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Abstract Multiagent systems have become popular over the last few years for building
complex, adaptive systems in a distributed, heterogeneous setting. Multiagent systems tend
to be more robust and, in many cases, more efficient than single monolithic applications.
However, unpredictable application environments make multiagent systems susceptible to
individual failures that can significantly reduce its ability to accomplish its overall goal. The
problem is that multiagent systems are typically designed to work within a limited set of
configurations. Even when the system possesses the resources and computational power to
accomplish its goal, it may be constrained by its own structure and knowledge of its member’s
capabilities. To overcome these problems, we are developing a framework that allows the
system to design its own organization at runtime. This paper presents a key component of
that framework, a metamodel for multiagent organizations named the Organization Model
for Adaptive Computational Systems. This model defines the requisite knowledge of a sys-
tem’s organizational structure and capabilities that will allow it to reorganize at runtime and
enable it to achieve its goals effectively in the face of a changing environment and its agent’s
capabilities.

Keywords Adaptation · Organizations · Metamodel · Self-organization

1 Introduction

Systems are becoming more complex, in part due to increased customer requirements and the
expectation that applications should be seamlessly integrated with other existing,
often distributed applications and systems. In addition, there is an increasing demand for
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these complex systems to exhibit some type of intelligence as well. No longer is it “good
enough” to be able to access systems across the internet, but customers require that their
systems know how to access data and systems, even in the face of unexpected events or
failures.

The goal of our research is to develop a framework for constructing complex, distrib-
uted systems that can autonomously adapt to their environment. Multiagent systems have
become popular over the last few years for providing the basic notions that are applicable
to this problem. A multiagent system uses groups of self-directed agents working together
to achieve a common goal. Such multiagent systems are widely proposed as replacements
for sophisticated, complex, and expensive stand-alone systems for similar applications.
Multiagent systems tend to be more robust and, in many cases, more efficient (due to
their ability to perform parallel actions) than single monolithic applications. In addition,
the individual agents tend to be simpler to build, as they are built from a single agent’s
perspective.

However, unpredictable application environments make multiagent systems susceptible
to individual failures that can significantly reduce the ability of the system to accomplish its
goal. The problem is that multiagent systems are typically designed to work within a limited
set of configurations. Even when the system possesses the resources and computational abil-
ity to accomplish its goal, it may be constrained by its own structure and knowledge of its
member’s capabilities, which may change over time. In most multiagent design methodolo-
gies [14,31,44], the system designer analyzes the possible organizational structure—which
determines which roles are required to accomplish which goals and sub-goals—and then
designs one organization that will suffice for most anticipated scenarios. Unfortunately, in
dynamic applications where the environment as well as the agents may undergo changes, a
designer can rarely account for, or even consider, all possible situations. Attempts to over-
come these problems include large-scale redundancy using homogenous capabilities and
centralized/distributed planning. However, homogenous approaches negate many of the ben-
efits of using a multiagent approach and are not applicable in complex applications where
specific capabilities are often needed by only one or two agents. Centralized and distributed
planning approaches tend to be brittle and computationally expensive due to their required
level of detail (individual actions in most cases).

To overcome these problems, we are developing a framework that allows a system to
design its own organization at runtime. In essence, we propose to provide the system with
organizational knowledge and let the system design its own organization based on the cur-
rent goals and its current capabilities. While the designer can provide guidance, supplying
the system with key organizational information will allow it to redesign, or reorganize,
itself to match its scenario. This paper presents a key component of our framework, a
metamodel for multiagent organizations named the Organization Model for Adaptive
Computational Systems (OMACS). OMACS defines the requisite knowledge of a system’s
organizational structure and capabilities that will allow the system to reorganize at runtime
and enable it to achieve its goals in the face of a changing environment and its agent’s
capabilities.

2 Motivating examples

In this section, we present three areas where a framework for allowing systems to adapt their
configuration at runtime is highly desirable. These areas include cooperative robotics, large
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scale information systems, and general multiagent systems. The third area, general multi-
agent systems, is demonstrated with the Conference Management System example that is
used periodically for illustrative purposes throughout the remainder of the paper.

2.1 Cooperative robotic search and rescue

Use of our organizational framework is especially applicable to cooperative robotic teams.
Because of the amount of hardware devices in robots, the robots can malfunction, either fully
or partially. These malfunctions change the robot’s capabilities and thus the roles they are
suited to playing. In previous work [30], we showed how our organization theoretic model
could be applied to the problem of sensor and effector integration in individual robots as well
as in robotic teams.

Due to cost and complexity constraints, teams of homogenous robots are not generally
envisioned for use in complex and dangerous environments such as toxic waste cleanup,
extraterrestrial exploration, or unmanned military operations. Moreover, due to the types of
environments these robots will be subjected to, hardware failure is probable and the ability
to repair those failures will be limited.

Consider the case where a team of heterogeneous robots is performing a cooperative
search and rescue operation. Some robots will have better capabilities for searching due to
their enhanced sensor package while some robots may be better suited for rescuing due to
their specific effectors such as grippers and robotic arms, each with differing payload limits.
However, robots with enhanced rescue abilities can also perform searching, since they must
have some type of minimal object detection system in order to perform rescues. Thus at the
onset of the search and rescue operation, since the team has not yet found any victims, all the
robots are available for searching. Once a victim is found, one of the robots must switch to a
rescuer role and attempt to rescue the victim. However, choosing the correct robot to perform
the rescue is dependent on many properties of both the victim and their current situation,
which may include size of the victim, access to victim, etc.

In addition, the capabilities of the individual robots may change over time. This must
be accounted for when organizing the team. For instance, what happens if there are three
robots performing the rescue role and one of those robots happens to break down? Should
the team get another robot to take its place? Or, should the team continue with its two rescue
robots? These are decisions that can only be made within the context of what is best for the
team and its current state in terms of the problem being solved. What is needed is a mecha-
nism that the robot team can use to determine the best robot for the job in terms of overall
team performance. This mechanism must take into account the current state of the team,
which includes the goals being pursued, the available team members, and the team member’s
capabilities.

2.2 Battlefield information systems

The goal of a battlefield information system is to provide the commander with both tactical
and strategic intelligence. To accomplish this, various types of sensors are used to detect
events and objects of interest. This sensor data is then be combined, or fused, with other
sensor data to provide a commander with a more complete picture of the battlefield. Due
to the nature of war, there is a high probability that some of these sensors will become dis-
abled. However, when sensors are lost, their information is still required in order to provide
the battlefield commander with a complete picture. Thus, the battlefield information system
must detect sensor failures and adapt its processing in a timely manner. An example of such a
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Fig. 1 Original system organization (a) and organization after sensor failure (b)

system is one in which air, satellite and ground-based sensors must be monitored to evaluate
enemy force deployment and strategy. To operate effectively in this scenario, the battlefield
information system must adapt to changes in both the queries from the commander as well
as sensor availability.

As an example, assume we have a system with three types of agents as shown in Fig. 1a:
data sensor agents, merge agents, and query agents. Data Sensor Agents (DS) provide the
interface between the hardware sensors and the Merge Agents (MA), which fuse data from
various sensor types to formulate answers to requests for information of the Query Agents
(QA). The Query Agent translates, manages and communicates the query to the Merge Agents
and returns results to the commander.

When the system receives a query, there is no assurance the sensors required to execute
the query are available. If a sensor is damaged, the system may be required to re-evaluate its
ability to satisfy the query requirements. If the requirements are not met, the system must
reorganize to produce a new structure that can meet the query goal requirements. Figure 1a
shows the initial layout of the system as set up to answer the query, “Show all tank, troop and
helicopter movement within sector”. Answering this query requires the minimal capabilities
of three sensors and three DS agents to interpret the raw data. SA1 possesses the capability to
accept data from ground and air sensors and synthesize it for return to the QA. SA2 accepts
and passes data from the satellite via the DS agent.

A problem arises when the Air Sensor that the system is using to answer the query becomes
unavailable. The system reacts to this event by reorganizing itself as shown in Fig. 1b. Notice
that instead of simply replacing the lost Air Sensor with another one and integrating its data
via SA1 as might be expected, the system chose to integrate the Air Sensor via SA2. The
answer to why the system chose this particular organization lies in the capabilities of the
various sensors and the agents that are combining the data. Even though the new Air Sensor
provided similar data to the one that was lost, the system realized that due to its lower quality,
combining it with the Satellite data first and then combining it with the Ground Sensor data
would yield a better result (either in terms of timeliness or quality) than simply replacing the
failed Air Sensor with the new Air Sensor. Analysis of this type requires detailed knowledge
about the capabilities of the sensors as well as the agents used to combine the data. The goal
of our research is to provide a framework that provides systems with this knowledge and
analysis capability.
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2.3 General purpose multiagent systems: the conference management system

Throughout this paper, many of the examples will use the conference management example
as defined in [46]. The conference management system is a multiagent system supporting
the management of various sized international conferences that require the coordination of
several individuals and groups. There are five distinct phases in which the system must oper-
ate: submission, review, decision, and final paper collection. During the submission phase,
authors should be notified of paper receipt and given a paper submission number. After the
deadline for submissions has passed, the program committee (PC) has to review the papers
by either contacting referees and asking them to review a number of the papers, or review-
ing them themselves. After the reviews are complete, a decision on accepting or rejecting
each paper must be made. After the decisions are made, authors are notified of the decisions
and are asked to produce a final version of their paper if it was accepted. Finally, all final
copies are collected and printed in the conference proceedings. The conference management
system consists of an organization whose membership changes during each stage of the pro-
cess (authors, reviewers, decision makers, review collectors, etc.). Also, since each agent
is associated with a particular person, it is not impossible to imagine that the agents could
be coerced into displaying opportunistic, and somewhat unattractive, behaviors that would
benefit their owner to the detriment of the system as a whole. Such behaviors could include
reviewing ones own paper or unfair allocation of work between reviewers, etc.

A model of the system roles and their interactions is shown in Fig. 2. In the diagram,
boxes denote roles within the system while the UML actor notation is used to represent
external entities with which the system must interface. The system starts by having authors
submit papers to a paper database (PaperDB) role, which is responsible for collecting the
papers, along with their abstracts, and providing copies to reviewers when requested. Once
the deadline has past for submissions, the person responsible partitioning the entire set of
papers into groups to be reviewed (the Partitioner role) asks the PaperDB role to provide it
the abstracts of all papers. The Partitioner partitions the papers and assigns them to a person

Fig. 2 Conference management role model
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Table 1 Temporal operators © ϕ ϕ is true next

� ϕ ϕ is always true

� ϕ ϕ is eventually true

ϕ B φ ϕ is true before φ is true

(the Assigner) who is responsible for finding n reviewers for each paper. Once assigned a
paper to review, a Reviewer requests the actual paper from the PaperDB, prepares a review,
and submits the review to the Review Collector. Once all (or enough) of the reviews are
complete, the Decision Maker determines which papers should be accepted and notifies the
authors. Authors of accepted papers then submit their final copy to the Finals Collector who
forwards them to the Printer for printing.

In [46], the conference management system is described terms of seven organizational
rules. The rules are shown below using the temporal operators as defined in Table 1.

1. ∀p: #(reviewer(p))≥3
2. ∀i, p: Plays(i, reviewer(p)) ⇒ © � ¬Plays(i, reviewer(p))
3. ∀i, p: Plays(i, author(p)) ⇒ � ¬Plays(i, reviewer(p))
4. ∀i, p: Plays(i, author(p)) ⇒ � ¬Plays(i, collector(p))
5. ∀i, p: participate(i, receivePaper(p)) ⇒ � initiate(i, submitReview(p))
6. ∀i, p: participate(i, receivePaper(p)) B initiate(i, submitReview(p))
7. ∀p: [submittedReviews(p) > 2] B initiate(chair, decision(p))

The first rule states that there must be at least three reviewers for each paper (# is cardinality)
while rule two keeps a reviewer from reviewing the same paper more than once. Rules three
and four ensure that a paper author does not review or collect reviews of his or her own paper.
The last three rules describe appropriate system operation. Rule five states that if a paper is
received, it should eventually be reviewed. Rule six requires that a paper must actually be
received before a review can be submitted on it, while rule seven requires that there be at
least two reviews before a paper can be accepted or rejected.

3 Organization metamodel

While most people have an intuitive idea of what an organization is, when asked to define it
explicitly, there are large numbers of “correct” answers. From early organizational research
we learn that organizations have typically been defined as including the concepts of set of
agents who play roles within a structure that defines the relationships between the various
roles [3]. Thus, we lay the foundation for our model by defining what is meant by goals (G),
roles (R), and agents (A). We also add four additional entities: capabilities (C), assignments
(�), policies (P), and a domain model (�). Capabilities are central to the process of deter-
mining which agents can play which roles and how well they can play them, while policies
constrain the assignment of agents to roles thus controlling the allowable states of the orga-
nization. The domain model is a critical component that defines the ontology used to define
behavioral policies and to allow agents to communicate effectively. A UML depiction of the
organizational metamodel is shown in Fig. 3. Each entity and relationship in the diagram is
explained in detail in the following subsections.

