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Abstract In the Colombian Andes, agroforestry is a

traditional form of agriculture, characterized by a

heterogeneous and often diversified composition of

trees and crops. This form of land use provides

important ecosystem services, such as carbon seques-

tration, reduction of soil erosion and the maintenance

of biodiversity by providing a structural complex

habitat. Satellite remote sensing is widely used for

studying land use patterns and forest cover, however

the discrimination between agroforestry systems and

forests is still a challenge, especially in heterogeneous

landscapes and in rough terrain. Here, we aim to

advance the remote sensing of agroforestry systems

using field measurements of vegetation structure in

combination with Sentinel-2 images. We use spectral

and textural variables derived from Sentinel-2 ima-

gery to predict above ground biomass (AGB), leaf area

index (LAI) and canopy closure (CC). The relation-

ship between predicted and observed values obtained

from Random Forest regression models showed good

fits: for AGB with an R2 = 0.92 and relative RMSE =

34%; for LAI with an R2 = 0.91 and relative

RMSE = 19%; and for CC an R2 = 0.89 and relative

RMSE = 9%. This allowed us to map these important

ecosystem variables at landscape scale and establish

empirical thresholds, with which a discrimination of

agroforestry systems from forests was possible with an

accuracy of 94%. Our results suggest that the

relationship between vegetation structure and the

spectral information obtained by Sentinel-2 can con-

tribute to the detection and characterization of agro-

forestry systems and thus help quantifying the

ecosystem services and biodiversity conservation

potential provided by this type of tropical agriculture.

Keywords Remote sensing � Biodiversity

conservation � Sustainable tropical agriculture � Land-

use classification � Above-ground biomass � Leaf area

index

Introduction

The term agroforestry system (AFS) generally refers

to a traditional agricultural practice, where trees are

integrated into the cultivation of crops (Nair 1985). In

Latin America approximately 300 million hectares of

land are used for agroforestry, which sustains the

economy of rural families, mainly due to the produc-

tion of cacao and coffee (Somarriba et al. 2012).

Furthermore, AFS are considered an effective way to
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contribute to food security, the conservation of

biodiversity and socio-ecological resilience in agri-

cultural landscapes (Sharma et al. 2016; Leimona and

Noordwijk, 2017; Mbow et al. 2017; Yapo 2019).

Therefore, the last IPCC report (Shukla et al. 2019)

suggest that agricultural production using agroforestry

represents a strategy to achieve sustainable develop-

ment goals and climate change mitigation in tropical

regions (Garrity 2004). For this reason, countries, such

as Colombia, Perú and Nicaragua have started initia-

tives to promote rural development through the

implementation of AFS (Porras et al. 2015). Conse-

quently, AFS should be taken into account in decision-

making and policies for sustainable development in

tropical countries, which would require a mapping and

quantification of their spatial extent (Waldron et al.

2017). However, so far, AFS in tropical countries are

not considered in international initiatives on crop

assessment (e.g. http://jecam.org) and are not moni-

tored using Earth observation satellites. This is

because AFS are often embedded in a small scale and

heterogeneous matrix of different land-use types. The

CORINE Land Cover methodology adapted for

Colombia, for example notes that additional infor-

mation, such as aerial photography or high-resolution

satellite imagery is necessary to identify coffee and

cacao crops planted as agroforests (IDEAM 2010).

Even more, due to the presence of shade-trees, AFS

are often classified as forests in remote sensing prod-

ucts based on automated classification algorithms (i.e.

Global Forest Watch, Watch 2002).

There are only a few studies in the tropics that

mapped AFS using remote sensing, and even fewer

that characterized canopy structure. For example, the

mapping of AFS has been mainly done using high

resolution imagery such as Quickbird or WorldView 2

using visual interpretation (Bégué et al. 2015), clas-

sification algorithms based on textural features

(Gomez et al. 2010; Lelong et al. 2014), or a

combination of different remote sensing products

from Landsat, MODIS or IKONOS (Zomer et al.

2007). Mapping of canopy structure, such as leaf area

index or above-ground biomass in tropical AFS

however requires multispectral information, such as

provided by MODIS and Sentinel-2 (Taugourdeau

et al. 2014; Karlson et al. 2020). While the aforemen-

tioned studies are distributed around the tropics, there

is no study to our knowledge about remote sensing of

AFS in the Andean region.

