
Auton Agent Multi-Agent Syst (2013) 27:375–418
DOI 10.1007/s10458-012-9208-7

Reducing model checking commitments for agent
communication to model checking ARCTL and GCTL∗

Mohamed El Menshawy · Jamal Bentahar ·
Warda El Kholy · Rachida Dssouli

Published online: 30 August 2012
© The Author(s) 2012

Abstract Social commitments have been extensively and effectively used to represent and
model business contracts among autonomous agents having competing objectives in a vari-
ety of areas (e.g., modeling business processes and commitment-based protocols). However,
the formal verification of social commitments and their fulfillment is still an active research
topic. This paper presents CTLC+ that modifies CTLC, a temporal logic of commitments
for agent communication that extends computation tree logic (CTL) logic to allow reasoning
about communicating commitments and their fulfillment. The verification technique is based
on reducing the problem of model checking CTLC+ into the problem of model checking
ARCTL (the combination of CTL with action formulae) and the problem of model checking
GCTL∗ (a generalized version of CTL∗ with action formulae) in order to respectively use the
extended NuSMV symbolic model checker and the CWB-NC automata-based model checker
as a benchmark. We also prove that the reduction techniques are sound and the complexity of
model checking CTLC+ for concurrent programs with respect to the size of the components
of these programs and the length of the formula is PSPACE-complete. This matches the
complexity of model checking CTL for concurrent programs as shown by Kupferman et al.
We finally provide two case studies taken from business domain along with their respective
implementations and experimental results to illustrate the effectiveness and efficiency of the
proposed technique. The first one is about the NetBill protocol and the second one considers
the Contract Net protocol.

Keywords Social commitments · Agent communication · Verification · Reduction

M. El Menshawy (B) · J. Bentahar · W. El Kholy · R. Dssouli
Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada
e-mail: m_elme@encs.concordia.ca

J. Bentahar
e-mail: bentahar@ciise.concordia.ca

W. El Kholy
e-mail: w_elkh@encs.concordia.ca

R. Dssouli
e-mail: dssouli@ece.concordia.ca

123

376 Auton Agent Multi-Agent Syst (2013) 27:375–418

1 Introduction

A society mainly evolves through communication among participating entities. In such a soci-
ety, people interact and exchange information with each other—despite differences in their
languages—to satisfy their individual or social goals that they cannot achieve alone. Such
communication requires languages and mechanisms to orchestrate and structure interactions
among participants within dialogues.

Correspondingly, an agent-based model for an artificial society should provide acute and
adequate means to define a formal semantics for agent communication languages (ACLs).
Conventionally, formal semantics lays down the foundation for a neat, concise and unam-
biguous meaning of agent messages, and provides capabilities to verify if agent behaviors
comply with the defined semantics and also facilitates and improves the applicability of the
proposed semantics.

In the early days of multi-agent research, a promising way to define ACLs’ semantics
was widely inspired by Searle’s speech acts theory [45], which was particulary concerned
by identifying actions performed by agents to satisfy their intentions. This is called the
mental approach that focuses on achieving a rational balance between some concepts of
agent communication such as beliefs, goals, desires and intentions. Under this doctrine, it
became apparent that a purely mental semantics of ACLs in terms of pre- and post-conditions
of agent’s mental states would necessarily impose significant restrictions on the operational
behavior of agents. For example, in FIPA-ACL that uses this doctrine, the semantics of Inform
act, where the sender tells the receiver a proposition p, says that such act can only be uttered
if the sender believes the proposition p to be true in the pre-condition part, called sincerity
condition part. The problem with this approach is that the addressee agents (or an external
observer agent) cannot verify whether the speaker agent violates the pre-conditions defined
in such mental semantics or not [49]. This problem is also known as the semantics verifica-
tion problem [60]. Accordingly, such pure mental semantics cannot be used in open systems
wherein the interacting agents are heterogeneous [49]. Moreover, the semantics of this doc-
trine makes ACLs not general enough to capture the interoperability among heterogeneous
systems.

Therefore, there is a shift in multi-agent systems (MASs) community towards social
approaches to overcome the shortcomings and inconveniences incorporated with mental
approaches [47]. Commitments are employed in some of these social approaches, which
successfully provide a powerful representation for modeling and representing business con-
tracts among autonomous agents having competing objectives in a variety of areas, such as
modeling business processes [18,53,54], developing artificial institutions [27], defining pro-
gramming languages [59], modeling service-oriented computing [51], developing web-based
MASs [57], specifying commitment-based protocols [3,17,40,66], and specifying business
protocols [20]. Commitments have also been analyzed in strategic logics such as ATL*
where agents can commit to specific strategies [1]. In Longman Dictionary, a commitment is
a promise to do something or to behave in a particular way. In such a definition, commitment
imposes loyalty, dedication or devotion towards a person or group within a community. In
broad terms, commitments are social (opposite to psychological commitments [46] or indi-
vidual commitments [11]), objective and public [16], and help represent the state of affairs
in the course of multi-agent interactions. Following social commitment-based approaches,
an agent does not need to reason about others’ intentions or any agents’ mental states.

Singh [48] and Castelfranchi [11] formally denoted social commitments by a 4-argu-
ment relation involving a proposition (or an action) p and three agents (i, j , and ctxt):
C(i, j, ctxt, p), which means i is committed towards j in the social context ctxt—which

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 377

maybe an agent—to satisfy the proposition p or to do the action p. The agent i that actively
makes the social commitment is called the committer (or debtor), the agent j to which the
commitment is made is called the committee (or creditor), and p is called the content of
the commitment. The context ctxt includes the norms that apply to the group wherein the
commitment is established and also resolves disputes between the debtor and creditor [48].
Such context has been removed from the notation of commitments in later proposals coming
up from Singh and other researchers. Recently, some authors introduced a different definition
where there are a debtor, a creditor, an antecedent condition, and a consequent condition (for
example [14,64]). In this definition, a commitment is said to be active when the antecedent
condition is true. However, for the sake of simplicity, particularly from the logical perspec-
tive, antecedent condition will not be used in this paper, which means we assume that such
a condition always holds. More discussion is provided in Sect. 5.

Singh [47] emphasized the need to define the semantics of ACLs in terms of social notions
by presenting many design advantages of following the social commitment-based approach
over the mental one regarding to ACL messages meaning and agent construction in MASs.
The author refined his seminal work introduced in [47] with unifying normative concepts and
commitments and hence coming up with a rich descriptive ontology of commitments [48].
The strong key point in this ontology is the set of actions called commitment actions—that can
be used to manipulate commitments—namely, create, discharge, cancel, release, delegate,
and assign. However, for the purpose of model checking, which is the main contribution of
this paper, we restrict ourselves only to two actions (fulfillment (or discharge) and violation).
We leave the integration of the other actions to our model checking approach to future work.

Singh [49] introduced four crucial criteria that should be satisfied to have a well-defined
social semantics for ACL messages:

1. Formal: the language must be formal to eliminate the possibility of ambiguity in the
meaning of ACL messages and allow agents to reason about them.

2. Declarative: the semantics should focus on what the message means instead of how the
message is exchanged.

3. Meaningful: the semantics should focus on the content of messages, not on their repre-
sentation as sequences of tokens.

4. Verifiable: we can check if the agents are acting according to the given semantics.

Previous approaches have considered defining the semantics of ACL messages in terms of
social commitments by means of temporal logics [6–8,21,39,41,49], which we call “log-
ics of commitments”. However, the motivation is no longer just formally representing and
reasoning about social commitments and commitment actions, but becomes the application
of formal and automatic verification techniques, such as model checking in order to verify
commitments and commitment-based protocols. It is unrealistic—in open environments (e.g.,
e-business and e-negotiation)—to assume that all autonomous agents will behave according
to the given protocols as they may not behave as they are committed to. Furthermore, a formal
verification is necessary to help protocol designers either detect unwanted and bad agents’
behaviors to eliminate them or enforce desirable agents’ behaviors so that such protocols
comply with given specifications at design time.

Several approaches have been widely recognized to address the above challenge. Some
approaches used: (1) local testing technique [57]; (2) static verification technique [13,40,55,
66]; and (3) semi-automatic verification technique [63] to identify the compliant and non-
compliant agents at the end of the protocol. Although these approaches have made significant
progress, they have been criticized by Artikis and Pitt [2] as they are inefficiently applicable
in open environments especially with a large state space. Other approaches have defined

123

378 Auton Agent Multi-Agent Syst (2013) 27:375–418

commitment-based protocols using existing computational logics to be more applicable in
today’s economy such as e-negotiation [5], cross-organizational business models [54] and
business processes [28]. Those protocols have been verified using different model checking
techniques. However, those techniques consist in reducing commitments and their actions to
simple abstract structures and types using informal translation-based approaches to be able
to use existing model checking tools. Such informal translation-based approaches [5,21]
have the problem of preventing verifying the real and concert semantics of commitments
and related concepts as defined in the underlying logics. These approaches only provide
partial solution to the problem of model checking commitments as they reduce commit-
ment modalities into domain variables. This stops distinguishing among various modes of
truth such as necessarily true and true in the future. Furthermore, informal translation-based
approaches use simple variables [21,54,12], abstract processes [5,17] that do not account for
the meanings of commitments, so we are not checking the defined semantics of commitments.
Technically, the notion of commitments has the property of being referentially opaque, which
has an opaque context; so substituting the truth values of terms into opaque context is not
going to preserve meaning as argued in [61] where it is shown that predicate logics fail in
representing the notions of agent’s intensions having opaque context. Moreover, there are no
tools supporting the informal translation-based approaches to perform the translation process
before the actual verification process is undertaken. Thus, we believe that automatic, formal
translation-based approach is more suitable as it allows representing commitment modality
in other temporal modalities, which can reflect its meaning.

In order for these approaches to address all of the aforementioned challenges, they should
satisfy all Singh’s criteria within an intergraded framework. Such motivation is recently
achieved by means of two methods:

– By a direct method via either developing a proper model checker from scratch or extend-
ing an existing model checker with new algorithms for the needed temporal modalities
as we did in a previous work for model checking CTLC (an extension of computation
tree logic (CTL) introduced by Clarke et al. [15] with modalities for commitments and
their fulfillment (i.e., discharge) and violation) [22].

– By a formal reduction method into an existing model checker as we did in another pre-
vious work for model checking CTLC [23]. We particulary transformed the problem of
model checking CTLC into the problem of model checking CTLK (the combination of
CTL with the logic of knowledge [43]) in which the commitment modality is reduced to
knowledge modality.

Since our previous proposals [22,23] have successfully painted the following picture: the
existing model checkers are feasible to verify the modalities of commitments and their fulfill-
ment and violation correctly without losing the intrinsic meaning, the present paper advocates
the second method (reduction technique), which is easy to implement and allows to compare
different verification techniques with respect to the same logic. We also aim at investigating
the effectiveness, and soundness of our approach along with analyzing its computational
complexity that is still missing in the existing approaches. In particular, we: (1) introduce
CTLC+ by redefining the social accessibility relation introduced in [22,23] to account for the
intuition that social commitments are conveyed through communication between agents; (2)
refine the semantics of commitments and their fulfillment defined first in [22] (this refinement
is designed for the particular purpose of model checking and is functional to the verification
at design time); (3) remove violation modality presented in [21,22]; instead we show how
to express weak and strong violations as properties in our logic; (4) prove the soundness of
the proposed reduction techniques; and (5) analyze the space complexity of CTLC+ model

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 379

Fig. 1 A schematic view of our approach

checking for concurrent programs, which surprisingly is PSPACE-complete meaning our
CTLC+ model checking has the same space complexity as model checking CTL [34] with
regard to concurrent programs.

Figure 1 gives an overview of our approach, which consists of three parts. In the first
part, we introduce CTLC+, which is a new branching-time temporal logic of commitments
including CTL temporal modalities and modalities for commitments and their fulfillment
using the formalism of interpreted systems. This logic addresses some limitations in our
previous commitment logics [7,8,22] (this aspect will be detailed in Sects. 2.2 and 5). Other
commitment actions such as assign, delegate, and withdraw considered in [7,8] from the
semantic perspective are not included in this paper for the purpose of being focused on just a
subset of these actions, particularly for the purpose of model checking and its computational
complexity. Because these actions are needed to take full advantage of the notion of social
commitments [18,21,41,48], they will be investigated in our future work.

In the second part, we reduce the problem of model checking CTLC+ into: (1) the problem
of model checking ARCTL, the combination of CTL with action formulae [42]; and (2) the
problem of model checking GCTL∗, an extension of CTL∗ by allowing formulae to constrain
actions as well as propositions [10]. The first reduction allows a direct use of the extended
version of the NuSMV model checker introduced in [35]. The second reduction makes using
the CWB-NC model checker1 possible (see Fig. 1). Two reasons have motivated the election
of the extended NuSMV and CWB-NC tools: (1) their models are characterized by labeled
transitions with actions and during the transformation of our model, these labeled transitions
are used to capture the accessibility relations; and (2) they use different model checking
techniques namely, ordered binary decision diagrams (OBDDs) implemented in extended
NuSMV and alternating Büchi tableau automata (ABTA) implemented in CWB-NC, which
gives us the possibility to compare these two techniques with respect to the verification of
commitments and their fulfillment. In this part, we also analyze the complexity of model
checking CTLC+.

To check the effectiveness of our approach—in the third part (see Fig. 1)—we implement
our reduction tools on top of the model checkers (extended NuSMV and CWB-NC) and then
report the experimental results of verifying two case studies–widely used to clarify commit-
ment-based protocols: (1) the NetBill protocol; and (2) Contract Net protocol against some
desirable properties expressed in our logic.

The remainder of this paper is organized as follows. In Sect. 2, we briefly summarize the
formalism of interpreted systems [25] introduced to model MASs and define the syntax and
semantics of CTLC+. Reducing the problem of model checking CTLC+ into the problem of
model checking ARCTL and GCTL∗ and the theorems that prove the soundness of our reduc-
tion techniques along with complexity analysis of model checking CTLC+ are presented in

1 http://www.cs.sun\discretionary-ysb.edu/cwb/.

123

http://www.cs.sundiscretionary {-}{}{}ysb.edu/cwb/

380 Auton Agent Multi-Agent Syst (2013) 27:375–418

Sect. 3. In Sect. 4, we present two case studies widely studied in agent interactions, the
NetBill protocol and Contract Net protocol along with the implementation of our reduction
techniques on top of extended NuSMV and CWB-NC. We discuss relevant literature and
conclude in Sects. 5 and 6 respectively.

2 Interpreted systems and CTLC+

In this section, we present the first part of our approach, which is mainly related to extend
the formalism of interpreted systems introduced by Fagin et al. [25] and modify the temporal
logic CTLC introduced in our previous work [22].

2.1 Interpreted systems

The formalism of interpreted systems provides a mainstream framework to model MASs and
to explore their fundamental classes such as synchronous and asynchronous. It is also used
to express MAS properties in the temporal logic CTL along with the logic of knowledge (or
epistemic logic). We advocate this formalism for many reasons summarized as follows:

1. It allows us to abstract from the details of the components and to focus only on modeling
key characteristics of the agents and the evolution of their social commitments, which
is missing in existing agent communication models.

2. It is a useful tool for ascribing autonomous [36,37] and social behaviors of interacting
agents within open MASs [23].

3. It supports the interoperability between global (system) and local (agent) models [23,25].

The formalism of interpreted systems provides a useful framework to locally model auton-
omous and heterogeneous agents who interoperate within a global system via sending and
receiving messages. The concept of local states offers a flexible abstraction for the agents.
Technically, local states can be singletons, corresponding to a very high-level description of
the agents. However, local states are allowed to have a more complex structure. For instance,
local states could be a combination of singletons and a set of variables as we will show later
in this paper.

Interpreted systems. Consider a set A = {1, . . . , n} of n agents and at any given time
each agent in the system is in a particular local state. Intuitively, each local state of an agent
represents the complete information about the system that the agent has at its disposal at a
given moment. We associate a nonempty and countable set Li of local states for each agent
i ∈ A. To account for the temporal evolution of the system, the formalism of interpreted
systems associates with each agent i the set Acti of local actions. As in interleaved inter-
preted systems [36], to model synchronous communication among interacting agents, it is
assumed that null ∈ Acti for each agent i , where null refers to the silence action (i.e.,
the fact of doing nothing). The action selection mechanism is given by the notion of local
protocol Pi : Li → 2Acti for each i ∈ A. That is Pi is a function giving the set of enabled
actions that may be performed by i in a given local state. As in [25], we represent the instan-
taneous configuration of all agents in the system at a given time via the notion of global
state.

Definition 1 ([25]) Let G be the set of all global states and let g = (l1, . . . , ln) be a global
state, i.e., g ∈ G where each element li ∈ Li represents a local state of agent i , thus the set
of all global states G = L1 × · · ·× Ln is the Cartesian product of all local states of n agents.

