
Auton Agent Multi-Agent Syst (2008) 16:187–209
DOI 10.1007/s10458-007-9025-6

Agents that argue and explain classifications

Leila Amgoud · Mathieu Serrurier

Published online: 28 December 2007
Springer Science+Business Media, LLC 2007

Abstract Argumentation is a promising approach used by autonomous agents for reasoning
about inconsistent/incomplete/uncertain knowledge, based on the construction and the com-
parison of arguments. In this paper, we apply this approach to the classification problem,
whose purpose is to construct from a set of training examples a model that assigns a class
to any new example. We propose a formal argumentation-based model that constructs argu-
ments in favor of each possible classification of an example, evaluates them, and determines
among the conflicting arguments the acceptable ones. Finally, a “valid” classification of the
example is suggested. Thus, not only the class of the example is given, but also the reasons
behind that classification are provided to the user as well in a form that is easy to grasp. We
show that such an argumentation-based approach for classification offers other advantages,
like for instance classifying examples even when the set of training examples is inconsistent,
and considering more general preference relations between hypotheses. In the particular case
of concept learning, the results of version space theory developed by Mitchell are retrieved
in an elegant way in our argumentation framework. Finally, we show that the model satisfies
the rationality postulates identified in argumentation literature. This ensures that the model
delivers sound results.

Keywords Argumentation · Classification

This article extends and revises results presented in preliminary form in the paper [9].

L. Amgoud (B) · M. Serrurier
Institut de Recherche en Informatique de Toulouse, IRIT, Université Paul Sabatier,
118, route de Narbonne, 31062 Toulouse Cedex, France
e-mail: amgoud@irit.fr

M. Serrurier
e-mail: serrurier@irit.fr

123

188 Auton Agent Multi-Agent Syst (2008) 16:187–209

1 Introduction

A rational agent can express claims and judgments, aiming at reaching a decision, a
conclusion, or informing, convincing, negotiating with other agents. Pertinent information
may be insufficient or on the contrary there may be too much relevant but partially incoherent
information. In case of multi-agent interaction, conflicts of opinions between agents are inev-
itable. Thus, agents can be assisted by argumentation, a process based on the exchange and
the valuation of interacting arguments which support opinions, claims, proposals, decisions.

Argumentation has become an Artificial Intelligence keyword for the last 15 years. It is
also gaining increasing interest in multi-agent systems research community. Argumentation-
based techniques are used to specify autonomous agent reasoning, such as belief revision,
handling inconsistency in knowledge bases [3, 18, 32], decision making under uncertainty
[8, 11, 17], merging information coming from different sources [5, 7], practical reasoning
[1, 31], and goal generation [20]. Argumentation is also used for modeling multi-agent inter-
action. Indeed, since the seminal work by Walton and Krabbe [33] on the different categories
of dialogue, different argumentation-based systems have been proposed for persuasion dia-
logues [6, 27], negotiation [2, 21, 22, 26], and inquiry dialogues [10].

Classifying objects or concepts is another important agent reasoning task. Indeed, an agent
may want to classify a concept or an object by its own, or even with the help of other agents
through dialogues. The basic idea behind a classification problem for objects in a particular
domain is to separate these objects into smaller classes, and giving criteria for determining
whether a particular object in the domain is in a particular class or not. For instance, one
may want to classify animals; the classes here are birds, mammals, reptiles, fish, amphibi-
ans, arthropods, etc. Several classification systems have been proposed in the literature (for
instance [12, 28, 30]). They rely on techniques in which a consistent collection of training
examples is provided, as well as a number of classes, called also clusters. Each training
example has the same structure, consisting for instance of a number of attribute/value pairs.
One of these attributes represents the class of the example. The problem is to determine a
model that predicts correctly the value of the class attribute of a new example. The model is
intended to be sufficiently general in order to be reused on new examples. When the concept
to learn is binary, i.e., examples of that concept can be either true or false, the problem is
called concept learning.

In this paper, we propose to use argumentation techniques for modeling the above clas-
sification problem. That problem is thus reformulated as follows: given a set of training
examples and a set of hypotheses, what should be the class of a new example? To answer this
question, arguments are constructed in favor of all the possible classifications of that example.
A classification can come either from a hypothesis, or from a training example. The obtained
arguments may be conflicting since it may be the case that the same example is affected to
different classes. Finally, a “valid” classification of the example is suggested. Thus, not only
the class of the example is given, but also the reasons behind that classification are provided
to the user as well in a form that is easy to grasp. We show that the results returned by the
proposed argumentation framework are sound since the framework satisfies the rationality
postulates defined in [13].

In addition to the explanatory power of argumentation, an argumentation-based approach
for classification offers other advantages, like for instance classifying examples even when
the set of training examples is inconsistent, and considering more general preference relations
between hypotheses. Moreover, we show that in the particular case of concept learning, the
results of the version space theory developed by Mitchell in [23] are retrieved in an elegant
way in our argumentation framework. Indeed, the acceptability semantics defined in [14]

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 189

allow us to identify and to characterize the version space as well as its lower and upper
bounds. In summary, this paper proposes a “theoretical” framework for handling, analyzing
and explaining the problem of classification. The model has the following features that make
it original and flexible:

(1) it handles (i) the case of a consistent set of training examples; (ii) the case of an incon-
sistent set of training examples; and (iii) the case of an empty set of training examples.
Note that the standard approach for classification handles only the case of consistent
training examples.

(2) it allows one to reason directly on the set of hypotheses;
(3) examples are classified on the basis of the whole set of hypotheses rather than only one

hypothesis as it is the case in standard classification models. Indeed, in the standard
approach, a unique hypothesis is chosen, and all the new examples are classified on the
basis of that hypothesis.

(4) it proposes new and intuitive decision criteria for choosing the class of an example.
(5) it computes in an elegant way the version space as well as its upper and lower bounds

of the version space model of Mitchell.

The paper is organized as follows. Section 2 presents the classification problem. Section 3
introduces the basic argumentation framework of Dung. Section 4 introduces our argumenta-
tion-based model for classification as well as its properties. In Sect. 5, we show how the results
of version space theory are retrieved in our model. Section 6 is devoted to some concluding
remarks and perspectives. The proofs are given in an appendix at the end of the document.

2 Classification problem

In a classification problem, examples are described using a feature space, denoted by a
set X . Elements of X may be, for instance, pairs (attribute, value), first order facts, etc. The
set X is equipped with an equivalence relation ≡. The different classes are gathered in a set
C = {c1, . . . , cn}, called concept space. Elements of C are assumed to be distinct. Let us
illustrate the above concepts through the following example where an agent tries to learn the
concept ‘sunny day’. This example is borrowed from [23].

Example 1 (Learning the concept sunny day) In this example, the features space is defined
on the basis of pairs (attribute, value). Three attributes are considered: pressure, temperature,
and humidity. Each of them may take different values as described in table below.

Attribute Possible values

Pressure Low, Medium, High
Temperature Low, Medium, High

Humidity Low, Medium, High

The features space contains all the possible combinations of the three attributes. Examples
of elements of X are:

• (Pressure, Low)∧ (Temperature, Low)∧ (Humidity, Low)
• (Pressure, Low)∧ (Temperature, Low)∧ (Humidity, Medium)
• (Pressure, Low)∧ (Temperature, Low)∧ (Humidity, High)
• (Pressure, Low)∧ (Temperature, Medium)∧ (Humidity, Low)
• . . .

123

190 Auton Agent Multi-Agent Syst (2008) 16:187–209

The concept to learn is binary, thus C = {0, 1} where 0 means that the day is not sunny, and
1 holds for a sunny day.

In what follows, we call an example any pair (x, c) where x ∈ X and c ∈ C. However,
at some places we may refer only to x for short. The meaning of the pair (x, c) is that the
example x belongs to the class c.

A classification model takes as input a set S of m training examples defined as follows:

S = {(xi , ci) such that xi ∈ X and ci ∈ C, i = 1, . . . , m}
Information in S is supposed to be true, thus, new examples should be classified using S as
a reference.

