The O-MaSE process: A standard view. In Proceedings of
Workshop FIPA Design Process Documentation and Fragmentation Working Group (DPDF WG) at

@ Springer

http://jason.sourceforge.net/Jason.pdf
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-05032012-162517/en.php
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-05032012-162517/en.php
http://www.autosoft.pcs.usp.br/images/cbsoft2010_autosoft_anais.pdf
http://www.autosoft.pcs.usp.br/images/cbsoft2010_autosoft_anais.pdf
http://ceur-ws.org/Vol-627/fipa_1.pdf
http://ceur-ws.org/Vol-627/fipa_1.pdf

472 Auton Agent Multi-Agent Syst (2014) 28:430—473

Multiagent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010) (pp. 55-66)
Lyon, France.

25. Giorgini, P, et al. (2004). The Tropos methodology. In V. Bergenti, M. P. Gleizes, & F. Zambonelli (Eds.),
Methodologies and software engineering for agent systems (pp. 89—106). Dordrecht, The Netherlands:
Kluwer Academic Publishers.

26. Giorgini, P, et al. (2005). Tropos: A requirement-driven methodology for agent-oriented software. In B.
Henderson-Sellers & P. Giorgini (Eds.), Agent-oriented methodologies (pp. 20-45). London: Idea Group
Publishing.

27. Giorgini, P, et al. (2005). The Tropos meta-model and its use. Informatica, 29, 401-408.

28. Gouveia, G. P, Pereira, R. H., & Sichman, J. (2011). The USP farmers herding team. Annals of Mathe-
matics and Artificial Intelligence, 61(4), 369-383.

29. Guessoum, Z., Cossentino, M., & Pavon, J. (2004). Roadmap of agent-oriented software engineering—
The agentlink perspective. In V. Bergenti, M. P. Gleizes, & F. Zambonelli (Eds.), Methodologies and
software engineering for agent systems (pp. 431-450). New York: Kluwer Academic Publishers.

30. Harmsen, A. E. (1997). Situational method engineering. Utrecht: Moret Ernst & young.

31. Haumer, P. (2007). Eclipse process framework composer—Part I—Key concepts. Retrieved February 28,
2013 from http://www.eclipse.org/epf/general/EPFComposerOverviewPart1.pdf.

32. Henderson-Sellers, B. (2005). Creating a comprehensive agent-oriented methodology: Using method
engineering and OPEN meta-model. In B. Henderson-Sellers & P. Giorgini (Eds.), Agent-oriented method-
ologies (pp. 368-397). Dordrecht, The Netherlands: Idea Group Publishing.

33. Hubner, J., Sichman, J., & Boissier, O. (2002). A model for the structural, functional, and deontic speci-
fication of organizations in multiagent systems. In G. Bittencourt & G. L. Ramalho (Eds.), 16th Brazilian
Symposium on Al, SBIA’02, LNAI 2507 (pp. 118-128). Berlin: Springer.

34. Hubner, J., Sichman, J., Boissier, O., et al. (2006). S-MOISE+: A middleware for developing organized
multiagent systems. In O. Boissier (Ed.), Coordination, organizations, institutions, and norms in multia-
gent systems, LNCS 3913 (pp. 64-78). Berlin: Springer.

35. Hubner, J. E, Sichman, J. S., & Boissier, O. (2007). Developing organised multiagent systems using the
MOISE+ model: Programming issues at the system and agent levels. International Journal of Agent-
Oriented Software Engineering (IJAOSE), 1(3), 370-395.

36. Hubner, J., Sichman, J. S., & Boissier, O. (2008). MOISE+ tutorial. Retrieved February 22, 2013 from
http://moise.sourceforge.net/doc/tutorial.pdf.

37. IEEE-FIPA. (2012). Design Process Documentation Template, IEEE FIPA DPDF Working Group,
#SC00097B, 2012-01-09. Retrieved February 25, 2013 from http://fipa.org/specs/fipa00097/SC00097B.
pdf.

38. ISO 2007. ISO/IEC 24744:2007. (2007). Software engineering—Meta-model for development method-
ologies.

39. Jacobson, 1., Booch, G., & Rumbaugh, J. (1999). The unified software development process. Reading,
MA: Addison-Wesley.

40. Karlsson, F. (2005). Method configuration—Method and computerized tool support. Doctoral dissertation,
Department of Computer and Information Science, Linkoping University.

41. Kruchten, P. (2003). The rational unified process: An introduction (3rd ed.). Reading, MA: Addison-
Wesley.

42. Lemaitre, C., & Excelente, C. B. (1998). Multiagent organization approach. In 2nd Iberoamerican Work-
shop on Distributed Al and MAS, Toledo, Spain.

43. OMG. (2008). Object management group. Software & systems process engineering meta-model specifi-
cation, version 2.0. OMG document number: formal/2008-04-01. Retrieved January 26, 2013 from http://
www.omg.org/spec/SPEM/2.0/.

44. Pavon, J., Gémez-Sanz, J. J., & Fuentes, R. (2005). The INGENIAS methodology and tools. In B.
Henderson-Sellers & P. Giorgini (Eds.), Agent oriented methodologies (pp. 236-276). London: Idea
Group Publishing.

