
Auton Agent Multi-Agent Syst (2009) 19:124–152
DOI 10.1007/s10458-008-9070-9

Normative conflict resolution in multi-agent systems

Wamberto W. Vasconcelos · Martin J. Kollingbaum ·
Timothy J. Norman

Published online: 9 November 2008
Springer Science+Business Media, LLC 2008

Abstract Norms (permissions, obligations and prohibitions) offer a useful and powerful
abstraction with which to capture social constraints in multi-agent systems. Norms should
exclude disruptive or antisocial behaviour without prescribing the design of individual agents
or restricting their autonomy. An important challenge, however, in the design and manage-
ment of systems governed by norms is that norms may, at times, conflict with one another;
e.g, an action may be simultaneously prohibited and obliged for a particular agent. In such cir-
cumstances, agents no longer have the option of complying with these norms; whatever they
do or refrain from doing will lead to a social constraint being broken. In this paper, we present
mechanisms for the detection and resolution of normative conflicts. These mechanisms, based
on first-order unification and constraint solving techniques, are the building blocks of more
sophisticated algorithms we present for the management of normative positions, that is, the
adoption and removal of permissions, obligations and prohibitions in societies of agents. We
capture both direct and indirect conflicts between norms, formalise a practical concept of
authority, and model conflicts that may arise as a result of delegation. We are able to formally
define classic ways for resolving conflicts such as lex superior and lex posterior.

Keywords Norms · Detection and resolution of normative conflicts

W. W. Vasconcelos (B) · T. J. Norman
Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK
e-mail: wvasconcelos@acm.org

T. J. Norman
e-mail: t.j.norman@abdn.ac.uk

M. J. Kollingbaum
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
e-mail: mkolling@cs.cmu.edu

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 125

1 Introduction

Techniques from multi-agent systems (MASs) offer the means to develop systems and inte-
grate large, complex systems of systems1 while maintaining the autonomy and heterogeneity
of individual components [47]. One of the main challenges of MASs is to both i) maintain
the autonomy and heterogeneity of system components (agents), and ii) provide guarantees
(under appropriate assumptions) about the behaviour and outcomes of individual agents and
of the system as a whole.

A promising approach to meeting this challenge advocates the explicit representation of
norms—viz., the prohibitions, permissions and obligations—associated with individuals of
a society [1,4,30]. Norms constrain the behaviour of norm-abiding agents—they will pursue
their obligations, avoiding prohibitions, and taking advantage of their permissions. Our work
described here deals with simple norms such as “agent x is obliged to pay” or “all auctioneer
agents are permitted to start an auction”. Conditional norms [5,25], that is, those such as “if
agent x agrees to buy good y then it is obliged to pay for it”, depicting specific circumstances
and the resulting changes in normative positions associated with them, are not dealt with in
this paper; however, we do sketch how our proposal can be extended to address them.

Norms offer a useful and powerful abstraction with which to specify and regulate multi-
agent systems. They are designed to exclude disruptive or antisocial behaviour without pres-
cribing the design of individual agents or restricting their autonomy [5]. Norms provide a
generic account of individual behaviours; if all agents have norm-regulated behaviours, then
we can offer guarantees about the multi-agent system. Similarly, norms provide a declarative
statement of how agents are expected to behave, and so offer agents a way to predict the
behaviour of others in response to requests, the provision of information, etc.

Normative specifications, however, raise a number of challenges. An important and little
considered challenge is that normative positions may conflict. Normative conflicts may be
simple; for example, an action may be simultaneously forbidden and obliged. Conflicts are
not always easy to spot, however; for example, performing one action to meet an obligation
may constitute the performance of another action (due to some domain theory) which is
prohibited.2

Regardless of the complexity of the interactions between norms, the existence of a conflict
will require resolution (or at least an informed choice of which norm to violate) for the agent
to move forward; the agent will be in a position in which whatever it does (or refrains from
doing) will violate a norm. We propose in this paper means to automatically detect normative
conflicts and resolve them: our norms are manipulated in a finely-grained fashion, by the
addition of constraints; the added constraint will prevent variables in norms’ actions from
having overlapping values.

Our approach to norm management contributes to the state-of-the-art in four important
ways:

(1) We present a formal representation of norms with constraints.
(2) We present formal definitions of normative conflicts and define how they can be resol-

ved, including indirect conflicts and those caused by agents delegating tasks.

1 A system of systems is a “collection of task-oriented or dedicated systems that pool their resources and
capabilities to obtain a new, more complex, ‘system’ which offers increased functionality and performance
than simply the sum of the constituent systems”, http://en.wikipedia.org/wiki/System_of_systems, accessed
5 May 2008 11:00am GMT.
2 We are aware that inter-relationships among actions can be hard to establish in real-life scenarios. This effort
would require techniques for knowledge capture/elicitation (e.g., [11]) leading to a domain theory in which
dependencies among actions are formally forged.

123

http://en.wikipedia.org/wiki/System_of_systems

126 Auton Agent Multi-Agent Syst (2009) 19:124–152

(3) We present mechanisms for the adoption of new norms and the removal of norms to aid
in the process of managing global normative states such that they remain conflict-free.

(4) We also present a formal account of authority, which is used to capture common
phenomena such as lex superior.

Before presenting the perspective of norm-governed systems that we use in this paper
(Sect. 3), we begin our exposition by informally introducing a scenario. The scenario outlines
a rescue operation from a hazardous environment, and examples from this scenario are used
throughout the paper to illustrate our formalisation and mechanisms for norm conflict detec-
tion and resolution. In Sect. 4, we formally define our notion of a normative conflict, explain
how to resolve such a conflict, and present algorithms for conflict resolution. We then move
on to investigating mechanisms for the management of global normative states by presenting
algorithms for norm adoption and removal such that the normative state remains conflict-free
(Sect. 5). In Sect. 6, we discuss indirect normative conflicts, that is, those arising due to
relationships among disparate actions, and extend our approach to deal with such conflicts;
conflicts caused by the delegation of norms among agents are also addressed. In Sect. 7,
we provide a formal account of authority and how it relates to norms; we also formalise a
notion of norm violation and sanction. We then revisit our scenario in some detail in Sect. 8
to complete our exposition and bring together the various threads of the paper in a coherent
illustration of our contributions. We compare our approach to related work in Sect. 9 and
we conclude the paper in Sect. 10, where we also reflect on our main contributions and give
directions for future work.

2 Scenario: rescue operation

We illustrate our approach through the use of a simplified non-combatant evacuation scenario
in which software agents help humans to coordinate their activities and information sharing.
In this scenario there are two coalition partners, viz., team A and team B, operating within
the same area, but each with independent assets. In our scenario, team A have received
information that members of a non-governmental organisation (NGO) are stranded in a
hazardous location. Intelligence has confirmed that these people must be evacuated to a safe
location as soon as possible and that the successful completion of this operation takes highest
priority.

Team A are based on an aircraft carrier just off the coast and have a number of assets
at their disposal, including autonomous unmanned aerial vehicles (AUVs), deployed with
sensors to provide on-going visual intelligence for the operation, and helicopters that can be
deployed to rescue the NGO workers. Team B are located on land within close distance from
the location of the NGO workers. The assets available to team B include ground troops and
helicopters.

The most effective plan to complete the rescue mission is to deploy an AUV to provide
real-time visual intelligence of the area in which the NGO workers are located, and then to
dispatch the helicopter team to uplift the NGO workers and return them to the aircraft carrier.
During the operation the AUV and the associated monitoring team on the carrier will provide
the helicopter team with continuous updates regarding the location of the NGO workers and
potential hazards in that area. Team A operate under the following norms:

– Team A commander is obliged to evacuate the stranded workers.
– Team A is forbidden to share AUV-obtained intelligence.
– Helicopters are forbidden to fly in bad weather.

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 127

After the AUV is dispatched to the target area, team A commander receives information
from flight operations that the weather has deteriorated and it is no longer safe to deploy
helicopters from the aircraft carrier. The alternative is to liaise with team B and deploy their
troops and land-based helicopters, but to do so intelligence must be shared, and normative
conflicts arise. In the ensuing sections we shall formalise this scenario and use it to illustrate
the usefulness of our approach.

3 Norm-governed multi-agent systems

The design of complex MASs is greatly facilitated if we move away from individual com-
ponents and, instead, regard them as belonging to stereotypical classes or categories of com-
ponents. One way to carry out this classification/categorisation is through the use of roles as
introduced in, e.g., [8,30]—an agent takes on a role within a society or an organisation, and
this role defines a pattern of behaviour to which any agent ought to conform. For instance,
within a humanitarian relief force, there are roles such as medical assistant, member of mine
clearance team, and so on, and agents adopt these roles (possibly more than one) as they join
the force. When agents adopt roles they commit themselves to the roles’ expected behaviours,
with associated sanctions and rewards.

We shall make use of two finite, non-empty sets, Agents = {a1, . . . , an} and Roles =
{r1, . . . , rm}, representing, respectively, the sets of agent identifiers and role labels. We also
need to refer to actions performed by agents:

Definition 1 An action tuple is 〈a :r, ϕ̄, t〉 where

– ϕ̄, a ground first-order atomic formula, representing an action
– a ∈ Agents is the agent who did ϕ̄

– r ∈ Roles is the role played by the agent a when it did ϕ̄

– t ∈ IN is the time when ϕ̄ was done

Agents perform their actions in a distributed fashion, contributing to the overall enactment of
the MAS. However, for ease of presentation, we make use of a global (centralised) account
for all actions taking place; therefore, it is important to record the authorship of actions and
the time when they occur. We use the set � to store the actions of agents—it represents a
trace or a history of the enactment of a society of agents from a global point of view:

Definition 2 A global enactment state � is a finite, possibly empty, set of action tuples
〈a :r, ϕ̄, t〉.
A global enactment state � can be “sliced” into many partial states �a = {〈a : r, ϕ̄, t〉 ∈
� | a ∈ Agents} containing all actions of a specific agent a. Similarly, we could have partial
states �r = {〈a :r, ϕ̄, t〉 ∈ � | r ∈ Roles}, representing the global state � “sliced” across the
various roles. We make use of a global enactment state to simplify our exposition; however,
a fully distributed (and thus more scalable) account of enactment states can be achieved by
slicing them as above and managing them in a distributed fashion.3

3 In [14] we present a distributed architecture for electronic institutions [8], in which global enactment states
are broken down into scenes, that is, agent sub-activities with specific purposes, such as the registration process
in a virtual auction room, the auction itself and the settlement of bills (and delivery of goods).

123

128 Auton Agent Multi-Agent Syst (2009) 19:124–152

3.1 A representation for norms

In this section we introduce our representation of norms. We extend our previous work [41],
adopting the notation of [30] for specifying norms, complementing it with constraints [18].
Constraints are used to further refine the scope of influence of norms on actions, and are thus
defined:

Definition 3 Constraints, represented as γ , are any construct of the form τ � τ ′, where
τ, τ ′ are first-order terms (that is, a variable, a constant or a function applied to terms) and
� ∈ {=, �=,>,≥,<,≤}.
We shall denote a possibly empty set of constraints as � = {γ0, . . . , γn} and it stands as
a conjunction of the constraints, that is,

∧n
i=0 γi . We make use of numbers and arithmetic

functions to build terms τ . Arithmetic functions may appear infix, following their usual
conventions. We adopt Prolog’s convention [2] and use strings starting with a capital letter
to represent variables and strings starting with a small letter to represent constants. Some
sample constraints are X < 120 and X < (Y + Z). To improve readability, constraints of
the form {10 ≤ X, X ≤ 45} will be written as {10 ≤ X ≤ 45}.

