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Abstract Agroforestry plays a significant role in 
climate change mitigation and thus buffers the pres-
sure on forest resources. However, owing to the lack 
of accurate biomass models, the contribution of 
these systems towards carbon storage remains poorly 
understood, which makes it difficult to implement cli-
mate change mitigation initiatives. Besides, most of 
the biomass predictions for trees grown in agricul-
tural lands rely on the models developed for natural 
forests. This study therefore aimed to develop spe-
cies-specific and multi-species allometric equations 

for predicting the aboveground biomass (AGB) of 
native perennial plant species in the agricultural land-
scape of central Ethiopia. Ninety-five individuals rep-
resenting six perennial plant species with diameter at 
breast height ranging from 3.5 to 65 cm were destruc-
tively harvested. Diameter at breast height (DBH), 
total height (ht), wood bulk density (wbd), and crown 
diameter (cd) were used as predictors of the AGB. 
The study found that DBH was the best single pre-
dictor of AGB for Oldeania alpina and Faidherbia 
albida, with options for other species. Multiple vari-
able models combining DBH-ht exhibited the high-
est predictive capacity for AGB in Erythrina brucei, 
Albizia schimperiana, and Croton macrostachyus, 
whereas the combination of DBH–cd and DBH–ht–
wbd–cd best predicted the AGB of Acacia abyssinica 
and mixed species, respectively. Species-specific and 
mixed-species models showed the best predictive 
capacity for AGB compared to other frequently used 
regional and pan-tropical models. The findings of the 
study suggest that mixed-species AGB models will be 
used when species-specific allometric models are not 
available at a given site.

Keywords Agroforestry systems · Biomass 
prediction · Dendrometric variables · Destructive 
sampling

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10457- 023- 00898-0.

G. Demie (*) 
College of Agriculture and Veterinary Science, Ambo 
University, P.O. Box 19, Ambo, Ethiopia
e-mail: gadisademie@gmail.com

M. Negash · Z. Asrat 
Wondo Genet College of Forestry and Natural Resources, 
Hawassa University, P.O. Box 128, Shashemene, Ethiopia
e-mail: meselenegash72@gmail.com; mesele@hu.edu.et

Z. Asrat 
e-mail: zerasrat@googlemail.com

L. Bohdan 
Department of Crop Sciences and Agroforestry, Faculty 
of Tropical Agrisciences, Czech University of Life 
Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague, 
Czech Republic
e-mail: Lojka@ftz.czu.cz

http://crossmark.crossref.org/dialog/?doi=10.1007/s10457-023-00898-0&domain=pdf
https://doi.org/10.1007/s10457-023-00898-0
https://doi.org/10.1007/s10457-023-00898-0


180 Agroforest Syst (2024) 98:179–196

1 3
Vol:. (1234567890)

Introduction

Climate change is one of the most pressing global 
environmental issues of the twenty-first century (Liu 
et al. 2018). Deforestation and forest degradation are 
two major anthropogenic drivers of increased green-
house gas (GHG) emissions (Kaisa et al. 2017; Bayen 
et al. 2020). The current global greenhouse gas emis-
sions are estimated to be 10 Pg (1 Pg = 1012 kg) of 
carbon (C) per year (Amundson and Biardeau 2018). 
Climate change, in turn, affects many developing 
countries that rely on climate-sensitive sectors like 
rainfall-dependent and traditional agricultural prac-
tices (Matewos 2019). For instance, it increased spe-
cies extinction (Trisos et  al. 2020), food shortages 
(Ayinu et  al. 2022), disease outbreaks (Orke and Li 
2022), and reduced crop yields (Ginbo 2022).

Agroforestry systems are among the land uses that 
have been suggested as a global solution to increase 
the effectiveness of land use while minimizing nega-
tive environmental effects and economic risks for 
farmers (Mey and Gore 2021). The system is sug-
gested to synergize climate change adaptation and 
mitigation (Dhyani et al. 2020), and recognized as a 
GHG mitigation strategy under the Kyoto Protocol 
(Semere et al. 2022). Agroforestry systems cover over 
one billion ha, supporting about 560 million people 
in developing countries (Shi et  al. 2018). The sys-
tems sequester 1.1–2.2 Pg C annually over a 50-year 
period globally (Dixon 1995). Besides, the conver-
sion of 630  million hectares of unproductive crop-
land and grassland to agroforestry could add about 
586,000 Mg C per year by 2040 (Verchot et al. 2007).

Smallholder farmers in Ethiopia have also 
developed site-specific agroforestry practices that 
have high potential for climate change mitigation. 
Homegardens, parklands, and woodlots are among 
the most common agroforestry practices in the coun-
try for a long time (Tsedeke et al. 2021). In the cen-
tral part of Ethiopia, where this study was conducted, 
the local people have been engaged in various agro-
forestry practices. The majority of the smallholder 
farmers in the study region integrate trees with crops 
for shade, soil improvement, and fuelwood. They also 
commonly maintain a variety of perennial plant spe-
cies in and around their homegardens and woodlots 
for a range of products and services.

Due to a lack of appropriate biomass estimation 
models, the Ethiopian National Forest Monitoring and 

Assessment Program did not take into account trees in 
agricultural landscapes when assessing carbon stocks in 
the past. Also various researchers adopted pantropical 
generalized biomass equations developed for natural for-
ests (e.g., Chave et al. 2014) to calculate the carbon stock 
of trees in agricultural landscapes (e.g., Gebremeskel 
et al. 2021; Chemeda et al. 2022). Biomass models devel-
oped for natural forests may not be suitable for agrofor-
estry (Tumwebaze et  al. 2013), because tree allometry 
varies with tree architecture and silvicultural management 
(Zhang et  al. 2020). Moreover, the application of exist-
ing pantropical biomass equations derived from a large 
dataset may not assure optimal precision of biomass esti-
mation at small scales due to site- and species-specific 
characteristics (Ngomanda et al. 2014; Djomo et al. 2016; 
Paul et al. 2016). In that case, species-specific allometric 
equations may be more effective in determining the bio-
mass and carbon stocks of the species than regional and 
pantropical equations (Mahmood et al. 2020a, b).

