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Abstract The increasing demand for mobility in our society poses various challenges to
traffic engineering, computer science in general, and artificial intelligence and multiagent
systems in particular. As it is often the case, it is not possible to provide additional capacity,
so that a more efficient use of the available transportation infrastructure is necessary. This
relates closely to multiagent systems as many problems in traffic management and control
are inherently distributed. Also, many actors in a transportation system fit very well the con-
cept of autonomous agents: the driver, the pedestrian, the traffic expert; in some cases, also
the intersection and the traffic signal controller can be regarded as an autonomous agent.
However, the “agentification” of a transportation system is associated with some challeng-
ing issues: the number of agents is high, typically agents are highly adaptive, they react to
changes in the environment at individual level but cause an unpredictable collective pattern,
and act in a highly coupled environment. Therefore, this domain poses many challenges for
standard techniques from multiagent systems such as coordination and learning. This paper
has two main objectives: (i) to present problems, methods, approaches and practices in traffic
engineering (especially regarding traffic signal control); and (ii) to highlight open problems
and challenges so that future research in multiagent systems can address them.

Keywords Multiagent systems · Multiagent learning · Reinforcement learning ·
Coordination of agents · Game-theory · Traffic signal control

1 Introduction

The second half of the last century has witnessed the beginning of the phenomenon of traffic
congestion. This arose due to the fact that the demand for mobility in our society has increased
constantly. Traffic congestion is a phenomenon caused by too many vehicles trying to use
the same infrastructure at the same time. The consequences are well-known: air pollution,
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decrease in speed, delays, and unsatisfaction of drivers. The latter may lead to risk maneuvers
thus reducing safety for pedestrians as well as for other drivers.

The increase in transportation demand can be met by providing additional capacity. How-
ever, this might no longer be economically or socially attainable or feasible. Thus, the empha-
sis has shifted to improving the existing infrastructure without increasing the overall nominal
capacity, by means of an optimal utilization of the available capacity. Two complementary
measures can be taken: coupling management systems with telecommunication and informa-
tion technology, and improving the management via control techniques. This set of measures
is framed as Intelligent Transportation Systems (ITS).

This paper focus on the second (control). However, we note here that Advanced Traveler
Information Systems are becoming increasing popular as they aim at controlling traffic by
broadcasting information to road users via radio, variable message signals installed on the
road, internet, mobile phones, on-board systems, and so on.

Management, control, and optimization of traffic have received the attention of researchers
outside the area of traffic engineering. In fact, computer scientists, physicists, and mathemati-
cians have proposed several different approaches to the problem. It is therefore an interesting
question, why these approaches do not raise the interest of practitioners in traffic engineer-
ing, not to speak of deployment. In this paper it is claimed that researchers outside the traffic
engineering community tend to approach the problem in a naive way only to find out that,
in order to apply their approaches, they have to make simplifying assumptions that render
the “solution” uninteresting from the point of view of engineering. In reality, not even the
“simplest” problem, namely the optimization of traffic in a single intersection, is solved to
a satisfactory level. Learning techniques which were developed for multiagent systems, can
potentially give decisive contributions to control and management of traffic systems, as they
meet the demands of dynamic, changing systems of many heterogeneous actors with different
goals, distinct cognitive capabilities and learning pace.

Thus the aim of the present paper is twofold. It is intended to serve as a survey regarding
problems, methods, and practices in traffic engineering (especially regarding traffic signal
control), as well as on approaches coming from other fields (computer science, physics, etc.),
while also stating the basic and open problems and challenges so that future research can be
directed to them, in order to reduce the gap between theory and practice. Second, it focuses
on multiagent systems (MAS) and artificial intelligence (AI) aspects such as learning (and its
complexity), presenting both past proposed solutions as well as a discussion about issues that
have to be improved in order to increase the practitioners’ acceptability of such solutions.

It is also shown that there are several open questions regarding modeling, simulation,
management, and control of traffic systems. Thus there are many opportunities for using
multiagent systems methods and techniques, and in fact the problems posed are challenging
and now ripe for non trivial, non naive approaches, especially as to what regards learning.
Therefore, approaches proposed by computer scientist in general and from the artificial intel-
ligence community in particular may achieve the level of deployment among the transpor-
tation engineering community, which is, understandably, highly concerned with operational
and security issues.

In order to keep the focus and be able to present and discuss issues involved in a detailed
level, this paper concentrates on traffic control and, to a lesser extent, simulation issues. It
does not deal with logistics and freight, sea and air transportation, air traffic control, public
transportation, and pedestrian and crowds simulation. Also, only some references are given
here for AI and MAS based approaches to traffic management systems and to route guidance
systems (Sect. 3.1). However, for completeness, Sect. 3 provides an overview to traffic engi-
neering, including references for readers interested in investigating details of sub-fields not
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covered here. Before, Sect. 2 discusses the current state-of-the art in multiagent reinforce-
ment learning (MARL). Sections 4–6 describe classical approaches to the particular case of
control and optimization of traffic via traffic signals (mostly deployed), and new approaches
arising from AI, multiagent systems, learning-based, as well as those proposed by physicists
and by the operations research community. In Sect. 7 a classification of the methods discussed
before is presented. Section 8 returns to the second goal of this paper which is to focus on
MARL. First the goals and challenges of MARL regarding control of traffic signals are sum-
marized. Then, it is shown that this problem is an excellent testbed for MARL as the inherent
dimensionality and complexity of these scenarios render the most popular MARL approaches
proposed so far unsuitable given computational performance issues. Also the application and
challenges of one popular approach to MARL, stochastic games, is discussed and it is shown
that existing approaches cannot cope with the dimension of the problem of learning for con-
trolling a network of traffic signals. Thus, new approaches are necessary, possibly based
on heuristics and approximate solutions to partially observed Markov decision processes,
as well as mixed approaches involving evolutionary and reinforcement learning techniques.
Concluding remarks appear in Sect. 9.

2 Multiagent learning: questions and answers

2.1 Single agent reinforcement learning

Usually, single agent Reinforcement Learning (RL) problems are modeled as Markov Deci-
sion Processes (MDPs). These are described by a set of states, S, a set of actions, A, a reward
function R(s, a)→ � and a probabilistic state transition function T (s, a, s′)→ [0, 1]. An
experience tuple 〈s, a, s′, r〉 denotes the fact that the agent was in state s, performed action
a and ended up in s′ with reward r .

Reinforcement learning methods can be divided into two categories: model-free and
model-based. Model-based methods assume that the transition function T and the reward
function R are available. Model-free systems, such as Q-learning, on the other hand, do not
require that agents have access to information on how the environment works. Q-Learning
works by estimating state–action values, the Q-values, which are numerical estimators of
quality for a given pair of state and action. More precisely, a Q-value Q(s, a) represents the
maximum discounted sum of future rewards an agent can expect to receive if it starts in s,
chooses action a and then continues to follow an optimal policy. The Q-Learning algorithm
approximates Q(s, a) as the agent acts in a given environment. The update rule for each
experience tuple 〈s, a, s′, r〉 is:

Q(s, a)← Q(s, a)+ α(r + γ maxa′Q(s′, a′)− Q(s, a)) (1)

where α is the learning rate and γ is the discount for future rewards. If all pairs state-action
are visited infinitely often, then Q-learning is guaranteed to converge to the correct Q-values
with probability one [91].

In scenarios where exploration is too costly, it may make sense to either have a model of
the environment or profit from transfer of knowledge. This aims at enhancing learning using
knowledge already acquired (e.g. when performing one task) in another, related, target task
(see [74] for an introduction, as well as references therein).

Knowing the states to which each action will take the agent, it may select the one with
higher utility. Each time the agent acts, it observes the environment and updates its transition
and reward models. This is the basis of model-based algorithms for reinforcement learning
such as Dyna [76] and Prioritized Sweeping [49].
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2.2 Multiagent reinforcement learning: stochastic games

Learning in systems with two or more players has a long history in game-theory. Specifically,
the connection between multiagent systems and game-theory as to what regards learning has
been explored at least from the 1990s onwards. Thus, it seems natural to the reinforcement
learning community to explore the existing formalisms behind stochastic (Markov) games
(SG) as an extension of Markov decision processes (MDP). Despite the inspiring results
achieved so far, it is not clear whether this formalism is completely suitable for multiagent
learning [69,70,75]. Besides, as discussed later in Sect. 2.3, SG is not the only approach
available [75]. Problems posed by many agents in multi-agent reinforcement learning are
inherently more complex than those regarding single-agent reinforcement learning (SARL).
This complexity has many consequences.

First, approaches proposed for the case of general sum SG require that several assumptions
be made regarding the game structure (agents’ knowledge, self-play etc.). These assumptions
restrict the convergence results to common payoff games and other special cases such as zero-
sum games, besides focusing on two-agent stage games. Otherwise, an oracle is needed if one
wants to deal with the problem of equilibrium selection when two or more equilibria exist.

Second, despite recent results on formalizing MARL using SG, these cannot be used
for systems of more than a few agents, if any flavor of joint-action is explicitly considered,
unless the obligation of visiting all pairs of state-action is relaxed, which has impacts on the
convergence. The problem with having a high number of agents happens mainly due to the
exponential increase in the space of joint actions. In fact, most of the literature concentrates
on repeated games with two-players and a single state. However, this modeling is not suitable
for interactions in traffic systems.

Third, while agents themselves must not be cooperative, we may be interested in improving
the system’s performance. This is a well-known issue. Tumer and Wolpert [80] for instance
have shown that there is no general approach to deal with the complex question of collectives.

Up to now, these issues have prevented the use of MARL in real-world, large-scale prob-
lems, unless simplifications are made, such as letting each agent learn individually using
single-agent based approaches. As it is known, this approach is not effective, since agents
converge to sub-optimal states.

2.2.1 Stochastic games: formal setting

The generalization of a MDP for n agents is an SG, represented by the tuple (N , S, A, R, T )

where:

N = 1, . . . , i, . . . , n is the set of agents
S = ×S j , 1 ≤ j ≤ m is the discrete state space (set of n-agent stage games)
A = ×i∈N Ai is the discrete action space (set of joint actions)
R is the reward function (R determines the payoff for agent i as r i : S1× · · ·× Sm × A1×
· · · × An → �)
T is the transition probability map (set of probability distributions over the state space S).