In our work, constraints are associated with first-order formulae, imposing restrictions on
their variables. We represent this association as ϕ ◦�, as in, for instance, deploy(s1, X, Y) ◦
{10 ≤ X ≤ 50, 5 ≤ Y ≤ 45}. When � is empty, we will simply drop it from our formulae.
Norms are thus defined:

Definition 4 A norm ω is a tuple 〈ν, td , ta, te〉, with ν being either

– Oα:ρϕ ◦ � (an obligation),
– Pα:ρϕ ◦ � (a permission), or
– Fα:ρϕ ◦ � (a prohibition),

where α, ρ are terms, ϕ◦� is a first-order atomic formula with constraints; td , ta, te ∈ IN are,
respectively, the time when ν was introduced, when ν becomes active and when ν expires,
td ≤ ta ≤ te.

Term α identifies the agent(s) to whom the norm is applicable and ρ is the role of such
agent(s). Oα:ρϕ ◦ {γ0, . . . , γn} thus represents an obligation on agent α taking up role ρ to
bring about ϕ, subject to all constraints γi , 0 ≤ i ≤ n. The γi terms express constraints on
variables of ϕ.

For simplicity, in our discussion we assume an implicit universal quantification over
variables in ν. For instance, PA:Rdeploy(X, b, c) stands for ∀A ∈ Agents.∀R ∈ Roles.∀X.

PA:Rdeploy(X, b, c). However, our proposal can be naturally extended to cope with arbitrary
quantifications. Obligations normally require the arguments of their actions to be existentially
quantified, as in, for instance

∀A ∈ Agents.∀R ∈ Roles.∃X.∃Y.∃Z .OA:Rdeploy(X, Y, Z)

Quantifications on agent ids and role labels may be universal or existential, and the relative
ordering of quantifications defines the applicability of the norm, following the usual first-
order logic semantics [10,26].

We propose to formally represent from a global perspective the normative positions [35] of
all agents taking part in a virtual society. By “normative position” we mean the “social burden”
associated with individuals [14], that is, their obligations, permissions and prohibitions:

Definition 5 A global normative state is a finite and possibly empty set
 = {ω0, . . . , ωn},
of norms ωi , 0 ≤ i ≤ n.

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 129

A global normative state
 complements the enactment state � of a virtual society, with
information on the normative positions of individual agents. The management (i.e., crea-
tion and updating) of global normative states is an interesting area of research. A practical
approach is that of [15]: rules depict how norms should be inserted and removed as a result
of agents’ actions. A sample rule is

〈Ag1 :cmdr, ask(Ag2, Info), T 〉� ⊕〈OAg2:intsupply(Ag1, Info), (T + 1), (T + 1), (T + 5)〉
representing that if an agent Ag1 acting as a commander asks Ag2 some Info at time T
then we introduce (denoted by the “⊕” operator) an obligation at time T + 1 (and with
immediate effect) on Ag2 acting as an intelligence officer, to supply Ag1 the requested Info
within 5 “ticks” of the clock. Similarly to �, we use a single normative state
 to simplify
our exposition; we can also slice
 into various sub-sets and manage them in a distributed
fashion as explored in [13].

3.2 Substitutions, unification and constraint satisfaction

We use first-order unification [10] and constraint satisfaction [18] as the building blocks
of our mechanisms. Unification allows us (i) to detect whether norms are in conflict and
(ii) to detect the set of actions that are under the influence of a norm. Initially, we define
substitutions:

Definition 6 A substitution σ is a finite and possibly empty set of pairs x/τ , where x is a
variable and τ is a term.

We define the application of a substitution in accordance with [10]. In addition, we describe
how substitutions are applied to sets of constraints and norms (X stands for O, P or F):

(1) c · σ = c for a constant c.
(2) x · σ = τ · σ if x/τ ∈ σ ; otherwise x · σ = x .
(3) pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).
(4) {γ0, . . . , γn} · σ = {γ0 · σ, . . . , γn · σ }
(5) (Xα:ρϕ ◦ �) · σ = (

X(α·σ):(ρ·σ)(ϕ · σ) ◦ (� · σ)
)
.

(6) 〈ν, td , ta, te〉 · σ = 〈(ν · σ), td , ta, te〉
A substitution σ is a unifier of two terms τ1, τ2, if τ1 ·σ = τ2 ·σ . Unification is a fundamental
problem in automated theorem proving and many algorithms have been proposed [10]; recent
work offers means to obtain unifiers efficiently. We use unification in the following way:

Definition 7 unify(τ1, τ2, σ) holds iff τ1 · σ = τ2 · σ , for some σ . unify(pn(τ0, . . . , τn),

pn(τ ′0, . . . , τ ′n), σ) holds iff unify(τi , τ
′
i , σ), 0 ≤ i ≤ n.

The unify relationship checks if a substitution σ is indeed a unifier for τ1, τ2, but it can also be
used to find σ . We assume that unify is a suitable implementation of a unification algorithm
which (i) always terminates (possibly failing, if a unifier cannot be found); (ii) is correct; and
(iii) has a linear computational complexity.

We make use of existing constraint satisfaction techniques [17,18] to implement a satisfy
predicate which checks if a given set of constraints admits one solution, that is, the predicate
holds if the variables of the constraints admit at least one value which simultaneously fulfils
all constraints:

Definition 8 satisfy({γ0, . . . , γn}) holds iff
∧n

i=0(γi · σ) is true for some σ .

123

130 Auton Agent Multi-Agent Syst (2009) 19:124–152

Fig. 1 Check if action is within influence of a norm

This predicate can be implemented via different “off-the-shelf” constraint satisfaction libra-
ries; for instance, it can be defined via the built-in call_ residue_vars/2 predicate,
available in SICStus Prolog [38] as:

satisfy({γ0, . . . , γn})← call_residue_vars((γ0, . . . , γn), _)

Predicate call_residue_vars(Goals, Vars) evaluates if Goals admit one possible solu-
tion, collecting in Vars the list of residual variables that have blocked goals or attributes
attached to them. In our definition above, the value of Vars is not relevant, as we simply want
to know if Goals are satisfiable.

3.3 Meaning of norms

We explain the meaning of our norms in terms of their relationships with action tuples of
global enactment states. We define when an individual action tuple is within the scope of
influence of a norm—we do so via the logic program of Fig. 1. It defines predicate inScope
which holds if its first argument, an action tuple (in the format of the elements of � of Def. 2),
is within the influence of a norm ω (in the format of Def. 4), its second parameter. Lines 2
and 3 define, respectively, the format of Action and ω (where X is either P, F or O). Line
4 tests (i) if the agent performing the action and its role unify with α, ρ of ω and (ii) if the
actions ϕ̄ and ϕ unify. Line 5 checks if the constraints on ω (instantiated with the substitution
σ obtained in line 4) can be satisfied, and, finally, line 6 checks if the time of the action is
within the norm’s time frame.

A global enactment state � at instant tnow is compliant with a global normative state
 if
both conditions below hold:

– All active prohibitions in
 (i.e., those that have not yet expired) do not have an action
within their scope, that is,

∀ ω ∈
.∀Action ∈ �.ω = 〈Fα:ρϕ ◦ �, td , ta, te〉 ∧ te ≥ tnow → ¬inScope(Action, ω)

– All expired obligations have a corresponding action within their scope, that is,

∀ ω ∈
.∃Action ∈ �.(ω = 〈Oα:ρϕ ◦ �, td , ta, te〉 ∧ te < tnow)→ inScope(Action, ω)

Permissions can be interpreted differently depending on how much autonomy we want
agents to have [16]. For instance, one might insist that only explicitly permitted actions
are performed—more formally:

∀Action ∈ �.∃ω ∈
.Action = 〈a :r, ϕ̄, t〉 →
(

ω = 〈Pα:ρϕ ◦ �, td , ta, te〉∧
inScope(Action, ω)

)

Agents may experience difficulties if an action is simultaneously within the scope of influence
of a prohibition and an obligation (or a prohibition and a permission). In such circumstances,
whatever the agents do or refrain from doing, may give rise to an enactment state that is not

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 131

Fig. 2 Conflict detection: overlap in scopes of influence

norm-compliant. The agents will thus violate a norm, and will be subject to sanctions—in
Sect. 7.3 we explain how norm violations/sanctions are dealt with.

If an agent has a set of candidate actions subject to a set of conflict-free norms, then
predicate inScope can be used to select among the actions, namely those that are not within
the scope of any prohibitions. Alternatively, agents can use the mechanism above to select
those actions that are within the scope of obligations, and hence should be given priority.
These strategies have been explored in [14].

4 Norm conflicts

This section provides definitions for norm conflicts, enabling their detection and resolution.
Constraints confer more expressiveness and precision on norms, but mechanisms for detection
and resolution must factor them in.

4.1 Conflict detection

A conflict arises when an action is simultaneously prohibited and permitted/obliged, and its
variables have overlapping values. The variables of a norm specify its scope of influence,
that is, which agent/role the norm concerns, and which values of the action it addresses. In
Fig. 2, we show two norms over action deploy(S, X, Y), establishing that sensor S is to be
deployed on grid position (X, Y). The norms are

OA1:R1 deploy(s1, X1, Y1) ◦ {10 ≤ X1 ≤ 50, 5 ≤ Y1 ≤ 45}
FA2:R2 deploy(s1, X2, Y2) ◦ {5 ≤ X2 ≤ 60, 15 ≤ Y2 ≤ 40}

Their scopes are shown as rectangles filled with different patterns. The overlap of their scopes
is the rectangle in which both patterns are superimposed. Norm conflict is formally defined
as follows:

Definition 9 Norms ω,ω′ ∈
, are in conflict under substitution σ , denoted as
conflict(ω, ω′, σ), X being O or P, iff:

– ω = 〈Fα:ρϕ ◦ �, td , ta, te〉, ω′ = 〈Xα′:ρ′ϕ′ ◦ �′, t ′d , t ′a, t ′e〉 or
– ω = 〈Xα:ρϕ ◦ �, td , ta, te〉, ω′ = 〈Fα′:ρ′ϕ′ ◦ �′, t ′d , t ′a, t ′e〉
and the following conditions hold:

123

132 Auton Agent Multi-Agent Syst (2009) 19:124–152

(1) unify(〈α, ρ, ϕ〉, 〈α′, ρ′, ϕ′〉, σ),
(2) satisfy((� ∪ �′) · σ) and
(3) overlap(ta, te, t ′a, t ′e)
That is, a conflict occurs between a prohibition and either an obligation or a permission if (1)
a substitution σ can be found that unifies the variables of the two norms, (2) the constraints
from both norms can be satisfied (taking σ under consideration), and (3) the activation period
of the norms overlap—the overlap relationship holds if ta ≤ t ′a ≤ te or t ′a ≤ ta ≤ t ′e.

