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Abstract Norms constitute a powerful coordination mechanism among heterogeneous
agents. In this paper, we propose a rule language to specify and explicitly manage the nor-
mative positions of agents (permissions, prohibitions and obligations), with which distinct
deontic notions and their relationships can be captured. Our rule-based formalism includes
constraints for more expressiveness and precision and allows to supplement (and implement)
electronic institutions with norms. We also show how some normative aspects are given
computational interpretation.
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1 Introduction

A major challenge in multi-agent system (MAS) research is the design and implementation
of open multi-agent systems in which coordination must be achieved among self-interested
agents defined with different languages by several designers [1]. Norms can be used for
this purpose as a means to regulate the observable behaviour of agents as they interact in
pursuit of their goals [2–5]. There is a wealth of socio-philosophical and logic-theoretical
literature on the subject of norms (e.g., [6,7]). More recently, much attention has been paid
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to more pragmatic and implementational aspects of norms, that is, how norms can be given
a computational interpretation and how norms can be factored in the design and execution
of MASs (e.g., [8–12]).

Ideally, norms, once captured via some suitable formalism, should be directly executed,
thus realising a computational, normative environment wherein agents interact. Norms are
applicable when the current representation of the system complies with certain conditions.
When representing agents from a social point of view, they are characterised by their observ-
able attributes and normative position. A normative position [6] is the “social burden” associ-
ated with individual agents, that is, their obligations, permissions and prohibitions. Depending
on what agents do, their social representation (i.e., the perception that other agents can have
of them, that is, normative positions and observable attributes) may change—for instance,
social reputation can increase, permissions/prohibitions can be revoked or obligations, once
fulfilled, removed.

Norm-oriented programming is a programming paradigm aimed at equiping engineers
with means to directly specify via norms how the interaction among the components of
a MAS (viz., the agents and their computational environment) should be regulated. This
regulation can be done in many ways, including, for instance, directly via general purpose
programming languages or agent-oriented programming languages such as AgentSpeak [13].
However, in this paper we advocate the explicit use of norms and normative positions to spec-
ify how open and heterogeneous MASs should be regulated. Norm-oriented programming
should be seen as complementary to approaches to model the internal behaviour of the com-
ponents of the system like agent-oriented programming [14] or the client-server paradigm.
An example of norm-oriented programming for the Internet would be a firewall that rejects
or forwards messages following a set of rules. In this example, applications can be either
permitted or forbidden to send several types of messages but since firewalls do not keep track
of the obligations of applications, this example does not fully implement the norm-oriented
paradigm.

We try to make headway along this direction by introducing an executable language
to specify agents’ normative positions, and to manage their changes as agents interact via
speech acts [15]. This language has been conceived to represent distinct flavours of deon-
tic notions and relationships: we can define different normative contexts in which different
deontic notions hold. In our language, we can specify several concurrent normative contexts
such that, for instance, prohibitions cannot be violated in some of them and prohibitions over
certain actions can be violated under penalties in some others.

Our language is rule-based and we achieve greater flexibility, expressiveness and preci-
sion than conventional production systems by allowing constraints [16,17] over variables to
appear in our constructs. Constraints are first-class entities managed explicitly—we accom-
modate, as we show, constraints in our semantics using standard constraint solving tech-
niques. Constraints allow for more sophisticated notions of norms and normative positions
to be expressed. For instance, in a scenario in which a selling agent is obliged to deliver a
product satisfying some quality requirements before a deadline, both the quality requirements
and the delivery deadline can be regarded as constraints that must be considered as part of the
agent’s obligation. Thus, when the agent delivers the good satisfying all the constraints, we
should regard the obligation as fulfilled. Notice too that since the deadline might eventually
be changed, we also require the capability of modifying constraints at run-time.

One of the first models of open MAS that regulates the interaction among agents without
assuming any internal feature of the agents are electronic institutions (EIs) [18–20]. Despite
being successful in achieving a significant degree of openness, electronic institutions are
strict in the sense that only those interactions which are part of the design can take place.
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Although our language can be used for regulated MAS in general, in this paper we illustrate
the use of the language for electronic institutions (cf. Sect. 4). The events in that model are
speech acts and time events only, so we shall focus on these in the rest of this paper. By using
it in EIs, we add new deontic notions to them such as explicit prohibitions (instead of implicit
prohibitions, i.e. the absence of steps in the protocols).

Although we make use of concepts from electronic institutions [18], these are kept to
a minimum. By using electronic institutions, we make our discussion more concrete and
detailed, so as to allow the adaptation of our approach to other MAS models such as
MOISE+ [21] and MOCHA [22]. We both extend electronic institutions [20] with a richer
notion of norms (and how to manage them) and we also propose a programming language
of wider appeal which combines rules and constraint-solving techniques.

Our normative approach gives more flexibility to EIs in that we can also capture deviant
behaviour. Our work sets the foundations to specify and implement open regulated MASs
via norms. In future work we would like to extend our approach to handle a wider range of
normative notions such as power, right, duty, delegation, representation, entitlement, and so
on. Additionally, methodological issues (i.e., how to obtain normative requirements from an
application domain) albeit important, are not the focus of the paper.

The main contributions of this paper are:

1. A means to specify what an agent can, may, may not and ought to utter using normative
positions and constraints;

2. An operational semantics to the above mentioned specification by means of rules and
constraint solving techniques;

3. The application of this computational notion of norm to implement and enrich a model
of regulated MAS like electronic institutions and, as illustrative example, its application
to regulate the Dutch Auction; and

4. The comparison of our language with other contemporary ones and the provision of
guidelines for the mapping of such languages into ours.

The structure of this paper is as follows. In the next section we present desirable properties
of normative languages. We explain, in various sections, how our language addresses all these
requirements. In Sect. 3 we describe the syntax and semantics of our normative language.
Sect. 4 summarises electronic institutions and explains how we capture normative positions
of participating agents. We put our language to use in Sects. 5.1 and 5.2 where, respectively,
we define institutional states and rules. We illustrate the usefulness of our language with a
specification of the Dutch Auction protocol in Sect. 5.4. In Sect. 6 we show how our language
captures a sample of other contemporary approaches and in Sect. 7 we compare our approach
with other related work. Finally, we draw conclusions and outline future work in Sect. 8.

2 Desiderata for norm-oriented languages

We aim at a language to support the specification of coordination mechanisms in MASs
via norms. We take the stance that we cannot refer to agents’ mentalistic notions, but only
to their observable actions and their normative positions. Notice that as a result of agents’
observable, social interactions, their normative positions [6] change. As many others (e.g.,
[4,8–10]), we also propose that hinder to agent autonomy by allowing only permitted actions
to be performed is a restrictive limitation in the enactment of a MAS. In some settings,
some not-permitted actions can raise kinds of behaviour which may result in more benefits
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(perhaps even social ones) than the penalty received and which had not been anticipated by
the designers.

In this section we identify and justify some desirable features we expect in our candidate
languages:

1. Explicit management of normative positions—We require that our language explicitly
captures different deontic notions along with their relationships. Ideally, these relation-
ships should not to be hardwired into the semantics of the language, as new deontic
notions can be included without changing the semantics.

2. General purpose—Turning our attention to theoretical models of norms, we notice
that there is a plethora of deontic logics with different axioms to establish relationships
among normative positions, e.g., whether different types of obligation should be revoked
after their fulfillment or not. We require the language to be of general purpose so that
it helps MAS designers to specify the widest possible range of normative systems.

3. Expressive—In a sense, we pursue a “machine language” for norms on top of which
alternative higher-level languages can be accommodated. Along this direction, and from
a language designer’s point of view, it is fundamental to identify the norm patterns (e.g.,
conditional obligation, time-based permissions and prohibitions, continuous obligation,
and so on) in the literature and ensure that the language supports their encoding. In this
way, not only shall we be guaranteeing the expressiveness of our language, but also
addressing pragmatic concerns by providing design patterns to guide and ease MAS
design.

4. Declarative—In order to ease MAS programming, we shall also require our language
to be declarative, with an implicit execution mechanism to reduce the number of issues
designers ought to concentrate on. As an additional benefit, we expect its declarative
nature to facilitate verification of properties of the specifications. A more detailed dis-
cussion of the advantages of declarative languages can be found in [23, Sect. 1.2].

5. Temporal relationships—The violation of positive obligations cannot be sanctioned if a
deadline for the action has not been established. In some settings, norms are not appli-
cable after an established date. Thus, the language should deal with norm deadlines and
norm activation times and capture temporal relationships between actions.

6. Norm enforcement mechanisms—When agents have the possibility to violate norms, it’s
designers’ decision to use different mechanisms for agents to not misbehave. Thus, it is
desirable that the language provides means to determine how enforcement mechanisms
should be realised. Examples of enforcement mechanisms would be one that blocks
illegal actions or one that punishes (or rewards) when a norm has been violated (or
fulfilled).

3 A rule-based language for managing normative positions

In this section we introduce a rule-based language for the explicit management of events
generated by agents and the effects they cause [24–27]. We consider that agents can (directly
or indirectly) cause changes in their own normative positions (e.g., by bidding in an auc-
tion), in the normative positions of other agents (e.g., by delegating or commanding), in the
observable attributes of agents (e.g., “badmouthing” an agent can decrease its reputation),
or in the state of resources of the environment (e.g., moving a box changes its location). By
environment we mean the shared resources which are not part of the agents and, therefore,
cannot be freely accessed and modified. By state of affairs we mean the representation of
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Fig. 1 Semantics as a sequence
of �’s

aspects of the MASs’ enactment including the set of attributes that a community of agents
can access or modify in an unregulated setting.

In regulated MASs these attributes can only be accessed and modified under certain con-
ditions. Our rule-based language allows us to represent regulated changes in an elegant way
and also fulfils the requirement that a normative language should be declarative. The rules
depict how the state of affairs changes as agents interact with each other or the environment.