The key result of this research was the development of a metamodel for artificial organiza-
tions, called the Organization Model for Adaptive Computational Systems (OMACS). This
model allows MAS developers to define a structure to support specific applications. (Note:
In the following definitions, P(S) is used to denote the powerset of S.)
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Fig. 3 Organization model

3.1 General organization definition

OMACS defines an organization as a tuple O = 〈G, R, A, C, �, P, �, oaf, achieves, capable,
requires, possesses, potential〉 where

• G goals of the organization
• R set of roles
• A set of agents
• C set of capabilities
• � relation over G×R×A that defines the current set of agent/role/goal assign-

ments
• P set of constraints on �

• � domain model used to specify objects in the environment, their inter-rela-
tionships, and the operations that can be performed upon them

• oaf function P(G×R×A) → [0.. ∞] that defines the quality of a proposed set
of assignments

• achieves function G×R→ [0..1] that defines how well a role achieves a goal
• capable function A×R→ [0..1] that defines how well an agent can play a role
• requires function R→P(C) that defines the set of capabilities required to play a role
• possesses function A×C→ [0..1] that defines the quality of an agent’s capability
• potential function A×R×G → [0..1] that defines how well an agent can play a role

to achieve a goal

Each of the above components is described below in detail.

3.2 Goals

Artificial organizations are designed with a specific purpose, which defines the overall func-
tion of the organization. Goals are defined as a desirable situation [37] or the objective
of a computational process [41]. Within OMACS, each organization has a set of goals, G,
that it seeks to achieve. OMACS makes no assumptions about these goals except that they
can be assigned to individual agents and individual agents have the ability to achieve them
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independently. (For simplicity, this report refers to a role achieving a goal, although there are
many types of goals such as goals of achievement, maintenance, etc.)

3.3 Roles

Within OMACS, each organization contains a set of roles (R) that it can use to achieve its
goals. A role defines a position within an organization whose behavior is expected to achieve
a particular goal or set of goals. Thus, each role defines a set of responsibilities. Roles are
analogous to roles played by actors in a play or by members of a typical corporate structure.
A typical corporation has roles such as “president”, “vice-president”, and “mail clerk”. Each
role has specific responsibilities, rights and relationships defined in order to help the corpo-
ration perform various functions towards achieving its overall goal. Specific people (agents)
are assigned to fill those roles and carry out the role’s responsibilities using the rights and
relationships defined for that role.

OMACS roles consist of a name and a role capability function, rcf. Each role, r∈R, is a
tuple 〈name, rcf〉 where

• name a string
• rcf function A→ [0..1] that defines how well a given agent can play the role based on

the capabilities possessed by the agent

While an agent that is assigned a role may choose to play that role in any way it wishes,
OMACS does have certain expectations for agents assigned to roles. First, the agent is
expected to play that role in order to achieve a specific goal. Thus, OMACS assumes that a
role implies some minimal expected behavior. For instance, it would be assumed that some-
one playing the “mail clerk” role in a company would pick up mail from the mailroom and
eventually deliver that mail to its addressee. This minimal behavior defines the functionality
associated with the role. Although an understanding of this behavior is critical to the design
and operation of the actual system, it is not critical to the definition of the organization of
the system and is not specified further in OMACS.

A role’s rcf describes the ability of any agent to play a specific role; it is user defined
and computed in terms of the capabilities required to play the role. For instance, if all the
capabilities required to play a role r are equally important, the designer can use the default
rcf function defined below, which ensures the rcf falls in the range [0..1]. If any of the
agent’s capabilities that are required to play the role are 0, then the result is 0; otherwise, it
is simply the average of the possesses values for all the required capabilities.

rcf(a.r) =

⎧
⎪⎨

⎪⎩

i f
∏

c ∈ requires(r)

possesses(a, c) = 0 0

else

∑

c ∈ requires(r)

possesses(a,c)

|requires(r)|

(1)

However, simply having the required capabilities may not necessarily be sufficient to deter-
mine whether an agent can actually play the role or decide which agent can best play the role.
For instance, in a cooperative robotic system, the Search role may require both mobility and
remote sensing capabilities. However, for a particular application due to the large amount
of territory to be covered, the designer might only want to consider robots with a pos-
sesses value for mobility of 0.5 or greater for assignment to the Searcher role. In addition,
some capabilities may be more important to the role than others, thus requiring some kind
of weighting system. To capture this on a role-by-role basis, the designer can define a role
specific rcf, which computes a value in the range of [0..1]. The role capability function
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allows the role designer to specify how specific capabilities affect the ability of an agent to
play that role. OMACS uses the notation r.rcf(a) to denote the application of the role
capability function for role r on agent a.

3.4 Agents

OMACS also includes a set of heterogeneous agents (A) in each organization. As described
by Russell and Norvig, an agent is an entity that perceives and can perform actions upon
its environment [37], which includes humans as well as artificial (hardware or software)
entities. For our purposes, we define agents as computational systems that inhabit some com-
plex dynamic environment, sense and act autonomously in this environment, and by doing
so realize a set of goals. Thus, we assume that agents exhibit the attributes of autonomy,
reactivity, pro-activity, and social ability. Autonomy is the ability of agents to control their
actions and internal state. Reactivity is an agent’s ability to perceive its environment and
respond to changes in it, whereas pro-activeness ensures agents do not simply react to their
environment, but that they are able to take the initiative in achieving their goals. Finally,
social ability allows agents to interact with other agents, and possibly humans, either directly
via communication or indirectly through the environment.

Within the organization, agents must have the ability to communicate with each other,
accept assignments to play roles that match their capabilities, and work to achieve their
assigned goals.

3.5 Capabilities

The set of capabilities, C, in an organization is the union of all the capabilities required by
roles or possessed by agents in the organization.

∀ c : C (∃ a : A possesses (a,c) > 0 ∨ ∃ r : R c ∈ requires (r)) (2)

Capabilities are the key to determining exactly which agents can be assigned to which roles
within the organization. Capabilities are atomic entities used to define a skill or capacity of
agents. Capabilities can be used to capture soft abilities such as the access to/control over
specific resources, the ability to communicate with other agents, the ability to migrate to a
new platform, or the ability to carry out plans to achieve specific goals. Capabilities also
capture the notion of hard capabilities that are often associated with hardware agents such
as robots. These hard capabilities are generally described as sensors, which allow the agent
to perceive a real world environment, and effectors, which allow the agent to act upon a real
world environment.

3.6 Assignment set

The assignment set � is the set of agent-role-goal tuples 〈a,r,g〉, that indicates that agent
a has been assigned to play role r in order to achieve goal g. � is a subset of all the potential
assignments of agents to play roles to achieve goals. This set of potential assignments is
captured by the potential function (see Sect. 3.14), which maps each agent-role-goal tuple to
a real value ranging from 0 to 1 representing the ability of an agent to play a role in order to
achieve a specific goal. The selection of � from the set of potential assignments is defined
by the organization’s reorganization function as discussed in Sect. 5.2.
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If 〈a,r,g〉 ∈ �, then agenta has been assigned by the organization to play roler in order
to achieve goal g. The only inherent constraint on � is that it must contain only assignments
whose potential value is greater than zero, which is specified below in Eq. 3.

� ⊆ {〈a,r,g〉 | a ∈ A ∧ r ∈ R ∧ g ∈ G ∧ potential(a,r,g) > 0} (3)

3.7 Policies

In general, policies are a set of formally specified rules that describe how an organization may
or may not behave in particular situations. In OMACS, we distinguish between three specific
types of policies: assignment policies (P�) behavioral policies (Pbeh), and reorganization
policies (Preorg).

3.7.1 Assignment policies

In general, OMACS allows the assignment of any agent a to any role r in order to achieve
any goal g, as long as potential(a,r,g)> 0. However, in a specific application, there
may be additional constraints that the assignment set, � must satisfy. These constraints are
captured in the form of assignment policies. Thus, assignment policies, P�, constrain the
assignment set �.

In many cases, generic policies such as “an agent may only play one role at a time” or
“agents may only work on a single goal at a time” are useful and are shown below.

∀ a1,a2 : A r1,r2 : R g1,

g2 : G 〈a1,r1,g1〉 ∈ � ∧ 〈a2,r2,g2〉 ∈ � ∧ a1 = a2 ⇒ r1 = r2

∀ a1,a2 : A r1,r2 : R g1,

g2 : G 〈a1,r1,g1〉 ∈ � ∧ 〈a2,r2,g2〉 ∈ � ∧ a1 = a2 ⇒ g1 = g2

However, policies are often application specific, such as requiring particular agents to play
specific roles or that the correct number of agents are playing specific roles. In an information
system application, it might be necessary to ensure that no more than two agents are assigned
to play roles that interface to a specific database in order to reduce resource contention. If
the specific role that has access to the database is named DBAccess, then we could specify
such a policy as (where # is the cardinality operator)

#({a | 〈 a,DBAccess,g〉 ∈ �}) ≤ 2

The language used to define policies will be implementation specific and will consist of
names for the entities and relationships from OMACS (e.g., potential, �, etc.) as well as
application specific terms such as role, goal, and capability names, which are defined in the
organization’s domain model, �.

To see if an individual assignment φ or an assignment set �, are legal according to current
policies, OMACS defines two legal operations. (P(P) refers to the set of all organization
policies.)

legal : φ, P(P) → Boolean

legal : �, P(P) → Boolean

The first operation takes a single assignment and determines its legality according to a set of
policies while the second operation determines the legality of a set of assignments according
to a set of policies. It will often be the case that a single assignment is legal by itself, however,
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when it is included into a set of assignments, it may become illegal due to policies such as
the first two presented in this section.

3.7.2 Behavioral policies

Behavioral policies Pbeh define how agents in the organization should behave in relation
to one another. For instance, in a conference review system, we would want to describe
responsibilities of agent playing specific roles and their relationships to other roles. Although
behavioral policies have been identified as part of OMACS, they are not yet fully defined. We
are currently investigating the details of their formal language and semantics. However, the
following presents a notional overview of how behavioral policies might be used in OMACS.

To refer to an agent playing a particular role, organizational predicates (achieves,
capable, possesses, and potential) or assignment set membership can be used.
Thus, to test whether a particular agent is playing a particular set of roles (e.g., the agent
making final decisions cannot be an author of any papers for the conference), we can test for
inclusion in � as follows.

∀ a : A, g1,g2 : G ¬(〈a,Author,g1〉 ∈ � ∧ 〈a,DecisionMaker,g2〉 ∈ �)

Although it is possible to state some requirements using only concepts from OMACS, other
cases require the use of relationships between roles based on system/environment data. For
instance, in the conference management system the relationships between roles based on the
papers submitted, reviewed, or collected are vital. Thus, we must be able to talk about the
data in the system as well, which is defined by the domain model, �.

3.7.3 Reorganization policies

Application specific approaches to reorganization allow the designer to define heuristics to
guide the system in its reorganization. For instance, instead of using a generic algorithm,
the designer could specify the order in which agents should fill roles. OMACS models these
heuristics as a special set of organizational policies called reorganization policies, Preorg.
Reorganization policies allow the designer to specify default reorganization strategies that
are used prior to expensive computational approaches (see Sect. 5.2). Reorganization can
first be attempted using these reorganization policies. If reorganization fails, these policies
may be ignored and reorganization attempted using general purpose (and more expensive)
approaches. Application specific rules can increase the reasoning efficiency in anticipated
scenarios while providing robustness for unknown or uncommon cases1.

While assignment policies simply restrict possible organizations, reorganization policies
are used to direct actions taken during reorganization. An example of a possible application
specific reorganization rule is shown below.

〈a1,r1,g1〉 ∈ � ∧ ¬capable(a1,r1) ∧ capable(a2,r1)

⇒ 〈a2,r1,g1〉 ∈ �′ ∧ 〈a1,r1,g1〉 /∈ �′

Here, �′ refers to the assignment set after the reorganization occurs. In this case, the rule
specifies that if agent a1 is playing r1 to achieve goal g1 and a1 becomes incapable of
playing role r1, then if a2 is capable of playing role r1, it should be assigned to goal g1
and a1 should be de-assigned.

