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Abstract. Innovative control strategies are needed to cope with the increasing urban traffic chaos. In most

cases, the currently used strategies are based on a central traffic-responsive control system which can be

demanding to implement and maintain. Therefore, a functional and spatial decentralization is desired. For

this purpose, distributed artificial intelligence and multi-agent systems have come out with a series of

techniques which allow coordination and cooperation. However, in many cases these are reached by

means of communication and centrally controlled coordination processes, giving little room for decen-

tralized management. Consequently, there is a lack of decision-support tools at managerial level (traffic

control centers) capable of dealing with decentralized policies of control and actually profiting from them.

In the present work a coordination concept is used, which overcomes some disadvantages of the existing

methods. This concept makes use of techniques of evolutionary game theory: intersections in an arterial

are modeled as individually-motivated agents or players taking part in a dynamic process in which not

only their own local goals but also a global one has to be taken into account. The role of the traffic

manager is facilitated since s/he has to deal only with tactical ones, leaving the operational issues to the

agents. Thus the system ultimately provides support for the traffic manager to decide on traffic control

policies. Some application in traffic scenarios are discussed in order to evaluate the feasibility of trans-

ferring the responsibility of traffic signal coordination to agents. The results show different performances

of the decentralized coordination process in different scenarios (e.g. the flow of vehicles is nearly equal in

both opposing directions, one direction has a clearly higher flow, etc.). Therefore, the task of the manager

is facilitate once s/he recognizes the scenario and acts accordingly.

Keywords: coordination of agents, evolutionary game-theory, learning in multi-agent systems, traffic

signal control.

1. Introduction

The problems related to the increase of urban traffic jams call for innovative control
strategies which allow vehicles to travel more freely as, for instance, coordination
(also called synchronization) of traffic signals. In most cases these strategies are
based on a central traffic-responsive control system, whose difficulty to implement
and maintain increases with the number of traffic elements (traffic lights, detectors,
specialized hardware, etc.). Another problem is the lack of interoperability among
those elements, specially if purchased from different producers. Therefore, functional
and spatial decentralization is desired. In fact, achieving spatial decentralization has
been a major goal of traffic engineering [42].
Many authors have stressed the role of limited perception and communication

capabilities and the need for implicit communication and learning mechanisms (e.g.
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[18,20,36]). This is a key issue in the traffic domain as it will be shown in Section 3,
where other relevant contributions are also briefly discussed.
Decentralized systems in traffic may have several purposes: to attain synchroni-

zation of several neighboring intersections on an arterial [4], agent-based macro-
scopic [46] as well as microscopic simulation of traffic agents [12,25,27,34], and traffic
control [33]. In some cases, cooperation is reached by means of a communication-
based, centrally controlled coordination process. Nonetheless, this kind of co-
ordination is not satisfactory for the domain of traffic signal control due to real-time
and interoperability constraints. Real time constraints here means that agents cannot
afford complex, time-consuming negotiation mechanisms due to the need to react
immediately to the current traffic situation. Besides, the communication channel may
be noisy or restrict. Interoperability constraints are posed by the producers of
hardware. Despite effort to have a standard communication protocol, the reality is
that the current available hardware does not provide such facilities.
In the present work, a coordination concept is used, which overcomes some of the

disadvantages of the existing methods of centralized synchronization of traffic sig-
nals. This concept makes use of techniques of evolutionary game theory and of
reinforcement learning. Intersections in an arterial are modeled as individually
motivated agents or players taking part in a dynamic process, where not only their
own local goals but also a global one has to be taken into account. Moreover, each
agent possesses only information about their local traffic states.
In order to optimize the traffic flow, each agent may select a suitable action (a

signal plan as it will be defined in Section 3). According to their local goals, agents
are classified into different types. The information regarding this classification is not
shared by neighbors. The joint selection of actions in the neighborhood of the agent
defines the new traffic state, which yields a gain or loss for each agent. Decisions
(action selections) are made at discrete time intervals. These action selection periods
are interwoven with learning periods. In the latter, agents learn by reinforcement.
According to the outcome of each action, the learning rule gives the probability with
which every action should be played in the future. This way, the mechanism allows a
sort of indirect agreement amidst agents toward specific action(s) aiming at reducing
queues at intersections.
Ultimately, this paper focuses on distributed coordination strategies which pro-

vide the traffic manager with support to decide on traffic control policies both at an
operational as well as at a tactical level. The strategical level could possibly be
tackled by such a tool as well, but since this goes beyond the decision level of the
traffic manager (as it potentially involves topological changes and/or infrastructural
measures), it is not taken into account in the current work.
This text is organized as follows: the next section discusses the motivation for a

paradigm shift in traffic control and coordination of traffic signals, as well as pre-
vious works in this direction. Section 3 gives a brief overview on some concepts
related to traffic control and policies for coordination of traffic signals, and also on
previous solutions related to decision-support for traffic control, most based on
artificial intelligence (AI) techniques. In Section 4 some concepts of game-theoretic
approaches already used in distributed artificial intelligence and multi-agent systems
are highlighted. It is shown that for the traffic scenario tackled here, the evolutionary
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game-theoretic approach is more suitable. Sections 5 and 6 discuss the details of the
approach proposed and the results respectively. Finally, Section 7 concludes the
paper and outlines the future research directions.

2. Autonomous agents providing a shift in paradigm: from a centralized to a decen-

tralized control policy

2.1. Motivation

Coordination in systems in which there is a shortage of resources has been a central
issue of a number of works. In traffic domain, coordination has been usually tackled
in a centralized fashion. This seems to be particularly true if communication chan-
nels have to be used efficiently, since it is important for the coordination mechanism
not to consume much processing and communication resources.
One of our goals is to show that coordination may also emerge in the absence of a

central authority, although it may require a longer time to achieve it since agents
need time to observe other agents, build models of them, and learn their behaviors.
In traffic domains this means that the traffic manager can be free to analyze
high-level issues like changes in routine patterns; the low level issues would be solved
by the agents in charge of analyzing usual tasks such as synchronizing traffic lights in
neighboring intersections.
The motivation for using agents in this scenario is that there is a solid research line

concerned with the study of how agents can cooperate in order to solve a global
problem that is beyond their individual capabilities. However, achieving cooperation
and coherent coordination is not trivial. Therefore, an initial motivation for this
work is to adapt mechanisms for the emergence of cooperation among the partici-
pants of a system, especially when they have their own goals and are not necessarily
cooperative. The second motivation is to validate distributed coordination me-
chanisms in traffic control.
In order to draw conclusions about the effectiveness of decentralized mechanisms,

it is necessary to make an overview of how transportation and traffic engineering have
coped with the question of traffic control. Initially, techniques of operations research,
statistics, and computer simulation were tried [1,8,9,43]. More recently, the use of AI
techniques (mainly expert systems and agent-based approaches) have also stirred
increasing interest. Classical examples are the sub-areas of transportation logistics,
where heuristic-based systems play an important role [15]; traffic management using
intelligent systems [10,13,16,33,46,47]; and air-traffic control, where the inherent
decentralized nature of the planning problem has motivated the use of agents tech-
niques [7].
Recent technological developments concerning software and use of AI have en-

abled the control at intersections to be increasingly intelligent and autonomous. For
instance, there is a trend to replace the centralized philosophy of traffic control by a
hierarchical one composed of several sub-networks [4,6,11,13,19,24,29,33,42,46].
While this seems to reduce communication and to increase reliability by allowing
data to be processed quickly, it demands more sophisticated software and data
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structures: when one speaks about single traffic light, they are normally embedded
systems, whereas one has to design databases and interfaces for the end user (e.g.,
traffic engineer) when a centralized system is to be used.
An alternative is a totally decentralized policy: local units (for instance the sig-

nalized intersections) act independently while performing their tasks such as data
acquisition, processing, reasoning, planning, and the carrying out of the signal plans.
However, such units should be capable not only of processing local information, but
also of interacting with neighbors when necessary in order to optimize traffic flow.
Achieving such degree of decentralization while also reducing communication seem
to be conflicting goals when one thinks that, the more decentralized a system, the
more coordination it requires in order to improve efficiency. Because coordination is
normally reached through communication, there is a clear need for a new me-
chanism of coordination which, if not capable of avoiding, at least minimizes
communication.
Consequently, a third motivation of the present work is exactly the use of an

approach which seeks coordination with reduced communication. A natural way to
tackle the problem of developing a new coordination mechanism with low com-
munication is to look at fields where a similar question has appeared and has been
already studied, like microeconomics and, in particular, game-theory (see Section 4).
From the operative point of view, in the proposed approach, communication

among participants can be minimized since they do not need to have full knowledge
before making a decision. Since they somehow model neighbors, they are able to
reason about others’ states without need of an explicit communication process.

2.2. Related work

Rosenschein and Genesereth [36] have raised the question about the ‘‘benevolent
agent assumption’’: in the real world benevolence cannot be taken for granted. Even
in situations where all participants may have a single general goal, it is unlike that
this remains true when talking about sub-goals. Conflict often arises after the de-
composition of a task into subtasks and/or due to resource allocation. Their fra-
mework was later extended to an environment where less communication is allowed
[20]. Apart from Rosenschein and colleagues’ researches, many other comprehensive
studies tackle the use of other aspects of the microeconomics in MAS. However we
restrain ourselves here to evolutionary game-theoretic approaches. Agents which
have some capacity to cope with complex situations should be able to react in
particular situations. Hence, they should be designed with capabilities such as pre-
diction and conflict resolution.
Finally, regarding distributed approaches in transportation, there are various

research results worth noting. In urban traffic control, the Prodyn system [44] and
the approach described in [13] are both based on communication of information
from a single intersection within a determined neighborhood, which leads to complex
protocols and high costs. Moreover there is no mechanism of conflict resolution.
This point is addressed in [46] by means of a negotiation protocol (thus increasing
communication). Other works on transportation are reviewed at the end of the next
section.
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3. A brief overview on policies for urban traffic control

3.1. Introduction

Transportation in general and logistics in particular are only slightly related to this
paper. We refer the interested reader to [7] and [14] for early approaches of MAS to
air-traffic control and to the logistics respectively. For agent-based traffic simulation
please refer to [12,25,27,36,34].
The focus of this paper is on urban traffic control (UTC). The attractiveness of

agent based models in UTC arises from the inherent distribution of the functionality
of the components. Such distribution gives room for coordination and cooperation
mechanisms among traffic-signal agents, in order to cope with their local goals, and
also with overall goal of the traffic network. However, it is desirable that the
coordination mechanisms do not require a high degree of communication during the
negotiation process, as explained in Section 1.