The norm conflict of Fig. 2 is indeed captured by Definition 9. We can obtain a substitution
σ = {X1/X2, Y1/Y2} and this is a first indication that there may be a conflict or overlap of
influence between both norms regarding the defined action. The constraints on the norms may
restrict the overlap and, therefore, leave actions under certain variable bindings free of conflict.
We, therefore, have to investigate the constraints of both norms in order to see if an overlap of
the values indeed occurs. In our example, the obligation has constraints {10 ≤ X1 ≤ 50, 5 ≤
Y1 ≤ 45} and the prohibition has constraints {5 ≤ X2 ≤ 60, 15 ≤ Y2 ≤ 40}. By using the
substitutions we can “merge” the constraints as {10 ≤ X2 ≤ 50, 5 ≤ X2 ≤ 60, 5 ≤ Y2 ≤
45, 15 ≤ Y2 ≤ 40}; the overlap of the merged constraints is 10 ≤ X2 ≤ 60 and 15 ≤ Y2 ≤ 40
and they represent ranges of values for variables X1, X2 and Y1, Y2 where a conflict will occur.

For convenience (and without any loss of generality), we assume that our norms are in a
special format: all terms τ occurring in ν are replaced by a fresh variable x (not occurring
anywhere in ν) and a constraint x = τ is added to �. This is an extended form of explicit
unification [36] and the transformation of formulae from their usual format to this extended
explicit unification format can be easily automated by scanning ν from left to right, collecting
all terms {τ1, . . . , τn}; then we add {x1 = τ1, . . . , xn = τn} to �. For example, norm
PA:Rdeploy(s1, X, Y)◦{X > 50} becomes PA′:R′deploy(S, X ′, Y ′)◦{A′ = A, R′ = R, S =
s1, X ′ = X, Y ′ = Y, X > 50}. Although some of the added constraints x = y may seem
superfluous, they are required to ensure that unconstrained variables are properly dealt by
our conflict resolution mechanism presented below.

4.2 Conflict resolution

We resolve conflicts by manipulating the constraints associated to the norms’ variables,
removing any overlap in their values. In Fig. 3 we show the norms of Fig. 2 without the
intersection between their scopes of influence4—the prohibition has been curtailed, its scope
being reduced to avoid the values that the obligation addresses. Specific constraints are added
to the prohibition in order to perform this curtailment; these additional constraints are derived
from the obligation, as we explain below. In our example, we obtain two prohibitions, viz.,
FA2:R2 deploy(s1, X2, Y2) ◦ {5 ≤ X2 < 10, 15 ≤ Y2 ≤ 40} and FA2:R2 deploy(s1, X2, Y2) ◦
{50 < X2 ≤ 60, 15 ≤ Y2 ≤ 40}.

We formally define below how the curtailment of norms takes place. It is important to
notice that the curtailment of a norm creates a new set
 of curtailed norms:

Definition 10 Relationship curtail(ω, ω′,
), where

– ω = 〈Xα:ρϕ ◦ {γ0, . . . , γn}, td , ta, te〉 and
– ω′ = 〈X′

α′:ρ′ϕ
′ ◦ {γ ′0, . . . , γ ′m}, t ′d , t ′a, t ′e〉

X and X′ being either O, F or P, holds iff
 is a possibly empty and finite set of norms
obtained by curtailing ω with respect to ω′. The following cases arise:

4 For clarity, in this example we show the norms in their usual format without explicit unifications.

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 133

Fig. 3 Conflict resolution: curtailment of scopes of influence

(1) If conflict(ω, ω′, σ) does not hold then
 = {ω}; that is, the curtailment of a non-
conflicting norm ω is ω itself.

(2) If conflict(ω, ω′, σ)holds, then
 = {ωc
0, . . . , ω

c
m}, whereωc

j = 〈Xα:ρϕ◦({γ0, . . . , γn}
∪ {¬(γ ′j · σ)}), td , ta, te〉, 0 ≤ j ≤ m.

In order to curtail ω, thus avoiding any overlapping of the values its variables may have
with those variables of ω′, we must “merge” the negated constraints of ω′ with those of ω.
Additionally, in order to ensure the appropriate correspondence of variables between ω and
ω′ is captured, we must apply the substitution σ obtained via conflict(ω, ω′, σ) on the merged
negated constraints.

We combine the constraints of ν = Xα:ρϕ ◦ {γ0, . . . , γn} with the negated constraints of
ν′ = X′

α′:ρ′ϕ
′◦{γ ′0, . . . , γ ′m}. If we regard the set of constraints as a conjunction of constraints,

that is, {γ0, . . . , γi } is seen as
∧n

i=0 γi , and if we regard “◦” as the conjunction operator ∧,
then the following equivalences hold

Xα:ρϕ ∧
⎛

⎝
n∧

i=0

γi ∧ ¬
⎛

⎝
m∧

j=0

γ ′j · σ
⎞

⎠

⎞

⎠ ≡ Xα:ρϕ ∧
⎛

⎝
n∧

i=0

γi ∧
⎛

⎝
m∨

j=0

(¬γ ′j · σ)

⎞

⎠

⎞

⎠

We can rewrite the last formula as
m∨

j=0

(

Xα:ρϕ ∧
(

n∧

i=0

γi ∧ ¬(γ ′j · σ)

))

That is, each constraint on ν′ leads to a possible solution for the resolution of a conflict and
a possible curtailment of ν, as it prevents the overlap among variables. The curtailment thus
produces a set of curtailed norms

m⋃

j=0

νc
j =

m⋃

j=0

{Xα:ρϕ ◦ ({γ0, . . . , γn} ∪ {¬(γ ′j · σ)})}

Although each of the νc
j , 0 ≤ j ≤ m, represents a solution to the norm conflict, all of them

are added to
 in order to replace the curtailed norm. This allows the preservation of as much
of the original scope of the curtailed norm as possible. Figure 3 illustrates this: the result of
the curtailment are two new prohibitions applicable to all those coordinates of the original
prohibition which are not covered by the obligation, rather than just one of them. However,
replacing the original prohibition with one of its curtailed versions would resolve the conflict.

123

134 Auton Agent Multi-Agent Syst (2009) 19:124–152

Let us consider a further example. Suppose that we have two norms, ω and ω′, that are in
conflict. Norm ω states that it is forbidden for any agent in any role to deploy sensor s1 in
any location such that X is 100 and Y is greater than 50; this prohibition was issued at time
td and is in effect between ta and te. Norm ω′ also refers to the deployment of sensor s1, but
permits agent ag1 playing role r1 to deploy this sensor in certain locations that overlap with
those prohibited by ω; ω′ is in effect during the same period of time as ω. These norms are
represented as follows:

ω =〈FA:Rdeploy(S, X, Y) ◦
⎧
⎨

⎩

S = s1,

X = 100,

Y > 50

⎫
⎬

⎭
, td , ta, te〉

ω′ =〈PA′:R′deploy(S′, X ′, Y ′) ◦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A′ = ag1,

R′ = r1,

S′ = s1,

X ′ = 100,

Y ′ > 100

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, t ′d , ta, te〉
These norms are in conflict since conflict(ω, ω′, {A′/A, R′/R, S′/S, X ′/X, Y ′/Y }) holds.
We can resolve this conflict by curtailing ω with constraints A′ = ag1, R′ = r1, S′ = s1

X ′ = 100 and Y ′ > 100 of ω′. Following Definition 10, we obtain the set
 of curtailed
norms:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈FA:Rϕ ◦ (� ∪ {¬(A = ag1)}), td , ta, te〉,
〈FA:Rϕ ◦ (� ∪ {¬(R = r1)}), td , ta, te〉,
〈FA:Rϕ ◦ (� ∪ {¬(S = s1)}), td , ta, te〉,
〈FA:Rϕ ◦ (� ∪ {¬(X = 100)}), td , ta, te〉,
〈FA:Rϕ ◦ (� ∪ {¬(Y > 100)}), td , ta, te〉

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

We show the original prohibition with the added negated constraints stemming from ω′—
each negated constraint giving rise to a curtailed prohibition; the substitution σ ensures that
the constraints coming from ω′ are indeed associated with the corresponding variables of ω

(which are shown above already unified with their respective values). We can present the set
above in a clearer alternative format:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈FA:Rϕ ◦ (� ∪ {A �= ag1}), td , ta, te〉,
〈FA:Rϕ ◦ (� ∪ {R �= r1}), td , ta, te〉,
〈FA:Rϕ ◦ (� ∪ {S �= s1}), td , ta, te〉,
〈FA:Rϕ ◦ (� ∪ {X �= 100}), td , ta, te〉,
〈FA:Rϕ ◦ (� ∪ {Y ≤ 100)}), td , ta, te〉

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The third and fourth curtailed norms above (counting from top to bottom) have been rendered
useless, as they have unsatisfiable constraints—this becomes apparent if we “unravel” the
norms, that is,

〈FA:Rdeploy(S, X, Y) ◦
{

S = s1 , X = 100, Y > 50, S �= s1

}
, td , ta, te〉

〈FA:Rdeploy(S, X, Y) ◦
{

S = s1, X = 100 , Y > 50, X �= 100
}

, td , ta, te〉
We enclose in boxes the unsatisfiable constraints. Such norms are not wrong: they have
simply been curtailed to an extent that renders them useless. To further ground our approach,
we now outline our realisation of the conflict resolution mechanism.

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 135

The seemingly superfluous constraints added by transforming norms into the extended
explicit unification format allow us to handle norms without constraints. When two norms
without constraints are in conflict and one of them is to be curtailed, our mechanism will use
the superfluous constraints (of the preserved norm) to render the curtailed norm useless. For
example, if we have

FA1:R1 p(X1) ◦ {A1 = A′, R1 = R′, X1 = X ′}
OA2:R2 p(X2) ◦ {A2 = A′′, R2 = R′′, X2 = X ′′}

such that the former is to be curtailed and the latter is to be preserved, then we get the
following set of curtailed prohibitions:

⎧
⎪⎪⎨

⎪⎪⎩

FA1:R1 p(X1) ◦ {A1 = A′, R1 = R′, X1 = X ′, A1 �= A′′ }
FA1:R1 p(X1) ◦ {A1 = A′, R1 = R′, X1 = X ′, R1 �= R′′ }
FA1:R1 p(X1) ◦ {A1 = A′, R1 = R′, X1 = X ′, X1 �= X ′′ }

⎫
⎪⎪⎬

⎪⎪⎭

The boxed constraints are unsatisfiable: they establish that one of the formula’s variables
cannot have any values as A′′, R′′ and X ′′ are all uninstantiated variables. The curtailed
norms have been rendered useless as their scope of influence is non-existent. The set of
curtailed norms in this case is, in practice, an empty set as the constraints are unsatisfiable.

Although the explicit unifications are required for our conflict resolution mechanism to
work properly, they make norms more complex and harder to understand. In our examples,
to improve readability we shall use norms represented in the usual format (i.e., with arbitrary
terms appearing in them), however they can be automatically translated into their extended
explicit unification format.

4.3 An implementation of norm curtailment

We show in Fig. 4 a prototypical implementation of the curtailment mechanism as a logic
program. We show our logic program with numbered lines to enable the easy referencing of
its constructs. Lines 1–7 define curtail, and lines 8–14 define an auxiliary predicate merge.
Lines 1–6 depict the case when the norms are in conflict: the test in line 4 ensures this. Line
5 invokes the auxiliary predicate merge, which, as the name suggests, merges the constraints
{γ0, . . . , γn}with the negated constraints¬γ ′j . Line 6 assembles
 by collecting the members
� of the list New�s and using them to create curtailed versions of ω. The elements of
the list New�s assembled via merge are of the form � ∪ {(¬γ ′j · σ)}; additionally, in our
implementation, we check if each new set of constraints is satisfiable (line 10). As shown in the
previous examples, the merging of constraints may give rise to curtailed norms that are never
applicable as their constraints cannot be satisfied; these are discarded in our implementation.