Example 2 (Example 1 cont.) Let us assume that four training examples are given. They are
summarized in table below. For instance (pressure, low) ∧ (temperature, medium) ∧ (humid-
ity, high) is a negative example for the concept a sunny day, whereas (pressure, medium) ∧
(temperature, medium) ∧ (humidity, low) is a positive one.

Pressure Temperature Humidity Sunny

Low Medium High 0
Medium Medium Low 1

Low Medium Medium 0
Medium High Medium 1

An important notion in classification is that of consistency. In fact, a set of examples is said
to be consistent if it does not contain two logically equivalent examples with two different
classes. Formally:

Definition 1 (Consistency) Let T = {(xi , ci)i=1,...,n such that xi ∈ X and ci ∈ C} be a set
of examples. T is consistent iff �(x1, c1), (x2, c2) ∈ T such that x1 ≡ x2 and c1 �= c2.
Otherwise, T is said to be inconsistent.

Another important input of a classification model is a hypotheses space H which may be, for
instance, decision trees, sets of rules, neural nets, etc. A hypothesis h is a mapping from X
to C (i.e., h: X �→ C). Thus, it classifies all the elements of the features space. Moreover, it
does that in a coherent way, i.e. it puts each example in a unique class. Let us illustrate this
notion of hypotheses space through the following examples.

Example 3 (Example 1 cont.) In this example we assume that the hypotheses space H is the
space of constraints on the values of each attribute. Indeed, the constraints are conjunctions
of accepted values of attributes. The special constraint ∅ (resp. ?) means that no (resp. all)
values of attributes are accepted. If a vector of values of attributes match all the constraints,
then it is considered as a positive example, otherwise it is a negative one. The hypothe-
ses 〈∅,∅,∅〉 and 〈?, ?, ?〉 are respectively the lower and the upper bound of the hypothesis
space H.

Let us now consider another classification example in which hypotheses are encoded by
decision trees.

Example 4 The concept to learn is whether it is possible for a child to play with his friend
after school or not. The answer to this question is either yes or no, thus, C = {yes, no}. The
answer depends on four binary variables: Homework done, Mother’s mood is good, nice
weather and afternoon snack taken. Table below summarizes eight training examples.

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 191

Homework done Mother’s mood Nice weather Afternoon snack Answer
good taken

True False True False Yes
False True False True Yes
True True True False Yes
True False True True Yes
False True True True No
False True False False No
True False False True No
True True False False No

The hypotheses space in this example is the set of all possible decision trees that may be
built from the features space. A decision tree is a tree whose nodes are the binary variables.
Branches starting from a node correspond to possible values of the node. Finally, the leaves
correspond to classes. Figure below depicts an example of a decision tree, thus a hypothesis
h of H.

mother’s mood good

homeworks
done

no

no
no

yes

yes

nice
weather

true

true

true

true

false

false

false

false

afternoon
snack taken

Note that the above hypothesis classifies correctly the eight training examples. Unfortu-
nately, not all hypotheses do that. Figure below depicts a hypothesis that does not classify
correctly the last training example.

mother’s mood good

homeworks
done

noyes

yes

true

true

false

false

Before defining the output of the framework, let us first introduce a key notion, that of
soundness.

123

192 Auton Agent Multi-Agent Syst (2008) 16:187–209

Definition 2 (Soundness) Let h ∈ H. A hypothesis h is sound with respect to a training
example (x, c) ∈ S iff h(x) = c. h is said to be sound with S iff ∀(xi , ci) ∈ S, h is sound
w.r.t (xi , ci).

The general task of classification is to identify a unique hypothesis h ∈ H that is sound
with respect to the training examples. This hypothesis will be next used for classifying any
new example. The main question is then “how this hypothesis is chosen among all elements
of H?” The most common approach for identifying this hypothesis is to use a greedy explora-
tion of the hypotheses space, guided by a preference relation on hypotheses. An example of a
preference relation is the one based on utility functions. Utility functions are generally based
on the accuracy of the hypotheses (proportion of well classified examples) weighted by some
complexity criteria (number of rules, etc.). Utility functions encode usually a total order.
Another category of preference relations are the so-called syntactic relations. These may
represent for instance entailment or subsumption in the logical case. In this case it encodes
a partial preorder on H.

3 Abstract argumentation framework

Argumentation is a promising approach for handling inconsistent knowledge, based on the
justification of plausible conclusions by arguments. An argument is a reason for believing a
claim, for doing an action, etc. Since knowledge may be inconsistent, arguments may be con-
flicting too. Thus, it is important to determine which arguments to keep among the conflicting
ones, and finally to determine which conclusions to draw from the whole available knowl-
edge. In summary, argumentation is a four steps process: (1) constructing arguments and
counter-arguments, (2) defining the strengths of those arguments, (3) evaluating the accept-
ability of the different arguments, and (4) concluding or defining the justified conclusions.
In [14], an argumentation system is defined as follows:

Definition 3 (Argumentation system) An argumentation system is a pair AS = 〈Arg, R〉
where Arg is a set of arguments and R ⊆ Arg × Arg is an attack relation. An argument A
attacks an argument B iff (A, B) ∈ R (or ARB).

In the above definition arguments are abstract entities. Their origin and structure are left
unknown. Note that with each argumentation system is associated a directed graph whose
nodes are the different arguments, and the edges represent the attack relation between them.
Let us illustrate the above concepts through the well-known example of Nixon Diamond.

Example 5 (Nixon Diamond) The scenario is described as follows:

• Usually, Quakers are pacifist
• Usually, Republicans are not pacifist
• Nixon is both a Quaker and a Republican

In this example, two arguments can be built. The first one is in favor of being pacifist and the
second is against being pacifist.

• A: Nixon is a pacifist since he is a Quaker
• B: Nixon is not a pacifist since he is a Republican

It is clear that the two arguments are conflicting with each other. Thus, Arg = {A, B} and
R = {(A, B), (B, A)}. The graph associated with this argumentation system is depicted in
figure below.

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 193

Among all the conflicting arguments, it is important to know which arguments to keep for
inferring conclusions or for making decisions. In [14], different semantics for the notion of
acceptability have been proposed. Let us recall them here.

Definition 4 (Conflict-free, Defence) Let B ⊆ Arg.

• B is conflict-free iff �Ai , A j ∈ B such that AiRA j .
• B defends an argument Ai iff for each argument A j ∈ Arg, if A j RAi , then ∃Ak ∈ B

such that AkRA j .

Example 6 (Example 5 Cont.) It is clear that the sets {A} and {B} are conflict-free. However,
the set {A, B} is not. Moreover, The set {A} defends the argument A since A attacks its
unique attacker B. Similarly, {B} defends B against A.

Definition 5 (Acceptability semantics) Let B be a conflict-free set of arguments, and let

F : 2Arg �→ 2Arg be a function such that F(B) = {A | B defends A}.
• B is a complete extension iff B = F(B).
• B is a grounded extension iff it is the minimal (w.r.t. set-inclusion) complete extension.
• B is a preferred extension iff it is a maximal (w.r.t. set-inclusion) complete extension.
• B is a stable extension iff it is a preferred extension that attacks all arguments in Arg\B.

Example 7 Let us consider the following argumentation system.

There are three complete extensions: ∅, {E} and {F}. The empty set is the grounded exten-
sion of this argumentation system. Note that, the system has two preferred extensions ({E}
and {F}), however, it has no stable extension. Indeed, the set {E} (resp. {F}) does not attack
the arguments A, B and C .

Any argumentation system has only one grounded extension which may be empty as it is
the case in the previous example. It contains all the arguments that are not attacked, and also
the arguments which are defended directly or indirectly by non-attacked arguments. In [14],
it has been shown that each argumentation system has at least one preferred extension. More-
over, each stable extension is a preferred one, but the reverse is not true (as can be checked in
the above example). When the preferred and stable extensions of an argumentation system
coincide, that system is said to be coherent. In [15], it has been proved that when the directed
graph associated with an argumentation system has no odd length cycles, then that system is
coherent.

Proposition 1 (Coherence condition [15]) If the graph associated with an argumentation
system AS has no odd length cycles, then AS is coherent.

