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Abstract Protocols enable unambiguous, smooth interactions among agents. Commitments
among agents are a powerful means of developing protocols. Commitments enable flexible
execution of protocols and help agents reason about protocols and plan their actions accord-
ingly, while at the same time providing a basis for compliance checking. Multiagent systems
based on commitments can conveniently and effectively model business interactions because
the autonomy and heterogeneity of agents mirrors real-world businesses. Such modeling,
however, requires multiagent systems to host a rich variety of protocols that can capture the
needs of different applications. We show how a commitment-based semantics provides a
basis for refining and aggregating protocols. We propose an approach for designing com-
mitment protocols wherein traditional software engineering notions such as refinement and
aggregation are extended to apply to protocols. We present an algebra of protocols that can
be used to compose protocols by refining and merging existing ones, and does this at a level
of abstraction high enough to be useful for real-world applications.

Keywords Commitments · Interaction Protocols · Formal methods · Multiagent system
modelling and design

1 Introduction

Multiagent systems composed of autonomous and heterogeneous agents provide a convenient
and accurate model for describing and enacting many real-life processes and interactions.
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While autonomy and heterogeneity are what make the multiagent paradigm attractive, het-
erogeneity gives rise to incompatibility and autonomy to unpredictability. Agents need to
understand each other and behave in predictable ways for their interactions to be fruitful. To
achieve consensus and facilitate interaction between agents, standards are required, as in most
distributed systems. Web Services are an example of how standards enable heterogeneous
systems to interact with each other. Recent efforts for Web Service choreography—which
deals with the way services interact—and orchestration—which deals with the way services
are composed using other services—address service interactions [16] similar in spirit to agent
interaction protocols. Agent interaction, however, requires higher-level abstractions to deal
with the rich variety of interactions found in multiagent systems.

1.1 Interaction protocols

A protocol is a description of the steps involved in an interaction. Protocols make interactions
coherent and easy to implement. The use of protocols has successfully solved the problem of
standardization in areas such as computer networks. Likewise, the heterogenous and distrib-
uted structure of multiagent systems necessitates clear protocols to govern any interaction.
Network protocols explain the steps to be taken in great detail, sometimes even enumerating
all possible events that can occur. For example, the Session Initiation Protocol (SIP), which is
used to setup phone calls over the Internet, describes every message that needs to be sent for
setting up and tearing down calls and also every possible resultant reply for the message [18].
By contrast, multiagent systems require protocols to be specified at a high level of abstraction,
to accommodate the complexity of agent systems, and to not overwhelm protocol designers
with unnecessary details.

While protocols are needed to force an agent to behave in a predictable manner, they should
also allow flexibility of execution. A protocol that allows only one sequence of steps does
not let its participants leverage their autonomy. A restrictive protocol, however, is not always
bad. If a protocol allows only a single computation, checking whether the participants are
compliant with the protocol is trivial. Any step that does not agree with the protocol signals
a violation. As protocols become more flexible, however, compliance verification becomes
harder, since many choices are offered to the participants at any step of the protocol. Con-
sequently, protocol design is an exercise in finding the right balance between flexibility of
execution and ease of compliance checking.

1.2 Motivation

The tradeoffs between execution and verification to be borne in mind make protocol design a
nontrivial undertaking. It requires human expertise and knowledge of the application domain.
To reduce unnecessary effort and to prevent reinventing the wheel, designers should be able
to create new protocols by refining or combining existing protocols whose properties are well
understood. A sound theory of refining and composing protocols would assist designers in
ascertaining the properties of protocols. An algebra of protocols that includes operators for
merging and refinement is needed as the basis for protocol composition.

Our central claim is that protocols can be characterized in terms of their content, not just
their sequence of steps. We develop a protocol algebra which is at once a high-level abstrac-
tion of protocols and a useful tool for composing protocols and reasoning about them, as we
demonstrate with an example.
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1.3 Contribution

Our main contribution is in developing an algebra for composing protocols. Just as concep-
tual modeling in general involves abstractions such as refinement and aggregation, so must
the conceptual modeling of protocols.

– We develop an algebra that provides the underpinnings of refinement and aggregation
abstractions for protocols.

– We demonstrate how the use of commitments allows reasoning about protocols that leads
to richer interaction patterns from existing ones.

– Weoutlinehowahierarchyofprotocolscanbegeneratedbasedoncommitments.Thishier-
archy aids reasoning about which protocol is the most general for a given business process.

– Our algebra is a high-level abstraction that relates to real-world protocols, and hence is
easy for protocol designers to understand.

1.4 Organization

The rest of this paper is organized as follows. Section 2 introduces the technical background,
and some illustrative examples that are used throughout the paper. Section 3 develops our
theory of semantics of protocol subsumptions, introduces the protocol algebra and demon-
strates its utility in composing protocols. Section 4 summarizes the paper, identifies related
work in the field, and charts out future directions.

2 Technical framework

We represent protocols as transition systems similar in spirit to finite state machines. These
protocols generate computations or runs, which are sequences of states that a valid protocol
execution can go through. We devise a hierarchical classification based on the runs gener-
ated by protocols. Runs are composed of states that the protocol computation (execution)
goes through based on the actions that the participants in the given protocol perform. This
classification forms the basis of our work. Next, we introduce commitments, discuss some
scenarios from our running example, and then define the basic technical concepts needed for
our semantics.

2.1 Commitments in protocols

Commitments among agents are an abstraction of contracts that exist in the real world [3,
19]. Commitments lend coherence to interactions because they help agents plan based on
the actions of others, and they are, in principle, enforceable. Commitment-based proto-
cols are more flexible than traditional formalisms like finite state machines and Petri nets
[24, 26]. By specifying the states that need to be reached in terms of commitments, they
can allow multiple paths to achieve a state, and consequently create a flexible protocol
specification.