We make use of the closed world assumption (CWA) [23] since we assume a MAS as a
communication middleware that manages (and has access to) all interactions it may regulate.
Therefore, we consider as false all formulae not included in the state of affairs of a MAS
since we cannot regulate them.

We now introduce an example of enactment of our computational model using a Dutch
Auction scenario. There are some goods that are expected to be sold to one of the agents
participating in the auction. We consider these goods part of the environment. However, they
are owned by one agent, enacting the role of seller, until the auctioneer, a special kind of
agent that regulates the auction, finishes the process determining a winner who pays for the
auctioned goods. As the state of affairs of the auction, we consider the current credit of the
participants, the ownership of the goods that are part of the environment and the history of
speech acts that have been considered valid at some point of the enactment of the auction. For
instance, whenever the auctioneer offers a good for a given price, it has to be checked that
the illocution was uttered in the correct point in the protocol by applying the rules. If this is
the case, this illocution is added to the state of affairs for later checking. Continuing with the
example, the participant agents may now bid for the item at the offered price. These attempts
are added to the previous state of affairs conforming the current state of affairs before apply-
ing the rules to check which attempts are valid. After the application of the rules, only the
valid bids remain in the state of affairs, e.g. those that the agents may afford. If it the case
that there is only one bid, a winner may be determined and the obligation of the winner to
pay for the goods is put in place.

Figure 1 depicts the computational model we propose. An initial state of affairs �0 (pos-
sibly empty) is offered (represented by “�”) to a set of agents (ag1, . . . , agn). These agents
can add their events (�0

1, . . . , �
0
n) to the state of affairs (via “�”).�t

i is the (possibly empty)
set of events added by agent i at state of affairs �t and an event is a special kind of atomic
formula. After an established amount of time, we perform an exhaustive application of rules
(denoted by “

∗�”) to the modified state, yielding a new state of affairs �1. This new state
will, on its turn, be offered to the agents for them to add their events, and the same process
will go on.

3.1 Preliminary definitions

We initially define some basic concepts. The building blocks of our language are terms:

Definition 1 A term, denoted as τ , is

– Any variable x, y, z (with or without subscripts) or
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– Any construct f n(τ1,…,τn), where f n is an n-ary function symbol and τ1,…, τn are
terms.

Terms f 0 stand for constants and will be denoted as a, b, c (with or without subscripts).
We shall also make use of numbers and arithmetic functions to build our terms; arithmetic
functions may appear infix, following their usual conventions. We adopt Prolog’s conven-
tion [23] using strings starting with a capital letter to represent variables and strings starting
with a small letter to represent constants. Some examples of terms are Price (a variable) and
send(a, B, Price × 1.2) (a function). We also need to define atomic formulae:

Definition 2 An atomic formula, denoted as α, is any construct pn(τ1, . . . , τn), where pn

is an n-ary predicate symbol and τ1, . . . , τn are terms.

When the context makes it clear what n is we can drop it. p0 stands for propositions. We
shall employ arithmetic relations (e.g.,=, �=, and so on) as predicate symbols, and these will
appear in their usual infix notation. We also make use of atomic formulae built with arithmetic
relations to represent constraints on variables—these atomic formulae have a special status,
as we explain below. We give a definition of our constraints, a subset of atomic formulae:

Definition 3 A constraint γ is a binary atomic formula τ � τ ′, where �∈ {=, �=,>,≥,
<,≤}.
We shall use � = {γ1, . . . , γn} as a set of constraints. We need to differentiate ordinary
atomic formulae from constraints. We shall use ᾱ to denote atomic formulae that are not
constraints.

A state of affairs is a set of atomic formulae, representing (as shown below) the normative
positions of agents, observable agent attributes and the state of the environment1.

Definition 4 A state of affairs � = {α0, . . . , αn} is a a finite and possibly empty set of
implicitly, universally quantified atomic formulae αi , 0 ≤ i ≤ n.

3.2 A language for rules with constraints

Our rules are constructs of the form LHS � RHS, where LHS contains a representation of
parts of the current state of affairs which, if they hold, will cause the rule to be triggered.
RHS describes the updates to the current state of affairs, yielding the next state of affairs:

Definition 5 A rule, denoted as R, is defined as:

R ::= LHS � RHS

LHS ::= LHS &LHS |LHS ||LHS |not(LHS) |Lit

RHS ::= U,RHS |U
Lit ::= α |sat(�) | x = {α|LHS}
U ::= add(α) |del(α)

where x is a variable name.

Intuitively, the left-hand side LHS describes the conditions the current state of affairs
oughts to have for the rule to apply. The right-hand side RHS describes the updates to the
current state of affairs, yielding the next state of affairs.

1 We refer to the state of the environment as the subset of atomic formulae representing observable aspects of
the environment in a given point in time.
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In the next section we define the semantics of each construct above, but informally, the
construct α checks whether there exists an atomic formula in the state of affairs matching the
atomic formula α and sat(�) checks whether � (a set of constraints) is satisfied in the state
of affairs. We also make use of a special kind of term, called a set constructor, represented
as {α|LHS}. This construct is useful when we need to refer to all atomic formulae in the state
of affairs (αs) for which LHS holds. For instance, {(p(A, B,C)|sat(B > 20) & sat(C <

100)} stands for the set of atomic formulae p(A, B,C) such that B is greater than 20 and C
is less than 100 and such that they satisfy the other constraints in the state of affairs. Notice
that {p(A, B,C)|B > 20 & C < 100} stands for the set of atomic formulae p(A, B,C) such
that B is greater than 20 and C is less than 100 without extra checking on other constraints.
Notice that {p(A, B,C)|constr(B > 20) & constr(C < 100)} stands for the set of
atomic formulae p(A, B,C) with at least these two constraints associated: B is constrained
to be greater than 20 and C is constrained to be less than 100. That is, it checks whether both
constraints are in the state of affairs.

The Us represent updates: they add to the state of affairs (via operator add) or remove
from the state of affairs (via operator del) atomic formulae.

3.3 Semantics of Rules

As shown in Fig. 1, we define the semantics of our rules as a relationship between states of
affairs: rules map an existing state of affairs to a new state of affairs. In this section we define
this relationship. Initially we need to refer to the set of constraints of a state of affairs. We
call � = {γ0, . . . , γn} the set of all constraints in �, and formally relate a state of affairs to
its constraints as follows:

Definition 6 Given a state of affairs�, relationship constrs(�, �) holds iff � is the smallest
set such that for every constraint γ ∈ � then γ ∈ �.

In the definitions below we rely on the concept of substitution, that is, the set of values for
variables in a computation [23,28]:

Definition 7 A substitution σ = {x0/τ0, . . . , xn/τn} is a finite and possibly empty set of
pairs xi/τi , 0 ≤ i ≤ n.

Definition 8 The application of a substitution to an atomic formulae α is as follows:

1. c · σ = c for a constant c;
2. x · σ = τ · σ if x/τ ∈ σ ; otherwise x · σ = x ;
3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).
Definition 9 The application of a substitution to a sequence is the sequence of the application
of the substitution to each element: 〈α1, . . . , αn〉 · σ = 〈α1 · σ, . . . , αn · σ 〉

We now define the semantics of the LHS of a rule, that is, how a rule is triggered:

Definition 10 sl(�,LHS, σ ) holds between state �, the left-hand side of a rule LHS and a
substitution σ depending on the format of LHS:

1. sl(�,LHS & LHS′, σ ) holds iff sl(�,LHS, σ ′) and sl(�,LHS′ · σ ′, σ ′′) hold (in this
order) and σ = σ ′ ∪ σ ′′.

2. sl(�,LHS || LHS′, σ ) holds iff sl(�,LHS, σ ) or sl(�,LHS, σ ) hold.
3. sl(�,not(LHS), σ ) holds iff sl(�,LHS, σ ) does not hold.
4. sl(�,sat(�), σ ) holds iff constrs(�, �′) and ((�′ ∪ �) · σ) hold.
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5. sl(�, x = {α|LHS}, σ ) holds iff σ = {x/{α ·σ1, . . . , α ·σn}} for the largest n ∈ N such
that sl(�, α &LHS, σi ), 1 ≤ i ≤ n

6. sl(�, α, σ ) holds iff α · σ ∈ � or α · σ holds.

Cases 1 and 2 depict the semantics of atomic formulae and how their individual substitu-
tions are combined to provide the semantics for a conjunction and a disjunction respectively.
Case 3 introduces negation by failure—recall that we make use of the closed world assump-
tion. Case 4 holds if the set of constraints on the LHS added to the constraints in the state of
affairs (�′) are satisfiable; the substitution σ obtained so far, that is applied to (�′ ∪ �) will
hold an assignment of variables in a Constraint Satisfaction Problem [29]. Case 5 specifies
the semantics for set constructors: x is the set of atomic formulae that satisfy the conditions
of the set constructor. Case 6 holds when an atomic formulae (a predicate or constraint) is
part of the state of affairs or it is computed via the underlying programming language. This
will become clearer when we discuss our implementation and give examples. It is worth
noticing that, from case 1 above, the order in which conjuncts appear on the left-hand side is
relevant. Our rules are means to define a deterministic program, hence the order of commands
is essential.

We now define the semantics of the RHS of a rule:

Definition 11 Relation sr (�,RHS,�′)mapping a state�, the right-hand side of a rule RHS
and a new state �′ is defined as:

1. sr (�, (U,RHS),�′) holds iff both sr (�,U,�1) and sr (�1,RHS,�′) hold.
2. sr (�,add(ᾱ),�′) holds iff �′ = � ∪ {ᾱ}.
3. sr (�,add(γ ),�′) holds iff constrs(�, �) and (�∪{γ }) hold and�′=�∪{constr(γ )}.
4. sr (�,del(α),�′) holds iff �′ = � \ {α}.
Case 1 decomposes a conjunction and builds the new state by merging the partial states of
each update. Case 2 caters for the insertion of atomic formulae ᾱ which do not conform to
the syntax of constraints. Case 3 defines how a constraint is added to a state �: the new
constraint is checked whether it can be satisfied with the existing constraints � and then it
is added to �′ annotated with constr. Case 4 caters for the removal of atomic formulae
(both constraints and non-constraints). We note that, from case 1 above, the order in which
conjuncts appear on the right-hand side is also relevant.