Now that the acceptability semantics are defined, we are ready to define the status of any
argument.

123

194 Auton Agent Multi-Agent Syst (2008) 16:187–209

Definition 6 (Argument status) Let 〈Arg, R〉 be an argumentation system, and E1, . . . , En

its extensions under a given semantics. Let a ∈ A.

• a is skeptically accepted iff a ∈ Ei , ∀Ei with i = 1, . . . , n.
• a is credulously accepted iff ∃Ei such that a ∈ Ei .
• a is rejected iff �Ei such that a ∈ Ei .

It is clear from the above definition that if an argument skeptically accepted, then it is also
credulously accepted. However, the converse is not true.

4 An argumentation framework for Classification

The aim of this section is to propose an instantiation of the abstract framework of Dung that
allows the classification of examples. Throughout this section, we will consider a features
space X , a concept space C = {c1, . . . , cn}, a (maybe inconsistent) set S = {(xi , ci) such
that xi ∈ X and ci ∈ C, i = 1, . . . , m} of m training examples, a hypotheses space H that is
equipped with a preference relation . Thus, ⊆ H × H. This preference relation may be
any one of those studied in the literature. For the purpose of generality, in this paper we don’t
restrict ourselves to particular relations. The only assumption we make is that the relation
is a partial preorder (i.e., reflexive and transitive). For two hypotheses h1 and h2, the notation
h1 h2 means that h1 is at least as good as h2.

4.1 The classification model

In order to instantiate the abstract framework of Dung, one needs to define the set A of
arguments as well as the attack relation between those arguments.

In our particular application, an agent argues about classifications, thus it builds arguments
in favor of assigning particular classes from C to an example in X . Indeed, an argument in
favor of a pair (x, c) represents the reason for assigning the class c to the example x . Two
reasons can be distinguished:

(1) (x, c) is a training example in S,
(2) there exists a hypothesis h ∈ H that classifies x in c.

Definition 7 (Argument) An argument is a triplet A = 〈h, x, c〉 such that:

(1) h ∈ H, x ∈ X , c ∈ C
(2) If h �= ∅, then c = h(x)

(3) If h = ∅, then (x, c) ∈ S
h is called the support of the argument, and (x, c) its conclusion. Let Example(A) = x ,
and Class(A) = c.
We will call A the set of arguments built from (H, X , C).

Note that from the above definition, for any training example (xi , ci) ∈ S,∃〈∅, xi , ci 〉 ∈ A.
Let AS = {〈∅, x, c〉 ∈ A}, i.e., the set of arguments coming from the training examples.
When the set of training examples is not empty, the set AS is not empty as well.

Proposition 2 Let S be a set of training examples.

• |S| = |AS |1

1 || denotes the cardinal of a given set.

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 195

• If S is non-empty, then AS �= ∅
It can also be checked that each example x ∈ X has exactly |H| arguments in its favor

coming from hypotheses. Formally:

Proposition 3 Let x ∈ X . |{〈hi , x, ci 〉 ∈ A such that hi �= ∅}| = |H|.
Let us illustrate the notion of argument through Example 1.

Example 8 In Example 1, there are exactly four arguments with an empty support, and they
correspond to the training examples:

• a1 = 〈∅, (pressure, low) ∧ (temperature, medium) ∧ (humidity, high), 0〉
• a2 = 〈∅, (pressure, medium) ∧ (temperature, medium) ∧ (humidity, low), 1〉
• a3 = 〈∅, (pressure, low) ∧ (temperature, medium) ∧ (humidity, medium), 0〉
• a4 = 〈∅, (pressure, medium) ∧ (temperature, high) ∧ (humidity, medium), 1〉
There are also arguments with a non-empty support such as:

• a5 = 〈〈?, medium∨high, ?〉, (pressure, low) ∧ (temperature, high) ∧ (humidity, high),
1〉

• a6 = 〈〈medium∨high, ?, ?〉, (pressure, low) ∧ (temperature, high) ∧ (humidity, high),
0〉

• a7 = 〈〈medium, medium∨high, ?〉, (pressure, low) ∧ (temperature, high) ∧ (humidity,
high), 0〉

In [3, 32], it has been argued that arguments may have different strengths depending
on the quality of information used to construct them. In [32], for instance, arguments built
from specific information are stronger than arguments built from more general ones. In our
particular application, it is clear that arguments with an empty support are stronger than
arguments with a non-empty one. This reflects the fact that classifications given by training
examples take precedence over ones given by hypotheses in H. It is also natural to consider
that arguments based on most preferred hypotheses are stronger than arguments based on
less preferred ones.

Definition 8 (Comparing arguments) Let 〈h, x, c〉, 〈h′, x ′, c′〉 be two arguments of A.
〈h, x, c〉 is preferred to 〈h′, x ′, c′〉, denoted by 〈h, x, c〉Pref〈h′, x ′, c′〉, iff:

1. h = ∅ and h′ �= ∅, or
2. h h′.

Proposition 4 The relation Pref is a partial preorder.

In what follows, Pref� will denote the strict relation associated with Pref, i.e., for
A, B ∈ A, APref� B iff APrefB and not(BPrefA).

Now that the set of arguments is defined, it is possible to define the attack relation R
between arguments in A. There are two ways in which an argument A can attack another
argument B: (1) by rebutting its conclusion, or (2) by undercutting its support.

In the case of rebutting, two arguments classify the same example in different classes. This
relation is also used in argumentation literature [16], in particular for handling inconsistency
in knowledge bases. The idea is that there is an argument in favor of a statement and another
argument against it, i.e., in favor of its negation.

Definition 9 (Rebutting) Let 〈h, x, c〉, 〈h′, x ′, c′〉 be two arguments of A. 〈h, x, c〉 rebuts
〈h′, x ′, c′〉 iff:

123

196 Auton Agent Multi-Agent Syst (2008) 16:187–209

• x ≡ x ′
• c �= c′

Example 9 In example 8, we have for instance, the argument a5 rebuts a6, a5 rebuts a7, a6

rebuts a5, and a7 rebuts a5.

The idea behind the undercutting relation is to undermine a premise used in another
argument [16]. In our case, an argument A undercuts an argument B when the support of
B classifies in a different way the example of the conclusion of A. This relation is only
restricted to training examples. Indeed, only arguments built from training examples are
allowed to undercut other arguments. Its role is to penalize hypotheses that do not classify
correctly the given training examples. The idea behind this is that training examples are the
only, in some sense, certain information that one has, and thus cannot be defeated by hypoth-
esis. However, hypotheses have controversial status in the sense that their classifications of
examples may be incorrect.

Definition 10 (Undercutting) Let 〈h, x, c〉, 〈h′, x ′, c′〉 be two arguments of A. 〈h, x, c〉
undercuts 〈h′, x ′, c′〉 iff:

• h = ∅
• h′(x) �= c

Example 10 In example 8, we have for instance, the argument a1 undercuts a5, and a3

undercuts a5.

Let us consider another example in order to illustrate more the importance of this relation.

Example 11 Let us assume that X = {x1, x2, x3}, C = {c1, c2}, S = {(x1, c1), (x2, c2)}, and
H = {h1, h2}, where h1(x1) = c1, h1(x2) = c2, h1(x3) = c1, h2(x1) = c2, h2(x2) = c2,
h2(x3) = c2. The arguments that may be built from these data are summarized in table below:

a1 = 〈∅, x1, c1〉 a3 = 〈h1, x1, c1〉 a6 = 〈h2, x1, c2〉
a2 = 〈∅, x2, c2〉 a4 = 〈h1, x2, c2〉 a7 = 〈h2, x2, c2〉

a5 = 〈h1, x3, c1〉 a8 = 〈h2, x3, c2〉
If we consider only the rebut relation, we will get two conflict-free extensions of arguments
that contain arguments coming from the two training examples:

• E1 = {a1, a2, a3, a4, a5, a7}
• E2 = {a1, a2, a3, a4, a7, a8}

Indeed, since training examples are considered as correct classifications, their corresponding
arguments appear in the extensions (of course in case the set S is consistent). In this example,
there is a disagreement between h1 and h2 on the class of x3. One would like to follow the
classification given by h1 since this latter satisfies all the training examples, whereas h2 fails
to classify the example (x1, c1). Thus, by introducing the notion of undercut, the argument
a1 undercuts a8. Thus, the only possible extension is E1, concluding that the class of x3 is c1.