To date, only a few allometric models for predicting 
biomass in Ethiopian agroforestry have been developed 
for Coffea arabica and Ensete vetricosum (Negash et al. 
2013a, b) and trees scattered on rangeland (Feyisa et al. 
2018). A recent review of biomass models by Sebrala 
et al. (2022) found out that the allometric biomass equa-
tion for native tree and shrub species has received very 
little attention in Ethiopia. This has made carbon account-
ing very difficult for several perennial plant species in 
agroforestry systems nationally (Rosenstock et al. 2019).

So, it was hypothesized that the derived species-
specific and mixed species AGB allometric model of 
native perennial plant species growing in agricultural 
landscape can give an accurate estimation compared to 
the frequently used pantropical and regional allometric 
models. Thus, the present study aimed at (1) develop-
ing species-specific and mixed species allometric bio-
mass models for estimating AGB of native perennial 
plant species in agricultural landscapes as well as (2) 
evaluating the performance of some previously devel-
oped pantropical and regional models for estimating 
AGB in agricultural landscapes.

Materials and methods

Study site description

The study was conducted on the smallholder agri-
cultural landscape in Toke Kutaye, Dire Enchini, 
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and Liban Jawi districts of West Shewa zone, which 
is located in Central Ethiopia (Fig. 1). West Shewa 
is geographically located between 8° 17′ and 9° 56′ 
N and 37° 17′ and 38° 45′ E. The zone has three 
agroecological zones namely; highland (Dega) 
ranging from an elevation of 2000 m to 3500 masl, 
midland (Woina dega) from 1600 to 2000 masl; and 
lowland (Qola) below 1600 masl. The mean annual 
rainfall and monthly temperature were 1569 mm and 
22 °C, respectively. A range of soil types are found, 
but the dominant soil types are vertisols and loams. 
Rain-fed agriculture with a mixed farming system 
consisting of annual crop production and livestock 
rearing is the major livelihood source for inhabit-
ants in the study area. The most commonly grown 
crops in the area include barley (Hordeum vulgare), 
teff (Eragrostis teff), wheat (Triticum aestivum), 
maize (Zea mays), and enset (Ensete ventricosum). 
Livestock production involves mixtures of indig-
enous and crossbred cattle raised under semi-zero 

grazing systems. The smallholder farmers also use 
a variety of agroforestry systems, such as home 
gardens, parklands, and woodlots. Homegardens 
are multi-story techniques that mimic the structure 
and species diversity of a forest, including a vari-
ety of trees, annual crops, enset, highland bamboo, 
and other species (Eyasu et al. 2020). Another sort 
of agroforestry practice is parkland, which make up 
a significant portion of the land use in the eastern 
and northern parts of Ethiopia (Endale et al. 2016; 
Woldu et al. 2020). Parklands are made of carefully 
selected trees and shrubs from the forest that have 
been cleared for cropping, and their regeneration 
is is assisted in the agricultural landscape (Tadesse 
et  al. 2019). Woodlots are another typical agrofor-
estry practices in which tree species are planted on 
productive or degraded areas in order to provide 
fuel wood and construction materials (Manaye et al. 
2021).

Fig. 1  Map of the study area
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Sampling and biomass determination

Data were collected through two phase sampling. 
For the first phase, forest inventories were performed 
using a total of 243 sample plots. Accordingly, 81 
(20 × 20  m) quadrats were laid in homegardens and 
81 (10 × 10 m) quadrats in woodlots. In contrast, 81 
(100 × 50 m) quadrats were used in parklands. Visual 
estimation was used to divide farms into grid points, 
and then random selection was done to place the 
quadrat. On the sampled plots, trees were measured 
for their diameter at breast height (DBH), total height 
(ht), the average crown’s diameter (cd), and the spe-
cies type identified. A caliper or diameter tape was 
used to measure tree diameters, while tree height was 
measured using a hypsometer. Additionally, the maxi-
mum and minimum crown diameters were measured 
with a measuring tape in order to determine the aver-
age crown diameter (cd).

For the second phase, six perennial plant species, 
namely: Acacia abyssinica Hochst., Croton macros-
tachyus Del., Faidherbia albida Del., Albizia schim-
periana Oliv., Erythrina brucei Schweinf., and Old-
eania alpina (K. Schum), were chosen for destructive 
sampling based on forest inventory result that con-
sider their importance value index (IVI) (Pothong 
et al. 2022) (Supplementary material 1). To maintain 
representativeness of the sample (Moussa and Maha-
mane 2018) and minimize errors caused by the pre-
dominance of one diameter class over another (Sileshi 
2014), individual trees were stratified into seven DBH 
classes and proportionally chosen over these diameter 
classes (Supplementary material 2). The inclusion of 
an unequal number of small-diameter trees compared 
to large-diameter trees in the sampling increases 
heteroscedacity (Sileshi 2014). However, Oldeania 
alpina culms were categorized into three age classes: 
age class 1, one- and two-year-old culms; age class 2, 
three- and four-year-old culms; and age class 3, five- 
and six-year-old culms (Abebe et al. 2023) using the 
culm’s morphological features (Embaye et al. 2005). 
Besides, during destructive sampling, efforts were 
made in the selection to represent altitudinal varia-
tion (Asrat et al. 2020a). A total of 95 perennial plant 
individuals (13 for each species) were randomly cho-
sen from DBH classes to minimize the cost and nega-
tive ecosystem impacts of harvesting large number 
of trees (Duncanson et  al. 2015). However, for Old-
eania alpina, 30 individuals were chosen from age 

classes since 30–50 sample culms are recommended 
to develop site-specific allometric models (Huy and 
Long 2019). Before felling the perennial plant, eco-
logical information such as slope, altitude, and coor-
dinates were all recorded. Moreover, dendromet-
ric variables including the diameter at breast height 
(DBH), the diameter of the stump’s height (dsh), the 
total height (ht), and the average crown’s diameter 
(cd) (Tesfaye et  al. 2016), and the age of Oldeania 
alpina, were recorded for each perennial plant species 
(Table 1).