2.2.2 Stochastic game based approaches

This section reviews some approaches to MARL without any pretension of being compre-
hensive. In fact, this is impossible nowadays given the number of approaches suggested.
As many of them deal with particular issues, we will rather concentrate on seminal works,
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on more general approaches, and especially on those which will be later discussed in the
context of traffic signals control. We will show that most of the approaches are not com-
pletely appropriated for this context.

Most of the research on SG so far is based on a static, single state stage game (i.e. a
repeated game) with common payoff (payoff is the same for agent and opponent). In single
state SG, since there is no state transition, one cannot speak of a dynamic game in strict sense.

One of the common formulations is that of n-player, single state team (common payoff)
game. Here, each i ∈ N has a finite set of actions Ai and repeatedly play a single stage game.
To denote joint actions we use A = ×i∈N Ai ; each joint action a ∈ A is associated with a
reward R(a) ∈ � and because it is a team game, payoffs are the same for all agents. In fact,
this is normally a two player game played pairwise by |N | agents.

Claus and Boutilier [22] discuss some factors that influence the dynamics of the learning
process in a coordination game where learning is performed by means of a Q-learning-like
mechanism. In a first setting this is done independently by each player; in a second setting,
players keep beliefs about strategies of other agents, a kind of opponent modeling. They call
this second setting “joint action learners”. In their experiments they concluded that inde-
pendent learners converge quickly but not necessarily to the same equilibrium. Joint action
learners did not perform much better.

The zero-sum (ZSG) case of the stage game is discussed by Littman in [46]. In a two-
player ZSG, one agent’s payoff is the opposite of the other agent. One agent minimizes over
others’ action and then selects its own action so as to maximize its own payoff.

For the general sum game with two players, as the minimax Q-learning cannot be used,
Hu and Wellman [39] propose that both agents execute actions (a1, a2) in state s and follow
their Nash equilibrium strategies (π1, π2) thereafter. This of course assumes that information
is perfect, i.e. one agent can observe other agents’ actions and rewards. For a more compre-
hensive description of general approaches, we refer the reader to [58,70] and references
therein. Here we focus on particular approaches that could be extended for control of traffic
signal purposes. Verbeeck et al. [85] tackle a particular kind of game (coordination game) by
means of an exploration technique based on learning automata and reduction of the action
space. The approach of Vu et al. [86] deals with multiple opponents but they assume that the
full game structure and payoffs are known to all agents. Besides, the algorithm is based on
joint strategy for all self-play agents (those who learn using the same algorithm) so that the
action space is exponential in the number of self-play agents. Specifically for traffic, a simple
stage game is presented in [5], while Camponogara and Kraus [18] have studied a simple
scenario with two intersections, using stochastic game-theory and reinforcement learning.
Both are discussed in more details in Sect. 5.

As seen, stochastic games have been used successfully to model multiagent encounters
which fit the somehow limited frame of stage games. There has been a discussion among
several researchers whether or not this is the right avenue for multiagent learning in general
[69,70,75]. Shoham et al. single out some problems due to focusing on what they call the
“Bellman heritage”.

Related to this discussion, two issues discussed in [69] are important from the perspective
of traffic control. The first is the focus on convergence to equilibrium regarding the stage
game: “If the process [of playing a game] does not converge to equilibrium play, should we
be disturbed?” Also, most of the research so far has focused on the play to which agents con-
verge, not on the payoff agents obtain. The second issue is that “In a multi-agent setting, one
cannot separate learning from teaching” because agent i’s action selections both arise from
information about agent j’s past behavior, as well as impact j’s future actions’ selections.
Unless i and j are completely unaware of the presence of each other, both can teach and
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learn how to play in mutual benefit. Therefore it is suggested that a more neutral term would
be multi-agent adaptation (rather than learning). This is an important point because it agrees
with a view that some issues related to operational control are more a quest of adaptation
than of optimization (see Sect. 6.2). Since the latter is hard to achieve within a short time
frame, it is often the case that this cannot be done in real-time. One more point in favor of
adaptation is that many works on MARL have been assuming static environments. In this
kind of environment it may make sense to evaluate MARL algorithms by the criteria pro-
posed in [13], namely convergence to a stationary policy, and convergence to a best response
if the opponent converges to a stationary policy. Although other criteria are being proposed
(see [86]), it certainly makes little sense to evaluate a learning or adaptation algorithm by
such criteria when the environment is itself dynamic, as it is the case of the traffic scenario
discussed here. This issue is further detailed in Sect. 8.

2.3 Beyond stochastic games

The previous section has reviewed selected relevant multiagent learning research based on
paradigms of game-theory. However there are other works where: (i) convergence to an
equilibrium is not a goal in and of itself, and (ii) a game theoretic formulation yields little
progress towards a solution. Stone [75] mentions RoboCup Soccer as an example where there
are more than one opponent (11), while each agent has several teammates (10). Here clearly
both non cooperative and cooperative game-theory could be involved. Besides, decisions by
players are made continuously, are based on incomplete information, they must be made in
highly stochastic environments, and have strong sequential dependencies. So posed, the scale
of this problem completely discourages a game theoretic formulation. Even when such a for-
mulation proved successful, it was sometimes based on abstraction of complex multiagent
interactions to game-theory terms.

In traffic engineering there has been some successful models based on SG (Sect. 5). How-
ever two major issues play an important role. First, a high level of abstraction is necessary in
order to avoid the combinatorial explosion mentioned. Second, as in RoboCup Soccer (and
possibly any other kind of n-agent encounter where n > 2), there is the issue of local versus
global optimum. In the example of the player learning “how to pass [the ball] and where
to pass in the presence of specific adversaries” [75], there are many possible formulations
regarding the reward of this player. Either it gets a (possibly artificial) reward for a good pass,
which would be its local reward, or it is rewarded later when and if the team scores (team
reward). In real life soccer, it is frequently the case that player A makes a wonderful pass to
player B who then misses the chance to score. How shall A be rewarded? And B?

Similarly, in traffic a local control decision by traffic signal A may lead to the best per-
formance at intersection level but clogs intersection B downstream. Which reward structure
shall be considered? Drivers receiving green indication at A, who are not bound to B, are
certainly satisfied as their delays were minimized. Those bound to B would have to stop and
wait anyway at B. The agent at intersection B is definitively not happy to detect an increasing
flow of incoming vehicles. Rewards at global level (whatever global here means) are even
more complex. Is average travel time a fair measure? Why do traffic signal agents have to be
cooperative?

In this paper it is claimed that traffic control scenarios discussed in the context of learn-
ing (Sect. 5) can indeed be framed as a modified SG if assumptions about visiting infinitely
often all pairs of state-action are relaxed, and if the focus is not put on convergence to an
equilibrium. This way, some theoretical basis of SG as well as its nice formalization remain,
while more complex scenarios can be tackled.
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Also [83] discusses Shoham and et al. agenda, this time from the perspective of evolu-
tionary game-theory (EGT). They consider what each of the agenda’s point means in term of
EGT. In particular, regarding the issue of normative and descriptive agendas, EGT represents
a shift in game-theory as to what regards moving away from classical solution concepts—
Nash equilibrium is meant—towards an evolutionary stable strategy. In fact, this shift fits
very well multiagent learning in general and learning in dynamic scenarios (such as traffic
control) as already detected in [4,5,81,82].

Despite the achievements in single-agent reinforcement learning, in model-based
approaches, in SG, and in other multiagent learning techniques, most of these cannot be
readily employed in traffic control without significant simplifications. Model-free techniques
cannot cope with dynamically changing environments in a fast way, while SG based ap-
proaches cannot cope with the explosion in the number of states. These issues are discussed
in details in Sect. 5 where examples of use of these and other techniques are discussed. In
Sect. 8 the open challenges are discussed.

3 Conceptual and organizational aspects in traffic engineering

Modern transportation networks are becoming more and more congested, especially in urban
areas. To turn the problem even worse, this congestion is not evenly spatially distributed. If
we abstract the problem of distribution of traffic for a moment, we may consider it just from
the perspective of a supply–demand problem. Here, two concepts are important to understand
traffic in transportation systems. The demand between places must either be known (e.g. via
origin-destination (OD) matrices) or estimated; see [56] for details. Similarly, the supply
within the network must either be known or estimated for all possible routes between points
in the network that generate or attract trips.

However, per se, those estimates say little about how traffic is distributed in the net-
work. The assignment problem deals with the distribution of traffic in a network considering
demands between several locations, and the supply and capacity in that network. Assign-
ment methods must consider not only the distribution of traffic in a network, but also a set
of constraints related to cost, time, and preferences of road users. Classically, this is done
via network analysis. To this aim, it is assumed that individual road users seek to optimize
their individual costs regarding trips they make by selecting the “best” route. This is the
underlying idea behind traffic network analysis based on Wardrop’s equilibrium [90].

An example of traffic assignment is related to the following classical commuting scenario:
several commuters want to go from location A to location B around some specific time of the
day. The network offers a set of route (path) choices. A typical commuter will then select the
one with the least time, although other criteria can be used. Given that thousands of commut-
ers make these decisions every day, the assignment of commuters to routes becomes a highly
complex task, especially due to the fact that commuters are likely to adjust their decisions
to their past experience and to information they may be able to gather. On the other hand,
transportation authorities also collect information about the state of the network in order to
use them to adjust their transport supply. Unfortunately, given topological constraints, it is
not possible to change the supply in a way flexible enough that matches the demand entirely.
Therefore transportation authorities must employ several kinds of traffic management sys-
tems, involving both information broadcast as well as control and optimization.

AI and multi-agent techniques have been used in many stages of these processes. These
approaches can be classified into three levels: integration of heterogeneous traffic man-
agement systems, traffic flow control, and traffic guidance. The first of these levels is
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discussed in several papers, e.g. the platform called Multi-Agent Environment for Construct-
ing Cooperative Applications—MECCA/UTS—[36], as well as in [57,67,84]. The other two
levels are discussed next.

