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Abstract This study aimed to model the height of

trees and volumetric production of eucalypts trees on

the agrosilvopastoral systems (AGP) of Zona da Mata

Mineira region, Brazil, using artificial neural network

(ANN) and regression models to determine the best

alternative. The data was obtained from five systems

with different spatial arrangements (8 9 3 m,

10 9 3 m, 11 9 3 m, 12 9 3 m, 12 9 2 m, and

12 9 4 m), ages (5.5, 6.5 and 8 years) and genotypes,

of which 122 sample trees were scaled. Hypsometric

and volumetric models were adjusted considering no

stratification or stratification by the AGP, spatial

arrangement, and genotype. A multilayer perceptron

ANN was trained using resilient propagation and skip

layer training algorithms. The stratification variables

used in the regression were used in the ANN as

categorical variables. To estimate height of trees were

used as continuous variables: diameter at breast height

(dbh), dominant height (Dh), and age. To estimate

volume were used as continuous variables: dbh, total

height, and age. The AGPs’s mean annual increment at

5.5, 6.5 and 8 years of age ranged from 21 to

62 m3 ha-1 year-1. ANN was proven to be an

efficient methodology for hypsometric and volumetric

estimates of eucalypt in AGP in the study region.

Keywords Agroforestry system � Forest inventory �
Eucalypt � Artificial intelligence

Introduction

Zona da Mata is located in Minas Gerais, a southeast-

ern region of Brazil, and is predominantly character-
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ized by small rural properties with large conventional

livestock activity. However, most of this region is

degraded because of intensive use and inadequate soil

management (Vale et al. 2004; Souza et al. 2012; de

Freitas et al. 2013; Pereira et al. 2018). An alternative

for recovering these areas can be the implantation of

agrosilvopastoral systems (AGP) or silvopastoral

systems (SPS) (Dube et al. 2002; Lacerda et al.

2013; Lana et al. 2018). These systems are character-

ized by the integration of agriculture, forestry, and

animal husbandry at the same place, under a specific

spatial and temporal arrangement, enabling ecological

and economic interactions between components (Nair

1993).

AGP and SPS have desirable economic and envi-

ronmental value, and are capable of promoting greater

land use efficiency, production diversification, soil

conservation, water and biodiversity conservation, and

thermal comfort of animals (Magalhães et al. 2007;

Ferreiro-Domı́nguez et al. 2011; Bishaw et al. 2013;

Bisseleua et al. 2013; Lemaire et al. 2014; Cordeiro

et al. 2018; de Oliveira et al. 2018).

In Brazil, the use of eucalypt species as a tree

component in agroforestry systems (AFS) is frequent

because of its rapid growth, good adaptation to

edaphic and climatic conditions, genetic improve-

ment, and the knowledge about its management

(Oliveira Neto et al. 2007; Torres et al. 2016).

According to da Silva et al. (2016), this is the most

productive genus in terms of even-age forests in Brazil

with an average productivity of 36.0 m3 ha-1 year-1

(IBÁ 2019), and has become an economically attrac-

tive alternative for smallholders seeking to increase

their income through timber production without

relying solely on long-term income.

The Program of Fortification for Family Farming

(PRONAF Floresta) and the ABC Plan (Low Carbon

Agriculture) (Plano 2012) have been driving the

diffusion and adoption of AFS in Brazil (Stabile et al.

2012; Oliveira et al. 2016). However, there is little

information about forest productivity in these systems.

Information on growth stocks and timber production is

important for economic analyses to help smallholders

with their decisions (Scolforo et al. 2019).

The quantification of growth and yield is performed

using forest inventories, where estimates of tree height

and volume can be obtained using regression models

(Burkhart and Tomé 2012), and/or artificial neural

networks (ANNs) (Campos and Leite 2013). Several

studies have been conducted to estimate total tree

height and volume using ANNs (Diamantopoulou

et al. 2009; Diamantopoulou and Milios 2010; Soares

et al. 2011; Diamantopoulou 2012; Binoti et al.

2013, 2017; Özçelik et al. 2013; Tavares Júnior et al.

2019).

An ANN can be defined as a computational

technique composed of several artificial neurons,

which are connected in a specific manner and dis-

tributed in parallel layers (Haykin 2009). The dissem-

ination of this technique in the forestry field is

associated with some advantages, such as the ability

to model nonlinear relationships, the possibility of

simultaneously inserting categorical variables, neuro-

biological analogy, and tolerance to noisy data (Haykin

2001; Che et al. 2018; Tavares Júnior et al. 2019).