Once the measurements were done, the selected 
trees were felled (at 0.3  m above the ground level) 
and processed accordingly. Following the removal of 
branches and leaves, the felled trees were divided into 
distinct biomass components, such as stems, branches 
(large branches with mid-diameter ≥ 10  cm, medium 
branches size with mid-diameter < 10 cm and > 5 cm 
and small branches with mid-diameter ≤ 5  cm 
and ≥ 2 cm) and leaves. Stem refers to the main shoot 
from the ground to the top of apical meristems up to 
2  cm in diameter for highland bamboo. The cut-off 
diameter of the stems of other trees was set at 2.5 cm 
because this is the minimum size used for commer-
cial purposes in many areas where wood fuel is scarce 
(Giday et al. 2013). The remaining part was consid-
ered as branch biomass. The leaves’ part contained 
all twigs, branches < 2 cm, flowers, fruits, seeds, and 
leaves. Each component was weighed separately in 
the field for its fresh weight using a hanging balance. 
For each tree, three disks were taken from the stem 
and branches (large, medium, and small). For deter-
mining the leaves’ dry weight, 250-g aliquots of each 
tree’s leaves were obtained (Daba and Soromessa 
2019). The sub-samples were placed in an airtight 
plastic bag and brought to a laboratory, where the 
green volumes were determined using the water dis-
placement method (Liu et al. 2023) after the bark was 
removed. Disks that were too large for the volumet-
ric devices were immersed in a larger container, and 
the green volume was calculated based on the volume 
of water displaced from the container (Tetemke et al. 
2019). The wood’s bulk density (wbd) for each disk 
was determined as the ratio of oven-dry mass to green 
volume. Then, the stem and branch subsamples were 
dried at 105 °C, while the leaves and twigs subsam-
ples were dried in an oven at 70  °C for 48  h. After 
drying, the three subsamples were averaged within 
each component.
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The biomass of each tree section (stem, branch, 
and leaf) was determined by multiplying the total 
fresh weight of the section by the respective ratio of 
oven dry weight to fresh weight. The stump, (i.e., the 
portion of the stem up to 30  cm above the ground) 
was also considered component of the merchantable 
stem section for all trees. We computed the stump 
volume (V) using the formula V = πd2L, where π is 
3.14, d is the stump mid-diameter in m, and L is the 
length of each stump in m (Magdaline et  al. 2020). 
Later, the biomass of the stump was calculated using 
volume and wood basic density. The total dry weights 
of the stem, branch, and tied bundle of twigs and 
leaves were as added up to determine the tree’s total 
aboveground biomass.

Data analysis

All the data analysis and graphical representa-
tion in this study were performed using the R pro-
gramming language (R Core Team 2020). Mul-
ticollinearity among independent variables was 
tested by applying the variance inflation factor 
(VIF) using the “car” package, (Zhao et  al. 2019; 
Rahman et  al. 2021), and no multicollinearity was 
found among the independent variables included 
(VIF < 2.56) (Table  3). Pearson correlation tests 
were applied to determine the degree of relation-
ship between AGB and dendrometric parameters 
(Moussa and Mahamane 2018). We therefore, 
tested weighted nonlinear least squares regres-
sion by using the ‘nls’ function in the R software 

because it performed better than log-linear mod-
els (Huynh et  al. 2021). Weighted non-linear was 
used to account for heteroscedasticity in residuals 
(Huy et al. 2019a). Huynh et al. (2022) showed that 
weighted non-linear models also had a lower Furni-
val’s Index (FI) than log-linear models. Moreover, 
the variance is assumed to be proportional to the 
square of the mean of the biomass in this study, as 
recommended by Aabeyir et  al. (2020). When the 
Q-ratio (i.e., the ratio between the parameter esti-
mates of DBH and parameter estimates of ht, in a 
separate variable model) is equal to 2.0 (between 
1.5 and 2.5), it is common to include (DBH)2 × ht 
as a single input in the regression to address col-
linearity problems (Dutcă et  al. 2019). Due to the 
low collinearity between DBH and ht in this study 
and the fact that similar biomass models previously 
developed in Ethiopia produced Q-ratios outside the 
range of 1.5–2.5 (Tetemke et  al. 2019; Asrat et  al. 
2020b), a separate predictor approach was adopted 
for modeling.

Accordingly, eight biomass models (Eqs. 1–8) using 
non-linear regression equations were tested for multi-
species models while the four models without the wbd 
were fitted/tested for species-specific cases. DBH is 
the most frequently used variable for predicting bio-
mass. Other variables, such as ht, wbd, and average 
crown diameter (cd), have also often been combined 
with DBH in allometric models in previous studies 
(Asrat et al. 2020b; Dao et al. 2021). Because adding 
ht as a predictor variable to DBH accounts for varia-
tion in AGB among trees with the same diameter value 

Table 1  Statistical summary for biometric variables and aboveground biomass of the sampled perennial plant species in agricultural 
landscapes of central Ethiopia

Where; DBH: diameter at breast height (cm); ht: height (m); wbd: wood density (g/cm3); cd: average crown diameter (m); n: number 
of observations

Species name n DBH (cm) ht (m) cd (m) wbd (g/cm3) Total dry biomass (Kg)
Mean (ranges) Mean (ranges) Mean (ranges) Mean (ranges) Mean (ranges)

Oldeania alpina 10 5.48 (3.5–7.4) 10.04 (8–13) 2.37 (1.6–2.8) 0.42 (0.37–0.55) 9.39 (4.75–13.85)
10 7.55 (4.6–10) 11.4 (9.2–13.5) 2.48 (1.7–3) 0.45 (0.30–0.54) 11.17 (6.66–17.42)
10 6.79 (5–8.1) 12.08 (10.7–13.3) 2.33 (1.5–2.8) 0.45 (0.33–0.58) 14.22 (8.27–19.67)