3.1 Traffic management via information broadcasting for route choice

Although travelers information systems are not the focus of this paper, for the sake of directing
the reader, basic concepts and some references regarding the use of AI and MAS techniques
are given. Further references can be found in [35,66].

It is generally believed that information-based ITS strategies are among the most cost-
effective investments that a transportation agency can make. These strategies, also called
Advanced Traveler Information Systems (ATIS), include highway information, broadcast
via radio, variable message signs (VMS), telephone information services, web/internet sites,
kiosks with traveler information, and personal data assistant and in-vehicle devices. Many
other new technologies are available now to assist people with their travel decisions.

Multi-agent techniques have been used for modeling and simulation of effects of the use
of these technologies, as well as the modeling of behavioral aspects of drivers and reaction
to information. Details can be found in [2,9,12,17,30,41,42,61,62,68,79,87].

3.2 Traffic management via traffic control

Several strategies of traffic control exist, with most of them fitting the control loop described
by Papageorgiou [59,60]. The basic elements of this control loop are: the physical network,
its model, the model of demand and disturbances (can be measured, detected or forecasted);
control devices (traffic signals, variable message signs, etc.); surveillance devices (e.g. loop
detectors); and the control strategy. Some of these are computational entities: models, sur-
veillance and control strategies. In this paper the focus is exactly on the latter. As mentioned,
several strategies will be discussed emphasizing those based on learning.

This control loop applies to any kind of traffic network if one is able to measure traffic as
the number of vehicles passing on a link in a given period of time. Techniques and methods
from control theory are applied in traffic control in a fine grained way. This leads to the prob-
lem that those techniques can be applied only to single intersections or to a small number of
them. For arbitrarily big networks, if no simplifications are made, the real-time solution of
the control loop faces a number of apparently insurmountable difficulties [59].

In spite of this, with the current developments in communication and hardware, com-
puter-based control is now a reality, especially as to what regards the control of traffic. These
are also known as advanced transportation management systems (ATMS), whose main goals
are: to maximize the overall capacity of the network; to maximize capacity of critical routes
and intersections which represent bottlenecks; to minimize negative impacts of traffic on the
environment and on energy consumption; to minimize travel times; and to increase traffic
safety. In order to achieve these goals, one of the possible measures is to use devices to control
the flow of vehicles (e.g. traffic signals). Traffic signals can vary from hard-wired logic to
computerized control, either centralized or not.

Because of the characteristics of transportation networks, there are two major types of
traffic flows: uninterrupted traffic (regulated by vehicle-vehicle interactions and interactions
between vehicles and the transport infrastructure) such as a highway; and interrupted traffic
(regulated by devices such as a traffic signal) which leads to queue formation.

Next, we focus on control of interrupted traffic by means of traffic signals.
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phase 1 phase 2

cycle

phase 3

Fig. 1 Signal plan with three phases

3.3 Traffic signal controllers

Signalized intersections1 are operated by traffic signal controllers that combine hardware and
software in order to implement the signal timing. According to [66], the most fundamental
unit in signal design and timing is the cycle. This is defined as a complete rotation through
all the green indications. In general, all legal vehicular movements (as for example in Fig. 1)
receive a green indication during each cycle. Intervals are periods of time during which no
signal indication changes. The most common intervals are: the change interval (yellow indi-
cation), the clearance interval (all movements receive red indication), and the green and red
intervals. Besides the cycle and the intervals, another component of the signal timing is the
signal phase. It consists of a green interval plus the change and clearance intervals.

Traffic signals can be operated in a variety of modes, classified according to the follow-
ing three main dimensions: fixed-time (pre-timed) basis versus traffic responsive (actuated)
basis; isolated intersection control versus coordinated control; locally controlled by a simple
microprocessor versus remote, computerized control.

In pre-timed operation, the cycle length, the phase sequence, and the timing of each inter-
val are constant and follow a predefined plan designed to deal with a traffic volume that is
computed based on historical data. In semi-actuated operation it is also necessary to acquire
data from buried detectors (e.g. of loop-induced type) or other devices. These detectors are
only placed in minor approaches to the intersection (no detector in the main street). In full-
actuated operation, every lane of every approach has a detector and green time is allocated
in accordance to specific rules, so that the cycle length, the sequence of phases and the green
time split may vary from cycle to cycle. A fixed-time controller is the more affordable and
logical choice for networks with stable or predictable traffic behavior. However, this kind of
controller cannot cope with unexpected changes in traffic flow.

In a computer controlled system the computer acts as a master, coordinating timings of the
signals. This master selects or calculates an optimal coordinated plan either based on inputs
from detectors or on a time-of-the-day basis. For coordination to be effective, all signals
must use the same cycle (or multiples). Thus it is difficult to maintain this coordination if
cycle lengths or phase splits are allowed to vary. Several plans are normally required for an
intersection (or set of intersections in the case of a coordinated system) to deal with changes
in traffic flow.

1 The terms intersections, crossing, junction, traffic signal, and traffic light are used interchangeably since in
each intersections, only one signal-timing plan runs in a set of traffic lights so that the set of traffic lights that
provide the actual indications must be seen as a single entity.

123



Auton Agent Multi-Agent Syst (2009) 18:342–375 351

  0
(secs.)
  Time20 40 60 80 100

  300

900

600

1200

Distance (m.)

2nd. st.

1st st.

4th. st.

5th. st.

3rd. st.

Fig. 2 Time-space diagram of a progression in an arterial

3.4 Coordinated systems

3.4.1 Synchronization in arterials: basics

The goal of coordinated systems (also called synchronized or progressive systems) is to syn-
chronize traffic signals along an arterial in order to allow platoon of vehicles, traveling at
a given speed, to cross the arterial without stopping at red lights. Thus, coordination here
means that if appropriate signal plans are selected to run at adjacent traffic signals, a “green
wave” is built.

Apart from the parameters discussed in Sect. 3.3, a coordinated system also needs the
so-called offset (time between the beginning of the green phase of two consecutive traffic
signals) that is computed based on the desired speed and on the distance between intersec-
tions. Another important concept is the bandwidth. It is the time difference between the first
and the last vehicle that can pass through without stopping. Figure 2 shows a space-time dia-
gram of the synchronized or progressive system in an arterial. In order to keep the example
simple, only a few intersections are shown. Also, this progression is a particular, simple, case
in which the bandwidth is designed to use all the green time in one direction (assume that
this direction has a much higher traffic volume).2 Thus one may expect the other direction
to suffer. In fact, the progression is efficient for vehicles traveling from the First to the Fifth
Street. One bandwidth is shown: vehicles entering the arterial in the intersection with the
First Street from time 22 to 54 will be able to pass the whole arterial without stopping.

The classical problem concerning synchronization systems is to find the optimal band-
width for different cycle times and speeds. Popular solutions use hill climbing [63,78] and
mixed-integer linear programming [50].

Well designed synchronized signal plans can achieve acceptable results in undersaturated
arterial, in one flow direction. However the bandwidth of the progression decreases in more
constrained problems. For example when the progression is to be set in two directions of an
arterial, the bandwidth generally decreases. If, additionally, the progression is to be calcu-
lated for a network of arterials that cross themselves in a more complex way, the bandwidth

2 Readers can find a discussion on how to design green waves in more complicated cases in [66].
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is further reduced. The difficulty is that the geometry of the arterial is fixed and with it the
spacing between adjacent intersections.

If one wants to have a long bandwidth in one traffic direction (e.g. bandwidth is equal to
the green time), this may have consequences in other directions. Figure 2 shows this. From
the perspective of a southbound vehicle, it is possible to see that this vehicle is fortunate and
does not stop at the Fourth st. as it arrives there when the progression (which was originally
designed for northbound vehicles) just allows green indication at that intersection. However,
upon arriving at the Third st., the vehicle has to stop until time around 40, departing at time
60 etc. At the end there is a significant delay, compared to northbound vehicles. As afore-
mentioned, this is an extreme example as it sets the bandwidth equal to the green time for
northbound vehicles. As discussed later, there are several algorithms that can optimize more
than one bandwidth, thought the fact remains that, the more the constraints (e.g. in the form
of more directions of progressions), the smaller the bandwidth, and depending on operation
mode (e.g. real time) this problem may become a difficult one, resulting in bandwidths that
are too short.

3.4.2 Operation modes

First generation of coordinated systems are based on computation of synchronized signal
plans for fixed times of the day such as morning and afternoon peaks. Even if the computa-
tion itself is not manual (see next section), this is a complex task that requires a lot of expert
knowledge as well as historical data. Once the traffic expert can generate a library of plans,
the next task is to decide which one to select for each situation. This is effective only in
networks with well-behaved traffic patterns.

In second generation coordinated systems, plans are computed in real time, based on
forecasts of traffic conditions using detector data as input to a prediction algorithm. A third
generation mentioned in the literature, namely highly responsive control, is based on relaxing
of a cycle-based system. It is of course much more difficult to maintain a progressive pattern
where cycle length or phase splits are allowed to vary. This can be overcome with queue
management at critical intersections, requiring a high number of detectors. Due to all these
difficulties, systems of the third generation are not yet completely deployed.

Even more flexible operation modes can be thought such as one that changes the direction
of coordination and the design of the coordination (who is coordinating with whom in which
direction); or fully traffic responsive coordinated systems capable of dealing not only with a
main arterial and with a given coordination direction, but also in a grid.

The common reality is that coordinated systems are implemented almost always as fixed-
time. This is so because the computer controlled traffic responsive system relies on detectors.
These are unaffordable for huge cities in developing countries and difficult to maintain (since
buried). Despite this, some successful cases of use of computer-controlled coordinated sys-
tems are reported in Washington, DC, Toronto, Sydney, UK, etc.

3.4.3 Classical algorithms and software

In the 1960 and 1970 some algorithms were proposed to analyze traffic patterns and to
set traffic signal cycle length, cycle splits, and offset in order to maximize the bandwidth.
TRANSYT [63,78] is an off-line optimization tool that generates optimal coordinated plans
for fixed-time operation. Inputs are the geometry of the arterial, saturation flows, link travel
times, turning rates at each intersection, demands (which are assumed to be constant), a set of
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pre-specified timings for the intervals, minimum green duration, and initial values for cycle
time, splits and offsets. For given values of the latter three parameters, a model based on
platoon dispersion is run, and a performance index is computed based on a combination of
delays and total number of stops. The optimization is performed via hill-climbing. Of course
the main drawback of this method is that plans are computed for a static situation, based
on historical data. It is known that nowadays demand may not be constant, neither between
days, nor during the day, nor in a given traffic direction. Besides, the operation of networks
close to the saturation flow increases the chances of accidents which, in turn, contribute to
unexpected patterns.