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 381

We use the notation li (g) to represent the local state of agent i in the global state g. I ⊆ G is
a set of initial global states for the system. As in [25], the global evolution function is defined
as follows: τ : G × ACT → G, where ACT = Act1 × · · · × Actn and each component
a ∈ ACT is a “joint action”, which is a tuple of actions (one for each agent). In addition, the
local evolution function τi that determines the transitions for an individual agent i between
its local states is defined as follows: τi : Li × Acti → Li , where if τi (li (g), null) = li (g′)
for two given global states g and g′, then li (g) = li (g′).

In this paper, we extend the interpreted system formalism to account for communication
that occurs during the execution of MAS. This extension allows us to provide an intui-
tive semantics for social commitments that are established through communication between
interacting agents. Thus, we associate with each agent i ∈ A a countable set V ari of local
variables that we use to represent communication channels through which messages are sent
and received. Each local state li ∈ Li of agent i is associated with different values obtained
from different assignments to variables in V ari . We denote the value of a variable x in the
set V ari at local state li (g) by lx

i (g). Thus, if li (g) = li (g′), then lx
i (g) = lx

i (g
′) for all

x ∈ V ari . The idea is that, as in distributed systems, for two agents i and j to communi-
cate, they should share a communication channel, which is represented by shared variables
between i and j . In this perspective, a communication channel between i and j does exist
iff V ari ∩ V ar j �= ∅. For a variable x ∈ V ari ∩ V ar j , lx

i (g) = lx
j (g

′) means the values of
x in li (g) for i and in l j (g′) for j are the same. This intuitively represents the existence of a
communication channel between i (in g) and j (in g′) through which the variable x has been
sent by one of the two agents to the other, and as a consequence of this communication, i
and j will have the same value for this variable (see Fig. 2). It is worth noting that shared
variables only motivate the existence of communication channels, not the establishment of
communication. This aspect is addressed next.

The semantics of our modal language is interpreted using a model generated from the inter-
preted system formalism. In fact, this model, as in [25], moves away from Kripke models
while still benefiting from most of its technical apparatus.

Definition 2 (Models) A model MC =(S, I, Rt , {∼i→ j | (i, j) ∈ A2},V) that belongs to the
set of all models M is a tuple, where:

– S ⊆ L1 × · · · × Ln is a set of reachable2 global states for the system.
– I ⊆ S is a set of initial global states for the system.
– Rt ⊆ S × S is a transition relation defined by (s, s′) ∈ Rt iff there exists a joint action

(a1, . . . , an) ∈ ACT such that τ(s, a1, . . . , an)=s′.
– For each pair (i, j) ∈ A2,∼i→ j⊆ S × S is a social accessibility relation defined by

s ∼i→ j s′ iff 1) li (s) = li (s′) and 2)V ari ∩ V ar j �= ∅ such that ∀x ∈ V ari ∩ V ar j we
have lx

i (s)= lx
j (s

′) and ∀y ∈ V ar j −V ari we have l y
j (s)= l y

j (s
′). We also assume that

for any pair i, j ∈ A, we have that for any s ∈ S,∼i→ j (s) �= ∅ where ∼i→ j (s) is the
set of accessible states from s, i.e., ∼i→ j (s) = {s′ ∈ S | s ∼i→ j s′}.

– V : S → 2Φp is a valuation function where Φp is a set of atomic propositions.

The social accessibility relation ∼i→ j from a global state s to another global state s′ (s ∼i→ j

s′) captures the intuition that there is a communication channel between i and j (V ari ∩
V ar j �= ∅) and s′ is a resulting state from this communication initiated by i at s. The channel
is thus filled in by i in s, and in s′ j receives the information (i.e., the channel’s content),
which makes the values of all shared variables the same for i and j (l x

i (s) = lx
j (s

′) ∀x ∈

2 S contains only states that are reachable from I by means of Rt .

123

382 Auton Agent Multi-Agent Syst (2013) 27:375–418

Fig. 2 An example of social accessibility relation ∼i→ j . In the example above, the shared and unshared vari-
ables for agents are composed as follows. Agent i : V ari = {x1, x2, x3, x4}. Agent j : V ar j = {x1, x2, x ′

3, x ′
4}.

In the figure x1 and x2 are shared variables (i.e., they represent the communication channel), and x3, x4, x ′
3

and x ′
4 are unshared variables, which may represent communication channels with other agents. Notice that

the values of the variables x1 and x2 for j in the state s′ are changed to be equal to the values of these variables
for agent i , which illustrates the massage passing through the channel. On the other hand, the values of the
variables in V ari are unchanged as li (s) = li (s

′)

V ari ∩ V ar j). As i is the agent who initiates the communication, the source and target (or
resulting) states s and s′ are indistinguishable for i (li (s) = li (s′)). And as j is the receiver,
s and s′ are indistinguishable with regard to the variables that have not been communicated
by i , i.e., unshared variables (l y

j (s) = l y
j (s

′) ∀y ∈ V ar j − V ari). Finally, as our focus in this
paper is agent communication, we assume the existence of communication channels between
any two agents in any state, which motivates the assumption that ∼i→ j (s) �= ∅. This social
accessibility relation formalized in terms of relations over the states of a model differs from
the ones presented in [22,23] in terms of considering shared and unshared variables. We
illustrate this idea in Fig. 2.

In fact, our modeling can be seen as an abstraction of message-passing systems described
in [25]. Specifically, in message-passing systems, process’s local state contains informa-
tion including internal actions that can change the value of a variable and the messages
that it has sent and received. So each agent can directly control and manage communica-
tion channels by means of its actions. Furthermore, our extension of the interpreted system
formalism by using variables for communication is, to some extent, related to the modu-
lar interpreted systems approach proposed in [29] where variables are also used for com-
munication purposes. Specifically, modular interpreted systems include a component In,
which represents interaction alphabet and two interaction functions: (1) outi that illustrates
the influence that an action of an agent i may have on the external world; and (2) ini

that illustrates the influences of other agents on the agent i depending on its local state.
However, unlike modular interpreted systems, our extension is not meant to focus on the
influences of agents through interaction, but on the existence of a communication chan-
nel through which two agents can communicate. While communication is the first class
citizen in our perspective, the direct interactions are modeled by means of social commit-
ments.

Modeling complex and open systems such as MASs using the formalism of interpreted
systems is typically conducted by using logic-based formalisms as formal tools to express
desirable properties [25,36,37].

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 383

2.2 CTLC+ logic

The syntax of CTLC+ logic, which is a combination of branching time CTL introduced by
Clarke et al. [15] with modalities for social commitments and their fulfillment, is defined as
follows:

Definition 3 (Syntax of CTLC+)

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E Xϕ | E(ϕ U ϕ) | EGϕ | Ci→ jϕ | Fu(Ci→ jϕ)

where:

– p ∈ Φp is an atomic proposition;
– E is the existential quantifier on paths;
– X,G, and U are CTL path modal connectives standing for “next”, “globally”, and “until”

respectively;
– The Boolean connectives ¬ and ∨ are defined in the usual way; and
– The modal connectives Ci→ j and Fu stand for “commitment” and “fulfillment of com-

mitment” respectively.

In this logic, Ci→ jϕ is read as “agent i commits towards agent j that ϕ”, or equivalently as “ϕ
is committed to by i towards j”, or simply as “ϕ is committed to” when i and j are understood
from the context. Fu(Ci→ jϕ) is read as “the commitment Ci→ jϕ is fulfilled”. The constants
 (true) and ⊥ (false), and other Boolean connectives ∧,→, and ↔ are defined as abbrevia-
tions in the standard way. Other temporal modalities are given by their usual abbreviations (see
for example [15]). In particular, E Fϕ ≡ E(U ϕ), AXϕ ≡ ¬E X¬ϕ, AGϕ ≡ ¬E F¬ϕ,
and A(ϕ U ψ) ≡ ¬E((¬ψ) U (¬ϕ ∧ ¬ψ)) ∧ ¬EG¬ψ , where F stands for future. Fur-
thermore, we assume that the underlying time domain in our model MC is discrete, i.e.,
the present moment refers to the current state, the next moment corresponds to the imme-
diate successor state in a given path and a transition corresponds to the advance of a sin-
gle time-unit. As a modal logic, the time modalities of our logic capture the abstraction
view of timelines. Thus, for example if agent i commits to send goods to agent j within
k days (i.e., time unit is day), this would be expressed as Ci→ j E F≤k sendGoods, where
E F≤k p � p ∨ E X p ∨ E X E X p · · · ∨ E X · · · E X

︸ ︷︷ ︸

k times

p.3 This formulation is motivated by the

fact that we are interested in model checking at the design time, so the model should be
completely known as the one resulting, for example, from compiling commitment machines
into FSMs [64]. Thus, it is worth noting that our modeling of commitments does not consider
persistency and only focuses on commitments for agent communication.

Computation paths. A computation path π = (s0, s1, . . .) in MC is an infinite sequence
of global states in S such that for all i ≥ 0, (si , si+1) ∈ Rt . π(k) is the kth global state of the
path π . The set of all paths is denoted by�, whilst�(si) is the set of all paths starting at the
given state si ∈ S.

3 The operator E F≤k is also used in the real-time CTL logic (RTCTL) introduced in [24].

123

384 Auton Agent Multi-Agent Syst (2013) 27:375–418

Definition 4 (Satisfaction) Given the model MC , the satisfaction of a CTLC+ formula ϕ in
a global state s, denoted by (MC , s) |� ϕ is recursively defined as follows:

(MC , s) |� p iff p ∈ V(s),
(MC , s) |� ¬ϕ iff (MC , s) � ϕ,

(MC , s) |� ϕ ∨ ψ iff (MC , s) |� ϕ or (MC , s) |� ψ,

(MC , s) |� E Xϕ iff there exists a path π starting at s such that (MC , π(1)) |� ϕ,

(MC , s) |� E(ϕUψ) iff there exists a path π starting at s such that for some k ≥ 0,
(MC , π(k)) |� ψ and (MC , π(j)) |� ϕ for all 0 ≤ j < k,

(MC , s) |� EGϕ iff there exists a path π starting at s such that (MC , π(k)) |� ϕ

for all k ≥ 0,
(MC , s) |� Ci→ jϕ iff for all global states s′ ∈ S such that s ∼i→ j s′, we have

(MC , s′) |� ϕ,

(MC , s) |� Fu(Ci→ jϕ) iff there exists s′ ∈ S such that (MC , s′) |� Ci→ jϕand s′ ∼i→ j s.

For the propositions, Boolean connectives and temporal modalities, the relation |� is defined
in the standard manner (see for example [15]). The state formula Ci→ jϕ is satisfied in the
model MC at s iff the content ϕ holds in every accessible state obtained by the accessibility
relation ∼i→ j . In the specific context of agent communication, which is the focus of this
paper, when i commits towards j that ϕ, ∼i→ j captures the intuition that for a commitment
to take place, a communication channel should exist between the communicating agents
(shared variables), and the accessible state s′ is indistinguishable from the current state s for
i since i is the agent who is committing; however, for j who is receiving the commitment,
the two states are different as new information are obtained from i through the communica-
tion channel and this is why in the accessible state, j has the same values as i has for the
shared variables (i.e. the content of the communication channel). Furthermore, the accessible
state is not completely different from the current state for j as some information are still the
same, and this is why for the unshared variables, the current and accessible states for j are
indistinguishable (see Fig. 2).

The state formula Fu(Ci→ jϕ) is satisfied in the model MC at s iff there exists a state s′
satisfying the commitment (called here the commitment state) from which the current state
(i.e., s) is “seen” via the accessability relation ∼i→ j . The idea behind this semantics is to
say that a commitment is fulfilled when we reach an accessible state from the commitment
state. The commitment is fulfilled because its content holds in this accessible state. Unlike
the semantics proposed in [5,21–23] in which the state s should not only be accessible but
also reachable from the commitment state s′, in our semantics, the reachability condition is
omitted. In fact, being reachable from the commitment state is not a part of the meaning of
fulfilling a commitment, but a condition that can be checked as a property as follows:

AG
(¬E(¬Ci→ jϕ U (¬Ci→ jϕ ∧ Fu(Ci→ jϕ)))

)

The property is a condition saying that in all states of every computation, it is not the case
that there is a computation where fulfilling a commitment occurs in its future without such
a commitment has been established before. What is more interesting is that this property,
which guarantees that a commitment cannot be fulfilled without being active (i.e. established
or created), is satisfied in every model, so valid (the validity proof is given later in this sec-
tion). The main advantage of having a property that can be checked (or proved as validity)
instead of adding it as a part of the semantics is to simplify such a semantics, which means
making its model checking simpler. This is extremely important as far as time and space
complexity of model checking is an issue.

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 385

Fig. 3 Illustration of the semantics of commitment and its fulfillment

Example 1 Let us assume the models depicted in the Fig. 3. The state s1 in MC1 is labeled
with the commitment from i to j to bring about E X p because: (1) there is only one accessible
state s2; and (2) the formula E X p is true at s2. The other models are the same but with dif-
ferent commitment contents. According to the semantics of fulfillment, the state s2 in MC1

is also labeled with the fulfillment of the commitment because: (1) s2 is accessible from s1;
and (2) such a commitment has been established at s1.

Furthermore, our logic does not include an additional operator for violation as in [5,21];
instead weak and strong violations can be expressed as follows:

¬AG(Ci→ jϕ → AF(Fu(Ci→ jϕ))) ≡ E F(Ci→ jϕ ∧ EG(¬Fu(Ci→ jϕ)))

and

¬AG(Ci→ jϕ → E F(Fu(Ci→ jϕ))) ≡ E F(Ci→ jϕ ∧ AG(¬Fu(Ci→ jϕ)))

The weak violation takes place when there is a computation so that in its future a commitment
is established but from the moment where the commitment is active there is a possible com-
putation where globally the fulfillment never happens. The strong violation comes out when
after having the commitment, the fulfillment does not occur in all states of every possible
computation. The following proposition is a direct result from the semantics.

Proposition 1 When the commitment is fulfilled, then there is no way to violate it in the
future and vice versa.

Lemma 1 The social accessibility relation ∼i→ j is serial, transitive, and Euclidean.

Proof

– ∼i→ j is serial: this follows from the assumption that for any pair i, j ∈ A, we have that
for any s ∈ S,∼i→ j (s) �= ∅.

123

386 Auton Agent Multi-Agent Syst (2013) 27:375–418

– ∼i→ j is transitive: assume s ∼i→ j s′ and s′ ∼i→ j s′′, for any pair i, j ∈ A,
according to the definition of ∼i→ j , it is the case that s ∼i→ j s′′ as li (s) =
li (s′) = li (s′′), V ari ∩ V ar j �= ∅, lx

i (s) = lx
i (s

′) = lx
j (s

′′) ∀x ∈ V ari ∩ V ar j , and

l y
j (s) = l y

j (s
′) = l y

j (s
′′) ∀y ∈ V ar j − V ari .

– ∼i→ j is Euclidean: assume s ∼i→ j s′ and s ∼i→ j s′′, for any pair i, j ∈ A, according to
the definition of ∼i→ j , we have s′ ∼i→ j s′′ as li (s′) = li (s) = li (s′′), V ari ∩ V ar j �=
∅, lx

i (s
′) = lx

i (s) = lx
j (s

′′) ∀x ∈ V ari ∩ V ar j , and l y
j (s

′) = l y
j (s) = l y

j (s
′′) ∀y ∈

V ar j − V ari . ��

According to this observation, we can immediately conclude that the logic of commitments
that deals with agent communication via social commitments is at least as strong as K D45n
(where n is the number of agents) which is to be expected. From Lemma 1, we obtain the
following straightforward corollary.

Corollary 1 The social accessibility relation ∼i→ j is shift reflexive, i.e. if s ∼i→ j s′ then
s′ ∼i→ j s′.

Proposition 2 The following validity holds:

|� Fu(Ci→ jϕ) ⊃ Ci→ jϕ

Proof From the semantics of fulfillment in a state s, there is a state s′ satisfying the com-
mitment Ci→ jϕ and from which s is accessible. As ∼i→ j is transitive (Lemma 1), all the
states accessible from s are also accessible from s′. From the semantics of Ci→ jϕ, all those
accessible states from s′ and thus from s satisfy ϕ; so the result. ��

Proposition 2 says that if the commitment is fulfilled, the commitment appears in the
same state as its fulfillment. It is worth noticing that the property expressed in this prop-
osition is not commonly accepted in the literature about the semantics of commitment
actions, for example [50,59,66], according to which when a commitment is fulfilled, the
commitment does not hold anymore in the same state where its content holds. Neverthe-
less, for the purpose of the reduction-based model checking we propose in this paper, this
property is needed and it allows us to have the following proposition (Proposition 3) say-
ing “the commitment should be active when it comes time to its fulfillment”, which is
very important as it implies the impossibility of fulfilling a nonexisting commitment (see
Fig. 4).