To complete the definition of our system, we define the semantics of our rules as rela-
tionships between states of affairs: rules map an existing state of affairs to a new state of
affairs, thus modelling transitions between states of affairs. We adopt the usual semantics of
production rules [30], that is, we exhaustively apply each rule by matching its LHS against
the current state of affairs and use the values of variables obtained in this match to instantiate
RHS via sr . Since classic production systems do not use of constraints and these are an impor-
tant feature of our approach, our semantics can thus be seen as an extension of production
systems.

3.4 An interpreter for rules with constraints

The semantics above provide a basis for the implementation of a rule interpreter. Although
we have implemented it with SICStus Prolog [31] we show how a rule is interpreted in Fig. 2
as a logic program, interspersed with built-in Prolog predicates; for easy referencing, we
show each clause with a number on its left.

For each rule, we apply sl(�,LHS, σ ) and sr (�,RHS ·σ,�′) sequentially for all the dif-
ferent substitutions σ in the state of affairs such that sl(�,LHS, σ ) holds. Clauses 1–8 and
9–12 are, respectively, adaptations of the cases depicted in Definition 10 and Definition 11.
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Fig. 2 Interpreter for rules with constraints

We can define satisfiable/2 via the built-in call_residue/2 predicate, available in
SICStus Prolog:

satisfiable({γ1, . . . , γn})← call_residue((γ1, . . . , γn), _)

It is worth mentioning that in the actual Prolog implementation, substitutions σ appear
implicitly as values of variables in terms—the logic program above will look neater (albeit
farther away from the definitions) when we incorporate this.

3.5 Pragmatics of rules with constraints

In this section we illustrate the pragmatics of our rules with some examples:

(
do(A, pay(P, B), T )&
credit (B, X)

)
�

⎛
⎝del(do(A, pay(P, B), T )),
del(credit (B, X)),
add(credit (B, X + P))

⎞
⎠ (1)

(
do(A, ext (obl(X, T 2), D), T )&
(T < D)&constr(T 2 < D2)

)
�

(
del(do(A, ext (obl(X, T 2), D), T )),
del(T 2 < D2),add(T 2 < D)

)
(2)

(
do(C, pay(P, B), T )&min(D)&
time(T )& (P > D)

)
�

(
del(do(C, pay(P, B))),
add(done(C, pay(P, B), T ))

)
(3)

The first example shows a rule depicting the circumstance in which it should be applied: if
agent A generates the event of paying price P to agent B and the credit of the latter is X . It
also shows on the RHS the updates to perform: we ensure the event is “consumed” (thus not
triggering off the rule indefinitely) and the credit of agent B is updated to X + P .

The second example illustrates the management of constraints: these can be manipulated
like ordinary predicates. In that example, we show that events of type obl (i.e. an obligation)
may have associated constraints. Particularly, this rule states that if an event of extending
(ext) the deadlines of all the obligations to time D occurs before the deadline D and there
exists a constraint restricting the time of fulfillment of the obligations to be less than a dead-
line D2, then the event is consumed, the old constraint is removed and a constraint with the
new deadline is added.

The third example illustrates how constraints can additionally be checked for their satis-
faction: when an event of paying price P is performed by agent C and there is a formula
min(D) (storing a minimum price), we check that all the constraints in the state of affairs
including that the amount paid is greater than the minimum (P > D) are satisfied. If this
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is so, then we remove the event and add a record of this situation to the state of affairs.
Notice that we make use of a built-in predicate time/1 to check the current time of the
system.

Our rules manage states of affairs, adding or removing formulae (expressed on the RHS)
when certain conditions (expressed on the LHS) hold. As illustrated in Fig. 1, our approach
accommodates the participation of agents: they add atomic formulae onto the current state of
affairs—these formulae represent agent-related events, represented above as do(Ag, Ev, T )
that, together with further elaboration on the circumstances, will trigger off rules to update
the state of affairs. Some synchronisation is required in this activity, as we cater for the
agents to concurrently update a shared data structure—a simple synchronisation mechanism
is explained in [24].

The language that we propose defines a standard production system enhanced with con-
straint satisfaction techniques in order to manage constraints as facts and to check how these
constraints affects the facts they constrain. We have obtained a language to express, manage,
check fulfilment and/or sanction unfulfilled normative positions, i.e. obligations, permissions
and prohibitions, that are bounded with constraints. Thus, the language is useful to predict
a future state of affairs with an initial state and a sequence of sets of events that occur and
modify the intermediate states of affairs until we reach the final one. The limitations of the
language are determined by the forward-chaining rule engine. These limitations include the
inability to plan, i.e. determine the sequence of sets of events that must occur in order to reach
a given state of affairs from a given initial state, or post-dicting, i.e. determine the previously
unknown facts in a partial initial state given a final state and the sequence of sets of events
that have occurred. However, the goal of the language is to regulate a MAS and keep track
of its evolution by prediction. Post-diction and planning would be interesting for a language
that an agent could use for deciding which action to perform but this is not the aim of this
paper.

There are further concerns to be taken into account when designing rules. Clearly, what
we choose to go in the state of affairs has an immediate influence as to what should appear in
rules. Another concern is how we choose to represent events generated by agents. We show
in this paper a representation proposal that includes information on who caused the event,
the time, and a suitable description of the event.

4 Electronic institutions

Human societies deploy institutions [32] to establish how interactions must be structured
within an organisation. Institutions represent the “rules of the game” in a society, includ-
ing any (formal or informal) constraints devised to shape human interaction. Institutions are
the framework within which human interaction takes place, defining what individuals are
obliged, forbidden and permitted to do and under which conditions. Furthermore, human
institutions not only structure human interactions but also enforce individual and collective
behaviour by obliging everyone to act according to the norms.

Electronic institutions (EIs) [18–20] are the electronic counterpart of human institutions—
they establish the expected behaviour of agent societies. An EI defines a regulated environ-
ment where heterogeneous (human and software) agents can participate by playing different
roles and can interact by means of speech acts [15]. An EI defines a set of constraints that
articulate agent interactions, defining what speech acts are meaningful to utter.
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EIs, as presented in [19] and [18], are well-understood models for MASs, with support
tools2 within which we can embed our mechanisms. EIs are a useful model to put norms in
practice as this model needs a specification of what may, may not or ought to be uttered (i.e.
a set of permissions, prohibitions and obligations) and it has a set of tools [33] tested in real
applications [34].

In this section we introduce electronic institutions as defined in [20]. We implement them
in Sect. 5, enriching them with further deontic notions and relationships among them.

Due to space restrictions we cannot provide here a complete introduction to electronic
institutions—we refer readers to [20] for a comprehensive description. However, to make
this work self-contained we have to explain concepts we make use of later on.

Although our discussion is focused on EIs it can be generalised to various other formalisms
that share some basic features.

In EIs interaction is regulated by means of multi-agent protocols which have two major
features—these are the states in a protocol and illocutions (i.e., messages) uttered (i.e., sent)
by those agents taking part in the protocol. The states are connected via edges labelled with
the illocutions that ought to be sent at that particular point in the protocol. Another important
feature in EIs are the agents’ roles: these are labels that allow agents with the same role to
be treated collectively thus helping programmers abstract away from individuals. We define
below the class of illocutions we aim at—these are a special kind of atomic formulae:

Definition 12 Illocutions, denoted as I, are ground atomic formulae p(ag, r, ag′, r′, τ, t)
where

– p is an element of a set of illocutionary particles (e.g., inform, request, etc.).
– ag, ag′ are agent identifiers.
– r, r′ are role labels.
– τ , an arbitrary ground term, is the actual content of the message, built from a shared

content language.
– t ∈ N is a time stamp.

The intuitive meaning of p(ag, r, ag′, r ′, τ, t) is that agent ag playing role r sent mes-
sage τ to agent ag′ playing role r ′ at time t . An example of an illocution is inform(ag4,

seller, ag3, buyer, offer(car, 1200), 10)). Notice that with term t we capture the temporal
relationships among illocutions and we address point 5 in the desiderata of Sect. 2.

Sometimes it is useful to refer to illocutions that are not fully ground, that is, they may
have uninstantiated (free) variables within themselves—in the description of a protocol, for
instance, the precise values of the message exchanged can be left unspecified. During the
enactment of the protocol agents will produce the actual values which will give rise to a
(ground) illocution. We can thus define illocution schemes:

Definition 13 An illocution scheme, denoted as Ī, is any atomic formula p(ag, r, ag′, r ′, τ, t)
whose terms are either variables or may contain variables.

Another important concept in EIs we employ here is that of a scene. Scenes are self-
contained sub-protocols with an initial state where the interaction starts and a final state
where all interaction ceases. Scenes offer means to break down larger protocols into smaller
ones with specific purposes.

For instance, we can have a registration scene where agents arrive and register themselves
with an administrative agent; an auction scene depicts the interactions among agents wanting

2 http://e-institutions.iiia.csic.es/software.html.
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to buy and sell goods; a payment scene depicts how those agents who bought something in
the auction scene ought to pay those agents they bought from. We can uniquely refer to the
point of the protocol where an illocution I was uttered by the pair (s, w) where s is a scene
name and w is the state from which an edge labelled with I leads to another state. Different
formalisms and approaches to protocol specification can be accommodated to our proposal,
provided protocols can be broken down into uniquely defined states connected by edges, and
the edges are labelled with messages agents must send for the protocol to progress. Broadly
speaking, an EI is specified as a set of scenes connected by transitions; these are points where
agents may synchronise their movements between scenes [20].