In the Colombian Andes cacao and coffee crops are

frequently grown under shade trees, which creates a

more complex horizontal and vertical vegetation

structure than monocultures, increasing biomass, leaf

area index and canopy closure (Isaac et al. 2007;

Dossa et al. 2008). This creates habitats that can be

exploited by different organisms that interact in their

trophic networks (Klein et al. 2006). Furthermore, the

presence of crops with trees in a heterogeneous

agricultural matrix can enhance connectivity among

patches of natural vegetation, thus promoting biodi-

versity conservation outside protected areas (Jose

2012) and sustainable ecosystem management (Gar-

rity et al. 2006).

Due to the high structural complexity and the

presence of native plant species, AFS have been

highlighted as biodiversity refuges (Bhagwat et al.

2008). For example, an increased canopy closure

exerted by shade trees helps maintain habitat quality,

by which biodiversity of different taxa can be

preserved (Klein et al. 2002; Brüning et al. 2018).

AFS have also been identified as carbon sinks because

of their capacity to sequester carbon in both soil and

biomass (Cardinael et al. 2018). Some estimations

have shown that in the Andean region the biomass in

AFS reaches up to 87.37 tons per hectare (Orozco et al.

2015), subject to the species composition and climate.

Although the amount of above-ground biomass stored

in AFS is in general lower than those in mature forests,

they store more biomass than coffee and cacao

monocultures. The structural complexity in the canopy

of AFS not only promotes stand productivity and

biodiversity through complementary resource utiliza-

tion (Scheper 2019), but also improves the habitat

quality for canopy-dwelling and below-ground organ-

isms (Ishii et al. 2004). The presence of a canopy layer

in AFS offers multiple regulating ecosystem services,

such as microclimate regulation, buffering drought

events (DaMatta 2004), the prevention of soil erosion

and pest control (Kuyah et al. 2017).

Therefore, variables of forest stand and canopy

structure are essential for quantifying ecological

processes and ecosystem services, but are often

difficult and demanding to obtain directly. For exam-

ple, hemispherical photography using canopy pictures

with a fish-eye lens (Garrigues et al. 2008) is an

inexpensive and efficient way to obtain relatively fast

measurements of leaf area index and canopy closure

(Garrigues et al. 2008; Fournier and Hall 2017).
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Terrestrial laser scanning has also been used to

measure canopy openness and canopy gap distribu-

tions at high precision (Seidel et al. 2012) and to

estimate the distribution of biomass (Calders et al.

2015), but is more expensive. Satellite remote sensing

along with ground measurements has been used to

efficiently predict structural and biophysical variables

of forests (Boyd and Danson 2005; Korhonen et al.

2015, 2017) and to classify different forest types

(Laurin et al. 2016; Erinjery et al. 2018; Morin et al.

2019). It even allows to derive continuous variables

such as canopy closure (CC), leaf area index (LAI) and

above-ground biomass (AGB) that are key variables

characterizing forest stand and canopy structure. For

example, models based on Sentinel-2 imagery in

combination with hemispherical photography as

ground truth have shown to accurately predict LAI

(Korhonen et al. 2017). Also, above-ground biomass

(AGB) has been derived successfully for forests using

satellite images at local or regional scales (TSITSI

2016; Korhonen et al. 2017). Even canopy features

like tree cover has been estimated for forests world-

wide and made available freely (Hansen et al. 2013;

Martone et al. 2018), however, these products are

limited in their spatial resolution and plantations or

AFS are often classified as forests (Tropek et al. 2014).

AFS structure in the tropics is more complex than in

temperate regions, where trees are often located as

field boundaries in order to function as windbreaks

(Nair 1985). Due to the mixed and heterogeneous

arrangement of shade trees inside the Andean AFS of

coffee and cacao, it is hard to recognize and differ-

entiate them from forests using remote sensing.

Nevertheless, density of shade trees causes variation

in CC, LAI and AGB, which could be useful to

distinguish AFS from forests in a heterogeneous

landscape matrix. Even though AFS are poorly

characterized in terms of their structure and biomass,

their monitoring could support decision making that

leads towards the improvement of the benefits pro-

vided by AFS to nature and people. The objective of

this study is to detect AFS through the mapping of

AGB, LAI and CC using Sentinel-2 spectral and

textural information in the Colombian Andes.