Such characteristics can facilitate the modeling of

growth and forest yield in AFS. As they are complex

and heterogeneous systems whose components are

subject to the interactions of several factors (Nair

1993; Brüning et al. 2018), modeling the tree compo-

nent using regression models can be a complicated

task (Binoti et al. 2017), since it requires compliance

with statistical premises (Che et al. 2018).

However, a number of studies on ANNs have been

carried out with eucalypts monocultures, and most

studies on AFS with this species still use regression

(Fontan et al. 2011; Müller et al. 2014; Barbosa et al.

2019). Thus, owing to the differences in productive

capacity, spatial arrangement, and cultural treatment

of AGP, it is important to focus on the prediction of

tree height and volume in these systems. The objective

of this study is to find the best alternative for

estimating tree height and volumetric production of

eucalypts trees in AGP using ANN and regression

models in four municipalities of Zona da Mata, Minas

Gerais.

Materials and methods

Study area characterization

The mesoregion of Zona da Mata (Fig. 1) has a Cwb-

type climate, with annual temperature and precipita-

tion averages being approximately 18 �C and

1500 mm, respectively. The topography is character-

ized by a mountainous terrain with a predominance of

deep and drained oxisols, along with high acidity and
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low natural fertility (Cardoso et al. 2001). Land use in

the Zona da Mata region can be characterized by

perennial and annual crops and pastures. The pastures

occupy approximately 1.2 million hectares in the

region under different management conditions (Hott

et al. 2016).

The data was collected from five AGPs located in

Zona da Mata mineira region (Fig. 1), implanted in

no-tillage systems in areas with degraded pastures.

The systems were composed of corn (Zea mays) and

(Phaseolus vulgaris) in the first year, followed by

Brachiaria grass (Urocloa spp.) and the animal

component (Bos taurus) inserted after the establish-

ment of an arboreal component (Eucalyptus uro-

phylla 9 Eucalyptus grandis, Eucalyptus saligna, and

Eucalyptus grandis). For all cultures, implantation and

maintenance fertilization based on chemical analyses

of soil samples and technical fertilization recommen-

dations were performed. Table 1 presents the descrip-

tions of AGPs.

Data

In AGPs 1 and 2, the diameter and height of all trees

were measured (202 and 383, respectively). In the

other AGPs, 3 plots of 24 trees were installed for each

genotype in the study area. In these plots, the

diameters at breast height (cm) (dbh) of all trees and

the total height of the first eight trees classified as

normal (free from any type of defect and not

bifurcated) were measured. The dominant height

(Dh) was measured according to Assmann (1970),

which is equivalent to the average height of the 100

largest trees in dbh per hectare.

A total of 122 trees were scaled to estimate the

volume, using a selective sampling of 3 trees per

diametric class, with an amplitude of 2 cm in each

class. Measurements of bark diameters were made at

heights of 0.1, 0.3, 0.7, 1.0, and 1.3 m, to the height

where the bark diameter was approximately 7 cm. In

areas where this destructive method could not be used,

the trees were scaled standing upright using a Wheeler

pentaprism (Campos and Leite 2013). In all cases,

scaling was performed using the Smalian formula

(Avery and Burkhart 2002). The total number of trees

scaled in each area was as follows: 35 (AGP 1), 18

(AGP 2), 50 (AGP 3), 20 (AGP 4), and 16 (AGP 5).

Regression modeling

The data from forest inventory and trees scaled were

used to fit the hypsometric and volumetric models.

First, the total height was estimated using the model

proposed by Campos et al. (1984) (1), with the

dominant height (Dh) based on the average of the tree

heights of the three dominant diameters in each plot, or

in each planting line in the case of a census, according

to Assmann (1970). Then, the model proposed by

(Schumacher and Hall 1933) was used for volumetric

estimation (2).