A commitment C(x, y, p) denotes that the agent x is responsible to the agent y for bring-
ing about the condition p. Here x is the debtor, y the creditor, and p the condition of the
commitment, expressed in a suitable formal language. Commitments can also be conditional,
denoted by CC(x, y, p, q), meaning that x is committed to y to bring about p if q holds.
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2.1.1 Commitment operations

Commitments are created, satisfied, and transformed in certain ways. Conventionally, six
operations are defined on commitments. A detailed exposition of these operations is given in
Singh [20] and is outlined here, for ease of exposition. Below, c stands for C(x, y, p)

CREATE(x, c). The commitment c is created by its debtor x .
CANCEL(x, c). The debtor x of the commitment c cancels the commitment. A cancellation

is typically compensated for by other commitments.
RELEASE( y, c). The creditor y releases the debtor x from the commitment c.
ASSIGN( y, z, c). The creditor y transfers the commitment so that x is committed to z instead

of y.
DELEGATE(x, z, c). The debtor x transfers the commitment so that z is committed to y.
DISCHARGE(x, c). The debtor x fulfils the commitment c.

A commitment is said to be active if it has been created, but not yet operated upon by
any of the other commitment operations. In other words, a commitment stays active after its
creation until it is discharged, delegated, assigned, or canceled or its debtor is released.

2.2 Running example

As a real-world example, we consider a variant of the NetBill protocol [21] used by a cus-
tomer’s agent to purchase a book from an online bookstore’s agent. We identify four distinct,
but related, scenarios that can arise during this purchase interaction. Each of these scenarios
requires a different amount of effort from the participants in terms of protocol execution,
planning, and coordination. Both agents would benefit from being able to compare scenarios
to choose the one that best serves their interests.

1. The customer asks the bookstore for a price quote on a book, and upon receiving a quote
from the bookstore, accepts the bookstore’s offer. The bookstore sends the book, and the
customer pays for it. Figure 1a shows this interaction. This interaction sequence belongs
to the purchase protocol.

2. The bookstore is willing to refund the price of returned books. This scenario is similar
to the previous scenario till the book is delivered to the customer, but is longer, since the
customer then returns the book for a refund. Figure 1b. shows this interaction.

3. The customer delegates the payment to a third party, e.g., a bank. Such a situation is not
very different from using a credit card to pay for goods, and is shown in Fig. 1c.

4. The customer wants insured shipping, and the bookstore’s existing shipper does not
insure goods. The bookstore negotiates with and contracts out the shipping to a shipper.
Here, the shipper delivers the books to the customer, after which the shipper is paid by
the bookstore. To complicate matters, the customer pays the bookstore via its bank like
in the previous scenario. This scenario is shown in Fig. 2.

In Figures 1a–c, 2, 4a, b, ellipses represent states, named si . Solid arrows are labeled by
the messages that are passed between the participating agents. These messages correspond
to actions that the agents take. Note that each of these figures represent a possible scenario,
i.e., a run of the protocol. Also, states of the runs are drawn in different columns (analogous
to swimlanes in UML ) to show the interacting agents clearly even though states are global
and are maintained by all interacting agents. Dashed lines indicate that the states they link
are the same, albeit shown more than once in the figure. An algorithm to guarantee consistent
state maintainence across participants is described elsewhere [5].
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Fig. 1 Three scenarios of the purchase example

Table 1 explains the meanings of the states that the first scenario runs through.
Table 2 shows the meanings of the messages passed, where c represents the customer, b, the
bookstore, g, the book that the customer is interested in buying, and k, the customer’s
bank. The delegate message relates to corresponding commitment operation.

2.3 Propositions

Propositions capture facts about what conditions hold, what commitments have been made,
and whether these commitments have been fulfilled. The propositions used in a protocol
are assumed to be understood by agents involved in the protocol. In the purchase example,
we use the propositions given in Table 3. In addition to these, active commitments are also
represented as propositions, as we shall explain when discussing states.

2.4 Actions

Agents perform actions to bring about changes in the world. In our framework, actions are
modeled as messages sent by an agent to other agents. Just like an action, a message sent by
an agent can affect the state of a protocol in which the agent participates. Messages may be
implemented in different ways. For example, filling a form with credit card information and
submitting it over the web is a message that represents a transfer of funds. The set of actions is
denoted by A. The meanings of the actions used in our purchase example are given in Table 2.
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Fig. 2 Purchase protocol scenario 4: shipping via a separate shipper and payment via bank

Table 1 Meaning of states in the purchase protocol

State Meaning

s1 Customer has asked the bookstore the price of the goods. No commitments made.
s2 Bookstore has quoted a price for the said goods. The bookstore is now willing to send the goods

if the customer promises to pay for them
s3 Customer has agreed to the bookstores price. The customer is willing to pay the price if the

books are delivered.
s4 Bookstore has delivered the book.
s5 Customer has paid for the book.

Table 2 Meanings of actions (modeled as messages) in the purchase protocol

Message Meaning

req Quote(c, b, g) c asks b what the price of g is
send Quote(b, c, g, p) b quotes price p to the c, for g
send Accept(c, b, g, p) c accepts the price p quoted by b for g. c is now committed to pay if the

book is sent to it
sendGoods(b, c, g) b sends g to c
send Money(c, b, p) c sends the money p to b
delegate(c, k, C) c delegates the commitment C to k
returnGoods(c, b, g) c returns g to b
send Re f und(b, c, p) b refunds the money p to c
authPay(c, b, p) c authorizes its bank to pay the amount p to b; essentially c delegates

C(c, b, p) to k
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Table 3 Meanings of propositions used in the purchase protocol

Proposition Meaning

req Quote(c, b, g) c has requested a quote for g from b
quote(b, c, g, p) b quotes to c price p for g, i.e., b will deliver if c commits to pay upon delivery.

This is represented by CC(b, c, goods(b, c, g), accept Quote(c, b, g, p))

accept Quote(c, b, g, p) c has accepted the price p that b quoted for g, i.e, c commits to pay if the goods
are delivered. This is represented by CC(c, b, pay(c, b, p), goods(b, c, g))

goods(b, c, g) g has been delivered to c by b
pay(c, b, p) The amount p has been paid to b by c
return(c, b, g) g has been returned to b by c
re f und(b, c, p) The amount p has been refunded to c by b

In addition to the actions shown, A also contains actions corresponding to the commitment
operations applied to each commitment. For example, A contains an action delegate(c, k, C)

corresponding to the operation delegate(c, k, C), where C is a commitment made by c.

