
Auton Agent Multi-Agent Syst (2008) 16:327–344
DOI 10.1007/s10458-008-9034-0

A logic-based agent that plans for extended reachability
goals

Silvio Lago Pereira · Leliane Nunes de Barros

Published online: 14 March 2008
Springer Science+Business Media, LLC 2008

Abstract Planning to reach a goal is an essential capability for rational agents. In general,
a goal specifies a condition to be achieved at the end of the plan execution. In this article,
we introduce nondeterministic planning for extended reachability goals (i.e., goals that also
specify a condition to be preserved during the plan execution). We show that, when this kind
of goal is considered, the temporal logic ctl turns out to be inadequate to formalize plan
synthesis and plan validation algorithms. This is mainly due to the fact that the ctl’s seman-
tics cannot discern among the various actions that produce state transitions. To overcome this
limitation, we propose a new temporal logic called α-ctl. Then, based on this new logic, we
implement a planner capable of synthesizing reliable plans for extended reachability goals,
as a side effect of model checking.

Keywords Automated planning ·Model checking · Temporal logic

1 Introduction

In the last few years, automated planning [12] has being increasingly demanded for practical
applications in several areas that require solutions for complex goals, including autonomous
agents [11]. In this setting, a formal method based approach [8,23] is very attractive to guaran-
tee the reliability of the solutions. In spite of this, the use of formal methods in the automated
planning area has received relatively little attention. The few related works [5,6,9] are almost
always based on model checking [16], a research area that has been called planning based
on model checking [13]. In this approach, planning goals are often specified by formulas of
the branching time temporal logic ctl [7], a formalism that is only appropriate to deal with

S. L. Pereira (B) · L. N. de Barros
Institute of Mathematics and Statistics, University of São Paulo, Sao Paulo, Brazil
e-mail: slago@ime.usp.br

L. N. de Barros
e-mail: leliane@ime.usp.br

123

328 Auton Agent Multi-Agent Syst (2008) 16:327–344

planning problems for simple reachability goals and for some very specific kinds of more
complex goals.

An interesting kind of more complex goal, which has not been treated yet by the planning
based on model checking community, is given in Example 1.

Example 1 Roomba (Fig. 1) is a very popular vacuum cleaner robot. To date, more than 2
million of such robots have been sold worldwide. While this robot moves to clean a room,
it is capable of detecting when its battery is weak, driving itself to a recharging station, and
returning to its original location in order to continue its cleaning task. In the future, a project
to integrate this vacuum cleaner with an intelligent carpet, capable of mapping the environ-
ment and communicating the dirt and the robot locations, will allow for the robot to plan its
cleaning route so that whenever its battery is weak, it would be next to a recharging station.
Observe that the recharging stations do not need to be in the planned route, they only need
to be reachable from it. As we can see, this goal cannot be specified by a condition to be
achieved only at the end of the plan execution. ��

In this article, we introduce extended reachability goals, a class of planning goals that
has simple reachability goals as subclass. We show that, when this wider class of planning
goals is considered, the temporal logic ctl becomes inadequate to specify goals (as well as
solution quality requirements) and to formalize plan synthesis and plan validation algorithms.
This happens because the ctl’s semantics cannot distinguish among the different actions
that produce state transitions. To overcome this limitation, we propose a new branching time
temporal logic called α-ctl. Then, based on this new logic, we implement a planner capable
of synthesizing reliable plans for extended reachability goals (as a side effect of the model
checking for α-ctl formulas expressing such planning goals).

We must emphasize that the proposed logic differs from others action logics found in liter-
ature, where formulas impose constraints over states and also over actions [17,18]. Although
actions play an important role in the α-ctl’s semantics, they are not used in the formula’s
composition. Indeed, when we specify an extended reachability goal, we want to impose
constraints only over the states visited during plan execution and not over the actions used
to compose the plan.

The remainder of this article is organized as follows: in Sect. 2, we present the background
on automated planning in nondeterministic environments and define the class of extended
reachability goals; in Sect. 3, we discuss how the model checking framework can be adapted

Fig. 1 Roomba: a vacuum
cleaner robot

123

Auton Agent Multi-Agent Syst (2008) 16:327–344 329

for automated planning and why the ctl’s semantics is not appropriate to deal with extended
reachability goals; in Sect. 4, we define the new logic α-ctl and present a model checker
based on its semantics; in Sect. 5, we implement a planner based on the α-ctl model checker;
and finally, in Sect. 6, we present our conclusions.

2 Automated planning

Automated planning [12] is the field of the artificial intelligence that studies the deliberative
process involved in the planning task, seeking for the implementation of planners. Essen-
tially, a planner is an algorithm that synthesizes a plan of actions, by analyzing a formal
description of the environment’s dynamics and of the agent’s goal. A plan defines the agent
behavior pattern: at each instant, it observes the environment’s current state and executes the
corresponding action, as specified in the plan. Behaving in this manner, the agent must be
capable of conducting the environment’s evolution, in spite of exogenous events (i.e., events
over which the agent has no control), still making sure that its goal can be achieved. The
interaction among these components can be seen in Fig. 2.

2.1 Nondeterministic environments

There are several factors that challenge the automation of the planning task [12]. In order to
simplify this process, the classical planning approach [10] assumes that the planning envi-
ronment evolves deterministically, i.e.: (i) there is no uncertainty regarding the effects of the
agent’s actions; (ii) the current state of the environment changes only due to the actions exe-
cuted by the agent; and (iii) the agent executes actions until a desired state is finally reached
(simple reachability goal). Although these assumptions can really simplify the automation of
the planning task, deterministic planning still belongs to the pspace-complete complexity
class [1,4]. In addition, simple reachability goal and deterministic environment assumptions
can indeed be inappropriate in various practical situations [22]. Hence, in this work, we con-
sider planning for extended reachability goals in (completely observable) nondeterministic
environments.

2.2 Domains, problems and solutions

Let P �= ∅ be a finite set of atomic propositions, denoting states properties of an environment,
and A �= ∅ be a finite set of actions, representing the agent’s abilities in this environment. A
planning domain is a formal model of the environment’s dynamics and, since the sets P and A

are dependent of the specific environment considered, the pair (P, A) is called the signature
of the planning domain.

controller

current state

action

plan

environment’s dynamics

initial state

planner environment

exogenous event

agent

goal

Fig. 2 The components involved in automated nondeterministic planning

123

330 Auton Agent Multi-Agent Syst (2008) 16:327–344

Definition 1 A planning domain with signature (P, A) is defined by a structureD=〈S,L, T 〉,
where:

– S �= ∅ is a finite set of states;
– L : S �→ 2P is a state labeling function;
– T : S × A �→ 2S is a state transition function.