1 An excellent example of this is given in [39] where human intuition led operators to propose reorganiza-
tion when the automated algorithm deemed it unnecessary. Later analysis showed the operator’s proposed
reorganization was globally optimal.
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3.8 Domain model

The domain model, �, is used to define object types in the environment and the relations
between those types. The domain model is based on traditional object oriented class dia-
grams. They include object classes that each have a set of attribute types. Relations between
object classes include general purpose associations as well as generalization-specialization
and aggregation. Relations may also include multiplicities to constrain the number of object
classes participating in any given relation.

The domain model � is a tuple 〈O, Rel〉 where

• O set of object types, which consists of public attributes
• Rel relation over O×O that defines various relationships between object types

An object O is a tuple of 〈Attributes, C〉 where

• Attributes set of tuples 〈name, type, value〉 defined in the normal manner
• C set of constraints over Attributes

There are three types of relations in Rel,

• RelAgg a type of Rel denoting general aggregation relations between object types
• RelGen a subset of Rel containing generalization-specialization relations between object

types
• RelAss a subset of Rel containing general associations between object types

The associations in a domain model can be used to define functions for talking about rela-
tions between environment object types. For instance, Fig. 4 shows a domain model for a
conference review system.

The domain model defines an environment with a set of papers, each with an associated
abstract and a set of reviews. Using the relations defined in the model, we can talk about
the reviews a paper has received paperReview(p) or a paper’s abstract paperAbstract(p), etc.
Multiplicities may constraint the number of allowable environment objects or the number of
objects that may be related. Figure 4 defines a model where each abstract must have exactly
one paper and each paper must have exactly one abstract. It also specifies that a review must
be related to a single paper, while a paper may have any number of reviews on it (including
none). Thus several organizational constraints can be defined in the domain model itself.

3.9 Organizational assignment function

Ideally, an organization will select the best set of assignments to maximize its ability to
achieve its goals. As with the rcf, the selection of assignments may be application specific.
Thus, each organization has its own application specific organization assignment function,
oaf, which computes the goodness of the organization based on �.

oaf : � → 0..∞
With the oaf, the organization designer can specify how to make assignments based on a
variety of organization specific constraints such as the importance of the specific goals or

wholePaperpaperAbstract paperReviewreviewedPaper

11 1 0 .. *

Abstract Paper

author : String

Review

Fig. 4 Conference management domain model
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whether the assignment of multiple agents to a given role and goal will improve goal sat-
isfaction. In the absence of an organization-specific organizational assignment function, we
often define the oaf as the sum the potential scores in the current assignment set �.

oa f =
∑

<a,r,g>∈�

potential(a, r, g) (4)

3.10 Achieves

The achieves function defines how effective a role is for achieving a specific goal. It can be
predefined by the organization designer or learned before or during system operation. Each
role is responsible for achieving specific system goals and may actually be able to achieve
multiple goals. However, since some roles are better for achieving certain goals than other
roles, OMACS must have an approach to determine which roles are preferred for which goals.
For instance, if the system had a goal to search an area, it might have multiple roles that could
actually achieve the goal. Role A might require an airborne agent while role B might require
only a land-mobile agent. As role A could perform the task more quickly, it could be given
a higher achieves value as opposed to role B to indicate that it is the preferred role in this
application. Therefore, OMACS defines an achieves function that describes how effective
a role is for achieving a specific goal. The achieves function is a total function from the
cross product of roles and goals to a real value in the range of 0 to 1.

achieves : R,G → 0..1

Thus a role that cannot achieve a particular goal has an achieves value of 0, while any
role that can achieve a goal would have an achieves value greater than zero. The achieves
function is used along with the capable function (defined in Sect. 3.13) to define the potential
of a specific assignment (see Sect. 3.14).

3.11 Requires

In order to perform a particular role, agents must possess a sufficient set of capabilities that
allow the agent to carry out the role and achieve its assigned goals. For instance, to play the
“president” role, a person would be expected to have knowledge of the corporation’s domain,
experience in lower-level jobs in similar types of companies, and experience in managing
people and resources; an artificial organization is no different. Roles require a certain set of
capabilities while agents possess a set of capabilities (see Sect. 3.12).

requires:R → P(C)

All roles require some level of capability, even if it is purely computational or communicative.
Therefore, OMACS dictates that all roles require at least one capability.

∀ r : R requires(r) �= {} (5)

3.12 Possesses

To be able to play a specific role, an agent must possess the capabilities required for that
particular role. To capture a given agent’s capabilities, we define a possesses function,
which returns a value in the range of 0–1. The possesses function defines the quality of each
capability that an agent has; 0 represents no capability while a 1 represents a high quality
capability.
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possesses : A,C → 0..1

Because agent capabilities may improve or degrade over time, the output of the possesses
function is dynamic. Agents may learn and thus (hopefully) improve an agent’s capability.
However, an agent’s capability may also degrade through either hardware failure or loss of
access to/competition over a particular resource. As an agent’s possesses function changes, the
ability of the agent to play specific roles also changes as computed by the role’s rcf function.
If a capability can improve or degrade in more than one dimension (for example, accuracy
versus range), the designer must currently convert those dimensions into a single value in
the range of 0–1. We are actively investigating ways to explicitly model multi-dimension
capabilities (see Sect. 8.1).

3.13 Capable

Using the capabilities required by a particular role and capabilities possessed by a given
agent, we can compute the ability of an agent to play a given role, which we capture in the
capable function. The capable function returns a value from 0 to 1 based on how well a given
agent may play a specific role.

capable : A,R → 0..1

As described above, since the capability of an agent,a, to play a specific role,r, is application
and role specific, OMACS provides a role capability function, rcf to compute the capable
function for each agent-role pair. Thus, the capability score of an agent playing a particular
role is defined via the designer defined role capability functions (rcf) for each organizational
role.

∀ a : A r : R capable(a,r) = r.rcf(a) (6)

While the rcf is user defined, it must conform to one OMACS constraint. To be capable of
playing a given role in the current organization, an agent must possess all the capabilities
that are required by that role.

∀ a:A, r : R capable(a,r) > 0 ⇔ requires(r) ⊆ {c | possesses(a,c) > 0}
(7)

Because it is defined purely in terms of the rcf, the capable function is actually redundant.
However, we believe that the capable function is intuitive and is useful in terms of having a
single function that applies to all roles and agents.

3.14 Potential

One of the goals of an organization is to provide a mechanism to distribute goals in such
a way that agents work together toward accomplishing the top-level organization goal. As
described above, these goals are achieved by assigning agents to specific roles in the organi-
zation. However, because the agents in an organization may be heterogeneous, some agents
may play a particular role better than others. The potential function captures the ability of
an agent to play a role in order to achieve a specific goal; it maps each agent-role-goal tuple
to a real value ranging from 0 to 1, where 0 indicates that the agent-role-goal tuple cannot
be used to achieve the goal. A non-zero value indicates how well an agent can play a role in
order to achieve a goal.

potential : A, R, G → 0..1
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The potential of an agent to play a specific role in order to achieve a specific goal is defined
by combining the capable and achieves functions.

∀ a : A r : R g : G potential(a,r,g) = achieves(r,g) ∗ capable(a,r) (8)

3.15 Organizational agents

Organizational agents (OA) are organizations that function as agents in a higher-level orga-
nization. OAs allow OMACS to represent a hierarchy of organizations, providing OMACS
with both flexibility and scalability. As agents, OAs may possess capabilities, coordinate
with other agents, and be assigned to play roles. OAs represent an extension to the traditional
Agent-Group-Role (AGR) model developed by Ferber [17,18] and are similar to concepts in
the organizational metamodel proposed by Odell [33].

OMACS defines two relationships between the higher-level organization and the OA’s
internal organization. First, there must be a connection between the role being played in the
higher-level organization and the OA’s internal oaf function. Second, a specific relationship
must exist between the OA’s internal capabilities and those of the higher-level organization.

Because the role the OA is playing will affect the internal organization of the OA, there
must be a way to relate the organizational assignment function of the OA to its role. However,
the oaf is defined as having no parameters and only has access to the local organizational
components (see Sect. 3.9). Therefore, an OA must extend the definition of an organization
by adding a new oaf function that allows it to take a parameter that includes a set of roles
from the higher-level organization. Thus, an OA is an organization with one extension, a
polymorphic oaf function that takes as input an assignment set along with a set of roles
it has been assigned to play in the higher-level organization. Again, the polymorphic oaf
function is application specific and must be written to take into account the specific roles the
OA can take on in the higher-level organization.

oaf : �, R → 0 .. ∞
The relationship between the capabilities in an OA and those of the higher-level organization
is actually straightforward. Essentially, if a capability belongs to an agent that is part of the
OA’s internal organization, then those capabilities also exist in the higher-level organization
by inclusion. Thus, if an OA, a, exists as an agent in an organization, o, then the capabilities
possessed by a in o must be equivalent to the entire set of capabilities possessed by the
individual agents in a’s internal organization. (Dot notation is used to differentiate between
the capabilities of the organizations represented by a and o respectively.)

a.C ⊆ o.C (9)

∀ ag : a.A, c : a.C a.possesses(ag,c) > 0 ⇒ o.possesses(a,c) > 0 (10)

Notice that we also stop short of defining the actual possesses score for these capabilities in
the higher-level organization. This is because there may be multiple agents in the OA’s inter-
nal organization with the same capability. Thus, the actual possesses score will be application
specific.

Given the definitions above, it is possible for an organization to possess capabilities that
are not possessed by individual agents. We are currently investigating the notion of composed
capabilities that would allow a designer to define higher-level capabilities that consist of sev-
eral lower level capabilities. For instance, if an organization had individual robots with the
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capabilities to Search, Carry, and Communicate, then the composition of those capabilities
at the organizational level could result in a Rescue capability for the organization as a whole.

4 Organization viability

The constraints above define the legality of the organization structure and its instances. How-
ever, we are also interested in whether or not an assignment of agents to roles satisfying all the
organizational policies exists that can allow the system to achieve its goals, which we refer
to as organizational viability. Although an organization may be structurally valid, there is no
guarantee that an instance of that organization exists that can achieve its goals. In actuality,
we can never guarantee that the system will ever achieve all its goals due to the dynamic
nature of the environment in which the organization operates. To achieve the organizational
goals, the system must have the right mix of agents to play the right roles to achieve those
goals. Essentially, a viable organization is a valid organization that has been populated with
the right types and numbers of agents so that it might potentially achieve its goals.

Viability – an organization, O, is viable if there exists a series of assignments of agents
to roles to goals consistent with its policies P that can achieve all the goals in G.

For an organization to be viable, according to the definition above, it must have the roles
and agents to achieve its goals under ideal conditions (no agent failures, etc.). Therefore, we
define a viable organization as an organization that is able to show that the organization goals
are achievable by some set of assignments of goals, roles, and agents. When a given goal is
achievable by a set of assignments, we term that goal satisfiable. Therefore, viability refers
the satisfiability of all goals in G.

Viability does require that the set of assignments used to determine satisfiability is con-
sistent with (or legal) the organizations policies P. Thus, to show viability, we must show
that an organization’s goals are satisfiable using only legal sets of assignments.

To formalize the notion of viability, we need to introduce the notion of a sequence of
assignment sets �∗. First, we can define the notion of a sequence of goal sets, G′ = [G0, G1,
. . ., Gn], where Gi represents the current set of active goals at time i and is equivalent to Gi−1

modified by the removal of goals that were achieved and the addition of new goals based on
various events that may occur. Thus, �∗ is defined based on the sequence of goal sets

�∗ = [�0,�1, . . ., �n]
where �i is a set of assignments corresponding to the goal set Gi.

�i ⊆ {〈a,r,g〉 | a ∈ A ∧ r ∈ R ∧ g ∈ Gi ∧ potential(a,r,g) > 0}
Finally, we can define viability, viable(O), as a predicate that determines satisfiability of a
given organization, O where the viable predicate is defined as

viable(O) = ∃�∗ | ∀ g : G satisfiable(g,�∗) ∧ legal(�∗,P) (11)

The satisfiability of a goal and the legality of an assignment set are discussed below.