2.5 States

A protocol has many states that it goes through, during the course of its execution. A state
is a snapshot of the world and is labeled by the set of propositions that are true in it. The
propositions in the universe of discourse are termed the frame. A frame serves as a common
ontology for the propositions used by a protocol. Frames provide the universe of discourse
of a protocol. A state is an assignment of truth values to propositions. For example, state s1

of the purchase example is labeled by the set {req Quote(c, b, g)} and state s0 by {true}. We
denote the label of a state s by [s]. Table 4 shows the labels that are assigned to states in the
purchase protocol. The set of states is denoted by S. We include in this set a unique start state
sφ , which is labeled by the set {true}. In the purchase example, s0 = sφ .

2.6 Runs

A run is one possible execution sequence of a protocol. A protocol can allow many computa-
tions, or runs. A run is a sequence of states 〈s0 . . . si . . .〉. We use ∈ to indicate the occurrence
of a state on in a run. For example, si ∈ 〈s0 . . . si . . .〉. In this paper, we consider only finite
runs. The empty run is allowed.

Table 4 State labels in the
purchase protocol

State Associated Label

s0 {true}
s1 {reqQuote(c, b, g)}
s2 {quote(b, c, g, p)}
s3 {C(b, c, goods(b,c,g)), CC(c,b, pay(c, b, p), goods(b, c, g))}
s4 {goods(b, c, g), C(c, b, pay(c, b, p))}
s5 {goods(b, c, g), pay(c, b, p)}
s21 {goods(b, c, g), C(k, b, pay(k, b, p))}
s17 {goods(b, c, g), pay(c, b, p)}
s18 {goods(b, c, g), return(c, b, g), C(b, c, refund(b, c, p))}
s19 {goods(b, c, g), return(c, b, g), refund(b, c, p)}
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The operator ≺τ orders states temporally with respect to a run τ , so that si ≺τ s j implies
that si occurs before s j in the run τ . The concatenation of a state sn to a run τ = 〈s0s1 . . . sk〉,
written as τ ◦sn , is given by appending the state to the run, i.e., by 〈s0s1 . . . sksn〉. The sequence
of states in a subrun of a run τ = 〈s0 . . . sn〉 is a possibly noncontiguous subsequence of
s0 . . . sn . We denote the first state of a run τ by [τ ]0, the nth state by [τ ]n , and the last state
by [τ ]�.

2.7 Protocols

Computationally, a protocol corresponds to a set of computations that it allows. These can be
captured as a set of runs where any of the runs that subsume the given runs may be realized.
That is, each run in a protocol defines a sequence of steps that must be performed in the
same order relative to each other. The subsumption of runs is defined below. A protocol is
represented as a transition system as defined by a tuple 〈A, S, S0,�, F, R〉 where A is a set
of actions, S is a set of states, S0 is the set of initial states (S0 ⊆ S), � is a set of transitions
(� ⊆ S × A × S), F is a set of final states, (F ⊆ S), and R is a set of roles (or participants).

� contains transitions of the form 〈si , a, s j 〉, where si , s j ∈ S and a ∈ A. Here si is the
source of the transition and s j its destination. Such a transition advances a computation from
state si to state s j when an action a is performed, i.e., when the message corresponding to
a is sent (and received, assuming synchronous message passing, for convenience). In other
words, a run can be generated from a protocol by the successive concatenation of transitions
beginning from the initial state of the transition system. The concatenation of a transition to a
run appends the destination of transition to the run if the source of the transition matches the
last state of the run. Consequently, a run 〈s0s1s2 . . . sn〉 can be generated by a protocol whose
initial state is s0, and whose transition set contains the elements 〈s0, _, s1〉, 〈s1, _, s2〉 and so
on till 〈sn−1, _, sn〉, where s0 ∈ S0 and sn ∈ F. The set of all such runs is denoted by [P].

Protocols are specified by propositions and actions that cause states to change. The seman-
tics of actions are given in terms of commitments such as those shown in Table 2. Given the
actions and their semantics, the formalization of a protocol is straightforward. The transition
function of a protocol can be specified explicitly as state-action-state triples or as a set of
rules that are complied into such triples for runtime efficiency. Two example transition mech-
anisms for commitment-based protocols are commitment machines [26] and nonmonotonic
commitment machines [4]. For example, Tables 2–4, along with a set of rules for determining
the new state given the old state and the action taken would define the purchase protocol.

3 Reasoning about protocols

This section describes our theory of comparing and refining protocols. Section 3.1 defines
how states are deemed similar to one another, Section 3.2 defines what it means for a run to
subsume another or be similar to another, Section 3.3 defines subsumption and similarity of
protocols, and Section 3.4 uses comparisons of commitment-operation based propositions to
relate different protocols.

3.1 Similarity of states

States form the fundamental components of runs, and are identified (and labeled) by sets
of propositions. Any comparison of states, therefore, must be based on comparing propo-
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sitions. This section introduces three state-similarity functions ι, σ , and αA,P , all based on
commitment propositions, and shows how these help relate different runs.

A state-similarity function f is a mapping from a state to a set of states, i.e., f : S 	→ 2S.
From such a function, we can induce a binary relation ≈ f ⊆ S × S, which is defined as
≈ f = {(s, f (s)) : s ∈ S}. That is,

si ≈ f s j ⇐⇒ s j ∈ f (si ) (1)

Definition 1 A state similarity function f is well formed if ≈ f is reflexive, symmetric, and
transitive, i.e., ≈ f is an equivalence relation.

We denote by F the set of all well-formed state-similarity functions.
We constrain all runs to prevent stuttering, i.e., to not have consecutive states that are

similar, i.e., for every run τ = 〈s0 . . . sn〉, si is not similar under f to si+1, for all 0 ≤ i < n.

3.1.1 Identity state-similarity

ι is the identity state-similarity function. That is, si ≈ι s j if and only if si and s j are labeled
by same set of propositions. ι(si ) = {s j |[si ] = [s j ]}. ≈ι is an equivalence relation.