We assume that 	 ∈ L(s), for every state s ∈ S. We also assume that the set A contains
the trivial action τ and that T (s, τ) = {s}, for every state s ∈ S. When the agent executes the
action τ , the current state remains the same. Intuitively, this action represents the fact that, in
any state, the agent may choose to do nothing. Given a state s ∈ S and an action a ∈ A, the
set of a-successors of s, denoted by T (s, a), is the set of states that can be directly reached
by the execution of a in s.

A planning domain with signature (P, A) can be represented as a transition graph, where
states are labeled with subsets of P and transitions are labeled with elements of A. For exam-
ple, in the transition graph for the planning domain D1, depicted in Fig. 3, the states are
labeled with subsets of the set P = {r, g} and the transitions are labeled with elements of the
set A = {a, b, c}.

A policy (or plan) for a planning domain D with signature (P, A) is a partial function
π : S �→ A, that maps states to actions. The set Sπ of states reachable by a policy π

is {s : (s, a) ∈ π} ∪ {s′ : (s, a) ∈ π and s′ ∈ T (s, a)}. The execution structure of π ,
denoted by Dπ , is the subgraph of D that has Sπ as set of states and that contains all tran-
sitions induced by the actions in π . For instance, the execution structure D1

π1
of the policy

π1 = {(s0, a), (s1, b), (s2, c)}, in the planning domain D1, can be seen in Fig. 4. During the
execution of a policy π , if the agent reaches a state not covered by π , it continues executing
the action τ .

Definition 2 A planning problem is defined by a structure P = 〈D, s0, ϕ〉, where:

– D is a planning domain with signature (P, A);
– s0 ∈ S is the initial state of the environment;
– ϕ is a propositional formula over P, specifying a simple reachability goal.

Given a planning problem, we can distinguish three classes of solutions: weak, strong and
strong-cyclic; each one indicating a different quality of policies.

Definition 3 Let P = 〈D, s0, ϕ〉 be a planning problem, and π be a policy in D (with
execution structure Dπ). We say that π is a:

Fig. 3 The transition graph for
the planning domain D1

s
0

s
1

s

s
2

3

c

a

b

a

a
r

r

r

s
4

s

s
5

6

g

b

ba

c

a

Fig. 4 The execution structure
D1

π1
of policy

π1 = {(s0, a), (s1, b), (s2, c)}
s
0

s
1

s
2 c

a

a
r

r

r s
5g

b

123

Auton Agent Multi-Agent Syst (2008) 16:327–344 331

– weak solution for P , if some path starting from s0 in Dπ reaches a state where ϕ holds;
– strong solution for P , if every path starting from s0 in Dπ is acyclic and reaches a state

where ϕ holds;
– strong-cyclic solution for P , if every path starting in s0 in Dπ reaches a state where ϕ

holds.

Intuitively, a weak solution is a policy that can allow an agent to achieve a goal state;
but due to the nondeterminism, it does not guarantee to do so; a strong solution is a policy
that always achieves a goal state, in spite of nondeterminism; and a strong-cyclic solution
is a policy that always achieves the goal, under the fairness assumption that execution will
eventually exit from all existing cycles.

Note that, according to Definition 2, a planning problem specifies only the planning goal
(through the formula ϕ). It is up to the agent to decide the quality of the solution that will
achieve this planning goal. Indeed, there are specialized algorithms for each one of these
classes of solutions [5,6,9].

2.3 Extended reachability goals

Extended planning goals (i.e., a goal formulation that extends the expressiveness of the sim-
ple reachability goals from classical planning) can be seen as the more general class of goals
that includes, for instance, extended goals for search control [14], extended goals for process
control [21] and extended goals for best policy choice [2]. In this article, we are interested in
a particular kind of extended goal, named extended reachability goal. Formally, an extended
reachability goal is a pair of formulas (ϕ1, ϕ2), where ϕ1 is a condition to be preserved during
the policy execution and ϕ2 is a condition to be achieved at the end of the policy execution.
For instance, the policy π1, depicted in Fig. 4, is a solution for a planning problem where
the extended reachability goal is (r, g), i.e., the goal is to achieve a state that satisfies the
property g, by preserving the property r in every state visited during the policy execution.

Extended reachability goals provides a significant improvement on expressivity to spec-
ify planning problems. Through this kind of goal, besides specifying the desired final states,
we can also establish preferences on the possible intermediate states (i.e., we can impose
constraints on the plan trajectories).

Some interesting variations of extended reachability goals are:

– (, ϕ2): achieves property ϕ2 (simple reachability goal);
– (ϕ1, ϕ2): achieves property ϕ2, by preserving property ϕ1;
– (¬ϕ1, ϕ2): achieves property ϕ2, by avoiding property ϕ1;
– (ϕ1 ∧ ¬ϕ′1, ϕ2): achieves property ϕ2, by preserving ϕ1 and avoiding ϕ′1.

Definition 4 Let P = 〈D, s0, (ϕ1, ϕ2)〉 be an extended planning problem and π be a policy
in D (with execution structure Dπ). We say that π is a:

– weak solution for P , if some path starting from s0 in Dπ passes only through states
satisfying ϕ1, and reaches a state where ϕ2 holds;

– strong solution for P , if every path starting from s0 in Dπ is acyclic, passes only through
states satisfying ϕ1, and reaches a state where ϕ2 holds;

– strong-cyclic solution for P , if every path starting from s0 in Dπ passes only through
states satisfying ϕ1, and reaches a state where ϕ2 holds.

We should emphasize that, even for planning problems with extended reachability goals,
the quality of the solution is still an agent’s decision. The question that arises is: is it also

123

332 Auton Agent Multi-Agent Syst (2008) 16:327–344

possible to specify the desired solution quality within the goal specification? That is, is it
possible to write a formula that expresses both: the planning goal and the desired solution
quality? In the next section, we show that, by using ctl, this is possible only for a subclass
of extended reachability goals. In Sect. 4, we propose a new logic, called α-ctl, that can be
used to specify a larger class of extended goals (with built-in desired solution quality).

3 Planning based on model checking

In this section, we introduce the fundamentals of automated planning based on model check-
ing and show how simple reachability goals can be specified in ctl (a branching time temporal
logic traditionally used as specification language in model checking). We also show that, for
this kind of simple goal, although the ctl’s semantics allows for plan validation, it is inade-
quate for plan synthesis. Following, we show that, when dealing with extended reachability
goals, ctl becomes inadequate not only for plan synthesis but for plan validation as well.

3.1 The model checking framework

Model checking consists of solving the problem K |� ϕ, where K is a formal model of a
system and ϕ is a formal specification of a property to be verified in this system. Essentially, a
model checker (Fig. 5) is an algorithm that receives a pair (K, ϕ) as input and systematically
visits the states of the model K, in order to verify if the property ϕ holds. When all states in K
satisfy property ϕ, the model checker returns success; otherwise, it returns a counter-example
(e.g., a state in the model K where the property ϕ is violated).