4.4 Curtailment policies

Rather than assuming that a specific deontic modality is always curtailed,5 we propose to
explicitly use policies for determining, given a pair of norms, which one is to be curtailed.
Such policies confer more flexibility on our curtailment mechanism:

5 In Vasconcelos et al. [41], for instance, prohibitions are always curtailed. This ensures the choices of agents’
behaviour are kept as open as possible.

123

136 Auton Agent Multi-Agent Syst (2009) 19:124–152

Fig. 4 Implementation of curtail as a logic program

Definition 11 A policy π is a tuple 〈ω,ω′, �〉 establishing that ω should be curtailed (and
ω′ should be preserved), if constraints � hold.

For example, let us consider policy

〈〈ν, Td , Ta, Te〉, 〈ν′, T ′d , T ′a, T ′e 〉, {Td < T ′d}〉
This policy states that when two norms, ω and ω′, are in conflict, ω is to be curtailed if its
time of declaration Td precedes that of ω′. Adding constraints to policies gives us a fine-
grained control over how conflicts should be handled, and, allows us to capture classic forms
of deontic conflict resolution, such as lex posterior (the most recent norm takes precedence)
and lex superior (the norm imposed by the strongest power takes precedence) [24]. The policy
above formally defines lex posterior, establishing a precedence relationship between the two
norms (with respect to their declaration times); in Sect. 7 we formalise lex superior. We shall
represent a set of such policies as
.

5 Management of normative states

In this section, we give details on how our approach to conflict detection and resolution can
be used to manage normative states. In detailing our approach, we explain how we preserve
conflict-freedom when adopting a new norm (Sect. 5.1) as well as how norms are removed
(Sect. 5.2)—when a norm is removed we must ensure that any curtailment it caused is undone.

5.1 Norm adoption

The algorithm adoptNorm shown in Fig. 5 describes how a a norm ω can be added to an
existing conflict-free (possibly empty) set
old such that conflicts arising from adopting ω

are resolved to ensure that the resulting set of norms,
new, is conflict free. The algorithm
uses a set
 of policies determining how the curtailment of conflicting norms should be
carried out.

The norm adoption algorithm employs an auxiliary set of norms
aux initially set to store
ω, the norm to be inserted in
old . The algorithm works by performing the outermost while
loop as long as the set
aux has any elements in it. Both
aux and
old may change as a

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 137

Fig. 5 Norm adoption algorithm (top) and check for policy (bottom)

result of norms being curtailed, so the algorithm uses
′aux and
′old , respectively, to update
those sets. This is required as both sets control for_each loops and we only update these sets
after the loops are completed—we do so immediately before the end_while construct in the
algorithm.

Within the while loop, the algorithm has two nested for_each loops. The outermost
for_each loop goes through each norm ωaux ∈
aux and checks for conflicts with all old
norms ωold ∈
old . Although initially
aux is a singleton set {ω}, ω may be curtailed, thus
giving rise to a set of curtailed norms which, in their turn, must be checked for conflicts with
the existing (old) norms; hence the need for the set
aux .

Within the innermost for_each loop each pair ωaux, ωold is checked for conflicts via
conflict(ωaux, ωold, σ). If this is the case, then the algorithm initially checks (in the second
if construct), using the auxiliary existPolicy test (explained below), if there is a policy in

 establishing that ωold should be curtailed and ωaux should be preserved. If such a policy

123

138 Auton Agent Multi-Agent Syst (2009) 19:124–152

cannot be found, then the algorithm, by default, curtails ωaux—this is the rationale for the
first else construct (within the innermost loop).

When ωold is curtailed (second if construct), then the algorithm updates the “working”
set of old norms
′old , removing ωold from it and adding
′, the curtailed versions of ωold .
Likewise, in the else of the second if construct, when ωaux is curtailed the algorithm updates
the working set of new norms
′aux , removing ωaux from it and adding
′, the curtailed
versions of ωaux .

The algorithm keeps track of those norms ωaux ∈
aux which are not in conflict with any
of the norms ωold ∈
old . This is done via the boolean variable conflict_flag, initialised to
false at the start of the outermost for_each loop. If ωaux is not in conflict with any ωold , then
ωaux is added to the set
new and it is removed from the set
′aux . Set
′aux is used to update the
set
aux of norms to be adopted. The norms in
aux which are in conflict with norms in
old

either cause norms in
old to get curtailed (second if construct) or are curtailed themselves
(the else of the second if construct), becoming free of conflicts with any norm in
old . The
set
old will eventually become empty thus ensuring the algorithm always terminates.

The set
new is gradually built by adding norms ωaux which do not conflict with any norm
ωold ; then
old is added to
new (last line of algorithm). This is the correct outcome in that
the set
new is conflict-free and has all norms of
old (possibly curtailed) and all norms of

aux (also possibly curtailed; it should be noted that
aux initially contains ω, the norm to
be adopted). The norms of
old either get preserved in
′old (if not in conflict) or they are
replaced by their curtailments (cf. second if construct).
′old is used to update
old (cf. line
immediately before end_while) which, on its turn is added to
new (last line of algorithm).

new is guaranteed to be conflict-free: only ωaux which are not in conflict with any ωold are
added to
new. The
old norms added to
new at the end of the while loop are also conflict-
free and do not conflict with any norms in
aux (otherwise
aux would not be empty and
the loop would not have come to an end). The algorithm, however, will only work if
old is
conflict-free.

The adoptNorm algorithm makes use of an auxiliary test existPolicy shown on the bottom
of Fig. 5—given two norms ω,ω′, a substitution σ and a set of policies
, existPolicy returns
true if there is a policy in
 stipulating that ω is to be curtailed with respect to ω′. When
checking for a policy that is applicable, the algorithm uses unification to check (i) whether ω

matches/unifies with ωπ and ω′ with ω′π ; and (ii) whether the policy constraints hold under
the given σ .

The space complexity of adoptNorm is, however, exponential in the worst case. To show
this, let us assume the auxiliary set
aux has an initial norm ω which is in conflict with all
n norms in
old ; to simplify our analysis, let us further assume each norm in
old has the
same number c of constraints and that each constraint (in its negated form) will give rise to
a curtailment of ω. When we compare ω with the first norm in
old we obtain c curtailed
versions of ω (one for each constraint c of the first norm); these curtailed norms are, in their
turn, checked for conflicts with the second norm in
old , yielding c × c norms, and so on,
for each of the n norms in
old . We shall thus have (c × · · · × c) n times, that is, cn . Since

aux is used to control the while loop, the space complexity will directly impact on the time
complexity which will be, in the worst case, also exponential.

Another possible extreme case arises when all norms in
old get curtailed, thus increasing
the size of that set. If we assume
aux has an initial norm ω which is in conflict with all
n norms in
old , and if we further assume that the policies in place will preserve ω and
curtail the norms in
old , and that ω has c constraints, we shall end up with c new norms
for each norm in
old , that is, n × c. It is worth pointing out that the new norms in
old will

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 139

never conflict with each other (assuming
old was conflict-free to begin with), as any added
constraints will only further restrict their scope of influence.

The exponential complexity of adoptNorm is due to the growth of curtailed norms in
aux

and the need to exhaustively check these with the norms in
old . This complexity is due to the
centralised nature of our solution. A single global normative state is much simpler to manage,
but the computational costs can be prohibitively high, as our algorithm above illustrates. An
alternative explored in [13] proposes the distributed management of normative states: the
proposal addressed a class of multi-agent systems whose agents’ actions/interactions are
broken down into independent (possibly simultaneous) activities. Activities are, for instance,
the registration of agents with a trusted party, or the enactment of an auction. This distributed
solution would allow for various partial normative states to be managed in parallel; these
normative states will necessarily be smaller than a single global state, thus cutting down the
number of norms each state will have.

Although we carried out a worst-case analysis, in practice it is unlikely that a norm to
be adopted will conflict with all other existing norms; it also unlikely that the number of
constraints on each individual existing norm will be too high. Notwithstanding these more
pragmatic considerations, we can also set an upper bound on the size of
aux which can
be dealt with, that is, an upper bound on how big the worst case can be, depending on the
computational resources available.

The adoptNorm algorithm can be made more efficient by “stripping”
old of those norms
which do not (any more) conflict with any of the norms of
aux . The rationale for this is as
follows: if an ωold does not conflict with any ωaux , it will not conflict with any of its possible
curtailed versions, since these will necessarily have a more limited scope of influence. This
stripping process could either be done at the beginning or at the end of the outermost for_each
loop.

5.2 Norm removal

As well as adding norms to normative states we also need to support their removal. Since the
introduction of a norm may have interfered with other norms, resulting in their curtailment,
when that norm is removed we must undo the curtailments it caused, that is, we must return
(or “roll back”) to a previous form of the normative state. In order to allow curtailments of
norms to be undone, we record the complete history of normative states representing the
evolution of normative positions of agents:

Definition 12 H is a non-empty and finite sequence of tuples 〈
,ω,
〉, where
 is a
normative state, ω is a norm and
 is a set of policies.

We shall denote the empty history as 〈 〉. We define the concatenation of sequences as follows:
if H is a sequence and h is a tuple, then H • h is a new sequence consisting of H followed
by h. Any non-empty sequence H can be decomposed as H = H′ • h •H′′, H′ and/or H′′
possibly empty. The following properties hold for our histories H:

(1) H = 〈∅, ω,
〉 •H′
(2) adoptNorm(ωi ,
i ,
,
i+1)

The first condition establishes that the first element of a history has an empty
. The second
condition establishes the relationship between any two consecutive tuples in histories: nor-
mative state
i+1 is obtained by adding ωi to
i making use of the set of policies
.

H is required to allow the removal of a norm in an orderly fashion, as not only the norm
itself has to be removed but also all the curtailments it caused when it was introduced in
. H

123

140 Auton Agent Multi-Agent Syst (2009) 19:124–152

Fig. 6 Algorithm to remove norms

Fig. 7 Histories before (top) and after (bottom) a norm removal

contains a tuple 〈
,ω,
〉 that indicates the introduction of norm ω and, therefore, provides
us with a normative state
 before the introduction of ω. The effect of introducing ω can be
reversed by using
 and redoing (performing a kind of “roll forward”) all the inclusions of
norms according to the sequence represented in H via adoptNorm.

This mechanism is detailed in Fig. 6: algorithm removeNorm describes how to remove
a norm ω given a history H; it outputs a normative state
 and an updated history H′ and
works as follows. Initially, the algorithm checks if ω indeed appears in H—it does so by
matching H against a pattern of a sequence in which ω appears as part of a tuple (notice that
the pattern initialises the new history H′). If there is such a tuple in H, then we initialise

 as
k , that is, the normative state before ω was introduced. Following that, the for loop
implements a roll forward, whereby new normative states (and associated history H′) are
computed by introducing the ωi , k + 1 ≤ i ≤ n, which come after ω in the original history
H. If ω does not occur in any of the tuples of H (this case is catered by the else of the if
construct) then the algorithm uses pattern-matching to decompose the input history H and
obtain its last tuple—this is necessary as this tuple contains the most recent normative state

n which is assigned to
; the new history H′ is the same as H.