Although all illocutions of a protocol are meaningful some of them may be deemed inap-
propriate in certain circumstances. For instance, although a protocol may contemplate agents
leaving the payment scene, it may be inappropriate to do so if the agent has not yet paid what
it owes. Our rules further restrict the expected behaviour of agents, prohibiting them from
uttering an illocution or adding constraints on the values of variables of illocutions. Rules
can be triggered off by events involving any number of agents and their effects must persist
until they are fulfilled or retracted by another rule.

States of affairs and states of a protocol are related concepts but should not be confused. In
electronic institutions, it is possible to have many instances of protocols (or possibly, various
instances of the same protocol) simultaneously enacted by agents. This means that at any
one time, we could have many states of protocols represented by atomic formulae in a state
of affairs.

5 Norm-oriented programming of electronic institutions

Despite successfully achieving a significant degree of openness, electronic institutions are
strict in the sense that they only specify what utterances are meaningful in each moment dur-
ing the enactment of interactions. As an initial step in order to enrich EIs with a wide range
of normative notions, we pursue to implement rule-based electronic institutions in which
deontic notions are not limited to the ones formalised in [20].

We advocate a separation of concerns: rather than embedding normative aspects into the
agents’ design (say, by explicitly encoding normative aspects in the agent’s behaviour) or
coordination mechanisms (say, by addressing exceptions and deviant behaviour in the mech-
anism itself), we adopt the view that a coordination mechanism should be supplemented by
an explicit and separate set of norms that further regulates the behaviour of agents as they
take part in the enactment of a mechanism.

The separation of concerns should facilitate the design of MASs—as systems become
more sophisticated, it becomes harder for engineers to address all the relevant features. By
differentiating kinds of features and exploring them independently, engineers can “disentan-
gle” them. However, the different components (coordination mechanisms and norms) must
come together at some point in the design process. In our view, norms further restrict the set
of behaviours specified by the coordination mechanisms; a coordination mechanism, on its
turn, determines if a set of norms can be fulfilled by those agents enacting it. Norms should
be studied against their associated coordination mechanism and vice-versa. For instance, as
we will see in Sect. 5.4, agent protocols can be specified using Finite State Machines (FSM)
in order to define all the sequences of meaningful messages that the agents are able to inter-
change. However, we further specify with normative positions and constraints what agents
may, may not or ought to utter.
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In this section we use the language introduced in Sect. 3 to program electronic institutions
based on the notions introduced in Sect. 4. In Subsect. 5.1 we specify how a state of affairs
is represented in an EI, whereas in Subsect. 5.2 we make explicit the rules to transform such
state of affairs at run-time.

5.1 Institutional states

An institutional state is a state of affairs that stores all utterances during the execution of
a MAS, also keeping a record of the state of the environment, all observable attributes of
agents and all obligations, permissions and prohibitions associated with the agents, i.e. their
normative positions. Next, we show how to implement the main normative concepts of scenes
in EIs. We leave for future work how other interesting concepts such as power, right, duty,
delegation, representation, entitlement, etc., can be captured.

We differentiate seven kinds of atomic formulae in our institutional states �, with the
following intuitive meanings:

1. oav(o, a, v)—object (or agent) o has an attribute a with value v.
2. att(s, w, I)—an agent uttered illocution I attempting to get it institutionally accepted at

state w of scene s.
3. utt(s, w, I)—I was accepted as a legal utterance at w of s.
4. old_ctr(s, w, t)—the execution of scene s reached state w at time t .
5. ctr(s, w, t)—the execution of scene s is in state w since time t .
6. obl(s, w, Ī)—Ī ought to be uttered at w of s.
7. per(s, w, Ī)—Ī is permitted to be uttered at w of s.
8. prh(s, w, Ī)—Ī is prohibited at w of s.

Notice that, since illocutions are uttered towards a specific other agent, normative posi-
tions over illocutions also are, i.e. an agent may be obliged to say something to another given
agent.

We differentiate between utterances that are attempted to be accepted (att) and accepted
utterances (utt). Since we aim at heterogeneous agents whose behaviour we cannot guarantee,
we create a “sandbox” where agents can utter whatever they want (via att formulae). How-
ever, not everything agents say may be in accordance with the rules—the illegal utterances
may be discarded and/or may cause sanctions, depending on the deontic notions we want or
need to implement. The utt formulae are thus confirmations of the att formulae.

We only allow fully ground attributes, illocutions and state control formulae (cases 1–4
above) to be present, however, in formulae 6–8 s and w may be variables and Ī may contain
variables. We shall use formula 4 to represent state change in a scene in relation to global
time passing. We shall use formulae 6–8 above to represent the normative positions of agents
within EIs.

We do not “hardwire”deontic notions in our semantics: the predicates above represent
deontic operators but not their relationships. These are captured with rules as we show in
Sect. 5.2. We show in Fig. 3 a sample institutional state.

The utterances show a portion of the dialogue between a buyer agent and a seller agent—the
seller agent ag4 offers to sell a car for 1200 to buyer agent ag3 who accepts the offer. The
order among utterances is represented via time stamps (10 and 13 in the constructs above). In
our example, agent ag3 has agreed to buy the car so it is assigned an obligation to pay at least
1200 to agent ag4 when the agents move to the payment scene; agent ag3 is prohibited from
asking the scene administrator adm to leave the payment scene. We employ a predicate oav
(standing for object-attribute-value) to store attributes of our state: these concern the credit
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Fig. 3 Sample institutional state

of agent ag3 and the price of the car. The constraints restrict the values for Price, that is, the
minimum value for the payment, and the latest time T1 ag3 is obliged to pay.

5.2 Institutional rules

In this section we illustrate how expressive and flexible our rules are, yet they offer precision
and ease-of-use. With the following examples we want to illustrate the expressiveness and
generality of our language as required in Sect. 2. Furthermore, we also provide some guide-
lines on how to specify the rules to update institutional states. Henceforth we shall call such
rules institutional rules.

5.2.1 Providing semantics to deontic notions

We now provide some examples on how we explicitly manage normative positions of agents
in our language as required in Sect. 2. We leave for future work an extensive analysis and
implementation of a wide range of normative notions such as power, right, duty, delegation,
representation, entitlement, etc.

When specifying a normative system we need to define relationships among deontic
notions. Such relationships should capture the pragmatics of normative aspects—what exactly
these concepts mean in terms of agents’ behaviour. We do not want to be prescriptive in our
discussion and we are aware that the sample rules we present can be given alternative for-
mulations. Furthermore, we notice that when designing institutional rules, it is essential to
consider the combined effect of the whole set of rules over the institutional states—these
should be engineered in tandem.

We can confer different degrees of enforcement on EIs . We start by looking at those illocu-
tions that agents utter, i.e., att(S,W, I ); these may become legal utterances, i.e., utt(S,W, I ),
if they are permitted, as specified by the following rule:

att (S,W, I )& per(S,W, I ) � del(att (S,W, I )),add(utt (S,W, I )) (4)

That is, permitted attempts at utterances become legal utterances.
Attempts and prohibitions can be related together by institutional rules of the form

att(S,W, I )& prh(S,W, I ) � del(att(S,W, I )),sanction where sanction stands for
atomic formulae representing sanctions on the agent who uttered a prohibited illocution.
For instance, if the agent’s credit is represented via oav(Ag, credit,Value), the following rule
applies a 10% fine on those agents who utter a prohibited illocution:

⎛
⎝ att(S,W, P(A1, R1, A2, R2,M, T ))&

prh(S,W, P(A1, R1, A2, R2,M, T ))&
oav(A1, credit,C)&C2 = C × 0.9

⎞
⎠ �

⎛
⎝ del(att(S,W, I )),
del(oav(A1, credit,C)),
add(oav(A1, credit,C2))

⎞
⎠ (5)
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Another way of relating attempts, permissions and prohibitions is when a permission
granted in general (e.g., to all agents or to all agents adopting a role) is revoked for a particu-
lar agent (e.g., due to a sanction). We can ensure that a permission has not been revoked via
the rule:(

att(S,W, I )& per(S,W, I )&
not(prh(S,W, I ))

)
� del(att(S,W, I )),add(utt(S,W, I )) (6)

The rule above states that an utterance is accepted as legal whenever it is permitted and it is
not the case that it is forbidden.

We can allow agents to do certain illegal actions (under harsher penalties if required):
(

att (S,W, in f orm(Ag1, R, Ag2, R′, in f o(Ag3,C), T ))&
(Ag1 �= Ag2)& (Ag1 �= Ag3)& (Ag2 �= Ag3)

)

�(
del(att (S,W, in f orm(Ag1, R, Ag2, R′, in f o(Ag3,C), T ))),
add(utt (S,W, in f orm(Ag1, R, Ag2, R′, in f o(Ag3,C), T )))

) (7)

The rule above states that if an agent Ag1, enacting role R, attempts to reveal to Ag2, enacting
role R′, (private) information C about agent Ag3, and the three variables refer to different
agents, then the attempt is accepted without taking into account if it is forbidden or not. In
both cases (rules 6 and 7), we can punish agents that violate prohibitions as shown in rule 5.

The semantics of obligations also depends on which rules are part of the system. These
rules should be selected taking into account the semantics of the obligatory events. For
instance, when an agent fulfills its obligation to pay a certain amount of money, we remove
that obligation as shown in rule 8. However, an obligation to be quiet in a given situation
(notice that is equivalent to a prohibition to utter anything) may not need to be consumed
each time an agent is quiet and, therefore, no extra rule is required.