4.1 Satisfiable

Essentially, a goal is satisfiable if we can find a role that can achieve that goal and an agent
that can play that role. This assignment must be part of some assignment set in the assignment
sequence. Formally, we define satisfiable as
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satisfiable(g,�∗) ⇔ ∃ a : A, r : R,�i : � | achieves(r,g) > 0 ∧
capable(a,r) > 0 ∧ �i ∈ �∗ ∧ 〈a,r,g〉 ∈ �i (12)

4.2 Legal

We define the legality of a sequence of legal assignments, �∗ = [�1,�2, . . ., �n], in terms
of the legality of the individual assignments. To accomplish this, we define an additional
legal predicate based on the basic legal predicates defined in Sect. 3.7.1.

legal : �∗, P(P) → Boolean

Essentially, a sequence of assignments is legal if each assignment set in the sequence is legal.

legal(�∗,P) = legal(�1,P) ∧ legal(�2,P). . .legal(�n,P) (13)

5 Organization and reorganization

Each organization has an implicitly defined organization transition function that describes
how the organization may transition from one organizational state to another over the lifetime
of the organization. Since agents in an organization as well as their individual capabilities
may change over time, this function cannot be predefined, but must be computed based
on the current state, the goal set, G, and the current policies. In our present research with
purely autonomous systems, we have only considered reorganization that involves the state
of the organization. However, we have defined two distinct types of reorganization: state
reorganization, which only allows the modification of the organization state, and structure
reorganization, which allows modification of the organization structure (and may require
state reorganization to keep the organization consistent). We define the state of the organiza-
tion as the set of agents, A, the possesses, capable, and potential functions, and
the assignment set, �. However, not all these components may actually be under the control
of the organization. For our purposes, we assume that agents may enter or leave organizations
or relationships, but that these actions are triggers that cause reorganizations and are not the
result of reorganizations. Likewise, possesses (and thus capable and potential as
well) is an automatic calculation that determines the possible assignments of agents to roles
and goals in the organization. The calculation of possesses is the only calculation totally
controlled by the agent; the organization can only use this information in deciding how to
make assignments. This leaves one element that can be modified via state reorganization: �.

5.1 Reorganization triggers

Various events may occur in the lifecycle of a multiagent system that may require it to reor-
ganize. In general, reorganization is initiated when an event occurs that changes the state
of the current organization. As we are currently only investigating state-based changes, we
have only considered events that change the state of the organization. Thus, we have currently
identified two types of events of interest: changes in goals and changes in agents, each of
which may cause a change in �. We discuss these two situations in detail below.
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5.1.1 Goal set changes

Any change in G may cause reorganization. There are three basic types of events that can
cause a change in G: (1) insertion of a new goal, (2) goal achievement, and (3) goal failure.
Each of these is discussed below.

The first situation deals with new goals being added to G. However, we cannot say with
certainty that reorganization will occur based on a new goal in G. It is possible that the orga-
nization will choose to forego reorganization for a number of reasons, the most likely being
that it has simply chosen not to pursue any new goals added to G at the present time.

The second case deals with goal achievement. When a goal g is achieved, G is changed
to reflect that event by (1) removing g from G and (2) possibly adding new goals, which are
enabled by the achievement of g, into G. Obviously, the agent assigned to achieve goal g is
now free to pursue other goals.

The third instance involves goal failure, which really has two forms: agent-goal failure
and goal failure. When a specific agent cannot achieve goal g but g might still be achievable
by some other agent, agent-goal failure occurs. When agent-goal failure occurs, reorganiza-
tion must occur to allow the organization to (1) choose another agent to achieve g, (2) not
pursue g at the current time, or (3) choose another goal to pursue instead of g. In any of
these situations, g is not removed from G since it has not been achieved. In the case where
the organization or the environment has changed such that a goal g can never be achieved,
then goal failure occurs. In this case, g is removed from G and the organization must attempt
to assess whether it can still achieve the overall system goals. Reorganization may occur to
see if the agent assigned to achieve g can be used elsewhere. In all cases, the selection of the
appropriate strategy is left to the organization.

5.1.2 Agent changes

The second type of change that triggers reorganizations are changes to the set of agents, A,
or their individual capabilities. When an agent that is part of � is removed from the organi-
zation, a reorganization must occur, even if only to remove the agent and its assignment(s)
in �. Likewise, when an agent that is part of � loses a capability that negates its ability to
play a role that it is assigned, reorganization must occur as well.

In general, when changes occur in an agent’s capability, reorganization may or may not
be necessary, based on the agent’s capable relation. We have identified four specific types
of changes in an agent’s capabilities that may indicate a need for reorganization: (1) when an
agent gains the ability to play a new role, (2) when an agent loses the ability to play a role,
(3) when an agent increases its ability to play a specific role, or (4) when an agent decreases
its ability to play a specific role. While case 2 requires reorganization if the agent is currently
assigned to play the role for which it no longer has the capability to play, whether or not to
reorganize is left up to the organization when the other three cases (along with 2 when the
agent is not currently assigned that role) occur.

5.2 Reorganization

Reorganization is the process of changing the assignments of agents to roles to goals as
specified in �. The organization’s oaf function is used to determine the best new �; however,
total reorganization may not be necessary or efficient. (In the absence of any information or
policies, an optimal total reorganization would take on the order of 2A×G×R.)
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One approach is to take a local view, in which the organization looks at the OMACS state
and reorganizes in a locally optimal fashion (i.e. hill climbing). However, when dealing with
dynamic environments, it is often desirable to reorganize so that the team can operate more
efficiently or effectively in its present situation as well as being adaptable to its changing
environment. Thus, we would like to take a long-range or global view. Unfortunately, it has
been shown that in the general case globally optimal reorganizations are NEXP-complete and,
thus impractical for most applications with any time constraints [32]. Therefore, OMACS
provides a mechanism for augmenting the locally optimal algorithm with application specific
rules in an attempt to make reasoning more efficient and to enable globally better solutions.

5.2.1 General purpose reorganization examples

For general-purpose reorganization, we have developed several reorganization algorithms
that give us a default reorganization capability. When a reorganization trigger occurs, gen-
eral-purpose reorganization algorithms can be used to find appropriate assignments to achieve
the organizations goals, if possible. To compute the best reorganization, an algorithm that
simply optimizes the organization’s oaf might seem appropriate; however, this approach is
short sighted. First, it does not deal with the cost associated with reorganizing and, second, it
does not consider the reason reorganizing was initially undertaken. Exploiting reorganizing
costs requires a distributed solution since the cost for robots to change roles is not glob-
ally known. For instance, if an agent is required to perform a complex computation, any
effort toward that computation would be lost if the agent was reassigned to another role/goal.
Considering the reason for reorganization may enable less extensive (and less costly) reor-
ganization. If the reason for reorganizing is to fill a single role, then a total reorganization
may be a waste of time and resources.

We have developed several reorganization algorithms from sound and complete total reor-
ganization algorithms to greedy algorithms [48,49]. As expected, the sound and complete
total reorganization algorithm is extremely slow, especially when the organization lacks any
policies that limit the number of legal combinations of agents, roles, and goals. The greedy
algorithms also perform as expected, giving low computational overhead and producing gen-
erally adequate organizations. We have also looked at learning reorganization algorithms
[27].

A general purpose reorganization algorithm that produces an optimal solution with
OMACS is shown in Fig. 5. By optimal, we refer to the organization with the highest score as
returned by the oaf. Therefore, finding the optimal organization score requires going through
every potential assignment (every combination of goals, roles, and agents) and computing
the organization score for each combination. In the algorithm, Gw refers to the goals that
the organization is currently pursuing while Aw refers to the current set of agents that are
available to be assigned.

Lines 1–3 create all valid goal–role pairs from goals in Gw and the roles that are able to
achieve that goal. Line 4 creates a powerset of all possible sets of goal–role pairs and then
remove invalid sets using the assignment policies. Lines 5–7 create all the possible assign-
ments pa between the agents from Aw and the goal–role pairs in each set in ps. Line 8
removes invalid assignments from pa based on the assignment policies and then creates the
set of all possible assignment sets, pas. Lines 10–13 go through each possible assignment
set to find the one with the best oaf score. Finally, line 14 returns the best (optimal) set of
assignments.

Assignment policies can have significant effects on the time complexity of reorganization
algorithms. For example, assume an agent is able to play five roles and each role achieves
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function reorganize(oaf, Gw, Aw)
1. for each g  Gw
2.   for each role r  R 
3.     if achieves(r,g) > 0 then m m r,g
4. ps  P (powerset(m))
5. for each agent a  Aw
6.   for each set s ps
7.     if capable(a,s.r) then pa pa a,s
8. pas  powerset(P (pa))
9. for each assignment set i from c
10.   for each assignment x from pa
11.     x.a,x.si
12.   if P ( ) is valid
13.     if oaf( ) > best.score then best oaf( ),
14. return best.

Fig. 5 General reorganization algorithm

three goals; without any assignment policies, the agent has 25×3 = 32, 768 possible assign-
ments. However, with a simple policy that states that “agents can only play one role at a
time”, the agent only has 5 × 3 or 15 possible assignments. If there are four of such agents,
the possible assignments are reduced from 32, 7684 or 1,152,921,504,606,846,976 to 154 or
50,625. The algorithm in Fig. 5 was run “as is” using no policies as well as with the policy
“agents can only play one role at a time”. While there are two locations that policy checking
occurs, this policy makes an impact in the first check in line 4 only. As expected, the original
version of the algorithm with the policy performs better than the version with no polices due
to the smaller number of possible assignments. We also modified the algorithm in Fig. 5 by
replacing the power set and policy checking functions in line 4 with a custom function that
generates only valid assignment sets based on the policy. This version performed much better
(an order of magnitude) than both the original and first version on reasonable size organi-
zations as the custom function does not waste time generating unnecessary assignment sets.
Details of these results can be found in [48,49].

5.2.2 Application specific approaches

As stated in Sect. 3.7.3, reorganization policies allow organization designers to specify appli-
cation-specific rules that can be checked prior to running costly general-purpose reorganiza-
tion algorithms. If used, a reorganization trigger initiates a two step reorganization process.
First, the reorganization policies are checked to see if any of them can be triggered. If so, the
rule is applied and the new organization is checked for validity. If no applicable reorganiza-
tion policies can be found or if they do not result in viable organizations, the general-purpose
reorganization algorithm is run to come up with a new organization.

6 Battlefield information system

To demonstrate the effectiveness of OMACS, we implemented a simulated Battlefield Infor-
mation system (BIS). The purpose of the BIS is to provide an information system that can
adjust its processing algorithms and/or information sources to provide required informa-
tion at various levels of efficiency and effectiveness [29]. In this system, various types of
sensors at different locations are used to detect enemy vehicles. These sensors are subject
to failure and erroneous outputs and typically have a delay in getting the information cate-
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gorized. When sensor data of interest is available, it is fused with other related information
to answer queries from the commander. Queries are generated by a field commander via the
system interface. There are two types of queries that can be generated: transient and per-
sistent. Transient queries are executed only once whereas persistent queries are carried out
repeatedly until canceled. To be able to overcome the loss of sensors and continue to provide
the required information, the BIS needs to adapt by replacing the failed sensors and adapting
the information processing adequately.

6.1 Organization design

To implement the BIS, we had to design each of the main entities of the OMACS model.
These goals, roles, capabilities and agents are defined in the following paragraphs. To sim-
plify the example, we assume all capabilities required by a role are equally important to that
role (thus using the default rcf given in Eq. 3) and that an agent either possesses a capability or
not (possesses(a,c) is either 1 or 0). We also use the default oaf function given in Eq. 4 and an
algorithm similar to the reorganization algorithm in Fig. 5 to compute the best configuration
at a particular point in time.

6.1.1 Goals

The main goal of the application is to answer each query presented to the system. From the
requirements, we derived a set of goals that the organization must satisfy. Each goal listed
below defines a type of goal that may be instantiated within the BIS. During the pursuit of
specific goals, events may occur that cause the instantiation of new goals. If event E can occur
during the pursuit of goal A causing the instantiation of a second goal B, we say that goal A is
capable of triggering goal B. In operation, this means that event E is recognized by the agent
pursing goal A. Once the agent recognizes event E, the agent passes E to the organization,
which is responsible for creating a new instance of goal B and eventually assigning an agent
to play a role to achieve goal B.

These instantiated goals may be parameterized to allow the goal to take on a context sensi-
tive meaning. For instance, to achieve the Process Query goal (G1 below), it is assigned to an
agent who waits for queries to be submitted from the commander. When a query arrives, the
agent assigned to achieve G1 forwards this event (the receipt of a query) to the organization,
which causes the instantiation of a new goal, Find Sensors (G2). This new instance of G2 is
parameterized based on the query received. If a second query arrives, a new instance of the
Find Sensor goal is instantiated with the specific query as its parameter.

Goal Name Description
G1 Process Query Get the query from the user. There is only one instance of

this goal that is created upon system initialization. As
described above, this goal is capable of triggering G2.

G2 Find Sensors
〈Q: Query〉

Find all the sensors in the area of interest for the query
Q. This goal is triggered by G1 and is parameterized
with the query. After finding a set of sensors that can
fulfill the query, it triggers G3 and either G4 or G5.

G3 Read Sensor
〈S:Sensor〉

Read the data from the sensor S given in parameter. This
goal does not trigger any additional goals.
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Goal Name Description
G4 Merge Diverse

〈Q: Query,
L: 〈Sensors〉〉

Fuse the data received from the list of different types of
sensors L for the area specified by query Q. G4 may
trigger G6, G7, G8, G10, or G11. It triggers G9 once a
result is ready. If an error occurs during the merging of
the data (loss of a sensor, etc.), it can cause a negative
trigger, which removes all goal instances related to a
particular query and triggers a new instance of goal G2
with the same query parameter. This results in a set of
new goals based on the current set of available sensors.

