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Abstract Computational trust and reputation models have been recognized as one of the
key technologies required to design and implement agent systems. These models manage
and aggregate the information needed by agents to efficiently perform partner selection in
uncertain situations. For simple applications, a game theoretical approach similar to that used
in most models can suffice. However, if we want to undertake problems found in socially
complex virtual societies, we need more sophisticated trust and reputation systems. In this
context, reputation-based decisions that agents make take on special relevance and can be as
important as the reputation model itself. In this paper, we propose a possible integration of
a cognitive reputation model, Repage, into a cognitive BDI agent. First, we specify a belief
logic capable to capture the semantics of Repage information, which encodes probabilities.
This logic is defined by means of a two first-order languages hierarchy, allowing the speci-
fication of axioms as first-order theories. The belief logic integrates the information coming
from Repage in terms if image and reputation, and combines them, defining a typology of
agents depending of such combination. We use this logic to build a complete graded BDI
model specified as a multi-context system where beliefs, desires, intentions and plans interact
among each other to perform a BDI reasoning. We conclude the paper with an example and
a related work section that compares our approach with current state-of-the-art models.
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1 Introduction

Computational trust and reputation models have been recognized as key to design and imple-
mentation multi-agent systems [28]. These models manage and aggregate the information
needed by agents to efficiently select partners in uncertain situations. In recent years, several
models have been developed [43]. For simple applications, a game theoretical approach sim-
ilar to that used in most models can be sufficient. However, if we want to undertake problems
found in socially complex virtual societies, more sophisticated trust and reputation systems
based on solid cognitive theories are needed. One such cognitive theory is defined in [9].

The theory [9] proposes that agents evaluate the performances of other agents according
to certain criteria. These evaluations (social evaluations from now on) can be believed by
the agents, communicated or both believed and communicated. According to [9] a social
evaluation that is believed is an image, while a social evaluation that circulates in the society,
is reputation. Therefore, an agent can have a good image of agent A as a seller, and at the
same time acknowledges that A has a bad reputation as a seller. Furthermore, at this level, the
theory describes a typology of possible decisions that autonomous agents can make involving
social evaluations:

— Epistemic decisions cover the dynamics of beliefs regarding image and reputation, or in
other words, decisions about updating and generating social evaluations.

— Pragmatic—strategic decisions are decisions of how to behave with potential partners
using social evaluations information, and thus, how agents use them to reason.

— Memetic decisions refer to the decisions of how and when to spread social evaluations.

From a computational point of view, not all current state-of-the-art reputation models make
a distinction between image and reputation, but all of them compute social evaluations. In
fact, the field of reputation models has been mainly focused on epistemic decisions, while
little attention has been paid to pragmatic—strategic and memetic decisions. Indeed, agents’
decisions about how to use reputation information and how and when to spread them have
been designed ad-hoc lacking any systematic or formal procedure. As mentioned before,
this solution may suffice for simple environments, but in more complex societies pragmatic—
strategic and memetic decision can be as important as epistemic decisions, and need more
formal approaches as well.

This paper focuses on pragmatic—strategic decisions. Here the Repage reputation model is
chosen as a paradigmatic example, because it is based on the cognitive theory defined in [9],
to be integrated in a BDI (Belief, Desire, Intention) agent, providing then a formal integration
of social evaluations in the agents’ reasoning and decisions. To do so, in Sect. 2 we introduce
the concepts of social evaluation in the framework of the cognitive theory of reputation that
we use in the paper, and how Repage deals with these aspects. In Sect. 3 we define the belief
logic of the agents (L p¢) as many-sorted first-order logic to capture the semantics of Repage
information, which embraces probabilities. We use this logic in Sect. 4 to ground image and
reputation Repage predicates in terms of beliefs. We highlight a typology of agents depending
on the interaction between image and reputation. In Sect. 5 we finally specify the complete
BDI agent architecture as a multi-context system whose logical reasoning process uses L gc.
In Sect. 6 we analyze some relevant reasoning points by presenting an example. In Sect. 7
we state the related work and compare some existing trust and reputation models with our
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BDI + Repage system. Finally, in Sect. 8 we conclude our analysis and propose the future
work.

2 Social evaluations: image and reputation

If we want to define an agent architecture capable of capturing the notions of reputation and
use it in a classical practical reasoning, we need first to get in touch with the view that Conte
and Paolucci introduced in [9]. This cognitive theory of reputation enhances what should be
understood as reputation by contrasting it with a very related construct: image. According to
this theory, both image and reputation are social evaluations. Image though, is a simple eval-
uative belief that tells how good or bad a given target results to be in a given context. Instead,
reputation is a metabelief that acknowledges the existence of an evaluation that circulates in
the society. Thus, when A accepts that agent B has a bad reputation as a car driver, A does
not necessary believe such evaluation. It only believes that B is reputed to be bad as a car
driver.

In the following two subsections we get in touch with these two constructs as defined in
[9], providing a conceptual vision from a cognitive perspective.

2.1 Image

Image is an evaluative belief, a belief that describes an evaluation of a target, that can be a
single agent or supra-agent (like groups or institutions), towards a specific context. In fact,
from both [9] and [30] an image requires the context to be a goal that the agent wants to
achieve. Hence, an agent A evaluates another agent B when A thinks that B is good or bad
for achieving the goal. We will see how this constraint is relaxed when considering Repage
[40], the computation model inspired is this cognitive theory and the base for our work. For
instance, in the most simplified scenario, an agent can hold a very good image of John in the
context of obtaining 2 boxes of high-quality wine.

The theory describes three sets of agents that participate in a given social evaluation as
image [9]:

— Evaluators: A nonempty set of agents that share the evaluation. Hence, they must share
the same goal.

— Targets: A nonempty set of agents or supra-agents that are evaluated by the evaluators.

— Beneficiaries: A nonempty set of agents that use the evaluations, and thus, also share the
same goal.

Note that the sets of evaluators and beneficiaries do not necessary are the same. This is very
clear in online reputation mechanism, like eBay [11], where buyers evaluate sellers and these
evaluations are used by other buyers.

2.2 Reputation

The theory considers reputation as a belief about others’ evaluations. From a broad sense,
it can be considered a metabelief. The theory analyses the roles of agents participating in a
given social evaluation as reputation [9]:

— Evaluators: A nonempty set of agents that share the evaluation. Hence, they must share
the same goal.
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— Targets: A nonempty set of agents or supra-agents that are evaluated by evaluators.

— Beneficiaries: A nonempty set of agents that use the evaluations, and thus, also share the
same goal.

— Third Parties: A nonempty set of agents that acknowledge that some evaluators share the
evaluation.

The first three sets are the same as for image. Here though, the theory introduces a third
party agents group. This group shares the belief that a group of evaluators is endowed with
the social evaluation. Third parties are the holders of the reputation, and often they com-
pletely include the set of evaluators. Third parties are those aware of the effects of reputation
transmission and the ones that transmit reputation (so called gossip).

2.3 Towards the reputing agent

From the individual perspective, agents can be partially aware of such sets and can in fact act
in all the roles.! We assume that our cognitive agent i is endowed with goals and beliefs and
therefore, is able to generate evaluations about other agents. Thus, i acts as evaluator when
performing epistemic decisions. As well, i can act as beneficiary when receives evaluations
from a set of agents S. In this case, i knows that the agents in S act as evaluators. Also, when
i decides to send its own evaluations to a set of agents D, i is aware that agents in D may
act as beneficiaries, and that they will know that i is an evaluator. Curiously, i may not be
aware that she is actually being targeted by others, but must be aware of such possibility and
the consequences of achieving bad evaluations. Because of that, cognitive agents have the
motivation to act accordingly to well-established social behaviors.

From the above conceptualization, the set of third-parties and the set of evaluators do not
necessary coincide. In fact, only designers of virtual societies could completely discriminate
both sets. In this paper, we focus on agents that can act both as evaluators and third-parties.
We deal with an agent architecture that is capable of evaluating and managing other agents’
behaviors (evaluator) and capable as well to acknowledge reputation (third-party agent). We
tackle then situations in which the set of evaluators is included in the set of third-parties.

From this perspective, when an individual agent accepts or acknowledges a given repu-
tation it indicates that the agent assumes that the nested evaluation circulates in the society,
that most of the members of the society (third-parties in this case) would acknowledge the
existence of a circulating voice about the target. In the same way than agents may share a
given evaluation with others without being aware of others existence [9], third-parties may
share a given reputation (a metabelief).

At the individual level, when a third party transmits reputation information about a given
target to a set of agents, it does not necessary believe the corresponding image of the target.
This is because reputation moves to a level above of image, the belief about the circulation
of an evaluation.

In general, distributed reputation and trust models deal with agents only partially endowed
with the capabilities above. Instead, the Repage system [40] addresses them in a quite com-
plete way, since its theoretical framework comes from the cognitive theory of reputation
defined in [9] that we have defined briefly in this section. Repage is designed to be part of
agents architectures as a system that computes image and reputation information (epistemic

! This is not necessary always the case. We can think about agents societies whose members are buyers or
sellers (not both), and in which only buyers perform evaluations of sellers. In this case, the set of evaluators
is the set of buyers, and the set of targets, the set of sellers. In more generic situations though targets and
evaluator can coincide.
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decisions), but does not tell anything about how to use them in a practical reasoning process,
which leads to pragmatic—strategic decisions. As said before, the latter is the main topic of
the paper. In the next section we explain how Repage models social evaluations as image and
reputation, detailing the information involved.

2.4 Social evaluations in Repage

Social evaluations in Repage incorporate three elements: the target, the context, and the value
of the evaluation [35,40]. For instance, an evaluation may say that an agent A (target), as
a car driver (context or role) is very good (value). The original implementation of Repage
maintains the value associated to a social evaluation as a tuple of five positive values (sum-
ming to one), that we call weights: [wy, ..., ws], defining a probabilistic distribution. Each
value has an associated label in a rating scale: Very Bad (V B), Bad (B), Neutral (N), Good
(G) and Very Good (V G). The following predicates capture the information that Repage
generates in terms of image and reputation. Let i be the evaluator agent that uses Repage,
J atarget agent, and r a context or role:

— Img(j, r, [wy, wa,...]): Represents the image predicate that the evaluator i has about j
in the role » (we assume that agent i is always the holder of the predicate, the evaluator,
and thus we omit it from the predicate). For instance,

Img(j, seller,[0.8,0.2,0,0,0])

indicates that the image that the evaluator has about j is V B (very bad) with a weight
of 0.8 and B (bad) with a weight of 0.2. Furthermore, the linguistic labels must be con-
textualized in each role. For instance, in the role seller, V B may indicate that the quality
of the obtained product after interacting with j is below 20, and B that the quality goes
from 20 to 40. Then, agent i may know that after interacting with j in the role seller,
that i will obtain a product of quality below 20 with a probability of 0.8, and a product
of quality between 20 and 40 with a probability of 0.2. To compute such distribution
Repage uses the history of interactions of i with j in the role seller, and third-party image
communications from other agents. Because of that, image predicates tend to indicate
what the agent believes, even though this is not necessary true, because some agents may
combine such information with reputation predicates (see Sect. 3).

— Rep(j,r, [wy, wa,...]): Represents a reputation predicate. The conceptualization of the
predicate is the same as for image. However, in this case Repage only uses communicated
reputations to compute the distribution. For instance,

Rep(j, seller, [0.8,0.2,0,0, 0])

indicates that the evaluator knows that the reputation of j as a seller is V B (very bad)
with a weight of 0.8 and B (bad) with a weight of 0.2. When the labels are contextualized
and since Repage only uses communicated reputations to compute them, this predicate
indicates that i is aware that most of the agents in the society say (in the sense of gos-
siping) that after interacting with j as a seller one obtains a product of quality below 20
with a probability of 0.8, and a quality between 20 and 40 with a probability of 0.2.

As said before, Repage follows the idea that image and reputation are distinct objects, and
offers a complete specification on how such predicates are computed from communications
and direct experiences. Appendix A shows briefly the internals of Repage, although we refer
to [40] for a detailed explanation.
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2.5 Repage in logic-based agents

In this section we have explained what we understand for social evaluation and how the
Repage system captures them in terms of image and reputation predicates. Aforesaid, both
concepts are evaluative beliefs and therefore the information is part of the belief base of the
agent. If we want logic-based agents to use this information these higher-order predicates
must be grounded to combine them with other beliefs (not coming from the Repage system)
and with the desires and intentions of the agent. In the next section we define the belief logic
that our BDI agent architecture uses to perform logical reasoning over beliefs that model
social evaluations coming from Repage, and beliefs that model the general knowledge that
the agent has gathered. The main characteristic of the logic is that it can deal with several
independent probabilistic distributions.