3.2. Terminology and basic concepts in urban traffic control

The main goals of UTC systems are: to maximize the overall capacity of the net-
work; to maximize the capacity of critical routes and intersections which represent
the bottlenecks; to minimize the negative impacts of traffic on the environment and
on energy consumption; to minimize travel times; and to increase traffic safety.
The control of traffic flow has the main functional objectives: provision for orderly

movement of traffic; increase of traffic-handling capacity on the intersection;
reduction of the frequency of accidents; and synchronization of traffic signals in
order to provide for continuous movement of traffic at a defined speed along an
arterial (in synchronized or progressive systems).
In order to achieve these goals, devices to control the flow of vehicles (e.g., traffic

signals) have been used. Traffic signals can vary from hard-wired logic to compu-
terized control, either centralized or not. It is also possible to acquire data from
buried detectors (e.g., of loop-induced type) in order to perform a simple traffic-
responsive local control. In a centralized and computerized system, the central
computer sends instructions to several traffic signals either on a time base or
according to detector information.
Signalized intersections are controlled by signal-timing plans which are

implemented at traffic signals. A signal-timing plan (henceforth signal plan for short)
is a unique set of timing parameters comprising basically the cycle length (the length
of time for the complete sequence of the phase changes), the split (the division of the
cycle length C among the various movements or phases), pedestrian requirements for
timing, and the phase-change interval.
The design of traffic signal plans consists basically of two stages. The first is the

division of the valid traffic movements at an intersection into different phases, so
that the movements in each phase are free of conflict. This is normally made by a
traffic expert. The second stage consists of finding the timing of the signal plan.
This includes the determination of the cycle time, the split, and the phase-change
interval.
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The criteria for obtaining the optimum signal timing is that it should lead to the
minimum overall delay at the intersection. This is usually achieved by using simu-
lation or optimization programs. Several plans are normally required for an inter-
section (or set of intersections in the case of a synchronized system) to deal with
changes in traffic flow.

3.3. Traffic signal control systems and structures

Concerning the level of aggregation, systems can be utilized to control: an individual
intersection, an arterial, and a grid or network. According to the control strategy,
two strategies can be distinguished: fixed time and traffic-responsive signal control.
Thus, four variants can be described: fixed-time control, traffic-responsive signal
plan selection, traffic-responsive signal plan modification, and traffic-responsive
signal plan generation.
In the first strategy, a fixed-time (pretimed) controller works on a time-of-the-day

basis. It is the cheapest and logical choice for network with stable or predictable
traffic behavior. However, a fixed-time controller cannot cope with unexpected
changes in traffic flow. Moreover, the key problem in developing fixed-time control
systems is precomputing signal plans from historical traffic data. On the other side,
actuated control, which comprises the three remaining strategies, makes use of
buried detectors on all or some approaches to the intersections. These strategies are
necessary where the traffic flow does not have stable pattern.
As for control structures, the principal ones are:

– First generation (non-computerized systems): the control functions are performed
either by especially designed hard-wired logic in the form of an electromechanical
device or by electronic logic;

– Second generation (centralized computer control): the individual control tasks can
be carried out by a single computer if the number of intersections is relatively
small. If several hundreds or thousands of intersections have to be coupled to the
control center, then the installation of a computer hierarchy system may be ne-
cessary;

– Third generation (distributed computer control): microprocessors allows the in-
dividual intersections to be provided with their own processing unit. Measure-
ments from detector can be locally evaluated and need no longer to be transmitted
to the control center. Two versions of distributed traffic light control systems may
be distinguished:

1. hierarchically structured distributed control systems: in large networks, it is
necessary to have sub-control centers;

2. totally distributed traffic control systems: no control center exists; each local
processor solves the control tasks occurring at its own intersection.

3.4. Synchronization in arterials: basics

The goal of coordinated systems (also called synchronized or progressive systems) is
to synchronize the traffic signals along an arterial in order to allow vehicles, traveling
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at a given constant speed, to cross the arterial without stopping at red lights. This is
known as a green wave. Normally, these are used for morning and afternoon rush
hours (i.e., for fixed times of the day).
Apart from the control parameters discussed in Section 3.2, a coordinated system

also needs the so-called offset (time between the beginning of the green phase of
consecutive traffic signals), and the desired speed of vehicles V. The fixed parameters
are the geometry of the intersection (number of lanes, etc.) as well as the geometry of
the arterial (distance between intersections). Another important related concept is
the bandwidth. There is a particular time period during which a vehicle is able to
continue without stopping at any intersection if it maintains a fixed speed V.
The classical problem concerning synchronization systems is to find the optimal

(larger) bandwidth for different cycle times and speeds. The most popular solution so
far employed uses linear programming (e.g., [32]). Using these methods one can find
the optimal cycle time and optimal speed. Two or more signalized intersections can
be operated in synchronization when their traffic signals are commensurate in time.
This synchronization can be imposed through a communication system or through a
clock at each intersection.
Well designed signal plans can achieve acceptable results in not completely con-

gested streets in one flow direction. However progression in two opposing directions
of an arterial is difficult to achieve, if not impossible, in almost all practical situa-
tions. The difficulty is that the geometry of the arterial is fixed and with it the spacing
between adjacent intersections. Only in very special cases (for instance when the
spacing among intersections is almost the same, no left turns are allowed, and the
traveling speed is constant and equal for both directions) the geometry allows pro-
gression in opposite directions. Synchronization in four directions is, for practical
purposes, impossible.
As a measure of effectiveness of such systems, one generally seeks to optimize a

weighted combination of stops and delays as in TRANSYT [35]. The commonly
implemented approaches are synchronization with fixed time control and synchro-
nization with traffic-responsive signal plan selection or modification. However for
large networks or arterials where traffic patterns change often, there is a trend to use
hierarchical or totally distributed approaches in order to reduce the complexity of
control programs, as already discussed in Section 2.1.

3.5. Synchronization in arterials: approaches and tools

Some algorithms were proposed in the sixties and seventies to analyze traffic patterns
and to set traffic signal cycle length and cycle splits (e.g., TRANSYT [35,43] and
PASSER [8]).
A new generation of simulation tools and decision-support systems appeared in

the 1980s. These were based either on a decentralized philosophy of control, or on
the use of AI techniques. Some examples of the former approach are discussed
below, followed by a brief description of the use of AI and multi-agent techniques.
Prodyn [24] as well as OPAC [19] and UTOPIA [11] are adaptive programs in

which the control is not centralized. In Prodyn for instance, a decision is taken at
each 5 seconds concerning whether to change phases or not. In a typical case, each
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intersection simulates all possible situations using detector information in adjacent
areas. This information propagates from intersection to intersection with a de-
creasing weight. Both the relative complex computation and the communication
system can increase the cost of implementation.
In OFSET [29], fully and semi-actuated signals located in several intersections

aligned in a given direction communicate with each other via a simple databus,
without a central computer. On the databus, a cycle is established where intersec-
tions periodically send information to one another about network volume, cycle
length and offset. Each intersection computes a desired cycle length. Offsets are then
calculated by a routine which searches for a value which minimizes total intersection
delay. However this approach does not deal with the situation where the synchro-
nization has to be shifted automatically to another direction since this procedure
would need coordination.
In the 1980s, the status of traffic control problems has grown in importance amidst

the AI and multi-agent community. However, the literature reports only a few
proposals, ideas and tentative implementations. The reason for this may lie in the
difficulty of modeling all constraints which appear in interactions among all traffic
elements.
Initially, expert systems have motivated a series of studies in the field of UTC. The

idea behind is to use expert knowledge from experienced traffic engineers, which is
encoded in a knowledge base. An expert system approach to this problem was first
tried by Zozaya-Goristiza and Hendrickson [47]. After this seminal work, expert
systems such as the French System [16] were implemented. Although traffic waiting-
time has been reduced, they suffer from several shortcomings: since they must deal
with tremendous amounts of information, they are very slow. Also, they usually look
after global problems and are then unable to deal with important local changes.
Distributed and dynamic control philosophies have not been used although they
offer a number of advantages.
The system described by Findler and Stapp [13] is based on the propagation of

information in a network of traffic signals. The authors assume a street configuration
in a grid form, with some simplifications. There is one processor at each intersection
which communicates directly with the four processors at the adjacent intersections.
The operation of the whole system is based on a set of collaborating real-time

expert systems working in conjunction with a simulation based planner. The decision
to adjust cycle starting time is a function of the weighted recommendations trans-
mitted from the adjacent and more distant processors. Although their work accounts
for some degree of decentralization, it does not cope with conflict resolution, for
instance.
Also multi-agent techniques have been tried in the UTC domain. The approaches

can be classified into three levels: integration of heterogeneous traffic management
systems, traffic flow control, and individualized traffic guidance. The platform called
Multi-Agent Environment for Constructing Cooperative Applications - MECCA/
UTS - [23] addresses the first and third levels of control just mentioned. More
recently the third level has been the focus of many research studies [5,37,38,39,45].
For the second level – traffic flow control, which is our interest in this paper –
previous works are the SAPPORO system [46] and extensions [3,4].
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4. The motivation for evolutionary game theory