G5 Merge Similar
〈Q: Query,
L:〈Sensors〉〉

Fuse the data received from the list of similar sensors L
for the area specified by query Q. Sensors in L must all
be the same type. G5 has identical triggers and negative
triggers as G4.

G6 Filter Information
〈Q: Query〉

Filter the merged data based on the information required
by the query Q.

G7 Correlate Data
〈Q: Query〉

Compare data with historical data in order to extract
persistence information if the query Q is a persistent
query.

G8 Add Information
〈Q: Query〉

Look up additional information if required by the query
Q.

G9 Return Result
〈Q: Query〉

Display the result of the query Q in a user-friendly
format.

G10 Monitor Time
Constraints
〈Q: Query〉

Check the validity of the data regarding the time
constraint specified by query Q. If the time constraint
specified by the query is violated, a negative trigger
removes all goal instances related to that particular
query and triggers a new instance of goal G2 with the
same query parameter.

G11 Monitor Accuracy
Constraints
〈Q :Query〉

Check the validity of the data regarding the accuracy
constraint specified by query Q. If the accuracy
constraint specified by the query is violated, a negative
trigger removes all goal instances related to that
particular query and triggers a new instance of goal G2
with the same query parameter.

Note that goals G10 and G11 are maintenance goals. When an agent is assigned a main-
tenance goal, the agent is responsible for monitoring the maintenance condition and taking
action when that condition is violated.

6.1.2 Roles

The roles for the BIS were derived directly from the goals; for each goal we created a role to
achieve it. A role achieving a parameterized goal is able to achieve all different parameterized
instances of this goal. To simplify the system, we have assigned an achieve score of 1 if the
role can achieve a goal, or 0 if it cannot. Following are the roles we have defined for the BIS
organization, along with the goals they can achieve. We also describe the behavior of each
of those roles.
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Role Name Achieves Description
R1 Query

Processor
G1 Periodically interrogates the GUI to get any new queries

entered by the commander. This role generates a start
event to notify the system that a new query has been
entered, which causes the instantiation of a G2 goal.

R2 Sensors
Locator

G2 Queries the sensor database in order to find all sensors
available in the area specified by the parameter of the
goal it achieves. Then it executes an algorithm to find
the best coverage based on the set of available sensors.
For each sensor selected, a found event is generated
that triggers a new G3 goal, which results in the
organization attempting to find an agent capable of
reading the selected sensor. After all sensors have been
selected, the role generates a mergeSimilar or
mergeDiverse event (based on the types of the sensors
selected), which results in the instantiation of a new
G4/G5 goal to merge the results coming from the
selected sensors.

R3 Sensor
Reader

G3 Reads the data from the sensor given in the parameter.

R4 Data
Merger
Diverse

G4 Merges the data collected from various sensors covering
the area of interest. This role uses a processing
algorithm that allows it to merge data coming from
sensors of different types. Once the data is fused, it can
generate events filter, persistent, or addInfo to trigger
G6, G7, or G8 respectively. Depending on the
information required by the query, the agent playing
this role collaborates with other agents to process the
data fused. This coordination allows the agent to
formulate adequate answers to the query. Once all the
processing is done, a result event is generated
triggering the G9 goal.

R5 Data
Merger
Similar

G5 Behaves like R4. However, this role uses a processing
algorithm that allows it to merge data coming from
sensors of the same type efficiently. Thus, this role
does not process data from different sources. Role R5
also generates the same events as R4.

R6 Object Filter G6 Filters data based on the type of information required by
the query given in parameter. When done, the agent
playing R6 returns the data to the appropriate Data
Merger agent and terminates. R6 generates no events
that trigger any new goals.

R7 Intelligence
Provider

G8 Looks up additional information about the enemies in
the area as specified in the query. When done, the agent
playing R7 returns the data to the appropriate Data
Merger agent and terminates. R7 generates no events
that trigger any new goals.
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Role Name Achieves Description
R8 Persistence

Validator
G7 Compares new data against historical data in order to

extract persistence information. This would be the case
if, for example, the BIS was monitoring the entrance of
new vehicles in a given area. This role only applies to
persistent queries. When done, the agent returns the
data to the appropriate Data Merger agent and
terminates. R8 generates no events that trigger any new
goals.

R9 Result
Interface

G9 Returns the results of the query to the commander’s
interface. R9 generates no events that trigger any new
goals.

R10 Time
Monitor

G10 Monitors the organization’s ability to return results
within the specified time constraint. It communicates
the results to the Data Merger agent in charge of the
query and triggers a failure event if the constraint is
violated.

R11 Accuracy
Monitor

G11 Monitors the organization’s ability to return results
within the specified accuracy constraint. It
communicates the results to the Data Merger agent in
charge of the query and triggers a failure event if the
constraint is violated.

6.1.3 Capabilities

To be valid, each role requires at least one capability. While some capabilities are used to
interact with the environment, others allow the agent to carry out specific functional com-
putations within the system. The capabilities identified for the BIS and the roles that require
them are listed below.

Cap Name Requires Description
C1 User

Interaction
R1, R9 Used to interact with the GUI. This capability provides

actions to get a query from the commander and to
display the result of a query that has been executed.

C2 Coverage
Processing

R2 Used to compute the optimal set of sensors with the
maximum coverage of the area of interest that can
satisfy the efficiency and accuracy constraints.

C3 Sensor
Interaction

R3 Used to interact with the actual sensors on the battlefield.
This capability provides an action to query a sensor
and read its data.

C4 Data Merging
Diverse

R4 Provides computational algorithms to merge data
coming from diverse type of sensors.

C5 Data Merging
Similar

R5 Provides fast computational algorithms to merge data
coming from similar sources only.

C6 Data
Filtering

R6 Used to filter out information that is
not needed to answer a given query.

C7 Intelligence
Processing

R7 Used to obtain additional information to answer a query.
The additional information comes from existing
databases (e.g., the firing range of a vehicle type).
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Cap Name Requires Description
C8 Correlation

Processing
R8 The ability to correlate data from two successive results

of a given query. Correlation exhibits differences in the
results of a query obtained at different times.

C9 DB access R2, R7, R8 The ability to access a database including actions to both
read from or write to the BIS databases (e.g. sensors
database, intelligence database).

C10 Monitoring R10, R11 The ability to check the time and/or the accuracy of a
query. The information about accuracy and times of the
results are provided by the data sources.

C11 Coordina-
tion

R3, R4, R5,
R6, R7, R8,
R10

The ability to communicate with other agents. This
capability provides actions to send/receive messages
to/from specific agents in the organization. Agents
must have this capability to communicate between
themselves.

6.1.4 Agents

To be viable, the BIS organization must have the right types of agents capable of playing its
organizational roles. To be able to play a specific role, an agent must possess the capabilities
required for that particular role. The agent types with their capabilities and the roles they can
play (assuming their capabilities do not degrade) are listed below.

Agent Description Possesses Roles
QA Query Agent C1 Query Processor, Result Interface
SFA Sensor Finder Agent C9, C2 Sensors Locator
DSA Data Sensor Agent C3, C11 Sensor Reader
MAD Merger Agent Diverse C1, C4, C11 Query Processor, Result Interface,

Data Merger Diverse
MAS Merger Agent Similar C1, C5, C11 Query Processor, Result Interface,

Data Merger Similar
DFA Data Filter Agent C6, C11 Object Filter
IA Intelligence Agent C9, C7, C11 Intelligence Provider
DCA Data Correlation Agent C8, C9, C11 Persistence Validator
MON Monitor Agent C10, C11 Time Monitor, Accuracy Monitor

During the actual instantiation of the organization, an agent of each type is created. For
the Data Sensor Agent type, each sensor on the battlefield is associated with a unique agent
of type DSA. We have designed our system such that all capabilities required by a role are
treated as equally important. For this reason, the role capability function for an agent playing
that role is 1 if that agent possesses all the capabilities required by the role and 0 if it does
not.

6.1.5 Potential assignments

If we assume a Boolean value for the achieves, requires, and possesses functions, as indicted
in Sects. 6.1.2, 6.1.3, and 6.1.4 respectively, we can compute the initial potential function
for each agent defined in Sect. 6.1.4 (using Eq. 8 with the default rcf function for each role
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as defined in Eq. 3). As most of the tuples input to the potential function will result in a zero
(0) value, we only show tuples that result in a one (1) value as shown below.

Agent Role Goal potential(a,r,g)
QA R1 - Query Processor G1 – Process Query 1
QA R9 - Result Interface G9 – Return Result 1
SFA R2 - Sensors Locator G2 – Find Sensors 1
DSA R3 - Sensor Reader G3 – Read Sensor 1
MAD R1 - Query Processor G1 – Process Query 1
MAD R9 - Result Interface G9 – Return Result 1
MAD R4 - Data Merger Diverse G4 – Merge Diverse 1
MAS R1 - Query Processor G1 – Process Query 1
MAS R9 - Result Interface G9 – Return Result 1
MAS R5 - Data Merger Similar G5 – Merge Similar 1
DFA R6 - Object Filter G6 – Filter Information 1
IA R7 - Intelligence Provider G7 – Correlate Data 1
DCA R8 - Persistence Validator G8 – Add Information 1
MON R10 - Time Monitor G10 – Monitor Time Constraints 1
MON R11 - Accuracy Monitor G11 – Monitor Accuracy Constraints 1

6.1.6 Organization state model

Figure 6 shows a graphical depiction of the BIS OMACS entities and their relations defined
above. The boxes at the top of the diagram represent the goals, the circles represent the roles,
the pentagons represent capabilities, and the ellipses are agents identified by their types. The
arrows between the entities represent the achieves, requires, and possesses functions/rela-
tions. Each achieves and possesses arrow has a value of 1.

6.1.7 Implementation architecture

The BIS system has been designed using a centralized approach (Fig. 7). This approach
allows reusability of various organizational reasoning algorithms by decoupling the organi-

Fig. 6 BIS organization overview

123



Auton Agent Multi-Agent Syst (2008) 16:13–56 39

Fig. 7 Centralized architecture

zation reasoning part of the application, which can be generic, from the actual BIS system
composed of application-specific agents. The system has the following entities:

• Organization Master (OM),
• Agent Reasoning (AR)
• Agent Body (AB)

The Organization Master (OM) is a specialized agent that is in charge of all organization-
related tasks; it is not part of the organization and cannot be assigned a role to play. The OM
is the only agent that possesses complete organization knowledge and that is able to execute
reorganization algorithms. The OM uses its knowledge of the current goals and agents, makes
appropriate assignments and sends the assignments to the agents via their Agent Reasoning
(AR) component. The OM also receives events and the agent’s status from each agent’s AR
and reorganizes appropriately when needed.

We used a separate OM agent strictly to simplify the implementation of the organizational
reasoning and to ease the testing and debugging of the system. There is nothing in OMACS
or the application domain that would have precluded us from placing the organizational
reasoning of the OM into any one of the BIS agents or distributing the OM reasoning among
various BIS agents using more complex distributed organizational reasoning algorithms.
Distributed organizational reasoning involves a partial or total distribution of the organiza-
tion knowledge and OM decision making abilities among all or some of the agents of this
system. While a distributed approach would change the AR components of each agent, the
agent bodies would be unaffected. Eventually, we plan to have a variety of plug-and-play AR
components available for use in our organization-based systems.

Each agent is composed of two components: an AR component and an Agent Body (AB)
component. In our centralized approach, the Agent Reasoning component of the agent serves
as an interface between the OM and the Agent Body. It represents the part of the agent in
charge of all organization related tasks. The AR receives assignments from OM and forwards
them to the Agent Body. It also reports status/failures of its attached Agent Body to the OM.
The Agent Body is the application specific part of the agent as defined in OMACS. It accepts
assignments from the AR, plays its assigned roles and reports its status to its reasoning
component.
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Communication between the OM and the agents is done by message passing via the AR.
As the AR is actually part of the agent, the entities AR and AB can communicate directly
via methods calls, thereby reducing the communication overheads produced by message
passing. This architecture allows us to plug various organization reasoning algorithms into
the systems while leaving the agents intact.