Material and methods

Study area

The study area is a micro watershed called Las Cruces

and is located on the Serranı́a de los Yariguı́es, an

isolated mountain ridge in the Northern Andes of

Colombia (Fig. 1). Las Cruces is part of the buffer

zone of the Yariguı́es National Natural Park in the

municipality of San Vicente de Chucurı́. The micro-

watershed has an extension of 5779 ha, ranges in

elevation between 570 and 2650 m.a.s.l.; annual

precipitation ranges between 1500 and 1700 mm and

the mean temperature is around 22.5 �C (Pinilla et al.

2018). Las Cruces is very important for the water

provisioning of San Vicente de Chucurı́ and for the

production of food, such as cacao, coffee, avocado,

citric fruits and vegetables, which are cultivated in a

heterogeneous landscape consisting of mainly diver-

sified AFS but also intensified monocultures as well as

forests fragments and cattle pastures. Las Cruces has

been studied within the GEF-Satoyama project (http://

gef-satoyama.net/) and proposed as a Socio-Ecologi-

cal Production Landscape (SEPL) highly valuable for

the conservation of biodiversity.

Detection of AFS

In order to distinguish AFS reliably from forests and

permanent crops such as coffee and cacao, we

implemented a methodology based on forest structure

variables such as LAI, AGB and CC. These variables

were assessed in 50 on-ground plots and related to a

diverse set of spectral and textural variables derived

from a Sentinel-2 imagery (Fig. 2). The 50 plots were

selected based on a stratified sampling design, in

which production systems and forests were classified a

priori based on a visual estimation of their canopy

closure (i.e. low shade cultivation or monocultures:

less than 30% canopy closure; agroforests: between 30

and 70% canopy closure; forests: more than 70%

canopy closure). This resulted into a homogeneous

ground sampling across the management gradient

from low shade monocultures (11 plots) to diversified

AFS (29 plots) and conserved forests (10 plots) in the

vicinity of the National Natural Park Serranı́a de los

Yariguı́es (Fig. 1).
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Ground measurements and calculation of vegetation

structure variables

Stand structure of AFS, including tree density, tree

height, basal area and species composition was

assessed using the Point Centered Quarter method

(PCQM) (Mitchell 2015). The PCQM has shown to be

an efficient and reliable method to characterize forest

stand structure (Jafari et al. 2013; Manduell et al.

2012). Also PCQM has proved to be appropriate for

ground-truth data in remote sensing analyses (Satya-

narayana et al. 2018) and we consider it as an efficient

sampling method in cultivation systems that exhibit

some sort of planting design. In order to apply PCQM

to AFS, we did two modifications. First, linear

transects were modified to a grid-based design (i.e.

rectangular plots), with a size of 30 by 30 m, with 9

sampling points each 15 m (Fig. 3a). Second, at each

sampling point we applied PCQM sampling twice,

once for the crop trees (referred to as midstory), and

once for the shade trees (referred to as overstory). In

the forest, plots consisted of two linear transects with 8

points and 15 m between them (Fig. 3b), because of

the inaccessibility and steep slope of the terrain. The

mid- and overstory in forest were defined in an

arbitrary manner separating trees below and above

10 m. Tree density (for mid- and overstory) was

estimated based on the average distance from nearest

neighbor trees. Correction factors were applied in case

when an overstory tree appeared in more than one

quadrant as a nearest neighbor tree (Mitchell 2015;

Warde and Petranka 1981). Basal area (BA) of each

tree was calculated from its diameter at breast height

(DBH). Additional to PCQM sampling we assessed

LAI and CC using hemispherical canopy photography.

To do so, on each plot we took four pictures in the

middle of each quadrant spanned up by the 9 PCQM

sampling points using a Canon Powershot G6 camera

and a Fish eye lens Raynox DCR-CF 185PRO. The

hemispherical pictures were taken at twilight, avoid-

ing the direct sun to achieve a good contrast between

the canopy and the sky and were analyzed using Gap

Light Analyzer (GLA, Frazer et al. 1999) to estimate

LAI and CC. Finally, we calculated AGB for each

Fig. 1 a False-color Sentinel-2 composite image of the study area from June 2018, green line represents the limits of Yariguı́es

National Natural Park. b Zoom in showing the locations of vegetation plots in blue within the Las Cruces micro-watershed
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plot, and mid- and overstory separately, using allo-

metric equations for coffee (Segura et al. 2006), for

cacao, fruit tree species and Musaceae plants (Somar-

riba et al. 2013) as well as for shade trees (Alvarez

et al. 2012) by multiplying the mean biomass of a mid-

and overstory tree with the tree density of each layer.