4.1. Game theory and decision-making

Microeconomics modeling usually considers no central authority and decentralized
supply and demand. This modeling uses utility theory (to represent the preferences of
each of the participants in a market), decision theory (to deal with uncertainty and to
perform the operations regarding the utility of every preference), and game theory
(to cope with conflicts of interest among the participants).
Game theory can be viewed as an extension of decision theory to the case

where there is more than one decision-maker. The game-theoretic analysis of any
interaction is fundamentally based on the concept of rationality: each participant
acts in pursuit of maximizing its expected utility subject to its knowledge and
capacities.
An additional, but not less interesting question is how participants form beliefs

that are common knowledge. Halpern and Moses [21] have proved that arriving at
common knowledge in practical distributed systems is impossible in finite time.
Therefore it cannot be guaranteed that all participants are well informed. A more
reasonable assumption is that, within time, participants learn a behavior by
observing the interactions in which they are involved. Rationality is replaced by a
process of natural selection with participants having no need to model their utilities,
but measuring their fitness instead. In this way the forecast of the equilibrium point
in a decision-making process is not reached by assuming participants behaving
rationally, but by letting them reach a stable point out of the dynamics of the
interaction.
Although game-theory has used many paradigms to explain certain types of

interaction and conflicts of interest, the present work is primarily concerned with the
so-called coordination games, a class of games in which there is more than one
possible joint decision arising from players trying to maximize their payoffs.

4.2. Pure-coordination game

Here one solution may pareto-dominate the other. As an example of such a game,
one can imagine a payoff matrix as shown in Table 1, with a ¼ 2, b ¼ 1 and c ¼ 0 for
instance.
By playing both E1 ¼ ða1; a1Þ or E2 ¼ ða2; a2Þ players have no reason to deviate.

However the former is clearly better. The fact that not all games have a unique Nash
equilibrium, is indeed one of the problems with the Nash concept. Uniqueness is
crucial for the majority of real world problems modeled by game theory. In MAS,
agents which rely on this modeling to negotiate with other agents may not be able to
reason if they are not sure about which action other agents will choose. Therefore,
when a game has more than one Nash equilibrium, a method is required which rules
out some of them, eventually leading to a unique equilibrium point. In case some or
all equilibria are equally plausible, it is impossible to predict how players are going
to act. However in some cases, some equilibrium points are more plausible than
others.
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4.3. Evolutionary game theory

Classical game theory is based on rational behavior in interpersonal conflicting
situations. If the rational assumption has been questioned when dealing with human
beings, it is still less obvious that the theory can be applied when dealing with players
without any intellectual capabilities.
Indeed, the paper by Maynard-Smith and Price [31] shows that a modified game

theory can be applied in biology to model animal competing for limited resources
such as territory or food. The idea behind their approach is that the rationality
animals lack in order to carry out the process of maximizing their outcomes can be
replaced by Darwinian fitness. Instead of consciously choosing strategies, animals
are genetically programmed to present a determined behavior, beyond their con-
trol.
Although the classical solution concepts (e.g., Nash equilibrium) have been used

extensively in many contexts, game theory has been unsuccessful in explaining, for
instance, how players choose one Nash equilibrium if a game has multiple and
equally plausible equilibrium points. Because of the cognitive limitations of
individuals, the actual human rationality process and the global rationally model
which is implied by game-theoretic solution concepts generally do not match each
other. Introspective theories that attempt to explain equilibrium at the individual
decision-making level by means of rationality, impose very strong informational
assumptions and are widely recognized as having serious deficiencies. Assuming that
each player knows all about the structure of the game, this knowledge may not be
enough for him to decide how to play, for he must also predict the move of his
opponents. Although the Nash equilibrium allows each player to correctly predict
how his opponents will play, the understanding of this process requires an
explanation of how players’ predictions are formed.
More recent explanations on how players anticipate a solution are: to assume that

they are able to extrapolate from what they have observed in past interactions,
provide, they have played similar games [22]; that adaptive agents choose between
alternatives in a ratio which matches the ratio of rewards [40]; and convergent
prediction [30]. In these models, agents can pursue the goal of learning the equili-
brium point, which seems a more plausible assumption. Players do not need to know
explicitly how their actions influence those of their opponents. They will eventually
learn that they do not play certain strategies, thus replicating the iterative dominance
solution concept of the classical game theory. If players only know their own payoffs,

Table 1. Pure-coordination game: payoff matrix.

agent 1

a1 a2

a1 a / a c / c

agent 2

a2 c / c b / b
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they may asymptotically converge to a steady state represented by a set of evolu-
tionary stable strategies (ESS) which is a Nash equilibrium.

4.4. Learning an evolutionary stable strategy

When considering a game having a unique iteratively undominated strategy s played
dynamically, on the long run only s will be played. A plausible explanation is that
players learn how to play their best replies, once the learning process requires
strategies that are not doing well to be played less often.
While in biological applications of evolutionary game theory the ESS is genetically

determined, in more general cases players can learn such strategies if they learn how
to select the ESS. This can be done by analyzing the payoff obtained from each rule
used to select strategies in the past. According to Harley [22], for a given player i and
a set of actions Ai ¼ ða1; . . . ; amÞ; a learning rule is a rule which specifies the prob-
abilities P ¼ ðpi;1;t; . . . ; pi;m;tÞ (for a given time step t) as a function of the payoffs
obtained by playing those strategies in the past. He has also defined a rule for
learning an ESS as the one which causes the members of a population with any initial
P = (pi;1;0,. . . ,pi;m;0) to adopt the ESS of the game after a given time. He proved that
such a rule must have the following property:

pðaiÞ �
total payoff for playing ai
total payoff played so far

:

Therefore, in the near future, each strategy is selected according to its probability.
This leads the ESS to be selected asymptotically. It is assumed that the payoffs
correspond to changes in fitness, and that the game is played enough times to ensure
that the payoffs received after an ESS is reached exceed the payoffs received during
the learning period. However, this kind of ‘‘passive learning’’ can lead to steady states
which are not equilibria. Need of active learning, i.e., with experimentation, was
emphasized in [17] where it is claimed that even if players play the same game many
times, they may continue to hold incorrect beliefs about the opponents’ preferences
unless they perform enough experimentation. This can be done in several ways, such
as considering mutations or players sometimes selecting strategies at random.
In the model proposed by Harley, on the other hand, learning rules lead to the

ESS without completely fixing or deleting any possible strategy. In fact, in his model
a poor strategy sm is never completely discarded because it may become advanta-
geous if the environment changes. This is done by weighing the recent payoffs more
than the older ones, without however forgetting the whole past.

5. Decentralized coordination in networks of agents: a game-theoretic approach

This section describes the approach proposed to help in the decision-making level
(traffic management). The idea is that the traffic manager transfers the operational
issues to agents assigned to traffic objects such as lanes, intersections (the focus of the
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examples used in this work), etc. This way, the manager can concentrate on tactical
issues such as what-if simulations by introducing perturbations in the traffic flow to
see how the system would react.
This approach tackles the problem of complexity and cost associated with the

communication in a many-agents environment with continually changing traffic pat-
terns. The system uses amodel which provides a qualitative description of the relations
between traffic parameters and states. The development of this model starts with a
macroscopic modeling, which reproduces the traffic state in the time–distance dimen-
sion by means of the two continuous functions, namely traffic volume (q) and traffic
density (d). This macroscopic, qualitative model is known as fundamental diagram.
To deduce the qualitative relation, it is assumed that vehicles in the traffic flow

travel at an average speed, determined on the basis of the observed traffic density of
the fundamental diagram. Qualitative density values are obtained by the relation
between density and speed. The qualitative model thus contains a finite number of
intervals which describe the assigned density, speed and volume values. An example
can be seen in Table 2. To each qualitative description (e.g., ‘‘D-1’’ for the interval of
the minimum density value and ‘‘STOP’’ for the interval of the maximum density
value) there is a corresponding quantitative one (not shown here because it varies
greatly from scenario to scenario) specifying the interval of density, speed, and
volume. The fundamental diagram is used to generate the density calculus which
combines all objects of the qualitative description and is used to simulate the traffic
flow by the movement of density zones.
In short, a qualitative model is characterized by a traffic density interval, its

symbolic name, and the intervals of the corresponding speeds and traffic volumes.
Since we use the concept of density intervals, the average density value on a lane or

group of them is used as a measurement of performance. This is quite realistic since
density represents the volume of vehicles per unit of distance. In order to compute
the average density value for the lane during the simulation horizon T, the various
time intervals determined by the events causing changes in the density pattern have
to be considered. The average density value for lane j (in which several different
densities over a length L are observed) during the time horizon T is thus computed by:

Table 2. Fundamental diagram in a qualitative description of the traffic model.

State of traffic Qualitative

density value

free flow D-1

partial free flow D-2

D-3

maximum flow D-4

dense traffic D-5

D-6

D-7

traffic jam STOP
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�dj ¼
R T

0

R L

0 djðl; tÞdl dt
T

: ð1Þ

Also an average density value for a set of lanes or for the whole network can be
computed by simply weighing each �dj by each length Lj.