6.2 Reorganization triggers

To adapt to a variety of unpredictable situations, our BIS organization is able to detect changes
in the performance of the overall organization and modify its structure accordingly. Many of
them are changes within the environment; however, some changes occur within the organiza-
tion itself (e.g., capability failure or goal completion). Such changes become reorganization
triggers when they either cause the organization to be unable to achieve its overall system
goal within the time/accuracy constraints given or allow the system to be more efficient or
effective in reaching its goal. Specifically, the BIS has four types of reorganization triggers:

• Sensor Failure
• Goal Completion
• Goal Instantiation
• Maintenance Goal Failure

6.2.1 Sensors failure

Each Data Sensor Agent (DSA) is linked to one physical sensor from the battlefield. The
failure of a sensor (e.g., S1) is taken as a goal failure, in this case G3(S1). The correspond-
ing DSA, which is the only agent capable of playing R3 to achieve G3(S1), can no longer
achieve its goal. When a sensor involved in a query fails, the Data Merger agent in charge
of that query becomes aware of this goal failure and notifies the OM via its AR component.
Then, the system redistributes the sensor reading tasks among all the sensor reader agents
still working and capable of covering the area of interest. In some cases, this reorganization
process requires the reassignment of the Data Merger agents to ensure optimal performance.
When the reorganization is completed, the query is executed again and the results are sent to
the user. In a rigid system, the loss of a sensor would mean an irreversible loss of performance
in the system.

6.2.2 Goal completion

The achievement of a goal can free an agent to take on a new role and goal assignment. When
this occurs, the organization may make new assignments in order to optimize the performance
of the system. In this application, however, unless there are goals that have not been assigned
to agent, the agents do not get reassigned until another reorganization trigger occurs.

6.2.3 Goal instantiation

When an event occurs that triggers the instantiation of a new goal, this goal is entered into
the organizations set of goals. The insertion of a new goal requires the BIS to take action to
satisfy this new goal. If the organization is able to find an agent-role pair capable of achieving
the goal, the agent is assigned to play that role in order to achieve the goal. In some cases, in
order to find a valid assignment, the organization has to reassign some agents already playing
some roles.
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6.2.4 Maintenance goal failure

The user can specify time or accuracy constraints that the query needs to satisfy. To moni-
tor the validity of those constraints, we have defined two maintenance goals: Monitor Time
Constraint and Monitor Accuracy Constraint. The agents assigned to achieve those goals
monitor for conditions violating the query constraints. If a constraint violation is detected,
the assigned agent notifies the OM who tries to reorganize in order to meet the constraint.
If the constraint cannot be satisfied, the user is notified and the query is executed with no
constraints.

6.3 Example scenario

To show how the BIS behaves, we present a scenario that exemplifies some of the adaptive
behaviors explained above. To show this clearly, we describe the state of the organization
after the occurrence of each event that triggers reorganization. The state of the organization is
shown by the current organization goals (G) and the current set of assignments (�). We assume
that the system is only trying to answer one persistent query and omit the query parameter
for goals and triggers. The BIS organization answers the following persistent query: “Show
the location and type of all enemy vehicles in the selected area” (the area selected is defined
by a rectangle as shown in Fig. 8. Once the query is entered, it is stored by an external agent
(not part of the BIS organization) in charge of the GUI. The screenshot in Fig. 8 shows the
simulated battlefield along with the sensors and enemy targets.

In our BIS simulator, there are five different types of vehicles that the system is trying
to locate and identify: trucks, halftrack, tank, artillery, and launcher. The accuracy of the
sensors describes how accurate they are in describing the actual location of the vehicles as
well as the type of vehicle. For this scenario, we have defined two types of sensors: ground
sensors and airborne automatic target recognition (ATR) sensors. The ground sensors have
a fixed location and provide information about location and type of enemy vehicles with
an accuracy of 75%. Ground sensors are also capable of providing requested data within 5
min. The airborne ATR sensors are obviously mobile and are also very accurate, providing
location and enemy vehicles type information with an accuracy of 95%. Unfortunately, ATR
sensors are not very fast; they typically can only provide their information in 15 min. For
the specific scenario described below, there are four ground sensors (S1, S2, S3, S4) and one
ATR sensor (S5). All sensors have a partial coverage of the area of interest. There are also
five enemy vehicles in the scenario as shown in Fig. 8. As stated in Sect. 6.1.4, we instantiate
one agent for each agent type except for the DSA agent type. Agents of type DSA will be
named DSA# where # is the sensor number attached to it (for example, DSA1 is the DSA
agent attached to S1). All other agent are named after their agent type.

6.3.1 Normal execution

At system initialization, we assume that all agents available to the organization are registered
with the OM. Because all the goals defined in Sect. 6.1 except G1 are triggered by other
goals, G1 is the only goal that is initially inserted into G.2 From the potential values given
in Sect. 6.1.5, we can easily see that only the assignment <a, r, g> has a non-zero value
and can be used to achieve G1. Therefore, once the initialization process is complete, the

2 While the manipulation of goals is important to this example, it is not part of the OMACS model. For more
information on our Goal Model for Adaptive Systems (GMoDS) and reasoning over those goals, see [13].
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Fig. 8 Battlefield map

OM runs its reorganization algorithm to produce the initial organization and, as expected,
assigns the Query Agent (QA) to play role R1 in order to achieve goal G1. Thus, we obtain
the following state for the organization:

State 0
G={G1}

The retrieval of a query from the GUI by QA is recognized as the start(query) event,
which is sent to the OM and causes the instantiation of a G2 goal and its insertion into G. At
this point, QA also informs the OM that G1 has been achieved, which results in G1 being
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removed from G. (To simplify our example, we assume QA terminates at this point; how-
ever, in the real simulation, QA stays active waiting for new queries.) As described in Sect.
5.1.1, any change to G requires reorganization. Once again, the OM runs its reorganization
algorithm, which results in assigning the Sensor Finder Agent (SFA) to play role R2 in order
to achieve G2 and the removal of the assignment (QA,R1,G1) from the assignment set �.
The organizational state transitions after each event are shown below. (As described above,
there is actually only one reorganization resulting in a transition from State 0 directly to
State 2; however, to clearly illustrate the cause and effect of the various events, we show the
reorganization as two separate transitions.).

State 0 State 1 State 2
G={G1}

start
G={G1,G2}

={(QA,R1,G1),
    (SFA,R2,G2)}

achieved
G={G2}

The Sensor Finder Agent (SFA) is responsible for selecting the appropriate sensors for
each query. To perform this calculation, it extracts the desired coverage area A and a set of
timing and accuracy constraints C from the query, which is a parameter of the goal it is trying
to achieve (an instance of goal G2). It also receives the current set of sensors S by querying the
sensor database, which is maintained by the OM. The SFA follows the following algorithm
to select an optimal set of sensors for a particular query.

1. Remove sensor from S that do not cover any part of area A
2. Remove sensors from S that are not capable of meeting constraints C
3. Minimize S by removing sensors whose coverage area is redundant
4. For each sensor in S, generate a found event parameterized by the sensor
5. If all sensors in S are the same type, generate a mergeSimilar event parameterized with S

Otherwise, generate a mergeDiverse event parameterized with S

Using its application specific algorithm, the SFA chooses sensors S1, S2, S3 as optimal sen-
sors for the current query, which results in the following events being generated: found(S1),
found(S2), found(S3), and mergeSimilar(〈S1, S2, S3〉). (Note that the SFA could have also
chosen sensors S1, S3 and S5, which is an equally capable set of sensors). While OMACS
does not define where and how events are recognized or generated, OMACS roles do
effectively define an interface between the application specific algorithms and the events
they are expected to generate. In this case, each found event causes the OM to instan-
tiate a new G3 goal parameterized with the event parameter (S1, S2, or S3). The three
goals, G3(S1), G3(S2), and G3(S3), are inserted into G, which once again requires OM
to reorganize and results in the assignments (DSA1,R3,G3(S1)), (DSA2,R3,G3(S2)), and
(DSA3,R3,G3(S3)) being inserted into �. The mergeSimilar event causes the instantiation
of goal G5(〈S1, S2, S3〉) and its insertion into G, which also triggers a reorganization. In
this case, the reorganization algorithm assigns the Merger Agent Similar (MAS) to play
role R5 to achieve goal G5(〈S1, S2, S3〉). After triggering these events, the SFA informs
the OM that goal G2 has been achieved, which results in a reorganization for the removal
of the goal G2 from G and (SFA,R2,G2) from �. These events and their resulting reor-
ganizations are shown below (Again, it is possible to incorporate all the events described
in the previous paragraph into a single reorganization, thus making the system much more
efficient.).
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State 2 State 3

G={G2} found(S1)

found(S2)

found(S3)

G={G2,G3(S1),G3(S2),G3(S3)}
={(SFA,R2,G2),(DSA1,R3,G3(S1)),

    (DSA2,R3,G3(S2)),
    (DSA3,R3,G3(S3))}

mergeSimilar
( S1,S2,S3 )

State 5 State 4

G={G3(S1),G3(S2),G3(S3),G5( S1,S2,S3 )}
={(DSA1,R3,G3(S1)),(DSA2,R3,G3(S2)),

(DSA3,R3,G3(S3)),(MAS,R5,G5( S1,S2,S3 ))}
achieved

G={G2, G3(S1), G3(S2), G3(S3),G5( S1, S2, S3 )}
={(SFA,R2,G2),(DSA1,R3,G3(S1)),

     (DSA2,R3,G3(S2)),(DSA3,R3,G3(S3)),
     (MAS,R5,G5( S1,S2,S3 ))}

Depending on the query, data fusion may be performed after coordination between the
MAS and the DSAs in charge of a query; however, for this query, no filtering, correlation, or
the addition of data from a database is necessary. Before actually gathering data, the MAS
checks the time and accuracy constraints contained in the query, which it accomplishes by
triggering monitorTime and monitorAccuracy events. These events result in the insertion of
G10 and G11 in G. During the ensuing reorganization, roles R10 and R11 are selected to
achieve G10 and G11 respectively. However, both of these roles can be played by the Monitor
Agent (MON) as it has the required capabilities for both roles. Thus, OM assigns MON to
play both R10 and R11 to achieve G10 and G11. The transition for these events is shown
below.

State 5 State 6

G={G3(S1), G3(S2),G3(S3), G5( S1, S2,S3 )}
 ={(DSA1,R3,G3(S1)), (DSA2, R3, G3(S2)),

    (DSA3, R3, G3(S3)), (MAS,R5, G5( S1,S2,S3 ))}

monitorTime

monitorAccuracy

G={G3(S1),G3(S2),G3(S3),
    G5( S1, S2, S3 ),G10,G11}

={(DSA1,R3,G3(S1)),(DSA2, R3,G3(S2)),
    (DSA3,R3,G3(S3)), 
   (MAS,R5,G5( S1, S2,S3 )),

    (MON, R10, G10),(MON, R11, G11)}

If neither of the constraints is violated, the MON sends a message to the MAS notifying
it that it can proceed, which causes a result event. The result event causes the instantiation
of goal G9, which is inserted into G. The MON tells the OM it has achieved goals G10 and
G11, which causes the removal of the goals G10 and G11 from G. Due to the changes in G,
reorganization by the OM is now necessary, which results in the removal of the assignments
(MON, R10, G10) and (MON, R11, G11) from �. As the MAS has the capability to interact
with the GUI, it is assigned by the OM to play role R9 to achieve goal G9. The result of these
events and the reorganization are shown below.

State 6 State 7

G ={G3(S1), G3(S2),G3(S3),G5( S1, S2, S3 ),G10, G11}
={(DSA1, R3, G3(S1)), (DSA2, R3, G3(S2)),

    (DSA3, R3, G3(S3)), (MAS,R5,G5( S1,S2,S3 ))
   (MON, R10, G10),(MON, R11, G11)}

result

achieved

G={G3(S1), G3(S2),G3(S3),G5( S1, S2, S3 ),G9}
={(DSA1, R3, G3(S1)),

   (DSA2, R3, G3(S2)),(DSA3, R3, G3(S3)),
    (MAS, R5,G5( S1,S2,S3 )),(MAS,R9,G9)}

At this point, the MAS sends the result of the query to the GUI. Once the results of
the query have been sent, the MAS tells the OM it has achieved goal G9, which results in
the removal of G9 from G. Because the query is persistent, goals G5, G3(S1), G3(S2), and
G3(S3) are not yet achieved and thus remain in G. During the resulting reorganization, the
assignment (MAS,R9,G9) is removed from �. When an update is required for the query, the
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MAS will coordinate with the DSA agents to get new data and cycle back to State 5 above.
Thus, the final transition for this phase of the persistent query is shown below.

State 7 State 8

G={G3(S1),G3(S2),G3(S3),G5( S1, S2, S3 ),G9}
={(DSA1, R3, G3(S1)),(DSA2, R3, G3(S2)),

    (DSA3, R3, G3(S3)),(MAS, R5, G5( S1,S2,S3 )),
    (MAS,R9,G9)}

achieved
G={G3(S1),G3(S2),G3(S3),G5( S1, S2, S3 )}

={(DSA1, R3, G3(S1)),(DSA2, R3, G3(S2)),
    (DSA3, R3, G3(S3)), (MAS, R5, G5( S1,S2,S3 ))}

Figure 9 shows the results obtain from the GUI. The answer for the query covers 100%
of the area of interest. The system effectively detected all three targets in the selected area.