In order to explore the structural variability across

plots, we use Principal Component Analysis (PCA)

considering all vegetation structure variables. Field

work was done from April to October 2018 and

subsequent calculations of structural variables were

Fig. 2 Workflow summarizing the recognition of agroforestry systems (AFS) by means of field measurements and remote sensing

using Sentinel-2 imagery. *GLCM refers to texture features calculated from Grey Level Co-ocurrence Matrices
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done using the R environment for statistical comput-

ing, Version 3.6.2. (Development Core Team 2011).

Remote sensing variables derived from Sentinel-2

imagery

We downloaded a Sentinel-2 scene from 23rd of June

2018 using ESA’s platform Copernicus scihub

(https://scihub.copernicus.eu/dhus/#/home). This

scene was the only almost cloud-free image that could

be obtained between January and October 2018 for the

study area. We applied atmospheric correction using

the Sen2Cor processor from the Sentinel Application

Platform (SNAP v6.0. 2019). For further analyses all

spectral bands were spatially resampled to 10 m using

as a reference the blue band, and reprojected to UTM

18 N zone using nearest neighbor resampling for both

steps. Finally, the area of the image was masked to the

area of the Las Cruces micro-watershed (Fig. 1).

Using the Thematic Land Processing tool in SNAP,

we estimated 14 radiometric derived vegetation

indices (VIs, see Supplementary Table 1), and 5

biophysical parameters: leaf area index, fraction of

absorbed photosynthetically active radiation (fapar),

fraction of vegetation cover (fcover), Chlorophyll

content in the leaf (Cab) and Canopy Water Content

(CW). The biophysical parameters were estimated

based on neural networks where 5 radiative transfer

models (or neurons in the hidden layer) were trained to

estimate each of the before mentioned variables using

11 normalized spectral bands as input layer (Weiss and

Baret 2016). In order to consider image textures, we

calculated texture layers using Grey Level Co-ocur-

rence Matrix (Haralick and Shanmugam 1973) using a

moving window size of 5 by 5 pixels which resulted

into 7 textural features known as contrast, dissimilar-

ity, homogeneity, entropy, mean, variance and corre-

lation (Haralick and Shanmugam 1973). Texture

Fig. 3 Plot design using the PCQM. Distribution of PCQM points (shown as crosses) and hemispheric canopy photograph (circles) in

a AFS and b forests
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layers were calculated using the NDVI band with the

Texture Analysis tool in SNAP. Hence, taking into

account 11 spectral bands of Sentinel 2 (excluding B1

and B10, because their coarse spatial resolution of

60 m and little information beyond their help to

atmospheric correction), 37 layers were generated to

be used as variables for predicting LAI, AGB and CC

measured on ground in the 50 plots.

Predicting vegetation structure variables

from Sentinel-2 spectral, biophysical and textural

variables

Using the coordinates in the center of the AFS plots

and at the corner points of the forest plots, we

generated polygons for the plots and extracted the

mean of pixel values within each polygon in the 37

raster layers. We generated a matrix of 37 predictor

variables for the 50 plots (Fig. 2), which were used to

predict LAI, AGB and CC using Random Forest

regression. For Random Forest regression we used

default values for the parameters ntree (number of

trees) and mtry (number of variables randomly sam-

pled as candidates at each split). To evaluate the model

quality, we report the out-of-bag error of the Random

Forest model, the Pearson’s correlation coefficient

(R2), the root mean squared error (RMSE) as well as

the relative RMSE (in %) resulting from the compar-

ison of observed versus predicted values. Before

generating maps for the three response variables LAI,

AGB and CC, we realized a supervised land-use

classification to mask pixels of water, urban settle-

ment, bare soil and pastures. To do so, we used

Random Forest classification with 324 training points

(109 for forest, 47 for pasture, 43 for crops, 52 for

water, 39 for bare soil and 34 for urban cover) mapped

during field work and the 11 spectral bands of the

Sentinel-2 image (excluding B1 and B10, because of

their coarse resolution). The Random Forest classifi-

cation resulted in an overall accuracy of 86% derived

from the confusion matrix. For the remaining pixels,

we predicted LAI, AGB and CC using Random Forest

regression as explained above. Feature extraction,

model building and predictions were done using the

packages ‘‘raster’’, ‘‘rgdal’’ and ‘‘RandomForest’’

within the R language for statistical computing

(Hijmans and Van Etten., 2012; Bivand et al. 2015;

Liaw and Wiener 2002; R Development Core Team

2011). The final maps were laid out using QGIS 3.6.2

Noosa (QGIS Development Team 2015).