⎛
⎜⎜⎜⎜⎝

att (S,W, in f orm(Ag1, payer, Ag2, payee, pay(P), T ))&
per(S,W, in f orm(Ag1, payer, Ag2, payee, pay(P), T ))&

not(prh(S,W, in f orm(Ag1, payer, Ag2, payee, pay(P), T )))&
obl(S,W, in f orm(Ag1, payer, Ag2, payee, pay(P), T ))&

(Ag1 �= Ag2)

⎞
⎟⎟⎟⎟⎠

�(
del(att (S,W, in f orm(Ag1, payer, Ag2, payee, pay(P), T ))),
del(obl(S,W, in f orm(Ag1, payer, Ag2, payee, pay(P), T )))

)
(8)

Let us consider now that the agents may be obliged to do actions before a certain deadline
expressed with constraints. The designer of the MAS may choose to punish all agents who
do not meet a deadline with a fee of e20. Rule 9 states that if an obligation with deadline
has not been fulfilled, i.e. there exist an obligation with a constraint associated to the time,
the deadline has passed, i.e. current time is greater or equal to the deadline, and we have not
applied a sanction for that particular obligation, then we apply a sanction.

⎛
⎜⎝

obl(S,W, in f orm(Ag1, R, Ag2, R′, Action, T ))&
constr(T < D)& t ime(T 2)& (T 2 ≥ D)&

not(sanction(obl(S,W, in f orm(Ag1, R, Ag2, R′, Action, T )), (T < D)))
& credit (Ag1,C)& credit (ei,C2)&C3 = C − 20 &C4 = C2+ 20

⎞
⎟⎠

�⎛
⎝ del(credit (Ag1,C)),add(credit (Ag1,C3)),

del(credit (ei,C2)),add(credit (ei,C4)),
add(sanction(obl(S,W, in f orm(Ag1, R, Ag2, R′, Action, T )), (T < D)))

⎞
⎠

(9)
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These examples show that our language can be used to build norm enforcement mechanisms
and address point 6 of the desiderata of Sect. 2.

5.2.2 Dealing with inconsistency

We can also capture further relationships among normative aspects and establish policies
to cope with inconsistencies. For instance, we need to specify how to cope with the situa-
tion when an illocution is simultaneously obliged and forbidden—this may occur when an
obligation assigned to agents in general (or to any agents playing a role) is revoked for a
particular subgroup of agents or an individual agent (for instance, due to a sanction). In this
case, we can choose to ignore/override either the obligation or the prohibition. For instance,
without writing any extra rule we override the obligation and ignore the attempt to fulfil
the obligation. The rule below ignores the prohibition and transforms an attempt to utter the
illocution I into an utterance:

att(S,W, I )& obl(S,W, I )& prh(S,W, I ) � add(utt(S,W, I )) (10)

A third possibility is to raise an exception via a term which can then be dealt with at the
institutional level. The following rule could be used for this purpose:

att(S,W, I )& obl(S,W, I )& prh(S,W, I ) � add(exc(S,W, I )) (11)

These examples illustrate how we explicitly manage normative positions of agents in our
language as required in point 1 of the desiderata of Sect. 2.

5.3 Representing and enacting protocols via institutional rules

In the rest of the paper we consider scenes, presented in Sect. 4, as the representation of
protocols in EIs. The purpose of this section is to represent and build a computational model
of the dynamics of an EI enactment, that is, its execution with our rule-based language. We
concentrate our attention on EIs [20] (see Sect. 4 above) but our approach addresses any
protocol specified via non-deterministic finite-state machines.

We shall represent EIs declaratively as logic programs, as described in [35]. Each edge
connecting two states of a scene will be denoted as the fact

edge(Scene, State, IllocutionScheme,NewState)

representing that if the control of the enactment of Scene is in State and IllocutionScheme
is uttered, then the control should move to NewState. Edges are compact descriptions of
what can be said, i.e., the meaningful illocutions, and how the control of the enactment
of the scene (and by extension, of the EI as a whole) should change as illocutions are
uttered. Notice that although an agent may utter a meaningful illocution (att(s, w, I) and
edge(Scene, State, I llocutionScheme, NewState)) in a given situation, it may also need
to be permitted (per(s, w, I)) and not prohibited (not prh(s, w, Ī)) to do so. By “meaningful”
we mean that the illocution makes sense in the context of that protocol, that is, at a particular
point of the protocol, we specify via edges all possible illocutions that agents may utter at
any point. Of these, some will be permitted, as explained below.

Protocols are descriptions of what may be uttered and when it can be uttered in order to
have a desired meaning. When permissions are combined with attempted utterances (i.e.,
att(s, w, I), as captured by formula 4 above) and approved utterances (i.e., utt(s, w, I)) are
combined with updates on the state of the enactment, then the protocol can be fully cap-
tured. In order to represent the control of the protocol enactment we use the term ctr(Scene,
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State,TimeStamp), stored in the institutional state, which informs that at time TimeStamp the
interaction enacted in Scene is at State.

The dynamics of the control of the enactment can be captured generically as the following
institutional rule:

⎛
⎝ ctr(S,Wi , T )& att(S,Wi , I )&

per(S,Wi , I )&not(prh(S,Wi , I ))&
edge(S,Wi , I,W j )& time(T 2)

⎞
⎠ �

⎛
⎜⎜⎝

del(ctr(S,Wi , T )),
add(old_ctr(S,Wi , T )),
add(ctr(S,W j , T 2)),
add(utt(S,Wi , I ))

⎞
⎟⎟⎠ (12)

That is, if the control of the enactment of scene S is now at state Wi and illocution I has
been uttered and there is an edge connecting Wi with W j labelled with that illocution, then
the control of the enactment at the next time will move to ctr(S,W j , T 2). We keep track of
the time of previous states using the old_ctr predicate.

The permissions of an agent society can be managed in various different manners. A
simple and efficient way is to have permissions unchanged in the institutional state, that is,
they are passed on from state to state without ever being removed. Constraints, however, can
be added to the variables of obligations as a result of the interactions among the agents.

We notice that institutional rules are expressive enough to represent normative aspects
as well as institutional protocols (i.e., scenes) and their enactment. Thus, we can claim that
institutional rules address all the requirements introduced in Sect. 2.

5.4 Example: the Dutch auction Protocol

In this section, we illustrate the pragmatics of our norm-oriented language by specifying
the auction protocol employed in the fish market described in [18]. Following [18], the fish
market can be described as a place where several scenes [20] take place simultaneously, at
different locations, but with some causal connection. The principal scene is the auction itself,
in which buyers bid for boxes of fish that are presented by an auctioneer who calls prices
in descending order, following an open cry, sudden death, downward bidding protocol, a
variation of the traditional Dutch auction protocol that proceeds as follows:

1. The auctioneer chooses a good out of a lot of goods that is sorted according to the order
in which sellers deliver their goods to the sellers’ admitter.

2. With a chosen good, the auctioneer opens a bidding round by quoting offers downward
from the good’s starting price, previously fixed by a sellers’ admitter, as long as these
price quotations are above a reserve price previously defined by the seller.

3. For each price the auctioneer calls, several situations might arise during the open round
described below.

4. The first three steps are repeated until there are no more goods left.

The situations arising in step 3 are:
Multiple bids—Several buyers submit their bids at the current price. In this case, a collision
comes about, the good is not sold to any buyer, and the auctioneer restarts the round at a
higher price;
One bid—Only one buyer submits a bid at the current price. The good is sold to this buyer
whenever his credit can support his bid. Otherwise, the round is restarted by the auctioneer
at a higher price, and the unsuccessful bidder is fined;
No bids—No buyer submits a bid at the current price. If the reserve price has not been reached
yet, the auctioneer quotes a new price obtained by decreasing the current price according
to the price step. Otherwise, the auctioneer declares the good as withdrawn and closes the
round.
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Fig. 4 The Dutch auction Protocol

5.4.1 Proposed solution

Figure 4 shows a finite state machine the protocol. Following Sect. 5.3 the protocols are rep-
resented as a set of formula of the type edge(S,Wi , I,W j ) and rule 12. The situations arising
in step 3 are captured in Eqs. 13–18. For formatting reasons, we will use αi to denote atomic
formulae:
Multiple bids—This rule obliges the auctioneer to inform the buyers, whenever a collision
comes about, about the collision and obliges the auctioneer to restart the bidding round at
a higher price (in this case, 120% of the collision price). Notice that X will hold all the
utterances at scene dutch and state w4 issued by buyer agents that bid for an item I t at price
P at time T0 after the last offer. We obtain the last offers by checking that there are no further
offers whose time-stamps are greater than the time-stamp of the first one. If the number of
illocutions in X is greater than one, the rule introduces the obligation above:(

X = {
α0|α1 &not(α2 & (T2 > T1))& (T0 > T1)

}
& (size(X) > 1)

)
�

(
add(α3),add(α4),

add((P2 > P ∗ 1.2))

)

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α0 = utt(dutch, w4, in f orm(A1, buyer, Au, auct, bid(I t, P), T0)),

α1 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(I t, P), T1)),

α2 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(I t, P), T2)),

α3 = obl(dutch, w5, in f orm(Au, auct, all, buyer, collision(I t, P), T2)),

α4 = obl(dutch, w3, in f orm(Au, auct, all, buyer, of f er(I t, P2), T3))

(13)

One bid/winner determination—If only one bid has occurred during the current bidding
round and the credit of the bidding agent is greater than or equal to the price of the good in
auction, the rule adds the obligation for the auctioneer to inform all the buyers about the sale:(

X = {
α0|α1 &not(α2 & (T2 > T1))& (T0 > T1)

}
&

(size(X) = 1)& oav(A1, credit,C)& (C ≥ P)

)
� (add(α3))

where

⎧⎪⎪⎨
⎪⎪⎩

α0 = utt(dutch, w4, in f orm(A1, buyer, Au, auct, bid(I t, P), T0)),

α1 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(I t, P), T1)),

α2 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(I t, P), T2)),

α3 = obl(dutch, w5, in f orm(Au, auct, all, buyer, sold(I t, P, A1), T4))

(14)

Prevention—We must prevent agents from issuing bids they cannot afford, that is, bids for
which their credit is insufficient. The rule below states that if agent Ag’s credit is less than P
(the last offer the auctioneer called for item I t , at state w3 of scene dutch), then agent Ag is
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prohibited to bid.