LnHi ¼ aþ bdbh�1
i þ cLnDhi þ e ð1Þ

Vi ¼ adbhbi H
c
i e ð2Þ

where the variables are volume V (m3), tree height H

(m), dominant height Dh (m), diameter at 1.30 m

height dbh (cm) and Ln is the neperian logarithm. The

parameters of the models are a, b c and e a random

error such that e * NID (0, r2).
The model parameters were estimated by the

ordinary least squares method using the Gauss–

Newton algorithm implemented in ‘‘stats’’ package

in R environment (Team 2013). An identity test

(Graybill 1976) was applied to evaluate the need for

using stratum-specific equations (AGP, spatial

arrangement, and genotype). The evaluated hypothesis

is as follows:

Fig. 1 Localization of AGP used in the study
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H0 :

aklj
bklj
cklj

2
4

3
5 ¼

ak0l0j0
bk0l0j0
ck0l0j0

2
4

3
5

where k, l, and j indicate AGP, spatial arrangement,

and genotype, respectively, and k = k�, l = l� e

j = j�.
At a significance level of 5% with n - 2 degrees of

freedom, the F-statistic tests the hypothesis H0:

b = [0,1]. If F (H0)\ F a (2, n - 2 gl), the hypothesis

is not rejected, assuming identical data.

Artificial neural networks

The data from forest inventory and scaled sample tree

were also used to train the ANN. The total height and

tree volume were estimated using a multilayer

perceptron (MLP) ANN. This type of ANN was used

as it can universally approximate functions, besides

being widely used in modeling the height and volume

of eucalypts trees (Binoti et al. 2013; Tavares Júnior

et al. 2019). The ANN was trained with different

architectures, and using resilient propagation with

basic variation RPROD ? (Riedmiller and Braun

1993) and skip layer training algorithms. The number

of neurons in the hidden layer ranged from 3 to 15,

since an excess of neurons in a hidden layer can

promote overfitting (Haykin 2001). The tested types of

activation functions of the hidden and output layers

were logistic, identity, sigmoid, exponential, hyper-

bolic tangent, and softmax. Thus, all activation

functions in the Neuroforest� 4.0 software (Binoti

2012) were tested.

For estimating the total height, we used dbh,

dominant height (Dh), and age as continuous vari-

ables. For estimating the trees volume, we used dbh,

total height, and age as continuous variables. Spatial

arrangement, AGP, and genotype were used as

categorical input variables to generate estimates of

total height and volume of trees. Spatial arrangement,

AGP, and genotype were used as categorical input

variables to generate estimates of total height and

volume of trees. Categorical variables were encoded

using binary variable vectors for the artificial neuron

calculation to proceed. Continuous variables were

Table 1 Characterization of AGPs with eucalypt in Zona da Mata mineira region

AGP Genotype Spacing

(m)

Eucalypt

age

(year)

Agricultural

culture/

Cultivation

cycle

Planting

forage

Cattle entry

(months after

eucalypt

planting)

Grazing

practices

Area

(ha)

1 E. urophylla 9 E.
grandis

12 9 2

12 9 4*

8.0 Zea mays/1 When corn

and

eucalypt are

planted

12 Rotational 0.60

2 E. saligna 8 9 3 8.0 Zea mays/1 When corn

and

eucalypt are

planted

12 Rotational 0.93

3 E.
urophylla 9 E.grandis

e E. grandis

10 9 3 5.5 Zea mays/2 At the same

time as the

second corn

crop

9 Rotational 6.0

4 E. urophylla 9 E.
grandis

11 9 3 8.0 Zea mays/3 At the same

time as the

third corn

crop

24 Continuous 2.0

5 E. urophylla 9 E.
grandis

12 9 3 6.5 Phaseolus
vulgaris/1

After growing

beans

10 Rotational 3.5

*Initially composed of eucalypt and acacia (Acacia mangium—interspersed on the planting line), in a 12 9 2 m spatial arrangement.

At 4 years of age, thinning of the acacia was carried out providing the spatial arrangements 12 9 2 m and 12 9 4 m
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normalized linearly at intervals from 0 to 1 using the

following transformation (Binoti 2012):

xstandard ¼
ðx� xminÞðb� aÞ
ðxmax � xminÞ

þ a ð3Þ

where: x standard is a standardized value; x max and

x min are the minimum and maximum values of the

variable, respectively; a is the lower limit of stan-

dardization (0); and b is the upper limit of

standardization.