3 Defining the belief logic

In this section we describe the language L pc to express agents’ beliefs and to reason about
them. The language must be able to capture the semantics that Repage predicates bring over
formulas. Since a social evaluation in Repage describes a behavior of a target agent in a role
as a probability distribution, L ¢ must capture probabilities over some underlying language
of the agents’ ontology.

Agents also need to perform basic epistemic inferences. In general, agents observe and
interact with the environment, incorporating knowledge to their respective bases. Obviously,
we focus on the knowledge that comes from Repage system, which provides evaluations in
terms of probabilities and that can be combined with other knowledge of the agent through
logical inferences. This allows the agents to combine such knowledge with their desires to
finally generate intentions and act in consequence to fulfill them. The idea is that L pc must
capture all the knowledge that agents believe at a given instant of time.

To define L pc we use the approach described in [19] where languages are structured as
a hierarchy. A different approach that also uses hierarchies of languages is the one taken by
[17], that could be alternatively used for our purposes. Both works suggest that first-order
logic is enough to define consistent theories of propositional attitudes for rational agents.
In these papers, formulas ¢ from a certain propositional language A can be embedded into
another language B as constants for the language, usually written as [¢]. For instance, we
can have a language that describes possible weather events in cities: Rain(Barcelona),
Sunny(Rome) A Sunny(Berlin), and another language can talk about these events in terms
of date/time: Forecast(10/11/2010, [Rain(Barcelona)l).

3.1 Preliminaries: an intuitive idea

We want to illustrate with an example the kind of reasoning we are expecting from the logic
of belief. First, we recall that the Repage system provides probability distributions over the
different roles that an agent plays. For example, in a scenario with buyers and sellers, a buyer
can decide to evaluate sellers in two roles: the quality of the products they sell and the delivery
time of the products.

Role Possible outcomes
Seller(Quality) VeryGood_Quality Good_Quality Neutral_Quality Bad_Quality VeryBad_Quality
Seller(dTime)  dTime <5 5<dTime <10 10 <dTime
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Note that the possible outcomes for each role cover all the possibilities. How such informa-
tion is finally codified as beliefs is one of the contributions of this work and it is explained in
detail later. For the example, it is enough to realize that part of the information that the agent
manages comes from an evaluation process that the Repage provides, while other comes
from the general knowledge of the agent. This is what justifies such integration.

In our model, the desires of our agent i lead the practical reasoning process. The main
idea is that for each desire, the belief logic should determine which actions allow the agent to
achieve the desire and with which probability. For instance, agent i can desire the following
with a strength of 0.9

(D+(VeryGood_Quality V Good_Quality) ANdTime <5 A payLess(500), 0.9)

indicating that i desires to obtain a very good or good quality product delivered in less that
5 days and paying less than 500. Then, the logic of beliefs should provide which actions are
capable of producing it. In concrete we would like the system to provide beliefs like

B(buy(Bob), (VeryGood_Quality v Good_Quality)
AdTime <5 A paidLess(500), 0.45) (1)

B(buy(Alice), (VeryGood_Quality Vv Good_Quality)
AdTime <5 A paidLess(500), 0.8) 2)

B(buy(Charlie), (VeryGood_Quality v Good_Quality)
AdTime <5 A paidLess(500), 0.4) 3)

For instance, (1) indicates that after executing the action buy(Bob), agent i will obtain
(VeryGood_Quality v Good_Quality) AdTime <5 A paidLess(500)

with a probability of 0.45. The belief logic should deduce such information from more simple
beliefs. For example, to deduce (1) agent i can hold the following predicates:

B(buy(Bob), (VeryGood_Quality v Good_Quality), 0.9) 4)
B(buy(Bob),dTime < 5,0.5) (®)]
B(buy(Bob), paidLess(500), 1) 6)

Our approach suggests that formulas like (4) and (5) are generated from Repage. Note that
(4) comes from the evaluation that agent i has about Bob in the role Seller (Quality), while
(5) from the evaluation of the same agent Bob in the role Seller (dTime). The key idea is that
Repage gives a probability distribution for each agent and role, and such probabilities can be
combined under the assumption that distributions are stochastically independent. Then, the
system should be able to infer from (4) and (5) the following:

B(buy(Bob), (VeryGood_Quality v Good_Quality) ANdTime < 5,0.45) (7)

where the probability of 0.45 = 0.9 x 0.5 is calculated following the standard probability
computation for independent events. Also, the system should know that if a formula is always
true (probability 1), like the case of (6) and it does not belong to any particular distribution,
it can be combined using conjunction, to finally generate (1). Also, the formula (6) should
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be calculated from the knowledge that i has about how much it cost to buy at Bob. In this
sense, it is feasible and reasonable to assume that i should deduce (6) from:

B(t, buy(Bob), paid(350), 1) 8)
B(t, paid(350) — paidLess(500), 1) (O]

where ¢ stands for an empty action. The beliefs are able then to codify knowledge that always
holds after an action is executed (like formula (8)) and knowledge that always holds inde-
pendently from the action (like formula (9)). If we want to keep an uniform notation, both
kinds of formulas can be codified with probability 1.

The previous example illustrates the kind of reasoning we are looking for and the properties
of the belief logic, which we enumerate in the following lines:

(i) Evaluations from Repage codify the knowledge about the probabilities. This includes
not only the assignment of probabilities for each agent and role, but the correct con-
struction of the probability spaces. For instance, regarding Bob androle Seller (dTime)
the following beliefs could be generated:

B(buy(Bob),dTime < 5,0.5)
B(buy(Bob),5 < dTime < 10,0.3)
B(buy(Bob), 10 < dTime, 0.2)
B(buy(Bob),dTime < 10, 0.8)
B(buy(Bob),dTime <5V 10 < dTime, 0.7)
B(buy(Bob),5 < dTime, 0.5)
B(buy(Bob),dTime <10V 10 < dTime, 1)

(ii)) Repage provides evaluations for each agent and role in terms of image and reputation,
which define two probabilistic distributions over the same agent and role that must be
combined to finally generate beliefs. To avoid inconsistencies, we introduce besides
the belief predicate B two more predicates, E (image) and S (reputation). Through the
appropriate axioms we combine them to finally generate beliefs that do not fall into
inconsistencies.

(iii) When combining two formulas, in order to preserve a correct semantics and accuracy
of the probabilities, we only can ensure that the resulting probability is correct when
such formulas refer to the same action (so, the same agent) and talk about different
roles, which we assume are stochastically independent. For this we need to codify into
the belief predicates also the roles that are involved in the formula, and permit the
combination of beliefs only when the intersection of such set of roles is empty. For
instance, following the above example, the beliefs should be codified in the following
way:

B(buy(Bob),dTime < 5,0.5, {Seller(dTime)})
B(buy(Bob),5 < dTime < 10,0.3, {Seller(dTime)})
B(buy(Bob), 10 < dTime, 0.2, {Seller (dTime)})
B(buy(Bob),dTime < 10,0.8, {Seller(dTime)})
B(buy(Bob),dTime <5V 10 < dTime, 0.7, {Seller (dTime)})
B(buy(Bob),5 < dTime, 0.5, {Seller(dTime)})
B(buy(Bob),dTime <10V 10 < dTime, 1, {Seller(dTime)})

Then the belief

B(buy(Bob),dTime < 5,0.5, {Seller(dTime)})
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can be combined with
B(buy(Bob), (VeryGood_Quality v Good_Quality), 0.9, {Seller (Quality)})

because the intersection of the respective set of roles is empty and the action is the same. The
resulting conjunction could be:

B(buy(Bob), (VeryGood_Quality v Good_Quality) A dTime
< 5,0.45, {Seller(Quality), Seller (dTime)})

Note that we could also combine them with a disjunction:

B(buy(Bob), (VeryGood_Quality Vv Good_Quality) Vv dTime
<5,0.95, {Seller(Quality), Seller (dTime)})

where 0.95 = 0.9 + 0.5 — 0.45 is calculated following standard probabilistic computations.
In both cases the set of roles is the same, since it is an indication of the roles that effect the
formula. This mechanism prevents the logic to combine formulas which are not independent,
so that the intersection of their respective set of roles is not empty.

The following subsection formalizes the syntax and semantics of the belief logic Lpc.

3.2 L pc syntax and semantics

Following [19] we define two languages. The first one, denoted by Lpsic, is the object lan-
guage. Lp,sic 1s a classical propositional language that contains the symbols needed by the
agents for writing statements about the application domain. The second language, denoted
by Lpc, is the language the agents use to reason about beliefs, image and reputation. L gc
is a first-order many-sorted language that contains constant symbols for the formulas of the
language Lpgsic-

For instance, in the example stated above, Lp,sic could be composed of the set of
elementary propositions that we use to describe the possible outcomes of each role:
VeryGood_Quality, Good_Quality, ..., dTime < 5,5 < dTime < 10, ... and the
propositions Paid(X) and PaidLess(X) for each rational number X. Then, the language
is constructed with the standard syntax of propositional logic that includes the symbols —,
A, V and — necessary to express the base domain, as shown in the example.

Lpc is a first-order many-sorted language and contains four sorts:

— Sa: the sort representing actions.

— Sr: the sort representing formulas of the language Lpgsic-
— Sg: the sort representing the power set of roles.

— Sp: the sort representing probability values.

We use different letters for variables of different sorts of Lgc:

— a,ai,as, ... for variables of sort Sy
- X, Xj, X2, ... for variables of sort Sg
- r,r1,r,...for variables of sort Sg

- P, P1, P2, ... for variables of sort Sp.

Constants and predicate symbols of L p¢ are identified by their sorts. The sort S4 includes a
finite set of constant symbols C4 to denote actions. It also contains the constant ¢ to denote
the special empty action. The sort S includes a set of constant symbols Cr to denote all
formulas of the language Lj,si.. The set Cr contains constants of the form [0 ], where o is
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a formula of Lp,sic. The sort Sp includes a set of constant symbols Cp to denote rational
numbers in the unit interval [0, 1] N @. For each p € [0, 1] N @ we introduce the constant
P in the sort. However, in general, for the sake of clarity, we omit the overline notation for
rational constants. Finally, the sort Sk includes a finite set of constant symbols Cg to denote
finite sets of roles.

Before we proceed with the introduction of the L p¢ syntax, it is important to remark two
questions with respect to our notation. On the one hand, note that the symbols x, x1, x2, ...
are for variables of sort Sr in general, while the symbols [¢] are constants of sort Sg that
denote only formulas of the language Ljqsic. On the other hand, given a finite set of roles
8 ={Ry, ..., R}, wehave in Cg aconstant, say ¢, denoting this set of roles. When we intro-
duce the axiomatization of the logic, we use the notation &(c) to refer to the set § denoted by
constant c. For the sake of clarity we use sometimes the set of roles instead of the constant
in some axioms. For instance, if the constant ¢ denotes the set of roles

{seller(quality), seller(dTime)}

we will write the latter instead of c.

Now we specify the predicate symbols corresponding to various sorts. In the notation
introduced below, the predicate symbol B, for instance, is written B(Sa, Sr, Sp, Sg). This
means that B is a predicate symbol of arity 4, with first argument in S4, second argument
in S, third argument in Sk and fourth argument in Sp. The language Lpc contains the
following predicate symbols:

— Belief Predicate: B(Sa, Sr, Sp, Sg).
— Image Predicate: E(Sa, Sr, Sp, Sr).
— Reputation Predicate: S(Sa, S, Sp, Sg)-

Lpc contains various function symbols, that allow us to deal with parts of the agents’
formulas and to express the reasoning of the agents. The functions applied to the sort Sg are
one unary function neg : Sy — Sp for the negation of formulas, and the binary functions
con : Sp x Sp — SF for conjunctions and imp : Sp x Sp — SF for implications.