5.1. Coordination in evolutionary fashion

Other approaches (e.g., those cited at the end of section 2.2 and in section 3.5) have
assumed traffic agents as being cooperative or benevolent. However, in the majority
of the deals, real-world agents have conflicting local goals. After some attempts with
protocols which consider benevolent agents, the conclusion was that a means for
agents to model and represent other agents’ knowledge and beliefs is necessary in
order to reduce the communication required prior to reaching an agreement. Game
theory was already used to provide agents a means to model and reason about other
participants in a scenario in which each agent represents a lane in a single inter-
section [2]. The agent’s goal is to negotiate the selection of a signal plan. In this case,
conflicts arise because all lanes have to select the same signal plan (since only one can
run in the traffic signals located at the intersection).
However, agents can be assigned to traffic elements according to other granula-

rities. For instance, besides lanes, agents can be drivers, cars, intersections, and
group of intersections. In the examples discussed in this section, agents are inter-
sections located in a network. The central concern is how to select an equilibrium
when more than one exists.
The network scenario differs significantly from that of a single intersection [2].

Moreover, it does not require the individually-motivated agents to know all about
the structure of the interaction in which they are involved, when predicting the
moves of their opponents. Instead, agents extrapolate from experience acquired by
playing the game repeatedly in the past. If the interaction lasts long enough, then
agents can asymptotically learn new equilibria. Even if the environment changes at a
local level, thus demanding participants to select strategies to cope with the new
situation, neighbors can learn the new behavior, provided the change rate is smaller
than the time needed to learn. And finally, by a change at a global level, all neighbors
have to learn the new global traffic pattern and adapt themselves to it.
The main motivation for this approach is that it has the benefit of coping with

interactions in which agents are fully individually motivated and need only to know
their own payoffs, but not those of the opponents, thus modeling coordination with
no communication. Another positive characteristic is that this complex interactions
can still be modeled as two-player games.

5.2. Description of the approach

The proposed approach departs from standard scenarios in game-theory. First, the
geographical localization of each site of the network plays a role in defining which
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interactions happen between agents, i.e., interactions among all agents do not
happen at random.
Second, learning is an important component of the approach. Therefore, the re-

cent history of the game plays a significant role in deciding the selection of future
strategies. This history is partially discarded only when a player detects a change in
its environment, in which case it has to react to it in a new way. According to how it
and the neighbors have reacted, a feedback is given and the process of learning re-
starts under a new condition. The process of updating strategies is done by com-
puting, in each period, the probabilities of playing the strategies in next periods as a
function of the previous payoffs, thus in a way similar to that proposed by Harley
[22]. Further, in order to avoid the synchronization of behaviors which may arise
from the use of deterministic updating of strategies, one may let players update them
in a non-simultaneous way, which is more realistic.
Third, as discussed before, in the traffic scenario it is desired that commu-

nication be kept as low as possible. Therefore, as a way to reduce communication,
players are not informed about the strategies selected in the neighborhood. Agents
receive a reinforcement due to their actions performed in the near past, and this
value is obtained from their local detectors only. However, if they are paid also
according to a global goal, agents have an incentive to coordinate toward this
goal, i.e., toward a joint action which allows the traffic over the whole road to
flow better.
Thus the method of control is a traffic-responsive one. The proportion of time

during which each stream has right of way is appropriately considered in order to
achieve an equal use of all roads of the network or arterial. This aims at addressing
the long run (hours), and is operationally implemented by calculating synchronized
signal plans for neighboring intersections. In a short period, the system is able to
respond to fluctuations in the arrival rates by changing to an alternative signal plan
capable of dealing with this fluctuation.
Each agent i plays a two-person game G against each member of his neighborhood

Ni in a network K. G is represented by the 3n-tuple ð1; . . . ; n;A1; . . . ;An; p1; . . . ; pnÞ,
where:

– I ¼ ð1; . . . ; nÞ is the set of players or agents, where player n is the Nature;
– Ai ¼ ðai;1; . . . ; ai;k; . . . ; ai;mÞ is the set of pure strategies of agent i;
– the mapping pi : Xj2IAi ! < is the payoff function of agent i;
– ~Pi ¼ ðpi;1; . . . ; pi;k; . . . ; pi;mÞ (the mixed strategy of agent i) is a probability dis-
tribution on Ai;

– pi;k is the probability assigned to the k-th pure strategy of agent i, with pi;k � 0 andP
k pi;k ¼ 1 for each ai;k 2 Ai;

– Si is the set of all mixed strategies of i;
– S ¼ Xi2ISi is the mixed strategy combination of G.

Each i 2 I updates its mixed strategy based solely on the payoff received by selecting
an action. ~Pi, the mixed strategy for agent i, is time dependent. After selecting an
action ai;t 2 Ai at time t, each i in K receives an individual payoff calculated as the
sum of the payoffs obtained by playing G against each j 2 Ni.
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Before the actual beginning of the game, the types of the agents and their payoff
functions are set by Nature. Her selection of payment is a metaphor to represent the
stochastic dynamics of traffic flow. Nature determines the vector of probability
distributions over the strategies (~Pi) for each site i and the payoff function for each
possible combination of mixed strategy s in S. All agents are assumed to have
detectors, therefore they acquire data about the local traffic conditions (i.e., about
their vectors ~Pi), and know their types. In each subsequent period, agents select a
strategy with a probability which is determined by their beliefs about their
environment.
A period in which ~Pi changes, irrespective of the site i in the network K, either by

learning or by a local stochastic event, is called a learning period (for i) or an
individual-state-change period (for i) respectively. Others are normal payoff-getting
periods. In such periods agents only play the coordination game with their neigh-
bors.
In learning periods a new distribution of players for the next generation is

formed on the basis of their payoffs obtained in payoff-getting periods, according
to some selection and reproduction rule and genetic operators. Even if agents
possess only little local knowledge, which they get from sensoring their near
environment, they are able to perform experimentation and, according also to the
experimentation performed elsewhere in the neighborhood, they receive a
reinforcement in their payment function. This feedback can be either commu-
nicated to each agent by the neighbors or by a controller of the network, or can be
exclusively locally detected.

5.2.1 Individual-state-change periods. For practical purposes, changes in traffic
volume are considered stochastic processes [28]. This volume may change both
locally and at global level. An example of the latter is the arrival of a platoon of
vehicles which shall travel the whole arterial and can be detected at the border of
the network. This global alteration in traffic conditions also yields local pertur-
bations.
An example of a local change is the arrival of vehicles coming from a crossing-

street, either to cross the arterial at one intersection or to travel through a portion of
it. These local stochastic events happen with probability ri at each site i (in an
independent way), while global changes occur with probability c.
Local events are detected at each intersection by pooling the hard-ware of the

detector, which is generally installed only on the main lanes of the arterial. The flow
of vehicles at each detector is compared to others. The agent at the intersection then
classifies the detectors in decreasing order by the flow of vehicles and stores this
information in a stack. Each time there is a change in the top position of the stack,
an event at a local level is said to happen (i.e., the probability ri is met). Upon such
an event, a change in the distribution of the mixed strategy is required. To each
detector there is a unique correspondent pure strategy.
When a local event occurs at time t ¼ q at intersection i, agent i updates the vector

~Pi as a function of the flow of vehicles qi;k measured at each corresponding k-th
detector:
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~Pi;t ¼ ðpi;1;t; . . . ; pi;k;t; . . . ; pi;m;tÞ ¼ ½dðqi;1;tÞ; . . . ; dðqi;k;tÞ; . . . ; dðqi;m;tÞ�
with dðqi;k;tÞ ¼ qi;k;t=

X
k

qi;k;t

and, for each ai;k 2 Ai : pi;k;t � 0 and
X
k

pi;k;t ¼ 1:

ð2Þ

At t ¼ 0, these equations are used to set the initial vector ~Pi. This distribution is
then employed in the selection of strategies in the sub-sequent periods, until a
learning period or an individual-state-change period occurs and that distribution is
updated.

5.2.2 Payoff-getting periods. The global pattern of the traffic flow is known by
Nature but remains unknown to the agents. It is assumed that Nature is informed
about these global changes in the network, which can be detected at determined
points of it. Therefore, Nature is able to set the correspondent payment functions for
the agents according to the vector ~Pn.
For the sake of example, Figure 1 schematically shows such a move for a 2� 2

coordination game. For instance, if the traffic condition requires traffic signals to be
synchronized through agents selecting an action s1, agents which actually select this
action are better paid. Nature changes the payment functions when a global change
in traffic flow occurs.
The payment thus depends on the payoff matrix selected by Nature and on the

actions selected by the agents. If they are being paid by Q1 (where a1 > b1, c < a1,
c < b1), and both agents select the action, say s1 of Si ¼ fs1; s2g, then they both
receive a payoff of a1. If they select s2 they receive a payoff of b1. Otherwise they
receive a payoff of c.
Both configurations E1 ¼ ðs1; s1Þ and E2 ¼ ðs2; s2Þ are Nash equilibria in pure

strategies. A third equilibrium, in mixed strategies, is reached when strategy s1 is
played with probability b1=ða1 þ b1Þ and s2 is played with probability a1=ða1 þ b1Þ, in
case the entire population is being paid by the payoff matrix Q1. In the opposite case,
the equilibrium is probability b2=ða2 þ b2Þ on s2 and probability a2=ða2 þ b2Þ on s1.
Within time, it is expected that only the pareto-superior equilibrium be selected, i.e.