To detect AFS, we defined empirical thresholds for

AGB, LAI and CC based on our model predictions

(Fig. 5), the on-ground measurements (see Supple-

mentary Fig. 1) and literature values about AGB and

CC in tropical AFS (Nair et al. 2010; Dhyani et al.

2020). Then, we validated the accuracy of the

classification using the confusion matrices of two

classifications, one with two categories (AFS vs.

forest) and another with three (monocultures vs. AFS

vs. forest). Finally, in order to evaluate the CC of AFS

in the context of global forest cover, we compared our

predictions of CC with tree cover derived from the

global forest change data-set (Hansen et al. 2013) for

the year 2018.

Results

Vegetation structure

A principal component analysis of the vegetation

structure variables (see Table 1) derived from the

PCQM sampling and hemispherical photography

uncovered a gradient from monocultures, over AFS

to natural forests that is summarized in two dimen-

sions representing more than 72% of the variance

(Fig. 4). Forests differentiate from the remaining

vegetation because of their higher AGB, LAI, CC

and tree density of the overstory. However, the

differentiation of AFS from monocultures is less

pronounced. Furthermore, structural variation within

the AFS emerge from the density and basal area of

midstory trees, which however is less well captured by

the a priori classification.

Predicting vegetation structure variables

from Sentinel-2 variables

Random Forest regression (RF) allowed very good

predictions of LAI, AGB and CC from Sentinel-2

imagery derived variables (Fig. 5). Linear models

between predicted and observed values for LAI, AGB

and CC showed a high accuracy of predictions with R2

of 0.91 for LAI, 0.92 for AGB, and 0.9 for CC,

respectively (Fig. 5a, b, c). This translates into relative

root mean squared errors (RRMSE) of 19% for LAI,

34% for AGB and 9% for CC (Fig. 5). In general, for
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all three variables, models slightly underestimate high

values and overestimate small values. The most

important variables for LAI, AGB and CC predictions

were the atmospherically corrected optical bands of

the Sentinel-2 image, followed by some radiometric

derived biophysical parameters: canopy water content

(lai_cw), leaf area index (lai) and fraction of photo-

synthetically active radiation (fapar). Vegetation

spectral indices (VIs) and Grey Level Co-ocurrence

Matrix (GLCM) features did not show a strong

influence in the model predictions (Fig. 5). Finally,

based upon the predictions of the models obtained for

the three variables, we established in a pragmatic

manner thresholds that permit to distinguish forests

from AFS, which is a LAI above 2.25, and AGB above

139 Mg ha-1 and a CC above 82%. These thresholds

Table 1 Vegetation structure variables assessed in the 50 field plots

Variable Abbreviation Units Mean Range

Tree density of midstorey layer D_mid Number of individuals per plot 250.89 46.15–831.66

Tree density of overstorey layer D_over Number of individuals per plot 17.90 0.68–64

Total basal area BA m2 ha-1 1.923 0.25–7.08

Basal area in midstorey BA_mid m2 ha-1 0.29 0.03–0.95

Basal area in overstorey BA_over m2 ha-1 1.63 0.13–7.03

Mean height of crops H_mid m 3.35 1.13–6.86

Mean height of shade trees H_over m 12.24 2.84–24.50

Leaf area index LAI Unitless 1.63 0.07–3.60

Canopy closure CC % 70.02 19.45–93.25

Above ground biomass AGB Mg ha-1 103.36 4.38–405.22

Fig. 4 Results of the principal components analysis

(PCA) showing the structural variation across field plots (a).

Black dots represent forest plots, grey dots agroforestry systems

(AFS) and white dots monocultures under low shade. Variables

and abbreviations are the same as in Table 1, ‘mid’ refers to

midstory (i.e. crop layer), while ‘over’ refers to overstory (i.e.

shade tree layer). The proportion of variance explained by each

principal component is provided in brackets at each axis. The

two inserts on the right (b and c) show the distribution of PC

coordinates among the three land-use types, clearly separating

forests from AFS on PC1
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are derived from the model predictions within the

study area (Fig. 5, pointed line), and can be considered

a data-driven adjustment of the a priori defined

thresholds in the field (compare Supplementary

Fig. 1).