Faidherbia albida 13 38.54 (8.00–65.00) 7.62 (4.40–11.00) 4.45 (1.90–6.20) 0.71 (0.54–0.99) 914.99 (32.08—2194.29)
Acacia abyssinica 13 32.50 (11.50–52.00) 5.68 (4.00–8.00) 6.73 (4.10–10.50) 0.67 (0.48–0.87) 630.88 (71.80—1382.13)
Erythrina brucei 13 42.67 (9.80–59.00) 10.97 (5.20–16.00) 4.42 (2.88–6.10) 0.60 (0.41–0.76) 607.19 (53.91–1062.73)
Albizia schimperiana 13 46.50 (7.00–65.00) 11.79 (3.00–15.60) 5.32 (2.00–7.00) 0.77 (0.52–0.89) 1015.12 (21.84–1723.57)
Croton macrostachyus 13 41.54 (17.00–61.00) 12.92 (7.20–16.30) 9.82 (4.00–14.00) 0.56 (0.41–0.80) 647.94 (139.61–1153.38)
Mixed-species 65 40.35 (7.00–65.00) 9.80 (3.00–16.30) 6.15 (1.90–14.00) 0.66 (0.41–0.99) 763.23 (21.84–2194.29)
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(Mensah et al. 2016) and reduces relative error (Muku-
ralinda et  al. 2021). Wood density also affects how 
much biomass is allocated to wood and foliage because 
trees with low wood densities devote more resources 
to photosynthetic processes that promote the develop-
ment of foliage (King et al. 2006). Moreover, including 
average crown diameter (cd) also improved predictions 
compared to using a single variable alone (Dimobe 
et  al. 2019; Flores-Hernández et  al. 2020; Romero 
et  al. 2022). The following general nonlinear model 
forms for prediction of biomass were fitted:

where Y represents the biomass of the a tree, a, b, c, d 
and e are the estimated parameters of the fitted mod-
els, DBH is the diameter at breast height (cm), ht is 
the tree height (m), cd is average crown diameter (m), 
and wbd is the wood density  (gcm−3) of a given tree.

Model evaluation, selection, and comparison

Four fit statistics were combined to choose the best 
candidate models: AIC (Akaike Information Crite-
rion); pseudo-R2; RMSE (Root Mean Square Error); 
and MAE (mean absolute error) (Ubuy et al. 2018b; 
Asrat et  al. 2020b). The best models have a high 
pseudo-R2 and the lowest AIC, RMSE, and MAE cal-
culated using the caret function in the R software.

For the cross validation of the equations, the root 
mean square error (RMSE) and mean prediction error 
(MPE) were computed using the leave one out cross 
variation (LOOCV) approach. This approach leaves 

(1)Model1 ∶ Y = a × (DBH)b

(2)Model2 ∶ Y = a × (DBH)b×(ht)c

(3)Model3 ∶ Y = a × (DBH)b×(cd)c

(4)Model4 ∶ Y = a × (DBH)b×(wbd)c

(5)Model5 ∶ Y = a × (DBH)b×(ht)c×(wbd)d

(6)Model6 ∶ Y = a × (DBH)b×(ht)c×(cd)d

(7)Model7 ∶ Y = a × (DBH)b×(wbd)c×(cd)d

(8)Model8 ∶ Y = a × (DBH)b×(ht)c×(wbd)d×(cd)e

one observation for validation and the remaining n − 1 
observations for training the model. The excluded 
observation is predicted, and the error is calculated. 
The procedure is repeated n time until every observa-
tion has been left out and predicted. The RMSE and 
MPE are computed using the n errors. These statisti-
cal parameters were calculated as follows:

where SSR is the sum of squared residuals, CSST is 
the corrected sum of squares (∑yi-Ῡ)2, p is the num-
ber of parameters in the model, yi is the observed 
AGB, ŷi is predicted AGB, n is the total number of 
observations, and Y  is mean of observed AGB. With 
the use of our dataset, we compared several previ-
ously developed species-specific and generic models 
for aboveground biomass in agroforestry and natural 
forests (Table 2). First, some species-specific models 
from Ethiopia (Giday et al. 2013; Mulatu and Fetene 
2013; Abebe et  al. 2023) and Niger (Moussa and 
Mahamane 2018) were tested. Then three relevant 
generic models from the natural forests of Ethiopia 
(Ubuy et al. 2018b; Tetemke et al. 2019; Asrat et al. 
2020b) and other sub-Saharan African countries 
(Kuyah et al. 2012), as well as the pan-tropical model 
developed by Chave et  al. (2014) were tested. The 
model developed by Chave et al. (2014) was chosen 
since it is extensively used in tropical regions. Three 
generic models for natural forests that were devel-
oped using multiple variables as in the current study 
were employed because there was a lack of a general 
and species-specific model for trees in agricultural 
landscapes, and there is high possibilities that such 

(9)
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�2

n
,

RMSE% =
RMSE

Y
× 100

(10)MPE =

∑n

i=1

�

yi − ŷi
�

n
,MPE% =

MPE

Y
× 100

(11)AIC = nlog

�

∑n

i=1

�
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models will be used. These models were developed 
by Tetemke et  al. (2019), Ubuy et  al. (2018b), and 
Asrat et al. (2020b) using samples of trees from Ethi-
opia. The models developed by Giday et  al. (2013) 
for Acacia abyssinica and by Abebe et al. (2023) and 
Mulatu and Fetene (2013) for Oldeania alpina were 
the most useful ones we found in the literature uti-
lizing samples of trees from Ethiopia. The generic 
models developed by Kuyah et al. (2012) and species-
specific ones developed by Moussa and Mahamane 
(2018) for Faidherbia albida were also the most per-
tinent ones we discovered in the literature because 
they were developed for tree species that were grown 
on agricultural landscapes. To look for significant 
differences between observed and predicted biomass 
levels, the paired t-test was employed.

Results

Species-specific and mixed-species allometric 
equations to estimate AGB

The aboveground biomass (AGB) model using only 
DBH as the predictor variable (Model 1) performed 

best for two of the species (Faidherbia albida and 
Oldeania alpina) and was optional for other species 
(Table 3). The fitting statistics of this model (Model 
1) were typically good, with pseudo-R2 varying 
between 85 and 99% across all species and mixed 
species. Moreover, the model developed for Faid-
herbia albida had the highest pseudo-R2 (0.99), the 
lowest RMSE (59.3), and the lowest AIC (138.77) 
with a significant (p < 0.01) regression model. This 
model somewhat underpredicted the aboveground 
biomass for Faidherbia albida and 1–2-year-old high-
land bamboo (Oldeania alpina) by 0.57% and 0.3%, 
respectively. However, it overpredicted the above-
ground biomass for 3–4, and 5–6-year-old highland 
bamboo (Oldeania alpina) by 0.15% and 0.05%, 
respectively.