Figure 7 illustrates how the mechanism works. It shows two histories H (top) and H′
(bottom) obtained from H by removing ωi ; sub-sequences of the full histories are denoted
generically as Hb (that is, the history before the sub-sequence of interest) and Ha (that is,
the history after the sub-sequence of interest). We use “⊕” to denote a norm being introdu-
ced via our norm adoption algorithm, with curtailments possibly taking place. The illustration

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 141

shows a roll back to
i (i.e., the normative state before the adoption of ωi), and the
re-computation of all norm adoptions from
i onwards, skipping ωi (i.e., the roll forward),
that is, adoptNorm(ωi+1,
i ,
,
′i+2) and adoptNorm(ωi+k,

′
i+k,
,
′i+k+1), k > 1.

The computational costs of obtaining a new normative state
 (and a corresponding new
history H′) using algorithm removeNorm is, in the worst case, exponential. The worst case
arises when the norm to be removed is the first one which was adopted, that is, we have
history

H = 〈〈∅, ω0,
〉, 〈
1, ω1,
〉, 〈
2, ω2,
〉, . . . , 〈
n−1, ωn−1,
〉, 〈
n, ωn,
〉〉
And we need to remove norm ω0. In this case, we need to compute the new history

H′ = 〈〈∅, ω1,
〉, 〈
′2, ω2,
〉, . . . , 〈
′n−1, ωn−1,
〉, 〈
′n, ωn,
〉〉
We also need to obtain the new normative state
′ resulting from adding ωn to
′n , that is,
adoptNorm(ωn,
′n,
,
′). In the worst case, the adoption of ωi into
′i with m elements
will create c×m curtailed norms, where c is the number of constraints of ωi (assuming ωi is
in conflict with all norms in
′i). For simplicity, let us assume that all ωi , 1 ≤ i ≤ n, have the
same number of constraints c. The total cost for computing H′ and
′ can be equated with the
number of norms of all
′i , 1 ≤ i ≤ n, as each norm in
′i must be checked for conflicts with
ωi , the next norm to be adopted. The number of norms is |∅| + |
′2| + |
′3| + · · · + |
′n | =
0+ c + (c × c)+ (c × c2)+ · · · + (c × cn−1) = O(cn).

Again, this complexity is due to the centralised nature of our solution, and here we could
also contemplate a distributed approach as previously discussed for the adoptNorm algorithm.
The exponential complexity of centralised norm management can also be dealt with by
restricting norm removal to the last m norms.

6 Indirect conflicts

In our previous discussion, norm conflicts were detected via a direct comparison of atomic
formulae representing actions. However, conflicts may also arise indirectly via relationships
among actions. For instance, let us suppose the following norms are in place:

PA:R move(X, Y) FA:R fly(X, Y)

They represent, respectively, that any agent A in any role R is permitted to move from X to
Y , and any agent A in any role R is forbidden to fly from X to Y . Let us further suppose that
the only way to move around a particular scenario is flying, that is, move(X, Y) amounts to
fly(X, Y). In this case, we can rewrite the norms above as

PA:R fly(X, Y) FA:R fly(X, Y)

which are in conflict. We can thus say that an indirect conflict arises between the original
norms. In addition to indirect conflicts caused by relationships among actions, we also for-
mally capture a class of indirect conflicts due to delegation of tasks (and norms) among
agents. These conflicts are presented in the subsections below.

6.1 Indirect conflicts due to relationships among actions

For this kind of indirect conflicts, we make use of a set of domain axioms in order to declare
domain-specific relationships between actions:

123

142 Auton Agent Multi-Agent Syst (2009) 19:124–152

Definition 13 The set of domain axioms � is a finite and possibly empty set of formulae
ϕ→ (ϕ′1 ∧ · · · ∧ ϕ′n) where ϕ, ϕ′i , 1 ≤ i ≤ n, are atomic first-order formulae.

The domain axioms formally forge inter-relationships among actions—these dependencies
could be an action “break-down” into sub-actions, an action’s side-effects as well as its causal
effects. For instance, the action “clear up oil spill” will break down into “stop oil leakage”,
“contain oil spill” and “remove oil”. This formalisation is aimed at capturing a kind of “counts
as” relationship [34] among actions:ϕ→ (ϕ′1∧· · ·∧ϕ′n)means thatϕ counts as (ϕ′1∧· · ·∧ϕ′n),
and we do not differentiate the various dependencies (i.e., breakdown of a composite action,
side effects and causal effects) which might exist among actions. We assume that a set of
domain axioms is available to us, but acknowledge that in realistic scenarios the preparation
of such a set is not a trivial task, involving careful knowledge elicitation [11].

In order to address indirect conflicts between norms based on domain-specific relationships
between actions, we have to adapt our curtailment mechanism. With the introduction of
domain axioms, the conflict check has to be performed for each of the conjuncts in this
relationship. For example, let us suppose we have the following set of domain axioms

� =
⎧
⎨

⎩
evacuate(A, B, X, Y) −→

⎛

⎝
gather_intelligence(A, X, Y)∧

fly(A, helicopter, X, Y)∧
uplift(A, helicopter, B)

⎞

⎠

⎫
⎬

⎭

where evacuate(A, B, X, Y) represents that A is to evacuate B from area (X, Y). Let us also
suppose we have norm

〈PA:Revacuate(a, b, X, Y) ◦ {X > 50}, td , ta, te〉.
In this case, actions

gather_intelligence(a, X, Y) ◦ {X > 50}
fly(a, helicopter, X, Y) ◦ {X > 50}
uplift(a, helicopter, b)

are also permitted. We revisit Def. 9, extending it to address indirect conflicts:

Definition 14 A conflict arises between ω and ω′ under a set of domain axioms � and a
substitution σ , denoted as conflict∗(�,ω, ω′, σ), iff:

(1) conflict(ω, ω′, σ), or
(2) ω = 〈Xα:ρϕ ◦�, td , ta, te〉, there is a domain axiom (ϕ′ → (ϕ′1 ∧ · · · ∧ ϕ′m)) ∈ � such

that unify(ϕ, ϕ′, σ ′), and
∨m

i=1 conflict∗(�, 〈Xα:ρϕ′i ◦ �, td , ta, te〉 · σ ′, ω′, σ)

The above definition recursively follows a chain of indirect conflicts, looking for any two
conflicting norms. Case 1 provides the base case of the recursion, checking if norms ω,ω′
are in direct conflict. Case 2 addresses the general recursive case: if a norm X (that is, O,
P or F) on an action ϕ unifies with ϕ′ on the left-hand side of a domain axiom (ϕ →
(ϕ′1 ∧ · · · ∧ ϕ′m)) ∈ �, then we “transfer” the norm from ϕ to ϕ′1, . . . , ϕ′m , thus obtaining
〈Xα:ρϕ′i ◦ �, td , ta, te〉, 1 ≤ i ≤ m. If we (recursively) find an indirect conflict between ω′
and at least one of these norms, then an indirect conflict arises between the original norms
ω and ω′. It is important to notice that the substitution σ ′ that unifies ϕ and ϕ′ is factored in
the mechanism: we apply it to the new ϕ′i formulae in the recursive call(s). The resulting σ

will contain a chain of substitutions which will allow the indirect conflict between ω and ω′
to be resolved via the norm curtailing mechanism.

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 143

6.2 Indirect conflicts due to delegation among agents

In this subsection, we formally capture another kind of indirect conflict, viz., the one caused
when agents delegate norms across the community. Initially, we introduce the following
special logical operator:

ϕ −−−−→
α:ρ α′ :ρ′ (ϕ′1 ∧ · · · ∧ ϕ′m) (1)

Such formulae are named delegation axioms and they represent that agent α adopting role ρ

can transfer any norms on action ϕ to agent α′ adopting role ρ′; however, the norm will be
transfered to actions ϕ′1 ∧ · · · ∧ ϕ′m instead. The semantics of this operator is as follows:

– if ω = 〈Xα:ρϕ ◦ �, td , ta, te〉 ∈
, and
– we have (ϕ′ −−−−−→

α′ :ρ′ α′′ :ρ′′ (ϕ′1 ∧ · · · ∧ ϕ′m)) such that unify(〈ϕ, α, ρ〉, 〈ϕ′, α′, ρ′〉, σ), and
satisfy(� · σ)

then (〈Xα′′:ρ′′ϕ′i ◦ �, td , ta, te〉 · σ) ∈
, 1 ≤ i ≤ m.
Actions/norms are delegated following a pre-established relationship forged among the

roles adopted by the agents. This relationship may represent, for instance, a simple team
of peers, a hierarchy, or any arbitrary agent organisation [27]. We formally represent the
inter-role relationship via a partial ordering � among roles: r � r ′, r, r ′ ∈ Roles means
that agents adopting role r can delegate actions/norms to those agents adopting role r ′. This
formalisation can be seen as a simple notion of power [9,12].

Delegation and domain axioms are both stored in �. However, for all delegation axioms
in � of the form of formula 1, it is the case that ρ � ρ′, that is, only delegation axioms
which respect the inter-role relationships are kept in �. We extend Def. 14 to accommodate
delegation axioms:

Definition 15 A conflict arises between two norms ω and ω′ under a set of domain/delegation
axioms �, denoted as conflict∗(�,ω, ω′, σ), iff:

(1) conflict(ω, ω′, σ), or
(2) ω = 〈Xα:ρϕ ◦�, td , ta, te〉, there is a domain axiom (ϕ′ → (ϕ′1 ∧ · · · ∧ ϕ′m)) ∈ � such

that unify(ϕ, ϕ′, σ ′), and
∨m

i=1 conflict∗(�, 〈Xα:ρϕ′i ◦ �, td , ta, te〉 · σ ′, ω′, σ), or
(3) ω = 〈Xα:ρϕ ◦�, td , ta, te〉, there is a delegation axiom (ϕ′ −−−−−→

α′ :ρ′ α′′ :ρ′′ (ϕ
′
1∧· · ·∧ϕ′m)) ∈

� such that unify(〈ϕ, α, ρ〉, 〈ϕ′, α′, ρ′〉, σ ′), satisfy(� · σ ′), and
∨m

i=1 conflict∗(�,

〈Xα′′:ρ′′ϕ′i ◦ �, td , ta, te〉 · σ ′, ω′, σ)

Cases 1 and 2 are as before. In case 3, we obtain a delegation axiom and check if its action, role
and agent unify with those of ω. The norm will be transferred to the new actions (ϕ′1∧· · ·∧ϕ′m)

but these will be associated with a possibly different agent/role pair α′′:ρ′′. The new norms
are recursively checked and if at least one of them conflicts with ω′, then an indirect conflict
caused by delegation arises. Means to detect loops in delegation must be added to the definition
above; in McCallum et al. [27] one finds an exploration of this and other issues concerning
delegation and influence in agent organisations.

7 Authority associated with norms

In this section, we propose a simple means to represent authority, which allows us to capture
interesting phenomena. By “authority” we mean agents to whom the norm holder is respon-
sible for complying with the norm. We focus on authority given by the agent’s position, that
is, the one conferred on an agent by virtue of its adopted role within a society.