SCOOT (Split Cycle and Offset Optimization Technique) [40] is similar to TRANSYT but
it is traffic-responsive (uses data from detectors located at upstream end of the link).

SCATS (Sydney Coordinated Adaptive Traffic System) [47] is also based on real-time
data. The main difference to SCOOT is that it is a hierarchical and distributed system. Data
collection is local, based on detectors. For control purposes, an area is divided into smaller
subsystems (1–10 intersections) that perform the control independently most of the time, i.e.
appropriate cycle time and offsets are computed.

Prodyn [38] as well as OPAC [32] and UTOPIA [23] are also adaptive programs in which
control is not centralized. These do not consider explicit splits, offsets and cycles. In Prodyn
for instance, a decision is taken at each 5 s concerning whether to change phases or not. In a
typical case, each intersection simulates all possible situations using detector information in
adjacent areas. This information propagates from intersection to intersection with a decreas-
ing weight. Both the relatively complex computation and the communication system can
increase the cost of implementation.

The TUC (Traffic-responsive Urban Traffic Control) [24] was conceived for large scale
networks. The coordination strategy consists of changing split, cycle, or offset (or all), as
well as priorization of public transportation. Authors report results in two scenarios (small
network, real world) simulating morning peaks. The performance was positive compared to
a situation with fixed time synchronization. On the other hand, the computation is centralized
and conflits are solved either by a traffic expert or by pre given priority rules, in clear contrast
to a multiagent system point of view.

3.4.4 Metrics

The effectiveness of a coordinated system can be measured in various levels of abstraction.
As a general measure, one generally seeks to optimize a weighted combination of stops and
delays, a measure of the density (vehicles/unit of length) in the arterial or network, or travel
time. However, particular characteristics must be observed. Number of stops and delay are
acceptable measures for undersaturated arterials or networks. Here, queues are generally
dissipated. In the oversaturated network, there is an excess of demand relative to the capac-
ity, thus queues tend to expand over time, eventually blocking intersections. Control policies
for oversaturated networks have the maximization of the throughput as primary objective.

3.4.5 Limitations of coordinated systems

The simplest methodology for creating a signal-timing makes a lot of simplifying assump-
tions, including a nominal volume of vehicles that reflects a “typical” condition. However,
this is normally not the case. Besides the already mentioned issue of cost and maintenance,
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there are several other reasons why this approach may fail. In traffic networks without well-
defined traffic flow patterns like for instance morning and afternoon peaks, this approach may
not be effective. This is clearly the case in large cities where business centers are no longer
located exclusively downtown. Rather, there are several locations that serve as attractors for
traffic so that no clear patterns exist. Also, in some cities, “secondary” streets have become
as important as traditional arterials due to the saturation of these. Traffic patterns can also be
affected by accidents, floods, snow, etc. Moreover, optimization of several intersecting arteri-
als simultaneously in a grid-like network using real time data and under congestion is difficult.

These issues show that simple offline (or even on-line) optimization of the synchronization
in arterials alone cannot cope with changing traffic patterns. With an increasing volume of
traffic, the situation becomes more and more complex. Thus, flexible and robust approaches
are necessary.

Finally, according to [66], there are limitations on how responsive a system of traffic
signals can be. The implementation of a new cycle length or new offsets cannot be done
instantaneously. Rather, the transition may take some time. In any case, during the transition,
patterns are disrupted and large queues may begin to form. In general, it is not feasible to
implement many different coordination patterns within a short period of time.

4 Approaches based on AI and MAS

In this section, AI and multiagent system-based approaches and frameworks to traffic signal
control are presented and discussed. There is an expressive number of publications using vari-
ous AI techniques in traffic control, such as genetic algorithms and fuzzy inference, which are
not included here because they do not tackle the problem from a distributed and/or decentral-
ized point of view. Thus the criteria to select the works presented next was primarily whether
or not techniques from multiagent systems were used, are possible, or at least considered.

The taxonomy introduced in Sect. 3.3 is used to classify approaches whenever possible.
Approaches for isolated, non-actuated intersections do not really fit into the spirit of AI. Thus
it is no surprise that no non-actuated approach is discussed here. The first approach (next
section) is the reservation-based system for isolated intersections, which does not specifi-
cally deal with conventional traffic signals as it is intended to provide orderly movement for
autonomous vehicles. Sections 4.2–4.4 deal with approaches targetting isolated but actuated
intersections, with coordinated systems, and with non-coordinated but networked intersec-
tions respectively. In particular, the main interest of this paper is on learning based approaches
(both in single agent or multiagent flavors). These are covered in more details in Sect. 5.

4.1 Isolated intersections

4.1.1 Reservation-based

A reservation-based intersection control is proposed in [26] for a simplified version of real-
world intersection without conventional traffic signals: autonomous guided vehicles (called
AGV here) are not allowed to turn, do not change lanes, and all begin traveling roughly at the
same speed. The reservation is performed as follows. First, the AGV informs the intersection
manager (IM) the time it will arrive at the intersection, the velocity, direction, maximum
and minimum acceleration and other properties of the vehicle. Then, the IM simulates the
journey of the AGV, given the IM’s knowledge about other similar reservations. If the space
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requested by the AGV (for a given time) is already occupied, then the request is rejected, in
which case the AGV must decelerate and try again. If the request is accepted, it must be kept
or canceled by the AGV (in case it cannot be met).

The research presented in [26] has left as open questions: what happens if the driver has
to make sudden changes; whether the AGV is really committed to the deceleration; what
happens if conventional vehicles participate in the system as well; and what happens outside
the look of the intersection manager after AGV’s have to decelerate in response to a denial
of request (e.g. what happens with other vehicles behind this one which have to decelerate
too? What happens with their previous reservations?). Although authors claimed that those
simplifications do not detract from the fundamental challenges of the problem, this is only
valid in the situation in which only AGV’s are using the intersection. As soon as conven-
tional guided vehicles are present, these are likely to disturb the nice dynamic shown in the
simulations, especially in what regards lane changing, an important (and difficult to model)
issue in the theory of traffic flow (see e.g. [45]).

In order to cope with these issues, in [27] some of the previous assumptions were relaxed,
especially the requirement that AGV’s maintain a constant velocity in the intersection and
do not make turns. AGV’s are told to accelerate by the intersection manager. The improved
protocol proposed is based on rules that vehicles are expected to follow: a vehicle may not
enter the intersection without a reservation; the vehicle must try to follow actions prescribed
by the intersection manager; the AGV cannot try to improve its own journey (as the manager
will ignore a new request if the AGV has already a reservation granted).

In [29] a simulation is discussed in which the rate of human drivers to AGV’s increases.
The good news are that the delay decreases dramatically when only AGV’s are present and,
even better, seem to be unaffected by the increase in the traffic load. The bad news however
is that the delay increases rapidly if more than 10% of human drivers are sharing the road
with AGV’s. In [29] a new component—a light model—was added to each IM so that it has
different control policies to select from, such as first come, first served with all lights red, and
rotation of green indication through all lanes. According to the authors, this light model does
not work very well if most of the vehicles are human-driven, but it is useful for intersections
which deal with mostly autonomous vehicles.

Authors also discuss (in [28]) how to tackle other shortcomings such as deadlocks and
delays caused by drivers putting reservations in a suboptimal way because the intersection
manager processes requests on a first come, first served basis. The solution proposed is that
the IM waits until it had received all n requests in order to reorder them such that as many
vehicles as possible make it through the intersection. This extension requires AGV’s to keep
communicating with the IM in order to inform new events. Since these events are highly
interrelated for close AGV’s (which is the case since the IM is dealing with a time slot for
these AGV’s to cross the same intersection), this turns into a kind of dynamic scheduling
problem. In order to deal with this, a market-oriented approach is proposed: using some
prepayment or credit system, vehicles could be required to pay for their reservations. The
intersection can then be designed to maximize its revenue. In the market scenario, an AGV
would be able to learn in order to minimize its delay while also minimizing the cost it incurs
by making the appropriate reservations (e.g. those that are likely to be granted).

Regarding challenges related to multiagent systems, most learning approaches and in
particular reinforcement learning are expected to have low performance given the large and
distributed nature of the system. Besides, and probably more important, in large systems
where each agent is trying to maximize its private utility, there is no guarantee that the global
utility will also be maximized so that an individual-based approach could cause a subopti-
mal situation in terms of overall delay. In fact, this is a well known phenomena in traffic
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management and control. Since the concept of Wardrop’s equilibrium [90], traffic engineers
face the problem of deleterious oscillatory behaviors caused by externalities and agents not
facing the consequence of their individual choices [8,9,14].

Another extension proposed is to have multiple intersections coordinated in a more flexi-
ble way. Their experiments have shown that the system can move between different control
policies smoothly and safely. For similar, thought not for AGV’s, approaches to this proposal,
see Sects. 4.3 and 5.2.

4.2 Isolated intersections, actuated

4.2.1 Learning classifier systems

Bull et al. [16] use learning classifier systems (LCS) to control a single intersection. Authors
consider an intersection with pre-defined flow of vehicles on each of the four approaches.
Signals at each of the four intersections in the network have two phases, one permitting
north–south and the other east–west movements. This means that for each intersection, the
controller decision determines the duration of each of the two phases. Each intersection is
controlled by an LCS that receives a binary string as stimulus. Various aspects of the imple-
mentation of LCS for signal control were considered such as the way in which traffic data is
presented to the LCS as stimulus for the rules, the form of the LCS reward for performance
of its rules, a range of objectives for the control policy, and the choice of control action for
the LCS rules to vary the signal control. Each of these was found to affect the performance of
the LCS system to some extent. When tested with a detailed simulation of signal controlled
road traffic, some implementations of the LCS methodology outperformed standard control
methods in certain cases. This indicates that the LCS approach has potential for application
to road traffic control. However, the control is again for single intersections; the paper does
not mention how to integrate the control or tackle a network scenario.