• Tank at 29,40
• Truck at 20,40
• Launcher at 36,47

Thus, by designing the BIS using the OMACS model, we were able to implement an organiza-
tional reasoning capable of choosing the best assignments to produce an optimal organization
that provides the expected results.

6.3.2 Sensor failure

The BIS simulator allows us to fail specific sensors. If we make S2 fail, the attached agent,
DSA2, is unable to achieve goal G3(S2). As DSA2 can no longer gather the data, the MAS,
which was coordinating with the DSA2, must interrupt its task and generates a negative trig-
ger failure. This negative trigger causes all the goals related to that query to be removed from
G, resulting in the cancellation of all their current assignments. Thus, goals G3(S1), G3(S2),
G3(S3), G5(〈S1, S2, S3〉) are all removed from G. The negative trigger failure is immediately
followed by a start event generated by the DSA. The start event is parameterized with the
initial query and causes the instantiation and insertion of goal G2 in G. Attempting to achieve
this new instance of G2 causes the organization to reselect appropriate coordinating agents
for the query. The organization is treating the query that it failed to answer due to a loss of
sensor as a new query. The BIS then chooses appropriate agents to overcome this loss in
order to provide the best results. The state transitions after a sensor failure are shown below.

Taking into account the loss of capability of the DSA for S2, the SFA selects sensors
S1, S3, S5 as the new optimal set of sensor for the query. It then triggers the following
events: found(S1), found(S3), found(S5), mergeDiverse(〈S1, S3, S5〉). Each found event trig-
gers a parameterized goal G3 having the parameter of the trigger. In our case, goals G3(S1),
G3(S3), and G3(S5) are triggered.

State 8 State 8.1

G={G3(S1),G3(S2),G3(S3),G5( S1, S2, S3 )}
={(DSA1, R3, G3(S1)),(DSA2, R3, G3(S2)),

     (DSA3, R3, G3(S3)),(MAS, R5,G5( S1,S2,S3 ))}

- failure

start

G={G2}

As the sensors given in parameter for the event mergeDiverse are different sensors (S1,
S3 are ground sensors whereas S5 is an ATR sensor), this event results in the insertion of the
parameterized goal G4(〈S1, S3, S5〉) into G. To satisfy the new goal G4, the system chooses
role R4, which is played by the Merger Agent Diverse (MAD). When all the events have
been triggered, the SFA sends an achieved message to the OM. This message results in the
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Fig. 9 Results from the GUI for a normal execution

123



Auton Agent Multi-Agent Syst (2008) 16:13–56 47

removal of the goal G2 from G. During the ensuing reorganization, the (SFA,R2,G2) assign-
ment is removed from � and the assignments (DSA1, R3, G3(S1)),(DSA3, R3, G3(S3)),
(DSA5, R3, G3(S5)),(MAD,R4,G4(〈S1,S3,S5〉)) are added to �. The corresponding states
of the organization are described below.

State 8.1 State 8.2

G={G2} found(S1)

found(S3)

found(S5)

G={G2,G3(S1),G3(S3),G3(S5),G4( S1, S3, S5 )}
={(SFA,R2,G2),(DSA1, R3, G3(S1)),

     (DSA3, R3, G3(S3)),(DSA5, R3, G3(S5))}

mergeDiverse
( S1,S3,S5 )

State 8.4 State 8.3

G={G3(S1),G3(S3),G3(S5),G4( S1, S3, S5 )}
={(DSA1, R3, G3(S1)),(DSA3, R3, G3(S3)), 

    (DSA5, R3, G3(S5)),(MAD,R4,G4( S1,S3,S5 ))}
achieved

G={G2,G3(S1),G3(S3),G3(S5),G4( S1, S3, S5 )}
={(SFA,R2,G2),(DSA1, R3, G3(S1)),

    (DSA3, R3, G3(S3)),(DSA5, R3, G3(S5)),   
    (MAD,R4,G4( S1,S3,S5 ))}

The execution then continues as described in the normal execution where State 8.4 would
be equivalent to State 5 (see Sect. 6.3.1). The BIS detects the following enemies.

• Tank at 29,40
• Truck at 20,40
• Launcher at 36,47

Therefore, after the loss of S2, DSA2 has been replaced by DSA5 and the BIS organization
decided to use the MAD for the merging instead of the MAS in order to insure a better
performance. Even though a loss of a sensor used to provide information for the query has
occurred, the system was able to reorganize accordingly and maintain the flow of information
without the intervention of the user.

6.3.3 Maintenance goal failure

The user interface of the BIS allows the commander to stipulate constraints for the query in
terms of desired timeliness or accuracy. For the remainder of our scenario, we assume that
the commander has updated the query specifying that the system provide query results within
8 min.

We continue our example with the system currently running the query using DSA1, DSA3,
DSA5 and MAD as described above. After the data from the battlefield is refreshed, the MAD
triggers monitorTime and monitorAccuracy event in order to check the query against the time
and accuracy constraints that have been updated. These events result in the insertion of G10
and G11 in G. After reorganization, the OM assigns MON agent to play both R10 and R11
to achieve G10 and G11. The transition for these events is shown below.

State 8.4 State 8.5

G={G3(S1),G3(S3),G3(S5),G4( S1, S3, S5 )}
={(DSA1, R3, G3(S1)),(DSA3, R3, G3(S3)), 

    (DSA5, R3, G3(S5)),(MAD,R4,G4( S1,S3,S5 ))}

monitorTime

monitorAccuracy

G={G3(S1),G3(S3),G3(S5),
    G4( S1, S3, S5 ),G10,G11}

={(DSA1,R3,G3(S1)),(DSA3, R3,G3(S3)),
    (DSA5,R3,G3(S5)), 
    (MAD,R4,G4( S1, S3,S5 )),
    (MON, R10, G10),(MON, R11, G11)}
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Once the data is sent to the Monitor Agent for checking the constraints as described above,
the MON generates a negative trigger failure because the query, as executed, does not meet
the 8 min constraint. In fact, S5, which is an ATR sensor, can only provide data within 15 min.
Therefore, the maintenance goal G10 fails. The negative trigger causes all the goals related
to that query to be removed from G, resulting in the cancellation of all related assignments.
Thus, goals G3(S1), G3(S3), G3(S5), G4(〈S1, S3, S5〉), G10, and G11 are all removed from
G. The negative trigger failure is immediately followed by a start event generated by the
Monitor Agent (MON). This event is parameterized with the initial query and causes the
insertion of goal G2 in G. The system then treats the query that failed as a new query and tries
to choose the appropriate organization in order to provide result to the query meeting the
time constraint defined above. The state transition after the constraint violation is described
below.

State 8.5 State 8.6

G={G3(S1),G3(S3),G3(S5),G4( S1, S3, S5 ),G10, G11}
={(DSA1, R3, G3(S1)),(DSA3, R3, G3(S3)),

     (DSA5, R3, G3(S5)),(MAD, R4, G4( S1,S3,S5 ))
     (MON, R10, G10),(MON, R11, G11)}

- failure

 start

G={G2}

Taking into account the time constraint for the query, the SFA selects sensors S1, S3, S4 as
the new set of sensor for the query because they offer the best coverage of the area of interest
while providing data within 5 minutes (due to the fact that they are ground sensors). It then
triggers the following events: found(S1), found(S3), found(S4), mergeSimilar(〈S1, S3, S4〉).
Each found event triggers a parameterized goal G3 having the parameter of the trigger. In our
case, goal G3(S1), G3(S3), and G3(S4) are triggered. As the sensors given in parameter for
the event mergeSimilar are all ground sensors, this event results in the insertion of the param-
eterized goal G5(〈S1, S3, S4〉). To satisfy this new goal, the system chooses role R5 which
is played by the Merger Agent Similar (MAS). When all the events have been triggered, the
SFA notifies the OM that it has achieved goal G2, which results in the removal of G2 from
G. The corresponding assignment is also removed from the list of current assignments. The
corresponding state of the organization is as follow.

State 8.6 State 8.7

G={G2} found(S1)

found(S3)

found(S4)

G={G2,G3(S1),G3(S3),G3(S4),G4( S1, S3, S4 )}
={(SFA,R2,G2),(DSA1, R3, G3(S1)), 

    (DSA3, R3, G3(S3)),(DSA4, R3, G3(S4))}

mergeSimilar
( S1,S3,S4 )

State 8.9 State 8.8

G={G3(S1),G3(S3),G3(S4),G4( S1, S3, S4 )}
={(DSA1, R3, G3(S1)),(DSA3, R3, G3(S3)),

    (DSA4, R3, G3(S4)),(MAS,R5,G5( S1,S3,S4 ))}

achieved
G={G2,G3(S1),G3(S3),G3(S4),G4( S1, S3, S4 )}

={(SFA,R2,G2),(DSA1, R3, G3(S1)), 
    (DSA3, R3, G3(S3)),(DSA4, R3, G3(S4)),   
    (MAS,R5,G5( S1,S3,S4 ))}

The execution then continues as described in the normal execution where State 8.5 would
be equivalent to State 5 (Sect. 6.1). In this case, the BIS detects only the following enemies.

• Truck at 20,40
• Launcher at 36,47

Therefore, due to the new query constraints, the BIS automatically reorganized and replaced
DS5 with DS4 to insure the effectiveness of the query with regards to the time constraint. The
BIS organization also replaced the MAD by the MAS, which yields a better performance in
merging data coming from the new set of sensors. In this scenario, we can see how the BIS
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has been able to reorganize in order to satisfy a maintenance goal in the system. However,
this reorganization process has resulted in a lost of coverage as the Tank located at (29, 40)
cannot no longer be detected.

6.3.4 Execution summary

Figures 10 and 11 summarize how the BIS organization adapted to overcome sensor failure
and to satisfy the time constraint imposed by the commander. The BIS was able to switch
its information sources from the set 〈S1, S2, S3〉 in Fig. 10a, to 〈S1, S3, S5〉 in Fig. 10b, and
finally to 〈S1, S3, S4〉 in Fig. 11. The system was also able to change its fusing algorithms
by assigning agents to play one of the two merging roles available in the organization (R4
and R5).

6.3.5 Impact of OMACS

While the BIS system described in this section could have been developed using other tech-
niques, the use of the OMACS model provides many advantages over more ad hoc approaches.
First, OMACS defines the necessary components that developers must provide in order to
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Fig. 10 Normal execution vs. execution with sensor failure

Fig. 11 Execution with maintenance goal failure
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have an adaptive system. After defining the system’s goals and roles (and their required
capabilities), it was fairly straightforward to determine what types of agents were needed
and what their required capabilities were. In this case, we used our generic reorganization
algorithm along with default oaf and rcf functions to implement the organizational reasoning.
While the instantiation and removal of goals (which is not part of OMACS) is important to
determining how the environment and problem solving process has changed, it is the ability
provided by OMACS to reassign agents based on their current capabilities in response to
the changing system goals and problem solving process that allows the system to adapt in
ways that may not have been considered at design time. The result of using OMACS on this
example is a flexible system that is able to adapt to a variety of changes in the environment
or agent capabilities. This adaptivity was achieved without the designer having to consider
all the possible ways the system could fail or the appropriate corrective actions.

7 Related work

Computational organization theory uses mathematical and computational techniques to study
both human and artificial organizations [6,7]. While organizational concepts are not exclu-
sive to computational organization theory, results from the field are illuminating. Specifically,
they suggest that organizations tend to adapt to increase performance or efficiency, that “the
most successful organizations tend to be highly flexible” [6], and that the best organizational
designs are highly application and situation dependent [5]. It also provides findings about
the conditions under which certain organizations work best. For instance, as the number of
hierarchical levels in an organization increases, efficiency and effectiveness tends to decrease
while decentralized organizations tend to have higher performance. However, hierarchical
organizations tend to exhibit higher reliability [6]. These insights seem to suggest that allow-
ing systems to determine their organization at runtime, as we propose, could have positive
effects on system performance. On the other hand, too much flexibility can lead to chaotic
behavior that is detrimental to system performance [38]. How to permit change while not
allowing it to inhibit system performance is a property of the reorganization algorithm used
[48].