123

144 Auton Agent Multi-Agent Syst (2009) 19:124–152

7.1 A formal representation of authority

We add to our norms the representation of the authority to whom the norm holder is respon-
sible. Since agents may have distinct powers depending on the roles they adopt, we represent
authority also as an agent/role pair. We extend our deontic modalities with a superscript as
in, for instance, Oα:ρ

α′:ρ′ϕ ◦ �, representing that agent α′:ρ′ is obliged to do ϕ ◦ �, and α :ρ is
the authority to whom α′:ρ′ is to be held responsible for complying with the norm. We re-use
the inter-role relationship of Subsect. 6.2 and require the authority annotations to comply
with them, that is, Oα:ρ

α′:ρ′ϕ ◦ � can only hold if ρ � ρ′.
This explicit representation of authority allows us to define a useful class of curtailment

policies. These policies help to solve normative conflicts by curtailing those norms in conflict
with a less powerful authority. This is the principle of lex superior discussed in [24]: the norm
with the most powerful associated authority should be the one preserved, if other norms are
in conflict. A generic formulation for the lex superior policy using our representation of
authority is thus:

〈〈Xα2:ρ2
α1:ρ1 ϕ ◦ �, Td , Ta, Te〉, 〈X′α

′
2:ρ′2

α′1:ρ′1ϕ
′ ◦ �′, T ′d , T ′a, T ′e 〉, {ρ′2 � ρ2}〉

where X stands for either O, P or F. The policy establishes that norm 〈Xα2:ρ2
α1:ρ1 ϕ◦�, Td , Ta, Te〉

is to be curtailed, and 〈X′α′2:ρ′2
α′1:ρ′1ϕ

′ ◦ �′, T ′d , T ′a, T ′e 〉 is to be preserved, if the role ρ′2 of the

authority associated with the latter norm is more powerful than the role ρ2 of the authority
associated with the former norm.

7.2 A generalised notion of delegation

The explicit representation of authority introduced above allows us to formalise a generalised
notion of norm delegation. We extend the logical operator to capture delegations introduced
in Subsect. 6.2, adding authority annotations:

ϕ
α3:ρ3 α4:ρ4−−−−−−→
α1:ρ1 α2:ρ2 ϕ′1 ∧ · · · ∧ ϕ′n (2)

The construct means that “a norm on action ϕ assigned to agent α1 : ρ1 with associated
authority α3 : ρ3 can be transfered to a norm on actions ϕ′1 ∧ · · · ∧ϕ′n to be assigned to agent
α2 : ρ2 who will be held responsible to authority α4 : ρ4”. An example of this operator is

reconnaissance(X, Y)

A1:R1 A1 :R1−−−−−−→
A2:R2 A3:R3 gather_intelligence(X, Y) (3)

In this formula, the authority associated with the norm is preserved in the delegation: agent
A3 : R3, to whom the norm is delegated, will be held responsible to the same authority A1:R1

of the original norm. This phenomenon is named delegation with preservation of authority.
Another example of the generalised delegation operator is

gather_intelligence(X, Y)
A1 :R1 A2 :R2−−−−−−→
A2 :R2 A3 :R3

interview(X, Y) (4)

In this formula, the authority associated with the norm is changed in the delegation: agent
A3 : R3 to whom the norm is delegated will now be held responsible for abiding by the norm
to agent A2 : R2, that is, the agent to whom the norm was originally assigned, and not agent
A1 : R1, the original authority. This phenomenon is named delegation of authority.

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 145

Formulae such as 3 and 4 are called authority axioms and they establish conditions under
which norms can be delegated, stating to whom they are to be delegated as well as with
which authority the delegated norms are to become associated. For instance, let us consider
the following norm

Oa1:cmd
a2:ltn reconnaissance(20, W) ◦ {W > 100}

It states that agent a1 : cmd is the authority to whom a2 : ltn is responsible for complying with
the obligation to do a reconnaissance of area (20, W), W > 100. Let us further assume in our
scenario the following power relationship for the set of roles Roles = {sld, srg, ltn, cmd}:

cmd � ltn, ltn � srg, srg � sld

That is, cmd (for commander) is more powerful than ltn (for lieutenant), lieutenant is more
powerful than srg (for sergeant), and sergeant is more powerful than sld (for soldier). In this
scenario we can apply axiom 3 to obtain the following (delegated) norm

Oa1:cmd
A3:srg gather_intelligence(20, W) ◦ {W > 100}

We can see that the authority has been preserved, whereas the norm has been delegated from
lieutenant a2 to a sergeant. This new norm can, in its turn, be used in conjunction with axiom 4
to obtain the following norm:

OA3:srg
A′3:sld interview(20, W) ◦ {W > 100}

That is, the authority associated with the norm is now a sergeant, and the norm has been
delegated to a soldier.

To increase the expressiveness of our logical operator, we allow any of the four annotations
of the arrow to be left out. If the left-hand side annotations are omitted then they are considered
as fresh variables and they will match with any terms actual formulae may have. If we omit
the right-hand annotations, then it means that the original subscript and superscript of the
formulae matching the left-hand side of the axiom will be preserved in the new formulae of the
right-hand side. Thus the machinery for indirect conflicts and delegation axioms explained
in Sect. 6 can be seen as a special case of how authority axioms are dealt with.

7.3 Norm violation and sanctions by authority

Our representation of authority allows us to provide an account of norm violation and its
associated sanctions. As discussed in Sect. 3.3, a norm violation comes about, for instance,
when an action in the global enactment state 〈a : r, ϕ̄, t〉 ∈ � is within the scope of a
prohibition 〈Fα1:ρ1

α2:ρ2ϕ ◦ �, td , ta, te〉 ∈
 in the global normative state, that is, inScope(〈a :
r, ϕ̄, t〉, 〈Fα1:ρ1

α2:ρ2ϕ◦�, td , ta, te〉) (cf. definition in Fig. 1)—a prohibited action has been carried
out. In this case, authority α1 : ρ1 can impose sanctions or punishments on α2 : ρ2.

Following our work reported in [15], we represent sanctions/punishments as actions to be
added to the global enactment state—these can be, for instance, issuing a fine to the offending
agent. A formal representation of this norm violation and its sanction is:

⎛

⎝
〈a :r, ϕ̄, t〉 ∈ �∧

〈Fα1:ρ1
α2:ρ2ϕ ◦ �, td , ta, te〉 ∈
∧

inScope(〈a :r, ϕ̄, t〉, 〈Fα1:ρ1
α2:ρ2ϕ ◦ �, td , ta, te〉)

⎞

⎠ � ⊕〈α :ρ, fine(α2, ρ2, m), t + 1〉

123

146 Auton Agent Multi-Agent Syst (2009) 19:124–152

8 A formal representation of our scenario

In this section, we revisit the scenario described informally in Sect. 2 and represent some of
its aspects with a view to explore our conflict resolution mechanisms. In our formalisation, we
omit the superscript annotation denoting authority, as this aspect is not explored; additionally,
to improve clarity, we present norms in their usual format, and not with extended sets of
constraints and explicit unifications. The initial set of norms for team A in our scenario is

a =
⎧
⎨

⎩

〈Oa1:cmdevacuate(a1, workers, 40, 50), 1, 1,+∞〉,
〈FA:Rshare(Info, Ag), 1, 1,+∞〉,

〈FA:Rfly(A, helicopter, X, Y), 1, 1,+∞〉

⎫
⎬

⎭

where evacuate(A, B, X, Y) represents that A is to evacuate B from area (X, Y) (we assume
a two-dimensional coordinate space and that the stranded workers are in area (40, 50) of
this grid), share(Info, Ag) represents that Info is to be shared with Ag, and fly(B, C, X, Y)

represents that B is to fly C in area (X, Y). In our discussion, all norms above have infinite
expiry times.

The prohibition to fly helicopters is in place because in our scenario we have bad weather.
The following domain axiom relates the high-level evacuate action with obtaining intelligence
about the area, flying a helicopter to the area and using it to uplift people:

evacuate(A, B, X, Y) −→
⎛

⎝
gather_intelligence(A, X, Y)∧

fly(A, helicopter, X, Y)∧
uplift(A, helicopter, B)

⎞

⎠

The domain axiom above provides us with the following norms:

1
a =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈Oa1:cmdgather_intelligence(a1, 40, 50), 1, 1,+∞〉,
〈Oa1:cmdfly(a1, helicopter, 40, 50), 1, 1,+∞〉,
〈Oa1:cmduplift(a1, helicopter, workers), 1, 1,+∞〉,

〈FA:Rshare(Info, Ag), 1, 1,+∞〉,
〈FA:Rfly(A, helicopter, X, Y), 1, 1,+∞〉

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

A conflict is detected in the set
1
a : helicopters are simultaneously forbidden and obliged to

fly. The prohibition to fly extends to anywhere, as there is bad weather forecast where the
helicopters are. The obligation to fly, however, is for a particular area, viz., (40, 50).

The commander of team A may consider asking team B for help: since team B helicopters
are not affected by the bad weather, they could be flown into the area to uplift the workers.
However, team B needs information about the area helicopters are to be flown into. Team A
thus must add to its set of norms a permission to share information on area (40, 50) with a
contact agent ag2 from team B, and we have the following set of norms:

2
a =

⎧
⎪⎪⎨

⎪⎪⎩

〈Oa1:cmdevacuate(a1, workers, 40, 50), 1, 1,+∞〉,
〈FA:Rshare(Info, Ag), 1, 1,+∞〉,

〈FA:Rfly(B, helicopter, X, Y), 1, 1,+∞〉,
〈PA:Rshare(info(40, 50), ag2), 1, 1,+∞〉

⎫
⎪⎪⎬

⎪⎪⎭

The prohibition to share any information is in conflict with the permission to share specific
information on region (40, 50).

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 147

Team A can use the conflict resolution machinery to explore alternatives. Norms
1
a can

have its conflict resolved as follows:

3
a =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈Oa1:cmdgather_intelligence(a1, 40, 50), 1, 1,+∞〉,
〈Oa1:cmdfly(a1, helicopter, 40, 50), 1, 1,+∞〉,
〈Oa1:cmduplift(a1, helicopter, workers), 1, 1,+∞〉,

〈FA:Rshare(Info, Ag), 1, 1,+∞〉,
〈FA:Rfly(A, helicopter, X, Y) ◦ {A �= ag1}, 1, 1,+∞〉,
〈FA:Rfly(A, helicopter, X, Y) ◦ {X �= 40}), 1, 1,+∞〉,
〈FA:Rfly(A, helicopter, X, Y) ◦ {Y �= 50}), 1, 1,+∞〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

That is, the prohibition has three “exceptions”, which accommodate the obligation to fly the
helicopter: it is acceptable to fly the helicopter as long as the agent is ag1, and the region is
(40, 50). Likewise, norms
2

a can have its conflicts resolved as below:

4
a =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈Oa1:cmdevacuate(a1, workers, 40, 50), 1, 1,+∞〉,
〈FA:Rshare(Info, Ag) ◦ {Info �= info(40, 50)}, 1, 1,+∞〉,
〈FA:Rshare(Info, Ag) ◦ {Ag �= ag2}, 1, 1,+∞〉,
〈FA:Rfly(B, helicopter, X, Y), 1, 1,+∞〉,
〈PA:Rshare(info(40, 50), ag2), 1, 1,+∞〉

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

That is, the prohibition accommodates two exceptions: it is acceptable to share information
as long as the agent with which to share information is ag2 and the shared information is
info(40, 50).