Mapping vegetation structure variables and AFS

Using the Random Forest regression models, we

mapped LAI, AGB and CC (see Fig. 6 a, b, c) for the

Las Cruces micro-watershed and identified the distri-

bution of AFS therein based upon the established

thresholds (Fig. 6d). While the classification of AFS

vs. forest is almost perfect with an overall accuracy of

94% and a kappa of 0.82 (Table 2), the classification

taking into account low-shade monocultures (i.e.

monocultures vs. AFS vs. forests) is fair, overestimat-

ing the occurrence of monocultures yielding an overall

accuracy of 50% and a kappa of 0.25 (Table 3). Hence,

we estimate that around two-thirds of Las Cruces is

used under AFS management (excluding low shade

monocultures) with a LAI between 1.10 and 2.25, an

AGB between 60 and 139 Mg ha-1 and a CC between

50 and 82%. Based on our analysis the CC of forest is

always above 82% (Fig. 7; see Supplementary Fig. 1);

this aspect is especially interesting, since the Global

Forest Change product for 2018 (Hansen et al. 2013,

https://earthenginepartners.appspot.com/science-

2013-global-forest) recognizes AFS as forests with a

tree cover near to 100%, which indicates a overesti-

mation of forest area where there are production sys-

tems with a high shade cover.

Discussion

Using field measurements of essential vegetation

structure variables in combination with Sentinel-2

bFig. 5 Scatter plots between observed and predicted values of

LAI, AGB, CC. The insert on the bottom right shows the most

important predictor variables for each model based on the Mean

Decrease in Accuracy (%IncMSE) derived from the out-of-bag

procedure in the Random Forest model. ‘B’ stands for Sentinel-2

optical bands, while ‘lai_cw’ stands for canopy water content;

‘gndvi’ stands for green normalized difference vegetation index;

‘mcari’ stands for modified chlorophyll absorption ratio index;

‘lai’ stands for leaf area index; ‘fapar’ stands for fraction of

photosynthetically active radiation and ‘gemi’ stands for global

environment monitoring index (see Supplementary Information

Table 1 for more detailed information)
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reflectance data, and derived spectral and texture

variables, it was possible to predict LAI, AGB and CC

for the entire study area. Prediction of the models

achieved coefficients of determination (R2) above 0.9

and relative root mean square errors of 19%, 34% and

9% respectively (Fig. 5). These predictions allowed

the detection of AFS and an accurate distinction from

forests with an accuracy of 94% (see Tables 2, 3).

However, also taking into account monocultures

planted below few shade trees, resulted in a lower

accuracy of 50%. This may be because the spatial

information on coffee crops at full exposure (without

shade trees) has not been fully considered in the

sampling design because of its rarity. Consequently,

the presence of few shade trees within a coffee

plantation can influence the spectral fingerprint of

pixels in these areas causing significant overlap with

those of AFS.

Based upon pragmatically defined thresholds, we

have developed a novel approach towards detecting

AFS from satellite imagery. Whether the thresholds

presented here are generally applicable across Colom-

bia has to be demonstrated in future studies, never-

theless they agree with values found in the literature

(Nair et al. 2010; Dhyani et al. 2020). For example,

Marı́n et al. (2016) consider AFS with an AGB of

122 Mg ha-1 while for Zapata Arango (2019) the

higher value of CC found in AFS was 75%. On the

other hand, these thresholds can be applied in a

flexible manner using LAI, AGB and CC values

adjusted to the particular AFS design and management

at different study areas. The estimation of canopy

variables across landscapes can aid the discrimination

between forest and AFS and provide a better under-

standing of canopy properties in agricultural areas.

Field measurements of AGB revealed a maximum

of 405.2 Mg ha-1 in a dense cacao AFS, which even

surpasses the AGB of some natural forest plots and

highlights the great potential of agroforests to store

carbon and mitigate climate change (Nair et al. 2010).