When applying the model checking framework to automated planning (e.g., [13]), the
model K describes the planning environment’s dynamics, and the property ϕ describes the
agent’s goal in this environment. Besides the inputs K and ϕ, the planner has an extra input
that is the environment initial state s0. Thus, if (K, s0) |� ϕ, the planner returns a plan (i.e.,
a behavior policy that allows for the agent to achieve its goal); otherwise, the planner returns
failure (Fig. 6).

3.2 The temporal logic ctl

In a nondeterministic environment, an agent is not always capable of knowing exactly what
is the next state of the environment, after performing an action. Therefore, when an agent
selects an action to compose its policy, it has to consider all possible environment changes
that can result from the execution of this action. ctl (Computation Tree Logic) [7] is a
branching time temporal logic that allows for an agent to reason about alternative time lines
(i.e., alternative futures); thus, it seams very “natural” to specify planning goals by using

Fig. 5 The model checking framework

Fig. 6 Planning as model
checking

123

Auton Agent Multi-Agent Syst (2008) 16:327–344 333

this logic. Indeed, ctl is the main formalism that has been used to specify nondeterministic
planning problems and related algorithms based on model checking [5,6,9].

The ctl formulas are composed by atomic propositions, propositional operators, and tem-
poral operators. The symbols © (next), � (invariantly), ♦ (finally) and � (until), combined
with the quantifiers ∃ and ∀, are used to compose the temporal operators of this logic. The
syntax of ctl is inductively defined as:

ϕ ::=	 | p ∈ P | ¬ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′ | ∃ ©ϕ | ∀©ϕ | ∃�ϕ | ∀�ϕ | ∃(ϕ � ϕ′) | ∀(ϕ � ϕ′),

and some useful abbreviations are: ⊥ .= ¬	, ∃♦ϕ
.= ∃(� ϕ), and ∀♦ϕ

.= ∀(� ϕ).
The semantics of ctl is defined over a Kripke structure K = 〈S,L, T 〉, where S is a set

of states, L : S �→ 2P is a state labeling function and T ⊆ S × S is a transition relation. A
path in K is a sequence of states s0, s1, . . . such that si ∈ S and (si , si+1) ∈ T , for all i ≥ 0.
Given a Kripke structure K and a state s0 ∈ S, the ctl satisfiability relation is defined as:
(K, s0) |� 	 for all s0 ∈ S;
(K, s0) |� p iff p ∈ L(s0);
(K, s0) |� ¬ϕ iff (K, s0) �|� ϕ;
(K, s0) |� (ϕ ∧ ϕ′) iff (K, s0) |� ϕ and (K, s0) |� ϕ′;
(K, s0) |� (ϕ ∨ ϕ′) iff (K, s0) |� ϕ or (K, s0) |� ϕ′;
(K, s0) |� ∃©ϕ iff for some path s0, s1, . . . in K, (K, s1) |� ϕ;
(K, s0) |� ∀©ϕ iff for every path s0, s1, . . . in K, (K, s1) |� ϕ;
(K, s0) |� ∃�ϕ iff for some path s0, s1, . . . in K, for i ≥ 0, (K, si) |� ϕ;
(K, s0) |� ∀�ϕ iff for every path s0, s1, . . . in K, for i ≥ 0, (K, si) |� ϕ;
(K, s0) |� ∃(ϕ � ϕ′) iff for some path s0, s1, . . . in K, there exists i ≥ 0 such that

(K, si) |� ϕ′ and, for 0 ≤ j < i, (K, sj) |� ϕ.
(K, s0) |� ∀(ϕ � ϕ′) iff for every path s0, s1, . . . in K, there exists i ≥ 0 such that

(K, si) |� ϕ′ and, for 0 ≤ j < i, (K, sj) |� ϕ.

3.3 Inadequacy of ctl to deal with extended reachability goals

An extended reachability goal (ϕ1, ϕ2), where ϕ1 is a preservation condition and ϕ2 is an
achievement condition, is a wide class of goals that can be partitioned in two distinct sub-
classes, according to the type1 of ϕ1: when ϕ1 is a propositional formula, we have a linear
extended reachability goal, since the validity of ϕ1 depends only on the actual path that leads
to the goal state; on the other hand, when ϕ1 is a temporal formula, we have a branching
extended reachability goal, since the validity of ϕ1 depends not only on the actual path to the
goal, but also on the possible ramifications of this path.

Following, we show that although ctl can be used to specify linear extended reachabil-
ity goals, as well as to validate policies for them, it cannot deal with branching extended
reachability goals (neither to specify these goals, nor to validate policies for them). In addi-
tion, we give some intuition on why this logic is also inadequate to formalize plan synthesis
algorithms for both subclasses of extended reachability goals.

Linear extended reachability goals. Using ctl, a linear extended reachability goal (ϕ1, ϕ2)

with built-in desired solution quality can be specified as following:

– ∃(ϕ1 � ϕ2), when a weak solution is desired;

1 Note that ϕ2 can be a temporal formula, since one may want to reach a state from where all successors have
a certain property. However, its type is not important for the partition of the extended reachability goals class
that we propose in this work.

123

334 Auton Agent Multi-Agent Syst (2008) 16:327–344

– ∀(ϕ1 � ϕ2), when a strong solution is desired; or
– ∀�∃(ϕ1 � ϕ2), when a strong-cyclic solution is desired.

Thus, these formulas specify the planning goal and also the quality desired for the solution
through the ctl’s semantics. Moreover, if ϕ1 is	, a linear extended reachability goal reduces
to a simple reachability goal and, then, it can be equivalently specified as ∃♦ ϕ2, ∀♦ ϕ2, or
∀� ∃♦ ϕ2.

Let P = 〈D, s0, φ〉 be a planning problem, where D is a planning domain, s0 is the initial
state, and φ is a linear extended reachability goal specified in ctl. Let π be a policy in D,
and Dπ be the execution structure of π . By deleting the transition labels in Dπ , we obtain
a corresponding Kripke structure, denoted by K(Dπ). Then, the policy π is a solution (with
the desired quality) for the planning problem P if and only if (K(Dπ), s0) |� φ. As we can
see, the ctl’s semantics (built in the definition of the satisfiability relation |�) can indeed be
used to formalize plan validation algorithms for the linear subclass of extended reachability
goals.

To see why ctl’s semantics is not adequate to formalize plan synthesis algorithms for
linear extended reachability goals, consider the planning domain D1 (Fig. 3). Suppose that
the agent in this domain is initially at state s0 and its goal is to necessarily reach a final state
satisfying property g, passing only through states where the atomic proposition r holds. It
is easy to see that, according to the ctl’s semantics, this linear extended reachability goal
can be specified by the formula ∀(r � g). However, according to this same semantics, it is
also clear that (K(D1), s0) �|� ∀(r � g) (observe that in K(D1) there exists an “unlabeled”
transition from s0 to state s3, where property r does not hold). This means that, from the
planning domain D1, a planner based on ctl (whose semantics cannot distinguish different
types of transitions) would not be able to synthesize a policy that achieves the goal specified
by formula ∀(r � g); and, thus, such planner would stop with failure.