What other kinds of similarity functions can one develop? We have developed our seman-
tics to support reasoning about protocols on commitments among autonomous agents. States
are labeled by the propositions that hold in them. Whereas domain propositions can have
different semantics in different applications, commitments are an abstraction that can be used
across domains with uniform semantics. Since a commitment has a well-defined life cycle
and is a directed obligation, comparison of commitments can be performed based on two
criteria.

– A comparison based on which agent is committed to which other agent.
– A comparison based on which commitment operations were performed.

As examples of usage of both the above criteria, we introduce two state similarity func-
tions, the creditor state-similarity function σ and the role-and-commitment state-similarity
function α.

3.1.2 Creditor state-similarity

Under the creditor state-similarity function σ , a state si is similar to a state s j if in the two
states all the participants of the protocol have the same commitments being made towards
them, regardless of which agent makes it. Since the creditor of a commitment is immaterial
under σ and a delegate(·, ·, ·) action changes the creditor of a commitment, σ can be defined
as σ(si ) = {s j |s j can be reached by finite number of delegate(·, ·, ·) actions from si }

As an example, consider states s4 and s21 from the of the example scenarios.These states
are similar under σ because, as described in Table 4, these states have propositions repre-
senting commitments that differ only in their creditors. ≈σ is an equivalence relation.

3.1.3 Role-and-commitment state-similarity

From the point of view of a participant of a protocol, two states can be said to be similar if they
involve the same commitments. Based on this intuition, we describe role-and-commitment
state-similarity function α. A state si is similar to a state s j under αA,P , where A is a set
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of roles and P is a set of propositions, if the commitments made by any role in A to any
other role in A, and the propositions in P that hold at si , also hold at s j . If, for example,
A represents all the roles in a protocol and P represents all the proposition used by that
protocol, then αA,P can be used as a similarity function to detect cases where the protocol
has been merged with other protocols. This is explained in greater detail in Section 3.4.2.

3.2 Subsumption and similarity of runs

Comparisons among protocols are based on a notion of subsumption of runs. [[ f ]〉 denotes
subsumption operator over runs. The operator [[ f ]〉 is an order-preserving mapping from one
run to another, and depends on the function f .

Definition 2 A run τ j subsumes a run τi under function f if and only if, for every state si

that occurs in τi , there occurs a state s j in τ j that is similar under f , and s j has the same
temporal order relative to other states in τ j as si does with states in τi .

τ j [[ f ]〉τi ⇐⇒ (∀si , s′
i ∈ τi : (∃s j , s′

j ∈ τ j

and si ≈ f s j and s′
i ≈ f s′

j

and (si ≺τi s′
i ⇒ s j ≺τ j s′

j ))) (2)

That is, longer runs subsume shorter ones, provided they have similar states occurring in the
same order. Before we describe properties of run subsumption, we define run-similarity.

Definition 3 A run τi is similar to a run τ j under a well-formed state-similarity function f
if and only if the two runs are of equal length and every kth state of τi is similar under f to
the kth state in τ j . In notation, [τi ]k ≈ f [τ j ]k, 0 ≤ k < |τi | and |τi | = |τ j |.
Lemma 1 If a run τ j subsumes a run τi under f , then, for all subruns βi of τi , there exists
a subrun β j of τ j such that βi ≈ f β j . That is, τ j [[ f ]〉τi ⇒ (∀βi subrun of τi , ∃β j subrun of
τ j : βi ≈ f β j ).

Proof This lemma holds trivially for subruns of lengths 0 or 1. We prove this lemma by
induction on the length of subruns. As the base case, we note that by the definition of run
subsumption, there must be a pair of states in both runs for which the above property holds,
that is, (∀βi subrun of τi : |βi | = 2 ⇒ (∃β j subrun of τ j and βi ≈ f β j )). Assume this
property holds for subruns of a particular length k > 2. Next, consider |β ′

i | = k + 1, where
[β ′

i ]k = s′
i . The first k states of β ′

i form a subrun of length k. Therefore, there exists a subrun
β j of τ j such that βi ≈ f β j and β j is the earliest such subrun in τ j . Consider the k pairwise
temporal precedence relationships (in τi ) between the first k states of β ′

i and s′
i . By the defi-

nition of run subsumption, we know that since τ j [[ f ]〉τi , ∃s′
j ∈ τ j such that [β j ]� ≺τ j s′

j
and s′

j ≈ f s′
i . Let s′

j be the earliest such state in τ j , so that β ′
j = β j ◦ s′

j . Thus, the inductive
hypothesis holds for subruns of length k + 1. By induction, the lemma holds. �

Theorem 1 Under any well-formed state similarity function, run subsumption is reflexive,
transitive, and antisymmetric up to state similarity.

Proof The reflexivity of run subsumption follows from the reflexivity of state-similarity
functions. The transitivity of run subsumption follow from the definition.

The antisymmetry of run subsumption means that if two runs subsume each other un-
der some well-formed state similarity function f , then those runs are similar under f . By
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Fig. 3 Subsumption of purchase
protocol runs under ι and σ

Lemma 1 we know that if τ j [[ f ]〉τi , then for each subrun of τi , there is a similar subrun of
τ j . Let the entire run τi be treated as a subrun of itself. Then, there is a similar subrun in τ j ,
i.e., |τ j | ≥ |τi |. In the same way, from τi [[ f ]〉τ j , we infer that |τi | ≥ |τ j |. Hence, |τi | = |τ j |.
Since the runs are of equal length and all the subruns of one have similar subruns in the other,
τi ≈ f τ j holds. �

Let us consider an example to better explain the above concepts. Let τ1, τ2, and τ3 be the
runs shown in Figures 1a–c, respectively. We then have τ2[[ι]〉τ1. Also, τ3[[ι]〉τ1. However, τ1

subsumes neither τ2 nor τ3, because τ3 has a state s21, whose label does not match any state
label in τ1, and τ2 has states s18 and s19, whose labels do not match any state label in τ1. Run
τ3 does not subsume τ2 because of s21, and τ2 does not subsume τ3 because of s18 and s19.