For instance, if [¢], [¢] € Cr then imp([¢], [¢]) is interpreted as [¢ — ¢],
con([¢], [¢]) as [¢ A ¢], and neg([¢]) as [—¢]. The expression or(x, y) stands for
=(con(—(x), —=(y))). At first sight, all these functions can be regarded as purely syntac-
tic transformations, but they are important in our construction because they allow us to write
sentences that talk about parts of the formulas of Lpggic-

The semantics of L g is the usual for a first-order many-sorted language. In this section
we have presented only a few definitions and notation. A detailed introduction to the syntax
and semantics of first-order many-sorted logics can be found in [12].

3.3 The basic axioms

In this section we define a theory I" over L, i.e. the axioms that agents use to reason. The
theory contains the minimal formulas to describe the behavior of the predicates introduced
above. We assume that the function product, sum and subtraction are defined for rational
constants: * : Sp x Sp — Sp where % € {-, 4+, —}. Remark that we are not giving an
axiomatization of the logic, but only a set of axioms for a theory (a set of sentences in this
first-order language closed under the logical consequence relation). For that reason we do not
need to introduce inference rules. We assume that the deductive system is given (for instance,
as defined in [12]).
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RA: Conjunction

Vaxixap1parir2(B(a, x1, p1,71) A B(a, x2, p2,r2) — B(a, con(x1, x2), p1 - p2,73))

when &(r;) N &(rp) = @ and r3 denotes the union of the two sets of roles &(r1) N &(r2).
Intuitively speaking, the axiom indicates that when two formulas talk about independent
distributions (so, disjoint set of roles) we can ensure that the joint probability is the product.
MP: Modus ponens

Vaxyxar(B(a, x1, 1,7) A Bi(a, imp(x1, x2), 1,r) = Bj(a, x2,1,71))

Note that this axiom (formulated as in [19]) indicates that agents use modus ponens when
reasoning with formulas of the object language Lpgsic. It is an axiom of a theory, not of the
logic. We assume an standard axiomatization of many-sorted first-order logic (cf. [12]) in
which the modus ponens rule holds for every formula of the language.

NE: Necessity axiom for actions

Yaxr(B(, x,1,7r) — B(a,x,1,1))

The axiom ensures that when the agent believes that a formula is true with a probability 1,
after whichever action is performed, the formula will be also true.
CO: Completeness of probability

VYax(B(a,x, p,r) — B(a,neg(x),1 — p,r))

This ensures that when an agent knows the probability of a formula, also knows its com-
plementary. The axiom is interesting because it states that a formula and its complementary
cover all the probabilistic space.

Moreover, note that given e € C 4 aconstantdenoting an action, [¢1], [¢2] € CF,d;, d> €
Cp denoting rational numbers and ¢, ¢ € Cg denoting sets of roles, when B(e, [¢1], d1, c1)
and B(e, [¢2], da, c2) hold, &(c1)N&(c2) = ¥, and c¢3 € Cr is a constant denoting the union
of sets of roles & (c1) U& (c2), the previous axiomatization accomplishes the additive property
of probabilistic spaces’:

B(e, con([e11, [921), d1, c3) A B(e, con([@1], neg([¢21), da, c3))
— B(e, [@11,d) +da, c1)

Also, under the same condition the disjunction of independent formulas ensures the standard
calculus of probabilities:

Ble, [¢11.d1, c1) A Ble, [¢21, da, c2) A Ble, con([e11, [921), d3, c3)
— Ble,or([o1], [¢21), d1 +dr — d3, ¢3)
GBEL: Ground Beliefs

B(ei, [¢11, 1, cp)

B(En, [¢n1 ’ 1! C(Z))

Those are the beliefs that describe the general knowledge of the agent. Each gy is an action
(possibly also the empty action ¢), and each [¢;] denotes a proposition, a conjunction of
propositions or a rule of the form (¢; A ¢,,) — ¢ from Lj,sic. The probabilistic distributions

2 The standard formulation in probability theory is Pr(A N B) 4+ Pr(A N B) = Pr(A).
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are given by the predicates E and S interpreted by the Repage system, which ensures that
the distributions are correct. To avoid inconsistencies we require that all the propositions are
positive. ¢y denotes the empty set of roles.
GI: Ground Images

Let ¢ ... ¢, be formulas of Lj,s;. that completely define the space of a distribution cor-
responding to role R. Let also e € C4 be a constant denoting an actionand dy, ..., ds € Cp.
Then the following formulas are in the theory:

E(e, To11,d1, {R})
E(e, [¢2],d2, {R})

E(e» Wﬂ’ dna {R})
E(e, o1 vV @21, d1 +da, {R})
E(e, o1 V@31, d1 +d3, {R})

E(e, [¢2V @31, d> + d3, {R})
E(e, [¢2 vV @41, dy + dg, {R})

E(e, o1 V@2V @3],d1 +dr+d3, {R})
E(e, o1V @2V @4],d) +dr +ds, {R})

E(e,[p1 V2 V...0n], 1 {R})

They describe the full probabilistic space with the constraint that the disjunction of all the
propositions belonging to the distribution corresponding to role R covers the complete space.
For the kind of reasoning we want to perform, this is enough.
GR: Ground Reputations

Let ¢ ... ¢, be formulas of L, that completely define the space of a distribution cor-
responding to role R. Let also e € C4 be a constant denoting an actionand dy, ..., ds € Cp.
Then the following formulas are in the theory:

S(e, [o11, di, {R})
S(e, [p21, da, {R})

S(E, |—(/7n-|a d}’h {R})
S(e, [o1 V21, d1 +da, {R})
S(e, [o1 V@3], d1 +d3, {R})

S(e, [p2 VvV @3], d> + d3, {R})
S(e, [¢2 Vv @41, dy +da, {R})

S(e, o1V @2V @3], d +da + d3, {R})
S(e, [o1 vV @2V @4],di +do +dy, {R})

S(ev |—§01 V§02 \ ~«~‘Pn]v ]5 {R})
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IRB: Image-Reputation-Belief

Finally, the following axiom scheme combines E and S predicates over the same action,
formula and distribution to generate beliefs. Depending of how we define the axioms, we can
model different kinds of agents. The most general case is:

VYaxpipar(E(a, x, p1,r) AS(a, x, p2,r)) = Bla,x, h(p1, p2),r)

where i : [0, 11N @ x [0, 11N @ — [0, 1]N @ is a function that combines the probabilities
and preserves the probability distribution properties. An example of such a function could
be the average, or weighted average function in order to give more importance to image or
reputation information. Next section discusses it in more detail.
Equality Predicate

For all formulas ¢, ¢ of Lp,si. the theory contains the following:

neg([e1) = [—¢]
imp([¢], [¢1) = [¢ — @]
con([¢], [¢1) = To A P]

We must include them to ensure the completeness with respect to our intended semantics.

3.4 The basic semantics

In this subsection we show that the set of axioms presented above defines a first-order theory
(say I') that is consistent. We do it by showing that the theory has, at least, a model that
contains a set of positive atoms that exist in the model. Such model represents the reasoning
process that the agent follows to deduce belief predicates. Following a similar approach
than [19], we consider only models that contain ground terms of the language, so Herbrand
models.

Proposition 1 The theory I' has a minimal model .# for any underlying language Lpgsic-

Proof To prove it, we construct .# by induction following a stratification construction of
the model. The main idea is to add the minimal number of atoms that accomplish the axiom:s,
starting from the atoms that must be present in all the models, i.e. GBEL (ground beliefs), GI
(ground images), GR (ground reputation) and the equality predicates for terms and rational
numbers, and continuing by induction. Like in the construction of models used in logical
programming, the strata k (k > 1) of the model includes all the generated atoms that require
the application of at least k axioms to be created. Thus, the ground atoms generated from
the axioms GBEL, GI, GR and equality predicates are in the first strata, and belong to the
model .# (note that they are all positive), becoming the starting point of the construction.
In the induction step we assume that .# already contains the atoms until the strata k. The
generation of the strata k 4 1 is done by applying any relevant axiom to the atoms already in
M.

The application of axioms in the induction step implies to add the minimal number of
atoms that satisfy each axiom. We do not show the details on how each axiom creates and
add new atoms. However, we illustrate it with the axiom RA (conjunction). Let us assume
that the following ground atoms are already in the model.
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B(buy(john), VeryGood_Quality, 0.9, {seller(quality)})
B(buy(john),dTime < 5,0.5, {seller(dtime)})

Then, to preserve the consistency of the model, the axiom RA is applied, and then, the
following atom must be included into the model:

B(buy(john), VeryGood_Quality A dTime, 0.45, {seller(quality), seller (dTime)})

Under the assumption that GI and GR are well-constructed, so, they define correct probabi-
listic distributions, and that all GBEL axioms contain positive propositions, the construction
of the model can be done for any underlying Lj,si Without falling into inconsistencies. O

Given ground beliefs (GBEL), ground images (GI) and ground reputations (GR), the con-
struction of the model . gives us the belief formulas that the agent holds. Note that one and
only one model exists, because all the axioms are universally quantified and do not contain
disjunctions.

Also, note that under the assumption that GI and GR define correct probabilistic distri-
butions, the axiomatization models the behavior of probability spaces for each role, and the
combination of them when they are independent (different roles are involved). This is what
the axiom IRB (image-reputation-belief) ensures.

3.5 Related work

Some current state-of-the-art logics inspired us for defining the logic. The probabilistic and
dynamic notions have been mostly treated in epistemic logic [13,24], and in a simpler way
in belief logic [6]. Propositional probabilistic variants of dynamic logic have been studied
with the goal of analyzing probabilistic programs (for instance [25]).

Furthermore, some formalizations of trust using belief logic have been done [26], where
trust is related to information acquisition in multi-agent systems, but in a crisp way. Similar
to this, in [27], modal logic is used to formalize trust in information sources, also with crisp
predicates. Here, actions and communicated formulas are also used.

Regarding fuzzy reasoning on trust issues, in [14] a trust management system is defined
in a many-valued logic framework where beliefs are graded. Also, in [10] it is proposed a
logic that integrates reasoning about graded trust (on information sources) and belief fusion
in multi-agent systems. Our logic does not use graded beliefs. Instead, we use the notion
of beliefs on probability sentences, since as we stated in Sect. 2, Repage social evaluations
describe probabilities on the outcomes of future direct experiences.

Finally, in [36] a probabilistic dynamic belief logic is defined for dealing also with image
and reputation notions. In this logic, beliefs and actions are considered normal modalities
while probability predicates are considered non-standard modalities. In [36] only the expres-
siveness of the logic is explored.

Notice that we could have extended any of the previous logics (or other formalisms such as
Gabbay’s labelled deductive systems) to fulfill our original necessities. However, we wanted
a very flexible logical framework with a very clear orientation towards possible implemen-
tations. Even when first-order logic is semi-decidable and it is not possible to guarantee
very low complexities, it is indisputable that restricting the logic to Horn clauses together
with other minimal assumptions, would ensure an easy adaptation to logic programming
platforms.
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4 Grounding image and reputation to Lpc

In this section we show how L g is capable of capturing image and reputation predicates
from Repage, and how such information is transformed into the beliefs of the agent.

4.1 Image and reputation predicates

As explained in Sect. 2, image and reputation predicates computed from Repage are captured
by the following expressions

- Img(j’ra[‘/wls"'svwm])
— Rep(j,r, [V, Vi, 1)

corresponding to the image and reputation of agent j playing the role r, from the point of
view of the evaluator. We mention that the original implementation of Repage considers a
tuple of five elements to represent the value of the evaluations. However, we generalize it,
considering m (m > 2) elements. When in Repage the role and its labeled weights are defined,
the role uniquely identifies an interaction model with two participants, and each wy identifies
a predicate, a formula from Lp,q;.. To simplify, we can assume that the interaction model
identified by a role is summarized in a single action.? Thus, we presuppose the definition of
amapping %y, ; between a given role r and agent j to an action. In a similar way, we assume
a mapping .7 ,,, between each role r and label wy to a formula written in Lpggic.

We illustrate this with an example: In a typical market, the transaction of buying a cer-
tain product involves two agents, one playing the role of buyer (the evaluator) and the other
playing the role of seller (j). From the point of view of the buyer, if she wants to evaluate
other agents that play the role of seller, she knows that the associated action is buy at agent
J- S0, Zyeller,j maps to buy(j). In the same way, the agent must know the meaning of each
label wy of Repage. Then, we can define that Jyeer,w, 1S veryBad Product, Tseijer,w, 15
ok Product, etc.