To overcome this limitation on the ctl’s semantics, planners based on model checking
often use specialized algorithms [15] to construct a policy (i.e., a subgraph of the plan-
ning domain) and, then, use the ctl’s semantics only to guarantee that the execution struc-
ture of this policy satisfies the goal specification in ctl. For instance, considering policy
π1 = {(s0, a), (s1, b), (s2, c)} (Fig. 4), it is clear that (K(D1

π1
), s0) |� ∀(r � g).

Thus, although ctl can be used to specify goals in the linear subclass of extended reach-
ability goals, as well as to formalize plan validation algorithms for them, it cannot be used
to formalize plan synthesis algorithms for such goals.
Branching extended reachability goals. The branching subclass of extended reachability
goals comprises those goals where the preserving condition ϕ1 is a temporal formula. For
instance, consider the planning domain D2, depicted in Fig. 7. In this domain, the agent
could be a mobile robot, the proposition r could describe the property of the states where
there exists a battery recharging station and the property g could describe the property of
the final state that the robot wants to reach. In this context, suppose that the agent’s goal is,
starting from the state s0, necessarily to reach a state that satisfies property g, passing only

Fig. 7 The planning domain D2

s
0

s
1

s

s
2

3

a

a

b
c

a
r r

s
4

s

s
5

6

g

b

b

c

a

123

Auton Agent Multi-Agent Syst (2008) 16:327–344 335

Fig. 8 The execution structure
D2

π2
of policy

π2 = {(s0, b), (s3, c), (s6, b)}

s
0

s
3

b
c

r

s

s
5

6

g

b

through states from which a battery recharging station can be necessarily reached in at most
two steps. This extended reachability goal could be specified by the following ctl formula:
∀((r ∨ ∀© r ∨ ∀©∀© r) � g). However, there are two problems with this formulation that
we need to highlight:

– First of all, since ctl’s semantics cannot distinguish among different types of transitions,
it does not allow reasoning about alternative ramifications induced by actions that will not
be actually executed. However, the preserving condition (r ∨ ∀© r ∨ ∀©∀© r) is only
contingent. It does not require that the agent really reaches a battery recharging station,
unless this turn out to be strictly necessary. Thus, it should be clear that the semantics of
the formula ∀((r ∨ ∀© r ∨ ∀©∀© r) � g) does not specify exactly what we need.

– Second, even if this formula could be used to specify the desired goal, we would have
that (K(D2), s0) �|� ∀((r ∨ ∀© r ∨ ∀©∀© r) � g). However, as we can easily see in
Fig. 7:
• there exists a battery recharging station in s0;
• from s3, the battery recharging station in s2 can be reached in two steps;
• from s6, the battery recharging station in s2 can be reached in one step.
Clearly, by following the policy π2 = {(s0, b), (s3, c), (s6, b)}, the agent would achieve
its goal and, therefore, π2 is a solution for the proposed planning problem. Regardless
of this fact, the execution structure D2

π2
(Fig. 8) does not satisfy the goal specified by the

ctl formula ∀((r ∨ ∀© r ∨ ∀©∀© r) � g).

Thus, with this example, we show that ctl is not adequate to deal with branching extended
reachability goals.

4 The new temporal logic α− CTL

In this section, we present the branching time temporal logic α-ctl. Based on this new logic,
we implement a model checker that, in Sect. 5, is adapted for automated planning for extended
reachability goals.

4.1 The syntax of α-ctl

In ctl, a formula ∀©ϕ holds on a state s if and only if it holds on all successors of s,
independently of the actions labeling the transitions from s to its successors. In α-ctl, to
enforce that actions play an important role in its semantics, we use a different set of “dotted”
symbols to represent temporal operators:� (next), � (invariantly), ♦· (finally) and �· (until).

Definition 5 Let p ∈ P be an atomic proposition. The syntax of the logic α-ctl is inductively
defined as:

ϕ ::= p | ¬p | (ϕ ∧ ϕ′) | (ϕ ∨ ϕ′) | ∃ � ϕ | ∀ � ϕ | ∃� ϕ| ∀� ϕ | ∃(ϕ �· ϕ′) | ∀(ϕ �· ϕ′)

According to the α-ctl’s syntax, well-formed formulas are in negative normal form, where
the scope of negation is restricted to the atomic propositions (this allows to easily define a

123

336 Auton Agent Multi-Agent Syst (2008) 16:327–344

Fig. 9 The planning domain D3

s
0

s
1

s

s
2

3

b

a

a

a

p

p s
4q

c

a

c

b

fixpoint semantics for the formulas). Furthermore, all temporal operators are prefixed by a
path quantifier (∃ or ∀). The temporal operators derived from ♦· are defined as:

∃♦· ϕ
.= ∃(�· ϕ)

∀♦· ϕ
.= ∀(�· ϕ)

Although actions are essential in the semantics of α-ctl, note that they are not used to
compose α-ctl formulas. Indeed, when we specify a planning goal, we wish to impose con-
straints only over the states visited during the execution of the plan. In general, constraints
over the actions that will be used to compose a plan are not relevant when we specify the
planning goal. For this reason, we claim that existing actions logics [17,18], which allow
formulas with constraints over actions, are also inadequate to formalize planning algorithms.

4.2 The semantics of α-ctl

Let P �= ∅ be a finite set of atomic propositions and A �= ∅ be a finite set of actions. An
α-ctl temporal model over (P, A) is a transition graph where states are labeled with subsets
of P and transitions are labeled with elements of A. In this temporal model, terminal states
(i.e., states where the only executable action is τ) persist infinitely in time. In other words, a
temporal model for α-ctl is a planning domain or a policy execution structure.

Intuitively, a state s in a temporal model D satisfies a formula ∀ � ϕ (or ∃ � ϕ) if there
exists an action α that, when executed in s, necessarily (or possibly) reaches an immediate
successor of s which satisfies the formula ϕ. In other words, the modality� represents the set
of α-successors of s, for some particular action α ∈ A (denoted by T (s, α)); the quantifier
∀ requires that all these α-successors satisfy ϕ; and quantifier ∃ requires that some of these
α-successors satisfy ϕ.

For instance, consider the domain D3, depicted in Fig. 9. In this domain, T (s0, a) =
{s1, s2} and both states s1 and s2 satisfy p. Thus, by the α-ctl’s semantics, it follows that2

(D3, s0) |� ∀�p. Furthermore, it also follows that (D3, s0) |� ∀�¬p (by choosing action
b in the state s0). This is due to the fact that each occurrence of the modality� can instantiate
a different action α ∈ A and, consequently, the quantification can be made over different sets
of α-successors of the state s0. However, the fact that (D3, s0) |� ∀ � p ∧ ∀ �¬p does not
mean that there exists a policy to achieve both subgoals p and ¬p at the same time3, from
state s0; it only means that, from this state, the agent can choose to reach p or ¬p in the next
current state. This possibility of choosing is very important in planning. In fact, if the agent
cannot make choices, there is no need of planning.