Fig. 4 Link between commitment and its fulfillment. s′ is the state of activating the commitment and s is the
state of fulfilling the commitment. Notice that the commitment Ci→ jϕ activated in s′ is still active in s as the
accessibility relation is shift reflexive

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 387

Proposition 3 The following validity holds:

|� AG(¬E(¬Ci→ jϕ U (¬Ci→ jϕ ∧ Fu(Ci→ jϕ))))

Proof Let us assume the opposite is true, which means: E F(E(¬Ci→ jϕ U (¬Ci→ jϕ ∧
Fu(Ci→ jϕ)))). According to the semantics of until, ¬Ci→ jϕ U (¬Ci→ jϕ ∧ Fu(Ci→ jϕ))

is satisfied in a path if it has ¬Ci→ jϕ∧ Fu(Ci→ jϕ) in its future. However, from Proposition
2, this cannot be the case; so the result. ��
As our objective in this paper is to investigate the practical problem of model checking com-
mitments for communicating agents, the completeness issue will not be considered, so that
the paper is more focussed on the implementation part of the verification problem and its
computational complexity.

3 Model checking CTLC+ using reduction

Model checking is a formal and automatic technique used to verify finite state concurrent
systems. It was independently developed by Clarke and Emerson, and by Sifakis and Queille
in the early of 1980s. Their work over the years has led to the creation of new logics for spec-
ification, new verification algorithms and techniques, and new model checking tools which
are available today. Verifying MASs has become an important subfield on its own. In this
section, we proceed to present our reduction techniques to model checking (the second part
in our approach). In these techniques, we reduce the problem of model checking CTLC+ into
the problem of model checking ARCTL and into the problem of model checking GCTL∗.
Before that, we define the problem of model checking CTLC+: in a nutshell, given a MAS
represented as an interpreted system MC and a formula ϕ in CTLC+ describing a prop-
erty, the problem of model checking CTLC+ can be defined as establishing whether or not
MC |� ϕ, i.e., ∀s ∈ I : (MC , s) |� ϕ.

3.1 Reducing CTLC+ into ARCTL

We briefly review ARCTL logic (an extension of CTL with action formulae) [42]. We then
show how the problem of model checking CTLC+ can be reduced to the problem of ARCTL
model checking. ARCTL logic mixes state formulae and action formulae by restricting path
formulae to paths whose actions satisfy a given action formula. The syntax of ARCTL is
defined by the following BNF grammar [42]:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EαXϕ | Eα(ϕ U ϕ) | EαGϕ

α ::= b | ¬α | α ∨ α
where ϕ is a state formula, α is an action formula, p ∈ Φp is an atomic proposition, and
b ∈ Φb is an atomic action proposition.

Definition 5 (Model of ARCTL) A model MA = (SA, IA, Act, T R, VS, VAct) is a tuple
where SA is a nonempty set of states; IA ⊆ SA is a set of initial states; Act is a set of actions;
T R ⊆ SA × Act × SA is a labeled transition relation; VS : SA → 2ΦP is a function assigning
to each state a set of atomic propositions to interpret this state; and VAct : Act → 2Φb is a
function assigning to each action a set of atomic action propositions to interpret this action.

The semantics of this logic [42] is given by defining the α-restriction of MA =
(SA, IA, Act, T R, VS, VAct) as follows Mα

A = (SA, IA, Act, T Rα, VS, VAct) where T Rα

123

388 Auton Agent Multi-Agent Syst (2013) 27:375–418

is a transition relation such that (s, a, s′) ∈ T Rα iff (s, a, s′) ∈ T R and a |� α wherein |�
is defined as follows:

– a |� b iff b ∈ VAct (a);
– a |� ¬α iff not (a |� α) and;
– a |� α ∨ α′ iff a |� α or a |� α′.

The motivation behind the α-restriction is to focus each time on specific transitions whose
labels satisfy a given action formula, so all the other transitions are disregarded. This is useful
when a formula has to be checked because only relevant transitions should be considered.

Pecheur and Raimondi [42] have considered finite and infinite paths to define the seman-
tics of ARCTL. However, we only consider the general case of infinite paths. �α(s) is the
set of paths (called α-paths) whose actions satisfy a given action formula α and starting at s.
Now, we define the satisfaction relation (Mα

A, s) |� ϕ, or concisely s |� ϕ, as follows (we
omit the semantics of Boolean connectives and propositional atoms):

s |� EαXϕ iff there exists a path π ∈ �α(s) and π(1) |� ϕ,

s |� Eα(ϕ U ψ) iff there exists a path π ∈ �α(s) such that for some k ≥ 0, π(k) |� ψ

and π(j) |� ϕ for all 0 ≤ j ≤ k − 1,

s |� EαGϕ iff there exists a path π ∈ �α(s) such that π(k) |� ϕ for all k ≥ 0.

The reduction process is defined as follows: given a CTLC+ model MC = (S, I, Rt , {∼i→ j

|(i, j) ∈ A2},V) and a CTLC+ formula ϕ, we have to define an ARCTL model Mα
A =

F (MC) and an ARCTL formula F (ϕ) using a transformation function F such that
MC |� ϕ iff F (MC) |� F (ϕ). The model F (MC) is defined as an ARCTL model
Mα

A = (SA, IA, Act, T Rα, VS, VAct) as follows:

– SA = S; IA = I ; VS = V ,
– the set Φb is defined as follows: Φb = {ε, α1→1, α1→2, . . . , αn→n} ∪ {β1→1, β1→2,

. . . , βn→n}, and then Act = {αo, α11, α12, . . . , αnn} ∪ {β11, β12, . . . , βnn} where αo

and αi j are the actions labeling transitions respectively defined from the transition rela-
tion Rt and the accessibility relation ∼i→ j , while β i j is the action labeling transitions
added when there exists a transition labeled with αi j and needed to define transformation
of the formula Fu(Ci→ jϕ),

– the function VAct is then defined as follows:

1. VAct (α
o) = {ε}, i.e., ε is the atomic action proposition forming αo,

2. VAct (α
i j) = {αi→ j } for 1 ≤ i ≤ n and 1 ≤ j ≤ n, i.e., αi→ j is the atomic action

proposition forming αi j ,
3. VAct (β

i j) = {βi→ j } for 1 ≤ i ≤ n and 1 ≤ j ≤ n, i.e., βi→ j is the atomic action
proposition forming β i j .

– the labeled transition relation T Rα combines the temporal labeled transition Rt and the
accessibility relation ∼i→ j under the following conditions: for states s, s′ ∈ S,

1. (s, α0, s′) ∈ T Rε if (s, s′) ∈ Rt ,
2. (s, αi j , s′) ∈ T Rαi→ j if s ∼i→ j s′,
3. (s, β i j , s′) ∈ T Rβi→ j if (s′, αi j , s) ∈ T Rαi→ j .

From the definition of F (MC), it is clear that F (S) = SA. Let us now define the transfor-
mation of a CTLC+ formula ϕ (i.e., F (ϕ)) by induction on the form of ϕ.

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 389

Fig. 5 An example of the reduction process from CTLC+ to ARCTL

– F (p) = p, if p is an atomic proposition,
– F (¬ϕ) = ¬F (ϕ), and F (ϕ ∨ ψ) = F (ϕ) ∨ F (ψ),
– F (E Xϕ) = EεXF (ϕ), and F (E(ϕ U ψ)) = Eε(F (ϕ) U F (ψ)),
– F (EGϕ) = EεGF (ϕ), and F (Ci→ jϕ) = Aαi→ j XF (ϕ),
– F (Fu(Ci→ jϕ)) = Eβi→ j XF (Ci→ jϕ).

Thus, this reduction allows us to model check CTLC+ formulae by model checking their
reductions in ARCTL using the extended NuSMV tool introduced in [35]. Figure 5 illustrates
the reduction process of the fulfillment formula. The following theorem proves the soundness
of our reduction from CTLC+ to ARCTL.

Theorem 1 (Soundness of F) Let MC and ϕ be respectively a CTLC+ model and formula
and let F (MC) and F (ϕ) be the corresponding model and formula in ARCTL. We have
MC |� ϕ iff F (MC) |� F (ϕ).

Proof We prove this theorem by induction on the structure of the formula ϕ. All the cases
are straightforward once the following two cases are analyzed:

– ϕ = Ci→ jψ . We have (MC , s) |� Ci→ jψ iff (MC , s′) |� ψ for every s′ ∈ S such
that s ∼i→ j s′. Consequently, (MC , s) |� Ci→ jψ iff (Mαi→ j

A , s′) |� F (ψ) for every
s′ ∈ SA such that (s, αi j , s′) ∈ T Rαi→ j . As ∼i→ j is shift reflexive, we obtain an infinite
path π ∈ �αi→ j (s) such that π(1) = s′ and (Mαi→ j

A , π(1))|� F (ψ) (see Fig. 5). By
semantics of Aαi→ j X in ARCTL, we obtain (Mαi→ j

A , s) |� Aαi→ j XF (ψ).
– ϕ = Fu(Ci→ jψ). We have (MC , s′) |� Fu(Ci→ jψ) iff (MC , s) |� Ci→ jψ for

a state s ∈ S such that s ∼i→ j s′. Consequently, (MC , s′) |� Fu(Ci→ jψ) iff
(Mαi→ j

A , s) |� F (Ci→ jψ) for a state s ∈ SA such that (s, αi j , s′) ∈ T Rαi→ j . As
∼i→ j is shift reflexive, we obtain s′ ∼i→ j s′ and so (s′, αi j , s′) ∈ T Rαi→ j . Conse-
quently, (s′, β i j , s′) ∈ T Rβi→ j . There is then an infinite path π ∈ �βi→ j (s′) such that

π(1) = s′ and (Mβi→ j
A , π(1)) |� F (Ci→ jψ) (see Fig. 5). By semantics of Eβi→ j X in

ARCTL, we obtain (Mβi→ j
A , s′) |� Eβi→ j X F (Ci→ jψ), so we are done. ��

3.2 Reducing CTLC+ into GCTL∗

As in the reduction of CTLC+ into ARCTL, we start with briefly reviewing Generalized
CTL∗ (GCTL∗), a logic that extends CTL∗ by allowing formulae to constrain actions as well
as states [10]. We then show how the problem of model checking CTLC+ can be reduced to
the problem of model checking GCTL∗. The syntax of GCTL∗ is defined by the following
BNF grammar [10]:

S ::= p | ¬S | S ∨ S | E P
P ::= θ | ¬P | S | P ∨ P | X P | P U P

123

390 Auton Agent Multi-Agent Syst (2013) 27:375–418

where p ∈ Φp, Φp is a set of atomic propositions and θ ∈ Φb, Φb is a set of atomic action
propositions. In this syntax, there are two kind of formulae: state formulae S and path for-
mulae P . State formulae are those that hold on a given state, while path formulae express
temporal properties of paths. State formulae constitute the formulae of GCTL∗.

Definition 6 (Model of GCTL∗) A model MG = (SG , Ac, lS, lAc,→, IG) is a tuple where
SG is a nonempty set of states; Ac is a set of actions; lS : SG → 2Φp is a state labeling
function; lAc : Ac → 2Φb is an action labeling function; →⊆ SG × Ac × SG is a transition
relation; and IG ⊆ SG is a set of initial states.

Intuitively, SG contains the states that the system may enter, and Ac the atomic actions that
the system may perform. In this sense, the labeling functions lS and lAc indicate which atomic
propositions hold on a given state and action respectively. The GCTL∗ semantics follows a
standard convention in temporal logic, such as CTL∗ [10]. A state satisfies Aϕ (resp. Eϕ)
if every path (resp. some paths) emanating from the state satisfies ϕ. A path satisfies a state
formula if the initial state in the path does, while a path satisfies θ if the path contains at
least one transition and the label of the first transition on the path satisfies θ . X represents
the “next-time operator” and has the usual semantics. ϕ U ψ holds of a path if ϕ remains
true until ψ becomes true.

The reduction process from the problem of model checking CTLC+ to the problem of
model checking GCTL∗ that allows a direct use of CWB-NC is defined as follows: given
a CTLC+ model MC = (S, I, Rt , {∼i→ j | (i, j) ∈ A2},V) and a CTLC+ formula ϕ, we
have to define a GCTL∗ model MG = H (MC) and a GCTL∗ formula H (ϕ) using a trans-
formation function H such that MC |� ϕ iff H (MC) |� H (ϕ). The model H (MC) is
defined as a GCTL∗ model MG = (SG , Ac, lS, lAc,→, IG) as follows:

– SG = S; IG = I ; lS = V ,
– to define the set Ac, let us first define the set of atomic action propositions

Φb = {ε, α1→1, α1→2, . . . , αn→n}∪{β1→1, β1→2, . . . , βn→n}, then Ac = {αo, α11, α12,

. . . , αnn} ∪ {β11, β12, . . . , βnn} where αo and αi j are the actions labeling transitions
respectively defined from the transition relation Rt and the accessibility relation ∼i→ j ,
while β i j is the action labeling transitions added when there exists a transition labeled
with αi j and needed to define transformation of the formula Fu(Ci→ jϕ),

– the function lAc is then defined as follows:

1. αo ∈ Ac, then lAc(α
o) = {ε},

2. lAc(α
i j) = {αi→ j } for 1 ≤ i ≤ n and 1 ≤ j ≤ n,

3. lAc(β
i j) = {βi→ j } for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

– the labeled transition relation → combines the temporal labeled transition Rt and the
accessibility relation ∼i→ j under the following conditions: for states s, s′ ∈ S,

1. (s, αo, s′) ∈→ if (s, s′) ∈ Rt ,
2. (s, αi j , s′) ∈→ if s ∼i→ j s′,
3. (s, β i j , s′) ∈→ if (s′, αi j , s) ∈→.

From the definition of H (MC), it is clear that H (S) = SG . Let us now define H (ϕ) by
induction on the form of ϕ.

– H (p)=p, if p is an atomic proposition,
– H (¬ϕ) = ¬H (ϕ), and H (ϕ ∨ ψ) = H (ϕ) ∨ H (ψ),

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 391

– H (E Xϕ) = E XH (ϕ), and H (E(ϕ U ψ)) = E(H (ϕ) U H (ψ)),
– H (EGϕ) = EGH (ϕ), and H (Ci→ jϕ) = A(αi→ j → XH (ϕ)),
– H (Fu(Ci→ jϕ)) = E(βi→ j ∧ XH (Ci→ jϕ)).

Theorem 2 (Soundness of H) Let MC and ϕ be respectively a CTLC+ model and formula
and let H (MC) and H (ϕ) be the corresponding model and formula in GCTL∗. We have
MC |� ϕ iff H (MC) |� H (ϕ).

Proof We can prove this theorem by induction on the structure of ϕ in a way similar to the
proof of Theorem 1. ��
Remark 1 GCTL∗ and ARCTL logics can both express properties of state-based and action-
based models and a careful analysis of the semantics of these two logics reveals that GCTL∗
subsumes ARCTL. In fact, in GCTL∗, a path satisfies θ iff the path contains at least one tran-
sition and the label of the first transition on the path satisfies θ where θ is an atomic action
proposition, and an action a satisfies θ iff θ ∈ lAc(a). In ARCTL, the actions of the whole
path, not only of the first transition, should satisfy an action formula α as the transitions in the
model of ARCTL are α-restricted. In fact, ARCTL allows quantification over action-labelled
paths, so a path formula is evaluated on α-paths, which means paths where all transitions
are α-restricted, which can also be done in GCTL∗. For example, for a path formula γ , Eαγ
in ARCTL means there is an α-path where γ holds, which can be expressed in GCTL∗ as:
E(Gα∧γ). However, although GCTL∗ subsumes ARCTL, their model checking techniques
are different and our motivation behind using these two logics is to be able to use their
respective model checkers, which are based on two different model checking techniques:
automata-based technique for GCTL∗ and symbolic, OBDD-based technique for ARCTL.

3.3 Complexity analysis

Overview

In the previous sections, explicit models (MC , MA, and MG) were considered. In this sec-
tion, we analyze the space complexity of CTLC+ model checking for explicit models and
then its complexity for concurrent programs. We use concurrent programs as defined in [34]
as composed of n concurrent processes (agents) Pi , where each process is described by a
transition system (the formal definition is given later). The need for concurrent programs is
motivated by the need of having compact representations where states and transitions are not
listed explicitly, but having instead compact representations that still correspond to the actual
system. In general, the relation between explicit models (i.e. Kripke-like structures) and con-
current programs, which provide compact representations of the systems to be checked, is as
stated in [34]: “the Kripke structures to which model checking is applied are often obtained
by constructing the reachability graph of concurrent programs”. In other terms, the explicit
models are obtained as the product of the components Pi of concurrent programs. The size
of explicit models is thus exponential in the size of processes Pi as the system’s evolution
results from joint actions of the components [29].