For Erythrina brucei and Albizia schimperiana, 
a multiple-variable model that included DBH and ht 
(model 2) was shown to have a lower AIC than the 
models using DBH as the single variable (model 1), 
but they had a comparable pseudo-R2. Adding ht to 
DBH (Model 2) as a compound variable was also the 
best-performing model that significantly improved 
the statistical fits for AGB of Croton macrostachyus 

Table 2  Previously published species-specific and mixed species biomass allometric model tested using the data set from this study

cra: Crown area  (m2), crw: crown width (m), ht; tree height (m), DBH: diameater at breast height (cm), DSH: Diameter at stump 
height (cm), and wbd: wood bulk density (g/cm3)

Model type Expression Age n dbh/dsh range (cm) References

General multispecies (pan-
tropical)

AGB = 0.0673 ×  (DBH2 × ht × 
wbd)0.976

4004 5.0–180.0 Chave et al.(2014)

General multispecies (Kenya) AGB = 0.225 × (DBH)2.341 ×  
(wbd)0.73

72 3.0–102.0 Kuyah et al. (2012)

General multispecies (Ethiopia) AGB = 0.21765 × (DBH)1.77660 
× (ht)0.33242 × (crw)0.65575 ×  
(wbd)1.07739

63 7.0–106.5 Asrat et al. (2020b)

General multispecies (Ethiopia) AGB = 0.217 × (DSH)1.8428 × 
 (ht)0.3361 × (wbd)0.2963

305 2.5–29.5 Ubuy et al. (2018b)

General multispecies (Ethiopia) AGB = 0.350 × (DBH)1.864 × 
 (cra)0.171 × (wbd)0.485

86 2.9–45.2 Tetemke et al. (2019)

Species- specific (Niger) AGB = 0.06457 × (DBH)2.4629 20 5.73–65.92 Moussa and Mahamane (2018)
Species- specific (Ethiopia) AGB = 0.02977 × (DSH)2.827 39 2.54–28.6 Giday et al. (2013)
Species- specific (Ethiopia) AGB = 0.259 × (DBH)2.098 1–2 Abebe et al. (2023)

AGB = 0.139 × (DBH)2.577 3–4
AGB = 0.165 × (DBH)2.487 5–6 42 3.0–7.1

Species-specific (Ethiopia) AGB = exp (0.172 × DBH) 1–2 Mulatu and Fetene (2013)
AGB = exp (0.289 × DBH) 3–4 – –
AGB = exp (0.30 × DBH) 5–6
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when compared to the model based on DBH as a sin-
gle predictor.

An allometric model including DBH and cd 
(Model 3) as predictors fitted well with our data for 
the prediction of AGB with a high pseudo-R2 (0.99) 
and low AIC (135.94) and RMSE (40.8) for Aca-
cia abyssinica. The model that takes into account 
DBH and ht resulted in an improved pseudo-R2, but 
had a higher AIC and RMSE compared with model 
3 (Table  3). A multiple-variable model (Model 8) 
that includes DBH, ht, wbd, and cd had the highest 
pseudo-R2 value (0.95) and the lowest AIC (780.03) 
for mixed species that developed by using the full 
dataset (excluding Oldeania alpina). Hence, Model 8 
was selected as the best-fit allometric biomass model 
for the prediction of the AGB for mixed species.

Performance of the present models compared to 
previously published models

The best-fit model of Oldeania alpina showed the 
lowest value for the percentage of residual mean 
square error (RMSE kg) and model prediction error 
(MPE%) compared to the species-specific allometric 
biomass models (Mulatu and Fetene 2013; Abebe 
et al. 2023). The paired t-test indicated that our best-
fit AGB model and observed aboveground biomass 
were statistically identical for this species (Table 4). 
The graphical presentation of the 1:1 line also sup-
ported that our best-fit AGB model for Oldeania 
alpina was similar to the observed AGB (Fig.  2). 
The biomass model of Mulatu and Fetene (2013) sig-
nificantly overpredicted the AGB for 1–2, 3–4, and 
5–6  years old highland bamboo, while the biomass 
model of Abebe et al. (2021) significantly underpre-
dicted the AGB for 1–2, 3–4 and 5–6 years old high-
land bamboo (Table 4).

The residual mean square error (RMSE%) and 
model prediction error percentage (MPE%) val-
ues of these best-fit models showed high precision 
of predictability for Faidherbia albida and Acacia 
abyssinica over species-specific models developed 
by Moussa and Mahamane (2018) and Giday et  al. 
(2013), respectively, and generic models (Kuyah et al. 
2012; Chave et al. 2014; Ubuy et al. 2018b; Tetemke 
et al. 2019; Asrat et al. 2020b). Nevertheless, among 
the generic models, the equation developed by 
Asrat et al. (2020b) for AGB based on 63 trees with 

dbh ≥ 5 cm in the Dry Afromontane forests of south-
central Ethiopia ranked 2nd lowest in RMSE (%) and 
MPE (%) for these two species. The paired t-test dif-
ferences between the observed and predicted AGB 
were not statistically significant for those two spe-
cies. The scatter plot diagram also depicted the points 
close to the line of best fit which confirms that the 
models provided a good fit to the data for both Faid-
herbia albida and Acacia abyssinica (Fig.  2). How-
ever, the generic models of Chave et al. (2014), Ubuy 
et al. (2018b), Asrat et al. (2020b), and Tetemke et al. 
(2019) significantly overpredicted the AGB, but the 
biomass of the two species was significantly under-
estimated by Kuyah et  al. (2012). Species-specific 
models developed by Moussa and Mahamane (2018) 
for Faidherbia albida significantly overpredicted the 
AGB, while Giday et  al. (2013) underpredicted bio-
mass for Acacia abyssinica.