It can be easily checked that if an argument 〈h, x, c〉 undercuts another argument 〈h′, x ′, c′〉,
then there exists a third argument 〈h′, x, c′′〉 such that 〈h, x, c〉 rebuts 〈h′, x, c′′〉. It is also
easy to check that when the set S of training examples is consistent, then arguments of AS
are not conflicting.

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 197

Proposition 5 If S is consistent, then �A, B ∈ AS such that A rebuts B, or A undercuts B.

The two above conflict relations are brought together in a unique relation, called Defeat.

Definition 11 (Defeat) Let A = 〈h, x, c〉, B = 〈h′, x ′, c′〉 be two arguments of A. (A, B) ∈
Defeat, or A defeats B iff:

(1) A rebuts (resp. undercuts) B, and
(2) not(BPref� A)

Example 12 With the argument defined in Example 8 we have for instance: a1 defeats a5 and
a3 defeats a5.

From the above definition, it is easy to check that an argument with an empty-support
cannot be defeated by an argument with a non-empty support.

Proposition 6 ∀A ∈ AS , �B ∈ A\AS such that B defeats A.

The argumentation system for classification is then the following:

Definition 12 (Argumentation system) An argumentation system for classification (ASC) is
a pair 〈A,Defeat〉, where A is the set of arguments defined in Definition 7 and Defeat
is the relation defined in Definition 11.
Let E1, . . . , En denote the different (preferred or stable) extensions of ASC.

The last step of an argumentation process consists of defining the status of conclusions, in
our case, the classification of examples. In what follows we present different decision criteria
for providing the class of each example. These criteria are presented from the cautious one
to the adventurous one.

The basic idea behind the cautious criterion is that an example is affected to a given class
if there exists an argument in favor of that classification that belongs to all the extensions of
the argumentation system. Formally:

Definition 13 (Skeptical vote) Let 〈A,Defeat〉 be an ASC, and E1, . . . , En its extensions
under a given semantics. Let x ∈ X and c ∈ C. x is skeptically classified in c iff ∃〈h, x, c〉
such that 〈h, x, c〉 is skeptically accepted.
CV denotes the set of all (x, c) such that x is cautiously classified in c.

The above criterion is very strong since it may be the case that an example is affected to
the same class in each extension, but on the basis of different hypotheses. One would like to
conclude that this is thus the right class of that example. To illustrate this idea, let us consider
the following example.

Example 13 Let X = {x1, x2}, C = {c1, c2, c3, c4}, S = {(x1, c1), (x1, c2)}, and H =
{h1, h2} with h1(x1) = c1, h1(x2) = c1, h2(x1) = c2, and h2(x2) = c1. Note that the set
of training examples is inconsistent. The arguments that may be built from the three sets are
summarized in table below:

a1 = 〈∅, x1, c1〉 a3 = 〈h1, x1, c1〉 a5 = 〈h2, x1, c2〉
a2 = 〈∅, x1, c2〉 a4 = 〈h1, x2, c1〉 a6 = 〈h2, x2, c1〉

123

198 Auton Agent Multi-Agent Syst (2008) 16:187–209

Figure below depicts the defeat relation among these arguments:

From the above graph it is clear that there are two preferred extensions:

• E1 = {a1, a3, a4}
• E2 = {a2, a5, a6}
The two extensions agree on the class of example x2, which is c1. However, the classification
is not supported by the same argument in both extensions. Thus, (x2, c1) is not a skeptical
classification, but one would like to accept this classification.

In order to capture this idea, a new criterion, called here universal vote, is introduced. The
universally classified examples are those that are supported by arguments in all the exten-
sions. From a classification point of view, these correspond to examples classified by the
most preferred hypotheses.

Definition 14 (Universal vote) Let 〈A,Defeat〉 be an ASC, and E1, . . . , En its extensions
under a given semantics. Let x ∈ X and c ∈ C. x is universally classified in c iff ∀Ei ,
∃ 〈h, x, c〉 ∈ Ei .
U V denotes the set of all (x, c) such that x is universally classified in c.

Example 14 (Example 13 cont.) In the previous example, (x2, c1) is a universal classification
since in both extensions E1 and E2 there is an argument in favor of this conclusion even if the
argument is not the same.

The adventurous criterion consists of affecting an example to a given class as soon as there
exists at least one extensions containing an argument in favor of that classification. This cri-
terion is adventurous since it may be the case that it chooses more than one class for the same
example. However, this criterion is not uninteresting since it gives a useful information on
the possible classes of an example when it is not able to classify it in a certain way. Formally:

Definition 15 (Credulous vote) Let 〈A,Defeat〉 be an ASC, and E1, . . . , En its extensions
under a given semantics. Let x ∈ X and c ∈ C. x is credulously classified in c iff ∃〈h, x, c〉
that is credulously accepted.
EV denotes the set of all (x, c) such that x is credulously classified in c.

The above criterion can be refined. The basic idea is that the conclusions are the ones that
are supported by a majority of extensions. Formally:

Definition 16 (Majority vote) Let 〈A,Defeat〉 be an ASC, and E1, . . . , En its exten-
sions under a given semantics. Let x ∈ X and c ∈ C. x is classified by majority in c iff
|{Ei=1,...,n s.t ∃〈h, x, c〉 ∈ Ei }| > |{E j=1,...,n s.t ∃〈h′, x, c′〉 ∈ E j }|, ∀c′ �= c.
MV denotes the set of all (x, c) such that x is classified in c by majority.

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 199

The following result shows the links between the four criteria.

Proposition 7 Let 〈A, de f eat〉 be a ASC, and E1, . . . , En its extensions under a given seman-
tics: CV ⊆ U V ⊆ MV ⊆ EV .

4.2 The properties of the classification model

We will start by characterizing the acceptable arguments of the model presented in the previ-
ous section. It is clear that the arguments that are not defeated by other arguments in the sense
of the relation Defeat will be acceptable. Let U denote that set of undefeated arguments,
i.e., U = {A ∈ A such that �B ∈ A and B defeats A}.
Proposition 8 If S is consistent, then AS ⊆ U .

As said in Sect. 3, one of the acceptability semantics is the so-called ‘grounded extension’.
This extension can be defined using the characteristic function F given in Definition 5.

Due to the fact that H and X are not always finite, the system 〈A,Defeat〉 is not always
finite. By finite we mean that each argument is defeated by a finite number of arguments.

Proposition 9 If H and X are finite, then the system 〈A,Defeat〉 is finite.

When an argumentation system is finite, its characteristic function F is continuous. Conse-
quently, the least fixed point of this function can be defined by an iterative application of F
to the empty set.

Proposition 10 If the argumentation system 〈A,Defeat〉 is finite, then the grounded exten-
sion E is:

E =
⋃

F i≥0(∅) = U ∪
⎡

⎣
⋃

i≥1

F i (U)

⎤

⎦ .

Such an extension is unique and maybe empty. However, we show that when the set S of
training examples is non-empty and consistent, this grounded extension is not empty as well.

Proposition 11 (Grounded extension) If S is non-empty and consistent, then the argumen-
tation system 〈A,Defeat〉 has a non empty grounded extension E .

Let us now analyze the other acceptability semantics, namely preferred and stable ones.
In general, the ASC has at least one preferred extension that may be empty. However, as for
the case of grounded extension, we can show that in the particular case of a consistent set of
training examples, the ASC has at least one non-empty preferred extension.

Proposition 12 If S is consistent, then the system ASC = 〈A,Defeat〉 has n ≥ 1 non-
empty preferred extensions.

In general, the preferred extensions of an argumentation system are not stable. However,
we can show that when the set C contains only two possible classes, this means that the con-
cept to learn is binary, these extensions coincide. Thus, the argumentation system is coherent.
This result is due to the fact that the directed graph associated with the above ASC has no
odd length cycles in this case. However, it may contain even length ones.