4.3 Coordinated systems

Classical approaches to synchronization of traffic signals (see Sect. 3.3) work mostly off-line
and focus on synchronization of traffic signals in an arterial. The main difficulty to extend
the synchronization to a network or to more directions of traffic is the fact that due to traffic
patterns, in some key intersections conflicts may appear because different directions compete
for bandwidth. The traditional approach is to let a traffic expert decide which synchronization
to implement. This section presents some approaches that either seek to replace the traditional
arterial green wave by “shorter green waves” in segments of the network, or try to let agents
dynamically negotiate over the question of which traffic direction shall be synchronized. In
both cases the aim is to have more flexible solutions.

4.3.1 Swarm-based dynamic coordination

In [55] an approach based on swarm intelligence is proposed. Each intersection (plus its traf-
fic signals) behaves like a social insect that grounds its decision-making on mass recruitment
mechanisms found in social insects [34,64]. Signal plans are seen as tasks to be performed by
the insect without any centralized control or task allocation mechanism. Stimuli to perform
or to change tasks, are provided by vehicles that, while waiting for their next green indication,
continuously produce “pheromone”. Thus the volume of traffic coming from one direction

123



Auton Agent Multi-Agent Syst (2009) 18:342–375 357

can be evaluated by the intersection agent, and this may trigger some signal plan switching.
No other information is available to agents.

The approach was implemented and tested in a microscopic traffic simulator. Traffic signal
agents perceive the pheromone trails and select an appropriate signal plan. Average density
in the arterial was measured in order to compare the following situations: (i) traffic signals
are not coordinated; (ii) they are coordinated in the classical way, i.e., using a central decision
component (normally the traffic engineer) that determines a joint synchronization for all inter-
sections; (iii) they are free to decide, at local level, whether or not to coordinate. Quantitatively,
when agents are free to decide according to the swarm approach the system behaves almost
as a central decision support system. Experiments show that agents achieve synchronization
without any central management. However, the time needed to converge to a stable coordi-
nation can be high, which is a negative aspect especially in highly dynamic environments.

4.3.2 Coordination via constraint optimization

An approach based on an algorithm for distributed constraint optimization problems (DCOP)
using cooperative mediation is proposed in [54]. It has the same purpose as the approach just
described [55], and it is intended to be a compromise between totally autonomous coordina-
tion with implicit communication and the classical centralized solution (e.g. TRANSYT or
SCOOT).

In the traffic signal scenario modeled via a DCOP, each agent is assigned to one ore more
variables and these have interdependencies. The problem is to find an assignment such that the
global cost is minimized. Agents can extend the context they use for local decision-making
using a relationship graph. Within its graph, one of the agents has to act as a mediator, com-
puting a solution for the extended context and recommending values for variables associated
with the agents involved in the mediation session.

In the synchronization of traffic signals scenario, variables of the DCOP are the coordi-
nation direction for each traffic signal. Thus, the domain for all variables is given by two
possible directions of coordination. Constraints in this problem arise from the fact that, in
each node of the graph, a traffic signal cannot necessarily or efficiently coordinate with neigh-
bors located in a different direction at the same time. A conflict occurs when two neighbors
want to coordinate in different traffic directions.

The main results were: agents start the mediation and eventually reach a configuration of
minimum cost; after the stabilization, only minor changes occur. When there are changes
in traffic pattern, costs increase and a new mediation starts. Besides, comparing the DCOP-
based approach to a situation without any mediation (i.e. with fixed coordination), the latter
performs well only in the case coordination fits the traffic volume. One shortcoming of the
mediation-based method is that the mediation may end up being performed by a single agent,
thus in a centralized way. Additionally, the mediation process may take time.

4.4 Network, non-coordinated

4.4.1 Hierarchical multiagent system

A hierarchical multiagent system with three levels is proposed in [31]. In the first level, local
traffic agents (LTAs) represent intersections; these are responsible for providing appropriate
traffic signal timing which allows traffic to pass based only on local traffic patterns. Because
the local optimum may not be a good one when observed from another perspective, there
is a second level in the system, in which a coordinator traffic agent (CTA) supervises a few
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LTAs. According to the authors, a CTA should provide a means by which the optimal local
signal pattern can be slightly modified to accommodate the global performance. This is hardly
a trivial question. In the paper, it is not discussed how this can be achieved; authors only men-
tion that by means of communication between the local components and the CTAs and by
means of storing all relevant information in a third level—controlled by an information traffic
agent or ITA—it is possible to handle congestions. Also, some assumptions seem to be too
strong. LTAs are assumed to be cooperative; they will always give up their optimal local
control strategy, accept and implement the solution computed by a CTA, which is suppose
to compute a “global” optimal solution. Thus LTAs have no autonomy. The authors also
mention that once a LTA calculates its local optimum, the corresponding CTA is informed
and adjusts local solutions to meet concerns at the CTA level. However, details are not given.

Another issue is that it is not mentioned what a global solution in this case is. If it is
global in the sense of the CTA-controlled area, then a situation may arise in which two or
more CTAs compute their “locally global” solution and, again, these may not be compatible
or optimal from the network’s (thus, global) point of view. Of course other level of CTAs
could be implemented but ultimately the topmost CTA (at network level) would have to
perform the whole computation. Assuming that an efficient, real time mechanism exists for
this computation, the question would arise why the top most level does not then perform the
computation in the first place, just informing LTAs what they have to do.

According to the authors, when an intersection is congested, neighbors are informed in
order to respond accordingly. It is not clear how eventual conflicts are solved. Moreover, tem-
poral relationships are not discussed: are two neighboring LTAs A and B trying to respond
based on the intended (thus not yet implemented) control measures, or based on control mea-
sures just implemented, which proved not successful? What happens then if B sees conflict
also with C, upstream?

In the paper two scenarios are discussed in which, due to congestion, traffic is halted.
This might decrease the overall density but, as they notice, the speed also decreases and it
is questionable whether this would not be better handled by giving detour advice to drivers
instead of blocking their ways.

4.4.2 Multi-layer architecture

In [65] a multi-layered architecture is proposed. In the first layer, changes in the traffic patterns
are detected on-line (via traffic detectors) and appropriate signal plans are selected. This is
done by having several parameters specifying different aspects of the control (e.g. minimum
or maximum duration of phases etc.) and using a LCS as in Sect. 4.2.1. The input data for
this LCS is the observed volume of vehicles crossing the intersection. The problem is that
this parameter only applies to a single intersection so that one can expect a local optimum at
best. A second layer deals with previously unknown situations by searching for a signal plan
based on off-line optimization. Situations not covered in layer 1 are reported to layer 2 and an
evolutionary algorithm generates populations of parameters using a microscopic simulation
model. A new classifier is created, mapping the observed situation to the parameters in the
optimization process.

The paper reports no evaluation of the proposed multi-layered architecture. Also, given
that a high computing time is required in layer 2, it would be interesting to see a discus-
sion about whether a new generated solution still applies to the traffic situation when it is
employed. Finally, the method looks promising (if performance issues are treated) and can
be more useful when applied to a network of nodes instead of a single intersection because
then the optimization of several parameters makes more sense.

123



Auton Agent Multi-Agent Syst (2009) 18:342–375 359

4.4.3 History-based

Balan and Luke propose history-based controllers [1] intended to provide a sort of global
fairness. According to the authors, the original inspiration was to allow drivers to let traffic
signals know whether they are in a hurry or not, departing from previous work (e.g. [92])
that has explored what happens when traffic signals know about the trip plans of the drivers.
In the history-based approach, information about vehicles’ recent performance is collected
by traffic signals. The authors base their approach on the notion of historical fairness by
allowing vehicles to store credits they receive when waiting at red lights, and cash credits in
when passing through intersections. Traffic signals base their decisions on credits of various
vehicles at the intersection. When a vehicle reaches its destination, it reports its average
waiting time over all intersections. This time is then used as one metric to assess the effi-
ciency of the control. One issue is that vehicles have no interest in doing this and, if they do,
there is no incentive to report the true commuting time. To overcome this, as future work the
authors propose one action-based approach in which the intersection would grant green time
to vehicles paying more.

4.4.4 Fuzzy inference

In [44], real-time simulation, multi-agent control, and fuzzy inference are combined to con-
trol a group of phases, each modeled as an agent which can changed the lights of the group
to green when requested by traffic and when permitted by other agents. Hence there is a
need for negotiation between agents about how to operate together. This approach has the
same objectives as in [3], except that instead of using a game-theoretic approach based on
coordination via game equilibria, a fuzzy inference is used.

To allow agents to negotiate regarding control decisions, they must exchange their local
traffic and control data. There are plenty of possibilities related to how agents could reach a
common control strategy. One possibility is that agents in each intersection negotiate regard-
ing the extension of the green indication. In coordinated operation this negotiation process
is affected by external signals from neighboring intersections. The fuzzy decision has only
two options: extend or terminate green. The paper does not provide more details about how
the fuzzy control is performed when it comes to negotiating with neighboring agents.

5 Reinforcement learning based approaches

5.1 Isolated intersections

5.1.1 Model-based learning with context detection

As noted in Sect. 2.1, due to the dynamic and non-stationary nature of flow patterns, one
solution would be to keep multiple models of the environment (and their respective policies).
Partial models have been used for the purpose of dealing with non-stationarity in [19,25].
However, these approaches require a fixed number of models, and thus implicitly assume
that the approximate number of different environment dynamics is known a priori. Since
this assumption is not always realistic in traffic, an alternative is to incrementally build new
models as in [71,72]. In this approach (RL-CD for Reinforcement Learning with Context
Detection), it is assumed that environmental changes are restricted to a small number of
contexts (traffic patterns) which are stationary environments with distinct dynamics; that the
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current context cannot be directly observed, but can be estimated according to the types of
transitions and rewards observed; that the environmental context changes are independent of
agent’s actions; and that context changes are relatively infrequent. In a traffic scenario, these
assumptions mean that flow patterns are non-stationary but they can be divided in stationary
dynamics that need not be known a priori. In fact, one of the interesting aspects of the method
is exactly its capability of automatically partitioning the environment dynamics into relevant
partial models.