(
α0 &not(α1 & (T 2 > T ))& oav(Ag, credit,C)& (C < P)

)
� (add(α2))

where

⎧⎨
⎩
α0 = utt (dutch, w3, in f orm(Au, auct, A, buyer, of f er(I t, P), T )),
α1 = utt (dutch, w3, in f orm(Au, auct, A, buyer, of f er(I t, P), T2)),

α2 = prh(dutch, w4, in f orm(A, buyer, Au, auct, bid(I t, P2), T3))

(15)

Punishment—We must punish those agents when issuing a winning bid they cannot pay for.
More precisely, the rule punishes an agent A1 by decreasing its credit of 10% of the value of
the good being auctioned. The oav predicate on the LHS of the rule represents the current
credit of the offending agent. The rule also adds an obligation for the auctioneer to restart
the bidding round and the constraint that the new offer should be greater than 120% of the
old price.

⎛
⎜⎜⎜⎜⎝

X =
{
α0 α1 & (T0 > T1)&

not(α2 & (T2 > T1))

}
&

oav(A1, credit,C)&
(size(X) = 1)& (C < P)&

C2 = C − P ∗ 0.1

⎞
⎟⎟⎟⎟⎠ �

⎛
⎝ del(oav(A1, credit,C)),
add(oav(A1, credit,C2)),

add(α3)

⎞
⎠

where

⎧⎪⎪⎨
⎪⎪⎩

α0 = utt(dutch, w4, in f orm(A1, buyer, Au, auct, bid(I t, P), T0)),

α1 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(I t, P), T1)),

α2 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(I t, P), T2)),

α3 = obl(dutch, w5, in f orm(Au, auct, all, buyer, of f er(I t, P ∗ 1.2), T3))

(16)

No bids/New Price—We must check if there were no bids and if the next price is greater than
the reservation price. If so, we must add an obligation for the auctioneer to start a new bidding
round. Rule 17 checks that the current scene state is w5, the last offer occurred before w5
and whether the new price is greater than reservation price. If so, the rule adds the obligation
for the auctioneer to offer the item at a lower price. By retrieving the last offer we gather the
last offer price. By checking the oav predicates we gather the values of the reservation price
and the decrement rate for item It.

⎛
⎜⎜⎜⎜⎝

ctr(dutch, w5, Tn)&α0 &
not(α1 & (T2 > T ))& (Tn > T )&

oav(I T, reservation_price, R P)&
oav(I T, decrement_rate, DR)&

(R P < (P − DR))

⎞
⎟⎟⎟⎟⎠ �

(
add(α2),add(P2 = P − DR)

)

where

⎧⎨
⎩
α0 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(I T, P), T )),
α1 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(I T, P), T2)),

α2 = obl(dutch, w5, in f orm(Au, auct, all, buyer, of f er(I T, P2), T3))

(17)

No bids/withdrawal—We must check if there were no bids and the next price is less than the
reservation price; if so we add the obligation for the auctioneer to withdraw the item. Rule 18
checks that the current institutional state isw5, the last offer occurred beforew5 and whether
the new offer price is greater than reservation price. If the LHS holds, the rule fires to add the
obligation for the auctioneer to withdraw the item. By checking the last offer we gather the
last offer price. By checking the oav predicates we gather the values of the reservation price
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and the decrement rate for the price of item It:

⎛
⎜⎜⎝

ctr(dutch, w5, Tn)&α0 &
not(α1 & (T2 > T ))& (Tn > T )&

oav(It, reservation_price, R P)&
oav(It, decrement_rate, DR)& (R P ≥ (P − DR))

⎞
⎟⎟⎠ �

(
add(α2)

)

where

⎧⎨
⎩
α0 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(It, P), T )),
α1 = utt(dutch, w3, in f orm(Au, auct, all, buyer, of f er(It, P), T2)),

α2 = obl(dutch, w5, in f orm(Au, auct, all, buyer, wi thdrawn(It), T3))

(18)

6 Expressiveness analysis

In this section we compare our proposal with other normative languages in the literature. We
concentrate on three different approaches, showing how we can capture the most common
normative notions from those formalisms using our rule language. By analysing all these
approaches we have found some norm patterns that they have in common. Norms can be
conditional or can have temporal constraints, that is, they establish relationships between
time-points or events or they hold periodically. We also show that our rules can capture the
patterns from rather disparate formalisms, thus fulfilling the requirement of general purpose
mentioned in Sect. 2.

6.1 Conditional deontic logic with deadlines

As shown in the BNF definition of Fig. 5, a norm as defined in [36] is composed of several
parts. The norm condition is the declaration of the context in which the norm applies. The
other fields in the norm description are; (1) the violation condition which is a formula defin-
ing when the norm is violated, (2) the detection mechanism which describes the mechanisms
included in the agent platform that can be used for detecting violations, (3) the sanctions
which define the actions that are used to punish the agent(s) violation of the norm, and (4)
the repairs which is a set of actions used for recovering the system after the occurrence of a
violation.

As the definition of Fig. 6 shows, norms can be deontic notions such as permissions, obli-
gations or prohibitions. Furthermore, norms can be related to actions or to predicates (states).
The former case restricts or allow the actions that a set of agents can perform, the latter case
constrains the results of the actions that a set of agents can perform. The results of actions are
represented as predicates that may hold or not. It is forbidden that Tom performs the action
of smoking (FORBIDDEN (tom DO smoke)) and it is forbidden that tom brings about that

Fig. 5 BNF of norms from [36]
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Fig. 6 BNF of norm conditions

Table 1 Mapping of general norms into predicates

Norms from [36] Rule-based construct

PERMITTED((A DO utter(S,W, I ))) per(S,W, I )

PERMITTED((A DO utter(S,W, I )) IF C) C � per(S,W, I )

PERMITTED((A DO utter(S,W, I )) BEFORE D) 1. per(S,W, I )&sat(T < D)

2.

⎛
⎜⎜⎜⎝

per(S,W, I )&

constr(T < D)&

time(T 2)&

(T 2 ≥ D)

⎞
⎟⎟⎟⎠ � del(per(S,W, I ))

PERMITTED((A DO utter(S,W, I )) AFTER D)

(
time(T )& (T > D)&

not(per(S,W, I ))

)
� per(S,W, I )

the air is polluted (FORBIDDEN (tom, polluted(air))) are two examples of the types of
norms addressed in [36].

Through the condition (C) and temporal operators (BEFORE and AFTER), norms can
be made applicable to specific situations only. Conditions and temporal operators are con-
sidered optional. Temporal operators can also be applied to a deadline (D). We refer to [37]
for the formal semantics of temporal operators used in [36]. We note that states of affairs
(Definition 4) loosely correspond to worlds of Kripke semantics for modal logics [38]: they
both contain sets of formulae and are interrelated.

We now explain the mapping of the norms presented above into our rule language. Since
we consider illocutions as the only actions that can be performed in an electronic institution,
actions need to be translated into illocutions uttering that the action has been done.We call
this process contextualisation. Table 1 shows the mapping of permissions in general norms
(i.e. norms that always are active) into our rules. Prohibitions and obligations are mapped
similarly. The permission for an action can be mapped into a predicate (shown in row 1 of
Table 1) and added to a rule that converts the attempt to utter the I illocution at state W of
scene S (att (S,W, I )) into the result of the illocution being uttered (utt (S,W, I )).

Row 2 of Table 1 shows the mapping of conditional norms into our rules. This mapping
can be done in a similar way to the one done in the previous row but adding a condition (C)
on the LHS of the rule. It should be pointed out that there is no one-to-one correspondence
between the underlying models (i.e., semantics) of the compared approaches. However, our
rules capture the same phenomenon: given C , the permission, prohibition or obligation will
also hold. Importantly, only after the exhaustive application of all rules on the current state of
affairs (possibly requiring a number of intermediate states) we obtain the next state of affairs,
in which both C and the permission, prohibition or obligation will hold. This amounts to the
logical inferences that take place in [36].
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Row 3 shows the mapping of norms with the BEFORE time construct into our rules.
This mapping can be done with two rules: one for checking if the normative position holds
and if it satisfies the temporal constraints. This is similar to the mapping done in row 1 but
adding in the LHS of the rule the condition that the time in which the attempt is done (T )
has to be less that the deadline (D); the other rule is for removing the permission after the
deadline has passed. We check that the normative position has a temporal constraint and if it
is not satisfied (i.e.,s the current time is greater than or equal to the deadline), we remove the
normative position. In the mapping of obligations, however, we need three rules: one to sanc-
tion the agents that do not utter the expected illocution before the deadline, one to sanction
the agents that utter the expected illocution late and another rule to remove the obligation if
the illocution is uttered before the deadline.

Row 4 shows the mapping of permissions with the construct AFTER time into our rules.
This can be done in a similar way to the mapping done in row 1 but adding to the LHS of
the rule the condition that the time in which the attempt is done (T ) has to be greater that the
deadline (D). Notice that in the mapping of obligations we only need one rule to remove the
obligation if the illocution is uttered after the specified time. In the current implementation of
electronic institutions obligations must be satisfied the first time the agents are in the expected
scene and state. However, as we do not assume that, this norm cannot be sanctioned.

In summary, the norms defined in [36] can be translated into institutional rules by adding
the violation condition into the LHS of the rule and sanctions and repairs into the RHS as the
following rule schema shows:

VC � S, R

where VC is the violation condition, S and R stands respectively for sanctions and repairs,
all of them extracted from the norm. Notice that the norms defined in [36] are only applicable
to a specific agent. Contrastingly, norms implemented with our rules, depending on which
terms are variables, may refer to either a specific agent or all those agents enacting a role or
all those agents in a scene or all those agents in any of the scenes.