The best-ranked models of Erythrina brucei 
(Model 2) and Albizia schimperiana (Model 4) 
showed the lowest RMSE (%) and MPE (%) com-
pared to the generic models (Kuyah et  al. 2012; 
Chave et al. 2014; Ubuy et al. 2018b; Tetemke et al. 
2019; Asrat et  al. 2020b). The observed biomass of 
Erythrina brucei and Albizia schimperiana was not 
significantly different from the biomass predicted by 
our allometric models (p > 0.05). However, it was 
significantly different from the biomass predicted 
from the allometric models developed by Kuyah 
et al. (2012), Chave et al. (2014), Asrat et al. (2020b), 
and Tetemke et  al. (2019). The allometric models 
developed by Ubuy et al. (2018b) and Tetemke et al. 
(2019) overpredicted the AGB for those two species. 
In contrast, when the allometric models developed by 
Kuyah et  al. (2012), Chave et  al. (2014), and Asrat 
et  al. (2020b) were applied, the biomass was under-
predicted as indicated by the higher MPE value 
(Table 4).

Our best-fit model (Model 5), overpredicted the 
AGB of Croton macrostachyus by 0.08%, a small 
value when compared with other equations that have 
been generated to predict aboveground biomass in 
Ethiopia and tropical forests in general (Table  4). 
The results became more conspicuous in the graphi-
cal presentation of the goodness of fit 1:1 line, 
indicating the capability of our best-fit model 5 to 
predict the AGB accurately and precisely (Fig.  2). 
Application of these previously developed mod-
els to our dataset underpredicted or overpredicted 
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Table 4  Comparison of species-specific and mixed species model with previously published allometric models

Species Age (year) Model reference Mean 
observed 
AGB (kg)

Mean pre-
dicted AGB 
(kg)

RMSE MPE

% kg % kg

Oldeania alpina 1–2 Current study 9.39 9.42 ns 8.63 0.81 − 0.34 0.03
Abebe et al. (2023) 10.06* 64.1 6.02 − 39.2 3.68
Mulatu and Fetene (2013) 2.66*** 41.4 3.89 38.6 3.62

3–4 Current study 11.17 11.15 ns 5.28 0.59 0.15 0.02
Abebe et al. 2023 28.06*** 179 19.96 − 151 16.9
Mulatu and Fetene (2013) 9.96*** 9.96 13.8 1.54 10.9

5 – 6 Current study 14.22 14.21 ns 2.46 0.35 0.05 0.01
Abebe et al. 2023 27.53*** 49.4 7.03 − 43 6.11
Mulatu and Fetene (2013) 10.91*** 10.9 44.5 6.38 43

Acacia abyssinica Current study 630.88 633.05 ns 6.44 40.82 − 0.34 2.15
Kuyah et al. (2012) 740.71* 31 195 − 17 110
Chave et al.(2014) 283.47*** 66.4 419 55.1 347
Asrat et al.(2020b) 555.25* 20.8 131 12 75.6
Ubuy et al. (2018b) 281.47*** 69.2 437 55.4 349
Giday et al.(2013) 952.35* 77.8 491 − 51 322
Tetemke et al. (2019) 296.42*** 65.3 412 53 334

Albizia schimperiana Current study 1015.12 1016.46 ns 3.97 73.83 − 0.13 1.32
Kuyah et al. (2012) 1794.21*** 89 903 − 77 779
Chave et al.(2014) 1304.6** 42 427 − 29 290
Asrat et al.(2020b) 1234.13* 32.6 331 − 22 219
Ubuy et al. (2018b) 649.53*** 41.9 425 36 366
Tetemke et al. (2019) 548.4*** 52.4 532 46 467

Faidherbia albida Current study 914.99 909.81 ns 6.49 59.3 0.57 5.22
Kuyah et al. (2012) 1319.1* 68.3 625 − 44 404
Chave et al.(2014) 642.95** 38.7 354 29.7 272
Asrat et al.(2020b) 752.06* 27.2 249 17.8 163
Ubuy et al. (2018b) 439.39** 69.6 637 52 476
Moussa and Mahamane (2018) 721.81*** 25.1 230 21.1 193
Tetemke et al. (2019) 413.14** 71.1 651 54.9 502

Erythrina brucei Current study 607.19 598.75 ns 10.9 65.9 1.39 8.44
Kuyah et al. (2012) 1193.3*** 115 699 − 97 586
Chave et al.(2014) 806.54* 54.2 329 − 33 199
Asrat et al.(2020b) 687.41* 24.3 148 − 13 80.2
Ubuy et al. (2018b) 501.89*** 20.3 123 17.3 105
Tetemke et al. (2019) 379.42*** 42.9 261 37.5 228

Croton macrostachyus Current study 647.94 647.41 ns 6.34 41.11 0.08 0.52
Kuyah et al. (2012) 992.82*** 66.4 430 − 53 345
Chave et al.(2014) 728.3* 19 123 12.4 80.3
Asrat et al.(2020b) 982.5* 20.9 135 − 14 88.1
Ubuy et al. (2018b) 494.68*** 27 175 − 49 319
Tetemke et al. (2019) 382.6*** 47.7 309 41 265
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according to the models generated for each region. 
For example, equations developed by Kuyah 
et  al. (2012); Asrat et  al. (2020b); and Ubuy et  al. 
(2018b) significantly underpredicted biomass. In 
contrast, when the allometric models developed by 
Tetemke et al. (2019); and Chave et al. (2014) were 
applied, the biomass was significantly overpredicted 
by 40.95% and 12.40%, respectively (Table 4).

The residual mean square error (RMSE%) and 
the model prediction error (MPE%) of the best-fit 
model (model 8) for mixed-species were lower than 
those of generic (Asrat et  al. 2020b; Kuyah et  al. 
2012; Tetemke et  al. 2019) models. Nevertheless, 
among the generic models, Asrat et  al. (2020b) 
ranked the 2nd lowest RMSE (%) and MPE (%) 
(Table 4). The 1:1 line shown in Fig. 2 indicates that 
the closer the values are to the 1–1 line, the lower 
the bias of the prediction. The biomass predicted by 
Chave et  al. (2014) was comparable with observed 
AGB. However, the biomass model of Ubuy et  al. 
(2018b) and Tetemke et  al. (2019) significantly 
overpredicted the AGB, while biomass model of 
Kuyah et al. (2012) and Asrat et al. (2020b) signifi-
cantly underpredicted the biomass (Table 4).