Proposition 13 If C = {c1, c2} with c1 �= c2, then:

123

200 Auton Agent Multi-Agent Syst (2008) 16:187–209

• The graph associated with the system 〈A,Defeat〉 has no odd length cycles.
• The system 〈A,Defeat〉 is coherent.

In [13], Amgoud and Caminada have defined rationality postulates that need to be satisfied
by any argumentation system. These postulates ensure that the system returns safe conclu-
sions. In what follows, we will show that the argumentation system proposed in this paper
for classifying examples satisfies these postulates.

Proposition 14 (Consistency) Let ASC = 〈A,Defeat〉, E1, . . . , En its extensions under a
given semantics, and U V, MV its sets of conclusions.

• ∀Ei , the set {(x, c)|∃〈h, x, c〉 ∈ Ei } is consistent.
• The sets U V and MV are consistent.

Let us now consider the case where S is inconsistent, with S can be divided into S1, . . . , Sn ,
such that each Si is a maximal (for set inclusion) consistent subset of S. This means that
some training examples are classified in different classes. However, all the elements of S are
supposed to be equally preferred. In this case, two arguments supporting such conflicting
training examples rebut each other, thus can defeat each other as well.

Let AS1 , . . . , ASn be the sets of arguments with an empty support and whose conclusions
are ‘respectively’ in the subsets of training examples S1, . . . , Sn . It is clear that each set ASi

is conflict-free, however, it is defeated by arguments in AS j with i �= j . Arguments with an
empty support are preferred to arguments built from hypothesis. Note that each preferred/sta-
ble extension contains one of the sets AS1 , . . . , ASn . Moreover, the same set ASi may belong
to several extensions at the same time. It can be shown that all the hypothesis that are used to
build arguments in a given extension are sound with the subset of training examples of that
extension. Indeed, for each consistent subset of S, we get the extensions of the consistent
case previously studied.

Note that, the grounded extension can be empty in this particular case of inconsistent
training examples. However, this does not mean that it is not possible to classify examples.
Let us re-consider Example 13.

Example 15 (Example 13 cont.) In Example 13, the grounded extension is empty since there
is no undefeated arguments. However, there are two preferred/stable extensions:

• E1 = {a1, a3, a4}
• E2 = {a2, a5, a6}
It is clear that (x2, c1) is a universal classification. However, (x1, c1) and (x1, c2) are credu-
lous classifications.

Note that an argumentation-based approach for classification provides more results than
classical approaches that do not classify any example when training examples are inconsis-
tent. Another feature of an argumentation-based approach is that even when it cannot provide
a class for an example in an unquestionable way as it is the case for x1, it may provide the
range of possible classes. In the previous example, there are four possible classes as indicated
by the set C = {c1, c2, c3, c4}. However, from our argumentation system, x1 may be either
c1 or c2. The two remaining classes are impossible.

Another interesting case is when the set of training examples is empty. In this case,
the classification problem consists of classifying examples only on the basis of a set H of
hypothesis. This is, indeed, a particular case of the previous case where S is inconsistent.
The corresponding argumentation system constructs then arguments only on the basis of
hypothesis, thus there is no argument with an empty support.

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 201

5 Retrieving version space theory

As said before, concept learning is a particular case of classification, where the concept
to learn is binary. In [23], Mitchell has proposed the famous general and abstract frame-
work, called version space learning, for concept learning. That framework takes as input
a consistent set of training examples on the concept to learn. C contains only two classes,
denoted respectively by 0 and 1. Thus, C = {0, 1}. The set H is equipped with a “particular”
partial preorder that reflects the idea that some hypotheses are more general than others
in the sense that they classify positively more examples. This preorder defines a lattice on
the hypotheses space. Formally:

Definition 17 (Generality order on hypotheses) Let h1, h2 ∈ H. h1 is more general than h2,
denoted by h1 h2, iff {x ∈ X |h1(x) = 1} ⊇ {x ∈ X |h2(x) = 1}.

The framework identifies the version space, which is the set V of all the hypotheses of
H that are sound with S. The idea is that a “good” hypothesis should at least classify the
training examples correctly.

Definition 18 (Version space.) V = {h ∈ H| h is sound with S}.
Version space learning aims at identifying the upper and the lower bounds of this version

space V . The upper bound will contain the most general hypotheses, i.e., the ones that clas-
sify more examples, whereas the lower bound will contain the most specific ones, i.e., the
hypotheses that classify less examples.

Definition 19 (General/specific hypotheses)

• The set of general hypotheses is VG = {h ∈ H|h is sound with S and �h′ ∈ H with h′
sound with S, and h′ h}.

• The set of specific hypotheses is VS = {h ∈ H|h is sound with S and �h′ ∈ H with h′
sound with S, and h h′}.

From the above definition, we have the following simple property characterizing elements
of V .

Proposition 15 [23]. V = {h ∈ H|∃h1 ∈ VS, ∃h2 ∈ VG, h2 h h1}.
In [23], an algorithm that computes the version space V by identifying its upper and lower

bounds VS and VG has been proposed.
The above framework has some limits. First, finding the version space is not sufficient

for classifying examples out of the training set. This is due to possible conflicts between
hypotheses. Second, it has been shown that the complexity of the algorithm that identifies VS

and VG is very high. In order to palliate that limit, learning algorithms try in general to reach
only one hypothesis in the version space by using heuristical exploration of H (from general
to specific exploration, for instance FOIL [29], or from specific to general exploration, for
instance PROGOL [25]). That hypothesis is then used for classifying new objects. Moreover,
it is obvious that this framework does not support inconsistent set of examples:

Proposition 16 [23] If the set S of training examples is inconsistent, then the version space
V = ∅.

A consequence of the above result is that no concept can be learned. This problem may
appear in the case of noisy training data set. Let us now show how the ASC proposed

123

202 Auton Agent Multi-Agent Syst (2008) 16:187–209

in the previous section can retrieve the results of the version space learning, namely the
version space and its lower and upper bounds. Before doing that, we start first by introducing
some useful notations. Let Hyp be a function that returns for a given set of arguments, their
non empty supports. In other words, this function returns all the hypotheses used to build
arguments:

Definition 20 Let T ⊆ A. Hyp(T) = {h|∃〈h, x, u〉 ∈ T and h �= ∅}
Now we will show that the argumentation-based model for concept learning computes in an
elegant way the version space V .

Proposition 17 Let 〈A,Defeat〉be an ASC. LetE be its grounded extension, andE1, . . . , En

its preferred (stable) extensions. If the set S is consistent then:

Hyp(E) = Hyp(E1) = · · · = Hyp(En) = V

where V is the version space.

The above result is of great importance. It shows that to get the version space, one only
needs to compute the grounded extension. We can also show that if a given argument is in an
extension Ei , then any argument based on a hypothesis from the version space that supports
the same conclusion is in that extension. Formally:

Proposition 18 Let E1, . . . , En be the extensions under a given semantics of 〈A,Defeat〉.
If 〈h, x, u〉 ∈ Ei , then ∀h′ ∈ V s.t. h′ �= h if h′(x) = u then 〈h′, x, u〉 ∈ Ei .

Using the grounded extension, one can characterize the upper and the lower bounds of
the version space as follows.

Proposition 19 Let 〈A, de f eat〉 be an ASC, and E its grounded extension.

• VG = {h|∃〈h, x, u〉 ∈ E s.t∀〈h′, x ′, u′〉 ∈ E, 〈h, x, u〉Pref〈h′, x ′, u′〉}.
• VS = {h|∃〈h, x, u〉 ∈ E s.t ∀〈h′, x ′, u′〉 ∈ E, 〈h′, x ′, u′〉Pref�〈h, x, u〉}.
The upper bound corresponds to the set of hypotheses that are involved in most preferred
arguments (w.r.t Pref) of the grounded extension, whereas the lower bound corresponds to
the set of hypotheses involved in less preferred arguments of that extension.