c / c b1 / b1

c / ca1 / a1

s2

s1

s1 s2

Q1

c / c

c / c

s2

s1

s1 s2

Q2

a2 / a2

b2 / b2

NATURE

Figure 1. Payoff matrices for moves of Nature in a 2� 2 coordination game.
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ðs1; s1Þ if Nature is paying agents according to Q1 or ðs2; s2Þ if Nature is paying them
according to Q2.
At each payoff-getting period, i plays a two-player coordination game with each of

the elements j 2 Ni, and selects a mixed strategy ~Pi;t ¼ ðpi;1; :::; pi;k; :::; pi;mÞ on Ai. The
‘‘raw’’ payoff for agent i when the set s ¼ ðai; ajÞ of actions is selected at time t is
pi;j;tðsÞ . Player i receives a summation of payoffs from these games. Hence, the
payoff received by i at time t is given by:

pþi;tðsÞ ¼
X
j

pi;j;tðsÞ; j 2 Ni: ð3Þ

Let s > 0 be a time interval (generally s represents the time between the last learning
period and the current period), ai;t 2 Ai be the action that agent i selects at time t,
and ai;k each k-th pure strategy available to selection. The payoffs received in the last
s periods are represented by the vector ~p?i;s:

~p?i;k;s ¼ ðp?i;1;s; :::; p?i;k;s; :::; p?i;m;sÞ; ð4Þ

where 1 � k � m is a pure strategy ai;k 2 Ai.
Finally, each element of the vector ~p?i;s at t 2 s, t � 1 is computed as follows:

p?i;k;s ¼
p?i;k;t�1 þ pþi;k;t; if ai;k ¼ ai;t

p?i;k;t�1; otherwise:

�
ð5Þ

5.2.3 Learning periods. Depending on the frequency of the stochastic events,
agents have time to learn rules about how to change strategies and are able to
coordinate toward the global goal. In order for the pure strategy ak with the highest
expected value of environmental reaction to be selected, agents must learn using a
selection rule. A performance function based on the payoffs obtained from the
environment is used as fitness. Moreover, it is required that agents’ selection rules do
not assign zero probability to any pure strategy ak. This is especially true in the
scenario discussed here, since the stochastic changes in traffic flow may require an
agent to respond with a given strategy, even if it has performed poor in the past and
has, hence, low probability of being selected.
In the algorithm proposed, the learning rule assigns greater significance to recent

than to past payoff information. To achieve this, a memory factor k ð0 < k � 1Þ is
used in order to avoid the complete neglect of the payoffs obtained by one action in
the past. At each period, the more recent payoff yielded by a given action is reduced
by a factor of ð1� kÞ as shown in Equation (6).
The learning process does not occur at each period of time. Learning periods

happen randomly and are determined by a learning frequency parameter fl. At each
period, there is a probability g for each agent to learn. If t ¼ h is a learning period for
i, and t ¼ q (q < hÞ is the last period in which an individual-state-change has hap-
pened before h, then D is the learning interval, i.e., the time interval between the h
and q, for each h. The ‘‘reduced’’ payoff, i.e., the payoff which also accounts for �pi;k;D
(the average payoff yield by the action ai;k during the interval D), then reads:
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pi;k;t ¼ k � p?i;k;t þ ð1� kÞ � �pi;k;D; for each ai;k 2 Ai: ð6Þ

The cumulative and the average payoff after s yield by action ai;k can be calculated by:

pi;k;s ¼
Xt

h¼t�s

pi;k;h; ð7Þ

�pi;k;s ¼
pi;k;s
s

: ð8Þ

Equations (7) and (8) are also used to compute pi;k;s and �pi;k;s respectively, when
s ¼ D is the time interval as defined above.
The learning process consists of agents updating their ~Pi vectors according to the

efficiency of every pure strategy in the past. This is a function of the fitness vector ~Fi

defined over the elements of the set of strategies Ai and is computed locally as a
function of pi;k;D:

~Pi ¼ ~Fi ¼ ðFi;1;D; :::;Fi;k;D; :::;Fi;m;DÞ ¼
pi;1;DP
k pi;k;D

; :::;
pi;k;DP
k pi;k;D

; :::;
pi;m;DP
k pi;k;D

� �
;

1 � k � m; ai;k 2 Ai:

ð9Þ

This probability distribution on the pure strategies is then used in the subsequent
periods until a new learning period or a change in the local environment happens.

5.2.4 Algorithm. Summarizing, the dynamics of the model is as the following
algorithm:
begin
t :¼ 0

set initial values agent-level parameters ðri; ~PiÞ
set initial values network-level parameters ðc; g;r;K;T; kÞ
repeat for each i in K while not last period

t :¼ tþ 1

while not a global-state-change

poll detector for a local change in traffic pattern

while not an individual-state-change period

while not a learning period

perform action ai;t

collect payoff pi;t
accumulate payoff pþi;t

compute new fitness ~Fi;t and probability vector ~Pi;t

ðdue to learningÞ
compute new probability vector ~Pi;tðdue to local

change in traffic situationÞ
end

BAZZAN148



5.3. Simulation tool

In order to model the events which happen in a real traffic network, a simulation tool
which shows the time evolution of the strategies used by the agents was developed
[2–4, 46]. Selections made by them are independent and decentralized, that means,
they happen at the individual level.
The initial parameters are set by the user. These include: the simulation horizon T,

the memory factor k, the range of interaction r, probabilities ri, g, c, and the initial
probability distribution Nature puts on paying agents according to Q1 or Q2, namely
~Pn ¼ ðpn;1; pn;2Þ. Each time a probability is met, the correspondent event happens.
For instance, when ri at site i is met, agent i updates its ~Pi vector. If no probability is
met, the period is a normal payoff-getting period (Section 5.2.2).
As events take place, the traffic manager sees a print-out with the main events. In

case of a learning period at an intersection, the new probability distribution for this
particular intersection is printed. After each repetition of the simulation, a file with
the main information needed for further statistics and graphical presentation is
written to a file. This file contains mean payoff, probability of selecting the strategies,
and number of coordinated and miscoordinated interactions among neighbors.

5.4. Scenario

In the traffic signal coordination scenario, the goal is to bring as many neighbors in
an arterial as possible to use the same signal plan since these are designed to allow
vehicles to flow in one of two opposite directions (the reason behind this constraint is
discussed in Section 3.4) through the intersections, without stopping at red lights.
Be I the number of agents and I the set of agents. In the scenario used as example

here, the network K is an arterial composed of I ¼ 10 intersections (I11, I12, I13,
I14, I15, I27, I31, I37, I40, and I44 in Figure 2), each being designed as an agent.
However, simulations with further values of this parameter were evaluated for the
sake of evaluation (see Section 6). The range of interaction among neighbors is r ¼ 1.
Therefore, the neighborhood Ni ¼ ði�r; :::; i�k; :::; i; :::; ik; :::; irÞ of agent i is composed
of the 2r neighbors.
Figure 3 shows one of these intersections in detail, namely the intersection I14.

The main flow of vehicles are in direction west (lane-37 in section-19 towards lane-41

44 131440 37 12 1115

L63

L61

L59

L57

L43

L41

L39

L37

L35

L122

L121

L33

Figure 2. Arterial used in the simulations. Main intersections are I11, I12, I13, I14, I15, I27, I31, I37, I40,

and I44. Only the main lanes (lane-122,..., lane-61 in direction W and lane-63,..., lane-121 in direction E)

are shown; lanes in gray form the westward synchronization, lanes in white form the eastwards syn-

chronization. Remaining lanes and nodes are secondary ones.
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in section-21 of Figure 3), and in the direction east (lane-43 in section-22 towards
lane-39 in section-20). Lanes in section-69, section-127, section-42, and section-38
play a minor role and interfere in the selection of signal plans only at a local level.
In order to reach a full synchronization of the signals, all agents have to select the

same action from the set Ai ¼ ðspW; spEÞ of signal plans, for each i 2 I. The fact that
agents synchronize their actions by selecting, say spW, only means that vehicles
traveling in the direction W of the arterial are allotted more green time. However the
general constraints posed by safety rules like minimum green time for each lane,
minimum and maximum cycle time, etc. were respected when designing the signal
plans.
Each agent at an intersection has local information acquired from detectors in-

stalled at the main lanes (lane-43 and lane-37 in the intersection shown in Figure 3).
With this information, an agent i is able to detect a change in the local traffic
situation. The agent then compares the detectors’ data and decide the more ap-
propriate signal plan.
Two assumptions are made: by selecting the appropriate signal plan, the local

traffic condition in the intersection i improves, and by synchronizing with neighbors,
the traffic condition in the neighborhood Ni also becomes better. These assumptions
are quite realistic since the main lanes play the determining role in the kind of arterial
considered here. By giving priority to the more congested of them, the density of
vehicles is likely to decrease. If it does not, this means that the whole arterial is over-
congested, in which case the synchronization of signals is not an appropriate method
of control.
Further, if we consider a standard measurement used by traffic engineers, namely

the total queue, a synchronization of signals in the more heavily loaded direction

Figure 3. The intersection NODE-14 with sections and lanes.
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would contribute to the decrease in the queues, once more vehicles would travel in
this direction.
If two neighboring intersections have each to choose between running a signal

plan which gives preference to the flow of vehicles traveling either westwards (spW)
or eastwards (spE), then the payoff which both intersections get is presented in
Table 1 where a1 is spW and a2 is spE. Besides: a ¼ 2, b ¼ 1, and c ¼ 0 in case the
global goal is to coordinate towards the direction west, or a ¼ 1 and b ¼ 2 in the
opposite case. In this game, the intersections are better off when coordinating to-
wards the same direction.
All stochastic events are addressed at discrete periods of time t ¼ 1; 2; :::;T. Pre-

ferentially these periods are to be synchronized with the end of a cycle of the signal
plan. As already discussed, at the beginning of the game the traffic flow pattern and
other parameters are defined by a move of Nature. Then, agents interact according
to their local information a number of times, i.e., during each period they have to
decide which action to select. They do this myopically by assuming that strategies
which proved to be effective in the recent past are likely to be effective in near future.
Depending on the strategies played in the neighborhood, each agent obtains a payoff
which is summed up.
Depending on the learning frequency, the probability distribution on the strategies

for the near future (~Pi) is more adapted to the environment. By updating the mixed
strategy according to the fitness of each pure strategy, agents are able to coordinate
towards the global goal. Besides the probability of learning, at each period, agents
have also a probability of experiencing a change in traffic condition at intersection
level (ri). In this case, the vector ~Pi is modified according to Equation 2 and this
distribution is employed in the selection of strategies, until a further learning period
occurs and the distribution is updated.
By allowing ~Pi also to be updated according to the detectors values, the equili-

brium may shift, once a local perturbation may cause a perturbation in the neigh-
borhood and one equilibrium point may displace the other. The more often the local
stochastic events, the more unstable the system. Usually, the frequency of a global
change (c) is low: one in a few hours. When it happens, agents must re-coordinate
and reach the corresponding equilibrium in a short time.