6.2 Z specification of norms

Although the work depicted in [4,39] proposes a framework that covers several topics of
normative multi-agent systems we shall focus on its definition of norm. Figure 7 shows a
norm from [4] composed of several parts. In the schema, addressees stands for the set of
agents that have to comply with the norm; bene f iciaries stands for the set of agents that
benefit from the compliance of the norm; normativegoals stands for the set of goals that
ought to be achieved by the addressee agents; rewards are received by addressee agents if
they satisfy the normative goals; punishments are imposed to addressee agent when they
do not satisfy the normative goals; context specifies the preconditions to apply the norm and

Fig. 7 Z Definition of a norm from [4]
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exceptions specify when the norm is not applicable. We notice that a norm must always have
addressees, normative goals and a context; rewards and punishments are disjoint sets, and
context and exceptions too.

A norm from [4] can be translated into the following rule schema to detect its violation:

(context &not(exception)&not(goal ′)) � punishments

where context and exception are predicates obtained through the contextualisation for speci-
fying the context and exceptions mentioned in the norm, goal ′ is the contextualised normative
goal (which includes the addressee and possible beneficiaries). Component punishments are
contextualised actions obtained from the norm. This rule captures that in a particular context
which is not an exception of the norm and whose goal has not yet been fulfilled the actions
defined by punishments should be executed. Rewards can also be specified via the rule
schema:

(context &not(exception)& goal ′) � rewards

where rewards are also contextualised actions obtained from the norm. This rule specifies
that a reward should be given when addressee agents comply with the norm, which is when
the norm is applicable and the contextualised normative goal (goal ′) has been achieved.

6.3 Event calculus

Event calculus is used in [8] for the specification of protocols. Event calculus [40] is a
formalism to represent reasoning about actions or events and their effects in a logic program-
ming framework and is based on a many-sorted first-order predicate calculus. Figure 8 shows
the main predicates of Event Calculus. Predicates that change with time are called fluents.
Figure 9 shows how obligations, permissions, empowerments, capabilities and sanctions are
formalised by means of fluents—prohibitions are not formalised in [8] as a fluent since they
assume that every action not permitted is forbidden by default.

An example of obligation specified in event calculus extracted from [8] is shown in Fig. 10.
The obligation that C revokes the floor holds at time T if C enacts the role of chair and the
floor is granted to someone else different from the best candidate.

If we translate the holds At predicates into uttered predicates, we can translate the obli-
gations and permissions of the example by including the remaining conditions in the LHS of
the institutional rules. However, since there is no explicit semantics of norms in [8], we cannot
state that the approach in [8] is fully translatable into our rules. But we acknowledge that the
predicates in our language would need to be extended in order to capture the notion of power.

Fig. 8 Main predicates of event calculus
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Fig. 9 Main fluents from [8]

Fig. 10 Example of obligation in event calculus

As mentioned before, in this paper we present a rule-based language with constraint-solving
capabilities and show how to regulate a MAS with some deontic notions.

Although event calculus models time, the deontic fluents specified in the example of [8]
are not enough to inform an agent about all types of duties. For instance, to inform an agent
that it is obliged to perform an action before a deadline, it is necessary to show the agent the
obligation fluent and the part of the theory that models the violation of the deadline.

6.4 Hybrid metric interval temporal logic

In [9] we find a proposal to represent norms via rules written in a modal logic with temporal
operators called hyMITL±. It combines CTL± with Metric Interval Temporal Logic (MITL)
as well as features of hybrid logics. That proposal uses the technique of formula progression
from the TLPlan planning system to monitor social expectations until they are fulfilled or
violated.

Formula 19 below shows an example of rule in hyMITL±. This rule states that if the
current state is such that consumer c has just made a payment for a service, and the current
state is within one week after the time the payment is made (time t) then weekly reports will
be sent during the next 52 weeks until provider p optionally cancels the order:

AG+(Done(c,make_payment (c, p, amount, prod_num))& [t, t + 1week)→
↓week w.(↓week cw.(¬F−[−0,cw]Done(p, send_report (c, prod_num, cw))→

F+[+0,cw+1week]Done(p, send_report (c, prod_num, w)))
W+[w+1week,w+53weeks]
Done(c, cancel_order(c, p, prod_num))))

(19)

Rule 20 shows the mapping of the previous hyMITL± rule into our language. We calculate
the number of weeks since the last utterance of payment was made and the time in which
this week ends. If the number of weeks is less than 52 and the report for that week has not
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been sent then the agent being paid is obliged to send a report before the end of the week.

⎛
⎜⎜⎜⎜⎝

α0 &not(α1 & (T1 > T0))&
current_date(Tn)&

W = trunc((Tn − T0)/(6048 ∗ 105))&
(W < 52)&not(α2)&

Tend_w = T0 + (W + 1) ∗ (6048 ∗ 105))

⎞
⎟⎟⎟⎟⎠ �

(
add(α3),

add(Ti < Tend_w)

)

where

⎧⎪⎪⎨
⎪⎪⎩

α0 = utt (paymt, w0, in f orm(C, cust, P, payee, pay(Am, Prod), T0)),

α1 = utt (report, w1, in f orm(C, cust, P, payee, cancel(Prod), T1)),

α2 = utt (report, w2, in f orm(P, payee,C, cust, snd_rep(R,W ), T2)),

α3 = obl(report, w2, in f orm(P, payee,C, cust, snd_rep(R,W ), T3))

Our rules are equivalent to AG+(LHS → X+RHS) where LHS and RHS are atomic
formulae without temporal operators. As we build the next state of affairs by applying the
operations on the RHS of the fired rules, we cannot use any other temporal operator in the
RHS of our rules. Furthermore, since our state of affairs has non-monotonic features and we
do not store the sequence of states leading to the present state i.e., the history we cannot
reason over the past of any formulae. We can only do it using predicates with time-stamps,
like the utt predicate, that are not removed from the state of affairs.

We can capture the meaning of the X− operator when it is used on the LHS of the hyMITL±
rule: X−φ is intuitively equivalent to ctr(S,W, Ts)&φ(T0)& (T0 = Ts − 1). Moreover, we
can also translate the U+ operator when it is used in the RHS of the hyMITL± rule: φ U+ψ
is roughly equivalent toψ � del(φ). Although we cannot use all the temporal operators on
the RHS of our rules, we can obtain equivalent results by imposing certain restrictions in the
set of rules. For instance, F+φ can be achieved if add(φ) appears on the RHS of a rule and
it is possible that the rule fires; G+φ can be achieved after φ is added and no rule that could
fire removes it. Time intervals can be translated into comparisons of time-points as shown in
the previous example.

6.5 Social integrity constraints

In [41] the language Social Integrity Constraints (SIC) is proposed. This language’s constructs
check whether some events have occurred and some conditions hold to add new expectations,
optionally with constraints. An example of a SIC construct is:

⎛
⎝ H(request (B, A, P, D, Tr ))&

H(accept (B, A, P, D, Ta))&
Tr < Ta

⎞
⎠→ E(do(A, B, P, D, Td)) : Td < Ta + τ

The construct above intuitively means “if agent B sent a request P to agent A at time Tr

in the context of dialogue D, and A sent an accept to B’s request at a later time Ta , then
A is expected to do P before a deadline Ta + τ”. The mapping of SICs is based on trans-
lating events (H) into our att predicates. Since we also allow predicates to be restricted by
constraints, expectations can be translated directly into obligations as the next rule shows:

⎛
⎝ utt (D,W0, request (B, R, A, R′, P, Tr ))&

utt (D,W1, accept (A, R′, B, R, P, Ta))&
(Tr < Ta)

⎞
⎠ �

(
add(obl(D,W2, in f orm(A, R′, B, R, P, Td))),

add(Td < Ta + τ)
) (20)
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Although syntactically their language is very similar to ours, they are semantically different.
Differently from their use of abduction and Constraint Handling Rules (CHR) to execute their
expectations, we use a forward chaining approach. Despite the fact that expectations they
use are quite similar to obligations, SIC lacks further deontic notions such as permissions or
prohibitions. Furthermore, although they mention how expectations are treated, that is, what
happens when an expectation is fulfilled or when it is not, and state the possibility of SICs
being violated, no mechanism to regulate agents’ behaviour like the punishment of offending
agents or repairing actions is offered.

6.6 Object constraint language

The work in [10] proposes the Object Constraint Language (OCL) for the specification of
artificial institutions. The expression below shows an example of a norm written in OCL:

within h : AuctionHouse
on e : I nsti tutional RelationChange(h.dutch Auction,

auctioneer, created)
if true then
foreach agent in h.employee→

select (em|e.involved → contains(em))
do makePendingComm(agent,

Dutch I nst Agent (not SetCur Price
(h.dutch Auction.id,
?p[?p < h.agreement.reservation Price]),
< now, now + time_of (e1 : I nst StateChange
(h.dutch Auction, OpenD A,Closed D A)) >,∀))

(21)

This norm commits the auctioneer to not declare a price lower than the agreed reservation
price. As shown in Sect. 5.4, we can also express (rule 18) the case that the auctioneer is
obliged to withdraw the good when the call price becomes lower than the reservation price.
However, we cannot perform an exhaustive analysis of the language of [10] because neither
the syntax nor the semantics are made explicit.

7 Related work

Apart from classical studies on law, research on norms and agents has been addressed by two
different disciplines: sociology and philosophy. On the one hand, contributions from soci-
ology highlight the importance of norms in agent behaviour (e.g., [42–44]) or analyse the
emergence of norms in multi-agent systems (e.g., [7,45]). On the other hand, logic-oriented
contributions focus on the deontic logics required to model normative modalities along with
their paradoxes (e.g., [46–48]). The last few years, however, have seen significant work on
norms in multi-agent systems, and norm formalisation has emerged as an important research
topic in the literature (e.g., [3,49,36,50]).