Each model is assigned to an optimal policy (which is a mapping from traffic patterns to
signal plans), and to a trace of prediction error of transitions and rewards, aiming at estimating
the quality of a given partial model. The creation of new models is controlled by a continuous
evaluation of the prediction errors generated by each partial model. A partial model contains
estimated transition and estimated reward functions.

For each partial model, classic model-based reinforcement learning methods such as Prior-
itized Sweeping and Dyna may be used to compute a locally optimal policy. If the environment
changes and a local policy turns suboptimal (congestion increases over a threshold), then the
system creates a new model. Whenever possible, the system reuses existing models instead
of creating new ones. New models are created only when there are no models with trace error
smaller than a defined threshold. Results show that the RL-CD mechanism is more efficient
than a greedy strategy and other model-based reinforcement learning approaches. Although
this mechanism was tested in a network of nine traffic signals, it remains a single-agent
based learning method and an extension is necessary in order that agents map states and joint
actions to rewards.

5.2 Coordinated systems

5.2.1 Game-theoretic approach

In [4,5] techniques of evolutionary game theory and SG are used: individually-motivated
agents (traffic signals) act in a dynamic environment in which not only their own local goals
but also a global one can be taken into account. This is achieved with each agent having only
local knowledge that it obtains from sensoring its local environment. This way agents are
able to respond to their local environment state. However, they also perform experimentation
and, according also to the experimentation performed elsewhere in the neighborhood, they
receive a reward. Stochastic events that may take place in the network are modelled by muta-
tions. During the learning process, a fitness for each strategy is computed and it influences
the next generation of strategies which will be used by agents to perform the experimen-
tation. Depending on the frequency of the stochastic events, agents are able to coordinate
better towards the global goal. Agents neither observe the distribution of strategies in the
population nor are able to calculate best responses. Due to the lack of communication among
agents, the general traffic pattern remains unknown to them. For instance, if the trend is that
the traffic volume is predominantly westbound, agents performing executing a policy that
provides longer green indication for that traffic direction are better paid than those executing
other policies. At each period, there is a probability that each agent learns how good the set of
strategies played in the near past was. Besides the learning probability, at each stage agents
have also a small probability of mutating (selecting a different action).

Several scenarios have been simulated, varying the learning and mutation parameters (see
[5] for details). Results showed that a central synchronization performs better in stable sce-
narios with the flow of vehicles being clearly higher in one direction than in the opposite since
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few or no conflict occurs. However, in scenarios where the volume of vehicles is nearly equal
in both directions, the central progression does not perform well compared to the agent-based
mechanism. This can be explained by the fact that the agent-based mechanism is adaptive
and allows agents to break with the synchronization in order to cope with their local traffic
conditions for a short time period, if necessary.

A shortcoming of the approach is that payoff matrices (or at least utilities and preferences
of agents) have to be explicitly formalized by the designer of the system. This makes the
approach time consuming when many different options of coordination are possible as for
example all four traffic directions have to be considered.

5.3 Network, non-coordinated

5.3.1 Co-learning based on waiting time

Wiering [92] describes the use of reinforcement learning by traffic light agents in order to
minimize the overall waiting time of vehicles in a small grid. Those agents learn a value
function that estimates expected waiting times of vehicles given different settings of traffic
lights. One interesting issue tackled in this research is that a kind of co-learning is considered:
value functions are learned not only by traffic signals, but also by the vehicles that can thus
compute policies to select optimal routes to their destinations.

The ideas and results presented in this paper are important. However, there are some issues
that may be significant if such an approach is to be deployed. First, the kind of communica-
tion and knowledge (or more properly communication for knowledge formation) may have
a high cost. Also, it is questionable whether vehicles (drivers) themselves “would exactly
know their waiting time until they arrive at the destination address given that their traffic
light is currently set to red or green”. Second, it seems that traffic signals can shift from red
to green and opposite at each time step of the simulation. Although the size of this time step
is not given, the text conveys the idea that it is a small fraction of time (say seconds). In the
practice of traffic engineering, changes are introduced only in a smooth way as for instance
when phases are allowed to be extended. Third, there is no account of experience made by
drivers based on their local experiences only. It seems that their past experiences in terms of
route choice and travel time are not considered. Finally, drivers being autonomous, it is not
obvious to expect that all will use the best policy, which, in this case, was computed by the
traffic signal and not by the driver itself.

As for the experiments and results, the paper investigates the use of reinforcement
learning in different flavors and under different saturation conditions in a grid-like network.
It is shown that reinforcement learning starts to payoff when the grid starts to saturate.

A similar RL-based method for controlling traffic lights is presented in [73] to min-
imize the total travel time of all vehicles in the network. Thus, the control perspective
is a global one, although actions are local to the agents. Agents here are the traffic sig-
nals but the learning task is formulated in a way that the state representation is vehi-
cle-based (waiting times for individual vehicles), aggregated over all vehicles around the
intersection. Another issue is that the more information about the individual vehicle, the
bigger the state space. The paper also investigates other forms of state representation and
different learning abilities. Experiments were performed with different volumes of traf-
fic and the evaluation was performed regarding a global measure, namely average waiting
time.
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5.3.2 Co-evolution

As seen in Sect. 3, classically, assignment is done via network analysis (e.g. via Wardrop equi-
librium). However equilibrium-based concepts are not completely adequate as they overlook
the within-day variability for example. In [7,11] authors investigate what happens when dif-
ferent actors interact, each having its own goal and learning algorithm. The objective of local
traffic control is obviously to minimize queues in a spatially limited area (e.g. around a traffic
light). The objective of drivers is (normally) to minimize their travel times. The scenario used
is a typical commuting scenario modeled as a 6×6 grid, where drivers repeatedly select a
route to go from an origin to a destination. These routes are not so simple as a two-route
(binary decision) scenario; it is possible to set arbitrary origins and destinations. Thus drivers
have a large set of routes to select from.

The control is done via decentralized traffic signals. Each has a default signal plan that
divides the cycle time equally between two phases. The actions of traffic signals are to keep
this default plan or to priorize one phase. Strategies are: (i) always keep the default signal
plan; (ii) greedy (run green time for the phase with the higher occupancy); (iii) use single
agent Q-learning. Regarding the drivers, these may use three strategies: (i) select a route
randomly (each time it departs); (ii) select a route greedily (always pick the one with best
average travel time so far); (iii) select a route in an adaptive way meaning that average travel
times so far are used to compute a probability to select the route to use.

Results show an improvement regarding travel time and occupancy when all actors
co-evolve especially in large-scale situations involving hundreds of drivers. This was com-
pared to situations in which either only drivers or only traffic signals evolve, in different
scenarios.

One issue left open by the authors is en-route adaptation. This was not initially considered
because approaches in which there are more than two routes between two locations, and
agents can change their routes on the fly are not trivial. An operational problem is the gener-
ation of reasonable alternatives. The problem of generation of routes for route choice models
is well known in traditional discrete choice approaches: the n shortest paths may differ only
marginally. Additionally, all approaches consider one route as one complete option to choose
from.

Therefore the issue of on-the-fly re-routing is investigated in [10]. Here drivers react to
their perception of jammed links. Notice however that the focus is on adaptation, not on
learning, with drivers using different criteria to decide whether to deviate from the originally
planned route. Although the authors have shown that re-routing may compensate an eventual
inefficient traffic control (by the traffic signal agents), it remains an open question how this
can be combined with reinforcement learning techniques by the drivers.

5.3.3 Stochastic-game based

The task of operating a traffic network as a distributed, stochastic game in which agents solve
reinforcement-learning problems is investigated by Camponogara and Kraus [18]. They use
a variation of stochastic games in which states are only partially observable, and mention that
one cannot expect to compute a set of policies, one for each agent, that is optimal. They also
note that this set of policies, even if it exists, may conflict with the performance yielded by
an optimal, centralized policy that maximizes the sum of rewards of all agents, which is the
principal goal in operating a traffic network. This relates to the issue of collectives discussed
in Sect. 2.2.
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From the standpoint of each agent, its control task could be thought of as an ordinary
reinforcement problem by regarding other agents as part of the environment, except that
this environment is not stationary as it depends on the policy implemented by other agents.
Despite this, authors employ standard reinforcement learning algorithms (called distributed
Q-learning in their paper) to reach a set of distributed control policies.

For the experiments, a small network of two intersections is used, where roads have
limited capacities. Traffic conditions were varied, as well as the kind of policy followed:
uniformly random policy (assigns the same probability to all actions available to an agent);
best-effort policy (green indication to the lane with the longest queue); Q-learning imple-
mented by agent-1 (agent-1 applies the Q-learning algorithm to control traffic signals at its
intersection while agent-2 follows the uniformly random policy); Q-learning implemented
by agent-2. Results of Q-learning against uniformly random policy show that a reduction of
18% in the average waiting time is induced by agent-1 or agent-2, if either agent implements
Q-learning. Authors also report a reduction in the waiting time of 43% when both agents run
Q-learning, compared to best-effort policy, and conclude that the best-effort policy outper-
forms the random policy for low traffic densities. However the former incurs higher waiting
times under heavy traffic conditions.

5.3.4 Learning in heterogeneous groups

The question of how heterogeneous groups of agents can benefit from communication to
improve their learning skills is investigated in [52], where information from several sources
during learning is used in a simplified simulation of a traffic control problem. Here, teams of
agents are in charge of two connected crossings in a certain area. Each crossing is controlled
by a different agent. Members of a team may communicate with their partner in the same area
or with members of other teams that are solving similar problems in different areas (up to
three areas were used in the experiments). The reward at each timestep is the weighted sum of
two terms, which represent the compromise between improving the individual performance
at a crossing, and the global quality in the area controlled by the team.