To analyze the complexity of model checking CTLC+ in concurrent programs, we use a
methodology similar to the one presented in [34]. The idea is as follows. First, we analyze the
complexity of model checking GCTL∗ in the explicit model MG , and show that by using an
on-the-fly (local) and top–down algorithm, it is possible to perform model checking GCTL∗
in space polynomial in the length of the formula, but only poly-logarithmic in the size of the
explicit model. It is important to mention that the algorithm is on-the-fly, which means we do

123

392 Auton Agent Multi-Agent Syst (2013) 27:375–418

not hold the whole structure to be checked in memory at any one time, and this is the reason
behind the poly-logarithmic space complexity in the size of the explicit model. As in [34],
our approach is an automata-theoretic approach, and makes use of a special class of auto-
mata called ABTA [4,10], which will be introduced later. The approach is based on building
an ABTA, combining the model MG and the automaton of the formula to be verified, and
checking its nonemptiness. This combined ABTA is computed on-the-fly and limited to its
reachable states, which avoids exploring the parts of the model MG that are irrelevant for the
formula to be checked. The type of ABTA employed allows using a top–down, space-efficient
model checking algorithm. Then, we prove that the explicit structure complexity of GCTL∗
model checking (i.e. by fixing the formula) is NLOGSPACE-complete, which means that
model checking GCTL∗ is NLOGSPACE-complete in the size |MG | of the explicit model.
Thereafter, we use the previous results to obtain the complexity of model checking GCTL∗
for concurrent programs, exploiting the fact that the combined ABTA whose nonemptiness
has to be checked is obtained as the product of the components of a concurrent program
and this product is at most exponentially larger than the program itself. Thus, the fact that
(1) the space complexity of model checking GCTL∗ is polynomial in the length of the for-
mula and poly-logarithmic in the size of the explicit model; and (2) the model checking
algorithm is on-the-fly, imply that GCTL∗ model checking for a concurrent program can be
done in polynomial space with respect to the size of this program rather than of the order of
the exponentially larger combined ABTA as is the case of bottom-up approaches to model
checking. By logspace reduction to GCTL∗ model checking with respect to explicit models,
we analyze the explicit structure complexity of CTLC+ model checking and prove that is
NLOGSPACE-complete, which, as the case of GCTL∗, implies that CTLC+ model checking
can be done in polynomial space with respect to the size of concurrent programs.

Preliminaries

We start this section by defining ABTA and associated concepts needed to analyze the com-
plexity of model checking GCTL∗. Definition of concurrent programs will follow. We use
L = Φp ∪ {¬p | p ∈ Φp} to denote the set of state literals and Lact = Φb ∪ {¬θ | θ ∈ Φb}
to denote the set of action literals. Let be a typical subset of Lact . An ABTA is defined as
follows [10]:

Definition 7 (ABTA) An ABTA B is a tuple (Q, h,→B , qI ,F), where Q is a finite set of
states; h : Q → L ∪ {¬,∧,∨, [], 〈〉} is the state labeling function; →B⊆ Q × Q is the
transition relation; qI ∈ Q is the start state; and F ⊆ 2Q is the set of sets of accepting states.
→B should also satisfy:

|{q ′|q →B q ′}|
⎧

⎨

⎩

= 0 if h(q) ∈ L
= 1 if h(q) ∈ {¬, [], 〈〉}
≥ 1 if h(q) ∈ {∧,∨}

Also if h(q) = ¬, then q does not appear on a cycle.

ABTAs have the advantage of supporting efficient model checking for different logics and
are used to define the system properties using tableau proof rules [9]. They are used to encode
how the properties are to be proved and allow us to encode top–down proofs for temporal
formulae (GCTL∗ formulae in this case). Indeed, an ABTA B encodes a proof schema in
order to prove, in a goal-directed manner, that a model MG satisfies a temporal formula. Let
us consider the example of proving that a state s in a model MG = (SG , Ac, lS, lAc,→, IG)

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 393

satisfies a temporal formula of the form F1 ∧ F2, where F1 and F2 are two formulae. Regard-
less of the structure of the system, there would be two subgoals if we want to prove this in
a top–down, goal-directed manner. The first would be to prove that s satisfies F1, and the
second would be to prove that s satisfies F2. Intuitively, an ABTA for F1 ∧ F2 would encode
this proof structure using states for the formulae F1 ∧ F2, F1, and F2. A transition from
F1 ∧ F2 to each of F1 and F2 should be added to the ABTA and the labeling of the state
for F1 ∧ F2 being “∧”. Indeed, in an ABTA, we can consider that: (1) states correspond to
“formulae”; (2) the labeling of a state is the “logical operator” used to construct the formula
or a state literal from L; and (3) the transition relation represents a “subgoal” relationship.
Thus, to show that a model state s satisfies an ABTA state q labeled with ∧, one needs to
show that s satisfies each of q’s children. Regarding the labels [] and 〈〉, for a model state
s to satisfy an ABTA state q labeled with [] (resp. 〈〉), one needs to show that for each s′
(resp. some s′) such that (s, α, s′) ∈→ for some α “satisfying” (i.e. θ ∈ lAc(α) for every
θ ∈), s′ must satisfy the unique successor of q .

In order to decide about the satisfaction of formulae, the notion of accepting runs of
an ABTA B on a model MG is used. These runs are infinite and cycle infinitely many
times through accepting states. Formally, a run is defined as follows, where the notation
(s,, s′) ∈→ means (s, α, s′) ∈→ for some α ∈ Ac satisfying Θ:

Definition 8 (Run of ABTA) A run of an ABTA B = (Q, h,→B , qI ,F) on a model MG =
(SG , Ac, lS, lAc,→, IG) is a maximal tree in which the nodes are classified as positive or
negative and are labeled by elements of Q × SG as follows.

– The root of the tree is a positive node and is labeled with (qI , iG) where iG ∈ IG

– If σ is a positive (resp. negative) node with label (q, s) such that h(q) = ¬ and q →B q ′,
then σ has one negative (resp. positive) child labeled (q ′, s)

– For a positive node σ labeled with (q, s):

– If h(q) ∈ L then σ is a leaf.
– If h(q) = ∧ and {q ′| q →B q ′} = {q1, . . . , qm}, then σ has m positive children

labeled by (qi , s), 1 ≤ i ≤ m.
– If h(q) = ∨, then σ has one positive child4 labeled by (q ′, s) for some q ′ ∈

{q ′| q →B q ′}.
– If h(q) = [], q ′ is such that q →B q ′, and {s′| (s,, s′) ∈→} = {s1, . . . , sm},

then σ has m positive children labeled by (q ′, si), 1 ≤ i ≤ m.
– If h(q) = 〈〉 and q ′ is such that q →B q ′, then σ has one positive child labeled by

(q ′, s′) for some s′ such that (s,, s′) ∈→.

– Otherwise, for a negative node σ labeled with (q, s):

– If h(q) ∈ L then σ is a leaf.
– If h(q) = ∧, then σ has one negative child5 labeled by (q ′, s) for some q ′ ∈

{q ′| q →B q ′}.
– If h(q) = ∨ and {q ′| q →B q ′} = {q1, . . . , qm}, then σ has m negative children

labeled by (qi , s), 1 ≤ i ≤ m.
– If h(q) = [] and q ′ is such that q →B q ′, then σ has one negative child labeled

by (q ′, s′) for some s′ such that (s,, s′) ∈→.

4 We only consider one positive child in a run when the node is positive and disjunctive (i.e., labeled by ∨ or
〈〉) as only one branch in the product graph (see Definition 11) is chosen.
5 Similar to the positive case, we only consider one negative child in a run when the node is negative and
conjunctive (i.e., labeled by ∧ or []) because again only one branch in the product graph is selected.

123

394 Auton Agent Multi-Agent Syst (2013) 27:375–418

– If h(q) = 〈〉, q ′ is such that q →B q ′, and {s′| (s,, s′) ∈→} = {s1, . . . , sm},
then σ has m negative children labeled by (q ′, si), 1 ≤ i ≤ m.

Every infinite path in a well-formed ABTA has a suffix that contains either only positive or
only negative nodes [10]. If only positive (resp. negative) nodes are included, the path is said
to be positive (resp. negative). A successful run is then defined as follows:

Definition 9 (Successful run of ABTA) Let R be a run of an ABTA B on a model MG .

– A positive leaf of R labeled (q, s) is successful iff s satisfies h(q) or h(q) = [] and
there is no s′ such that (s,, s′) ∈→.

– A negative leaf of R labeled (q, s) is successful iff s does not satisfy h(q) or h(q) = 〈〉
and there is no s′ such that (s,, s′) ∈→.

– A positive path is successful iff for each F ∈ F some q ∈ F occurs infinitely often.
– A negative path is successful iff for some F ∈ F there is no q ∈ F that occurs infinitely

often.

R is successful iff every leaf and every path in R is successful.

Model checking GCTL∗. Let ψ be a GCTL∗ state formula. The automata-based model
checking procedure for GCTL∗ proposed in [10] works as follows:

1. Translating ψ into a variant of ABTA: and-restricted alternating Büchi tableau autom-
aton (arABTA). The resulting automaton is denoted by Bψ .

2. Exploring the product graph of MG and Bψ to check if it contains a successful run. If
such a run does exist, the formula is satisfied and MG is said to be accepted by Bψ (i.e.
MG |� Bψ), otherwise, the formula is not satisfied. The product graph is denoted by
BMG ,ψ .

Definition 10 (arABTA) An ABTA B is and-restricted (arABTA) iff every state q ∈ Q
satisfies:

– If h(q) = ∧ then there is at most one q ′ such that q →B q ′ and there is a path from q ′
back to q .

– If h(q) = [] and q →B q ′, then there is no path from q ′ back to q .

In an arABTA, the strongly-connected component of a state labeled by ∧ can contain at most
one of its state’s children and a state labeled by [] is guaranteed to belong to a different
strongly-connected component that its child. Thanks to this restrictedness, the handling of
recursive children (i.e., children where there is a path from them back to the parents) is sim-
plified, particularly when space is concerned. This makes simple the treatment of recursive
calls needed for some GCTL∗ formulae, which allows for space-efficient model checking this
logic (this will be made clear later when we will analyze the complexity of model checking
GCTL∗). As argued in [10], arABTAs play the same role in model checking GCTL∗ that
do Hesitant Alternating Word Automata (HAAs) in model checking CTL and CTL∗ [34]
although the two automata are conceptually different.6 In fact, it has been shown that HAAs
are the key to the space-efficient model checking algorithms for CTL and CTL∗ thanks to their
restricted alternation structure (every nontrivial7 strongly-connected component of HAAs is

6 arABTA would be hesitant if for every strongly-connected component Qi ⊆ Q and every node q ∈ Qi
either h(q) ∈ {∧, []} or h(q) ∈ {∨, 〈〉}. Details about HAAs are out of scope of this paper and interested
reader can refer to [34].
7 A strongly-connected component Qi is nontrivial if |Qi | > 1 or Qi = {q} and q has a self loop.

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 395

either (1) existential, so contains only nodes that are disjunctively related; or (2) universal, so
contains only nodes that are conjunctively related). In this paper, we will show that arABTAs
are the key to the space-efficient complexity of the problem of model checking GCTL∗ and
to the NLOGSPACE membership of the explicit structure complexity of this model checking
problem.

Intuitively, the product graph of MG and Bψ can be seen as an encoding of all the runs
of the arABTA. Formally:

Definition 11 (Product graph) The product graph BMG ,ψ of an arABTA Bψ = (Q, h,→B,

qI ,F) and a model MG = (SG , Ac, lS, lAc,→, IG) where F = {F0, . . . , Fn−1} has vertex
set V er = Q × SG × {0, . . . , n − 1} and edges Edg ⊆ V er × V er . The edges are defined
by: ((q, s, i), (q ′, s′, i ′)) ∈ Edg iff

– there exist nodes σ and σ ′ in some run of Bψ on MG labeled (q, s) and (q ′, s′) respec-
tively such that σ ′ is a child of σ ; and

– either q /∈ Fi and i ′ = i , or q ∈ Fi and i ′ = (i + 1) mod n

A vertex (q, s, i) is said to be accepting iff q ∈ F for some F ∈ F and i = 0.

Bhat has proved in [9] that an arABTA can be partitioned uniquely to ordered sets
Q1, . . . , Qn , which correspond to its strongly-connected components. The number n of
these sets is the depth of the arABTA. Finally, we define the sizes of Bψ,MG , and BMG ,ψ

as follows:

– |Bψ | = |Q| + |F | + | →B | where |Q| and | →B | are the respective cardinalities of the
sets Q and →B , and |F | is the number of component sets in F .

– |MG | = |SG | + |Ac| + | → |.
– |BMG ,ψ | = |V er | + |Edg|, where the vertex set is bounded in size by |Q| · |SG | · |F |.
Concurrent programs. Let us now define concurrent programs. As introduced in [34], a
concurrent program Pr is composed of n concurrent processes. Each process Pi is described
by a transition system Di defined as follows: Di = (APi , ACi , Si ,�i , s0

i , Hi) where APi

is a set of local atomic propositions, ACi is a local action alphabet, Si is a finite set of
local states, �i ⊆ Si × ACi × Si is a local transition relation, s0

i ∈ Si is an initial state,
and Hi : Si → 2APi is a local state labeling function. A concurrent behavior of these
processes is obtained by the product of the processes and transition actions that appear in
several processes are synchronized by common actions. The joint behavior of the processes
Pi can be described using a global transition system D, which is computed by construct-
ing the reachable states of the product of the processes Pi and synchronization is obtained
using common action names. Let AP = ⋃n

i=1 APi , AC = ⋃n
i=1 ACi , S = �n

i=1Si , s0 =
(s0

1 , s0
2 , . . . , s0

n), H(s) = ⋃n
i=1 Hi (s[i]) for every s ∈ S, and s[i] be the i th component

of s. Thus, D = (AP, AC, S,�, s0, H) where (s, a, s′) ∈ � iff (s[i], a, s′[i]) ∈ �i or
s[i] = s′[i] for all 1 ≤ i ≤ n.

Complexity of model checking GCTL∗

In this section, we prove two results: (1) the explicit structure complexity of GCTL∗ model
checking (i.e. by fixing the formula) is NLOGSPACE-complete; and (2) model checking
GCTL∗ for concurrent programs with respect to the size of the components Pi and the length
of the formula being checked is PSPACE-complete.

Let cl(ψ) be the closure of ψ defined as the smallest set such that the following hold:

123

396 Auton Agent Multi-Agent Syst (2013) 27:375–418

– ψ ∈ cl(ψ)
– If ¬ψ ′ ∈ cl(ψ) then ψ ′ ∈ cl(ψ)
– If ψ1 ∧ ψ2, ψ1 ∨ ψ2 ∈ cl(ψ) then ψ1, ψ2 ∈ cl(ψ)
– If E(ψ ′) ∈ cl(ψ) then ψ ′ ∈ cl(ψ)
– If A(ψ ′) ∈ cl(ψ) then E(¬ψ ′) ∈ cl(ψ)
– If E(ψ1 ∧ ψ2) ∈ cl(ψ) then E(ψ1, ψ2) ∈ cl(ψ)
– If E(ψ1 ∨ ψ2) ∈ cl(ψ) then E(ψ1), E(ψ2) ∈ cl(ψ)
– If E(ψ1 U ψ2) ∈ cl(ψ) then ψ1, ψ2, E X (ψ1 U ψ2) ∈ cl(ψ)
– If E Xψ ′ ∈ cl(ψ) then ψ ′ ∈ cl(ψ)

We start by presenting the following proposition from [9] and [4], where |ψ | denotes the
length of the formula ψ measured as the number of elements in cl(ψ).

Proposition 4 Let ψ be a GCTL∗ state formula and |ψ | be its length.

1. |BMG ,ψ | = O(|MG | · |Bψ |)
2. |Bψ | = O(2|ψ |)

Theorem 3 Given a GCTL∗ formula ψ , we can construct an arABTA Bψ of size O(2|ψ |)
and of depth O(|ψ |) such that every state in IG, the set of initial states of MG, satisfies ψ
iff MG |� Bψ .

Proof Assuming that Bψ is an arABTA, which will be shown later in this proof, the first part
of the theorem is simply from Proposition 4. For the second part, the algorithm to generate
arABTAs from GCTL∗ formulae uses goal-directed rules aiming to build tableaux from for-
mulae. The formulae have the form E(Φ) and A(Φ) where Φ is a set of path formulae, so
E(Φ) denotes E(

∧

ϕ∈Φ ϕ), A(Φ) denotes A(
∨

ϕ∈Φ ϕ), and E(¬Φ) denotes E(
∨

ϕ∈Φ ¬ϕ).
Furthermore, we write E(Φ,ψ) to represent the formula of the form E(Φ∪{ψ}) and similarly
E(Φ,ψ1, . . . , ψn) represents E(Φ ∪ {ψ1 . . . , ψn}), where ψ,ψ1, . . . ψn are path formulae
and Φ is possibly empty. When Φ is empty, we can also write E(ψ1, ψ2) to represent
E(ψ1 ∧ ψ2), which also represents E({ψ1} ∪ {ψ2}). To build an arABTA Bψ from a state
formula ψ ≡ E(Φ), one first generates the states and transitions. The initial state is the for-
mula ψ itself and in general, states correspond to state formulae and transitions are linking
formulae to their subformulae as defined by the closure of these formulae. The subformulae
(in the sense of the closure) are obtained by applying the tableau rules shown in Table 1 in
the order R1 to R10, where the top part of each rule being the goal and the bottom part being
the subgoals. Assuming a state already associated with a formula ψ , one applies the rules
R1–R10 to generate new states by comparing the form of ψ with the formula in the goal
part of the rules starting from R1. When ψ and the goal formula match, the label of the rule
becomes the label of the state and the subgoal formulae obtained from the rule are added as
states and transitions fromψ to these states are added. Leaves are labeled by the state literals
and the process stops when no new states are added. The soundness and termination of this
algorithm are presented in [10].