In this mapping, the Repage predicate Img(j, seller,[0.2,0.3,...]) indicates that the
buyer believes that there is a probability of 0.2 that after executing the action Zyjer, j (cor-
responding to the action buy(j)), she will obtain a Fsejjer,w, (veryBad Product); with 0.3
that she will obtain Fseyier,w, (O K product), etc. With reputation predicates the structure is
similar, but the concept is different. In this case it indicates that the buyer believes that the
corresponding evaluation is said by the agents in the group.

Following these indications, the representation of both predicates in L p¢ is quite simple.
Let j be an agent identifiers and r a role, then

Img(j’ r, [lev szv . ]) Rep(]3 r, [lea vaza .. ])
E(%rj» %,wl s Vs {r}) S(%rj’ Z,wla Vi, {rh)
E(%;j, y,u)gy Vs {rh S(%Vjv f7r,w2a Vi, {rh)

Repage ensures a correct probabilistic information in terms of a probabilistic distribution,
and from these assignments it is easy to calculate the remaining disjunction probabilities
necessary for the logical theory.

3 An interaction model can be seen as a set of actions to be performed by the agents.
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As a matter of example and following the scenario above, let ji, j» be agents, if Repage
has generated the following predicates:

Img(jy, seller,[.1,.1,.1,.2,.5])
Rep(ja, seller,[.6,.1,.1,.1,.1])

The logical theory should include regarding j;

E(buy(j1), VBadProduct, 0.1, {seller})
E(buy(j1), Bad Product, 0.1, , {seller})
E(buy(j1), OK Product, 0.1, , {seller})

E(buy(j1), Good Product, 0.2, , {seller})
E(buy(j1), Bad Product, 0.5, , {seller})

And regarding jp:

S(buy(j2), VBadProduct, 0.6, {seller})
S(buy(j2), Bad Product, 0.1, {seller})
S(buy(jz), OK Product, 0.1, {seller})

S(buy(j2), Good Product, 0.1, {seller})
S(buy(j2), Bad Product, 0.1, {seller})

4.2 Relationship between image and reputation

One of the key points of Repage and the cognitive theory of reputation that underlies it
[9] is the relationship between image and reputation. The theory states that both are social
evaluations but distinct objects. With the representation we give for image and reputation in
the Lpc and the axiomatization (the theory I'), the difference depends on the relationship
between the predicate E and the predicate S.

Regarding the key question: How does reputation influence image ?, Conte and Paolucci in
[9] state that the relation is established basically at the pragmatic—strategic level of the agent.
At this level, agents must decide which source of information to use. Typically, reputation
information is used only if image information is not present, but from this perspective, repu-
tation cannot influence the inner beliefs of the agent. However, from our logical perspective,
this relationship seems closer and is defined by the axiom IRB (Image-Reputation-Belief):

VYaxpipar(E(a, x, p1,r) AS(a, x, p2,r)) — Bla, x, h(p1, p2),r)

Different functions z : [0, 11N @ x [0, 1]N @ — [0, 1]N @ model different behaviors. We
only require that / preserves the probability distribution properties. Some elaborated aggre-
gation functions can be found in [39], but basically, they are based on weighted averages.
Thus, a family of functions is determined by the expression:

0 - pE + 85 - ps

h(pE, ps) = 55 T 05

where 8g, 85 € @. Table 1 summarizes the behavior of a family of agents depending on
the values of §r and §5. Note that & can be defined globally, as it is in the axiomatization, but
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Table 1 Different £ function classes when it is based on a weighted average: h(pg, ps) = e PEOD P

SE+ds
Class  Condition Description
JA4 8g #0,85 =0  Only image—The agent does not trust in reputation information
B %) 8g #0,85 =0  Only reputation—The agent does not trust in image information
J4 g =05 #0 The agent considers that both sources of information have the same importance
Hy Sg > 05 Image is more important than reputation
A5 Sg < dg Reputation is more important than image

we can have different functions for different distributions (roles). For instance, following the
example above,

Vaxpipz (E(a, x, p1, {Seller(Quality)})A

S(a, x, p2, {Seller(Quality)})) — B(a,x, hy(p1, p2), {Seller(Quality)})
Yaxpip2 (E(a, x, p2,{Seller(dTime)})A

S(a, x, p2, {Seller(dTime)})) — B(a, x, hy(p1, p2), {Seller(dTime)})

where hy € J5 and h, € J (see Table 1 for a description of % and .77;). This indicates
that the evaluator does not trust its own experiences regarding the quality of the product and
relies on reputation. Instead, regarding the delivery time the agent gives more importance
to its own direct experiences. This configuration may look strange, but let us consider for
instance an agent that is aware of its limitations regarding certain skills, or a robot agent that
is aware that its sensors do not work well. In general, to establish this function on design
time is quite difficult, because it requires precise knowledge of the society. Ideally, one can
design metareasoning processes to establish the best function when the system is running in
areal scenario. In fact, simple g-learning techniques suffices to some extend for this purpose
[34].

5 Integrating Repage in a multi-context BDI agent

In the previous sections we have defined the language L ¢ and a theory written in that lan-
guage that expresses the reasoning process of the agent. We have also shown how the theory
captures the semantics of image and reputation predicates coming from Repage, and how
such information is combined to finally generate beliefs.

In this section, we propose a possible integration of Repage in a BDI agent.* The under-
lying idea is to define a BDI agent, specified as a multi-context system, that uses the logic
presented in Sect. 3 to describe the belief base of the agent. Then, such information would be
combined with the desires of the agent and other functional components to generate inten-
tions, which in turn would end up generating proper actions. In the first part of the section, we
briefly introduce the notion of multi-context system and some of the related work regarding
existent multi-context BDI specifications. The second part relies on the explanation of each
element that compounds our BDI + Repage architecture.

‘A preliminary version of the model described in this section was originally published at [33].
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5.1 Multi-context systems

Multi-context systems (MCS) provide a framework to allow several distinct theoretical com-
ponents to be specified together, with a mechanism to relate these components [17]. These
systems are composed of a set of contexts (or units), and a set of bridge rules. Each con-
text can be seen as a logic and a set of formulas written in that logic. Bridge rules are the
mechanisms to infer information from one context to another.

Giunchiglia and Serafini [17] proposed the following formalization of MCS: Let I be the
set of context names, a MCS is formalized as ({C;}ics, Apr):

- C; = (Lj, A;, Aj), where L; is a formal language with its syntax and semantics, A; is
a set of axioms and A; the set of inference rules. Thus, L; and A; define an axiomatic
formal system, a logic for the context C;. Beside axioms, it is possible to include a theory
T; as predefined knowledge. All A;, A; and T; are written in the language L;.

— Ay, is a set of bridge rules.

Bridge rules can be seen as inference rules among contexts. Each one has a set of anteced-
ents (or preconditions) and a consequent (or postcondition). Then, when each formula in the
antecedent is true in its respective context, the consequent becomes true as well (also in its
context). A bridge rule is represented as follows:

Ci:o1,....Ci, : gy
Ci)(:(ﬂx

where C;, : ¢ indicates that formula ¢, belongs to the context C;,, formulas ¢ ... ¢, are
the antecedents and ¢, is the consequent. Each ¢; is a formula that belongs to its respective
context, and written in its own language. So, when the formulas ¢y, .. . ¢, hold in their con-
texts, the formula ¢, is generated in the context C; . However, we extend this approach by
allowing in preconditions, comparisons between rational numbers. For this, the antecedent
may include a set Q1, ..., Q, (where n > 0) of extra conditions that must be evaluated as
true to make the bridge rule applicable. Each Q; has the form r; < r, where r1, > € @ and
< corresponds to the standard boolean comparison on rational numbers.

5.2 MCS and BDI agents

The use of MCS offers several advantages when specifying and modeling agent architec-
tures [44]. From a software engineering perspective, MCS supports modular architectures
and encapsulation. From a logical modeling perspective, it allows the construction of agents
with different and well-defined logics, keeping all formulas of the same logic in their cor-
responding context. This increases considerably the representation power of logical agents,
and at the same time, simplifies their conceptualization.

Also, the use of MCS to specify BDI is not new. The BDI architecture defined in [32] uses
one context for each attitude; there is the belief context (B), the desire context (D) and the
intention context (I). Each of them is equipped with a logic that corresponds to the premises
that Rao and Georgeff [37] stated. Bridge rules among contexts determine the relationship
between the attitudes and the type of agent: strong realism, realism and weak realism [37].
A communication context (C) is also included.

In [16], this specification is extended by means of a new commitment context, equipped
with a deontic logic, creating then a new attitude of obligation. In [6] a multi-context BDI
agent is specified and its attitudes are graded. Therefore, beliefs, desires and intentions are
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multi-valued with grades from O to 1. For our BDI model, we take the logic defined for desires
and intentions described in [6,7].

5.3 The multi-context BDI model

The specification of our BDI agent as a multi-context system is formalized with the tuple
Ag = ({BC, DC, IC, PC, CC, RC}, Ap). These correspond to Belief, Desire, Inten-
tion, Planner, Communication and Repage contexts respectively. The set of bridge rules
Ap, incorporates the rules 1, 2, 3,4, P, Q and B (shown in Fig. 3) and the bridge rules A;
and Ap (shown in Fig. 2). Figure 1 shows a graphical representation of this multi-context
specification. In the next sections we briefly explain each context and bridge rule.

5.3.1 Belief context (BC)

This context contains the beliefs of the agent. Hence, we use the logic introduced in Sect. 3,
to integrate the knowledge coming from the reputation model Repage and other knowledge
gathered by the agent. Since Lpc is a many-sorted first-order logic, the inference rules in
this context are those from first-order logic. Thus, BC-context becomes an inference system
that incorporates the theory defined in Sect. 3. Notice that this is how we have constructed
the model for the theory.

5.3.2 Desire context (DC)

This context deals with the desires of the agent. Like the BDI model described by Rao and
Georgeff in [37], they are attitudes that are explicitly represented and that reflect the general
objectives of the agent. We consider that desires are graded, and for that, we use the multi-
valued logic (DC-logic) based on the Lukasiewicz logic and described in [5]. The motivation
for this decision arises when considering that reputation information has already a graded
nature, in our case, represented as probabilities. Like in decision theory where agents manage
expected utilities, we consider that from one side we obtain the probabilities, and from the
other the strength of the desires. Combining them, we implement the idea of expected utility.

DC-language is built as an extension of a propositional language (in our case we use Lpygic»
the object language), by adding two fuzzy modal operators: D" and D . The intended mean-
ing of DT ¢ is that the formula ¢ is desired by the agent holding it, and its truth degree, from

Fig. 1 The Repage context
embedded in a multi-context BDI
agent. Circles represent context
and arrows represent bridge rules

Repage
Context
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0 (minimum) to 1 (maximum), represents the level of satisfaction if ¢ holds. The intended
meaning of D™ ¢ is that ¢ is negatively desired, and the truth degree represents the level of
disgust if ¢ holds. Also, DC-logic includes truth constants 7 where r € [0, 1] (| @, and the
connectives & and = corresponding to the Lukasiewicz conjunction and implication respec-
tively. In our architecture, agents’ preferences are expressed by a set of desire expressions
(both positive and negative) defining a theory.

We differentiate generic from concrete desires. Generic desires define the general prefer-
ences of the agent, and are formulas like D*¢, where * stands from + or — and ¢ does not
contain any action. Concrete desires are formulas like D}¢ and define the desire to satisfy
¢ by executing action «. The original DC-logic from [5] does not consider subindex for the
actions. However it uses this notation for the intentions (see next subsection). With this we
indicate that a concrete desire takes into account the action to achieve the content. In this
case, the grade represents the expected satisfaction level (or disgust if it is a negative desire)
if the action is executed, implementing an equivalent expected utility from decision theory.
Also, it serves to indicate that in the framework, actions do not behave as in dynamic logic.
In our model, concrete desires are generated from generic desires and beliefs through bridge
rules 1 and 2 (see Sect. 5.4.2).