Team A has information to decide on a course of action, that is, if it is preferable to
fly helicopters in bad weather or to share intelligence with a coalition partner. Our conflict
detection and resolution mechanisms support this decision-making process, presenting the
points of contention and how to solve them.

9 Related work

Norms differ from policies in that the latter is more “high-level”, that is, policies define a
general attitude or approach which can be described in terms of norms. For instance, the
policy “resource x is expensive and its use should be regulated” could give rise to norms
being put in place, defining who is allowed or prohibited to use x . Alternatively, policies
can be seen as rules (as in, for instance, [28,3]) defining when norms (that is, permissions,
prohibitions and obligations) are put in place or are revoked.

Norms and policies have been used in disparate fields, ranging from security models of
programming languages such as Java [37] to the management of resources in distributed sys-
tems [28]. Explicit norms and policies, as opposed to implicit ones embedded in software,
define computational behaviours but allowing designers and engineers to easily change them
and verify desirable properties in them [40,39]. Policies are sometimes equated with permis-
sions (e.g., the security model of Java and the UNIX file access system), but this view is rather
limited: what is not explicitly permitted is prohibited; obligations cannot be represented.

Attempts to make law systems conflict-free can be traced back to the jurisprudential prac-
tice in human society. Conflicting laws do occur and legal theorists use a diverse set of terms
such as, for example, normative inconsistencies/conflicts, antinomies, discordance, etc., in
order to describe this phenomenon. There are three classic strategies for resolving deontic
conflicts by establishing a precedence relationship between norms: lex posterior—the most
recent norm takes precedence, lex superior—the norm imposed by the strongest power takes

123

148 Auton Agent Multi-Agent Syst (2009) 19:124–152

precedence, and lex specialis—the most specific norm takes precedence [24]. Early inves-
tigations into norm conflicts outlined in [31] describe three forms of conflict/inconsistency
as total–total, total–partial and intersection. These are special cases of the intersection of
norms as described in [21]—a permission entailing the prohibition, a prohibition entailing
the permission or an overlap of both norms.

In [32,33], Sartor discusses aspects of non-monotonic reasoning in law, negation and
conflict. It is pointed out that legal reasoning is often based on prima facie incompatible
premises; this is due to the defeasibility of legal norms and the dynamics of normative systems,
where new norms may contradict older ones (principle of lex posterior), the concurrence
of multiple legal sources with normative power distributed among different bodies issuing
contradicting norms (principle of lex superior), and semantic indeterminacy. To resolve such
conflicts, it is proposed to establish an ordering among norms according to criteria such
as hierarchy (lex superior), chronology (lex posterior), speciality (exception to the norm are
preferred) or hermeneutics (more plausible interpretations are preferred). The work presented
in [21] discusses in part these kinds of strategies, proposing conflict resolution according to
the criteria mentioned above.

The work described in [7] analyses different normative conflicts—in spite of its title, the
analysis is an informal one. That work differentiates between actions that are simultaneously
prohibited and permitted—these are called deontic inconsistencies—and actions that are
simultaneously prohibited and obliged—these are called deontic conflicts. The former is
merely an “inconsistency” because a permission may not be acted upon, so no real conflict
actually occurs. On the other hand, those situations when an action is simultaneously obliged
and prohibited represent conflicts, as both obligations and prohibitions influence behaviours
in an incompatible fashion. Our approach to detecting conflicts can capture the three forms
of conflict/inconsistency of [31], viz. total-total, total-partial and intersection, respectively,
when the permission entails the prohibition, when the prohibition entails the permission and
when they simply overlap. Finally, we notice that the world knowledge explained in [7],
required to relate actions, can be formally captured by our indirect norm conflicts depicted
in Sect. 6.

Our approach can be contrasted with the work described in [19,20]: the norms in their
policies, although in an alternative syntax, have the same components as the norms presented
in this paper, and hence the same expressiveness. However, conflicts are resolved in a coarser
fashion: one of the conflicting norms is “overridden”, that is, it becomes void. Explicit meta-
policies specify which of the two conflicting norms should be overridden—the curtailment
policies introduced in Sect. 4.4 achieve the same effect, but constraints further refine the
conditions under which the curtailment should take place. It is not clear how constraints
in the norms of [19,20] affect conflict, nor how conflicts are detected—from the informal
explanation given, however, only direct conflicts are addressed. Our conflict resolution is
finer-grained: norms are overridden for specific values (and not completely).

There are some interesting similarities between the algorithm for norm adoption presen-
ted in this paper and those used to compute preferred extensions in abstract argumentation
frameworks [6]. Norms, conflicts between norms and policies for resolving conflicts can be
captured as a “normative conflict graph”, as proposed in [29]. In a normative conflict graph
nodes represent norms and an edge represents the notion that the norms are in conflict and
that the conflict resolution policy dictates that one is preferred over the other. Such graphs are
analogous to argument systems, where the nodes represent arguments and edges represent
attacks between arguments. A preferred extension of an argument system is a maximal (with
respect to set inclusion) admissible set of arguments, where a set of arguments is admissible
if it is conflict free and each argument in the set is acceptable (i.e., for each argument that

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 149

attacks it, there is some other argument in the extension that attacks the attacker). This is a
subtly stronger notion of consistency than that used in this paper; further discussion and some
preliminary results in the use of Dung’s semantics for normative conflict resolution can be
found in [29]. It should be noted that in [29] a conflict is resolved by simply dropping norms
outside of the preferred extension, but that it is possible to combine our more expressive
language with this argumentation-inspired approach.

In [3], policies are used to manage the quality of service (QoS) of a network. That work
formalises a simpler notion of direct normative conflicts in which constraints are not used.
Interestingly, that work also presents a notion of indirect conflicts, similar to ours. Conflicts
in policies are detected via abduction and an explanation is also provided as to why they are
in conflict. No means to resolve conflicts is proposed in that work, though.

This paper extends and integrates previous work. A simpler version of the conflict resolu-
tion mechanism was originally proposed in [41]. However, that work did not address norms
with arbitrary constraints—these were introduced in [22], together with an extension of the
mechanism to resolve conflicts making use of constraints. That work also introduced policies
and indirect conflicts, incorporating these concepts into a norm adoption algorithm. Finally,
in [23] we introduced the norm removal mechanism.

10 Conclusions, discussion and future work

In this paper, we have proposed a representation of norms as atomic formulae whose variables
may have arbitrary associated constraints. We provide mechanisms to detect and resolve
conflicts between such norms, including indirect conflicts and conflicts caused by delega-
tion of actions among agents. Norm conflicts arise when an action is simultaneously obliged
and prohibited/permitted. The mechanisms are based on first-order unification and constraint
satisfaction; the conflict resolution mechanism amounts to manipulating the constraints of
norms to avoid overlapping values of variables—this is called the “curtailment” of variables/
norms. We provided a prototypical implementation of the curtailment process as a logic pro-
gram and used it to define algorithms for managing (adding and removing) norms. We made
use of explicit policies to specify which of two conflicting norms should be curtailed (and
under which circumstances). We provided an account of authority, and showed how these can
be incorporated into our norms and associated mechanisms, allowing us to capture interesting
phenomena. Lastly, we provided an example illustrating how our norm representation and
associated mechanisms come together as a means to support humans making decisions in
norm-regulated scenarios.

In this paper, norms only refer to atomic actions. Although this representation is useful
for various realistic multi-agent scenarios, a natural extension is to allow arbitrary logical
formulae to be prefixed by a deontic modality and also to allow arbitrary nesting of modalities,
as in the case in full first-order deontic logics [43–45]. This extension would allow us to
formalise norms such as “if one is allowed to fly then one is allowed to land and to fire
missiles”, as well as “one is not allowed to permit anyone to drink or smoke in the building”.

In particular, we want to extend our mechanisms to cope with conditional norms [5,25]—
these are of the form Condition → Norms, specifying Conditions (circumstances) under
which certain Norms become active, as in, for example, OA:R p(X, Y) → FA:Rq(X, Y). If
this conditional norm were used with the following set of normative positions

{(OA:R p(X, Y) ◦ {X < 20}), (PA:Rq(75, Y) ◦ {Y > 40})}

123

150 Auton Agent Multi-Agent Syst (2009) 19:124–152

then a conflict would arise: the new set of normative positions obtained by applying the
conditional norm would be

{(OA:R p(X, Y) ◦ {X < 20}), (PA:Rq(75, Y) ◦ {Y > 40}), (FA:Rq(X, Y) ◦ {X < 20})}
There is an overlap of the values of the variables in the permission and the prohibition.
Rather than applying our mechanism to resolve the conflict, we can anticipate the conflict
and annotate the conditional norm with extra constraints to curtail its applicability. In our case,
the conflict can be avoided if the conditional norm becomes the following set of formulae

{
(OA:R p(X, Y) ◦ {X �= 75})→ FA:Rq(X, Y)

(OA:R p(X, Y) ◦ {Y ≤ 40})→ FA:Rq(X, Y)

}

We shall build on our previous work [15] in which we studied how constraints can be given
different computational interpretations depending on whether they are used in the left- or
right-hand side of conditional norms.

We have also noticed that our inter-role � relationship can be generalised to capture a
notion of contextualised power/influence. In real life situations, depending on which scenarios
agents interact, their power to influence (or delegate) may be rather different. For instance,
an individual may be the head of a team with a specific mission, being able to assign norms
to team members, delegate tasks and be the authority to whom team members are held
responsible for complying with norms. However, the team leader with a different mission
may be assigned/delegated norms due, for instance, to its having a specific skill. The inter-
role relationship can thus be formalised relative to a context: r �κ r ′ represents that agents
adopting role r may exert influence over agents adopting role r ′ only in the case of norms
whose actions are in κ . An example of this relative power of influence is srg �{fly(a)} sld
(the sergeant may delegate to a soldier a norm which concerns flying aircrafts of type a)
and sld �{fly(b)} srg (the soldier may delegate to the sergeant a norm which concerns flying
aircrafts of type b, because, for instance, the soldier does not have the required training).

We would also like to exploit our mechanisms to analyse an existing set of norms with
a view to detect and resolve any conflicts among its elements. In this case, the curtailment
policies could be used to order the analysis process, and it would curtail first those norms
which curtail the largest number of norms (that is, the norms that appear in the first position
of the largest number of policies in
). The rationale for this is that we want to preserve as
much as possible of the scope of influence of each norm in the original set and if we curtail a
norm which curtails various other norms, then its reduced scope of influence may not overlap
with the other norms anymore. Hence, fewer conflicts will arise (as the norm which curtails
other norms will have its scope reduced) and the norms which would otherwise be curtailed
will be preserved in their original format.

We are exploiting our approach to support humans in mission-critical scenarios [46],
including, for instance, combat and disaster recovery. We want to describe mission scripts as
sets of norms which work as contracts that teams of human and software agents can peruse
and reason about. Mission-critical contracts should allow for the delegation of actions and
norms, via pre-established relationships between roles: we have been experimenting with
special “counts as” operators [34] which neatly capture this. We also plan to explore norms
to guide the development of electronic institutions [8] as well as individual software agents.
This initiative would allow engineers to experiment with alternative normative specifications
which would be checked for desirable properties such as conflict-freedom and feasibility (at
least one norm-compliant enactment can be obtained). The specifications could then be used
to synthesise norm-compliant skeletons of agents which, on their turn, could be augmented
with arbitrary functionalities, along the lines of the work described in [42].