This result could be due to the presence of Citrus fruit

trees in the overstory layer of this cacao plot, which

increases the amount of AGB because of the massive

trunk of Citrus fruit trees. Nevertheless, the mean

AGB of the forests evaluated in this study was around

200 Mg ha-1, while for AFS it was in average

77 Mg ha-1, which agrees well with previous studies

of AFS that report ranges between 12 and

228 Mg ha-1 (Albrecht and Kandji 2003).

PCQM has been developed to characterize the

structure of mangrove forests and has been used as

ground-truth sampling method for remote sensing

without the need to establish fixed area plots (Satya-

narayana et al. 2011, 2018). It has been successfully

implemented in savannas (Satyanarayana et al. 2018)

and has also been shown to be useful to characterize

the structure of AFS in Andean forests to study the

relationship between forest structure and amphibian

community composition (Brüning et al. 2018).

Together with hemispherical photography and allo-

metric equations developed for tropical AFS (Segura

bFig. 6 Maps for leaf area index, LAI (a), above-ground

biomass, AGB in Mg ha-1 (b) and canopy closure, CC in %

(c) for the study area derived from spatial extrapolation using the

Random Forest model. Map of agroforestry systems, AFS

(d) derived from applying thresholds for above-ground biomass

(139 Mg ha-1[AGB[ 60 Mg ha-1), leaf area index

(2.25[LAI[ 1.10) and canopy closure (82%[CC[ 50%).

White areas represent clouds, while pastures, bare soil, urban

and water bodies have been masked and are represented in black

Table 2 Values of overall accuracy and Cohen’s Kappa

obtained from confusion matrices generated from AFS vs.
forest

Reference

AFS Forest Pasture Sum

Prediction AFS 38 1 0 39

Forest 1 9 0 10

Pasture 1 0 0 1

Sum 40 10 0

Overall accuracy: 94.0%, Kappa coefficient of 0.82

Table 3 Values of overall accuracy and Cohen’s Kappa

obtained from confusion matrices generated from monocultures

vs. AFS vs. forest

Reference Sum

AFS Forest Mono-

culture

Pasture

Prediction AFS 11 1 5 0 17

Forest 1 9 0 0 10

Monoculture 17 0 5 0 22

Pasture 0 0 1 0 1

Sum 29 10 11 0

Overall accuracy: 50.0%, Kappa coefficient of 0.25

123

Agroforest Syst (2021) 95:499–514 509



et al. 2006; Somarriba et al. 2013), it can be considered

a simple, fast and effective method to characterize the

structure of AFS, with little sampling effort taking

advantage of the planting design of AFS. However,

implementing this methodology in other regions

where AFS design might be different may require

adjustments in the PCQM sampling and the consider-

ation of local allometries which can cause changes in

carbon storage (Albrecht and Kandji 2003).

Using thresholds identified from the Random Forest

model predictions allowed us to accurately map AFS.

Although field measurements of some cacao crops

obtained an AGB greater 140 Mg ha-1, the predic-

tions for AGB in AFS plots did not show values over

138 Mg ha-1, while forests did not have values below

this limit. Therefore, we established 139 Mg ha-1 as

the AGB threshold between forest and AFS. Never-

theless, when applying this threshold, some riparian

forest that are in recovery after an avalanche caused by

the Las Cruces river in 2011 are classified as AFS; this

highlights that secondary forests that are in early

stages of recovery may exhibit similar AGB, LAI and

CC values as AFS, which may affect the detection of

AFS as presented here and needs to be taken into

account. A possible solution might be to incorporate

textural features directly in the detection of AFS using

a classification approach instead of using thresholds of

CC, LAI and AGB.

Spectral information of Sentinel-2 has been shown

to accurately estimate stand parameters for Pine

monocultures (Hawryło and Wę _zyk 2018) and AGB

in forests (Dang et al. 2019) whereby the reflectance

bands B11 (SWIR-1) and B12 (SWIR-2) were impor-

tant predictor variables. SWIR bands deliver infor-

mation about crop conditions, as health and moisture

and therefore have been useful for vegetation map-

ping, crop classification and forest monitoring (Zhang

et al. 2017; Jadhav and Deshmukh 2019). Some

studies in tropical forest also have shown the impor-

tance of the bands in the shortwave infrared region for

classification and regression using machine learning

methods (Zhang et al. 2019; Chen et al. 2019). Here

we have confirmed that SWIR-1 and SWIR-2 provide

important information for predicting LAI, CC and

AGB in Andean AFS (see Supplementary Fig. 2 and

Fig. 4). It is interesting that the LAI canopy water

content estimated by SNAP (lai_cw; Weiss and Baret

2016) was also useful for the LAI and AGB prediction

models. The influence of lai_cw in the AGB and LAI

estimation may be due to the higher generation of

water vapor by covers that contain higher amounts of

photosynthetic material (AFS or forest), related with

their biomass content. In general, textural features

were of little importance for prediction models

although some authors have reported their utility to

discriminate land-use types (Laurin et al. 2016). Using

Fig. 7 Map of a forest vs. AFS, b canopy closure prediction from this study, and c tree cover derived from the global forest change data-

set (Hansen et al. 2013) for the year 2018
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textural features, it has been possible to recognize

coffee under shade in eastern Africa (Lelong and

Thong-Chane 2003) and estimate AGB in forests

when combined with other spectral indices (Lu 2005;