Next, we consider run subsumption under the creditor state-similarity function σ . Here,
τ2[[σ ]〉τ1. Also, since s21 ∈ σ(s4), τ1[[σ ]〉τ2. Run τ3 subsumes both τ1 and τ2 for the same
reason, but neither τ1 nor τ2 subsumes τ3, since neither of them have states that are σ -similar
to s18 and s19.

Figure 3a shows the subsumption relation between the runs τ1, τ2, and τ3 under the identity
function ι and Fig. 3b, under σ .

3.3 Subsumption and similarity of protocols

3.3.1 Closure of protocol runs

In line with our intuitions that generic protocols allow many variations, we describe the
semantics of a protocol as a set of runs that is closed under run subsumption. That is, if any
run occurs in the set of runs of a protocol, all the runs that subsume it (under a well-formed
state-similarity function) are also in that set. Given a well-formed state-similarity function
f , a protocol P allows all runs that subsume any run in [P]. We define this new set of runs
as the set of runs allowed by the protocol, and denote this set by [[P]].
Observation 1 From the definition of closure of the set of allowed runs of a protocol [[P]] un-
der a well-formed state-similarity function f , we have that [[P]] = {τ |∀τ ′ ∈ [P] : τ [[ f ]〉τ ′}.

We refer to [[P]] also as the closure of the protocol P under a well-formed state-similarity
function.

Operationally, the runs allowed by a protocol completely characterize that protocol by
naturally illustrating the key tradeoff in protocol design, that of flexibility versus compliance:
A protocol that allows many runs is better than one that allows a few runs, since the many-
run protocol affords more choice and flexibility in protocol execution to the participants.
However, checking for compliance can potentially be more demanding when protocols have
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more runs that do not subsume a common run. The definition of the subsumption of protocols
reflects these intuitions.

Definition 4 A protocol Pj subsumes a protocol Pi under a state-similarity function f if
and only if, every run in [[Pi ]] subsumes, under f , a run in [[Pj ]].

Pj [[ f ]〉Pi ⇐⇒ ∀τi ∈ [[Pi ]] ∃τ j ∈ [[Pj ]] : τi [[ f ]〉τ j (3)

If Pj is a protocol that has short runs (and consequently all runs that subsume them) and Pi

is a protocol that has long runs only, then Pj subsumes Pi . Since long runs subsume shorter
ones, protocols with long runs only are subsumed by protocols with short runs as well.

Before we describe the properties of protocol subsumption, we define protocol similarity
as follows:

Definition 5 Two protocols are similar under a state similarity function f if and only if for
every run in one protocol, there exists at least one similar (under f ) run in the other protocol,
and vice versa.

Pj ≈ f Pi ⇔ ∀τi ∈ [[Pi ]], ∃τ j ∈ [[Pj ]] : τi ≈ f τ j (4)

and ∀τ j ∈ [[Pj ]], ∃τi ∈ [[Pi ]] : τ j ≈ f τi

Theorem 2 For any well-formed state-similarity function f , the protocol subsumption rela-
tion [[ f ]〉 is a partial order, i.e., reflexive, transitive, and antisymmetric (up to state similarity).

Proof The reflexivity and transitivity of protocol subsumption follow from its definition.
Because of the property of closure of the set of runs of a protocol under run subsumption
and the definition of protocol subsumption, we know that if Pi [[ f ]〉Pj , then ∀τ j ∈ [[Pj ]] :
∃τi ∈ [[Pi ]] : τ j ≈ f τi . Conversely, if Pj [[ f ]〉Pi , then ∀τi ∈ [[Pi ]] : ∃τ j ∈ [[Pj ]] : τi ≈ f τ j .
Together, these are equivalent to Pj ≈ f Pi . �

3.4 The protocol algebra

We now introduce our protocol algebra as consisting of two operators (merge and choice),
their identity elements (1 and O, respectively), and an ordering relationship (protocol sub-
sumption, as defined above).
Merge. The merge operator, denoted by ⊗ f , splices two protocols (under a state-similarity
function f ) to produce a new protocol. A merge of two protocols involves interleaving their
runs.

Definition 6 The merge of two protocols P and Q under a well-formed state-similarity func-
tion f creates a protocol whose closure consists exactly of runs that subsume some run from
[[P]] and some run from [[Q]].

[[P ⊗ f Q]] = {r |∃rp ∈ [[P]], ∃rq ∈ [[Q]] : r [[ f ]〉rp and r [[ f ]〉rq} (5)

Choice. The choice operator, denoted by ⊕ f , chooses runs from the closures of the protocols
it operates upon and the closure of their merge under f .

Definition 7 The choice of two protocols P and Q under a well-formed state-similarity
function f creates a protocol whose closure consists exactly of runs that subsume either a
run from [[P]] or a run from [[Q]].

[[P ⊕ f Q]] = {r |∃rp ∈ [[P]], ∃rq ∈ [[Q]] : r [[ f ]〉rp or r [[ f ]〉rq} (6)
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Constants. The properties of the merge operator lead us to define two protocols, O and 1.
The O protocol is an “impossible” protocol, which does not have any runs. [[O]] = {}. The
1 protocol is a “trivial” protocol which contains the zero-length run in its semantics, and
consequently contains all possible runs. [[1]] = {τ |∀ f ∈ F, τ [[ f ]〉τφ}, where τφ = 〈〉. The O
and the1 protocols form the bottom and the top element, respectively, of a protocol hierarchy
based on the merge function. All protocols are subsumed by the 1 protocol and all protocols
subsume the O protocol.

3.4.1 Formal results

We briefly present some formal results, which simplify reasoning about protocols using our
algebra. First, we present a formulation for the operators in terms of protocol subsumption.
Since Definitions 6 and 7 state the properties of the operators only in terms of the runs of
the protocols, this new formulation simplifies the understanding of the behavior of the merge
and choice operators, and likens them to set intersection and union, respectively.

Theorem 3 Given the run-subsumption relation [[ f ]〉 under a well-formed state-similarity
function f , the merge ⊗ f of two protocols P and Q under f is the greatest lower bound of
P and Q under the protocol subsumption relation [[ f ]〉.
Proof Let R = P ⊗ f Q. That is,

[[R]] = {r |∃p ∈ [[P]], ∃q ∈ [[Q]] : r [[ f ]〉p and r [[ f ]〉q} (7)

From Observation 1, it is easy to see that P[[ f ]〉R and Q[[ f ]〉R. That is, R is a lower bound
of P and Q.