Discussion

Species-specific and mixed-species allometric models 
to predict AGB

Power allometric models were used to predict the 
AGB of six native perennial plant species grown on 
agricultural landscape in central Ethiopia. These type 

of models are preferred over polynomial and logarith-
mic equations because they are commonly used, sim-
ple, and practical for predicting the biomass of many 
woody species (Ou and Boussim 2020). Our species-
specific biomass models outperformed over mixed-
species models. This is consistent with the findings of 
Nyamukuru et al. (2023). Similarly, multiple-variable 
models performed better than single-variable models 
in both species-specific and multi-species models. 
Our results are in agreement with those of Nyamuk-
uru et al. (2023) for trees and shrubs biomass estima-
tion in the African savanna ecosystems who found 
that multiple-variables models performed better than 
single variable models.

For Oldeania alpina, the most accurate allomet-
ric biomass model used DBH as the only explana-
tory variable. This is in line with finding of Inoue 
et  al. (2019) that DBH to be the most accurate pre-
dictor to explain the biomass variability for square 
bamboo in western Japan. A study carried out in the 
Bobiri forest reserve in Ghana also showed that DBH 
alone explains variations in the biomass distributions 
among biomass components, age classes, and total 
biomass of bamboo (Amoah et  al. 2019). Similar to 
that, a study in southwestern Ethiopia on Oldeania 
alpina (Yebeyen et al. 2022; Abebe et al. 2023) sup-
ported the notion that allometric models based solely 
on DBH would increase the value of the predicted 
biomass. In this study, adding tree height to equations 
for highland bamboo did not improve the model’s per-
formance. This showed that biomass equations using 
the DBH variable are easy and take less time to meas-
ure. Dense highland bamboo woodlots in the study 
area can also cover bamboo plants tree tops, making 

Table 4  (continued)

Species Age (year) Model reference Mean 
observed 
AGB (kg)

Mean pre-
dicted AGB 
(kg)

RMSE MPE

% kg % kg

Mixed-species Current study 763.23 758.42 ns 15.5 118 0.63 4.8

Kuyah et al. (2012) 1208*** 81.2 620 − 58 445

Chave et al.(2014) 753.17 ns 45.6 348 1.32 10.11

Asrat et al.(2020b) 842.27* 36.6 279 − 10 79

Ubuy et al. (2018b) 473.4*** 53.2 406 38 290

Tetemke et al. (2019) 404*** 59.7 456 47.1 359

ns = Nonsignificant model parameter estimates (p > 0.05); *, **, and *** significant at p < 0.05, p < 0.01 and p < 0.001, respectively
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it challenging to measure heights in the field. Simi-
lar to this, Nfornkah et  al. (2021) also revealed that 
the dense culms of bamboo made it hard to measure 
height nondestructively, making the use of the height 
variable model for bamboo problematic from the 
start. Roxburgh et al. (2015) and Mensah et al. (2017) 
also found that the inclusion of tree height did not 
result any significant improvements over the simple 
power model, proving that species affects how much 
extra predictors would enhance biomass models.

The allometric models developed with DBH as 
an explanatory variable were also the best perform-
ing models that provide a best prediction of AGB for 
Faidherbia albida. For this species, AGB estimates 
using DBH alone led to lower AIC and RMSE and 
increased accuracy. This agrees with authors (Beedy 
et  al. 2016; Moussa and Mahamane 2018), who 
revealed DBH is the accurate predictor of AGB of 
Faidherbia albida in Malawi and Niger, respectively. 
The findings suggest that DBH change substantially 
accounts for the variability of tree biomass in agri-
cultural landscape. The facts that tree diameter is the 
simplest variable to measure in the field and had a 
significant correlation with AGB. For ease of model 
application and validation, it is advised to use fewer 
explanatory variables (Sileshi 2014). Additionally, 
we found that compared to using DBH alone, add-
ing tree height data did not significantly improve 
biomass prediction. It is also related to Faidherbia 
albida trees’ tendency to branching, which leads to 
more radial development than apical growth. The 
insignificant improvement of height on AGB predic-
tion could also be due to the process of pollarding and 
prunning branches in parkland agroforestry at inter-
vals of three to four years to increase light availability 
for understory crops. Moreover, this study found that 
the inclusion of crown diameter did not improve the 
model fit for Faidherbia albida. The size of the tree 
affects the strength of the association between crown 
diameter and AGB; it is weaker in trees with small 
crowns (Dimobe et al. 2018). Faidherbia albida has a 
less variable geometry of the canopy, possibly due to 
the inherent plasticity of its canopy to interplant dis-
turbances from pollarding and prunning branches in 

parkland agroforestry.The findings of this study show 
that models with multiple variables (DBH and ht) had 
better predictive ability for AGB in Albizia schimpe-
riana, Croton macrostachyus, and Erythrina brucei 
than the DBH alone model. Including tree height as 
a predictor variable in AGB models is usually rec-
ommended as it can improve model fit, robustness, 
increased efficiency, and lower model prediction error 
for fruit tree species in Bangladesh than the com-
monly used pantropical and regional models (Saha 
et al. 2021). Many researchers believe that including 
height in models will lessen model site specificity 
(Dutcă et al. 2018; Dutcă 2019).

Recently, crown dimensions are essential for 
improving tree biomass estimates and simplifying 
AGB estimation (Tetemke et al. 2019; Loubota Pan-
zou et  al. 2021; Jucker et  al. 2022). In this study, 
combing cd with DBH improved model fit by 3% and 
reduced the relative error by 5.4% for AGB of Acacia 
abyssinica. This could be because the branching pat-
terns of the studied tree species shared approximately 
40% of the total AGB. This result is in line with 
recent study on tree allometry in the dry afromontane 
forest of Ethiopia where crown width improved mod-
el’s prediction (Asrat et  al. 2020b). Similar findings 
were made by Dao et al. (2021) for Mangifera indica 
in parklands of the Sudanian zone of Burkina Faso.

The findings indicate that, for mixed species, the 
predictor variables may account for 85–95% of the 
variance in the dependent variable. For mixed spe-
cies, DBH alone as a single predictor explained over 
85% of the variation in AGB and had a relative error 
of 19.52%. However, adding tree height as an addi-
tional predictor reduced the relative error for AGB 
by 3.01% and improved model fit by 5% for mixed 
species. Similar observations have been reported on 
species equations (Mukuralinda et  al. 2021; Mensah 
et  al. 2017) and regional mixed-species equations 
(Teshome et al. 2022) that tree height data improves 
biomass prediction when compared to equations that 
use DBH as the only predictor variable.