Different types of agents were used: EA-agents (evolution of population of neural net-
works), QL-agents (connectionist Q-learning), and H-agents (heuristic agents). H-agents
respond to occupation thresholds, changing to green the traffic-lights of lanes that have higher
occupation rates. Besides, agents can learn from advice given by their peers. An advice is
composed of a state experienced by the advisee agent, an action proposed by an advisor
agent, the reward the advisor would expect to achieve by taking the proposed action, and
the confidence the advisor estimates for the information. Advice is generated upon request.
When an agent decides to request advice it sends the observed state to the selected advisor.
To estimate the reward that will be obtained, as well as the confidence in the action proposed
for this state, the advisor uses information previously saved. The quality of a previous advice
given by a certain peer can be seen as a measure of trust. Trust, in this case, is related to how
accurate the estimated reward given for previous advice was. When information is requested
concerning a given state, the advisor also gives the reward that it would expect to achieve
using the proposed action.

Experiments were conducted based on real data from Lisbon. Teams of agents, each
using a different decision mechanism (EA-agents, QL-agents and H-agents) were employed.
H-agents do not request advice, but they respond to all advice requests. The following sim-
plifications were assumed: vehicles do not change lane or turn; forward movement is of type
follow-the-leader (observing the desired maximum speed of each vehicle); vehicles can break
to zero-speed instantly; stopped vehicles, in crossings, do not prevent others from passing
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in other directions. Traffic-lights are prompted for a new decision every 20 s, which may be
too frequent. A simulation runs first in training mode. After, the best parameters saved are
reloaded and it runs in test mode (without communication and learning). The state that agents
observe is composed of parameters representing occupation rate in each of the four incoming
directions, incoming traffic from a given direction, the current color of traffic lights, and the
time since the last change in the traffic-light.

Results indicate that EA-agents may reach scores higher than QL-agents. This might be
explained by the size of the search space that QL-agents have. EA-agents may perform well
even when none of their peers is able to reach scores at the same level. Authors note that
advice exchange does improve the average performance of agents with lower scores, although
not all agents reach the same performance levels and some advisees do not reach the level of
performance of advisors.

5.3.5 Learning in groups with advice

The idea of giving advice is also explored in [6]. It is argued that one possible way to reduce
the complexity of the problem is to have agents organized in groups of limited size so that
the number of joint actions is reduced. These groups are then coordinated by another agent,
a tutor or supervisor. The paper investigates and compares the task of multiagent reinforce-
ment learning for control of traffic signals under the following two situations: agents act
individually (individual learners), and agents can be “tutored”, meaning that another agent
with a broader sight will recommend a joint action. Results show that supervision pays off:
when there is no supervision, agents just learn using individual Q-learning and in this case
the number of stopped vehicles is higher than when supervisors give advice to the traffic
signal agents.

6 Approaches based on cellular automata, self-organization, and optimization

Approaches that were proposed by physicists and mathematicians (especially those related
to operations research and optimization) are discussed next. In these, artificial intelligence
plays a minor role, if any. Also, they are not necessarily aimed at traffic signal control.
More generally, they deal with microscopic as well as macroscopic models for simulation of
movement of vehicles (next subsection), and optimization of traffic flow (Sects. 6.2 and 6.3).

6.1 Microscopic models of vehicular traffic

Most of the works published by physicists tackle the “coarse-grained” fluid dynamics related
to the description of traffic flow. This means that this is a macroscopic modeling where
platoons, not individual vehicles are treated. These are not discussed here.

Microscopic models are a trend because they allow fine-grained description of all actors
involved. In microscopic approaches traffic is treated as a system of interacting particles
driven far from equilibrium. Therefore the main focus of these publications is to study var-
ious fundamental aspects of nonequilibrium systems under the light of statistical physics.
Analytical as well as numerical techniques of statistical physics are being used to investigate
transitions from one dynamical phase to another, criticality and self-organized criticality,
etc. For example, Helbing and Huberman [37] discuss simulations based on a discretized
follow-the-leader algorithm resulting in the existence of cooperative, coherent states arising
from competitive interactions.
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The prototypical microscopic approach is based on cellular automata (CA). Details can
be found in [51] (the seminal paper by Nagel and Schreckenberg where the CA model was
proposed) and in a review, written from the perspective of statistical physics [20]. The CA
model represents a minimal model in the sense that it is capable of reproducing several basic
features of real traffic using only a few behavioral rules. The road is subdivided in cells that
can be either occupied by one vehicle, which has an integer speed vi ∈ {0, . . . , vmax} with a
maximum speed vmax. The dynamics of vehicle motion is described by four simple rules (see
[51]). Every driver described by the Nagel–Schreckenberg model can be seen as a reactive
agent: autonomous, situated in a discrete environment, and having (potentially individual)
characteristics such as its maximum speed vmax and deceleration probability p. However,
real drivers do not react in this relatively simple way. Rather, sometimes they vary their
driving behavior for no obvious reasons. Thus, there is room for multiagent system-based
formulations of this modeling as in [9,12,42,79,87–89].

As mentioned, physicists have been mainly concerned with equilibrium issues and/or with
the investigation of critical phenomena in simulation of traffic flow at network level, centered
on vehicles movement. Optimization and adaptation of traffic flow has become a topic of
interest only recently. In [15] the impact of a coordination among traffic signals is simulated
in a cellular-automata-based model. This model was originally designed for highway traffic
[51] and later extended [21] for detailed city traffic. The goal was to test the extended CA
model to find optimal cycle times for traffic signals in the network, which has a simple square
lattice geometry. Results refer to constant density in traffic volume in both directions. In their
case, due both to the lattice geometry and to similar densities in all directions, green waves
with large bandwidth can be set in both directions. However the case in which one direction
gets more traffic load is not discussed so that the optimization problem only applies to static
and well-behaved situations.

6.2 Self-organization-based approach

Gershenson [33] approaches the problem of improving traffic flow not from the optimization
point of view but from the adaptation one. Here, traffic lights self organize by means of three
methods, with no direct communication between them. It is shown that the adaptation to
traffic conditions reduces waiting times and number of stopped vehicles. The quest of adap-
tation instead of optimization is similar to the one in [5,55]. However, in [33] this is done
for isolated intersections, with no form of coordination among agents as e.g. in a progressive
system.

6.3 Approaches based on mixed integer programming

Möhring et al. [48] deal with fixed-time signal control, introducing two approaches to min-
imize total delay modeled as a mixed-integer problem. Their approach is useful for arterial
optimization; however, the mixed-integer formalization of the problem is associated with a
large computing time.

In Köhler et al. [43], authors describe a model for offline optimization of the offset in
synchronized systems. Their solution is modeled as a mixed-integer problem and supports
non-uniform cycle lengths operating near saturated conditions. One drawback is that only
fixed-time signal control is considered, thus not tackling adaptation to changing environ-
ments. On the other hand, problems related to the computational complexity of previous
approaches is overcome with piecewise linearization of the delay function.
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7 Summary and classification of approaches

The approaches described in Sects. 4–6 are summarized here according to some dimensions:
kind of technology used; whether they apply to single intersection, coordinated systems
or networks; whether or not they are traffic responsive (actuated); whether or not they are
decentralized; and which is the main technique used. Table 1 includes only conventional
approaches.

In Table 2, the approaches are not conventional ones; most are developed as testbeds for
some technique from AI or other area, and none is deployed. The two first lines in the table
refer respectively to approaches proposed by physicists and mathematicians, and from AI
and multiagent systems, excluding learning based approaches. These are presented in the last
line.

Table 3 lists approaches that deal with non conventional, not yet fully deployed technol-
ogies such as autonomous guided vehicles, GPS tracking, wireless communication, etc.

8 Open challenges for MAS-based approaches

8.1 Agents as traffic signals: to cooperate or not to cooperate

Conventional control in isolated intersections uses mathematical programming and opera-
tions research tools based on constraints and optimization of operational parameters (length of

Table 1 Classical approaches:
coordinated systems

Actuated Non-actuated

SCOOT [40], SCATS [47], PRODYN [38], TRANSYT [78]
OPAC [32], UTOPIA [23], TUC [24]

Table 2 Actuated approaches:
centralized, from physics and
optimization (row I);
decentralized, from AI and MAS,
except learning (row II);
decentralized, learning based
(row III)

Isolated Coordinated Two or more
intersections systems intersections

I Gershenson [33] CA-based [15]; –
Köhler et al. [43]

II Bazzan [3]; Oliveira et al. France and Ghorbani [31];
Bull et al. [16] [53–55] Kosonen [44];

Rochner et al. [65]
III Silva et al. Bazzan [4,5] Bazzan et al. [7,10,11];

[72,71] Camponogara and
Kraus [18];
Nunes and Oliveira [52];
Steingrover et al. [73];
Wiering [92]

Table 3 New technologies Isolated intersections

Balan and Luke [1]
Dresner and Stone [27]
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cycle, split, minimum and maximum green time). Several tools from AI such as evolutionary
computation, learning, and MAS-based approaches have proven useful in this problem
(Sects. 4 and 5), as they are able to deal with data collected from sensors in a more intelligent
and adaptive way.

However, major challenges lie in control of arterial and networks, especially when several
intersections must work in a synchronized way because this means contention and conflicts
between agents. The reason is that the several actors must coordinate their actions in order
to reach an effective performance not only at local level. This task is further complicated by
the fact that the task itself is not of a cooperative nature. In [77] opportunities for cooperation
in MARL are identified such as communication of instantaneous information (perception,
actions, rewards); sequences of triples 〈sensation, action, reward〉; learned policies. Commu-
nication and cooperation are natural in the prey-predator scenario used to illustrate oppor-
tunities for cooperation. However, it is not obvious what “intelligent cooperation” means in
the traffic control scenario.

Additionally, in synchronized systems, due to topological constraints discussed in
Sect. 3.4.1, the direction of the synchronization is a non local, possibly conflicting deci-
sion, that also includes non-local performance. Thus, one important issue is whether or not
self-motivated, possibly non cooperative agents can handle this problem. In [4] it was shown
that this can be done, at the cost of the designer having to formulate payoff matrices.

Alternative approaches that alleviate this issue were proposed but have other drawbacks.
The swarm-based approach for synchronization [55] requires time to build a green wave.
The cooperative mediation approach [54] assumes cooperative agents and centralizes the
mediation in a few (often only one) agent. Besides, the computational complexity of a DCOP
based method prevents its use in large networks. The other approaches discussed all have the
problem that they do not explicitly deal with conflict resolution (e.g. in which traffic direction
to synchronize traffic signals as in [31,44,65]) or base this decision on pre-specified rules or
on traffic experts [24].