5.5. Measure of performance in the evolutionary approach

As the algorithm for coordination presented here aims at leading as many agents as
possible to coordinate toward a joint action, the performance of the algorithm is
measured both by the number of agents reaching coordination and by the time
needed to accomplish this.
Different forms of representing these quantities were tried. Initially, the average

payoff received by the agents were recorded against time. When simulating an
arterial K composed of I intersections, each choosing between k pure strategies, the
average payoff received by each agent i at time interval t reads:

�p ¼
P

t

P
k

P
i pi;k;t

I � s ; t 2 1; :::; s i 2 I; ai;k 2 A: ð10Þ
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Such average payoff gives a measure of the global performance of the network
during the simulation interval s.
All simulations discussed in this section assume payoffs as introduced in the last

subsection. These values are commonly used in the literature of coordination games
to represent the relative preferences of the agents regarding the possible actions.
Theoretically, when all agents select spW with probability 1, the maximal average
payoff possible is equal to 3.6 (remember that the two agents at the borders can
receive at most 2 points while the other eight can receive 4 points each).
Although this gives an idea of how good the agents have performed during the

simulation time, the only possible conclusion is whether or not a stable situation was
reached on the long run, i.e., whether agents held on to one action, except when a
local change happened. However, an average payoff of, say 2.8, says little about
which agent miscoordinated, for how long, and where the miscoordination happened
since this average value can be reached by several different configurations of the
network.
Therefore, further forms of representation are needed, e.g., the accounting of the

type of interactions occurring between all pairs of neighbors. These can be of three
types: WW (both selecting spW,), EE (both selecting spE), and miscoordinated
(WE+EW) (i.e., they select either spW,spE or spE,spW). Thus, a qualitative measure of
the number of agents reaching coordination can be estimated. However, it says little
about stability.When should one consider that coordination onWWor EE is reached?
The assumption that agents continually maximize their expected payoffs is quite

strong for infinitely repeated games. While this assumption is common in game
theory and economics, the solution of such a maximization problem in infinitely
repeated games may be very demanding. For instance it is not realistic to expect that
all pairs of agents coordinate all the time, since this would mean that the local
conditions are not addressed when they are in conflict with the global goal.
Thus, regarding the time needed to coordinate, the number of interactions of type

EW+WE seems to be only an approximate measure of the performance of agents. A
much more interesting measure of the performance is the evolution of the average
probability agents place on selecting the action which is better paid (determined by
Nature). One expects that all agents place increasingly higher probability on the
more profitable action, and that on the long run they select this action with prob-
ability close to one. How close the probability is to 1 depends on both the memory
factor k, and the frequency of individual changes in traffic state, since this requires
that one or more agents respond to these changes in a random way.
While the plot of that probability as a function of time qualitatively characterizes

the performance of agents, there is still a need to evaluate these curves as to what
regards the time needed to reach a given pattern of convergence. This is done by
reading, in the plot, the time needed to reach the probability Nature determines as
the most profitable action (let us say spW).
For example, suppose the simulation was carried out setting pn;W ¼ 0:9; agents are

expected to be able to put at least an average probability of pi;W ¼ pn;W ¼ 0:9 on
their selection of spW, in order for the situation simulated to be considered a good
one. To expect each agent selecting spW with probability pi;W ¼ 0:9 means, for 10
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agents, that at each period, nine agents on average select the signal plan spW. Only
one (on average) is expected to select the signal plan spE, thus miscoordinating.

6. Results

6.1. Parameterization

In this section the effect of the selection of a strategy in the simulator is verified using
the measurement of performance discussed in section 5.5, and also according to the
utility values as in Table 1.
Except when explicitly stated, the simulations are carried out under the following

conditions: the probability distribution ~Pn on the payoff matrices ðQW;QEÞ, i.e., the
probability distribution Nature puts on paying agents according to QW, and QE is
~Pn ¼ ð0:9; 0:1Þ. In QW, a ¼ 2, b ¼ 1, and c ¼ 0. In QE, a ¼ 1, b ¼ 2, and c ¼ 0.
Consequently, the pareto-efficient equilibrium ðspW; spWÞ is expected to be selected.
Henceforward, the element pn;W of ~Pn will be referred simply as pn, the element

pi;W of ~Pi simply as pW. We have performed statistical tests to determine the ne-
cessary number of repetitions of the simulations. Therefore, the experiments shown
next were repeated at least 30 times, which accounts for 95% of significance.
In order to take a first look at the ideal range of certain parameters for further

experiments, several simulations varying only one parameter at a time were carried
out. Initially, several values for both the frequency of learning fl and the memory
factor k have been separately tested. The parameter fi (frequency of a local change
in traffic condition) has been set to infinity, such that no local change in traffic
flow happens: the more profitable strategy is assumed to be spW unless otherwise
stated.
The evolution of the probability which the agents assign to select this strategy was

studied, for fl= 3, 5, 8, 10, 15, 20, 25, and k ¼ 0:95. The probability of learning
indicates that at each period, agents have one chance in fl of being in a learning
period, that means the frequency of learning is g ¼ 1=fl.
The main conclusion from these experiments is that, in the absence of individual

changes in traffic conditions, agents have no incentive to deviate from the more
profitable strategy. The system thus reaches an ESS as discussed in Section 4.4.
However, it is also important to look at the time needed for agents to reach the ESS,
i.e., the time needed for the probability of playing the more profitable strategy to
reach the desired value of pw ¼ pn ¼ 0:9. This is shown in Table 3.
Another set of experiments was carried out setting k ¼ 0:80 and fl ¼ 5; 10; 15; 25.

The comparative results concerning time are shown also in Table 3. In general, as
expected, the lower the memory factor, the higher the time needed for agents to select
spW with probability pW ¼ 0:9. This happens because the lower k, the more the
weight of past payoffs, and hence the higher the inertia.
Further, the lower the fl (hence the higher the g), the faster the value pW ¼ 0:9 is

reached. However, there is a limit for this rule. When fl is too low, the wrong strategy
(not evolutionary stable) may be learned. This happens because an agent may not
have time to acquire information before it learns. Once the wrong pattern is learned,
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without the interference of the traffic manager, it may take time to realize the mistake
and converge to the right strategy.
Analyzing these simulations, one can conclude that a good range for further

experiments lies between fl ¼ 5 and fl ¼ 10, since for higher values of fl it takes time
to reach the goal and for fl ¼ 3 the standard deviation is high, which means that in
many of the runs, the population as a whole failed to reach a stable state.
Finally, further simulations were carried out varying the number of agents I

(intersections). This parameter was also set to 35 in order to verify the scaling of the
approach. The results do not differ significantly from those achieved by setting I to
10. This was a foreseeable result since the interactions happen in a defined neigh-
borhood and in this case the total number of agents does not influence the perfor-
mance of the algorithm. Table 4 depicts the comparative results.

6.2. Experiment A: global payment

In this experiment the focus is on the variation of the individual frequency fi, once
this verifies the robustness of the agent-based approach. The immediate interest here
is to test several frequencies (fi) and check whether agents learn how to coordinate
and reach the global goal.
The probability ri means that at each period there is one chance in fi for an

individual change in traffic condition at each intersection. These probabilities are
independent from site to site. Simulations are thus performed setting fi to 10, 20, 50,
100, 200, and 300 and the learning frequency fl to 5 and 10. Time (tc) needed for the
population of agents to reach pW=0.9 is measured for each condition and also
depicted in Table 4 (third column).
As expected, a good pattern of coordination is reached faster in the most stable

environment, i.e., with fi ¼ 300. However, the learning rate plays also a role, since, in
general, it takes less time for a population with fl=5 and lower fi (e.g., fi ¼ 200) to
reach this pattern than for a population with higher fi (e.g., fi ¼ 300) and fl ¼ 10.
Apart from the intuitive rule that coordination must be reached as soon as pos-

sible, knowledge about the superior limit of tc is also interesting. When should it be
considered not acceptable anymore? This is a function of the frequency with which

Table 3. Time needed to reach pw=0.9, varying fl and �.

Memory factor � Learning frequency fl (�=1/fl) Time needed to reach pw ¼ 0:9 (periods)

0.95 3 (0.33) 8

5 (0.2) 12

8 (0.125) 12

10 (0.1) 20

15 (0.067) 24

20 (0.05) 30

25 (0.04) 36

0.80 5 (0.2) 10

10 (0.1) 20

15 (0.067) 33

20 (0.05) 36
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the environment changes (not on an individual but on a global level). For the
characteristics of the volume of vehicles in the arterial in question, in the time period
considered, a global change, i.e., a change in the direction of the green wave occurs
once every 90 cycles. As an arbitrary, but quite reasonable rule, one can think that a
pattern of coordination reached in at most half this time can be considered sa-
tisfactory. This means 45 cycles in the case under consideration. As the results in the
third column of Table 4 show this time was reached in all experiments.
In order to analyze the influence of the memory factor, similar experiments were

done with k ¼ 0:80. The tc’s are then shown in Table 5.
Analyzing these results, one sees that the memory factor also has an effect on the

time needed to reach a given pattern of coordination. In the case in which the
population is expected to perform poorly (for k ¼ 1:00, fl ¼ 10, and fi ¼ 20), by
setting k ¼ 0:80 the population even fails to reach pW ¼ 0:9 within the simulation
time (50 periods). For an intermediate situation with fl ¼ 10 and fi ¼ 100, tc differs
only slightly under the three memory factors. And finally, in the situation expected to

Table 4. Time needed to reach pW=0.9, varying I, fl, fi, and for � ¼ 0:95.