Consider some protocol R′ that is a lower bound of P and Q, i.e., P[[ f ]〉R′ and Q[[ f ]〉R′.
By definition of protocol subsumption,

∀r ′
p ∈ [[R′]], ∃p ∈ [[P]] : r ′

p[[ f ]〉p (8)

∀r ′
q ∈ [[R′]], ∃q ∈ [[Q]] : r ′

q [[ f ]〉q (9)

From Eq. (7) we know that all runs that subsume a run each from [[P]] and [[Q]] are
in [[R]]. From Eqs. (8) and (9), we know that every run in [[R′]] is just such a run. Hence,
∀r ′ ∈ [[R′]] : r ′ ∈ [[R]]. From the closure property of protocol run-sets, we further infer that
∀r ′ ∈ [[R′]], ∃r ∈ [[R]] : r [[ f ]〉r ′, which means that R[[ f ]〉R′. Since any R′ is subsumed by
P ⊗ f Q under f , this means that ⊗ f gives the greatest lower bound of P and Q under f .

�

Theorem 4 Given the run-subsumption relation [[ f ]〉 under a well-formed state-similarity
function f , the choice ⊕ f of two protocols P and Q under f is the least upper bound of P
and Q under the protocol subsumption relation [[ f ]〉.
Proof Let R = P ⊕ f Q. That is,

[[R]] = {r |∃p ∈ [[P]] : r [[ f ]〉p or ∃q ∈ [[Q]] : r [[ f ]〉q} (10)

From Observation 1, it is easy to see that R[[ f ]〉P and R[[ f ]〉Q. That is, R is an upper
bound of P and Q.

Consider some protocol R′ that is an upper bound of P and Q, i.e., R′[[ f ]〉P and R′[[ f ]〉Q.
By definition of protocol subsumption,

∀p ∈ [[P]], ∃r ′
p ∈ [[R′]] : p[[ f ]〉r ′

p (11)
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∀q ∈ [[Q]], ∃r ′
q ∈ [[R′]] : q[[ f ]〉r ′

q (12)

Let r ∈ [[R]]. From Eq.( 10), without loss of generality, we can assume that ∃p ∈
[[P]] : r [[ f ]〉p. From this, Eq. (11), and the transitivity of run subsumption, we infer that
∃r ′

p ∈ [[R′]] : r [[ f ]〉r ′
p . By the definition of protocol subsumption under f, R′[[ f ]〉R. Since

any R′ that subsumed P and Q under f subsumes P ⊕ f Q under f , this means ⊕ f gives
the least upper bound of P and Q under f . �

Essentially, the merge is analogous to the intersection of the sets of runs of the protocols
being merged, where run similarity is used to determine equality of elements of the sets.
Formally,

[[P ⊗ f Q]] = [[P]] ∩ f [[Q]]
where ∩ f is the run intersection operator, defined over sets of runs A and B as

A ∩ f B = {r |∃p ∈ A : r ≈ f p and ∃q ∈ B : r ≈ f q}
We could alternatively define ∩ f as the greatest lower bound of P and Q under f .

Lemma 2 Given protocols P and Q and a well-formed state-similarity function f, r ∈
[[P ⊗ f Q]] ⇒ r ∈ [[P]] and r ∈ [[Q]]
Proof Consider r ∈ [[P ⊗ f Q]]. From Definition 6, we know that r [[ f ]〉rp and r [[ f ]〉rq for
some rp ∈ [[P]] and rq ∈ [[Q]]. From this and Observation 1 (the closure of sets of protocol
runs), we infer that r ∈ [[P]] and r ∈ [[Q]]. �

Lemma 3 Given protocols P and Q and a well-formed state-similarity function f, r ∈
[[P]] and r ∈ [[Q]] ⇒ r ∈ [[P ⊗ f Q]]
Proof Consider r ∈ [[P]]. From Observation 1 and the reflexivity of run subsumption under
any well-formed state-similarity function, we can infer ∃rp ∈ [[P]] such that r [[ f ]〉rp . Simi-
larly, from r ∈ [[Q]], we infer ∃rq ∈ [[Q]] such that r [[ f ]〉rq . From Definition 6, we conclude
that r ∈ [[P ⊗ f Q]]. �

Choice is analogous to the union of the sets of the runs, using run similarity to compare
elements of the sets. Formally,

[[P ⊕ f Q]] = [[P]] ∪ f [[Q]]
where ∪ f is the run union operator, defined over sets of runs A and B as

A ∪ f B = {r |∃p ∈ A : r ≈ f p or ∃q ∈ B : r ≈ f q}
We could alternatively define ∪ f as the least upper bound of P and Q under f .

Lemma 4 Given protocols P and Q and a well-formed state-similarity function f, r ∈
[[P ⊕ f Q]] ⇒ r ∈ [[P]] or r ∈ [[Q]]
Proof Consider r ∈ [[P ⊕ f Q]]. From Definition 7, we know that r [[ f ]〉rp or r [[ f ]〉rq for
some rp ∈ [[P]] and rq ∈ [[Q]]. From this and Observation 1 (the closure of sets of protocol
runs), we infer that r ∈ [[P]] or r ∈ [[Q]]. �
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Lemma 5 Given protocols P and Q and a well-formed state-similarity function f, r ∈
[[P]] or r ∈ [[Q]] ⇒ r ∈ [[P ⊕ f Q]]
Proof If r ∈ [[P]], then, from Observation 1 and the reflexivity of run subsumption un-
der any well-formed state-similarity function, we can infer ∃rp ∈ [[P]] such that r [[ f ]〉rp .
Similarly, if ∃rq ∈ [[Q]], then r [[ f ]〉rq . From Definition 7, we conclude that r ∈ [[P ⊕ f Q]]. �

The following results are then obvious

1. The merge of a protocol with itself yields the same protocol (idempotence).

(P ⊗ f P) = P.