Table 1 Tableau Rules for GCTL∗

R1 ∧ : ψ1∧ψ2
ψ1ψ2

R2 ∨ : ψ1∨ψ2
ψ1ψ2

R3 ∨ : E(ψ)
ψ R4 ¬ : ¬ψ

ψ R5 ¬ : A(Φ)
E(¬Φ)

R6 ∧ : E(Φ,ψ)
E(Φ)E(ψ) R7 ∧ : E(Φ,ϕ1∧ϕ2)

E(Φ,ϕ1,ϕ2)
R8 ∨ : E(Φ,ϕ1∨ϕ2)

E(Φ,ϕ1)E(Φ,ϕ2)

R9 ∨ : E(Φ,ϕ1Uϕ2)
E(Φ,ϕ2)E(Φ,ϕ1,X (ϕ1Uϕ2))

R10 〈Ψ1〉 : E(Ψ,Xϕ1,...,Xϕn)
E(ϕ1,...,ϕn)

Ψ is an ordered set of action literals and Ψ1 is a subset of Ψ containing only the first element of Ψ

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 397

Let us now show that the obtained automaton Bψ is an arABTA. We start first by proving
that Bψ is an ABTA. From the tableau rules R1–R10 and the explanation above, we can
see that states are labeled by a subset of {¬,∧,∨, [], 〈〉}, and: (1) leaves (states without
children) are labeled by elements of L; (2) states labeled by {¬, 〈〉} have only one child
(rules R4, R5, and R10); (3) states labeled by {∧,∨} have at least one child (rules R1, R2,
R3, R6, R7, R8, and R9); and (4) states labeled by ¬ using rules R4 and R5 do not appear
on a cycle as there are no rules linking ψ to ¬ψ or E(¬Φ) to A(Φ) since ¬ψ and A(Φ)
do not appear as subgoal formulae in any of the rules. Consequently, Bψ satisfies all the
conditions of ABTAs (Definition 7), so it is an ABTA. To show that it is an arABTA, we
only need to show that (1) states labeled by [] have no recursive children; and (2) states
labeled by ∧ have at most one recursive child, which means in rules labeled by ∧, at most
one subgoal can be recursive, so it can include the formula identified in the goal. The first
part is straightforward as no state is labeled by [] in Bψ . For the second part, three rules
should be discussed: R1, R6, and R7. R1 produces two children, but no one is recursive as
there are no rules linking ψ1 or ψ2 back to ψ1 ∧ ψ2. R6 generates two children: E(ψ) and
E(Φ), but the child E(ψ) is not recursive as the only available rule to be applied once E(ψ)
is obtained is R3, which will generate a state labeled by ψ and from ψ a formula having the
form E(Φ,ψ) cannot be produced. Thus, R6 can produce at most one recursive child, which
could be from E(Φ). Finally, R7 generates only one child, so again at most one is recursive.

The partition of the obtained arABTA Bψ to Q1, . . . , Qn proceeds as follows: qI ∈ Qn

and for each state q ∈ Qi we have:

– if h(q) ∈ {∨, 〈〉} then for every q ′ such that q →B q ′, q ′ ∈ Q j and j ≤ i .
– if h(q) ∈ {[],¬} then for every q ′ such that q →B q ′, q ′ ∈ Q j and j < i .
– if h(q) = ∧ then there is exactly at most one state q ′ from the set {q ′| q →B q ′} such

that q ′ ∈ Q j and j ≤ i . For the other states q ′ we have q ′ ∈ Q j and j < i .

Thus, since each state is associated to a subformula as defined in the closure, this partition
shows that each subformula (in the sense of the closure) of a formula ψ induces at most one
set Qi in ψ . Therefore, the depth of Bψ is linear in |ψ |. ��
The following is an example from [9] showing the tableau and arABTA obtained from a
given GCTL∗ formula.

Example 2 Let Ac = {send, receive}. Consider the formula AG(send → F(receive)).
The tableau of the formula along with the applied rules are shown in Table 2. The obtained
arABTA is depicted in Fig. 6. It is worth noticing that in the first application of R9 (to obtain
the formulae in row 3 of Table 2), we have in the goal part Φ is empty, ϕ1 ≡ true, and
ϕ2 ≡ send ∧ G(¬receive). In the subgoal part, we use the form with “,” instead of “∧” for
the left side formula. This choice is simply motivated by the fact that the two components
(i.e., send and G(¬receive)) become clearly separated, which allows this row (i.e., row 3)
to match the goal part of rule R9. By so doing, it becomes clear that in the second application
of R9 (to obtain the formula in row 4), Φ = {send} and ϕ1Uϕ2 ≡ G(¬receive). Then we
apply R10, where Ψ = {send,¬receive} and Ψ1 = {send}. For simplicity, we abuse the
notation and label the first and second R10 〈send〉 and 〈¬receive〉 instead of 〈{send}〉 and
〈{¬receive}〉. The application of the other rules is straightforward.

Remark 2 In the tableau rules shown in Table 1, there is a rule labeled by 〈Ψ1〉, but no rule is
labeled by [Ψ1]. The reason is that those rules are mainly dealing with existential formulae
and whenever a universal formula is encountered, it is transformed to an existential one using

123

398 Auton Agent Multi-Agent Syst (2013) 27:375–418

Table 2 Tableau of AG(send → F(receive))

¬ : AG(¬ send ∨ F(receive)) (R5)

∨ : E F(send ∧ G(¬ receive)) (R9)

∨ : E(send,G(¬ receive)) (R9) 〈true〉 : E X (F(send ∧ G(¬ receive))) (R10)

〈send〉 : E(send,¬ receive, XG(¬ receive)) (R10) E F(send ∧ G(¬ receive))

∨ : EG(¬ receive) (R9)

〈¬ receive〉 : E(¬ receive, XG(¬ receive))(R10)

EG(¬ receive)

Fig. 6 arABTA of
AG(send → F(receive))

the rule R5. In fact, a rule labeled by [Ψ1] would be used to deal with universal formulae hav-
ing the form A(Ψ, Xϕ1, . . . , Xϕn) and the rule would have the form: [Ψ1] : A(Ψ,Xϕ1,...,Xϕn)

A(ϕ1,...,ϕn)
.

Having the rule R5, the rule [Ψ1] would be redundant because applying this new rule fol-
lowed by R5 (the only rule possible when A(ϕ1, . . . , ϕn) appears) is equivalent to applying
first R5 to A(Ψ, Xϕ1, . . . , Xϕn) followed by 〈¬Ψ1〉. In both cases we will end up with
E(¬ϕ1, . . . ,¬ϕn). Although the new rule is redundant, adding it will still produce arABTAs
because there is no rule that can produce A(Ψ, Xϕ1, . . . , Xϕn), so states labeled by [Ψ1]
will not have recursive children. On the other hand, notice that it is possible to replace the
rules R3, R5, R6, R7, R8, R9, and R10 by other rules dealing with universal formulae. In
this case, R5 would have the form ¬ : E(Φ)

A(¬Φ) and the rule [Ψ1] would be used instead of
R10. Technically, this means the ABTAs obtained can contain either states labeled by 〈Ψ1〉,
or [Ψ1], but not both, which still complies with the ABTA’s definition. However, using rules
with universal formulae will not necessarily produce arABTAs because applying the new rule
replacing R9 together with the rule [Ψ1], a node labeled by [Ψ1] will have recursive children.

Theorem 4 The model checking problem for GCTL∗ can be solved in space O(|ψ |(|ψ | +
log |MG |)2).

Proof As explained in the preliminaries, the problem of model checking GCTL∗ is the prob-
lem of determining if the product graph BMG ,ψ contains a successful run, which means
checking the nonemptiness of the arABTA BMG ,ψ . Here we present the on-the-fly algo-
rithm presented in [10] and then we analyze its space complexity, which has not been
done in [10]. The algorithm avoids the storage penalty associated with the construction of

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 399

strongly-connected components8 and uses two depth-first searches, DFS1 and DFS2. The
algorithm is a top–down marking algorithm. DFS1 recursively marks nodes as either true or
false and DFS2 is lunched whenever an accepting node is found to check if the node is reach-
able from itself via nodes not previously traversed by DFS2. In fact, the success of DFS2
means the existence of runs with successful infinite paths. Thus, the motivation behind the
requirement for nodes of not being previously traversed by DFS2 is to avoid unnecessary re-
computation of successful paths already found. This is because a node N is already traversed
by DFS2 if it is an accepting state and a recursive child of another accepting state which has
been already found by DFS1 so that the successful infinite path to which N belongs has been
already identified. When executing DFS1, some nodes are not directly marked true or false,
but are marked as dependant on their recursive children, which are previously traversed by
DFS1 but not marked yet, so they are marked true (resp. false) once the nodes on which they
depend are marked true (resp. false). This procedure is called mark propagation and happens
in a strongly-connected component because the nodes previously traversed can be marked
later by exploring other branches in the same component. Thus, once a node N is marked
true or false, the mark is propagated to reachable nodes from N that are marked dependant
on N , which means already traversed using DFS1. This needs to record a dependency set
for each node N . In fact, those dependant nodes (i.e., the elements of the dependency set)
are the parent nodes of N that are reachable from N and already traversed. The algorithm
proceeds by exploring the label of the states, which are partitioned into negative, conjunctive
and disjunctive states. Negative states are those labeled by ¬; conjunctive states are those
labeled by ∧ and [Θ]; and disjunctive states are those labeled by ∨ and 〈Θ〉. The following
recursive procedure illustrates the marking algorithm.

1. Start at the initial state.
2. At a leave (q, s, i), mark the node true if s satisfies h(q); otherwise, mark the node false.
3. At a negative node, evaluate the state by recursively applying the procedure to the non

recursive child, and mark the node true if the child is marked false; otherwise mark the
node false.

4. At a conjunctive node N , proceed as follows:

(a) Start by non-recursive children and evaluate the node N by applying the procedure
recursively to those children. Label N false if one of the children is labeled false
and propagate the mark (i.e., mark the dependant nodes on N (if any) true or false
depending on the mark of the node N).

(b) If all the children are evaluated true and there is no recursive child of the node N ,
then mark the node true and propagate the mark.

(c) Otherwise, if the unique recursive child has not been already traversed, then apply
the procedure recursively to this unique child and mark the node N true if the child
is marked true; otherwise, mark the node false and propagate the mark.

(d) If the recursive child has been already traversed but not market yet, then mark the
node N as dependant on the recursive child.

(e) If the node N is not marked true or false and if it is accepting, then mark N true and
propagate the mark if it is reachable from itself using states not marked false. Mark
N false and propagate the mark if not.

(f) If none of the previous cases apply, mark the node false.

8 By storage penalty, we mean the memory cost of constructing and recording the strongly-connected compo-
nents of the product graph to be checked, which is needed by some automata-based model checking algorithms.
As the strongly-connected components should be stored prior to any exploration by those algorithms, the mem-
ory (or space) cost is high.

123

400 Auton Agent Multi-Agent Syst (2013) 27:375–418

5. At a disjunctive node N , proceed as follows:

(a) Start by non-recursive children and evaluate the node N by applying the procedure
recursively to those children. Label N true if one of the children is labeled true and
propagate the mark.

(b) If all the children are evaluated false and there is no recursive children of the node
N , then mark the node false and propagate the mark.

(c) Otherwise, search for a recursive child that has not been traversed yet, and if found,
then apply the procedure recursively to this child and mark the node N true if the
child is marked true and propagate the mark.

(d) Otherwise, if all the recursive children are already traversed, then mark the node N
as dependant on its recursive children.

(e) If the node N is not marked true or false and if it is accepting, then mark N true and
propagate the mark if it is reachable from itself using states not marked false. Mark
N false and propagate the mark if not.

(f) If none of the previous cases apply, mark the node false.

Let us now consider the complexity of this algorithm.9 For each state (q, s, i) in the prod-
uct graph BMG ,ψ , if the children are already marked recursively, then marking the state
becomes a problem of evaluating a Boolean expression since the children represent the sub-
formulae of the formula in the state. As we consider Boolean expressions over the set V er ,
the length of each expression is linear in the size |BMG ,ψ | of the arABTA product. As the
problem of evaluating Boolean expressions is in LOGSPACE [38], marking a state assuming
all the children states are marked can be done deterministically in space O(log |BMG ,ψ |).
Before analyzing the different cases, let us consider the propagation procedure. In fact, the
property of arABTA used in this algorithm is that this propagation can be done determinis-
tically in space O(log2 |BMG ,ψ |). The procedure consists in recording the dependency set,
which means determining if the parent nodes of a given node N are reachable from N and
already marked traversed. The reachability from N is a graph accessibility problem, and it
is known by Jones [31] that the problem is in NLOGSPACE, so it can be done nondeter-
ministically in space O(log |BMG ,ψ |), or, by Savitch’s theorem [44], deterministically in
space O(log2 |BMG ,ψ |). A necessary condition for a node to be already traversed is to be a
recursive node of a given node. Thus, the size of already traversed nodes is bounded by the
size of the recursive children. On the one hand, as in arABTA a node labeled by ∧ has only
one recursive child, and a node labeled by [] has no recursive children, the size of recursive
children of a conjunctive node is logarithmic in the size of the product graph BMG ,ψ . On
the other hand, as for a disjunctive node only one recursive child should be recorded at time,
the size of recursive children needed at a given moment is also logarithmic in the size of the
product graph. Thus, marking a node as already traversed can be done deterministically in
space O(log |BMG ,ψ |), so the whole procedure can be done in space O(log2 |BMG ,ψ |). Let
us now analyze the different cases. If the state is a leave, marking the state is simply evaluating
a positive or negative literal, which can be done deterministically in space O(log |BMG ,ψ |).
If the state is a negative node, assuming the non-recursive child is evaluated, marking the
node is simply complementing the evaluation of the child, so it can be done deterministically
in space O(log |BMG ,ψ |). Let us then consider the case of a conjunctive state (the case of
a disjunctive state is symmetric). If all the children are non-recursive, then evaluating the
node assuming that the children are already evaluated recursively can be done, as explained
above, deterministically in space O(log |BMG ,ψ |). If the node has a recursive child, which

9 The complexity analysis of the algorithm is novel in this paper and has not been addressed in [10].

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 401

is already evaluated, then evaluating the node is simply evaluating a Boolean expression
deterministically in space O(log |BMG ,ψ |). Otherwise (i.e., the child is already traversed),
the mark is propagated, and this can be done, as explained above, deterministically in space
O(log2 |BMG ,ψ |). If the node is accepting, then marking it becomes a problem of reachabil-
ity from itself using states not already marked false. Assuming the nodes are already marked,
this can be done nondeterministically in space O(log |BMG ,ψ |) [31], or, by Savitch [44],
deterministically in space O(log2 |BMG ,ψ |).

In practice, we do not keep the Boolean values of the children, but whenever we need such
a value, we evaluate it recursively. As argued in [34], the depth of the recursion is bounded
by the depth of the automata, which is, from Theorem 3, O(|ψ |). Thus, marking the initial
state can be done deterministically in space O(|ψ |(log2 |BMG ,ψ |)). From Proposition 4,
we know that: |BMG ,ψ | = O(|MG | · |Bψ |) and |Bψ | = O(2|ψ |). Thus, the model check-
ing problem of GCTL∗ can be solved in space O(|ψ |(log2(|MG | · 2|ψ |))), which means
O(|ψ |(|ψ | + log |MG |)2). ��

Let us now discuss the explicit structure complexity of GCTL∗ model checking as the
complexity of this problem in terms of the size of the input explicit model MG , that is assum-
ing the formula fixed. In what follows, the logspace and polynomial reductions are denoted
respectively by ≤log and ≤p .

Proposition 5 Let Mod(L) be a model of the language L, where L ∈ {CTL, CTLC+, CTL∗,
GCTL∗}.
1. Mod(CT L∗) ≤log Mod(GCT L∗)
2. Mod(CT L) ≤log Mod(CT LC+)
3. Mod(CT LC+) ≤log Mod(GCT L∗)

Proof

1. CTL∗ is a subset of GCTL∗ and thus any model of CTL∗ is also a model of GCTL∗.
So, we can easily imagine a deterministic Turing machine T M that can compute this
reduction in space O(log n)where n is the size of the input model of CTL∗. In fact, T M
simply looks at the input and writes in its output tape, one by one, the states (including
the initial ones), labeling function, and transitions.