However, the inclusion of crown diameter did not 
improve the fit of the model for mixed species. This 
suggests that the correlation between crown diam-
eter and AGB is size-dependent, with the association 
being weaker in smaller-crowned trees. The charac-
teristics of pooled tree data may be used to determine 
tree allometry. For instance, Faidherbia albida has a 
less variable geometry of the canopy, probably as a 

Fig. 2  The relationship between the observed and the pre-
dicted AGB for six studied species and mixed-species model. 
The dashed line represents the 1:1 line or reference line, 
whereas the black solid line represents the fitted line

◂
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result of disturbances from pollarding and prunning 
branches at intervals of three to four years, which 
lower the AGB prediction of crown diameter in mixed 
species. A similar trend was observed in Burkina 
Faso (Mukuralinda et  al. 2021) where the inclusion 
of crown diameter did not improve the model fits for 
Terminalia laxiflora.Some studies indicate that using 
wood bulk density as an independent variable in allo-
metric models can significantly increase the accuracy 
of the biomass model in tropical forests (Huy et  al. 
2019b), whereas other studies found that doing so 
had no significant effect on the model’s performance 
(Zhao et al. 2019; Mahmood et al. 2020a). The com-
plexity of field data gathering and reliance on addi-
tional laboratory analysis prevent wood bulk density 
from being utilized frequently. Some researchers rely 
on datasets like the Global Wood Density Database 
(Khan et al. 2020). Also, Ethiopia’s Forest Reference 
Level report for the REDD + implementation used the 
wood density database rather than directly determin-
ing this statistic (Ubuy et  al. 2018a). This signifies 
the importance of inclusion of basic wood density 
to be included in biomass models as an explanatory 
variable, which also helps lower model uncertainty 
(Mukuralinda et al. 2021).

Our results show that the addition of wbd to DBH 
alone (model 4) reduced the relative error for AGB 
by 6.28% and improved model fit by 7% for mixed 
species. Other studies recommend wood density as 
an additional predictor variable that can be used to 
improve biomass prediction(Mukuralinda et al. 2021; 
Zhu et  al. 2021; Ganamé et  al. 2021).Moreover, the 
model 5 with three predictors (DBH, ht, and wbd) 
reduced the relative error for AGB by 7.85% and 
improved model fit by 10% for mixed species. Simi-
lar observation has been reported in species-specific 
model (Daba and Soromessa 2019; Abich et al. 2021) 
and mixed-species equations (Ganamé et  al. 2021) 
where inclusion of DBH, ht, and wbd data improves 
biomass prediction when compared to equations that 
use DBH as the only predictor variable.

Multiple variables models combining DBH, ht, 
wbd, and cd as predictors reduced the relative error 
for AGB by 8.4%, improved model fit by 10%, and 
perform the best fitness among all of the models for 
mixed species. Our results agree with reports on 
regional mixed-species equations (Asrat et al. 2020b; 
Tetemke et al. 2019) that DBH, ht, wbd, and cd data 
improve biomass prediction when compared to other 

models for mixed species. This may be due to the fact 
that pooling biomass data to develop mixed species 
models increases the sample size and results in stable 
regression parameters and variance estimates (Xiang 
et  al. 2016). Moreover, multiple-predictor models 
were more effective than single-predictor models 
(Smith et  al. 2021). Our finding is most likely due 
to the different morphologies of the studied species, 
meaning that the inclusion of DBH, ht, wbd, and cd 
accounted for variation in the AGB induced by differ-
ence in tree architectures.

Performance of the present models compared to 
previously published models

Generally, the models developed for this study per-
formed better and had a smaller residual mean square 
error (RMSE%) and the model prediction error 
(MPE%) since there were more sampled trees in the 
study. Applying allometric equations with small sam-
ple numbers will lead to a bias of up to 70% (Duncan-
son et  al. 2015). In the current study, we employed 
95 destructively sampled perennial plant individu-
als to develop biomass models. Taking into account 
Ethiopia’s restrictions on destructive sampling and 
the costs associated with biomass assessment in gen-
eral, the number of sample trees used in this study 
was greater than previously reported general and spe-
cies-specific models. Furthermore, the inclusion of a 
large tree in the sample for this study may improve 
the precision of the biomass prediction. In contrast 
to the current models, which were built for trees on 
agricultural landscape, many of the earlier models 
were developed for natural forests, with the excep-
tion of Moussa and Mahamane (2018) and Kuyah 
et al. (2012). Because tree biomass allometric models 
vary by site (Ducey 2012). The allometry of trees is a 
result of the interaction between endogenous growth 
processes and exogenous constraints exerted by the 
environment. The interactions between individu-
als change tree architectures, including canopy area, 
branching, and stem form, which determine biomass 
allocation (Yang et  al. 2019). Moreover, character-
istics of species and their silvicultural management 
may be an explanation for the lower prediction of 
regional and pan-tropical generic allometric models 
when they are applied to the existing data.
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Conclusion

This study has developed species-specific and multi-
species biomass allometric models to provide accu-
rate estimates of AGB for native perennial plant spe-
cies in the agricultural landscape of central Ethiopia. 
The models with only DBH as a predictor were the 
best single predictors of AGB for Oldeania alpina 
and Faidherbia albida, and options for other spe-
cies. Multiple variable models combining DBH-ht 
exhibited the highest predictive capacity for AGB in 
Erythrina brucei, Albizia schimperiana, and Croton 
macrostachyus, whereas the combination of DBH-cd 
and DBH-ht-wbd-cd best predicted the AGB of Aca-
cia abyssinica and mixed species, respectively. Spe-
cies-specific and mixed-species models showed the 
best predictive capacity for AGB compared to other 
frequently used regional and pan-tropical models. 
The findings of the study suggest that mixed-species 
AGB models will be used when species-specific 
allometric models are not available at a given site. 
The allometric models can be used as the basis for 
reporting and verifying biomass and carbon stocks 
in the agricultural landscape for carbon crediting 
schemes such as REDD + and CDM. However, cau-
tion must be taken when applying the models to 
other datasets since their applicability is limited to 
the range of DBH, land use type, and biophysical 
conditions of the study area.
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