2 Inversely, according to ctl’s semantics, we would have that (D3, s0) �|� ∀©p.
3 Such policy would exist only if it is guaranteed to reach both p and¬p with only one step (the goal specified
by ∀ � (p ∧ ¬p)); but, clearly, this goal cannot be satisfied.

123

Auton Agent Multi-Agent Syst (2008) 16:327–344 337

Before we can give a formal definition of the α-ctl’s semantics, we need to define the
concept of preimage of a set of states. Intuitively, the strong (weak) preimage of a set Y of
states is the set X of those states from which a state in Y can necessarily (possibly) be reached
with one step. For instance, in domain D3 (Fig. 9), the strong preimage of the set Y = {s4}
is the set X = {s2}, since s2 is the only state in D3 from which we can necessarily reach s4

after one step.

Definition 6 Let Y ⊆ S be a set of states. The weak preimage of Y , denoted by T −∃ (Y),
is the set {s ∈ S : ∃a ∈ A . T (s, a) ∩ Y �= ∅}, and the strong preimage of Y , denoted by
T −∀ (Y), is the set {s ∈ S : ∃a ∈ A . ∅ �= T (s, a) ⊆ Y }.

The semantics of the global temporal operators (∃�, ∀�, ∃ �· and ∀ �·) is derived from the
semantics of the local temporal operators (∃� and ∀�), by using least (µ) and greatest (ν)
fixpoint operations.

Definition 7 Let D = 〈S,L, T 〉 be a temporal model with signature (P, A) and p ∈ P be an
atomic proposition. The intension of an α-ctl formula ϕ in D (or the set of states satisfying
ϕ in D), denoted by �ϕ�D , is defined as:

– �p�D = {s : p ∈ L(s)} (by definition, �	�D = S and �⊥�D = ∅)
– �¬p�D = S \ �p�D
– �(ϕ ∧ ϕ′)�D = �ϕ�D ∩ �ϕ′�D
– �(ϕ ∨ ϕ′)�D = �ϕ�D ∪ �ϕ′�D
– �∃ � ϕ�D = T −∃ (�ϕ�D)

– �∀ � ϕ�D = T −∀ (�ϕ�D)

– �∃� ϕ�D = νY.(�ϕ�D ∩ T −∃ (Y))

– �∀� ϕ�D = νY.(�ϕ�D ∩ T −∀ (Y))

– �∃(ϕ �· ϕ′)�D = µY.(�ϕ′�D ∪ (�ϕ�D ∩ T −∃ (Y)))

– �∀(ϕ �· ϕ′)�D = µY.(�ϕ′�D ∪ (�ϕ�D ∩ T −∀ (Y)))

Definition 8 Let D be a temporal model, s be a state in D, and ϕ be an α-ctl formula. The
α-ctl’s satisfiability relation is defined as: (D, s) |� ϕ ⇔ s ∈ �ϕ�D

4.3 A model checker for α-ctl

A model checker for α-ctl can be directly implemented from its semantics. Given a planning
domain D = 〈S,L, T 〉 and an α-ctl formula ϕ, the model checker computes the set C of
states that do not satisfy the formula ϕ in D; then, if C is the empty set, it returns success;
otherwise, it returns C as counter-example.

α-ModelChecker(ϕ,D)

1 C ← S \ Intension(ϕ,D)

2 if C = ∅ then return success
3 else return C

The basic operation on this model checker is implemented by the function Intension, that
inductively computes the intension of the formula ϕ in the model D (see Definition 7) as
following:

Intension(ϕ,D)

1 if ϕ ∈ P then return {s ∈ S : ϕ ∈ L(s)}
2 case ϕ of
3 ¬ϕ1 : return S \ Intension(ϕ1,D)

4 ϕ1 ∧ ϕ2 : return Intension(ϕ1,D) ∩ Intension(ϕ2,D)

123

338 Auton Agent Multi-Agent Syst (2008) 16:327–344

5 ϕ1 ∨ ϕ2 : return Intension(ϕ1,D) ∪ Intension(ϕ2,D)

6 ∃ � ϕ1 : return WeakPreimage(Intension(ϕ1,D),D)

7 ∀ � ϕ1 : return StrongPreimage(Intension(ϕ1,D),D)

8 ∃� ϕ1 : return Intension�(WeakPreimage, ϕ1,D)

9 ∀� ϕ1 : return Intension�(StrongPreimage, ϕ1,D)

10 ∃(ϕ1 �· ϕ2) : return Intension�· (WeakPreimage, ϕ1, ϕ2,D)

11 ∀(ϕ1 �· ϕ2) : return Intension�· (StrongPreimage, ϕ1, ϕ2,D)

In this algorithm, propositional operators are treated in a straightforward way (lines 1–5);
while temporal operators are treated by specialized auxiliary functions (lines 6–11).

Preimage computations To treat local temporal operators (∃� and ∀�), the algorithm
Intension calls the following auxiliary functions:

WeakPreimage(Y,D)

1 return {s ∈ S : ∃a ∈ A . T (s, a) ∩ Y �= ∅}
StrongPreimage(Y,D)

1 return {s ∈ S : ∃a ∈ A . ∅ �= T (s, a) ⊆ Y }
Given a set of states Y ⊆ S and a temporal model D, the function WeakPreimage returns a
maximal set of states X ⊆ S such that, for each s ∈ X, there exists an action a ∈ A whose
execution in state s leads to at least one state inside the set Y . Analogously, the function
StrongPreimage returns a maximal set of states X ⊆ S such that, for each s ∈ X, there
exists an action a ∈ A whose execution in state s leads only to states inside the set Y .

Fixpoint computations To treat global temporal operators, the algorithm Intension calls aux-
iliary functions for fixpoint computations.

The global temporal operators ∃ �· and ∀ �· , which require greatest fixpoint computations,
are treated by the following function:

Intension�(P reimageFunction, ϕ1,D)

1 I ← Intension(ϕ1,D)

2 I ′ ← ∅
3 while I �= I ′ do
4 I ′ ← I

5 I ← I ∩ PreimageFunction(I,D)

6 return I

This function starts by computing the set I of states which satisfy the formula ϕ1 in D;
afterward, iteratively, it computes the preimage of the set I and, by taking the intersection
between this set and its preimage, the function eliminates from I all states which have all tran-
sitions (for PreimageFunction =WeakPreimage), or some transition (for PreimageFunction =
StrongPreimage), leading to states outside of I . This iterative process stops only when a
greatest fixpoint is reached. In this case, the final set I , returned as solution by the function
Intension� , is the semantics of the initial temporal formula (∃� ϕ1 or ∀� ϕ1).