Because in Lukasiewicz logic the formula ¢ = ¢ is 1-true iff the truth value of ¢ is
greater or equal to that of ¢, and the truth value of 7 is exactly r, formulas like ¥ = DT ¢
in the theory of an agent i indicate that the level of satisfaction of agent i is at least r if ¢
holds. The same with negative desires and the level of disgust. From now on we will write
these formulas as (D¢, r) and (D~ ¢, r). The semantics is given in terms of a positive
and negative preference distributions over the possible worlds. The axiomatization includes
the classical logic axiom of propositional logic for non-modal formulas, plus the axioms of
Lukasiewicz [20]. It is important to remark that the author defines the semantic condition that
a world that is negatively desired to some extend cannot be positively desired. In terms of the
axiomatization, this implies that the same formula cannot be both negatively and positively
desired.

Note though that the inclusion of D¢ and D" —¢ is completely valid. D~ ¢ points out
to the worlds that the agent does not want to reach, but this does not mean that he will try
actively to avoid it. Instead, when we include D™ —¢ in the theory the agent will try to reach
worlds where —¢ holds. We refer to [5] for technical details and proof of completeness of
the logic.

5.3.3 Intention context (IC)

This context describes the intentions of the agent. Like in the Rao and Georgeft’s BDI model
[37], intentions are explicitly represented, but in our case generated from beliefs and desires.
Also, we consider that intentions are graded, and for this we use the / C-logic defined in [6].

Similar to DC-logic, I C-logic is built on the top of a propositional language (in our case,
the Lpysic) defining a fuzzy modal operator to express formulas like I, ¢. It indicates that the
agent has the intention to achieve ¢ through the action «, and its truth degree (from 0 to 1)
represents a measure of the trade-off between the benefit and counter-effects of achieving ¢
through . Moreover, I C-logic is defined in terms of a Lukasiewicz logic in the same way
as DC-logic. Also, formulas like ¥ = [ ¢ will be written as (/¢, r). For the technical details
and the proof of completeness we refer to [5].

Our system generates intentions through the bridge rule 3, from a positive concrete desire
and the set of negative desires that may be achieved through the same action.
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5.3.4 Planner context (PC) and communication context (CC)

The logic in the Planner context is a first-order logic restricted to Horn clauses. In this first
approach, this context only holds the special predicate action, which defines a primitive
action together with its precondition. We look forward to introducing plans as a set of actions
in the future. Communication context is a functional context as well, and its logic is also a
first-order logic restricted to Horn clauses with the special predicates does to perform actions,
and rec;¢ to indicate that the agent has received the communication ¢ from agent j. They
are first order predicates, not modalities

5.3.5 Repage context (RC)

The Repage context contains the Repage model. It is a functional context and we capture
the information that the model computes with the predicates Img(j, r, [Vi,, Vu,, . ..]) and
Rep(j,r, [Vw,, Vi, ...]), corresponding to the image and reputation of agent j playing the
role r. See Sect. 4 for a detailed analysis.

5.4 Bridge rules
5.4.1 Bridge rules A; and AR

Bridge rules Ay and Ag (see Fig. 2) are in charge of generating the corresponding E and S
predicates from images and reputations respectively, as explained in Sect. 4. The key idea in
this interface is that if the image or reputation information changes in Repage, the previously
generated E and S predicates will not have the support to be valid any more, and thus, they
must be out withdrawn from the theory (together with all the inferences performed so far from
these predicates), placing the new ones instead. In this way, the theory is always consistent
with the information that Repage computes.

5.4.2 Bridge rules 1, 2, 3, 4

Bridge rules 1 and 2 (see Fig. 3) transform generic desires to more concrete and realistic
desires. To do this, these bridge rules merge generic desires from DC (with absolute values
of satisfaction or disgust) with the information contained in BC, which includes the proba-
bility to achieve the desire by executing certain action. The result is a desire whose gradation
has changed, becoming more realistic. This is calculated by the function g. If we define it as
the product of both values, we obtain an expected level of satisfaction/disgust.’

Fig. 2 The bridge rules A; and RC : Img(j,r, [le Vs - ])
AR (see Fig. 1). They translate BC- E(,@ T V. {r})
image and reputation predicates A . rjsZrwps Ywys
respectively into the belief BC:E (%rj» ‘%A,WQ 7VW2 ) {r })
context ..

RC :Rep(j, 1, [Vie,,Vivys---])
BC: S(L@rﬁ ‘%,Wl 7VW1 ’ {I’})
BC: S(L@rjy <7r,w27VW27 {}’})

AR:

5 When g is defined as the product, the outcome is very similar to the notion of expected utility used in
decision theory.
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Fig. 3 The bridge rules 1, 2, 3, DC: (D" ¢,dy)
4, P, Q and B (see Fig. 1) 1: BC:B(a,(p.,pV,,Q)
DC: (D;¢7g(d¢7pW))
DC: (D7¢>d¢)
2: BC:B(a, 9,py, Q)

DC: (Dg¢.8(dg,py))

DC : (D} 9,8),PC : action(a,P),PC : P
3. DC:(D&‘I/lv&ll])7~~~7(D&Wn76|l/n)
6 —Yj 10y >0
IC: (]a(P:f(5722:1 814/1())

IC: (In®, €Emax)

4 CC : does(a)
. BC:B¢ BC: B¢ CC: rec;
P:Q B+ PC:¢p ~° RC:9 ~° RC :recj@

Bridge rule 3 generates intentions. It takes into account both the expected level of satis-
faction and the cost of the action. At the same time, executing an action to achieve certain
formula can generate undesirable counter-effects. Thus, bridge rule 3 also takes into account
the possible negative desires that can be reached by executing this action. In this bridge
rule, for each positive realistic desire (D), we must include all negative desires (D) that
can result from the same action. In this way we have the value of the positive desire (57)
and the sum of all negative desires (6 ) that can be achieved by executing the same action.
The strength of the intention that is created is defined by a function f. Different f func-
tions would model different behaviors. In our examples we use the following definition:
FOT,87) =max(0,8T —§7).

Finally, bridge rule 4 instantiates a unique intention (the one with maximum degree) and
generates the corresponding action in the communication context.

5.4.3 Bridge rules P, Q and B

Bridge rules P and Q allow the planner and Repage context respectively to be aware of the
beliefs of the agent. The planner context uses this information to build plans, actions and
their preconditions. Repage uses the information to configure the mappings & and 7.

Rule B reflects the reaction of the communication context once it receives communicated
images, communicated reputation, third party images from other agents and fulfillment pred-
icates. The content of these communications is directly introduced in Repage, which will
update its information.

6 Putting the model to work

In this section we analyze the reasoning processes performed by an executable version of the
model presenting an example.

The base scenario we use involves a BDI agent that, as a manager of a small restau-
rant, needs to periodically order wine to refill the stock. In this scenario, several provid-
ers are available. The information our agent wants to capture about them includes reliable
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information, for instance the price she will have to pay, but also uncertain information such
as the delivery time of the orders and the quality of the wine. While reliable information is
introduced as beliefs of probability 1, uncertain information will result in beliefs of lower
probability values.

This situation can be formalized in multiple ways. We can define four possible pairwise
disjoint predicates for the quality of the wine: poorWine, averageWine, goodWine, excel-
lentWine (pW, aW, gW and eW from now on) and five pairwise disjoint predicates for the
delivery time: days(0, 1), days(2, 3), days(4, 5), days(6, 10), days(11, co) indicating respec-
tively a delivery time up to 1 day, between 2 and 3 days etc. Also we define the predicates
paid(X), paidLess(X), paidMore(X) to indicate that the agent has paid X, less than X and more
than X respectively,and the implication relation paid(X) — paidLess(Y) when X < Y,
and paid(X) — paidMore(Y) when X > Y. The predicate budget(X) indicates that the
money she has in the budget is X. This knowledge and the implication among predicates
must be introduced also as beliefs.

The interaction model defining the purchase of wine indicates that providers act as wine-
Sellers, but agent i wants to evaluate them in the two independent dimensions: the quality
of the wine and the delivery time. Thus, Repage uses the roles wineSeller(quality) and
wineSeller (dTime). The mapping Z (see Sect. 4.1) of these two roles points to the same
action buyWine (buy from now on), which then summarizes the entire interaction model. The
mapping .7 of the role wineSeller(quality) relates wy to poor Wine, w; to averageWine
etc, and the mapping .7 of the role wineSeller (dTime) relates wy with days(0, 1), wy with
days (2, 3), etc.

6.1 The initial knowledge

In this world, our agent knows the existence of four providers represented by alice, bob,
charlie and debra respectively. Our agent is aware of their prices, and so this knowledge is
introduced as beliefs:

B(buy(alice), hasWine A paid(1000), 1, ep)
B(buy(bob), hasWine A paid(900), 1, eg)
B(buy(charlie), hasWine A paid(400), 1, eg)
B(buy(debra), hasWine A paid(1300), 1, eyp)

Bridge rule P introduces the information above into the planner context in order to generate
the corresponding plans (simple actions in this case). It follows then, that in PC we find

action(buy(alice), has MoreMoney(1000))

indicating that the action of buying wine from alice is preconditioned on the budget having
more than 1000.

6.2 Study cases
6.2.1 Exploring the space: case 1

Our agent is new to the business and only #rusts her own direct experiences. It means that
axiom IRB uses a function £ of the class .7/{. Since she is just starting the business, she is
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mostly concerned about the quality of the wine rather than the delivery time. She has a bud-
get of 1350 (budget (1350)) for the purchase. Regarding her desires, she would be satisfied
with paying up to 1350 for an excellent wine. With the same strength she would be satisfied
paying up to 800 for a good wine. In any case, she needs the wine. What she does not want
is a poor or average wine. Lower on her priority list is obtaining the wine quickly, but still a
long delivery time is not desired. These preferences can be formalized as desires in the DC
as follows:

(DF (hasWine A paidLess(1350) A eW), .9)
(DY (hasWine A paidLess(800) A gW),.9)
(D hasWine, .7)
(D™ pW. 1)
(D~ aW, .8)
(D" days(11, 00), .5)
(D" days(6, 10), .4)
Since she does not have any information about the providers, Repage predicates contain the
maximum possible uncertainty. For instance, the corresponding image predicates for charlie
are:
Img(charlie, wineSeller(quality), [.25, .25, .25, .25])
Img(charlie, wineSeller(time), [.2, .2, .2, .2, .2])

Under these conditions the reasoning process leads to a random choice between three agents
(charlie,bob and alice) to achieve the desire hasWine. In the following lines we briefly
explain the most relevant steps.

Bridge rule A; generates beliefs in the BC from images. As said before, the epistemic
decision is not done at this rule but inside Repage, which computes image and reputation. In
the case of charlie this rule is activated regarding the role wineSeller (quality) as:

RC : Img(charlie, wineSeller(quality), [.25, .25, .25, .25])

BC : E(buy(charlie), pW, .25, {wineSeller(quality)})
BC : E(buy(charlie),aW, .25, {wineSeller (quality)})
BC : E(buy(charlie), gW, .25, {wineSeller(quality)})
BC : E(buy(charlie), eW, .25, {wineSeller(quality)})

All possible outcomes after buying from charlie have the same probability. This rule also
generates the probabilities of disjoint formulas:

BC : E(buy(charlie), pW v aW, .50, {wineSeller(quality)})

BC : E(buy(charlie), pW v gW, .50, {wineSeller(quality)})

BC : E(buy(charlie), pW v eW, .50, {wineSeller (quality)})

BC : E(buy(charlie),aW v gW, .50, {wineSeller(quality)})

BC : E(buy(charlie),aW v eW, .50, {wineSeller(quality)})

BC : E(buy(charlie), gW v eW, .50, {wineSeller(quality)})

BC : E(buy(charlie), pW v aW v gW, .75, {wineSeller(quality)})
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BC : E(buy(charlie), pW v gW v eW, .75, {wineSeller(quality)})
BC : E(buy(charlie),aW v gW v eW, .75, {wineSeller(quality)})
BC : E(buy(charlie), pW v aW v gW v eW, 1, {wineSeller(quality)})

The previous E predicates are directly transformed to B predicates through the axiom IRB,
which uses a & function belonging to 7 (only images are taken into account). In BC,
because of the assumption that the quality and delivery time dimensions are stochastically
independent, probabilistic inference rules of the L ¢ theory are applied. For example, from
B(buy(charlie), eW, .25, {wineSeller(quality)}) and B(buy(charlie), days(0, 1), .2,
{wineSeller(time)}) can be deduced

B(buy(charlie), eW A days(0, 1), .05, {wineSeller(quality), wineSeller(time)})

where .05 is the product of .25 and .2. In particular, and for the interest of our example, the
following belief is also generated:
B(buy(charlie), hasWine A paid(400) A eW, .25,
{wineSeller(quality), wineSeller(time)})

Bridge rules 1 and 2 are executed for each generic positive and negative desire respectively.
For instance, rule 1 is fired for the first desire as follows:

DC : (DY (hasWine A paidLess(1350) A eW),.9)
BC : B(buy(charlie), hasWine A paidLess(1350) A eW, .25, Q)

(D[Ly(charlie)(hasWine A paidLess(1350) A eW), g(.9, .25))

If we consider that g(p, g) = p - g, the resulting grade of the positive concrete desire is .225.
It indicates that performing the action of buying from charlie to obtain an excellent wine
and paying less than 1350 has an expected level of satisfaction of .225. Of course, for the
same desire bridge rule 1 can be executed several times because different actions can lead
to the same desire. Negative desires fire bridge rule 2 generating concrete negative desires.
They indicate the expected level of disgust if the action is executed.