2. The merge operator is commutative and associative.

P ⊗ f Q = Q ⊗ f P

P ⊗ f (Q ⊗ f R) = (P ⊗ f Q) ⊗ f R

3. Merge distributes over choice.

P ⊗ f (Q ⊕ f M) = (P ⊗ f Q) ⊕ f (P ⊗ f M)

Proof From Lemmas 2, 3, 4, 5, and the distributivity of “and” over “or”,

r ∈ [[P ⊗ f (Q ⊕ f M)]] ⇒ r ∈ [[P]] and r ∈ [[Q ⊕ f M]]
by Lemma 2

⇒ r ∈ [[P]] and (r ∈ [[Q]] or r ∈ [[M]])
by Lemma 4

⇒ (r ∈ [[P]] or r ∈ [[Q]])
and (r ∈ [[P]] or r ∈ [[M]])
by distributivity of “and” over “or”

r ∈ [[P ⊗ f (Q ⊕ f M)]] ⇒ r ∈ [[(P ⊗ f Q) ⊕ f (P ⊗ f M)]] (13)

by Lemmas 3 and 5

�
Similarly, we can prove

r ∈ [[(P ⊗ f Q) ⊕ f (P ⊗ f M)]] ⇒ r ∈ [[P ⊗ f (Q ⊕ f M)]] (14)

From Eqs. (13), (14), and the definition of protocol-similarity (Definition 5), we conclude
that merge distributes over choice.

4. The merge of any protocol with 1 gives that protocol and the merge of any protocol with
O gives O. In this way, the 1 protocol is the identity element and the O is the nil element
for merge.
P ⊗ f 1 = P
P ⊗ f O = O

Choice also supports idempotence, commutativity, and associativity. The choice of a pro-
tocol with 1 yields 1 and the choice of a protocol with O yields that protocol itself.

1. Idempotence.
(P ⊕ f P) = P
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2. Commutativity.
(P ⊕ f Q) = (Q ⊕ f P)

3. Associativity.
P ⊕ f (Q ⊕ f R) = (P ⊕ f Q) ⊕ f R

4. Distributivity over merge.
P ⊕ f (Q ⊗ f R) = (P ⊕ f Q) ⊗ f (P ⊕ f R)

5. Choice with 1 and O

P ⊕ f 1 = 1

P ⊕ f O = P

3.4.2 Applying the algebra

Now we discuss how the algebra can be applied to create new protocols. The choice operator
⊕ f allows us to choose between runs belonging to different protocols. This operator can be
used, for example, when multiple ways of payment exist, such as payment by credit card, or
payment by personal check. The result of the choice operator is a protocol whose set of runs
is larger and thus offers more choices than the individual protocols to which the choice was
applied.

The merge operator is more interesting. As an example of its application, consider the run
shown in Fig. 1c. This run belongs to the merge of the simple purchase shown in Fig. 1a.
and payment, shown in Fig. 4a. The merge is performed under the creditor state-similarity
function σ . As a more complicated example, consider a run of the refined purchase example
as shown in Fig. 2. This run belongs to the refined purchase protocol, which is the result of a
merge of the simple purchase, the shipping, and the payment protocols. The state-similarity
function used here is αA,P . Under αA,P , A is a set of agents, P , a set of propositions, and
two states are similar if all commitments between agents agents in A and all propositions in
P that exist in one state also exist in the other. Under αA,P , where A denotes the set con-
taining the participants of Shipping, i.e., {b, x, c}, and P denotes the set of all propositions
that are used in Shipping, we see that the Shipping run shown in Fig. 4b. is subsumed by
the refined Purchase run shown in Fig. 2. Specifically, the states s3, s11, s12, s13, s14, s5, and
s16 of refined Purchase are αA,P -similar to the states s10, s11, s12, s13, s14, s15, and s16 of
Shipping respectively. Similarly, the states s4 and s21 of the refined Purchase are similar to
states s20 and s21 of Payment under αA,P , where A denotes {c, k} and P denotes the set of all
propositions used in Payment. Consequently, the refined Purchase run subsumes Payment.
Note that Fig. 2 shows only one run of the refined purchase protocol. Given the semantics of
the merge operator, the refined purchase protocol allows more runs, since all valid interleav-
ings of runs of the merged protocols are allowed. One such run could be where the shipping
protocol is started before the first step of the purchase protocol. In practice, data dependencies
and temporal state ordering are specified to filter the set of runs generated by interleaving,
as done, for example, in the OWL-P framework [5], which describes a composition profile
for composing protocols. The composition profile describes roles that have to be played by
the same agent, data dependencies and ordering constraints, if any, among the messages in
the protocol.

4 Discussion

Our research program seeks to develop rich abstractions methodologies that will ease the
development of large-scale open systems. This paper is part of our ongoing research in that
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Fig. 4 A payment and a shipping protocol. (a) Payment-via-bank protocol and (b) Shipping protocol

direction. Singh et al. present an overview of the motivations of this program and of the
applications envisioned for it [5].

The framework presented in this paper can serve as the foundation for developing design-
time tools, and possibly for automated, runtime composition. Complete automation of pro-
tocol composition requires a complete specification of the behavior of a protocol. This is
rarely the case when dealing with complex agent interaction protocols that can find appli-
cations in business processes modeling or Web Service composition. Most realistic settings
require considerable context-sensitive information, which may be encoded as policies local
to the agent. Such contexts may be based on motivations such as trust and economics, which
can change unpredictably. The autonomy of agents in a multi agent system allows agents to
behave differently under different contexts. It is this dynamic behavior that makes the agent
paradigm attractive for application to open systems, and cannot be statically specified for all
but the simplest of agents. Our framework helps develop tools that aid protocol designers in
tailoring an existing protocol to meet their requirements by automatically verifying properties
of the designed protocol.

Our understanding of protocols as specifications of the minimum states that a computa-
tion should contain is analogous to the minimal process execution semantics as defined in the
MIT Process Handbook [15]. There is an underlying assumption that concise specifications
are better than elaborate ones, since flexibility of a protocol is desirable in business appli-
cations where opportunities can be profitably exploited. In some cases, however, a maximal
execution semantics might be applicable, e.g., in a protocol for which compliance checking
is costly or difficult or where unexpected actions are undesirable.