6 Conclusion

Recently, some researchers have tried to use argumentation techniques in machine learning
[24, 34]. On the contrary to the framework presented in this paper which makes a real bridge
between argumentation and machine learning, in [24, 34] Bratko et al. consider argumen-
tation as a tool for improving machine learning algorithms. In their approach, arguments
are viewed as a bias for the hypotheses search through the hypothesis space. Arguments are
provided by the user in order to describe some kind of preference on the syntax of hypotheses
(sets of decision rules). Thus, arguments allows them to influence the choice of a hypothesis
in the set of acceptable ones (which can be for instance the version space). But there is no
guarantee that the use of arguments will increase the quality of the model found in terms of
classification performance.

Another interesting work where argumentation is used for classifying concepts/examples
is that done by Gomez and Chesnevar [19]. The authors started by noticing that existing

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 203

classification models based on neural networks may classify the same example in different
classes. In such a case, a random choice is made for choosing the class to keep. The authors
have then suggested a hybrid approach that applies first the neural network-based model. In
case of conflicts, i.e., an example is classified in different classes, an argumentation system
is used to make the final choice in a rational way.

This paper has proposed, to the best of our knowledge, the first framework for classifica-
tion that is completely argumentation-based, and that uses Dung’s semantics. This framework
considers the classification problem as a process that follows four main steps: it first con-
structs arguments in favor of classifications of examples from a set of training examples,
and a set of hypotheses. Conflicts between arguments may appear when two arguments clas-
sify the same example in different classes. Arguments are then compared on the basis of
their strengths. The idea is that arguments coming from training examples are stronger than
arguments built from hypotheses. Similarly, arguments based on most preferred hypotheses
are stronger than arguments built from less preferred hypotheses. We have shown that the
extensions of acceptable arguments of the ASC retrieve and even characterize the version
space and its upper and lower bounds. Thus, the argumentation-based approach gives another
interpretation of the version space as well as its two bounds in terms of arguments. We have
also shown that when the set of training examples is inconsistent, it is still possible to clas-
sify examples. Indeed, in this particular case, the version space is empty as it is the case in
the version space learning framework. A last and not least feature of our model consists of
defining the class of each example on the basis of all the hypotheses and not only one, and
also to suggest two intuitive decision criteria for that purpose.

A first urgent extension of this framework would be to test the tractability of our approach.
For that purpose, we will explore the proof theories in argumentation that test directly whether
a given argument is in the grounded extension without computing this last. This means that
one may know the class of an example without exploring the whole hypothesis space. We
will start by experimenting the proof procedure proposed by Amgoud and Cayrol in [4], and
compare its results to existing algorithms. Another interesting extension would be to study
persuasion dialogues between different autonomous agents that try together to find the class
of a given example.

Acknowledgements The authors would like to thank the three anonymous referees for their very useful
comments that helped us improving the paper.

Appendix

Proposition 2 Let S be a set of training examples.

• |S| = |AS |2.
• If S is not empty, then AS �= ∅.

Proof The first item follows from the above definition, and from the fact that an hypothesis
h cannot be empty. The second point follows directly from the first property, i.e. |S| = |AS |,
and the assumption that S �= ∅. ��
Proposition 3 Let x ∈ X . |{〈hi , x, ci 〉 ∈ A such that hi �= ∅}| = |H|.
Proof This follows directly from the fact that:

2 || denotes the cardinal of a given set.

123

204 Auton Agent Multi-Agent Syst (2008) 16:187–209

(1) Each hypothesis classifies all examples of X , thus ∀hi ∈ H, ∃ci ∈ C such that hi (x) =
ci .

(2) Each hypothesis assigns a unique class to each example since the classifications of each
hypothesis are consistent. ��

Proposition 4 The relation Pref is a partial preorder.

Proof This is due to the fact that the relation is a partial preorder. ��
Proposition 5 If S is consistent, then �A, B ∈ AS such that A rebuts B, or A undercuts B.

Proof Let A = 〈∅, x, u〉, B = 〈∅, x ′, u′〉 ∈ S such that A rebuts B. According to Defi-
nition 9, x ≡ x ′ and u �= u′. This contradicts the fact that S is consistent (in the sense of
Definition 1). ��
Proposition 6 ∀A ∈ AS , �B ∈ A\AS s.t B defeats A.

Proof Let A ∈ AS and B ∈ A\AS such that B defeats A. This means that B rebuts A
(because according to Definition 10, an argument with a non-empty support cannot undercut
an argument with an empty one. Moreover, according to Definition 11, we have not(BPref�
A). This is impossible because according to Definition 8, arguments in AS are always pre-
ferred to arguments with a non-empty support. ��
Proposition 7 Let 〈A,Defeat〉 be a ASC, and E1, . . . , En its extensions under a given
semantics: U V ⊆ MV .

Proof Let x ∈ X . It is clear from the definition of universally classified examples that if
(x, c) is universally classified, then

∑
∃〈h,x,c〉∈Ei

Ei = n. Moreover, since according to Prop-
osition 14, the classifications of each extension are consistent, then

∑
∃〈h′,x,c′〉∈E j

E j = 0.

Thus, (x, c) is also classified by the majority of extensions. ��
Proposition 8 If S is consistent, then AS ⊆ U .

Proof Let A ∈ AS . Let us assume that ∃B ∈ A such that B defeats A. According to Prop-
osition 6, B /∈ A\AS . Thus, B ∈ AS . Moreover, B defeats A means that B rebuts A since
an argument coming from a training example is not allowed to undercut another argument
coming from a training example. This means then that A classifies a training example in u,
and B classifies an equivalent example in u′ �= u. This contradicts the fact that the set S is
consistent. ��
Proposition 9 If H and X are finite, then the system 〈A,Defeat〉 is finite.

Proof This follows directly from the fact that the set A of arguments is built from three sets:
S, H and X . We assumed in our framework that the set S is finite. When the two sets H and
X are also assumed finite, then the set of arguments A is finite. Consequently, the system
〈A,Defeat〉 is finite. ��
Proposition 10 If the argumentation system 〈A,Defeat〉 is finite, then the grounded exten-
sion E is:

E =
⋃

F i≥0(∅) = U ∪
⎡

⎣
⋃

i≥1

F i (U)

⎤

⎦ .

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 205

Proof When the argumentation system 〈A,Defeat〉 is finite, then the characteristic function
F given in Definition 5 is continuous. Consequently, its least fixpoint (thus, the grounded
extension) is E = ⋃

F i≥0(∅). It is also clear that F(∅) = U . Thus, E = ⋃
F i≥0(∅) =

U ∪ [⋃i≥1 F i (U)]. ��
Proposition 11 If S is consistent, then the argumentation system 〈A,Defeat〉 has a non
empty grounded extension E .

Proof According to Proposition 2, the set AS �= ∅. Moreover, according to Proposition 8, it
has been shown that when S is consistent, then AS ⊆ U . Thus, U �= ∅ in this case. Finally,
according to Proposition 10, the grounded extension is E = ⋃

F i≥0(∅) = U∪[⋃i≥1 F i (U)].
Thus, U ⊆ E . Consequently, E is not empty. ��
Proposition 12 If S is consistent, then the system ASC = 〈A,Defeat〉 has n ≥ 1 non-
empty preferred extensions.

Proof In [14], it has been shown that the grounded extension is included in every preferred
extension. Since the grounded extension is not empty (according to Proposition 11), then
there exists at least one non-empty preferred extension. ��
Proposition 13 If C = {c1, c2} with c1 �= c2, then:

• The graph associated with the system 〈A,Defeat〉 has no odd length cycles.
• The system 〈A,Defeat〉 is coherent.

Proof Part 1: Let A, B, C be three arguments such that A defeats B, B defeats C , and C
defeats A.

Case 1: Let us suppose that A ∈ AS .
According to Property 5, B ∈ A\AS . According to Proposition 6, C should be
in A\AS . Contradiction because according to Proposition 6, C cannot defeat A,
which is in AS .