These negative desires are used in bridge rule 3 to take into account possible counter-effects
of satisfying certain desire. Rule 3 is executed only one time for each positive concrete desire.
For example, considering the desire above:

DC : (D;w(charlie)(hasWine A paidLess(1350) A eW), .225)

DC : (D;‘y(charlie)days(ll, 0), .08)

DC : (Dl;‘y(chmlie)days(ﬁ 10), .08)
DC: (Dl;y(chm”e)aw, 2)
DC: (Dbuy(charlie)pW’ 25)

PC :action(buy(charlie), budget More(400))
PC : budget(1100) — budget More(400)
IC : (Ipuy(chariiey(hasWine A paidLess(1350) A eW), f(.225,.61))

In this case, notice that the expected level of satisfaction of achieving the desire by buying
from charlie is .225 but its counter-effects bring an expected level of disgust of .61. Taking
f(8T,87) = max(0,8T — §7), this intention has a grade of 0. Why would we perform an
action if we expected from it to obtain more disgust than benefit?.
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If the intention had the maximum degree, bridge rule 4 would generate the corresponding
action. In our example, after calculation, the intentions with a grade higher than O result to
be:

(Upuy(chartieyhasWine, .14)
UpuybobyhasWine, .14)
buy(aticeyhasWine.14)

As expected, since Repage does not have any information and our agent needs to buy
wine, a random choice can be made among these possibilities. Buying from debra is
not considered because in rule 3 the precondition of having a budget greater than 1300
does not hold (see the action definition in the planner context). Assuming that she picks
(puy(chartiey» hasWine, .14), bridge rule 4 is fired executing the action buy(charlie).

The result of this transaction fulfills the agent’s desires in terms of delivery time and qual-
ity. This information is inserted into Repage by means of the bridge rule B. Repage evaluates
the outcomes and updates the values of image and reputation. In the next reasoning process,
this information will be introduced as beliefs by bridge rule A; and Ag, as we have shown
at the beginning of this case.

Continuing with our example, we suppose that charlie delivers the wine quite fast, in less
than one day, but the quality of the wine is not very good. This makes Repage update image
predicates as

Img(charlie, wineSeller(quality), [.4, .4, .1, .1])
Img(charlie, wineSeller(time), [ .45, .25, .1, .1, .1])

We recall here that wy, wa, ... in the role wineSeller(quality) correspond to pW,aW,. ..
meanwhile in the role wineSeller(time) they correspond to days(0, 1), days(2, 3), ...
respectively.

06.2.2 Receiving reputation information: case 2

After a while, our agent needs to buy more wine. She has exactly the same desires as before
and the same budget, so she is mainly interested in the quality of the wine rather than deliv-
ery time. But this time, her image information about charlie has changed. Furthermore, we
assume that she has received several reputation communications, about both charlie and
alice. This information makes Repage generate the following reputation predicates:

Rep(charlie, wineSeller(quality), [.5, .3, .1, .1])
Rep(alice, wineSeller(quality), [.1,.2,.2, .4])

The reputation information regarding charlie coincides more or less with the image our
agent has about him. This is not the case with alice. Through bridge rule Ay these predicates
generate beliefs into BC. For charlie:

RC : Rep(charlie, wineSeller(quality),[.5, .3, .1, .1])
BC : S(buy(charlie), pW, .5, {wineSeller(quality)})
BC : S(buy(charlie),aW, .3, {wineSeller(quality)})
BC : S(buy(charlie), gW, .1, {wineSeller(quality)})
BC : S(buy(charlie), eW, .1, {wineSeller(quality)})
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Note that these beliefs refer to what others say, not what our agent really believes. Since
our agent only trusts herself, she does not take into account these predicates. In terms of the
BC-logic it indicates that there is no relationship between operator S and operator B; so far.
This situation is also common: we can accept that a given person has a bad reputation, that
most people say this, even when we believe the opposite [9].

Under these conditions, the reasoning process is similar to the previous case. This time
though, charlie is no longer a possible choice, since the last experience with him was bad
regarding the quality of the wine. Bridge rule 3 generates the intention to buy from charlie
with a very low grade, in fact zero, since it is likely a poor or average wine would be delivered.
In this case, the generated intentions are

(IpuypovyhasWine, .14)
Upuy(aticeyhasWine, .14)

Our agent chooses alice. This time we suppose the result is in tune with the expectations of
our agent; she obtains a good wine, even though the delivery time is not very fast. Repage
updates image predicates regarding alice as follows:

Img(alice, wineSeller(quality), [0, 0, .15, .85])

Img(alice, wineSeller(time), [0, 0, 0, .1, .9])

6.2.3 Keeping the same desires: case 3

Maintaining the exact same desires as case 1 and 2, the next time that our agent wants to buy
wine, she has the following intentions whose grade is higher than 0:
(Ibunine(bob)haSWines 14),
(Ibunine(alice)haS Wine, .35)
Upuywine(aticey(hasWine A paidLess(1350) A eW), .365)

Since alice provided wine that was mostly excellent, and this is the main concern of our agent,
she chooses again to buy from alice, but to satisfy the desire hasWineA paidLess(1350)A
eW. The option to buy from bob appears due to the uncertainty around his performance.
We suppose that the resulting transaction confirms the same results as the previous case: an
excellent wine but a long delivery time.

6.2.4 Changing desires: case 4

This time our agent accepts the suddenly request to host a big birthday banquet that will take
place in less than 12 days. Her cellar is not prepared for this event, so, she needs to order
more wine. In this situation, her desires are different, since delivery time is now a key issue
while the quality of the wine drops in importance:

(D hasWine A paidLess(1350) A days(0, 1), .9)

(D hasWine A paidLess(800) A days(2,3),.7)

(D™ pW,.2)

(D" aWw,.2)
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(D" days(11, 00), .8)
(D™ days(6, 10),.7)

Thanks to her previous interactions with the providers our agent already has some infor-
mation about their performance. In this case, the only intention with a degree higher that 0
is

Upuywine(chartiey(hasWine A paidLess(1350) A days(0, 1)), .095)

She picks charlie, and the results are like the first time she bought from him in case 1: a
short delivery time but a low quality.

6.2.5 Using reputation information: case 5

Several weeks after the successful banquet, our agent recuperates her initial desires and needs
to order wine again. During this time she has heard about both bob and debra’s reputations
which indicates that both offer excellent wines and that furthermore debra is capable to
deliver the order in a day. This is not the case with bob:

Rep(bob, wineSeller(quality), [0, 0, .05, .95])
Rep(bob, wineSeller(time), [.1, .2, .3, .3, .1])
Rep(debra, wineSeller(quality), [0, 0, 0, 1])
Rep(debra, wineSeller(time), [1,0, 0, 0, 0])

This information is introduced through rule Ay as S predicates. Unfortunately for our agent,
alice notifies that she will not be available this time because she will be on holidays. Because
of that, and because the reputation information she received in case 2 was in concordance
with what she really believed, our agent starts trusting what others gossip. In this new sce-
nario, the IRB axiom is set to use a  function belonging to .7 (only reputation is taken into
account). Thus, the axiom IRB states the following:

VYaxpipar(I(a, x, p1,r) A S(a, x, p2,r)) = B(a,x, p2,r)

It means that reputation predicates from Repage, once they have been inserted into the BC-
context as S predicates, they become belief predicates. For instance, regarding bob in the
role of wineSeller(quality), rule Ag generates, among others, the following predicate:
S(buy(bob), eW, .95, {wineSeller(quality)}), meaning that people is gossiping that with
is a probability of .95, the wine will be excellent when buying from bob. Since our agent
believes what it gossiped due to axiom IRB, it can be deduced that B(buy(bob), eW, .95,
{wineSeller(quality)}). In this case, the only non-zero graded intention generated is

Upuypovy (hasWine A paidLess(1350) A eW), .565)

From the activation of bridge rule 3 as follows:
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DC (D;‘y(bob)(hasWine A paidLess(1350) A eW), .0.855)
DC: (%),(bob)days(ll, 00), .08)
DC : (Dbuy(char”e)days(@ 10), .21)
PC :action(buy(bob), budget More(900))
PC : budget (1100) — budget More(900)

IC : (Ipuypoby(hasWine A paidLess(1350) A eW), f(.855,.29))

We suppose in this situation that the results are not as the agent expects, obtaining an average
wine. Thus, Repage image predicates are updated as:

Img(bob, wineSeller (quality), [.3, .4, .2, .1])
Img(bob, wineSeller(time), [.1, .2, .3, .3, .1])

6.2.6 Image and reputation interference: case 6

Note that in the previous situation, the image about bob in the role wineSeller(quality)
contradicts bob’s reputation in the same role. This has already happened in case 2 with alice,
but axiom IRB was only taking into account image information. in this new case, we assume
that the IRB uses a 4 function from the class .73, where both image and reputation are taken
into account but image is more important. As a matter of example, we set function % as

T-pe+3-ps
10

We show how the reasoning process proceeds. Regarding the role wineSeller(quality),
through bridge rule A; the following E predicates are generated into the belief context:

h(pE, ps) =

E(buy(bob), pW, 0.3, {wineSeller(quality)})
E(buy(bob),aW, 0.4, {wineSeller(quality)})
E(buy(bob), gW, 0.2, {wineSeller(quality)})
E(buy(bob), eW, 0.1, {wineSeller(quality)})

and through bridge rule Ag the following:

S(buy(bob), pW, 0, {wineSeller(quality)})
S(buy(bob),aW, 0, {wineSeller (quality)})
S(buy(bob), gW,0.05, {wineSeller(quality)})
S(buy(bob), eW,0.95, {wineSeller(quality)})

Then, the presence of axiom IRB with the / function defined above combines both predicates
generating a new probability distribution. In this case:
B(buy(bob), pW,0.21, {wineSeller(quality)})
B(buy(bob),aW,0.28, {wineSeller(quality)})
B(buy(bob), gW,0.155, {wineSeller(quality)})
B(buy(bob), eW, 0.355, {wineSeller (quality)})
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Alice

Bob

Charlie

Debra

1 2 3 4 5 6 7

Fig. 4 The choices of the agent throughout the situations explained in this section

In this way we preserve the properties of probability distributions, reflecting in the result-
ing beliefs a combination of the both source of information: image and reputation from
Repage.

Turning again to the example above, note that the resulting beliefs for bob presents a
distribution that model an almost uncertain distribution, here values are close to 0.25. This
make sense since image and reputation information regarding bob where quite contradictory.
In this situation, our agent picks alice (Fig. 4).

6.2.7 Increasing the budget: case 7

To conclude, we want to show the effect of a simple environment change. In this case, our
agent decides to increase the wine budget to 2000. With exactly the same desires and the same
reputation and image information as before, the reasoning process generates the maximum
intention to buy from debra. This provider was always filtered out at bridge rule 3 because
the precondition of buying from debra (to have more than 1300) was never fulfilled. Thus,
the intention to buy from debra is only slightly higher than buying from alice.

6.3 Implementation details

The scenario and each one of the situations have been implemented in Prolog.® An implemen-
tation of logical systems usually entails the simplification or limitation of some aspects of
the logic. In our case, we assume that each logical formula is expressed as a Horn clause and
that modal operators are first-order predicates. Also, we do not accept logically omniscient
agents that use a forward-reasoning engine, even when some implementations of multi-con-
text systems use this approach [44]. Instead, we take advantage of the backward-reasoning
engine of Prolog.