The decision about which traffic direction to synchronize, and thus give priority, can be
further tackled in many ways:

1. By explicit communication among traffic signals, which is nowadays possible due to
technical advances in communication devices (e.g. wireless networks). Using new tech-
nologies, it is possible to exchange sensor and control data. However, just data exchange
is not sufficient for at least two reasons. First, it is not clear how having more data could
help since there is no computationally efficient method to resolve conflicts, since this
involves data acquisition (from sensors) and processing in real time. Second, it is not
obvious why intersection agents would sacrifice local performance in favor of a global
one. More philosophically, this question leads to the issue of to what extent those agents
would still be autonomous if they were to follow a hierarchically superior agent (e.g.
an arterial manager) in order to implement the synchronization of traffic signals in the
traffic direction imposed by the manager. This is not a trivial question especially as it
involves other agents, namely drivers, who can then react to inefficient local control
policies. This issue of co-adaptation is further addressed in Sect. 8.3.

2. Instead of explicitly exchanging data, agents could do this implicitly by sensing the envi-
ronment and adapt (or react) to it accordingly and eventually form several sub groups
of synchronization as in [5,55]. These approaches use neither explicit communication
nor a manager agent to resolve conflicts. There is of course a trade-off between time
taken to adapt and having immediate conflict resolution by communication and by a
manager agent. In highly dynamic environments, an agent might not have the time to
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perceive a change and adapt to it before the environment has already changed again.
In reasonably well behaved scenarios, the adaptive approach with formation of several
mini green waves has performed well compared to arterial-based, fixed green waves.

3. Synchronization can be achieved by traffic signal agents that learn, e.g. using reinforce-
ment learning and game-theoretic approaches. Regarding the SG defined in Sect. 2.2.1,
this has to be adapted for the traffic control setting. In particular, for traffic control, each
agent i has a partial observation of the whole environment so that there is no single state
vector; rather, S is actually the cartesian product over all partial observed states and all
agents (×Si ).3 Thus, if only traffic signals are considered (the situation with driver as
agents is discussed in Sect. 8.3), the action space is the cartesian product over all set of
actions of the traffic signals.

As seen, the problem here is already very complex for standard reinforcement learning based
approaches; it does not scale up to more than a dozen traffic signal agents. In the next sub-
section, some possible solutions are discussed together with their strengths and drawbacks.

8.2 Traffic signal control: challenges for multiagent reinforcement learning

The case of isolated intersection (thus single agent reinforcement learning) was discussed in
Sect. 5.1. It was shown that the main problem occurs when the environment is non-stationary.
Besides this problem, even in the case of stationary environments, the reinforcement learning
task is further complicated by the potential scale of the problem. Assume that, in a single
intersection, the following holds: there are four sets of approaching lanes (four traffic direc-
tions), the traffic signal agent is able to sensor the traffic volume in all approaching lanes,
each of these is discretized in s states, and the set of actions consists of k signal plans to select
among. The number of states is s4, and the number of pairs state-action is s4 × k. Already
for small s and k this can be a hard task for reinforcement learning methods, especially in
non-stationary environments. Moreover, many of these state-action pairs should not even be
visited as they are known to be suboptimal (e.g. allowing a long green time to lanes with low
traffic, while letting short green time to another direction that has a heavy traffic). Therefore,
heuristics used by traffic experts are likely to perform better here.

This picture changes when it comes to several intersections considered all together because
either it is not so obvious how these heuristics look like, or the traffic expert is likely to have
heuristics only for a particular, small portion of the traffic network. Besides, as already said,
MARL is more complex than SARL. Due to the specific characteristics of traffic control
scenarios, in several cases, already established and tested approaches for RL cannot be used.
The environment is generally dynamic and hard to predict not only due to the stochastic
nature of traffic patterns, but also because other agents may be learning concurrently; the
reward that one agent receives strongly depends on the actions performed by typically many
other agents; not all actions are observable.

Hence, as also noted by Stone [75], it makes little sense to expect convergence to an
equilibrium. Therefore the question remains how to design such agents so that they achieve
some degree of system effectiveness. One possibility is to simplify and model the problem
as several MDP’s, one per agent. This could be done in several ways:

1. All agents have local set of actions, the reward is local but they all perceive the overall
system state, i.e. the performance of the whole system is discretized over one parameter

3 The majority of papers reviewed in Sect. 2.2.2 assume that all agents are able to observe the state of the
whole environment so that obviously |S| 	 | × Si |; besides most works on repeated games assume |S| = 1.
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or over a combination of several parameters resulting in state values such as overall
congestion between 0% and 10% etc. (or average travel time, delay, queue, or any other
global metric). In current traffic scenarios, this can be seen as a strong assumption, since
this would mean informing all traffic signals about the current state of the network.
However, new technologies are being developed. For instance, it will soon be possible
to measure average velocity and other global variables in a traffic network: The city of
Stuttgart uses the fleet of taxis as floating cars; data is collected to a Floating Car Data
(FCD) system. This way, it is possible to know position and velocity of these floating
cars. If the programming of the traffic signals’s controllers is centralized or if there is at
least some communication channel between a central of control and the traffic signals,
then it is reasonable to assume that traffic signals can be periodically informed about the
overall state of the traffic network.

2. Similar to the item above but here everything is local: set of actions, rewards, and states.
With the current technology, traffic signals can perceive their own states (via detectors)
so this would pose no problem.

3. Stateless learning, learning automata: only actions are mapped to rewards.

All three approaches above are simple to implement but are questionable from one or more
of the following issues, to a lesser or greater extent: (i) assumptions made about informa-
tional state of agents, and (ii) the assumption (for Q-values computation) that actions by
each agent are independent of the action selected by other agents. Regarding the latter, any
kind of sophistication in the (re-)definition of Bellman’s equations such as Qi (s, a) ←
(1 − α)Qi (s, a) + α[r i (s, a) + γ V i (s′)] (where the exponent i refers to agent i and 
a
is the vector of joint actions) leads to the problem of how to update the V term (i.e. the
maxa∈×A Qi (s′, a)), not to mention the increasing in the size of the action space. As seen
in Sect. 2.2.2, when approaches based on simple application of multiagent Q-learning are
used, there is the problem of ending up in a suboptimal solution (e.g. [22]), as agents cannot
distinguish the effect of their own actions.

Using one Q table per “opponent” (as in [39]) would cause each traffic signal in a grid
scenario to keep, each, at least three Q tables: its own, that of the neighbor to which it is
connected in the north-south direction, and that of the neighbor in the east-west direction.4

Additionally, this assumes that each agent knows actions and rewards of other agents, an
assumption which may lead to communication bottlenecks. Even if we deal with stateless
versions of those approaches, assuming observation of all joint actions remains a problem.

8.3 Drivers and traffic signals as learning agents

Most of the discussion above holds when the subject of MARL is the driver or when both
kinds of agents act in a traffic network (which is the real case). However, the scale of the
problem is much bigger then, since the number of drivers tend to be in the order of thousands.
Besides, the number of drivers in the network changes within time, an additional reason why
convergence to an equilibrium is not a good metric.

When considering traffic signals and drivers as learning agents, N = D∪T (set of agents
is the union of the set of drivers and set of traffic signal agents). Thus, formally, the SG
defined in Sect. 2.2.1 has to be modified:

– N = D ∪ T ;
– each agent i has only a local, individual observation of the whole environment so that

the state space is actually the Cartesian product over the individual state sets (×Si );

4 This decreases to two tables in the case of an one-way arterial rather than a grid.
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– the action space is the Cartesian product over all set of actions of drivers and traffic
signals.

With these figures, it is obvious that, if we use a SG-based approach that considers all states
and actions, each agent needs to keep tables whose sizes are exponential in the number of
agents: |S1|× · · ·× |Sk |× |A1|× · · ·× |Ak |. Assuming a very simple discretization of states,
namely that all traffic signal agents can map local states to either jammed or not jammed,
i.e. |Si | = 2 for i = 1, . . . , |T |, and that drivers cannot perceive more than one state, the
Cartesian product over the states has a size 2|T | × 1|D|. Assuming also that traffic signals
have only two actions (two signal plans) and drivers have at most five actions (five routes
to choose from), the size of Q tables is 2|T | × 2|T | × 5|D|. Already the last term makes this
approach computationally intractable as the number of drivers tends to grow, not to speak
about the communication demand.

Therefore, one solution is to treat drivers as part of the environment and let traffic signals
learn. Even this can be prohibitive if the number of traffic signals is bigger than, say, three
to five.

Letting all drivers act locally but have knowledge of the overall system state (e.g. the per-
formance of the whole system in terms of overall congestion) is a strong assumption: even
with the increasing deployment of ATIS (Sect. 3.1), it is known that drivers cannot process
much information. When this assumption is dropped and perceptions are local, this is again
questionable because the concept of what a state is for the drivers is quite vague. An action,
a choice of route, is rewarded or not (in terms of travel time or any other metric) and this is
probably what matters. Therefore, the stateless formulation of a model free approach to rein-
forcement learning would do fine, in spite of the known problems associated with learning in
congestion games. An intermediate version of both items above would be to let drivers only
do the action-reward mapping, in a stateless Q-learning or learning automata fashion.

In summary the issue of SG-based learning in such scenarios is not trivial and improve-
ments in the current algorithms regarding learning and collectives are necessary.

9 Concluding remarks

This paper has discussed some open challenges for employing techniques from AI and MAS
in traffic control. A survey of classical methods, as well as of methods coming from AI, com-
puter science, operations research, and physics was presented, emphasizing challenges and
open problems with these approaches. An important point is that the area of traffic control is
an attractive testbed for MARL approaches as well as for other techniques from MAS, espe-
cially coordination. The problem of how to synchronize traffic signals (while also keeping
large bandwidths) is non trivial. Other open issues were discussed in Sect. 8.

Summarizing, the three more important directions are whether or not to tackle traffic con-
trol as a cooperative problem/domain, meaning that local optima generally conflicts with the
global (network) optimum; the dimensionality problem associated with learning in a system
with many agents, where each implicitly affects others’ decisions; co-evolution and the role
of the behavior of drivers in a transportation network.
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