Case 2: Let us suppose that A, B, C ∈ A\AS . This means that A rebuts B, B rebuts
C , and C rebuts A (according to Definition 10). Consequently, Example(A) ≡
Example(B) ≡ Example(C), and Class(A) �= Class(B), Class(B) �=
Class(C). Due to the fact that U = {0, 1}, we have Class(A) = Class(C).
This contradicts the assumption that C rebuts A.

Part 2: This is a consequence of the fact that there is no odd cycles in the system (see Part 1).
��

Proposition 14 Let ASC = 〈A,Defeat〉, E1, . . . , En its extensions under a given seman-
tics, and U V, MV its sets of conclusions.

• ∀Ei , the set {(x, c)|∃〈h, x, c〉 ∈ Ei } is consistent.
• The sets U V and MV are consistent.

Proof Let ASC = 〈A,Defeat〉, E1, . . . , En its extensions under a given semantics, and
U V, MV its sets of conclusions.

(1) Let E be a given preferred extension. Let us assume that the set {(x, c)|∃〈h, x, c〉 ∈ E} is
inconsistent. This means that ∃〈h1, x, c1〉, 〈h2, x, c2〉 ∈ E with c1 �= c2. Thus 〈h1, x, c1〉
rebuts 〈h2, x, c2〉. There are three cases:

123

206 Auton Agent Multi-Agent Syst (2008) 16:187–209

Case 1 h1 = ∅ and h2 = ∅: Since training examples have the same importance, then
〈h1, x, c1〉 defeats 〈h2, x, c2〉 and 〈h2, x, c2〉 defeats 〈h1, x, c1〉. This means
that the set E is not conflict-free. This contradicts the fact that E is a preferred
extension.

Case 2 h1 = ∅ and h2 �= ∅ (or h1 �= ∅ and h2 = ∅): Since h1 = ∅ then 〈h1, x, c1〉
defeats 〈h2, x, c2〉. This means that the set E is not conflict-free. This contradicts
the fact that E is a preferred extension.

Case 3 h1 �= ∅ and h2 �= ∅: Since 〈h1, x, c1〉, 〈h2, x, c2〉 ∈ E and E is conflict-
free this means that 〈h1, x, c1〉 does not defeat 〈h2, x, c2〉 and 〈h2, x, c2〉 does
not defeat 〈h1, x, c1〉. This means also that 〈h1, x, c1〉Pref� 〈h2, x, c2〉 and
〈h2, x, c2〉Pref�〈h1, x, c1〉. This is impossible.

(2) Let us assume that the set U V is inconsistent. This means that ∃Ei , E j such that i �= j
and ∃〈hi , x, ci 〉 ∈ Ei and ∃〈h j , x, c j 〉 ∈ E j with ci �= c j . However, according to the
definition of U V , ∃〈h′

j , x, ci 〉 ∈ E j since (x, c) is universally classified. This means
that the set of conclusions of E j is inconsistent. This contradict the result of Part 1
above.
Let us now assume that the set MV is inconsistent. This means that (x, c) is classified
by the majority of extensions, say by y extensions, and that (x, c′) is classified by the
majority of extensions, say by Z extensions. According to the definition of MV , we
have both y > z and z > y. This is impossible. ��

Proposition 17 Let 〈A,Defeat〉be an ASC. LetE be its grounded extension, andE1, . . . , En

its preferred (stable) extensions. If the set S is consistent then:

Hyp(E) = Hyp(E1) = · · · = Hyp(En) = V

where V is the version space.

Proof Let Ei be an extension under a given semantics.

Hyp(Ei) ⊆ V: Let h ∈ Hyp(Ei), then ∃〈h, x, u〉 ∈ Ei .
Let us assume that ∃(xi , ui) ∈ S such that h(xi) �= ui . This means
〈∅, xi , ui 〉 undercuts 〈h, x, u〉 (according to Definition 10). Consequently,
〈∅, xi , ui 〉defeats 〈h, x, u〉. However, according to Property 2, 〈∅, xi , ui 〉 ∈
AS , thus 〈∅, xi , ui 〉 ∈ Ei . Contradiction because Ei is an extension, thus
by definition it is conflict-free.

V ⊆ Hyp(Ei): Let h ∈ V , and let us assume that h /∈ Hyp(Ei). Since h ∈ V , then
∀(xi , ui) ∈ S, h(xi) = ui (1)

Let (x, u) ∈ S, thus h(x) = u and consequently 〈h, x, u〉 ∈ A. Moreover,
since h /∈ Hyp(E), then 〈h, x, u〉 /∈ E . Thus, ∃〈h′, x ′, u′〉 that defeats
〈h, x, u〉.
• Case 1: h′ = ∅. This means that 〈∅, x ′, u′〉 undercuts 〈h, x, u〉 and

h(x ′) �= u′ Contradiction with (1).
• Case 2: h′ �= ∅. This means that 〈h′, x ′, u′〉 rebuts 〈h, x, u〉. Con-

sequently, x ≡ x ′ and u �= u′. However, since h ∈ V , then h is
sound with S. Thus, 〈∅, x, u〉 defeats 〈h′, x ′, u′〉, then 〈∅, x, u〉 defeats
〈h, x, u〉. Since 〈∅, x, u〉 ∈ S, then 〈h, x, u〉 ∈ F(C) and consequently,
〈h, x, u〉 ∈ Ei . ��

Proposition 18 Let E1, . . . , En be the extensions under a given semantics of 〈A,Defeat〉.
If 〈h, x, u〉 ∈ Ei , then ∀h′ ∈ V s.t. h′ �= h if h′(x) = u then 〈h′, x, u〉 ∈ Ei .

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 207

Proof Let Ei be a given extension, and let 〈h, x, u〉 ∈ Ei . Let h′ ∈ V such that h′(x) = u.
Let us assume that 〈h′, x, u〉 /∈ Ei .

Case 1: Ei ∪ {〈h′, x, u〉} is not conflict-free. This means that ∃〈h′′, x ′′, u′′〉 ∈ Ei such that
〈h′′, x ′′, u′′〉 defeats 〈h′, x, u〉. Consequently, 〈h′′, x ′′, u′′〉 undercuts 〈h′, x, u〉 if
h′′ = ∅, or 〈h′′, x ′′, u′′〉 rebuts 〈h′, x, u〉 if h′′ �= ∅.
If h′′ = ∅, then h′(x ′′) �= u′′, this contradicts the fact that h′ ∈ V .
If h′′ �= ∅, then x ′′ ≡ x and u′′ �= u and either h′′ h′, or h′, h′′ are not compara-
ble. Thus, 〈h′′, x ′′, u′′〉 rebuts 〈h, x, u〉. Since 〈h, x, u〉, 〈h′′, x ′′, u′′〉 ∈ Ei , then h
and h′′ are not comparable. But, this means that 〈h, x, u〉 defeats 〈h′′, x ′′, u′′〉, and
〈h′′, x ′′, u′′〉 defeats 〈h, x, u〉. Consequently, Ei is not conflict-free. Contradiction
because Ei is an extension.

Case 2: Ei does not defend 〈h′, x, u〉. This means that ∃〈h′′, x ′′, u′′〉 defeats 〈h′, x, u〉.
• Case 1: h′′ = ∅. This means that h′(x ′′) �= u′′. Contradiction because h′ ∈ V .
• Case 2: h′′ �= ∅. This means that x ≡ x ′′, u �= u′′, and h′′ h′. Thus,

〈h′′, x ′′, u′′〉 rebuts 〈h, x, u〉.
If h h′′, then 〈h, x, u〉 defeats 〈h′′, x ′′, u′′〉, thus 〈h, x, u〉 defends 〈h′, x, u〉.
If h′′ h, then 〈h′′, x ′′, u′′〉 defeats 〈h, x, u〉. However, since 〈h, x, u〉 ∈ E ,
then E defends 〈h, x, u〉 against 〈h′′, x ′′, u′′〉. Thus, E defends 〈h′, x, u〉. Con-
tradiction ��

Proposition 19 Let 〈A,Defeat〉 be an ASC, and E its grounded extension.