Note that the multi-context system specification of our BDI agent models an agent whose
purpose is to execute a single action. This action is generated through rule 4 by choosing the
intention of maximum grade. For this choice the agent must generate all possible intentions,
which are created through rule 3 from desires, and so on. This schema follows a backward-
reasoning algorithm that can be implemented in Prolog.

Thus, considering predefined knowledge as Prolog predicates, and inference rules and
bridge rules as Prolog rules, the agent’s reasoning can be started by asking Prolog to satisfy
the predicate does(A). While this is an oversimplification of what should be understood as
multi-context systems, for simple examples the results are coherent and useful. We plan to

6 The source code can be download at http://www.iiia.csic.es/~ipinyol/sourceJAAMAS09.zip.
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study implementation issues in the future, an the effects of the simplifications in the desirable
properties of the system.

7 Related work

To finish the paper we want to put our model in contrast with some of the current state-of-
the-art reputation and trust models. Hence, in this section we compare our BDI + Repage
model with other existing models by defining four dimensions of analysis that have not been
explicitly tackled in the most popular reviews. In the review, we only explore distributed
models, those that consider trust or reputation as a subjective information managed by each
individual agent.

7.1 Trust dimension

Even when we have not explicitly defined a trust model, from a cognitive point of view,
our BDI + Repage architecture can be considered a trust model, in the sense that there is a
reasoning path that leads to a decision to rely in someone. We do not want to differentiate
between models classified as trust and others as reputation. We strongly believe that the dis-
tinction between both kinds of models does not rely on a clear consensus in the community.
For instance, the fype dimension that Sabater provides in his classification [43] is not based
on any objective fact, but on what the authors of the models claim.

On the contrary, when facing these concepts from a more cognitive perspective, the dis-
tinction becomes clearer. From the concept of social trust [8], occurrent and dispositional
trust [21,15] and pragmatic—strategic decisions pointed out by Conte and Paolucci in [9],
trust implies a decision. Trust can be seen as a process of practical reasoning that leads to the
decision to interact with somebody. Regarding this aspect, some models provide evaluations,
rates, scores etc. for each agent to help the decision maker with a final decision. Instead,
others specify how the actual decision should be made. From our point of view, only the
latter cases can be considered trust models. We recall here that in this case, the decisions are
also pragmatic—strategic, in the sense described in [9].

Table 2 summarizes the models that from our definition should be considered trust mod-
els. We mark them with ‘v"’. For instance, the model defined by Marsh [29] is a trust model
because it indicates exactly to whom to interact with. The final decision is made through a
well-defined threshold. Another example is the model defined by Sen and Sajja [46]. Even
when this model is usually considered a reputation model, the fact is that it defines a decision
making process that identifies to whom to interact with, and then, fits in our definition of
trust.

Models marked with ‘—’ are those that we do not consider trust models. They calculate
measures or evaluations to help a decision making process. For instance, the AFRAS model
[3,4] gives evaluations in terms of fuzzy sets, and the shape of these fuzzy numbers also
determines a reliability measure. However, there is no mechanism that tells the agent how to
use such evaluations. This situation is similar as in the Repage model. As explained before
the model only gives support to the creation of image or reputation predicates, not how such
information is combined.

Finally, we use the mark ~ to indicate that the model does not give an explicit decision
mechanism, but that it is rather dependent on the current desires of the agent. For instance, the
Regret model [41] provides for each agent and context a frust value, together with a reliability
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Table 2 Computational models against our classification dimensions

Model Trust Cognitive Procedural Generality

Abdul-Rahman et al. - - ~
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ForTrust

Marsh

LIAR

Regret
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Repage
Schillo et al.
Sen and Sajja
Yu and Singh
BDI + Repage

|
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|
|
AN N N RN
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measure. The trust value is calculated through aggregation of the information from several
sources. One of the sources is defined by an ontology, which already determines which infor-
mation is considered more important.” Hence, the goals of the agent are somehow codified in
this ontology, and the final trust value obtained is an indicator of which possible target agent
matches better with the desires of the agent. However, since it offers a reliability measure
the decision is not yet possible. For instance, let us assume that agent a has a trust value
of 0.6 with a reliability of 1. On the other hand, another agent b has a trust value of 0.8
with a reliability of 0.4. Which is the best option? It still requires a decision making process.
However, it is clear that with similar reliability measures, the agent with highest trust value
is the chosen one. FIRE model [22] shows a similar situation.

7.2 Cognitive dimension

Although this dimension has already appeared in other surveys, the provided definitions are
quite vague. In this dimension we differentiate models that have clear representations of trust,
reputation, image etc. in terms of cognitive elements such as beliefs, goals, desires, inten-
tions, etc. From our perspective, models that achieve such representation explicitly describe
the epistemic and motivational attitudes that are necessary for the agents to have trust or
to hold social evaluations. In this sense, in models that achieve a cognitive representation,
final values of trust and reputation are as important as the structure that supports them. These
models are usually very clear at the conceptual level, but lack in computational aspects.

Often, models that are not endowed with this property consider the model as a black
box that receives inputs and issues trust and reputation values. Because of that, the internal
calculation process cannot be considered by the agent, only the final values. Moreover, the
integration with the other elements of the agent remains unclear because motivational atti-
tudes are assumed or mix with the calculus. However, their computational aspects are usually
quite well defined.

7 For instance, to calculate the trust of agents as sellers, the ontology can define that this is evaluated through
the price in an 80% and through the delivery time in a 20%.
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In Table 2 we show the summary of the reviewed models against this dimension. We
marked with ‘v’ the ones with such property, and ‘—’ the lack of it. We mark the Repage
model with ‘~’ because the internal structure is based on predicates that have associated
cognitive notions, but it does not have an explicit representation of them. In fact, Repage
integrates into first-order like predicates, mixing also epistemic and motivational attitudes.
The model presented in this paper, the BDI + Repage model makes explicit these missing
cognitive components.

7.3 Procedural dimension

Often, models offer a nice way to represent and deal with trust and reputation, but there is
no explanations on how they are archive. This is quite common in cognitive models, which
focus on the internal components of trust and reputation, on a descriptive dimension, but not
how such components are built. However, some non-cognitive models do not give explicit
details on the calculus of their evaluations. We must recall here that we focus on the epistemic
decisions, not on the creation and combination of motivational attitudes (goal-based).

The model introduced by Castelfranchi and Falcone [8] regarding social trust does not
give details on how the beliefs are created. ForTrust model [15,21] redefines the notion of
social trust and introduces cognitive reputation but still epistemic decisions remain unclear.
On the contrary, models like AFRAS [3,4] and Regret [38,42] describe until the last detail
how evaluations are created and how they are aggregated.

We mark Marsh [29] and Abdul-Rahman et al. [1] models with ‘~’ to indicate that in gen-
eral they provide all the calculations, but left some initial values. For instance, in the former,
the model does not indicate how direct interactions are evaluated. The author indicates that
this is left open and dependent of the context (and we totally agree with it). The same happens
with the latter model.

7.4 Generality dimension

The last dimension we want to analyze refers to the generality of the model. In this dimension
we want to classify the models that have a general purpose ‘v’ versus the ones that focus
on very particular scenarios ‘—’. For instance, the model by Abdul-Rahman et al. [1] is a
non-general model that focuses on the trust on the information provided by witness agents.
The same happens with the model by Yu and Singh [48], which is designed for agents partic-
ipating in a very structured peer-to-peer network, where evaluations are only done in terms
of quality of services. Obviously, the models that have such specification obtain good results
and very acceptable computational complexities.

On the contrary, models built for general purposes can be adapted to multiple scenarios
and are perfect then for general agents architectures. Regret [38,41] and BDI + Repage model
[33] are good examples of such models. Again, Table 2 summarizes in the last column this
property against the surveyed models.

7.5 Brief explanation of the models
7.5.1 A-Rahman and Hailes

This model [1] uses the term trust, and its main characteristic relays on that evaluations are
represented with a discrete set of four elements. The model is fed by two sources: direct
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experiences and third party communications of direct experiences. The representation of the
evaluations is done in terms of the discrete set {vt (very trustworthy), t(trustworthy),
u (untrustworthy), vu (very untrustworthy)}. Then, for each agent and context the sys-
tem keeps a tuple with the number of past own experiences or communicated experiences in
each category. For instance, agent A may have a tuple of agent B as a seller like (0, 0, 2, 3),
meaning that agent A has received or experienced 2 results as untrustworthiness and 3 as
very untrustworthiness. Finally the trust value is computed taking the maximum of the tuple
values. In our example for agent A, agent B as a seller would be very untrustworthy. In
case of tie between vt and ¢ and between u and vu the system gives the values U™ (mostly
trustworthy) and U™~ (mostly untrustworthy) respectively. In any other tie case the system
returns U° (neutral).

7.5.2 AFRAS

The model presented by Carbo et al. [4] uses fuzzy sets to represent reputation values. The
idea is that the latest interaction that an agent has with a partner, that is also valued as a fuzzy
set, updates the old fuzzy set reputation value through a weighted aggregation. To calculate
the weights, they introduce the remembrance for memory, a factor that allows the agent to
give more weight to the latest interaction or to the old reputation value. The novelty of this
approach relies on the reliability of the reputation value, since it is intrinsically represented in
the fuzzy set. So, a wide fuzzy set for a reputation value indicates a high level of uncertainty,
meanwhile narrow ones, implies a more reliability.

The model also deals with the recommendations sent by other members of the society. The
recommendations are aggregated together with the direct interactions. The level of reliability
of this witness information will depend on the good or bad reputation of the senders. In this
case then, recommendations from a very well reputed sender could have the same weight
than direct interactions.

7.5.3 Castelfranchi and Falcone

Castelfranchi and Falcone in [8] define trust as a mental state composed of a set of goals and
beliefs and strongly related to the notion of delegation. In a more formal way, let i, j be two
agents, the cognitive components that make i trusts j regarding the goal g are the following
[81°:

— Goal Seeking: i has the goal g.

— Competence Belief: i believes that j is capable of obtaining g from a set of actions
(summarized in the action «)

— Disposition Belief: i believes that j will actually perform « to obtain g. This belief makes
agents predictable.

— Dependence Belief: i believes that she needs/depends on j to perform the task.

Competence and disposition beliefs, together with the goal are the core trust. They model
the ability and willingness of the agent j to achieve g. They are evaluative beliefs and are
constituents of the image and reputation of j in the sense described at the beginning in the
previous chapter. This property was already mention in [30], where the authors exemplify

8 The authors describe other beliefs and goals that are part of the trust mental state, like fulfillment belief or
wishes. However, for the sake of clarity we obviate them because they are a direct cause of the beliefs shown
in the list.
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which kinds of beliefs compose evaluations, and the capabilities that cognitive agents must
achieve in order to be evaluators.

7.5.4 ForTrust

The ForTrust model presented in [21] refine the notion of social trust by differentiating
occurrent from dispositional trust. The former is understood as the trust on other agents
to act here and now, and coincide with the core trust definition given by Castelfranchi and
Falcone. In contrast, dispositional trust denotes the disposition of the trustee to perform an
action in order to obtain a potential goal when some conditions hold [21].

From a more technical perspective the authors define occurrent trust with the predicate
OccTrust(i, j, «, @), indicating that i trusts j here and now to perform action « to obtain
goal ¢. As in the definition of core trust from Castelfranchi and Falcone [8], the components
embrace an occurrent goal, an occurrent capability belief, an occurrent power belief and an
occurrent intention belief. More formally:

OccTrust(i, j, o, ¢) =gef OccGoali(p) A
Beliefi(OccCap(j, a)) A
Beliefi(OccPower(j, o, ¢)) A
Beliefi(Occlntends(j, o))

The beliefs on the occurrent capability and occurrent power correspond to the competence
beliefs, while occurrent intention to the disposition belief. Regarding dispositional trust, the
background components are the same but we move from occurrent goals to potential goals,
and from occurrent beliefs to potential beliefs. Following [21], dispositional trust is defined
as follows:

DispTrust(i, j, o, ¢) =qef PotGoal; () A
Beliefi(CondCap(j, a)) A
Beliefi(Cond Power(j, o, ¢)) A
Belief;(CondIntends(j, a))

7.5.5 ReGreT

The ReGreT system presented by Sabater [41] is maybe one of the most complete reputation
and trust models, since it takes into account several advantages of all the models presented
so far.