123

Auton Agent Multi-Agent Syst (2009) 19:124–152 151

Acknowledgements This research was sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the author(s) and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

References

1. Alchourron, C. E., & Bulygin, E. (1981). The expressive conception of norms. In R. Hilpinen (Ed.), New
studies in deontic logics (pp. 95–124). London: D. Reidel.

2. Apt, K. R. (1997). From logic programming to prolog. UK: Prentice-Hall.
3. Charalambides, M., Flegkas, P., Pavlou, G., Bandara, A., Lupu, E., Russo, A., Dulay, N., Sloman, M.,

& Rubio-Loyola, J. (2005). Policy conflict analysis for quality of service management. In 6th IEEE
Workshop on Policies for District System & Networks (Policy 2005), June. Washington, D.C.

4. Conte, R., & Castelfranchi, C. (1995). Understanding the functions of norms in social groups through
simulation. In N. Gilbert & R. Conte (Eds.), Artificial societies: The computer simulation of social life
(pp. 252–267). London: UCL Press.

5. Dignum, F. (1999). Autonomous agents with norms. Artificial Intelligence and Law, 7, 69–79.
6. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and N-person games. Artificial Intelligence, 77(2), 321–357.
7. Elhag, A. A. O., Breuker, J. A. P. J., & Brouwer, P. W. (2000). On the formal analysis of normative

conflicts. Information and Communication Technology Law, 9(3), 207–217.
8. Esteva, M. (2003). Electronic institutions: From specification to development. PhD thesis, Universitat

Politècnica de Catalunya (UPC). IIIA monography, Vol. 19.
9. Fasli, M. (2006). On the relationship between roles and power: Preliminary report. In H. Haddad (Ed.),

Proceedings of the 2006 ACM Symposium on Applied Computing (SAC) (pp. 313–318). Dijon, France,
23–27 April 2006. ACM.

10. Fitting, M. (1990). First-order logic and automated theorem proving. New York, USA: Springer.
11. Ford, D. N., & Sterman, J. (1997). Expert knowledge elicitation to improve mental and formal models.

Technical report WP 3953-97, Sloan School of Management, MIT.
12. French, J., & Raven, B. (1956). The bases of social power. In D. Cartwright (Ed.), Studies in Social Power

(pp. 150–167). Michigan, USA: University of Michigan Press.
13. Gaertner, D., García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.-A., & Vasconcelos, W. W. (2007).

Distributed norm management in regulated multi-agent systems. In Proceedings of the 6th International
Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS’07). Honolulu, Hawai’i, May.

14. García-Camino, A., Rodríguez-Aguilar, J.-A., Sierra, C., & Vasconcelos, W. W. (2006). A distributed
architecture for norm-aware agent societies. In M. Baldoni, U. Endriss, A. Omicini, & P. Torroni (Eds.),
Proceedings of the 3rd International Worskhop on Declarative Agent Languages and Technologies (DALT
2005), Selected and Revised Papers, Lecture Notes in Computer Science (Vol. 3904, pp. 89–105). Utrecht,
The Netherlands: Springer, 25 July 2005, 2006.

15. García-Camino, A., Rodríguez-Aguilar, J.-A., Sierra, C., & Vasconcelos, W. W. (2006). A rule-based
approach to norm-oriented programming of electronic institutions. ACM SIGecom Exchanges, 5(5), 33–
40.

16. García-Camino, A., Rodríguez-Aguilar, J.-A., Sierra, C., & Vasconcelos, W. W. (2006). Constraint rule-
based programming of norms for electronic institutions. Journal of Autonomous Agents & Multiagent
Systems (to appear).

17. Jaffar, J., & Maher, M. J. (1994). Constraint logic programming: A survey. Journal of Logic Programming,
19/20, 503–581.

18. Jaffar, J., Maher, M. J., Marriott, K., & Stuckey, P. J. (1998). The semantics of constraint logic programs.
Journal of Logic Programming, 37(1–3), 1–46.

19. Kagal, L., & Finin, T. (2005). Modeling communicative behavior using permissions and obligations. In
F. Dignum, R. van Eijk, & M.-P. Huget (Eds.), Developments in Agent Communication (Vol. 3396, pp.
120–133). Springer.

20. Kagal, L., & Finin, T. (2007). Modeling conversation policies using permissions and obligations. Journal
of Autonomous Agents & Multiagent Systems, 14(2), 187–206.

21. Kollingbaum, M. J., Norman, T. J., Preece, A., & Sleeman, D. H. (2006). Norm refinement: Informing
the re-negotiation of contracts. In G. Boella, O. Boissier, E. Matson, & J. Vazquez-Salceda (Eds.), ECAI

123

152 Auton Agent Multi-Agent Syst (2009) 19:124–152

2006 Workshop on Coordination, Organization, Institutions and Norms in Agent Systems, COIN@ECAI
2006 (pp. 46–51).

22. Kollingbaum, M. J., Vasconcelos, W. W., García-Camino, A., & Norman, T. J. (2008). Conflict resolution
in norm-regulated environments via unification and constraints. In Proceedings of the 5th International
Worskhop on Declarative Agent Languages and Technologies (DALT 2007), Selected and Revised Papers,
Lecture Notes in Computer Science (Vol. 4897, pp. 158–174). Springer.

23. Kollingbaum, M. J., Vasconcelos, W. W., García-Camino, A., & Norman, T. J. (2008). Managing conflict
resolution in norm-regulated environments. In Proceedings of 8th Annual International Workshop “Engi-
neering Societies in the Agents World” (ESAW 07), Lecture Notes in Computer Science (Vol. 4995, pp.
55–71). Springer.

24. Leite, J. A., Alferes, J. J., & Pereira, L. M. (2001). Multi-dimensional dynamic knowledge representation,
Lecture Notes in Artificial Intelligence (Vol. 2173). Springer.

25. Makinson, D., & van der Torre, L. (2000). Input-output logics. Journal of Philosophical Logic, 29, 383–
408.

26. Manna, Z. (1974). Mathematical theory of computation. Tokio, Japan: McGraw-Hill Kogakusha, Ltd.
27. McCallum, M., Vasconcelos, W. W., & Norman, T. J. (2008). Organisational change through influence.

Journal of Autonomous Agents & Multiagent Systems, 17(2), 157–189.
28. Moffett, J., & Sloman, M. (1994). Policy conflict analysis in distributed systems management. Journal

of Organizational Computing, 4(1), 1–22.
29. Oren, N., Luck, M., Miles, S., & Norman, T. J. (2008). An argumentation-inspired heuristic for resolving

normative conflict. In Proceedings of the 5th Workshop on Coordination, Organizations, Institutions, and
Norms in Agent Systems (COIN@AAMAS), Estoril, Portugal.

30. Pacheco, O., & Carmo, J. (2003). A role based model for the normative specification of organized collective
agency and agents interaction. Autonomous Agents and Multi-Agent Systems, 6(2), 145–184.

31. Ross, A. (1958). On law and justice. Stevens & Sons.
32. Sartor, G. (1991). The structure of norm conditions and nonmonotonic reasoning in law. In Proceedings of

the 3rd International Conference on Artificial Intelligence and Law ICAIL’91 (pp. 155–164). Oxford, U.K.
33. Sartor, G. (1993). A simple computational model for nonmonotonic and adversarial legal reasoning.

In Proceedings of the 4th International Conference on Artificial Intelligence and Law ICAIL’93
(pp. 192–201). Amsterdam, The Netherlands.

34. Searle, J. R. (1997). The construction of social reality. Free Press, January.
35. Sergot, M. (2001). A computational theory of normative positions. ACM Transactions on Computational

Logic, 2(4), 581–622.
36. Shapiro, L., & Sterling, E. Y. (1994). The art of prolog: Advanced programming techniques. The MIT

Press, April.
37. Spell, B. (2000). Professional Java programming. Wrox Press Inc.
38. Swedish Institute of Computer Science. (2005). SICStus prolog. http://www.sics.se/isl/sicstuswww/site/

index.html, viewed on 10 Feb 2005 at 18.16 GMT.
39. Vasconcelos, W. W. (2004). Norm verification and analysis of electronic institutions, In J. Leite, A.

Omicini, P. Torroni, P. Yolum (Eds.), Selected and revised papers of the International Workshop on
Declarative Agent Languages and Technologies (DALT), New York, U.S.A., July 2004. Lecture Notes in
Computer Science. (Vol. 3476, pp. 166–182). Springer-Verlag.

40. Vasconcelos, W. W., Esteva, M., Sierra, C., & Rodríguez-Aguilar, J. A. (2004). Verifying norm consis-
tency in electronic institutions. In Proceedings of the AAAI-04 Workshop on Agent Organizations: Theory
and Practice (pp. 8–14). San José, California, USA, July 25–29 2004. Technical Report WS-04-02.

41. Vasconcelos, W. W., Kollingbaum, M. J., & Norman, T. J. (2007). Resolving conflict and inconsistency
in norm-regulated virtual organizations. In Proceedings of the 6th International Joint Conference on
Autonomous Agents & Multiagent Systems (AAMAS 2007) (pp. 632–639). Hawai’i, U.S.A., May 2007.
IFAAMAS.

42. Vasconcelos, W. W., Robertson, D., Sierra, C., Esteva, M., Sabater, J., & Wooldridge, M. (2004). Rapid
prototyping of large multi-agent systems through logic programming. Annals of Mathematics and
Artificial Intelligence, 41(2–4), 135–169.

43. von Wright, G. H. (1963). Norm and action: A logical inquiry. London: Routledge and Kegan Paul.
44. von Wright, G. H. (1967). Logical studies. Routledge and Kegan Paul.
45. von Wright, G. H. (1968). An essay in deontic logic and the general theory of action. North-Holland

Publishing Company, 1968.
46. White, S. M. (2006). Requirements for distributed mission-critical decision support systems. In Procee-

dings of the 13th Annual IEEE International Symposium & Workshop on Engineering of Computer-Based
Systems (ECBS’06). Washington, D.C.

47. Wooldridge, M. (2002). An introduction to multiagent systems. Chichester, UK: Wiley, Feb.

123

http://www.sics.se/isl/sicstuswww/site/index.html
http://www.sics.se/isl/sicstuswww/site/index.html

	Normative conflict resolution in multi-agent systems
	Abstract
	1 Introduction
	2 Scenario: rescue operation
	3 Norm-governed multi-agent systems
	3.1 A representation for norms
	3.2 Substitutions, unification and constraint satisfaction
	3.3 Meaning of norms

	4 Norm conflicts
	4.1 Conflict detection
	4.2 Conflict resolution
	4.3 An implementation of norm curtailment
	4.4 Curtailment policies

	5 Management of normative states
	5.1 Norm adoption
	5.2 Norm removal

	6 Indirect conflicts
	6.1 Indirect conflicts due to relationships among actions
	6.2 Indirect conflicts due to delegation among agents

	7 Authority associated with norms
	7.1 A formal representation of authority
	7.2 A generalised notion of delegation
	7.3 Norm violation and sanctions by authority

	8 A formal representation of our scenario
	9 Related work
	10 Conclusions, discussion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