The global temporal operators ∃ �· and ∀ �· , which require least fixpoint computations, are
treated by the following function:

Intension�· (P reimageFunction, ϕ1, ϕ2,D)

1 I1 ← Intension(ϕ1,D)

2 I2 ← Intension(ϕ2,D)

3 I ′2 ← ∅
4 while I2 �= I ′2 do
5 I ′2 ← I2
6 I2 ← (I1 ∩ PreimageFunction(I2,D)) ∪ I2
7 return I2

123

Auton Agent Multi-Agent Syst (2008) 16:327–344 339

This function starts by computing the sets I1 and I2 of states satisfying formulas ϕ1 and ϕ2,
respectively; afterward, iteratively, it computes the intersection between the set I1 and the
preimage of the set I2 (to guarantee that ϕ1 can be maintained through the paths to states
where ϕ2 holds); and, finally, the function takes the union of the resulting intersection and
the set I2 (to guarantee that states which satisfy ϕ2, but not ϕ1, can still be considered in the
final solution). This iterative process stops only when a least fixpoint is reached. In this case,
the final set I2, returned as solution by the function Intension�· , is the semantics of the
initial temporal formula (∃(ϕ1 �· ϕ2) or ∀(ϕ1 �· ϕ2)).

Time complexity Each fixpoint computation, performed by the function Intension� or
Intension�· , costs O(|S|) steps (each one of them involving only propositional and local
temporal operators). Since the number of fixpoint computations to verify a formula ϕ is
equal to the number of global temporal operators that appear in it, denoted by |ϕ|, we con-
clude that the α-ctl model checking complexity is O(|ϕ| × |S|).

Formal properties The following results establish the correctness and the completeness of
the α-ctl model checker.

Theorem 1 Given an α-ctl formula ϕ and a temporal model D with signature (P, A), the
function Intension(ϕ,D) returns the set �ϕ�D .

Proof (sketch) The result follows by induction on the structure of ϕ. ��
Corollary 1 Given an α-ctl formula ϕ and a temporal model D with signature (P, A), the
algorithm α-ModelChecker succeeds if and only if every state in D satisfies the formula ϕ.

Proof (sketch) The result follows directly from Theorem 1. ��

5 Planning with α− CTL

The main works on planning for extended goals either (i) propose an ad hoc plan synthesis
algorithm [15], without proving its correctness through formal analysis; or (ii) propose a new
logic that can be used to specify extended goals and to do plan validation [2], without pre-
senting any plan synthesis algorithm (making the assumption that plans are given a priori). In
this section, we implement a framework for planning for extended reachability goals, using
as basis the α-ctl’s model checker presented in the last section. In this framework, a solution
for a planning problem is obtained as a side effect of the verification of a model D, specifying
a planning environment, with respect to an α-ctl formula ϕ, specifying a planning goal.

5.1 The planning algorithm

Using α-ctl, an extended reachability goal (ϕ1, ϕ2) with built-in desired solution quality can
be specified as following:

– ∃(ϕ1 �· ϕ2), when a weak solution is desired;
– ∀(ϕ1 �· ϕ2), when a strong solution is desired; or
– ∀� ∃(ϕ1 �· ϕ2), when a strong-cyclic solution is desired.

Given a planning problem P = 〈D, s0, ϕ〉, where ϕ is an extended reachability goal specified
in α-ctl, a solution for P can be obtained by the following algorithm:

123

340 Auton Agent Multi-Agent Syst (2008) 16:327–344

α-Planner(P)

1 M ← Model(lfp, ϕ,D)

2 C ← StatesCoveredBy(M)

3 if s0 ∈ C then return Policy(M)

4 else return failure

This algorithm starts by synthesizing a submodel M ⊆ D from ϕ and computing the set C

of states covered by this submodel. Then, if s0 ∈ C, it returns a policy π extracted from M ,
whose execution allows the agent to reach the goal ϕ, from s0, in the domain D; otherwise,
it returns failure.

To synthesize the submodel M , the algorithm α-Planner calls the function Model (vide
Subsect. 5.2), that returns a set M containing states and pairs of states and actions (i.e.,
a submodel). To obtain the covering set of this submodel, α-Planner calls the following
function:

StatesCoveredBy(M)

1 return {s ∈ S : s ∈ M} ∪ {s ∈ S : (s, a) ∈ M}
that returns the union of the sets of terminals and non-terminals states of M . Finally, to
extract a policy from M , the algorithm calls the function Policy(M), that returns a policy π

such that:

– StatesCoveredBy(π) = StatesCoveredBy(M), and
– for every pair (s, a), (s′, a′) ∈ π , if s = s′, then a = a′.

5.2 Model synthesis

The notion of intension of a formula ϕ can be reformulated such that �ϕ�D turns out to be a
subgraph of D containing all the states satisfying ϕ, as well as all the transitions considered
during the selection of these states (we need essentially to redefine preimage functions such
that they collect the pair (s, a), whenever the action a is considered to show that s satisfies
the property ϕ). With this reformulation we can synthesize plans as a collateral effect of the
verification of property ϕ in the temporal model D and it is the main contribution of this
work.

To synthesize a submodel from an α-ctl formula ϕ and a model D, the α-ctl planner
uses the function Model. This function is very similar to the function Intension, used by
the α-ctl model checker presented in the last section. The main difference between these
functions is that the function Model requires an additional parameter that informs the scope
of computation: lfp (that avoids cycles) or gfp (that allows cycles). For instance, to synthe-
size a submodel for a formula containing a global temporal operator specifying an invariant
property (∃� or ∀�), this parameter should be defined as gfp.

Model(scope, ϕ,D)

1 if ϕ ∈ P then return {s ∈ S : ϕ ∈ L(s)}
2 case ϕ of
3 ¬ϕ1 : return S \Model(scope, ϕ1,D)

4 ϕ1 ∧ ϕ2 : return Model(scope, ϕ1,D) ∩Model(scope, ϕ2,D)

5 ϕ1 ∨ ϕ2 : return Model(scope, ϕ1,D) ∪Model(scope, ϕ2,D)

6 ∃ � ϕ1 : return Model�(scope, WeakPreimageMap, ϕ1,D)

7 ∀ � ϕ1 : return Model�(scope, StrongPreimageMap, ϕ1,D)

8 ∃� ϕ1 : return Model�(gfp, WeakPreimageMap, ϕ1,D)

9 ∀� ϕ1 : return Model�(gfp, StrongPreimageMap, ϕ1,D)

10 ∃♦· ϕ2 : return Model�· (scope, WeakPreimageMap,	, ϕ2,D)

11 ∀♦· ϕ2 : return Model�· (scope, StrongPreimageMap,	, ϕ2,D)

12 ∃(ϕ1 �· ϕ2) : return Model�· (scope, WeakPreimageMap, ϕ1, ϕ2,D)

13 ∀(ϕ1 �· ϕ2) : return Model�· (scope, StrongPreimageMap, ϕ1, ϕ2,D)

123

Auton Agent Multi-Agent Syst (2008) 16:327–344 341

Fig. 10 Model synthesis
mechanism for the local temporal
operators (∃� and ∀�) s

s

s
a

b
s

c

b

0

1

2
3

s
5

precomponent P1

submodel M1

Propositional formulas A submodel M synthesized from a propositional formula ϕ and a
model D is the maximal set of states Y ⊆ S such that, for all s ∈ Y , we have that s |� ϕ.
Propositional formulas are treated directly by the function Model, through structural induc-
tion.