2. CTL is a subset of CTLC+, so the result follows using a similar proof as 1.
3. Here we show that the model reduction presented in Sect. 3.2 can be computed by a

deterministic Turing machine T M in space O(log n) where n is the size of the input
model of CTLC+. T M reads in the input tape a model of CTLC+ and generates in the
output tape, one by one, the same states including the initial ones and the same state
labeling function as the input. Furthermore, T M writes αo in the set of actions Ac if
there are transitions defined in Rt , the transition relation in the model of CTLC+, and
reads the accessibility relations ∼i→ j in the input model one by one and for each one,
it writes αi j and β i j in Ac. Then, for each element in Ac, T M writes in the output tape,
lAc one by one as explained in Sect. 3.2. Finally, T M looks at each transition (s, s′)
in the input model and writes, one by one, the transitions (s, αo, s′). In the same way,
T M writes, one by one, the transitions (s, αi j , s′) and (s′, β i j , s) for each accessibility
relation s ∼i→ j s′ in the input model. ��

Theorem 5 The explicit structure complexity of GCTL∗ model checking is NLOGSPACE-
complete.

123

402 Auton Agent Multi-Agent Syst (2013) 27:375–418

Proof

Membership: By fixing the formulaψ to be checked, we obtain an arABTA of a fixed depth.
Using the algorithm presented in the proof of Theorem 4, checking the nonemptiness of
this automata can be done deterministically in space O(log2 |MG |), that is, the problem is
in NLOGSPACE.
Hardness: The hardness in NLOGSPACE follows directly from Proposition 5 (i.e.,
Mod(CTL∗) ≤log Mod(GCTL∗)) as it is proven in [34] that the explicit structure com-
plexity (called program complexity) of CTL∗ model checking is NLOGSPACE-complete.

��
Theorem 6 The complexity of GCTL∗ model checking for concurrent programs is PSPACE-
complete.

Proof

Membership: As shown in Theorem 4, the model checking problem of GCTL∗ can be solved
in space polynomial in the length of the formula |ψ |, but only poly-logarithmic in the size
of the explicit model |MG |. Since the explicit model is obtained as the product of the com-
ponents of a concurrent program and this product is at most exponentially larger than the
program, the state space is exponential in the length of the program. Thus, membership in
PSPACE follows from the fact that the model checking algorithm presented in the proof
of Theorem 4 is on-the-fly, that is, we do not have to store all of the product automaton at
once and can store, at each step, only the current configuration (a similar argument is used
in [56] and [34]).
Hardness: The hardness in PSPACE is direct from the fact that CTL∗ ≤p GCTL∗ and model
checking CTL∗ is PSPACE-complete for concurrent programs [34]. ��

It is possible to prove hardness in PSPACE using a reduction from polynomial space Turing
machines, for example as done in [34]. However, for the sake of simplicity, we used a direct
reduction from the model checking of CTL∗. We could also use a direct reduction from the
nonemptiness problem of concurrent programs proven in [33] to be PSPACE-complete.

Complexity of model checking CTLC+

As we did for the complexity of GCTL∗, in this section, two results will be presented: (1)
the explicit structure complexity of CTLC+ model checking (i.e. by fixing the formula)
is NLOGSPACE-complete; and (2) model checking CTLC+ for concurrent programs with
respect to the size of the components Pi and the length of the formula being checked is
PSPACE-complete.

Theorem 7 The explicit structure complexity of CTLC+ model checking is NLOGSPACE-
complete.

Proof

Hardness: The hardness in NLOGSPACE follows directly from Proposition 5 (i.e.,
Mod(CTL) ≤log Mod(CTLC+)) and the explicit structure complexity (called program
complexity) of CTL model checking is NLOGSPACE-complete [34].
Membership: From Sect. 3.2, Theorem 2, and Proposition 5, we proved, using explicit struc-
tures, that: (1) Mod(CTLC+) ≤log Mod(GCTL∗); and (2) the reduction is sound. Thus,
the membership in NLOGSPACE follows from Theorem 5. ��

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 403

Theorem 8 The complexity of CTLC+ model checking for concurrent programs is PSPACE-
complete.

Proof

Hardness: The PSPACE lower bound is direct from the fact that CTL ≤p CTLC+ and the
complexity of model checking CTL is PSPACE-complete for concurrent programs [34].
Membership: In Sect. 3.2, we have presented a polynomial-time transformation of a model
MC for CTLC+ to a model MG for GCTL∗ and a formula ϕCT LC+ to a formula ϕGCT L∗
so that MC |� ϕCT LC+ iff MG |� ϕGCT L∗ . Thus, since the model checking problem of
GCTL∗ can be solved in space polynomial in the length of the formula |ϕGCT L∗ |, and poly-
logarithmic in the size of the explicit model |MG | (Theorem 4), we obtain an upper bound
space complexity for model checking CTLC+ with regard to the length of the formula and
the size of the explicit model MC . On the other hand, from Theorem 7, the space complex-
ity of model checking CTLC+ is poly-logarithmic in the size of the explicit model |MC |.
And since the model checking problem of CTL can also be solved in space polynomial in
the length of the formula [34], we obtain the space complexity of model checking CTLC+,
that is polynomial in the length of the formula |ϕCT LC+|, and poly-logarithmic in the size
of the explicit model |MC |. Thus, using a similar proof as the one presented in Theorem
6 and observing that the same on-the-fly algorithm presented in this proof can be used for
CTLC+ thanks to the transformation, the result follows. ��

4 Case studies

One of the main motivations of this paper is to check the effectiveness of our reduction
techniques and experimentally confirm the theoretical space complexity results proved so
far.

We have implemented the reduction techniques presented in Sect. 3 on top of the extended
NuSMV and CWB-NC. Such tools have been used to check action as well as state formulae.
Specifically, NuSMV has been successfully adopted to model checking web service compo-
sition [32], multi-agent interaction protocols [21], and business models [54]. One limitation
is that it does not support model checking epistemic properties in a system of agents. The
extended NuSMV is used to overcome such a limitation [35,42]. It has also been used to
verify commitment-based protocols [22]. CWB-NC is used for model checking large-scale
protocols in agent communication [5] and security pattern composition [19]. Concretely, the
reduction from CTLC+ to ARCTL using the transformation function F is defined as a library
of M4 macros. M4 is a general-purpose macro processor available on most UNIX platforms.
The reduction from CTLC+ to GCTL∗ using transformation function H is performed by
Com-2-CWB tool we have implemented. As shown in Fig. 7, the solely manual intervention
is the provision of the input file describing the problem to be verified.

On the one hand, the extended NuSMV is a symbolic model checker based on OBDDs,
where the states of the model and formula to be checked are represented by means of Boolean
functions, which can be easily represented using OBDDs and the set of states of the model
satisfying an ARCTL formula is also represented as a Boolean function. By comparing the
later set with the set of initial states represented also as a Boolean function, it is possible to
establish whether or not a formula holds in a given model. As a result, the problem of model
checking ARCTL is reduced to the comparison of Boolean functions. In extended NuS-
MV, models are described into a modular language called extended symbolic model verifier
(extended SMV) with respect to a finite state machine formalism.

123

404 Auton Agent Multi-Agent Syst (2013) 27:375–418

Fig. 7 Verification work flow for
commitment-based protocols

On the other hand, the CWB-NC is an automata-based model checker based on ABTAs,
which are a variation of alternating tree automata such as deterministic and non-determinis-
tic Büchi automata to support efficient model checking wherein the algorithm searches only
the part of the state space that needs to be explored to prove or disprove a certain formula
[10]. The state space is never constructed a priori. Specifically, in CWB-NC, the model and
formula are translated into ABTA and then the product graph of those ABTA are computed
to check if the model is accepted by the product automaton. As a result, the problem of
model checking GCTL∗ is reduced to check the emptiness condition of the ABTA product.
In CWB-NC, the models are described into a process algebra language called calculus of
communicating systems (CCS).

Two case studies for which we have been able to carry out the above motivations are the
NetBill protocol (NB) [52] and Contract Net protocol (CN),10 already applied to show how
commitments can specify protocols in business settings [22,23,63].

4.1 Verifying NB protocol

The NB protocol is an electronic commerce protocol designed to be used for the selling
and delivery of low-priced information goods such as software programs and journal articles
over the Internet [52]. It orchestrates and regulates interactions between two agents: the mer-
chant Merc and customer Cust [66,40]. In particular, the protocol starts when the customer
requests a quote for some desired goods at the global state s0 (see Fig. 8). This request is
followed by the merchant’s reply by sending the price quote as an offer at s2. The customer
can then either reject the offer and the protocol moves to the initial state s0 after passing
through the failure state s4, or accept the offer, which means the customer commits to send
the payment to the merchant at s3.

Suppose that the customer agent accepts the received offer, then he has two choices: (1)
to fulfill its commitment by sending the payment to the merchant at s5, which is accessible
from s3 using ∼Cust→Merc; or (2) to violate its commitment and the protocol will move to s0

after passing through the failure state s4. When the merchant receives the payment, he com-
mits to deliver the requested goods to the customer at s5. In a way similar to the customer’s
choices, the merchant can fulfill its commitment by delivering the requested goods to the

10 FIPA Contract Net Interaction Protocol Specification (2002), http://www.fipa.org/specs/fipa00029/index.
html.

123

http://www.fipa.org/specs/fipa00029/index.html
http://www.fipa.org/specs/fipa00029/index.html

Auton Agent Multi-Agent Syst (2013) 27:375–418 405

Fig. 8 The NB protocol representation using our model MC . Notice that each transition connecting local
states is labeled by an agent and its local action. Also, the dashed arrows refer to the social accessibility
relation using ∼i→ j

customer at s7, which is accessible state from s5 using ∼Merc→Cust and then moves to the
acceptance state s9 after sending the receipt to the customer and finally the protocol moves
to s0. Conversely, the customer can pay for the requested goods without being delivered by
the merchant. In this case, the merchant violates its commitment at s8 and then the protocol
moves to the initial state s0 after sending the refund to the customer at s10.

This protocol can be extended to any number n of agents greater than two. We encode
the NB protocol using our model MC =(S, I, Rt , {∼i→ j | (i, j) ∈ A2},V) by introducing
n agents to represent the customers and merchants. Concretely, in the extended SMV the
participating agents in the NB protocol are encoded as a set of isolated modules MODULE
anAgent<name> in which each agent module is instantiated in the main module at run
time using the VAR keyword, which generally defines the SMV variables. The main mod-
ule also includes the SPEC keyword to specify the formulae that need to be checked using
the ARCTL syntax. For each agent, we can use the VAR keyword to define its local states
including the commitment, fulfillment, violation, acceptance and failure states in the form of
enumeration type. The local actions of each agent are represented as input variables using the
IVAR keyword. Agent’s protocol is defined as a relation between its local state and action
variables through the TRANS statement. The labeled transitions among states are encoded
using the TRANS statement with the next and case expressions that represent agents’s
choices in a sequential manner, and initial conditions using the INIT statement. Figure 9
gives the main components of agent definition as an SMV module. The complete encoding
of the NB protocol using the extended SMV language is available for download.11

Many properties can be checked in the NB protocol [5,21], such as fairness constraints,
liveness, safety, reachability, deadlock freedom, livelock freedom. Two examples of these
properties formalized using CTLC+ are listed in Table 3. The first formula is given in the
universal form and the second one uses the existential form. The first formula expresses an

11 http://users.encs.concordia.ca/~bentahar/Case-Studies.zip.

123

http://users.encs.concordia.ca/~bentahar/Case-Studies.zip

406 Auton Agent Multi-Agent Syst (2013) 27:375–418

Fig. 9 Example of agent structure in extended SMV. Notice that “--” defines comments in the SMV program

Table 3 Examples of tested formulae

ϕ1 = AG¬(

Fu(CCust→Merc Pay) ∧ AG¬ CMerc→Cust Deliver
)

ϕ2 = E F Fu(CMerc→Cust Deliver)

example of the standard safety property, i.e., “something bad never happens”. In general,
the safety property is expressed by AG¬p where p characterizes a “bad” situation, which
should be avoided. In our protocol, a bad situation happens when the customer fulfills its
commitment by sending the payment, but the merchant never commits to deliver the requested
goods. The motivation behind this property is to check if the protocol is consistent, i.e., the
NB protocol should not yield conflicting computations.

The formula ϕ2 is an example of the standard reachability property, i.e., a particular situa-
tion can be reached from the initial state via some computation sequences. It states that along
a given path, it is eventually the case that there is a possibility for the merchant to fulfill its
commitment by delivering the requested goods. This property checks if the NB protocol is
effective, i.e., the protocol’s transitions should be enough to confirm that it can be executed
and ended successfully.

Our experimental results were performed on a laptop equipped with the Intel(R) Core(TM)
2 Duo clocked at 1.66 GHz processor and 2 GB RAM running under Ubuntu Linux 8.04 with
a vanilla 2.6.24-28-generic Kernel. We reported 5 experiments in Table 4 wherein the number
of agents (# Agent), number of reachable states (# States), execution time (Time) in seconds
(s), which is the summation of the time required for building all OBDDs parameters and the
actual execution time for the verification, and memory in use (Memory) in MB are given.
From Table 4, we notice that the number of reachable states (which reflects the state space)
and execution time—especially from experiment 3—increase exponentially when the num-
ber of agents increases. In contrast, the memory usage does not increase exponentially, but
only polynomially when augmenting the number of agents, which approves the complexity
results presented in Sect. 3.3.

Notice that from experiment 2 we rewrite the defined formulae in a parameterized form,
for example in experiment 5:

ϕ′
1 = AG¬

(

5
∧

i=1

Fu(CCusti →Merc Payi)

5
∧

i=1

AG¬ CMerc→Custi Deliveri

)

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 407

Table 4 Verification results of
the NB protocol using extended
NuSMV

Agents # States Time (s) Memory (MB)

2 12 0.020 4.241

3 446 0.184 5.507

4 4, 224 2.736 12.957

5 33, 454 63.687 15.432

6 238, 787 630.914 83.839

Fig. 10 Example of the interactions among processes in the Cust agent

This formula captures the bad situation in the NB protocol that intuitively means the merchant
never commits to deliver the requested goods to none of the five customers paid for these
goods.

In order to encode the NB protocol formalized using our model with the CCS language
to use CWB-NC as a benchmark, we first present the syntax of CCS language using the
following BNF grammar [10]:

P ::= nil | α.P | (P+ P) | (P|P) | proc C=P

where P refers to the CCS process; the process nil means no action whatsoever; if P is a
process and α is an action prefixing, then α.P is a process; if P1 and P2 are processes, then
so is P1 + P2 using the choice operator “+”; if P1 and P2 are processes, then so is P1 |
P2 using the parallel composition operator “|”; and the keyword proc is used to assign the
name C to the process P.

A given model of the NB protocol can be encoded using the language CCS by associating
each agent to a set of processes (in the sense of process algebra) wherein such processes
represent the agent’s local states in a recursive manner. Following standard conventions, an
CCS process conceptually uses communication channels to receive messages from other
processes using input channels and may send out messages after performing actions to other
processes using output channels in a complementary fashion (see Fig. 10). These channels are
reliable guaranteeing timely delivery of messages. Internally, the commitment, fulfillment,
violation, acceptance, and failure states are defined as variables in the proc statement. The
actions of each agent are explicitly represented using atomic action propositions in the proc
statement in order to capture the labeled transitions among states. For example, the customer
Cust agent can be specified as follows:

proc Cus0 = ’priceRequest.Cus1

proc Cus1 = Offer.Cus2

proc Cus2 = (’Accept.Cus3 + ’Reject.Cus4)
. . .

123

408 Auton Agent Multi-Agent Syst (2013) 27:375–418

Table 5 Verification results of
the NB protocol using CWB-NC

Agents # States Time (s) Memory (MB)

2 325 0.035 4.020

3 6,501 1.785 10.340

4 128,327 58.872 25.470

5 N/A N/A N/A

which means the Cust agent initially produces the price request message and evolves into
the state Cus1. The Merc agent replies by sending the offer message, which makes the Cust
agent enter into the state Cus2. At the state Cus2, the Cust agent is willing to produce: (1)
accept message and enter into the state Cus3; or (2) reject message and enter into the state
Cus4. The interactions among these processes are shown in Fig. 10.

Experimental results for the verification of the NB protocol are reported in Table 5. These
experiments were performed on a laptop equipped with the Intel(R) Core(TM) 2 Duo clocked
at 1.66 GHz processor and 2 GB RAM running under 32-bit Windows Vista. The execution
time, in seconds, (i.e., the summation of the time required for building all ABTAs parameters
and the actual execution time for the verification) and memory usage (in MB) are reported in
Table 5. This table shows only the results of checkingϕ2 because asϕ2 is satisfied and includes
the existential path quantifier, it only performs on a fragment of the model, whilst ϕ1, as it
is satisfied and has the universal form, needs to be performed on the whole model. Notice
that unlike the case with the automata-based CWB-NC, the verification results for model
checking using extended NuSMV, which is based on OBDD techniques, are not affected by
the structure of the formula being verified [35]. Moreover, we put “N/A” in Table 5, which
means that CWB-NC is not applicable. Here again the number of reachable states and exe-
cution time increase exponentially when the number of agents increases while the memory
usage increases only polynomially.