Learning frequency

flð� ¼ 1=flÞ
Frequency of a local

change fið�i ¼ 1=fiÞ
Time needed to

reach pW ¼ 0:9 (periods)

I ¼ 10 I ¼ 35

5 (0.2) 10 (0.1) 14 –

20 (0.05) 19 13

50 (0.02) 12 14

100 (0.01) 12 15

200 (0.005) 9 12

300 (0.003) 8 10

10 (0.1) 20 (0.05) 22 –

50 (0.02) 19 24

100 (0.01) 18 17

200 (0.005) 13 18

300 (0.003) 10 15

Table 5. Time (tc) needed to reach pW ¼ 0:9. Comparison of some cases for � ¼ 0:80, � ¼ 0:95, and
� ¼ 1:00. (� means that the pattern pW ¼ 0:9 was not reached during the simulation time).

fl fi � Time (periods)

10 20 0.80 �
0.95 22

1.00 28

10 100 0.80 21

0.95 18

1.00 18

5 200 0.80 10

0.95 10

1.00 10
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be the best of those compared, namely with fl ¼ 5 and fi ¼ 200, results were the
same. Here there is room for employing an even lower memory factor if necessary.

6.3. Experiment B: Nature pays according to local states

In the experiments discussed in the previous section, Nature pays all agents ac-
cording to her knowledge of the global goal. Two neighbor agents selecting the same
strategy, which fits the global goal, receive each the highest possible payoff. Selecting
identical strategies, but not the one compatible with the global goal brings them a
lower payoff, while not being able to select an equal strategy pays them nothing.
In this section the assumption that Nature pays an agent always according to the

global goal is loosened. Agents are paid differently and according to their individual
states, despite the global goal. For instance, even if the global goal is to coordinate
using spW, if one of the agents detects a need to run spE, it receives from Nature the
highest payoff, if the neighbor also selects spE. This gets also the highest payoff in case
its state requires running spE, but only a lower payoff in case its state does not
require spE. Further, both receive nothing if they select different strategies. The main
interest is to find out how the population of agents select an equilibrium, if any. If
they are able to select one, for which values of fi, fl, and k does this happen? How
long does it take?
A set of experiments were initially conducted, as usual, for k ¼ 0:95, varying fl and

fi (Table 6, fourth column). In three cases the whole population reaches the desired
pattern of coordination (selecting spW with probability above pW ¼ 0:9), namely for
fl ¼ 5 and fi ¼ 300, for fl ¼ 10 and fi ¼ 300, and for fl ¼ 5 and fi ¼ 200. The tc
needed in each case are 12, 22, and 34, respectively. In extremely unstable scenarios,
with fi ¼ 20, fi ¼ 50, and fi ¼ 100 the populations performed bad.
The experiment was performed for few other cases, for values of k ¼ 0:80 and

k ¼ 1:00. The comparison is shown in Table 6. Under these conditions, the desired
pattern of coordination is not reached for fi ¼ 20 and for fi ¼ 50, irrespective of k
and fl. For fi ¼ 100, coordination is reached fast only when the memory factor is
k ¼ 1:00 and fl ¼ 5. In general, low k leads to longer time.
However, it is questionable whether it is still reasonable to expect agents reaching

probability pW ¼ 0:9 since Nature actually does not pay all of them all the time
according to the matrix QW with a probability pn ¼ 0:9.

6.4. Experiment C: with communication between neighbors

In this series of experiments, an agent (henceforward called changing-agent) is
allowed to communicate with the immediate neighbors and inform them about its
intention to change strategy. There is no further negotiation process. Neighbors
can at this point decide on the gain by changing strategy if this is the case. After
receiving such a message, an agent must decide whether or not to change the
vector of probability distribution ~Pi. If, after checking its traffic condition (by
means of the detectors), the agent verifies that its traffic condition is compatible
with the strategy proposed by the changing-agent, i.e., they both have similar
traffic patterns, a change may be more profitable once agents are always better off
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coordinating than selecting different strategies. Therefore, the agent which has
received the message updates its vector ~Pi according to Equation (2), as in an
individual-state-change period.
The goal of this series of experiments is to compare both situations, with and

without communication (experiment A), as to what concerns performance, i.e., time
needed to reach a given pattern of coordination.
In general, results are worse than those obtained for experiment A. Similar to

experiment B, in the very unstable scenario, the performance was poor. And even in
the cases where a probability pW ¼ 0:9 was reached, it takes more time than in
experiment A. The expected pattern of coordination for k ¼ 0:95 was reached at time
tc ¼ 8 for fl ¼ 5 and fi ¼ 300 (same as in experiment A); at tc ¼ 12 for fl ¼ 5 and
fi ¼ 200 (9 in experiment A); at tc ¼ 20 for fl ¼ 10 and fi ¼ 300 (10); and at tc ¼ 24
for fl ¼ 10 and fi ¼ 200 (13).
These results are in accordance with the comparison made in [41], in which the

authors find that a naive use of communication may even harm the efficiency of the
system. In the scenario discussed in the present experiment, the poorer quality of the
results can be explained by the fact that at each time a change in strategy happens, it
introduces a perturbation in the stationary state. This occurs not only in the site
where the change happens, but also in the neighborhood if neighbors are willing to
change strategy. Consequently, the rate of individual change is not a function of the
frequency fi alone, but it is also a function of the rate with which agents accept
changing strategies due to a mutation in the neighborhood, i.e., this rate is higher
than that of experiment A.

6.5. Comparison to a centralized method of control

To compare the performance of different philosophies of traffic signal control is not
an easy task, especially if one thinks that the measurements of the performance may
vary enormously from simulator to simulator. Some abstractions and assumptions
made require real data to be tackled in a simplified way. And finally, the literature
reports almost no experiment with real data. The simulations described in [46] albeit
aiming at the validation of the qualitative model, were done without such a com-
parison.

Table 6. Time (tc) needed to reach pW ¼ 0:9. Experiment B. Comparison of some cases for � ¼ 0:80,

� ¼ 0:95, and � ¼ 1:00 (� means that the pattern pW ¼ 0:9 was not reached during the simulation time.

fl fi � ¼ 0:80 � ¼ 0:95 � ¼ 1:00

5 50 � � �
5 100 – � 8

5 200 46 34 –

5 300 – 12 –

10 20 � � �
10 100 � � �
10 200 36 � 20

10 300 – 22 –
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To validate the approach presented in this paper, simulations were carried out
within a macroscopic simulator. The arterial represented in Figure 2 was mapped to
test the synchronization of traffic signals.
Three scenarios were examined, comparing the agent-based approach with a

traditional algorithm for synchronization of signals. In the first scenario, one of the
direction of synchronization receives a clearly higher volume of vehicles than the
other direction. In the second and third scenarios both directions receive a high and a
medium-to-low volume of vehicles respectively.
In the traditional algorithm for synchronization of signals, the direction of syn-

chronization is determined by a central computer, and changes onlywhen a determined
pattern of traffic is reached on the main detectors of the arterial. For instance, if the
synchronization is in the direction west (W), vehicles traveling on the lanes indicated in
gray in the Figure 2 are expected to cross the arterial without stopping. If the syn-
chronization is in the direction east (E), the priority is given to those traveling on the
lanes indicated in white in the same figure. For the sake of illustration, in the scenarios
discussed next, volume is higher in direction W. The central computer thus initially
determines the synchronization of all signals in this direction.

6.5.1 Scenario I. In this situation, the direction W receives a clearly higher vo-
lume of vehicles than the direction E. The flow measured by the detector at lane-122
(in direction W) is qW ¼ 0:3 veh/s (1080 veh/h), while that measured by detector at
lane-63 is qE ¼ 0:045 (162 veh/h). These flows correspond to density intervals D-4
and D-2 in the fundamental diagram respectively (Table 2).
This is a typical situation where a central controlled progression performs good since
the volume of vehicles in one direction is always higher than in the opposite one. An
adaptive control does not bring a gain. This can be seen in the results of the simu-
lation (Table 7). Comparing the average density intervals for the W-lanes obtained
with the central progression (third column) and those with the agent-based approach
(seventh column), one sees that the density intervals for the former method are the
same or an interval lower. For instance, on intersection-12 the average density on
lane-122, which is D-4 for the central progression, is higher with the agent-based
approach (D-5).
As the volume of traffic in the E direction is low, it is not likely to interfere with the

performance of the synchronization, neither in the central method, nor in the
agent-based approach. This happens because during the simulation, the direction E
never demands priority.