Local temporal operators To treat the local temporal operators ∃� and ∀�, the function
Model calls the following auxiliary function:

Model�(scope, P reimageMapFunction, ϕ1,D)

1 M1 ← Model(scope, ϕ1,D)

2 I1 ← PreimageMapFunction(StatesCoveredBy(M1),D)

3 P1 ← Prune�(I1,M1)

4 return M1 ∪ P1

In order to synthesize a submodel of D, from a formula of the form ∃ � ϕ1 or ∀ � ϕ1, this
function starts by synthesizing a submodel M1 from subformula ϕ1 and by computing the
preimage I1 of the set of states covered by this submodel; afterwards, it prunes the set I1

to avoid that new actions could be assigned to states already covered by M1. Finally, the
union of the submodel M1 with the precomponent P1 is returned as the final result. The pairs
(s, a) ∈ P1 guarantee that a policy extracted from M1 ∪P1 satisfies the goal specified by the
initial formula (∃ � ϕ1 or ∀ � ϕ1), as depicted in Fig. 10.

The pruning and preimage computations are performed by the following functions:

Prune�(I1,M1)

1 return {(s, a) ∈ I1 : s �∈ M1}

WeakPreimageMap(C,D)

1 return {(s, a) : s ∈ S, a ∈ A and T (s, a) ∩ C �= ∅}

StrongPreimageMap(C,D)

1 return {(s, a) : s ∈ S, a ∈ A and ∅ �= T (s, a) ⊆ C}

Global temporal operators To treat the global temporal operators ∃� and ∀�, the function
Model calls the following greatest fixpoint function:

Model�(scope, P reimageMapFunction, ϕ1,D)

1 M ← Model(scope, ϕ1,D)

2 M ′ ← ∅
3 while M ′ �= M do
4 M ′ ← M

5 C ← StatesCoveredBy(M)

6 I ← PreimageMapFunction(C,D)

7 M ← Prune�(I, C)

8 return M

In order to synthesize a submodel of D, from a formula of the form ∃ � ϕ1 or ∀ � ϕ1, this
function starts by synthesizing a submodel M from subformula ϕ1. Afterwards, iteratively,

123

342 Auton Agent Multi-Agent Syst (2008) 16:327–344

this submodel is reduced in the following way: first, the preimage I of the set of states cov-
ered by the current submodel M is computed; next, the set I is pruned such that only states
covered by the submodel M are maintained. Then, in the next iteration, the result of this
pruning is taken as the new current submodel M . Proceeding in this way, at each iteration,
states that do not satisfy the invariant property specified by ϕ1 are discarded. Thus, when the
greatest fixpoint is reached, we can guarantee that a policy extracted from the submodel M

computed in the last iteration (and returned as final result of the function) satisfies the goal
specified by the initial formula (∃� ϕ1 or ∀� ϕ1).

The pruning function called by Model� is defined as following:

Prune�(I, C)

1 return {(s, a) ∈ I : s ∈ C}
Finally, to treat the global temporal operators ∃ �· and ∀ �· , the function Model calls the

following least fixpoint function:

Model�· (scope, P reimageMapFunction, ϕ1, ϕ2,D)

1 C1 ← StatesCoveredBy(Model(lfp, ϕ1,D))

2 M2 ← Model(scope, ϕ2,D)

3 M ′2 ← ∅
4 while M2 �= M ′2 do
5 M ′2 ← M2
6 C2 ← StatesCoveredBy(M2)

7 I2 ← PreimageMapFunction(C2,D)

8 P2 ← Prune�· (scope, I2, C1, C2)

9 M2 ← M2 ∪ P2
10 return M2

In order to synthesize a submodel of D, from a formula of the form ∃(ϕ1 �· ϕ2) or ∀(ϕ1 �· ϕ2),
this function starts by computing the set C1 of states that satisfy the subformula ϕ1 and
synthesizing a submodel M2 from the formula ϕ2. Afterwards, iteratively, the submodel M2

is expanded in the following way: first, the preimage I2 of the set of states covered by the
current submodel M2 is computed; next, the set I2 is pruned such that only states that also
belong to the set C1 are maintained in the precomponent P2 (if cycles need to be avoided
(scope = lfp), the pruning function also deletes from P2 all states already covered by M2).
Then, the union of the submodel M2 with its precomponent P2 is taken as the new submodel
M2 to be considered in the next iteration. In this way, at each iteration, the initial submodel
M2 is expanded with new pairs (s, a), such that s ∈ C1 and the execution of the action a in
the state s leads to states in M2. Thus, when the least fixpoint is reached, we can guarantee
that a policy extracted from the submodel M2 computed in the last iteration (and returned as
final result) satisfies the goal specified by the initial formula (∃(ϕ1 �· ϕ2) or ∀(ϕ1 �· ϕ2)).

The pruning function called by Model�· is defined as following:

Prune�· (scope, I2, C1, C2)

1 P2 ← {(s, a) ∈ I2 : s ∈ C1}
2 if scope = lfp then P2 ← {(s, a) ∈ P2 : s �∈ C2}
3 return P2

5.3 Formal properties

The following theorems, whose proofs are presented in [19,20], establish some formal prop-
erties of the α-ctl planner.

Theorem 2 Let P = 〈D, s0, ∃(ϕ1 �· ϕ2)〉 be a planning problem. If P has a solution, then
the policy returned by α-Planner(P) is a weak solution for P .

123

Auton Agent Multi-Agent Syst (2008) 16:327–344 343

Theorem 3 Let P = 〈D, s0,∀(ϕ1 �· ϕ2)〉 be a planning problem. If P has a solution, then
the policy returned by α-Planner(P) is a strong solution for P .

Theorem 4 Let P = 〈D, s0,∀ � ∃(ϕ1 �· ϕ2)〉 be a planning problem. If P has a solution,
then the policy returned by α-Planner(P) is a strong-cyclic solution for P .

Theorem 5 Let P = 〈D, s0, ϕ〉 be a planning problem for an extended reachability goal ϕ.
Then, α-Planner(P) fails if and only if P has no solution.

Theorem 6 The shortest execution path of a policy π , returned by the call to α-Planner

(〈D, s0, ∃(ϕ1 �· ϕ2)〉), is minimum in the best case.

Theorem 7 The longest execution path of a policy π , returned by the call to α-Planner

(〈D, s0,∀(ϕ1 �· ϕ2)〉), is minimum in the worst case.