4.2 Verifying CN protocol

We consider the CN protocol designed from online business point of view to coordinate and
regulate interactions among autonomous agents—as in NB protocol, we introduced n agents
to represent the managers (Mgr) and participants (Prt)—which interact with each other to
send results about a particular task. The protocol starts with the manager requesting proposals
for a particular task. Each participant either sends a proposal message or a reject message.
The manager accepts only one proposal among the received proposals and explicitly rejects
the rest proposals. The participant with the accepted proposal informs the manager with the
proposal results or the failure of the proposal. The protocol is self-described in Fig. 11 using
our model, as we did in the previous case study. An example of safety in this protocol can be
expressed by the formula ϕ3 stating a bad situation where the manager fulfills its commitment
by sending reply message, but the participant never commitments to deliver the results of the
proposal. The formula ϕ4 is an example of the standard reachability in the CN protocol, which
means along a given path, there is a possibility for the participant to fulfill its commitment
by sending the results performing its proposal.

ϕ3 = AG¬(Fu(CMgr→Prt Reply) ∧ AG¬ CPrt→Mgr Results)

ϕ4 = E F Fu(CPrt→Mgr Results)

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 409

Fig. 11 Actions of the CN protocol

Table 6 Verification results of
the CN protocol using extended
NuSMV

Agents # States Time (s) Memory (MB)

2 9 0.044 4.226

3 528 0.1 4.734

4 4, 121 0.908 14.414

5 30, 346 11.285 14.835

6 217, 631 145.913 31.610

Table 7 Verification results of
the CN protocol using CWB-NC

Agents # States Time (s) Memory (MB)

2 257 0.038 3.013

3 5,655 1.219 7.112

4 114,717 50.754 18.022

5 N/A N/A N/A

Table 6 shows the CN protocol verification results with extended NuSMV using the same
machine as in the previous case study. Because the number of reachable states that are effec-
tively considered in the CN protocol is much more smaller, its execution time is shorter than
in the NB protocol with extended NuSMV. Table 7 reports the verification results of the CN
protocol using CWB-NC. In both cases, the memory usage increases polynomially, which is
expected according to the theoretical results.

We should underline that CWB-NC is efficiently applied to check satisfiability of exis-
tential formulae (i.e., for checking that a universal formula does not hold), which validate
the main ABTA idea of finding counter-examples without exploring the whole model. The
extended NuSMV performs moderately better than CWB-NC in terms of the execution time.
It is also efficiently applicable when the model of MAS formalized using the interpreted

123

410 Auton Agent Multi-Agent Syst (2013) 27:375–418

systems is getting larger. Furthermore, comparisons with other proposals are given in the
following section.

5 Related literature

We relate our work broadly to two areas of research: (1) defining and (2) verifying social
semantics of commitments and their fulfillment along with commitment-based protocols,
using formal methods.

5.1 Formal semantics of commitments

Formal methods are a particular kind of mathematically-based techniques for providing rig-
orous frameworks to specify, model, and verify autonomous agents that communicate with
one another [5,49]. They are best described as the application of formal languages using for
example temporal logics, which are a set of temporal modalities allowing the specification of
event orders in time without having to introduce time explicitly. Semantics generally deals
with the meaning delivered by valid (syntactically correct) language constructs.

Commitments for agent communication

Singh [49] proposed a suitable formal semantics for ACLs by defining three levels of seman-
tics for each communication act. The author extended CTL with modalities for social com-
mitments, beliefs and intentions to represent communication among autonomous agents. He
presented three accessibility relations to define the semantics of those modalities. Particu-
larly, the accessibility relation C : A × A × A × S → 2� where A is a set of agents, S
is a set of states and � is a set of paths, produces the set of accessible paths along which
the commitments made at a state s ∈ S by the debtor i towards the creditor j in the social
context G hold. Thus, the semantics of the commitment modality is satisfied at s in a model
M iff the content is true along every accessible path π defined using the accessibility relation
C(i, j,G, s) and emanating from the commitment state s. Singh’s approach also refers to a
mental component by claiming that communication should be sincere.

Colombetti [16] introduced a new speech-act based ACL, which is named Albatross (agent
language based on a treatment of social semantics). This language is based on the social notion
of commitments contrary to mental states. The author proposed an extended first order modal
language to define the semantics of Albatross. The semantics of commitments is defined using

a certain type of accessibility relation: fc : Daction × Dagent × Dagent × S → 22S
, which

produces a family set of states for each state, a typed domain of individual sorts of action,
and a pair of two agents. Technically, such a semantics is defined by computing the set ||ϕ||
of states satisfying the commitment content ϕ and testing if this set is among the set of sets
of states computed by fc.

The first work on combing social commitments as deontic notions and arguments into
the paradigm of ACL was done by Bentahar et al. [6]. In this hybrid approach, the social
and public aspects of conversations can be captured by commitments and the reasoning
aspects can be captured by means of arguments. In continuation of this work, Bentahar
et al. [7,8] developed “Commitment and Argument Network (CAN)”, which is a unified
framework for pragmatic and semantics issues. It uses both a temporal logic CTL∗C A, which
extends CTL∗ with modalities for commitments and their actions, argument modality, and a
dynamic logic (DL) to define a logical semantics for agent communication. The authors then

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 411

introduced two accessibility relations to define the semantics of commitment and argument
modalities. The accessibility relation dedicated to commitments [8] is defined as follows:
Rsc : A × A × S → 2�. It associates with a state s a set of accessible paths along which an
agent commits towards another agent. Thus, in terms of semantics, the commitment about
ϕ is satisfied in a model M at a state s iff the content ϕ holds along every accessible path
started at s and computed by Rsc. Furthermore, the semantics of the Satisfy formula, which
captures the commitment satisfaction, is defined in terms of whether a commitment has been
created in the past and still active and its content holds. So, it has the same problem raised in
Mallya et al.’s framework [41].

El-Menshawy et al. [21] showed how social commitments can be mapped into under-
lying logic-based formalisms by extending CTL∗ with: (1) past-directed temporal modal-
ities; and (2) modalities for commitments and associated actions. In order to define
the semantics of unconditional and conditional commitments, the authors introduced
two accessibility relations. For instance, the accessibility relation devoted to uncon-
ditional commitments is defined as follows: Rscp : S × A × A → 2�, which
associates to a given state s a set of accessible paths along which an agent com-
mits towards another agent. Such paths are conceived as merely possible, and as
paths where the contents of commitments made in s are true. For example, if we
have: π ∈ Rscp(s, i, j), then the commitments that are made in the state s by i
towards j are satisfied along the path π ∈ �s , where �s is a set of paths starting
at s.

The aforementioned approaches [7,8,16,21,49] have made a significant progress in defin-
ing the formal semantics of social commitments by making use of accessibility relations.
The fact that these relations are not defined and computed using the formalism of interpreted
systems and agents’ global and local states makes the application of our model checking-
based reduction technique to these approaches hard because such a reduction technique
is fundamentally based on this formalism. This means, in order to apply our technique,
a transformation (or redefinition) of these accessibility relations within this formalism is
needed.

Verdicchio and Colombetti [58] introduced a logical framework for the definition of ACL
semantics based on the concept of social commitments by presenting a new branching time
logic called CTL±, which extends CTL∗ with “past-directed temporal operators”. Then, they
used CTL± to represent commitments and their fulfillment and violation. Unlike our logical
model where violation is defined as a property, in [58], violation is explicitly defined. Their
semantics of fulfilling commitment also differs from our semantics as they use “a truth-pre-
serving translation” of the commitment content into a formula of “the semantics language”
and past operator that points to the state at which the commitment is made.

Yolum and Singh have developed a formalism to represent and reason about commitment
protocols called commitment machines using a CTL-like semantics [64]. In this formalism,
commitments could be conditional and the condition is implemented using strict implication
p � q , which requires q to hold when p holds. Although it is possible to extend our logic
with the strict implication operator, its model checking using reduction has the problem that
no operator in ARCTL or GCTL∗ we are using in our approach can support the strict impli-
cation. An appropriate approach to implement conditional commitments is the semantics
proposed by Singh [50], which clearly identifies the link between the condition and content
of commitments without using the strict implication. However, such semantics does not use
the accessibility relation and possible-worlds semantics, so using a similar idea in CTLC+
is beyond the scope of this paper.

123

412 Auton Agent Multi-Agent Syst (2013) 27:375–418

Commitments for general agent actions

Xing and Singh [62] proposed commitment patterns that accommodate revisions and excep-
tions to model agent interactions. The authors expressed commitment patterns as CTL for-
mulae, but a commitment itself is defined as an abstract data type.

Mallya and Hunhs [39] and Mallya et al. [41] developed an extension of CTL with a
way to describe time points and intervals to obtain a richer temporal framework to represent
and reason about commitments and their actions. The semantics of the predicate satisfied
is defined in terms of whether the DISCHARGE operation has been performed in the past
or not. The authors assumed that “the DISCHARGE operation brings about p [the relevant
commitment’s content], and conversely, if p occurs, the DISCHARGE operation is assumed
to have happened”. This differs from our proposal as we defined the semantics of the fulfill-
ment modality in terms of accessibility states from commitment state and left defining the
truth conditions of the content of commitment as one of the key points of the satisfaction of
the commitment modality.

To enable a rich modeling of temporal aspects of commitments, Torroni et al. [55] extended
Mallya et al.’s work [41] by using “variables with domains” inside commitments. The authors
showed that without such an extension, Mallya et al.’s representation of commitments does
not cover some practical situations. For example, a commitment of i towards j to bring about
p is going to hold at a given moment in the interval beginning at t1 and ending at t2 would
be represented in Mallya et al.’s model as follows: C(i, j, [t1, t2]p). This modeling enables
reasoning about the temporal aspect without considering the p’s meaning, but it does not
specify the time at which the commitment is satisfied. In Torroni et al.’s model, p is associ-
ated with a variable, which is bound to a domain interval: [T]p where T ∈ [t1, t2]. So, the
commitment above can be written as follows: C(i, j, [T]p), t1 ≤ T ≤ t2. When there exists a
possible value of T in the range [t1, t2], the commitment is satisfied and this value can be used
for further inferences. This commitment is violated at time t (viol(C(i, j, [T]p, t))) “due to
the elapsing at time t of a time interval in which p was supposed to be verified”. The authors
proposed a specification language called “commitment modeling language”, which consists
of a set of domain variables, constraints and rules. They used event calculus axioms not
only for reasoning about the effects of commitment actions, but also for a static verification
and compliance checking, which tracks the evolution of commitment statuses at run time by
making use of reactive event calculus, which is implemented in SCIFF , an abductive logic
programming proof-procedure. As for Mallya et al.’s approach, this approach differs from
ours at the semantic level (the commitment and its fulfillment are not defined as modalities).
Furthermore, time in our proposal is abstract and captured using temporal operators, which
allows us to use the model checking technique for the design time verification, which can
complement the run time verification.

Singh [50] defined the semantics of commitment and its fulfillment by extending LTL
logic with commitment modalities: “dialogical” (i.e., commitments about propositions) and
“practical” (i.e., commitments about actions to be performed). This semantics is interpreted
without using an accessibility relation but by using Segerberg’s idea, which maps “each world
into a set of set of worlds”. To define the semantics of commitments, the author; 1) introduced
a function that produces “a set of sets of periods for each moment and proposition”; and 2)
computed the set of periods along which the content of commitment holds. So, the idea is
checking if all possible ways in which the content of commitment may hold are in the set of
sets of periods satisfying the condition of commitment, then the commitment holds. Thus, the
author focused on identifying the link between the condition and content of commitments.
As the semantics is not based on Kripke structures, verifying such a semantics using model

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 413

checking needs either defining an equivalent semantics using Kripke structures or interpreted
systems; or defining a completely new model checking approach for the extended logic.

5.2 Formal verification of commitment-based protocols

Venkatraman and Singh [57] developed an approach for locally verifying whether the behav-
ior of an agent in open systems complies with a commitment-based protocol specified in
CTL. Their verification method concentrates on the conditions under which an individual
agent may check others’ commitments toward itself.

The operational specification of a commitment-based ACL with a minimal communicative
act library was given by Fornara and Colombetti [26]. They in turn used these communica-
tive acts having formal social semantics to define complex interaction protocols, such as the
“English Auction protocol” with the help of interaction diagrams. The authors have intro-
duced the idea of soundness condition when the concurrent combinations of communicative
acts may have legal orderings, so the resulting protocol becomes verifiable without deeply
giving the theoretical justification of this condition.

Limiting agents’ autonomy, flexibility and reliability, as well as lacking the ability to
capture real meaning of interactions are the main difficulties of traditional approaches that
specify and model protocols by means of FSMs and Perti Nets. To overcome these limitations,
Yolum and Singh [65] developed a declarative approach for formally specifying and flexi-
bly executing protocols in which it is possible to capture the content of the actions through
agents’ commitments to one another. In fact, traditional approaches limit the flexibility of the
agents in executing the protocols as modeling protocols is done in terms of action sequences,
which are known a priori. The authors formalized commitment actions with the use of event
calculus axioms that enable agents to reason about their actions and help protocol designers to
track the evolution of commitments. Yolum and Singh [66] used an abductive event calculus
planner to compute all possible paths that can be generated between an initial state and goal
state regarding the protocol specification. By keeping track of agent’s commitments, we can
check whether the agent behaviors comply with its commitments, this technique is called
static verification. Based on Yolum and Singh’s approach, Chesani et al. [13] developed a run
time commitment verification procedure to track the status of commitments. Our verification
technique can be seen as complement to the run time verification.

Yolum [63] formalized the main generic properties that are required to help proto-
col designers to analyze and correct the development of commitment-based protocols by
signaling possible errors and inconsistencies that arise at run time and determining the
applicability of protocols. These properties are categorized into three classes: effective-
ness, consistency and robustness. Yolum also developed algorithms that can be used to
semi-automatically verify those properties using any available design tools. Our approach
enhances Yolum’s semi-automatic verification with full-automatic verification using model
checking.

For MASs to be openly operative, there should be a balance between flexibility of exe-
cuting protocols and verification in designing these protocols. Mallya et al. [40,41] have
defined a tradeoff between flexibility and verification to be problematic. They proposed an
approach for designing commitment-based protocols wherein traditional software engineer-
ing notions such as refinement and aggregation are extended to apply to protocols so that
protocol designers should be able to create new protocols by refining or combining existing
protocols at design time. For verification issues, they presented a “sound theory” of com-
posing protocols using “state-similarity functions” based on the notion of “subsumption of
protocols”. The authors argued that the protocol that allows many computations is better

123

414 Auton Agent Multi-Agent Syst (2013) 27:375–418

than the one that allows less computations giving more choice and flexibility in protocol
execution.

The approach presented by Mallya et al. [40,41] were further complemented in three
research proposals by [12], [17] and [28]. Cheng [12] and Desai et al. [17] developed the
idea of supporting the verification of properties geared toward the composition of commit-
ment-based protocols specified in a particular language called OWL-P. Their properties are
specified using LTL to verify the deadlocks and livelocks where deadlocks can result from
the contradiction among composition axioms. They also presented another kind of proper-
ties called “protocol-specific properties”. Their approach depends on translating the protocols
into PROMELA (the input language of the SPIN automata-based model checker). Gerard and
Singh [28] used the MCMAS model checker to verify the refinement of commitment-based
protocols by developing a preprocessor tool that reads protocols and specifications (i.e., the
refinement axioms or rules expressed in CTL) from files and then translates them into the
ISPL (the input language of MCMAS).

Telang and Singh [54] used the NuSMV symbolic model checker to verify whether or not
the operational model defined in the UML sequence diagrams correctly supports the business
model that is aggregated from a set of business patterns. These patterns are defined in a highly
abstract level based on the notion of commitments and mapped into CTL specifications. The
commitment is defined as an isolated SMV module, which can be instantiated as a variable
in the main module.

Compared to the above approaches, our verification is based on the formal translation of
commitments and their fulfillment into ARCTL and GCTL∗ formulae without losing their
real and concrete meanings as when representing them as simple data structures [17], pro-
cesses [12] or variables [28,54]. Moreover, no experimental results and tools are presented in
[17,12,28,54], but they only focused on checking the correctness of properties needed either
for composition or refinement processes.

Bentahar et al. [5] presented a new verification method based on translating ACTL∗ for-
mulae and protocols into ABTA to use CWB-NC where the commitment states are defined
as variables and agent actions as atomic propositions using CCS language. This approach
is close to our approach, but—as the mentioned approaches—it lacks a formal translation
process. They also used a different encoding of the NB protocol, which only models each
agent by describing its possible actions and each action is described by a set of states. How-
ever, we used the formalism of interpreted systems, which provides a general framework
for modeling MASs. Technically, Bentahar et al.’s encoding allowed for the verification of 2
agents only, the experimental results shown in Table 5 report scenarios with up to 4 agents.
While [5,12,17,28] and [54] show that the model checking of commitment-based protocols
is feasible, in this paper we focused on fully automatic verification of commitments and
their fulfillment as modal connectives as well as efficiency, applicability and complexity
considerations.