For the ANN training process, the data obtained

from forest inventory and trees scaled were split into

two sets, with 70% of data used for ANN training and

the remaining 30% for validation, as suggested in

some forest modeling studies involving ANN (Binoti

et al. 2015; Lacerda et al. 2017). The data for each set

was chosen randomly by the software used. To

exclude the results because of initial weights, the

training was performed five times for each configura-

tion and topology, out of which one was selected based

on the statistics and analysis described in Sect. 2.5.

The ANN training was performed using the stop-

ping criteria of 3000 cycles or an average squared error

of 0.0001, as suggested by Leal et al. (2015) and

Araújo et al. (2016). Thus, ANN training was com-

pleted when one of these criteria was satisfied.

According to Braga et al. (2000), these stopping

criteria are among the most used to determine the

moment of ANN training completion.

Method evaluation

The accuracy of the tested methods was based on the

root square root mean error (RMSE%) (4), correlation

between observed and estimated (regression) (ryŷ) (5),

and Bias (6). In addition, frequency graphs of

percentage relative errors (ER%) and frequency

histograms of these errors (7) were also analyzed:

RMSE% ¼ 100 �Y�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1

Xn

i¼1
ðY � ŶÞ2

q
ð4Þ

ryŷ% ¼ 100
n�1

Pn
i¼1 ðŶi � ŶmÞðYi � �YÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1

Pn
i¼1 ðŶi � ŶmÞ2

� �
n�1

Pn
i¼1 ðYi � �YÞ2

� �r ; Ym ¼ n�1
Xn
i¼1

Ŷi

ð5Þ

Bias ¼
Xn
i¼1

Ŷi � Yi
n

ð6Þ

ER% ¼ 100
Ŷi � Yi

Yi

� �
ð7Þ

where n denotes number of observations; Ŷi denotes

estimated values; Yi denotes observed values; and

Ym—is the average of estimated values.

A summary of the methodology followed in the

study is presented in Fig. 2.

Results

Regression

No significant difference (p[ 0.05) between the

general equation adjustment and the stratified equation

by AGP to estimate total height was found through the

identity test, so the general hypsometric model was

adjusted. The RMSE% and ryŷ values of the general

hypsometric model were 9.06% and 0.8884, respec-

tively (Table 2). For the volumetric models, no

significant difference was observed (p[ 0.05)

between the adjustment of a general or stratified

AGP equation. However, owing to the bias presented

by the estimates of the general volumetric model, we

decided to use specific models for each AGP.

In identity tests for AGPs 1 and 3, no significant

difference was observed between the adjustment of a

general volumetric equation and specific equations by

spatial arrangement and genotype for the respective

AGPs. Therefore, a general volumetric equation was

defined for these two areas and specific equations for

the others. Table 2 presents the RMSE% (6.11–

11.96%), Bias (- 0.001 to 0.003), and ryŷ
(0.9149–0.9881) statistics for the specific equations,

respectively.

Figures 3 and 4 show the plots of relative errors

from the height and volume estimates obtained using
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the equations in Table 2. The frequency distribution of

the relative errors in the general hypsometric equation

tended to be normal, with 98% frequency of errors

concentrated in the error class ± 20% (Fig. 2). Speci-

fic volumetric equations also resulted in this tendency,

where the frequency of errors ranged from approxi-

mately 94–100% in the ± 20% error classes (Fig. 3).

Thus, the global hypsometric model and the specific

volumetric model by AGP are indicated for eucalypts

stands in AGP in the Zona da Mata region of Minas

Gerais.

Fig. 2 Summary of the methodology followed in the study

Table 2 Parameter estimates and statistics for the adjustment of selected hypsometric and volumetric equations for the studied AGP

Model AGP Parameters Statistics

a b c RMSE

(%)

ryŷ Bias

Estimate

LnHti ¼ aþ bdap�1
i þ cLnHdi þ e General 1.8740* - 9.5639* 0.5595* 8.96 0.8884 0.1000

Vi ¼ aDapbi Ht
c
i e 1-General 9.6096* 1.2868* 1.4711* 7.70 0.9717 0.0028

2 - 9.39022* 1.4191* 1.4264* 6.11 0.9881 0.0007

3-General - 8.9181* 1.9521* 0.6661* 10.40 0.9638 - 0.0010

4 - 8.1671* 0.7848 ns 1.5542* 11.96 0.9477 0.0030

5 - 8.7579* 1.5134* 0.9824* 11.81 0.9149 0.0020

*p\ 0.05; ns p[ 0.05
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Artificial neural networks

Table 3 presents the configuration and statistics of the

best selected ANN to estimate the total height and

volume for each tested training algorithm. The results

of the ANN weights are available as supplementary

material.