6 Conclusion

Practical applications for automated planning require reliable plans for complex goals [12].
However, although such requirement can only be guaranteed by mean of formal specifica-
tion and analysis, few works in the planning literature make use of formal methods for plan
synthesis and plan validation [5,6,9]. Besides, in general, those works are related to plan-
ning based on model checking techniques, for simple reachability goals in nondeterministic
environments [13].

In this work, we introduce the class of extended reachability goals and, through examples,
we evince that the ctl’s semantics is inadequate to specify goals in this class (with built-in
desired solution quality: weak, strong or strong-cyclic) and to formalize plan synthesis and
validation as well. Motivated by this scenario, we have proposed a new temporal logic, named
α-ctl. Unlike other existing action logics found in literature [17,18], the proposed logic does
not make use of actions to compose formulas. Nevertheless, the actions play an important
role in α-ctl’s semantics by allowing the definition of special purpose temporal operators.
Based on this new logic, we also implement a planning framework capable of synthesizing
policies for extended reachability goals with built-in desired solution quality. By proceeding
in this way, instead of constructing plans in an ad hoc fashion to be later validated, we can
synthesize plans whose validity is an immediate consequence of a well formalized synthesis
process.

It is important to note that the existing works on planning for extended goals either propose
an ad hoc planning algorithm [15], without proving its validity through formal analysis; or
propose a new logic that can be used to specify extended goals and do plan validation [2],
without presenting any planning algorithm (making the assumption that policies are given
a priori). In the present work, we provide both: a logic that can be used as a formal lan-
guage to specify extended reachability goals and a planning framework based on this logic.
Hence, this work presents important contributions for the planning community as well for the
logic-based agents community. The first one now acquires reliable plans for more complex
type of goals; while the second can now make use of a new formal mechanism capable of
verifying properties that, as far as we know, could not have been verified by any mechanisms
previously proposed.

Finally, we need stress that the main purpose of this work was not to offer an efficient
implementation of a planner, but to show that it is possible to implement a logic-based agent
that guarantees the quality of automated synthesized plans for extended reachability goals.

123

344 Auton Agent Multi-Agent Syst (2008) 16:327–344

However, the efficiency of our planner can be highly improved with the use of bdds [3],
resulting in an extremely efficient symbolic version of the α-ctl planner proposed in this
paper.

Acknowledgements We thank FAPESP (grant 04/09568-0) for financial support and the three anonymous
reviewers for the suggestions and comments.

References

1. Backstrom, C. (1995). Expressive equivalence of planning formalisms. Artificial Intelligence, 76(1-2),
17–34.

2. Baral, C., & Zhao, J. (2006). Goal specification, non-determinism and quantifying over policies. In:
AAAI-2006, pp. 231–237.

3. Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys, 24(3), 293–318.

4. Bylander, T. (1994). The computational complexity of propositional STRIPS planning. Artificial Intelli-
gence, 69(1-2), 165–204.

5. Cimatti, A., Giunchiglia, F., Giunchiglia, E., & Traverso, P. (1997). Planning via model checking: A
decision procedure for AR. In 4th European conference on planning (ECP’99), vol. 1348, pp. 130–142.

6. Cimatti, A., Roveri, M., & Traverso, P. (1998). Strong planning in non-deterministic domains via model
checking. In AIPS, pp. 36–43.

7. Clarke, E. M., & Emerson, E. A. (1982). Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Logic of programs, workshop (pp. 52–71). London, UK: Springer-
Verlag.

8. Clarke, E. M., & Wing, J. (1996). Formal methods: state of the art and future directions. In ACM Computing
Systems Surveys, vol. 28.

9. Daniele, M., Traverso, P., & Vardi, M. Y. (1999). Strong cyclic planning revisited. In 5th European
conference on planning (ECP’99), vol. 1809, pp. 35–48.

10. Fikes, R. E., & Nilsson, N. J. (1990). STRIPS: A new approach to the application of theorem proving to
problem solving. In J. Allen, J. Hendler, & A. Tate (Eds.), Readings in planning (pp. 88–97). San Mateo,
CA: Kaufmann.

11. Franklin, S., & Graesser, A. (1996). Is it an Agent, or just a Program?: A Taxonomy for Autonomous
Agents. In Intelligent agents III. agent theories, architectures and languages (ATAL’96), vol 1193, Berlin,
Germany, Springer-Verlag.

12. Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning: Theory and practice. USA: Morgan
Kaufmann Publishers Inc.

13. Giunchiglia, F., & Traverso, P. (1999). Planning as model checking. In 5th European conference on
planning (ECP’99), vol. 1809, pp. 1–20.

14. Kabanza, F., Barbeau, M., & St.-Denis, R. (1997). Planning control rules for reactive agents. Artificial
Intelligence, 95(1), 67–11.

15. Dal Lago, U., Pistore, M., & Traverso, P. (2002). Planning with a language for extended goals. In Eigh-
teenth National Conference on Artificial Intelligence (pp. 447–454). CA, USA: Menlo Park.

16. Müller-Olm, M., Schimidt, D., & Steffen, B. (1999). Model checking: A tutorial introduction. In SAS’99,
LNCS 1694, pp. 330–354.

17. De Nicola, R., & Vaandrager, F. (1990). Action versus state based logics for transition systems. In Pro-
ceedings of the LITP spring school on theoretical computer science on Semantics of systems of concurrent
processes. New York, NY: Springer-Verlag, pp. 407–419.

18. Pecheur, C., & Raimondi, F. (2006). Symbolic model checking of logics with actions. In MoChArt 2006
(pp. 1215–1222). Springer Verlag.

19. Pereira, S. L. (2007). Planning under uncertainty for extended reachability goals. PhD thesis, IME-USP.
20. Pereira, S. L., & Barros, L. N. (2007). Nondeterministic planning based on α-ctl: implementation and

formal properties. Technical Report RT-MAC-2007-11, IME-USP, São Paulo, Brasil.
21. Ramadge, P. J. G., & Wonham, W. M. (1989). The control of discrete event systems. Proceedings of the

IEEE, 77(1), 81–98.
22. Russell, S., & Norvig, P. (2002). Artificial Intelligence: a modern approach (2nd ed.). New Jersey, USA:

Prentice-Hall.
23. Saiedian, H. (1996). An invitation to formal methods. IEEE Computer, 29(4), 16–30.

123

	A logic-based agent that plans for extended reachability goals
	Abstract
	Introduction
	Automated planning
	Nondeterministic environments
	Domains, problems and solutions
	Extended reachability goals
	Planning based on model checking
	The model checking framework
	The temporal logic ctl
	Inadequacy of ctl to deal with extended reachability goals
	The new temporal logic - 11.5ptheight.7depth.3widthCTL
	The syntax of -ctl
	The semantics of -ctl
	A model checker for -ctl
	Planning with - 11.5ptheight.7depth.3widthCTL
	The planning algorithm
	Model synthesis
	Formal properties
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