• VG = {h|∃〈h, x, u〉 ∈ E s.t ∀ 〈h′, x ′, u′〉 ∈ E, 〈h, x, u〉 Pref〈h′, x ′, u′〉}.
• VS = {h|∃〈h, x, u〉 ∈ E s.t ∀ 〈h′, x ′, u′〉 ∈ E, 〈h′, x ′, u′〉 Pref�〈h, x, u〉}.

Proof
VG = {h|∃〈h, x, u〉 ∈ E s.t ∀ 〈h′, x ′, u′〉 ∈ E, not (〈h′, x ′, u′〉 Pref〈h, x, u〉)}.
• Let h ∈ VG , thus h ∈ V , and ∀h′ ∈ V , h h′. Since h ∈ V , thus, h ∈ Hyp(E), with

E an extension. Then, ∃〈h, x, u〉 ∈ E . Since h h′ for any h′ ∈ V , then h h′ for
any h′ ∈ Hyp(E). Thus, 〈h, x, u〉Pref〈h′, x ′, u′〉, ∀〈h′, x ′, u′〉 ∈ E .

• Let 〈h, x, u〉 ∈ E such that ∀〈h′, x ′, u′〉 ∈ E , and not(〈h′, x ′, u′〉Pref〈h, x, u〉).
Thus, h ∈ Hyp(E), and ∀h′ ∈ Hyp(E), not(h′ h), thus h ∈ VG .

VS = {h|∃〈h, x, u〉 ∈ E s.t ∀ 〈h′, x ′, u′〉 ∈ E, not (〈h, x, u〉 Pref〈h′, x ′, u′〉)}.
• Let h ∈ VS , thus �h′ ∈ V such that h h′. Since h ∈ VS , then h ∈ V and

consequently, h ∈ Hyp(E). This means that ∃〈h, x, u〉 ∈ E . Let us assume that
∃〈h′, x ′, u′〉 ∈ E such that 〈h, x, u〉Pref〈h′, x ′, u′〉, thus h h′. Contradiction with
the fact that h ∈ VS .

• Let 〈h, x, u〉 ∈ E such that ∀〈h′, x ′, u′〉 ∈ E , and not(〈h, x, u〉Pref〈h′, x ′, u′〉), thus
not(h h′). Since h ∈ V , and ∀h′ ∈ V , not(h h′), then h ∈ VS . ��

References

1. Amgoud, L. (2003). A formal framework for handling conflicting desires. In 7th European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (pp. 552–563). LNAI 2711.

2. Amgoud, L., Belabbes, S., & Prade, H. (2005). Towards a formal framework for the search of a con-
sensus between autonomous agents. In 4th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (pp. 537–543).

123

208 Auton Agent Multi-Agent Syst (2008) 16:187–209

3. Amgoud, L., & Cayrol, C. (2002). Inferring from inconsistency in preference-based argumentation frame-
works. International Journal of Automated Reasoning, 29(2), 125–169.

4. Amgoud, L., & Cayrol, C. (2002). A reasoning model based on the production of acceptable arguments.
Annals of Mathematics and Artificial Intelligence, 34, 197–216.

5. Amgoud, L., & Kaci, S. (2005). An argumentation framework for merging conflicting knowledge bases:
The prioritized case. In 8th European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty.

6. Amgoud, L., Maudet, N., & Parsons, S. (2000). Modelling dialogues using argumentation. In 4th Inter-
national Conference on MultiAgent Systems, ICMAS 2000. Boston, USA: IEEE Press.

7. Amgoud, L., & Parsons, S. (2002). An argumentation framework for merging conflicting knowledge
bases. In 8th European Conference on Logics in Artificial Intelligence (pp. 27–37). LNCS 2424.

8. Amgoud, L., & Prade, H. (2006). Explaining qualitative decision under uncertainty by argumentation. In
National Conference on Artificial Intelligence (pp. 219–224). AAAI Press.

9. Amgoud, L., Serrurier, M. (2007). Arguing and explaining classifications. In O. Sheory & M. Huhns
(Eds.), International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007)
(pp. 979-985). ACM Press.

10. Black, E., & Hunter, A. (2007). A generative inquiry dialogue system. In 6th International Joint Confer-
ence on Autonomous Agents and Multi-Agents systems.

11. Bonet, B., & Geffner, H. (1996). Arguing for decisions: A qualitative model of decision making. In 12th
Conference on Uncertainty in Artificial Intelligence (pp. 98–105).

12. Breiman, O. S. (1984). Friedman. Classification and decision trees. Wadsworth Press.
13. Caminada, M., & Amgoud, L. (2007). On the evaluation of argumentation formalisms. Artificial Intelli-

gence Journal, 171(5–6), 286–310.
14. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games. Artificial Intelligence Journal, 77, 321–357.
15. Dunne, P., Capon, T. B. (2002). Coherence in finite argument systems. Artificial Intelligence journal,

141(1–2), 187–203.
16. Elvang-Gransson, M., Krause, P., & Fox, J. (1993). Acceptability of arguments as ‘logical uncertainty’

In Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty (pp. 85–90).

17. Fox, J., & Parsons, S. (1997). On using arguments for reasoning about actions and values. In Proceedings
of the AAAI Spring Symposium on Qualitative Preferences in Deliberation and Practical Reasoning,
Stanford.

18. Gómez, S. A., & Chesñevar, C. I. (2003). Integrating defeasible argumentation with fuzzy art neural
networks for pattern classification. In Proceedings of the ECML’03, Dubrovnik, September 2003.

19. Gomez, S. A., & Chesnevar, C. I. (2004). A hybrid approach to pattern classification using neural net-
works and defeasible argumentation. In 17th International FLAIRS 2004 Conference (pp. 393–398).
AAAI Press.

20. Hulstijn, J., & van der Torre, L. (2004). Combining goal generation and planning in an argumentation
framework. In J. Delgrande, & T. Schaub (Eds.), 10th Workshop on Non-Monotonic Reasoning.

21. Kakas, A., Moraitis, P. (2006). Adaptive agent negotiation via argumentation. In Proceedings of the 5th
International Joint Conference on Autonomous Agents and Multi-Agents systems (pp. 384–391).

22. Kraus, S., Sycara, K., & Evenchik, A. (1998). Reaching agreements through argumentation: A logical
model and implementation. Journal of Artificial Intelligence, 104(1–2), 1–69.

23. Mitchell, T. (1982). Generalization as search. Artificial intelligence, 18, 203–226.
24. Mozina, M., Zabkar, J., & Bratko, I. (2006). Argument based rule learning. In 17th European Conference

on Artificial Intelligence (pp. 504–508).
25. Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13, 245–286.
26. Parsons, S., & Jennings, N. R. (1996). Negotiation through argumentation—a preliminary report. In

Proceedings of the 2nd International Conference on Multi Agent Systems (pp. 267–274).
27. Prakken, H. (2006). Formal systems for persuasion dialogue. Knowledge Engineering Review, 21,

163–188.
28. Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-Machine Studies, 27,

221–234.
29. Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
30. Quinlan, J. R. (1993). A decision science perspective on decision trees. In Programs for Machine Learning.

Morgan Kauffman.
31. Rahwan, I., & Amgoud, L. (2006). An argumentation-based approach for practical reasoning. In Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems.

123

Auton Agent Multi-Agent Syst (2008) 16:187–209 209

32. Simari, G. R., & Loui, R. P. (1992). A mathematical treatment of defeasible reasoning and its implemen-
tation. Artificial Intelligence and Law, 53, 125–157.

33. Walton, D. N., & Krabbe, E. C. W. (1995). Commitment in dialogue: Basic concepts of interpersonal
reasoning. SUNY Series in Logic and Language. Albany: State University of New York Press.

34. Zabkar, J., Mozina, M., Videcnik, J., & Bratko, I. (2006). Argument based machine learning in a medical
domain. In I. Press (Ed.), Proceedings of the 1st International Conference on Computational Models of
Argument (pp. 59–70).

123

	Agents that argue and explain classifications
	Abstract
	Introduction
	Classification problem
	Abstract argumentation framework
	An argumentation framework for Classification
	The classification model
	The properties of the classification model
	Retrieving version space theory
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