45. Picard, G., Hubner, J. F,, Boissier, O., & Gleizes, M. -P. (2009). Réorganisation et auto-organisation dans
les Systeme Multiagents. In Z. Guessoum & S. Hamas (Eds.), Journées Francophones sur les systemes
multiagents— Génie Logiciel Multiagent (JESMAO9) (pp. 89-97). France: Cepadués Editions.

46. Ralyté, J., Deneckére, R., & Rolland, C. (2003). Towards a generic model for situational method engi-
neering. In J. Eder et al. (Eds.), Proceedings of 15th International Conference on Advanced Information
Systems Engineering (CAiSE 2003) (pp. 95-110). Klagenfurt: Springer.

47. Rougemaille, S., Migeon, F., Millan, T., & Gleizes, M.-P. (2009). Methodology fragments definition in
SPEM for designing adaptive methodology: A first step. In M. Luck, J. J. Gomez-Sanz (Eds.), AOSE
2008, LNCS, Vol. 5386 (pp. 74-85), Reading, MA: Springer.

@ Springer

http://www.eclipse.org/epf/general/EPFComposerOverviewPart1.pdf
http://moise.sourceforge.net/doc/tutorial.pdf
http://fipa.org/specs/fipa00097/SC00097B.pdf
http://fipa.org/specs/fipa00097/SC00097B.pdf
http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/SPEM/2.0/

Auton Agent Multi-Agent Syst (2014) 28:430-473 473

48.

49.

50.

SI.

52.

53.

54.

55.

56.

Seidita, V., Cossentino, M., & Gaglio S. (2006). A repository of fragments for agent systems design. In
Proceedings of the Workshop on Objects and Agents (WOA 2006) (pp. 130-137), CEUR.

Seidita, V., Cossentino, M., Hilaire, V., Gaud, N., Galland, S., Koukam, A., et al. (2010). The meta-model:
A starting point for design processes construction. International Journal of Software Engineering and
Knowledge Engineering, 20(4), 575-608.

Seidita, V., Cossentino, M., & Chella, A. (2012). A proposal of process fragment definition and docu-
mentation. Lecture Notes in Computer Science, 7541, 221-237.

Seidita, V., Cossentino, M., & Chella, A. (2012). How to extract fragments from agent oriented design
process, Workshop AOSE@AAMAS 2012. Retrieved January 25, 2013 from http://www.pa.icar.cnr.it/
cossentino/paper/aose0212-fragment.pdf.

Sichman, J. S., & Demazeau, Y. (2001). On social reasoning in multiagent systems. Revista Iberoameri-
cana de Inteligencia Artificial, 13, 68-84.

Sommerville, I. (2006). Software engineering (8th ed.). Reading, MA: Addison-Wesley.

Stamper, R. (1996). Signs, norms, and information system. In B. Holmqvist, P. B. Andersen, H. Klein,
& R. Posner (Eds.), Signs at work: Semiosis & information processing in organizations (pp. 349-397).
Berlin: Walter de Gruyter.

Wood, M., & DeLoach, S. A. (2001). An overview of the multiagent systems engineering methodology. In
Proceedings of the First International Workshop on Agent-Oriented Software Engineering (pp. 207-221).
LNCS, Vol. 1957, Berlin: Springer.

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003). Developing multiagent systems: The Gaia
methodology. ACM Transaction on Software Engineering and Methodology, 12(3), 417-470.

@ Springer

http://www.pa.icar.cnr.it/cossentino/paper/aose0212-fragment.pdf
http://www.pa.icar.cnr.it/cossentino/paper/aose0212-fragment.pdf

	Medee Method Framework: a situational approach for organization-centered MAS
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Situational Method Engineering
	2.2 SPEM
	2.2.1 SPEM in a nutshell
	2.2.2 EPF Composer overview

	2.3 Organization-centered MAS
	2.4 Situational Method Engineering for MAS

	3 Medee Method Framework
	3.1 Overview
	3.2 Medee Conceptual Model
	3.2.1 Definitions
	3.2.2 Main concepts
	3.2.3 Fragment granularity layers
	3.2.4 Medee MAS work product framework
	3.2.5 Medee common roles
	3.2.6 Medee method fragment views

	4 Medee composition model
	4.1 Overview
	4.2 Medee project factors taxonomy
	4.3 Medee MAS semiotic taxonomy
	4.4 Medee composition guidelines

	5 Medee method repository and delivery process
	5.1 Medee Method repository architecture
	5.1.1 Method fragment standardization and situational composition

	5.2 Medee Delivery Process
	5.2.1 Medee method element capture phase
	5.2.2 Medee Method Fragment Elaboration phase
	5.2.3 Medee Situational Method Composition phase

	5.3 Medee MAS method repository contents
	5.4 Examples of Medee elements and fragments
	5.4.1 Medee elements captured from MOISE+
	5.4.2 Medee fragments sourced from MOISE+
	5.4.3 Medee elements captured from Tropos
	5.4.4 Medee fragments sourced from Tropos

	6 Composing a MAS Situational Method using Medee
	6.1 Case study overview
	6.2 Characterizing the MAS project situation
	6.3 Selecting method fragments for the current situation
	6.4 Composing the Tropos--MOISE+ situational method
	6.5 Publishing the Tropos--MOISE+ situational method

	7 Discussion
	7.1 SPEM compliance
	7.2 Putting together AOSE methods and AO models
	7.3 Independency of any MAS meta-model
	7.4 Adopting an integrated way to deal with AOSE particularities during the situational composition

	8 Conclusions and future work
	Acknowledgments
	References