Vázquez-Salceda et al. [36] propose the use of a deontic logic with deadline operators.
These operators specify the time or the event after (or before) which a norm is valid. This
deontic logic includes obligations, permissions and prohibitions, possibly conditional, over
agents’ actions or predicates. In their model, they distinguish norm conditions from violation
conditions. This is not necessary in our approach since both types of conditions can be rep-
resented in the LHS of our rules. Their model of norm also separates sanctions and repairs
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(i.e., actions to be done to restore the system to a valid state)—these can be expressed in the
RHS of our rules without having to differentiate them from other normative aspects of our
states. Our approach has two advantages over [36]: one is that we provide an implementation
for our rules and the other is that we offer a more expressive language with constraints over
norms (e.g., an agent can be obliged to pay an amount greater than some fixed value).

Fornara et al. [50] propose the use of norms partially written in OCL, the Object Constraint
Language which is part of UML (Unified Modelling Language) [51]. Their commitments
are used to represent all normative modalities—of special interest is how they deal with
permissions: they stand for the absence of commitments. This feature may jeopardise the
safety of the system since it is less risky to only permit a set of safe actions thus forbidding
other actions by default. Although this feature can reduce the amount of permitted actions, it
allows that new or unexpected, risky actions to be carried out. Their within, on and if clauses
can be encoded into the LHS of our rules as they can all be seen as conditions when dealing
with norms. Similarly, foreach in and do clauses can be encoded in the RHS of our rules
since they are the actions to be applied to a set of agents.

López y López et al. [52] present a model of normative multi-agent system specified in the
Z language. Their proposal is quite general since the normative goals of a norm do not have
a limiting syntax as the rules of Fornara et al. [50]. However, their model assumes that all
participating agents have a homogeneous, predetermined architecture. No agent architecture
is imposed on the participating agents in our approach, thus allowing for heterogeneity.

Artikis et al. [8] propose the use of event calculus for the specification of protocols. Obli-
gations, permissions, empowerments, capabilities and sanctions are formalised by means of
fluents—these are predicates that change with time. Prohibitions are not formalised in [8] as
a fluent since they assume that every action not permitted is forbidden by default. Although
event calculus models time, their deontic fluents do not seem expressive enough to inform an
agent about all types of duties. For instance, to inform an agent that it is obliged to perform
an action before a deadline, it is necessary to show the agent the obligation fluent and the
part of the theory that models the violation of the deadline. In [53] (previous to the work
of Artikis et al. [8]), Stratulat et al. also used event calculus to model obligations, permis-
sions, prohibitions and violations. Similar to the work of Artikis et al., that proposal lacks a
representation of time that could be easily processed by agents.

Michael et al. [12] propose a formal scripting language to model the essential semantics,
namely, rights and obligations, of market mechanisms. They also formalise a theory to cre-
ate, destroy and modify objects that either belong to someone or can be shared by others.
Their proposal is suitable to model and implement market mechanisms, however, it is not as
expressive as other proposals—for instance, it cannot model obligations with a deadline.

Kollingbaum [54] proposes a language for the specification of normative concepts (i.e.,
obligations, prohibitions and permissions) and a programming language for norm-governed
reasoning agents. The normative concepts and the programming language are given their
operational semantics via the NoA Agent Architecture [55,56] using the Java programming
language [57] to explain the meaning of each construct. This approach addresses practical
reasoning agents developed using their language and architecture—although the approach is
practical and has clear advantages such as the possibility to check for norm conflicts and con-
sistency, heterogeneous agents cannot be accommodated. Furthermore, there is no indication
of how the proposal adapts to a distributed scenario, as only individual agents are addressed.

In [41] the language Social Integrity Constraints (SIC) is proposed. This language’s con-
structs check whether some events have occurred and some conditions hold to add new expec-
tations, optionally with constraints. Although syntactically their language is very similar to
ours, they are semantically different. Different from their use of abduction and Constraint
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Handling Rules (CHR) to execute their expectations, we use a forward chaining approach.
Despite the fact that expectations they use are quite similar to obligations and they mention
how expectations are treated, that is, what happens when an expectation is fulfilled or when
it is not, and state the possibility of SICs being violated, no mechanism to regulate agents’
behaviour like the punishment of offending agents or repairing actions are offered.

The work in [11] reports on the translation of the normative language presented in [36] into
Jess rules [58] to monitor and enforce norms. This language captures the deontic notions of
permission, prohibition and obligation in several cases such as absolute norms, conditional
norms, norms with deadline and norms in temporal relation with another event. Absolute
norms are directly translated into Jess facts; conditional norms are directly translated into
rules that add the deontic facts when the condition holds; norms with deadline are translated
into rules that add conditional norms after the deadline has passed. Finally, norms in temporal
relation with other events are translated into rules that check if those events have occurred.

Our proposal bears strong similarities with the work reported in [59] where norms are rep-
resented as rules of a production system. We notice that our rules can express their notions
of contracts and their monitoring (i.e., fulfilment and violation of obligations). However, in
[59] constraints can only be used to depict the left-hand side of a rule, that is, the situation(s)
when a rule is applicable—constraints are not manipulated the way we do. Furthermore, in
that work there is no indication as to how individual agents will know about their norma-
tive situation; a diagram introduces the architecture, but it is not clear who/what will apply
the rules to update the normative aspects of the system nor how agents synchronise their
activities.

8 Conclusions, discussion and future work

In this paper we have introduced a formalism for the explicit management of the normative
positions of agents in electronic institutions. Electronic institutions define a computational
model that mediates and regulates the interaction of a community of agents. The classical
model of electronic institution proposed in [20] is strict in the sense that only permitted illo-
cutions are accepted in the interactions. We propose a language to implement and extend the
notion of electronic institution by providing them with several flavours of deontic notions.

Ours is a rule language in which constraints can be specified and changed at run-time,
conferring expressiveness and precision on our constructs. The semantics of our formalism
defines a production system in which rules are exhaustively applied to a state of affairs,
leading to the next state of affairs. The normative positions are updated via rules, depending
on the messages agents send.

Our formalism addresses the points of a desiderata for normative languages introduced
in Sect. 2: we explicitly manage normative positions with our language as facts of our pro-
duction system. We have explored the pragmatics and generality of our proposal in Sects.
3.5 and 5.4 by introducing the type of expressions that can be specified with the language
and by specifying a version of the Dutch Auction protocol. We also illustrate how our lan-
guage can provide other (higher-level) normative languages with a computational model
(i.e., an implementation) thus making it possible for other normative languages proposed
with more theoretical concerns in mind to become executable. Our language is rule-based
thus addressing the requirement laid out in Sect. 2 that norm-oriented languages should be
declarative.

We propose norm-oriented programming as a paradigm to regulate the interactions among
the components of a system. We notice that it is complementary to other paradigms that focus
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on regulating the internal processes of these components such as agent-oriented programming
[14]. We intend to tackle the engineering of regulation mechanisms of open MAS from a
social perspective.

The main advantage of using our language, instead of standard production systems, to
specify and monitor the normative position of the agents conforming a MAS is the inclusion
of constraint solving techniques in the semantics to handle with constrained predicates.

We advocate a separation of concerns: rather than embedding normative aspects into the
agents’ design (say, by explicitly encoding normative aspects in the agent’s behaviour) or
coordination mechanisms (say, by addressing exceptions and deviant behaviour in the mech-
anism itself), we adopt the view that a coordination mechanism should be supplemented by
an explicit and separate set of norms that further regulates the behaviour of agents as they
take part in the enactment of a mechanism.

Providing a computational realisation to abstract models of normative systems is a chal-
lenging task. We suggest that if a declarative and compact formalism such as our constraint
rule-based language is used, this task could be made easier than, for instance, using a pro-
cedural and verbose language such as Java or C++. When mapping alternative formalisms
to our rule-based language (as done in Sect. 6), a steep learning curve was required to get
familiarised with technical details of the semantics and then how these could be captured
with our rules. One way to approach this mapping is to consider how models of normative
systems capture commonly occurring phenomena such as norms with deadlines, sanctions
and rewards, and so on, and then use rule templates aimed at capturing the same phenomena.

As for future work, rather than just considering events as utterances of illocutions (some
of them reporting on actions, such as the “bid” message in the example of Sect. 5.4), we
would like to generalise our language to cope with arbitrary actions, as this would allow us
to address a larger class of MASs. We would also like to extend the syntax and semantics of
our language to support temporal operators for the explicit management of time.

Support can be provided when rules are being designed. We envisage a spectrum of pos-
sibilities, ranging from rule templates that can be offered as guidelines, to checking rules for
desirable properties (e.g., norms only refer to components of the associated protocols). How-
ever, we are aware that we are proposing a formalism with which engineers can program, and
ideally a usability analysis should be carried out to investigate how easy-to-use our language
is although different dialects and presentations could be custom-built for particular groups
of designers.

We envisage two typical ways of using our language: (i) using it directly, either to supple-
ment a MAS with normative regulation or to declaratively implement electronic Institutions,
as shown in this paper or; (ii) specifying norms with a language like the one presented in [36]
and then using a compiler to translate it into our language to execute it. As a proof of concept,
we are implementing one such translator following the principles sketched in Sect. 6.1.

We report our ongoing efforts to incorporate our rule language and its mechanisms to the
electronic institutions Development Environment (EIDE)3. Norms, in the form of rules, can
now be added to EI specifications prepared with the ISLANDER editor and passed to the
AMELI middleware which loads them into our rule engine. Whenever agents declare their
attempts, AMELI checks the specification if the attempts are meaningful and executes our
rule engine to perform further checking and modification of agents’ attributes.

We also want to investigate the verification of norms (along the lines of our work in [60])
expressed in our rule language, with a view to detecting, for instance, obligations that can-
not be fulfilled, prohibitions that will prevent progress, inconsistencies and so on. We are

3 http://e-institutions.iiia.csic.es/software.html.
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currently investigating tools to help engineers preparing their rules—these are norm editors
that will support the design and verification of norm-oriented electronic institutions.
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