Within the last few years, the notion of separating the agents populating a multiagent
system from the system organization [45,46] has become well-accepted. While agents play
roles within the organization, they do not constitute the organization. The organization itself
is part of the agent’s environment and defines the social setting in which the agent must
exist. An organization includes organizational structures as well as policies, which define
the requirements for system creation and operation. These policies include constraints on
agent behavior and their interactions. There are separate responsibilities for agents and orga-
nizations; the organization, not the agents, should be responsible for setting and enforcing
the policies. While these advances are recent, there have been some discussions on how to
incorporate them into existing multiagent systems methodologies. For instance, the Gaia
multiagent systems methodology has been modified to incorporate the notion of social laws
[47]. Other approaches view the organization as a separate institutional agent [43]. However,
these proposals are not detailed enough to provide guidance on how to use these organi-
zational concepts, leaving designers to translate high-level organizational concepts such as
laws or policies into a multiagent design and implementation. The OMACS model provides
a foundation upon which a complete organization-based methodology can be constructed.
An OMACS-based methodology would provide concrete definitions and relations for orga-
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nizational entities and could provide a direct mapping onto implementation structures and
algorithms.

There have been several attempts at formalizing the concepts of teamwork within an
organization in the area of multiagent systems. While efforts such as Teamwork [8,9], Joint
Intentions [23–25], Shared Plans [19] and Planned Team Activity [28], have been proposed
and even implemented [39], they fail to provide straightforward and easily adaptable con-
cepts for wide spread development of such systems. In addition, these approaches require
all agents to be capable of sophisticated reasoning, which limits the applicability. As shown
in our example, only one agent is actually required to understand the entire organizational
structure in OMACS although more sophisticated distributed reasoning may be used.

Other closely related work includes the CoDA project at the University of Maine [40]. The
CoDA project deals with a team of autonomous underwater vehicles that must self-organize
and reorganize using a two level strategy where a meta-level organization designs a task-level
organization to carry out system goals. While the CoDA notion of an organization includes
agents who plays roles and has an explicit two-layer hierarchy, it is much more limited in its
application as it does not include other organizational concepts such as policies and capabil-
ities. In fact, the CoDA organizational model could be considered to contain a subset of the
OMACS model and could be implemented using OMACS.

While there have been several organization models proposed over the last few years, none
have been specifically targeted towards providing a general mechanism that allows the system
to reorganize in order to adapt to its environment and changing capabilities. One of the first
models of agent organizations was given by Ferber and Gutknecht in the AALAADIN model
[17] and extended in the AGR model [18].The AALAADIN/AGR model used agents, groups,
and roles as its primitive concepts and they are now found in almost all other organization
models in one form or another. There have also been other attempts to extend the basic AGR
model such as that proposed by Peng and Peng to provide some behavioral definition of roles
[34]. The MOISE+ model greatly extended the notion of an organization model by including
three aspects: structural, functional, and deontic [22]. The structural aspect of MOISE+ is
similar to the AGR model, defining the organizational structure via roles, groups, and links.
The function aspect describes how goals are achieved by plans and missions while the deon-
tic aspect describes the permissions and obligations of the various roles. The Organizational
Design Modeling Language by Horling and Lesser [21] uses a basic underlying model of
organizations in order to perform performance prediction of the multiagent organization. A
more detailed overview of existing organization models is given in [10].

One of the most complete organization models is the Organizational Model for Norma-
tive Institutions (OMNI) [16], which is a framework that caters to open multiagent systems.
OMNI allows heterogeneous agents to enter the organization with their own goals, beliefs,
and capabilities and does not assume cooperative agents. OMNI combines two previous
organization models: OperA [15] and HarmonIA [42]. The OMNI framework consists of a
Normative Dimension, an Organizational Dimension, and an Ontological Dimension, each
of which has an Abstract, Concrete, and Implementation Level. The Abstract Level defines
the main objectives of the organization. The Concrete Level refines the definitions of the
Abstract Level further by defining the norms and rules of the organization, the roles in the
organization, landmarks, and concrete ontological concepts. And finally, the Implementation
Level implements the definitions from the Concrete Level. Each of these organization models
focus on open systems where cooperation is not necessarily required. In OMACS, once an
assignment is made, the organization can be sure all agents will attempt to carry out those
assignments and will notify the organization of any events of interest.
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While almost all multiagent methodologies have an underlying metamodel that describes
their basic modeling concepts, most are not explicitly defined. One exception is the
ROADMAP method, whose metamodel is defined in [26]. ROADMAP defines a nice clean
metamodel that includes the basic modeling concepts of roles, protocols, services, agents,
knowledge, and the environment. Likewise, the MaSE metamodel was defined in part based
on the implementation of agentTool, a tool that supports the MaSE modeling process [11].
The MaSE metamodel defines the main modeling concepts of goals, roles, agents, conver-
sations, and tasks. Bernon et. al., combined the metamodels from three well-known meth-
odologies—ADELFE, Gaia, and PASSI—into a common metamodel that they hoped would
provide interoperability between the methods [1]. While the unified metamodel contains
many more concepts than those of single methodologies, the unified metamodel is very com-
plex and it is not clear how many of the concepts are actually related. Based on his experience
in trying to combine existing multiagent method fragments using the OPEN process frame-
work, Henderson-Sellers has concluded that a single standard metamodel is required before
fragments can be combined successfully on a large scale [20]. OMACS provides the founda-
tion for organization-based multiagent metamodel in which the analysis and design concepts
are directly related to run-time concepts.

8 Conclusions and discussion

The OMACS model is unique in that it is focuses on the use of agent capabilities, which may
change over time, in order to determine which agents may play the various roles required to
achieve the current organizational roles. The efficacy of the model was demonstrated by its
application in the Battlefield Information System example given in Sect. 6. It is also a compre-
hensive, yet flexible model. While providing a framework for developing adaptive systems,
OMACS allows designers to choose how to implement the goals, roles, and agents as well
as the organizational reasoning required for determining the current goals, the assignment of
agents to roles and goals, and the effect of policies on the organization.

The types of applications that can benefit from the OMACS model are those in which
there is a desire for some level of global (organizational) control, but one in which the agents
may exhibit a limited form of autonomy. Specifically, the agents must accept the assignment
of the goals they should try to achieve and the roles they must attempt to play in order to
achieve those goals. However, the details of how an agent plays an assigned role are left up to
the agent. In order for the organization to function correctly, an agent is obliged to correctly
report the scores for the capabilities it possesses and the events of interest that occur during
the pursuit of its goals. Thus, OMACS defines an interface between the organization and
the individual agents that allows the design and implementation of the organization and the
agents to be separate and possibly completed by separate developers.

There are several specific contributions of OMACS. First, OMACS defines a metamodel
for discussing the sufficient components of adaptive multiagent systems. While there are
many models of multiagent systems, OMACS is unique in its focus on the centrality agent
capabilities to determining appropriate system configurations. We have used the OMACS
metamodels in a number of application areas including multiagent systems, information sys-
tems, sensor networks, and cooperative robotics. Second, OMACS provides a level of global
control while allowing local autonomous behavior. In many approaches, it is unclear as to
how the global goals of the organization are achieved. While the organization selects the
goals and roles that an agent must play, the agent is free to carry out those roles as it deems
appropriate. Third, OMACS provides a framework for quantifying the effects of the relation-
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ships between goals, roles, agents and capabilities. While the actual values and computational
formulae used are not prescribed, OMACS states specifically what values and formulae must
be defined. Fourth, OMACS provides default computational approach for calculating appro-
priate configurations while allowing flexibility for application-specific calculations. If we
assume all capabilities are equally important to a role (thus using the default rcf given in Eq.
3) and that an agent either possesses a capability or not (possesses(a,c) is either 1 or 0), we
can use the default oaf function given in Eq. 4 to compute the best configuration at a particular
point in time; this is the approach used in the Battlefield Information System example in Sect.
6. Fifth, OMACS offers a global mechanism for restricting system configurations based on
application specific constraints. These constraints may be encoded as policies that can limit
possible configurations thus restricting undesirable behavior.

Finally, OMACS builds a foundation upon which a complete software development ap-
proach can be created. Due to the flexibility of the OMACS model, a designer will need
assistance in determining an appropriate set of goals, roles, agents, capabilities, events, and
policies for a proposed application. This will require a methodology to help guide devel-
opers as well as a toolset that supports model development, metrics to help quantify design
tradeoffs, code generation, and system testing. Instead of defining a “one size fits all” meth-
odology for developing adaptive multiagent systems, the goal is to use method engineering
[4], which allows developers to create their own methodologies and processes from existing
method fragments. However, simply taking method fragments from existing methodologies
is naïve and problematic [20]. Although many methodologies use similar terms to describe
their approaches, these terms have different semantics, which leads to incompatible fragment
use. A better approach, as proposed in [2], is to adopt a standard metamodel upon which all
method fragments are defined. We believe that OMACS provides a solid initial metamodel
for defining a set of software engineering processes and tools that will actually make our
organization-based framework useful in real world applications. The model itself grew out
of work related to the development of the Multiagent Systems Engineering (MaSE) meth-
odology [14] and its associated toolset, agentTool [11], for analysis, design, verification,
and generation of multiagent systems. While MaSE already captures much of the required
knowledge (e.g., goals, roles, agents, and organizational policies), we are extending MaSE to
capture additional framework components such as capabilities and relationship scores [12].
This extension of MaSE, called Organization-based MaSE (O-MaSE), is also being defined
in terms of method fragments using OMACS as the underlying metamodel.

8.1 Future work

The OMACS metamodel lays the foundation upon which the rest of our framework will
be developed. We are pursuing three veins of research based on the model established in
this paper. First, we are formalizing a Goal Model for Dynamic Systems (GMoDS) [13]. In
GMoDS, there are two main representations of system goals: the goal specification model,
GSpec, and a goal instance model, GInstance. The goal specification model is a static repre-
sentation of system goals that allows the specification of precedence constraints between
goals as well as the instantiation of new goals based on events. The goal instance model is a
dynamic model used at runtime to define the actual goals generated during system operation.

The second area of research based on this model is to develop a practical set of agent-based
architectures and algorithms that make use of OMACS. These architectures and algorithms
must address questions such as how best to update the knowledge about the organization,
how to recognize reorganization triggers, and how best to reorganize once a reorganization
has been triggered. Other questions related to the operation of organizations include how to
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move agents between higher-level and lower-level organizations as part of the reorganization
process, how to split an organization into multiple organizations, or how to merge existing
organizations. Finally, we plan to look at structural reorganization, which will most likely
introduce the notion of human intervention into the organization. Specifically, we plan to
look at human control over the organization structure as well as the assignment of goals to
the goal set and agents to roles. We also want to look into goal relaxation, which can be done
either by a human or in an automated fashion if the appropriate goal structure is provided in
advance.

As discussed in the introduction, the goal of OMACS is to design organizations that can
reorganize in ways that its designer would not necessarily be able imagine at design time.
However, as OMACS policies can restrict the ways in which the organization may reorga-
nize, it is possible that a set of policies could limit possible system configurations even more
than the designer’s imagination. Therefore, it is highly desirable that the designer have a set
of design-time tools that can help determine the impact of such policies. We are currently
developing a set of OMACS design metrics that can help a designer to ensure that policies
are not overly restrictive. Our initial set of metrics use model checking techniques to measure
the flexibility of organization designs based on the goals, roles, and agents in a system [35].
These metrics allow designers to make design-time tradeoffs between flexibility and compu-
tational costs. We are currently extending this initial set of metrics to include the effects of
policies.

The current version of OMACS only allows for artificial agents; it does not currently
capture humans and their associated capabilities when developing an organization. Thus,
we are investigating extending OMACS to incorporate human agents along side artificial
agents. We plan to incorporate humans into OMACS based on the roles that humans can
play when interacting with artificial agents using standard role types such as supervisor,
operator and peer. The incorporation of humans in these roles requires the ability to rep-
resent the human capabilities (e.g. expertise) and human performance considerations (e.g.
fatigue). As the current OMACS capabilities model is simplistic and does not explicitly
model multiple dimensions of capability degradation or enhancement, we are investigating
ways to explicitly model multi-dimensional capabilities including parameterized capabilities,
compositional capabilities, and capability generalization and specialization.

We are also extending the Multiagent Systems Engineering (MaSE) methodology to allow
designers to design a multiagent organization based on the OMACS model. This extended
version of MaSE is called Organization-based MaSE (O-MaSE). A preliminary proposal
for the O-MaSE methodology is described in [12]. Our goal is to extend MaSE to capture
the organizational concepts identified in OMACS. New concepts include AND/OR refine-
ment of goals, integration of capabilities and the ability to model sub-organizations. We are
continuing to evolve O-MaSE to provide a flexible methodology that can be used to develop
both traditional and organization-based systems. A long term goal is to provide a tailorable
methodology that is fully supported by automated tools. We are currently building a new
version of agentTool (aT3) within the Eclipse IDE to support O-MaSE. Future plans include
code generation for various platforms as well as integration with the Bogor model checking
tool [36] to provide model validation and performance prediction metrics.
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