Safari and Sohrabi 2016). The higher influence of

spectral variables rather than the textural features

when both are used as predictors of AGB could reflect

a low order in plantation design of the AFS stand

structure in the study area (Lu 2006). It can also be

caused by a mismatch in scale between field plot area

(30 by 30 m) and textural features calculated with a

moving window resulting into a size of 50 by 50 m. In

order to evaluate the importance of textural features,

we rerun Random Forest models only with them.

While models generated based on textural features

only, resulted in satisfactory predictions of CC, LAI

and ABG with R2 greater than 0.8, these are less well

suited for establishing thresholds to detect AFS (see

Supplementary Fig. 5).

The high R2 values obtained between observed and

predicted values (Fig. 5), support the idea that a

combination of spectral and textural features is an

efficient way to estimate AGB using multispectral data

(Gao et al. 2018). The excellent model adjustments are

likely caused by the local scale of the analysis and the

good representation of the management gradient.

Probably, more ground sampling at the ‘monoculture

side’ of the management gradient could improve the

distinction of AFS with little CC (i.e. monocultures)

from AFS and other vegetation types such as early

stages of forest regeneration. Because there is no

measurement of AGB in pastures or other kinds of low

biomass natural vegetation, probably lower values in

biomass are overestimated. In order to accurately

estimate AGB in AFS and detect this land-use type in

the landscape, AGB measurements should be per-

formed in patches of forest regeneration as well to

avoid confounding effects. Moreover, detailed infor-

mation about the composition and wood density of the

tree species will improve the AGB estimation through

allometries.

While CC, LAI and AGB have been successfully

estimated in AFS around the world using multispectral

sensors (e.g. Hansen et al. 2013; Dube and Mutanga

2015; Korhonen et al. 2017) and high resolution

images (see Taugourdeau et al. 2014), to our knowl-

edge this is the first study doing so in the Andean

region. Even more, AFS in Colombia are frequently

classified as forests in land-use classifications and

hence no quantification or monitoring of their extent

exists. Considering the deviation of CC between this

study and the global product by Hansen et al. (2013)

using Landsat products (Fig. 7), we highlight the need

for a refined mapping of AFS in order to better

quantify their economic, social and environmental

value, especially in developing countries (Garrity

et al., 2006).

Conclusions

Above-ground biomass, leaf area index and canopy

closure are essential ecosystem variables and associ-

ated to important ecosystem processes and services.

Here, we have shown that these variables can be

accurately estimated and mapped for species-rich

Andean forests and AFS in rough terrain and under

different management intensities. Moreover, they can

be used to detect AFS, which so far, has been a

challenge and has not been a major subject of remote

sensing studies. Considering that AFS do provide

important ecosystem services and are important for the

conservation of biodiversity in human dominated

tropical landscapes, the presented study opens new

avenues for mapping and monitoring the dynamics of

AFS using freely available remote sensing imagery.

This can improve the planning and decision-making

associated with this traditional tropical land use and

strengthen its multifunctional role associated with

ecosystem service provisioning, climate change mit-

igation, biodiversity conservation and human well-

being.
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Ardila for their support during field sampling. Finally, we thank

Prof. Dr. Hannes Feilhauer for his comments on this ms.

123

Agroforest Syst (2021) 95:499–514 511

http://gef-satoyama.net/


References

Albrecht A, Kandji ST (2003) Carbon sequestration in tropical

agroforestry systems. Agr Ecosyst Environ 99(1–3):15–27

Alvarez E, Duque A, Saldarriaga J, Cabrera K, De G, Lema A,

Moreno F, Orrego S, Rodrı́guez L (2012) Forest Ecology

and Management Tree above-ground biomass allometries

for carbon stocks estimation in the natural forests of

Colombia. For Ecol Manage 267:297–308
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