4.1 Literature

Our work relates to and draws both from well established and emerging fields. Business
processes have received much attention lately because of the economic benefits of cross-
enterprise business. Coordination and interaction protocols have been studied by the agent
research community so that agent conversations and interaction can be computationally real-
ized. We list here selected literature from both areas.
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4.1.1 Workflows and processes

Business processes have been traditionally automated as workflows. Recently, the web ser-
vice model has been applied to process automation.

Workflows have been studied extensively as Petri-net based models of business pro-
cesses [22, 23]. The Workflow Management Coalition (WfMC) is a standards body that
has created a reference model for workflows [6]. This model has two basic parts, a modeling
and an enactment part. The model prescribes a workflow engine as the system that executes
the workflow. These models specify a rigid sequence of steps. Workflows require human
intervention to handle most exceptions. Because of their inflexibility, workflows have had
only limited success.

The MIT Process Handbook [15] is a project that aims to create a hierarchy of commonly
used business processes. Based on this hierarchy, Grosof and Poon [11] develop a system to
represent and execute business rules.

Of late, web services have been touted as the solution to the business interoperability
problem. The need for process composition and interoperability has led to the develop-
ment of standards for orchestration and choreography of web services [16]. Orchestration
refers to intra-service planning and choreography to an overall view of inter-service coor-
dination. Here, we shall mention only two important standards, WSCI and BPEL4WS. The
Web Services Choreography Interface (WSCI) is an XML-based language that describes a
service interface by the flow of messages sent and received by the service. The standard,
however, looks at protocols one level lower than our view, since each WSCI specification
corresponds to a role in our scheme. The Business Process Execution Language for Web
Services (BPEL4WS) is currently the most widely used web services standard for describing
business processes [1]. However, BPEL4WS is no more than a procedural script encoded in
XML.

Fu et al. [10] develop methods to verify if a given web service will adhere to a given
conversation protocol. Their work develops formal results about verification of protocol
compliance for protocols based on finite state machines. Benatallah [12] develop a protocol
algebra for petri nets and show its applicability to workflows and web services. However,
this approach suffers from the same pitfalls as workflows modeled using Petri nets.

4.1.2 Interaction protocols

Yolum and Singh [26] give one of the first accounts of the use of commitments in mod-
eling agent interaction protocols and the flexibility that it affords the participating agents.
Colombetti [8] describe how commitments relate to FIPA-ACL messages and demonstrate
with an example. Both approaches highlight the benefits of a commitment-based approach
to interaction protocol design.

Johnson et al. [13] develop a scheme for identifying when two commitment-based proto-
cols are equivalent. Their scheme, however, is simplistic, classifying protocols based solely on
their syntactic structure. Our work provides stronger results about the relationships between
protocols from an application point of view and relates better to the Web Services approach.

Bussmann et al. [2] present a design methodology to aid in the selection of a protocol
from a library of existing protocols to apply to agent-based control applications. They identify
criteria like the number of agents, the number of roles, and the number and kind of commit-
ments and use these to select a protocol from an existing pool of interaction protocols. This
approach is quantitative, and lacks a formal semantics to base the methodology on.
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Pitt and Mamdani [17] describe a semantics for agent interaction protocols using the
Belief-Desire-Intention (BDI) theory. Using this semantics, they outline the design of a sys-
tem of agent plans that are instantiated by agents to carry on conversations with other BDI
agents. In our work, an agents beliefs, desires, and intentions are private to that agent. We
work with social commitments which are observable by all agents and whose breach is easier
to verify.

In more recent work, Vitteau and Huget [25] describe an approach for designing agent
interaction protocols using modular micro-protocols. This scheme is similar to our protocol
design proposal in spirit. However, Vitteau and Huget do not provide a formal basis for
putting protocols together.

4.1.3 Agent communication

Flores et al. [7] describe how agent conversations using commitments can be modeled by giv-
ing meanings to commitment operations incrementally via message exchanges. Their work
is a good example of an operationalization of commitment protocols using lower-level mes-
sages relating to communicative acts. As they correctly point out, our algebra can be applied
at a higher level than their theory.

Fornara et al. [9] develop a method of specifying changes in ontological relationships
among communicative acts of agents so that the changes in meaning of the acts can be eas-
ily captured when applied to different institutions (such as an auction). Whereas our work
describes how to combine protocols to apply in different scenarios, Fornara et al. demonstrate
how a change in the meaning of utterances can be handled in a principled manner in different
contexts. A key contribution of their work is the specification of the organizational structure
(the institution) as an integral part of a commitment-based conversation protocol.

Kagal and Finin [14] propose Rei, a language and a methodology for the specification of
policies and policy-based institutions. Under this methodology, policies are used to express
deontic notions such as permissions, prohibitions, and obligations. A policy engine deter-
mines at runtime utterances or actions that an agent can say or perform. Kagal and Finin also
provide a mapping of the concepts they develop into the FIPA ACL and KQML, thus pro-
moting wider usage. Policy-based institutions are realizations of spheres of commitment, in
which a social structure exists because of commitments among agents and these agents have
rights, privileges, and duties to create and operate upon commitments based on their position
in the society. Kagal and Finins work could thus provide a bridge for the operationalization
of our theory.

4.2 Conclusions and directions

This paper described a semantic approach to commitment protocols that yields a simple
algebra for protocols. This algebra provides a basis for conceptual reasoning about protocols
in terms of refinement and aggregation, which is essential if we are to engineer protocols
that way other software systems are engineered. To our knowledge, this work is unique in
formulating the problem of problem design at a conceptual level. Partly, it derives it unique-
ness from a careful consideration of the commitments that underlie protocols in multiagent
settings.

This work opens up some interesting challenges. One, it would help consider how the
algebra will work with more subtle kinds of state-similarity functions. Two, the abstractions
supported by our algebra must be woven into a methodology for designing protocols. Three,
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such methodologies should be supported by tools that give appropriate reasoning assistance
to designers. We are pursuing these directions in our ongoing research.
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