6.5.2 Scenario II. Next, a situation in which both directions, W and E, receive a
medium to high volume of vehicles is simulated. The flow measured by the detector
at lane-122 is qW ¼ 0:3 veh/s (1080 veh/h), while that measured by detector at
lane-63 is qE ¼ 0:09 (324 veh/h). Both correspond to density intervals D-4.
Since both directions now present heavy traffic, the intersections have to cope with

a competition for the synchronization in one or other direction. This reason alone is
enough to justify a more flexible, adaptive method of control. However, the
agent-based approach is superior not only because it can cope with local changes,
but also because in this way the overall capacity of the arterial is increased.
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The individual average density intervals on intersections is shown in Table 8.
Considering the W-lanes, the performance using the agent-based approach is equal
or one interval of density better than the performance of the central-controlled
progression. When comparing the lanes of the direction E, the results are sig-
nificantly better. This happens because the central progression fails to give priority to
this direction at the intersection level, since this means the dissolution of the syn-
chronization. The agent-based approach, on the other hand, allows agents at
intersections to break with the synchronization if necessary. However, this mis-
coordination takes place for short periods of time once selecting a different strategy
generally is not worth, i.e., it is not evolutionary stable.

6.5.3 Scenario III. In this situation, both opposite directions have medium to low
volumes of vehicles. The flow measured by the detector on lane-122 is D-1, while that
measured by detector on lane-63 is D-2. In this case the agent-based approach also
performs better than the central progression, although only slightly as it can be seen
in Table 9. This is explained by the fact that, as flow of vehicles is relatively low in

Table 7. Comparison of the agent-based approach and the centralized method of control. Scenario I:

direction W presents a clearly higher volume of vehicles than direction E.

Central synchronization Agent-based approach

Inter-section Lane (W) Avg.

dens.

Lane (E) Avg.

dens.

Lane (W) Avg.

dens.

Lane (E) Avg.

dens.

12 lane-122 D-4 lane-35 D-3 lane-122 D-5 lane-35 D-3

13 lane-33 D-3 lane-39 D-2 lane-33 D-5 lane-39 D-3

14 lane-37 D-4 lane-43 D-4 lane-37 D-6 lane-43 D-3

15 lane-41 D-5 lane-47 D-4 lane-41 D-6 lane-47 D-4

27 lane-45 D-7 lane-51 D-4 lane-45 D-7 lane-51 D-4

31 lane-49 D-7 lane-55 D-4 lane-49 D-8 lane-55 D-4

37 lane-53 D-7 lane-59 D-3 lane-53 D-7 lane-59 D-3

40 lane-57 D-7 lane-63 D-2 lane-57 D-7 lane-63 D-3

Table 8. Comparison of the agent-based approach and the centralized method of control. Scenario II:

volume of traffic is high in both opposing directions.

Central synchronization Agent-based algorithm

Inter-section Lane (W) Avg.

dens.

Lane (E) Avg.

dens.

Lane (W) Avg.

dens.

Lane (E) Avg.

dens.

12 lane-122 D-4 lane-35 D-5 lane-122 D-4 lane-35 D-4

13 lane-33 D-3 lane-39 D-7 lane-33 D-3 lane-39 D-6

14 lane-37 D-4 lane-43 D-6 lane-37 D-4 lane-43 D-6

15 lane-41 D-5 lane-47 D-5 lane-41 D-5 lane-47 D-4

27 lane-45 D-7 lane-51 D-4 lane-45 D-6 lane-51 D-4

31 lane-49 D-6 lane-55 D-5 lane-49 D-5 lane-55 D-4

37 lane-53 D-7 lane-59 D-4 lane-53 D-7 lane-59 D-3

40 lane-57 D-7 lane-63 D-2 lane-57 D-5 lane-63 D-2
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both directions, traffic flows relatively free through the arterial and there are few
local changes in traffic state.

6.6. Summary of the results

Several situations were discussed: Nature paying agents according to her knowledge
of the global goal (experiment A – Section 6.2), this payment being a function of the
local traffic state (experiment B – Section 6.3), and agents being able to communicate
with neighbors (experiment C – Section 6.4). Further, in each experiment several
values for the three parameters (fl, fi, k) have been tested.
In experiment A, a stationary state was reached in the majority of the situations

simulated. Also the time needed for an acceptable coordination pattern to be reached
can be considered satisfactory. Results for experiment B proved that, when agents
are paid according to their local states, the time needed for the same pattern of
coordination to be reached is higher. This was expected since agents have more
incentive to miscoordinate. Also the results for the experiment C have proved that
the time needed to reach coordination is higher when communication among
neighbors is allowed.
All three experiments have contributed to a deeper understanding of the emer-

gence of an ESS in the presence of stochastic shocks. The high frequency of the
stochastic shocks have immediate consequences here. Once an agent perceives a local
change in its traffic state and changes strategy, it does not have reasons to believe
that the neighbors will continue doing what they have done so far, because they all
will get different payoffs from those they got in the past. This way, they behave like
new agents which have solely the knowledge about their local states and about the
efficiency of certain strategies in the past. Therefore, they must re-adapt to the new
situation. Depending on the number of agents in this condition and of course if they
interact (i.e., they are in the same neighborhood), the equilibrium point will even-
tually change.
In general, for one agent to coordinate towards the opposite strategy it is

necessary that it be surrounded by neighbors already running this strategy most

Table 9. Comparison of the agent-based approach and the centralized method of control. Scenario III:

volume of traffic is medium to low in both directions.

Central synchronization Agent-based algorithm

Inter-section Lane (W) Avg.

dens.

Lane (E) Avg.

dens.

Lane (W) Avg.

dens.

Lane (E) Avg.

dens.

12 lane-122 D-1 lane-35 D-4 lane-122 D-1 lane-35 D-4

13 lane-33 D-2 lane-39 D-6 lane-33 D-2 lane-39 D-4

14 lane-37 D-3 lane-43 D-5 lane-37 D-3 lane-43 D-4

15 lane-41 D-4 lane-47 D-4 lane-41 D-4 lane-47 D-4

27 lane-45 D-4 lane-51 D-4 lane-45 D-4 lane-51 D-4

31 lane-49 D-5 lane-55 D-4 lane-49 D-4 lane-55 D-4

37 lane-53 D-6 lane-59 D-3 lane-53 D-6 lane-59 D-3

40 lane-57 D-6 lane-63 D-2 lane-57 D-6 lane-63 D-2

BAZZAN160



of the time. And of course, once each agent has learned to play a strategy
with probability near one, the only way for it to experiment new strategies is
through a change in the traffic states in its neighborhood, since in this case it
should react to that change. If such change does not happen, agents will have no
further chance to coordinate with neighbors (which have already learned to play a
different strategy).
Regarding the comparison to a central approach discussed in Section 6.5, the aim

was to validate the proposed agent-based mechanism by means of the macroscopic
simulator, where the control of signals using this algorithm can be compared with a
centralized form of control (using a central synchronization), for the same conditions
of traffic volume.
Results showed that a central synchronization performs better in stable scenarios

with the flow of vehicles being clearly higher in one direction than in the opposite since
few or no conflict occurs (scenario I). However, in scenarios where the volume of
vehicles are nearly equal (scenarios II and III), the central progression does not
perform well relative to the agent-based mechanism. This can be explained by the
fact that the agent-based mechanism is adaptive and allows agents to break with the
synchronization in order to cope with their local traffic conditions for a short time
period, if necessary. By doing this, the agent-based mechanism has proved more
efficient when comparing the values of the average densities at each lane of the
arterial.

7. Conclusion and extensions of the work

The main motivation for the present work is the potential MAS approaches and
agent-based, decentralized techniques offer as to what regards decentralized philo-
sophies of control.
Centralized approaches to traffic signal control cannot cope with the increasing

complexity of urban traffic networks. A trend towards decentralized policies of
control was already pointed out by traffic experts in the 1980s [42]. Following this
idea several implementations appeared [4, 6, 11, 13, 19, 24, 29, 33, 46]. However, only
two [4, 33] succeed in providing mechanisms for conflict resolution (e.g., setting
synchronized signal plans for the intersections in an arterial) other than those based
on central coordination.
The present work addressed two problems. The first is the development of a fra-

mework to deal with the problem of maintaining the synchronization of traffic signals
in a decentralized fashion and to permit the emergence of cooperation among in-
dividually-motivated agents in dynamic environment under communication con-
straints. The second is the use of the framework as a support for the traffic manager
so that s/he can employ her/his time on more tactical issues like simulation of par-
ticular scenarios and decide which control policy to use: centralized or agent-based.
In the proposed framework, agents learn a behavior by observing interactions they

are involved in. This is predominantly based on ideas and techniques of evolutionary
game theory. It assumes that the expectations of agents concerning these intentions
converge to a given pattern upon receiving a feedback from the environment.
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Therefore, this approach explains, based on experimental learning, how a stationary
stable equilibrium emerges.
Agents are involved in a long run interaction and, according to the actions of the

neighbors, they get a feedback from the environment. Since this feedback usually
regards the global traffic condition on the arterial (a state which is known only by the
environment), every agent has an incentive to coordinate towards the strategy which
permits the traffic to flow better over the whole arterial. Agents have knowledge only
to a local extent. By gathering data from traffic detectors, they estimate the prob-
ability distribution over the set of signal plans available to their choice. This dis-
tribution is continuously modified according to the feedback received after selecting
an action. This form of experimental learning permits agents to adapt to the
environment (other agents included).
Coordination is reached in almost all conditions simulated, and within a time

dependent upon the stability of the environment. The more frequent the changes in
local traffic conditions, the slower the pattern of coordination is reached. The con-
cept proposed in the present work may not perform well when the following com-
bination of factors occurs: the environment is excessively unstable, participants of
the system cannot learn with a periodicity compatible with the rate of these changes,
and their excessive memory about past actions and payoffs leads them to respond
with high inertia.
Concerning the operational level, where participants of the system cannot afford

spending too much time on negotiations, a gain may be obtained by simply
improving the quality of the communication. Instead of the naive form employed,
participants should be able to distinguish between durable changes in their states
(which should be communicated), and ephemeral changes (whose communication
should be avoided).
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