6 Conclusion

The main contribution of this paper lies in presenting a new approach for reducing the prob-
lem of model checking CTLC+, an extension of CTL with modalities for commitments and
their fulfillment, into the problem of model checking ARCTL and GCTL∗. In this approach,
the commitment and fulfillment modalities are transformed into ARCTL and GCTL∗ for-
mulae. We also computed the space complexity of model checking CTLC+ with regard to
explicit models and concurrent programs, which is respectively NLOGSPACE-complete and

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 415

PSPACE-complete. Furthermore, we proved the soundness of the proposed reduction tech-
niques. Using two business protocols, we have experimentally evaluated the effectiveness
and efficiency of our reduction techniques and our verification approach implemented using
two different model checkers (extended NuSMV and CWB-NC). These experiments paint
the following picture: the model checkers were able to verify a variety of complex formulae
correctly and efficiently. Our approach is clearly not exhaustive but helps protocol designers
check the compliance of protocols against given properties expressed in our logic. This paper
establishes the practical usability of the approach by applying it to a large business proto-
col having approximately 2.3e+06 states thanks to the OBDDs-based symbolic encodings
used in extended NuSMV. The overall conclusion coincides with the usual considerations
in that automatic verification methods complement other static verification methods very
well. When comparing our approach to other available proposals in the literature, we found
that this approach considerably simplifies the specifications to be checked and maintains the
feasibility of different model checking techniques.

There are many directions for future work. We plan to continue evaluating this approach
by means of other protocols having social semantics so that possible efficiency advantages
may be replicated. We also plan to consider other commitment actions, such as withdraw,
assign, and delegate. Analyzing the relations between agent communication commitments
and commitments in strategic logics such as the ones studied in [1] is another direction for
future work. Finally, Jones and Parent [30] proposed a new approach to ACLs, which is
neither intention-based nor commitment-based, but convention-based. The idea is to propose
an alternative social semantics for ACLs based on conventions and conventional signals.
The approach has been applied to analyze sequences of exchanges within communication
protocols. As future work, we aim to investigate this alternative approach to agent commu-
nication from the model checking perspective using reduction techniques similar to the ones
presented in this paper.

Acknowledgments We would like to thank the three anonymous reviewers for their valuable and very pro-
fessional comments and suggestions for improvements. We also would like to thank Professor Orna Kupferman
for her explanations and suggestions on the complexity part. The first and third authors thank the Ministry of
Higher Education, Egypt for its financial support. The second and fourth authors are supported by NSERC
(Canada). The second author is also supported by FQRSC and FQRNT (Québec).

References

1. Ågotnes, T., Goranko, V., & Jamroga, W. (2008). Strategic commitment and release in logics for multi-
agent systems (Extended abstract). Technical Report IfI-08-01, Clausthal University of Technology,
Clausthal-Zellerfeld.

2. Artikis, A., & Pitt, J. V. (2009). Specifying open agent systems: A survey. In A. Artikis, G. Picard, &
L. Vercouter (Eds.), ESAW, LNCS (Vol. 5485, pp. 29–45). Heidelberg: Springer.

3. Baldoni, M., Baroglio, C., & Marengo, E. (2010). Behavior oriented commitment-based proto-
cols. In H. Coelho, R. Studer, & M. Wooldridge (Eds.), ECAI (Vol. 215, pp. 137–142). Amsterdam: IOS
Press.

4. Bentahar, J., Meyer, J.-J. Ch., & Wan, W. (2009). Model checking communicative agent-based
systems. Knowledge-Based Systems, 22(3), 142–159.

5. Bentahar, J., Meyer, J.-J. Ch., & Wan, W. (2010). Model checking agent communication. In M.
Dastani, K. V. Hindriks, & J.-J. Ch. Meyer (Eds.), Specification and verification of multi-agent systems
(1st edn., Chap. 3, pp. 67–102). Heidelberg: Springer.

6. Bentahar, J., Moulin, B., & Chaib-draa, B. (2004). Commitment and argument network: A new for-
malism for agent communication. In F. Dignum (Ed.), ACL 2003, LNCS (Vol. 2922, pp. 146–165).
Heidelberg: Springer.

123

416 Auton Agent Multi-Agent Syst (2013) 27:375–418

7. Bentahar, J., Moulin, B., Meyer, J.-J. Ch., & Chaib-draa, B. (2004). A logical model for commit-
ment and argument network for agent communication. In Proceedings of the 3rd International Joint
Conference on AAMAS (pp. 792–799). Washington, DC: IEEE Computer Society.

8. Bentahar, J., Moulin, B., Meyer, J.-J. Ch., & Lespérance, Y. (2007). A new logical semantics for
agent communication. In K. Inoue, K. Satoh, & F. Toni (Eds.), CLIMA VII, LNCS (Vol. 4371,
pp. 151–170). Heidelberg: Springer.

9. Bhat, G. (1998). Tableau-based approaches to model-checking. Ph.D. thesis, Department of Computer
Science, North Carolina State University, Raleigh, NC.

10. Bhat, G., Cleavel, R., & Groce, A. (2001). Efficient model checking via Büchi tableau auto-
mata. In G. Berry, H. Comon, & A. Finkel (Eds.), CAV, LNCS (Vol. 2102, pp. 38–52). Hei-
delberg: Springer.

11. Castelfranchi, C. (1995). Commitments: From individual intentions to groups and organizations. In V.
R. Lesser & L. Gasser (Eds.), ICMAS (pp. 41–48). Cambridge, MA: MIT Press.

12. Cheng, Z. (2006). Verifying commitment-based business protocols and their compositions: Model
checking using promela and spin. Ph.D. thesis, North Carolina State University, Raleigh, NC.

13. Chesani, F., Mello, P., Montali, M., & Torroni, P. (2009). Commitment tracking via the reactive event
calculus. In C. Boutilier (Ed.), IJCAI, Pasadena, CA, pp. 91–96.

14. Chopra, A. K., & Singh, M. P. (2009). Multiagent commitment alignment. In C. Sierra, C. Castelfranchi,
K. S. Decker, & J. S. Sichman (Eds.), International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Budapest, pp. 937–944.

15. Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking. Cambridge, MA: MIT Press.
16. Colombetti, M. (2000). A commitment-based approach to agent speech acts and conversations. In

Proceedings of the Fourth International Conference on Autonomous Agents, Workshop on Agent
Languages and Conversation Policies, Barcelona, pp. 21–29.

17. Desai, N., Cheng, Z., Chopra, A. K., & Singh, M. (2007). Toward verification of commitment protocols
and their compositions. In E. H. Durfee, M. Yokoo, M. N. Huhns, & O. Shehory (Eds.), AAMAS
(pp. 144–146). Richland, SC: IFAAMAS.

18. Desai, N., Chopra, A. K., & Singh, M. P. (2009). Amoeba: A methodology for modeling and
evolution of cross-organizational business processes. ACM Transaction on Software Engineering and
Methodology, 19(2), 1–40.

19. Dong, J., Peng, T., & Zhao, Y. (2010). Automated verification of security pattern compositions. Infor-
mation & Software Technology, 52(3), 274–295.

20. El-Menshawy, M., Bentahar, J., & Dssouli, R. (2010). Modeling and verifying business interac-
tions via commitments and dialogue actions. In P. Jedrzejowicz, N. T. Nguyen, R. J. Howlett, &
L. C. Jain (Eds.), KES-AMSTA (2), LNCS (Vol. 6071, pp. 11–21). Heidelberg: Springer.

21. El-Menshawy, M., Bentahar, J., & Dssouli, R. (2010). Verifiable semantic model for agent interactions
using social commitments. In M. Dastani, A. E. Fallah-Seghrouchni, J. Leite, & P. Torroni (Eds.),
LADS, LNCS (Vol. 6039, pp. 128–152). Heidelberg: Springer.

22. El-Menshawy, M., Bentahar, J., & Dssouli, R. (2011). Symbolic model checking commitment proto-
cols using reduction. In A. Omicini, S. Sardina, & W. Vasconcelos (Eds.), DALT, LNAI (Vol. 6619,
pp. 185–203). Heidelberg: Springer.

23. El-Menshawy, M., Benthar, J., Qu, H., & Dssouli, R. (2011). On the verification of social commitments
and time. In Proceedings of the 10th International Conference on AAMAS, Taipei, pp. 483–890.

24. Emerson, E. A., Mok, A. K., Sistla, A. P., & Srinivasan, J. (1992). Quantitative temporal reasoning. Jour-
nal of Real-Time Systems, 4(4), 331–352.

25. Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. Cambridge,
MA: MIT Press.

26. Fornara, N., & Colombetti, M. (2002). Operational specification of a commitment-based agent com-
munication language. In Proceedings of the 1st International Conference on AAMAS (pp. 535–542).
New York: ACM.

27. Fornara, N., Viganò, F., Verdicchio, M., & Colombetti, M. (2008). Artificial institutions: A model of
institutional reality for open multi-agent systems. Artificial Intelligence and Law, 16(1), 89–105.

28. Gerard, S. N., & Singh, M. P. (2011). Formalizing and verifying protocol refinements. ACM Transactions
on Intelligent Systems and Technology, 2(3) (in press).

29. Jamroga, W., & Ågotnes, T. (2007). Modular interpreted systems. In Proceedings of the 6th International
Conference on AAMAS (pp. 131:1–131:8). New York: ACM.

30. Jones, A. J. I., & Parent, X. (2007). A convention-based approach to agent communication lan-
guages. Group Decision and Negotiation, 16(2), 101–141.

31. Jones, N. D. (1975). Space-bounded reducibility among combinatorial problems. Computer and System
Sciences, 11(1), 68–85.

123

Auton Agent Multi-Agent Syst (2013) 27:375–418 417

32. Kova, M., Bentahar, J., Maamar, Z., & Yahyaoui, H. (2009). A formal verification approach of con-
versations in composite web services using NuSMV. In H. Fujita & V. Marík (Eds.), SoMeT (Vol. 199,
pp. 245–261). Amsterdam: IOS Press.

33. Kozen, D. (1977). Lower bounds for natural proof systems. In Proceedings of the 18th IEEE Symposium
on Foundation of Computer Science, Providence, RI, pp. 254–266.

34. Kupferman, O., Vardi, M., & Wolper, P. (2000). An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2), 312–360.

35. Lomuscio, A., Pecheur, C., & Raimondi, F. (2007) Automatic verification of knowledge and time
with NuSMV. In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(pp. 1384–1389). San Francisco: Morgan Kaufmann.

36. Lomuscio, A., Penczek, W., & Qu, H. (2010). Partial order reductions for model checking temporal-
epistemic logics over interleaved multi-agent systems. Fundamenta Informaticae, 101(1–2), 71–90.

37. Lomuscio, A., Qu, H., & Raimondi, F. (2009). MCMAS: A model checker for the verification of
multi-agent systems. In A. Bouajjani & O. Maler (Eds.), CAV, LNCS (Vol. 5643, pp. 682–688). : Springer.

38. Lynch, N. (1977). Log space recognition and translation of parenthesis languages. Journal of
ACM, 24(4), 583–590.

39. Mallya, A. U., & Huhns, M. N. (2003). Commitments among agents. IEEE Internet Comput-
ing, 7(4), 90–93.

40. Mallya, A. U., & Singh, M. P. (2007). An algebra for commitment protocols. Autonomous Agents
and Multi-Agent Systems, 14(2), 143–163.

41. Mallya, A. U., Yolum, P., & Singh, M. P. (2004). Resolving commitments among autonomous agents.
In Dignum F. (Ed.), ACL 2003, LNCS (Vol. 2922, 166–182). Heidelberg: Springer.

42. Pecheur, C., & Raimondi, F. (2007). Symbolic model checking of logics with actions. In S. Edelkamp,
& A. Lomuscio (Eds.), Model checking and artificial intelligence (MoChArt 2006), LNCS (Vol. 4428,
pp. 113–128). Heidelberg: Springer.

43. Penczek, W., & Lomuscio, A. (2003). Verifying epistemic properties of multi-agent systems via
bounded model checking. Fundamenta Informaticae, 55(2), 167–185.

44. Savitch, W. J. (1970). Relationships between nondeterministic and deterministic tape complexities. Com-
puter and System Sciences, 4(2), 177–192.

45. Searle, J. R. (1969). Speech acts: An essay in the philosophy of language. Cambridge: Cambridge
University Press.

46. Singh, M. P. (1996). A conceptual analysis of commitments in multi-agent systems. Technical Report,
North Carolina State University, Raleigh ,NC.

47. Singh, M. P. (1998). Agent communication languages: Rethinking the principles. IEEE Com-
puter, 31(12), 40–47.

48. Singh, M. P. (1999). An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law, 7(1), 97–113.

49. Singh, M. P. (2000). A social semantics for agent communication languages. In F. Dignum &
M. Greaves (Eds.), Issues in agent communication, LNCS (Vol. 1919, pp. 31–45). Heidelberg: Springer.

50. Singh, M. P. (2008). Semantical considerations on dialectical and practical commitments. In D. Fox &
C. P. Gomes (Eds.), AAAI (pp. 176–181). Menlo Park, CA: AAAI Press.

51. Singh, M. P., Chopra, A. K., & Desai, N. (2009). Commitment-based service-oriented architecture. IEEE
Computer, 42(11), 72–79.

52. Sirbu, M. A. (1997). Credits and debits on the Internet. IEEE Spectrum, 34(2), 23–29.
53. Telang, P., & Singh, M. (2009). Enhancing tropos with commitments: A business meta-model and

methodology. In A. Borgida, V. K. Chaudhri, P. Giorgini, & E. S. K. Yu (Eds.), Conceptual modeling:
Foundations and applications, LNCS (Vol. 5600, pp. 417–435). Heidelberg: Springer.

54. Telang, P. R., & Singh, M. P. (2011). Specifying and verifying cross-organizational business models:
An agent-oriented approach. IEEE Transactions on Services Computing, 4 (in press).

55. Torroni, P., Chesani, F., Mello, P., & Montali, M. (2010). Social commitments in time: Satisfied
or compensated. In M. Baldoni, J. Bentahar, van M. B. Riemsdijk, & J. Lloyd (Eds.), DALT,
LNCS (Vol. 5948, pp. 228–243). Heidelberg: Springer.

56. Vardi, M. Y., & Wolper, P. (1994). Reasoning about infinite computations. Information and Compu-
tation, 115(1), 1–37.

57. Venkatraman, M., & Singh, M. P. (1999). Verifying compliance with commitment protocols: Enabling
open web-based multiagent systems. Autonomous Agents and Multi-Agent Systems, 2(3), 217–236.

58. Verdicchio, M., & Colombetti, M. (2003). A logical model of social commitment for agent commu-
nication. In Proceedings of the 2nd International Conference on AAMAS (pp. 528–535). New York:
ACM.

123

418 Auton Agent Multi-Agent Syst (2013) 27:375–418

59. Winikoff, M. (2007). Implementing commitment-based interactions. In E. Durfee, M. Yokoo, M. Huhns,
& O. Shehory (Eds.), AAMAS, Honolulu, HI, pp. 873–880.

60. Wooldridge, M. (2002). An introduction to multi-agent system. New York: Wiley.
61. Wooldridge, M. (2009). An introduction to multiagent systems. New York: Wileys.
62. Xing, J., & Singh, M. P. (2003). Engineering commitment-based multi-agent systems: A temporal

logic approach. In Proceedings of the 2nd International Conference on AAMAS (pp. 891–898). New
York: ACM.

63. Yolum, P. (2007). Design time analysis of multi-agent protocols. Data and Knowledge Engineer-
ing, 63, 137–154.

64. Yolum, P., & Singh, M. P. (2002). Commitment machines. In J.-J. Ch. Meyer & M. Tambe (Eds.), ATAL,
LNCS (Vol. 2333, pp. 235–247). Heidelberg: Springer.

65. Yolum, P., & Singh, M. P. (2002). Flexible protocol specification and execution: Applying event
calculus planning using commitment. In Proceedings of the 1st International Conference on AAMAS
(pp. 527–534). New York: ACM.

66. Yolum, P., & Singh, M. P. (2004). Reasoning about commitments in the event calculus: An approach for
specifying and executing protocols. Annals of Mathematics and Artificial Intelligence, 42(1–3), 227–253.

123

	Reducing model checking commitments for agent communication to model checking ARCTL and GCTL*
	Abstract
	1 Introduction
	2 Interpreted systems and CTLC+
	2.1 Interpreted systems
	2.2 CTLC+ logic

	3 Model checking CTLC+ using reduction
	3.1 Reducing CTLC+ into ARCTL
	3.2 Reducing CTLC+ into GCTL*
	3.3 Complexity analysis

	4 Case studies
	4.1 Verifying NB protocol
	4.2 Verifying CN protocol

	5 Related literature
	5.1 Formal semantics of commitments
	5.2 Formal verification of commitment-based protocols

	6 Conclusion
	Acknowledgments
	References