ReGreT uses direct experiences, third party information and social structures to calculate
trust, reputation and levels of credibility. In this model, trust is a function of direct trust, only
calculated through direct experiences, and reputation. The incorporated reputation model
uses transmitted information, social networks analysis, system reputation and prejudices (to
infer reputation values of unknown agents from their belonging group). It also incorporates
a credibility module to evaluate the truthfulness of witness information, that of course, takes
into account the reputation and trust of the information provider. It provides reliability mea-
sures for trust, reputation and credibility values.
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Finally, an important aspect of this model is the consideration for an ontological dimen-
sion. They defined the trust of agent a on b towards certain context ¢ as T, ,¢. The situation
¢ is totally contextualized, and may depend on other elements. To describe the relationships
of contextualized environment, it is assumed an ontology that describes this knowledge, that
could be seen as the current preferred desires or goals of the agent.

7.5.6 FIRE

The FIRE model introduced by Huynh et al. [22] incorporates similar elements than Regret.
It computes as well a trust value for each agent and a reliability measure. It uses direct trust
computed though direct experiences (extracted from Regret as the same authors claim), wit-
ness information (similar to Regret) and certified reputation. The last one is a completely new
component. Certified reputations are ratings presented by the rated agent about itself which
have been obtained from its partners in past interactions [22]. The authors argue that this
could be seen as the recommendation letters or references when applying for a job position.

The model uses role-based trust to determine the elements that contribute to the calcula-
tion of trust. This component is similar to the ontology dimension of Regret. Therefore, they
can be seen as the desires (or goals) of the agent.

7.5.7 Marsh

This model [29], one of the first that appeared in literature, talks explicitly about trust, and
only takes into account direct experiences. It defines three kinds of trust.

— Basic Trust: T! represents the trust disposition of agent x at time .

— General Trust: T, (y)' represents the general trust that agent x has on y at time ¢ without
specifying any situation.

—  Situational Trust: Ty(y, @)’ represents the trust of agent x on the target agent y in the
situation «. Marsh defines a basic formula to calculate it:

Te(y, ) = Ux(@)'- I (@) T ()" ey

where U, (a)' is the utility that agent x gains from situation «, I, ()’ is the importance
for agent x in the situation «, and T (y)’ is the estimation of general trust after taking into
account all information related to Ty (y)’. The author proposes three ways to calculate
this estimation: the mean, the maximum and the minimum of all past experiences.

7.5.8 Yu and Singh

In this model [47], the result of direct interactions is stored as what the authors call quality
of service (-QoS-). Agents only keep the most recent interactions, and each agent defines a
threshold for each partner over which she is classified as a trustworthy agent.

Also, the model incorporates for each agent a TrustNet structure, in a similar way as
Schillo et al. [45] and Histos [49]. The difference is that agents being queried can refer to
other agents. The initial agent will take into account the information only if the refereed
agents are not too far in the social tree. The model uses Dempster Shafer evidence theory to
aggregate the information from different source agents.
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7.5.9 LIAR

The LIAR model presented by Muller and Vercouter [31] focuses on the detection of fraud
and reputation management in the communications. The authors use a normative language
to formalize prohibited situations in terms of the information sent by the agents and the
commitments that they set. Through this, the model defines a procedure capable to detect
lies.

The model mainly uses two different kinds of reputation: Direct Experience-Based Repu-
tation and Observation-Based Reputation. With this information agents can decide whether
to trust or distrust the information sent by a given source agent. The authors detail the deci-
sion making process for the trust decision, and thus, from our perspective, it becomes a trust
model. The model is framed in peer-to-peer networks.

7.5.10 Schillo et al.

The model presented by Schillo et al. [45] was designed for societies or environments where
the evaluation of interactions between agents has a boolean nature, for instance, good or
bad. For this reason it works perfectly in scenarios like the prisoners dilemma. The idea is
that the result of an interaction computes the honesty of the partner by checking what she
claimed and what she finally did. Taking into account all the results in the interactions, the
model calculates the probability on the honesty in the next interaction, by simply dividing the
number of interactions where the agent was honest by the total number of interactions. Then,
let A, B be agents, where A has observed B being honest / times on a total of n interactions,
the probability for A that B will be honest the next interaction is calculated by T (A, B) = %
This naive idea is complemented with a very interesting source of information. They incor-
porate a social network, a TrustNet data structure, for each agent. The idea is that agents can
query other agents that have met before. This witness information will be a set of interaction
results, not a summary of them, that agents can incorporate to their probability calculus.

7.5.11 Sen and Sajja

In the model presented by Sen and Sajja [46] the authors explicitly talk about reputation. The
model considers two kinds of direct experience: direct interaction and direct observation.
The idea is that only direct interactions give an exact perception of the performance of the
agents. The authors suppose that observations are noisy, and that may differ from reality. Due
to this difference, the impact than direct interactions have on the updating rule of reputation
values is much higher that direct observations. They represent the reputation values as real
numbers in the interval [0, 1] where O represents the worst reputation and 1 the best one, in
a linear function.

In addition, in their model agents can query other agents about the performance of other
partners, being the answer always a boolean, good or bad. From this witness information,
agents calculate the number of positive and negative answers received about the same partner.

8 Conclusions and future work
In this paper, we have presented a possible integration of a cognitive reputation model,

Repage, in a BDI agent architecture. The agent has been specified using multi-context sys-
tems, where each attitude has been integrated in a different a context. We used Lpc, a
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hierarchical first-order language to represent the beliefs of the agent, allowing probabilistic
reasoning. In particular we show how Repage social evaluations, image and reputation, are
translated into probabilistic formulas written in L p¢, and under which conditions image and
reputation information influence each other. The complete BDI reasoning process is done by
also allowing graded desires and graded intentions, and stating appropriate bridge rules to
relate them.

From the example it should be clear that on one hand epistemic decisions play a crucial role
in the pragmatic—strategic decisions of the agent, and that a formal model for its integration
improves the conceptualization of the reasoning process. On the other hand, the consequences
of pragmatic—strategic decisions may effect the epistemic decisions. Even when in this work
we have used Repage model, we took it as a paradigmatic example of a cognitive reputa-
tion model. Other models with similar (or simplified) notions could be also used in the BDI
framework.

The classification dimensions that we provide in the relate work section enhance the
contribution of this paper. Nevertheless, we want to point out several considerations:

1. Even when we are placing the BDI + Repage model as a trust model, we want to clarify
that the architecture is more general. We do not explicitly define trust, but it emerges
from a set of beliefs, desires and intentions when a decision is made and such decision
involves an action to interact with another agent.

2. Also, when trust emerges from the reasoning, it can be completely defined in terms of a
mental state composed of beliefs, desires and intentions. Hence, we classify it as a cog-
nitive model. When a decision is made and such decision involves an interaction with
another agent, the mental state can be seen as trust, in the sense described by Castelfranchi
and Falcone [8] and Herzig et al. [21].

3. Moreover, bootstrapping is possible, becoming, as far as we know, the only trust model
that has a cognitive representation and at the same time, an analytical formulation to
update and calculate the cognitive components of trust.

4. Finally, the model has a general purpose. It is not attached to any underlying network
typology nor ontology, and thus, it could and should be adapted to the peculiarities of
the environments, although we believe that this knowledge could be codified as beliefs.

In the future we are interested in studying the resolution of cognitive dissonances, sit-
uations in which the agent cannot decide which action to perform due to contradictory
information. This research direction is somehow related to argumentation issues. Parsons et
al. [32] use a multi-context BDI agent to build an argumentation framework that we could
adapt in our model. Also, work related to coherence analysis can be used for such purpose.
For instance, in the work [23], a deductive coherence framework is formalized in the basis
of a BDI multi-context agent, and it could be used to solve these problems.

Another important part of this research line involves the empirical study of certain prop-
erties regarding image and reputation through simulations, and therefore implementation of
the model using a logic-based multiagent platform, like JASON [2]. One point that we are
specially interested is in the study on how graded trust conditions affect the overall perfor-
mance of societies, and therefore, how the relation between image and reputation is relevant
in determining the dynamics of the society. Regarding this issue, we are implementation a
simple scenario using JASON where a simplified version of our BDI model is introduced.
We plan to exhaustively study the performance of such simulation platform.

Acknowledgments This work was supported by the EC with the project LiquidPub (STREP FP7-213360),
by the Spanish Education and Science Ministry with the projects AEI (TIN2006-15662-C02-01), AT (CON-
SOLIDER CSD2007-0022, INGENIO 2010), ARINF (TIN2009-14704-C03-03) and RepBDI (Intramural

@ Springer



Auton Agent Multi-Agent Syst (2012) 24:175-216 213

2008501136), by the ESF Eurocores-LogICCC/MICINN with the project FFI2008-03126- E/FILO, and by
the Generalitat de Catalunya under the grants 2009-SGR-1433 and 2009-SGR-1434. We also would like to
thank the anonymous referees for their valuable comments and suggestions.

Appendix A: Internals of Repage

In the Repage architecture we find three main elements, a memory, a set of detectors and
the analyzer (see Fig. 5). In the memory, predicates are conceptually organized in levels of
abstraction and inter-connected. Each predicate that belongs to one of the main types (image,
reputation, shared voice, shared evaluation, valued communication and outcome) contains
an evaluation that refers to a certain agent in a specific role. We maintain the value associated
to a predicate as a tuple of n positive values (summing to one), that we call weights, plus
a strength value: {wy, ..., wy,, s}. Originally, only five values where considered, each one
associated with a linguistic label: Very Bad (V B), Bad (B), Neutral (N ), Good (G) and Very
Good (VG).

The network of dependences specifies which predicates contribute to the values of others.
Each predicate (except those at the bottom level) has a set of antecedents and at the same time
contributes to the calculation of other predicates. The detectors, inference units specialized
in each particular kind of predicate, receive notifications from predicates that have changed
or that appear in the system, like new communications or new fulfillments, and use the depen-
dences to recalculate the new values and to populate the memory with new predicates. The
aggregation of evaluations is done with a weighted product (see [40] for a short discussion
and [18,39] for details about the aggregation operation). Let m be the number of evaluations
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Fig. 5 The Repage architecture
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w/ to aggregate, indicating their weight by wij . The aggregated evaluation w is calculated
as follows:

m J
1= w;
n—1ym J
2o [1j=1 w;
Furthermore, each predicate has associated a strength that is function of its antecedents
and of the intrinsic properties of each kind of predicate. As a general rule, predicates that
resume or aggregate a bigger number of predicates will hold a higher strength. However,
strength is closely related to bias factors, rules that for instance, give more importance to
direct experiences that indirect experiences, and that may come from sociology or psychology
theories, or from simple common sense.

At the first level of the Repage memory we find a set of predicates not evaluated yet by
the system.

Vi:0<i<n—1:w; =

(@)

— Contracts: agreements of the future interaction between two agents. For instance, in an
e-Commerce environment, an agent may expect the maximum quality of a product that
for sure the seller is saying will offer.

— Fulfillment: the result of the interaction. In the same e-Commerce example, the fulfillment
would be the real quality of the product the agent got.

— Communications: Information that other agents may communicate about others’ evalua-
tions. These communications may be related to three different aspects: the image that the
informer has about a target, the image that according to the informer a third party agent
has, and the reputation that the informer has about the target.

In level two we have two kind of predicates:

— Valued communication: The subjective evaluation of the communication received that
takes into account, for instance the image the agent may have of the informer as infor-
mant. Communications from agents whose credibility in terms of image or may be rep-
utation are low, will not be considered as strongly as the ones coming from well reputed
informers.

— Outcome: The agent’s subjective evaluation of the direct interaction. From a fulfillment
and a contract a detector builds up an outcome predicate that evaluates the particular
transaction.

In the third level we find two predicates that are only fed by valued communications. On
one hand, a shared voice will hold the information received about the same target and same
role coming from communicated reputations. On the other hand, shared evaluation is the
equivalent for communicated images and third party images.

Shared voice predicates will generate candidate reputation, and share evaluations together
with outcomes, candidate image. In this fourth level candidate reputation and candidate
images aren’t strong enough to become a full reputation and image respectively. New com-
munications and new direct interactions will contribute at this level to enrich these predicates
and therefore “jump” to images and reputations. For details on the remaining elements we
refer to [40].
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