The ANNs were accurate for both training algo-

rithms. For training data to predict heights, the

resilient propagation algorithm (RMSE% = 5.32,

ryŷ = 0.9545, and Bias = 0.085) was slightly better

than the skip layer (RMSE% = 5.61, ryŷ = 0.9524, and

Bias = 0.082). However, for validation, the statistics

were less accurate (RMSE% = 10.16, ryŷ = 0.8994,

and Bias = 0.098) when using resilient propagation,

indicating that the skip layer is better for generaliza-

tion (RMSE% = 8.74, ryŷ = 0.9265 e Bias = 0.096).

The same is true for predicting volume, where the skip

layer was more accurate in training (RMSE% = 7.11,

ryŷ = 0.9917, and Bias = 0.0027) and validation

(RMSE% = 9.11, ryŷ = 0.9847, and Bias = 0.0052)

than resilient propagation.

When comparing the results of predicting total

height and volume between regression and ANN, it

was found that both presented ryŷ values close to 1, and

relatively low RMSE% and Bias (Table 2). However,

despite the satisfactory performance shown by both

approaches, the results generated by ANN in some

cases were slightly higher. These results are reinforced

by the relative error graphs plotted for the total height

(Fig. 5) and volume (Fig. 6) estimates, referring to the

training and validation data, through the tested train-

ing algorithms.

According to Figs. 5 and 6, the relative errors were

normally distributed. This behavior of the training data

was similar between the two algorithms. For total

height, it was found that while the resilient propaga-

tion resulted in the highest frequency of errors (38%)

concentrated in the 0% error class during validation,

Fig. 3 Percentage of cases by relative error class percentage of

total height estimates generated by the general hypsometric

equation for all AGPs

Fig. 4 Percentage of cases by relative error class percentage of volume estimates generated by AGP-specific volumetric equations: a 1,
b 2, c 3, d 4, and e 5
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the skip layer was more efficient, concentrating 100%

of error frequency between error classes from - 20 to

15%, while resilient propagation resulted in 96% of

errors being concentrated within ± 20% error classes

during validation.

For estimating volume, it was observed that the skip

layer performed better for training and validation data.

While resilient propagation originated at 90% of the

frequency of errors concentrated in the ± 20%

classes, the skip layer resulted in 97% of the frequency

of errors concentrated in the same class range.

Figures 7 and 8 present the results regarding the

estimates of total height and volume by dominant

height class, obtained by regression and ANN applied

to the AGP inventory data. Although the performance

of regression models was better than that of the ANN,

the ANN was able to follow the same trend as those

obtained by the regression when the deviations were

small and within an acceptable error range.

Although the volumetric equations were superior,

we decided to use ANN to estimate the volume of

eucalypts trees in AGP because of its simplified

procedures. As follows, owing to the lack of

Table 3 Architecture and statistics for hypsometric and volumetric estimates generated by the selected ANNs for all AGP using

Resilient Propagation and Skip Layer algorithms

Output Algorithm Activation function Neurons Data Statistics

RMSE (%) rŷy Bias

Height Resilient propagation Sigmoid 6 Train 5.32 0.9545 0.0850

Validation 10.16 0.8994 0.0980

Skip layer Sigmoid 8 Train 5.61 0.9524 0.0820

Validation 8.74 0.9265 0.0960

Volume Resilient propagation Sigmoid 10 Train 7.35 0.9883 0.0034

Validation 12.36 0.9817 0.0085

Skip layer Sigmoid 8 Train 7.11 0.9917 0.0027

Validation 9.11 0.9847 0.0052

Fig. 5 Percentage of cases per relative error class percentage of total height estimates generated by ANN using resilient propagation (a,
b) and skip layer (c, d) algorithms, for training (a, c) and validation (b, d) data
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information on AGP productivity in the Zona da Mata

region of Minas Gerais, we estimated the volume per

hectare and the mean annual increment (MAI) from

the recommended methodology, which are presented

in Table 4.

AGP 2 presented an MAI from 62 m3 ha-1 year-1

at 8 years, being the most productive system. The

other AGP at this age (8 years) presented an MAI of

25.17 m3 ha-1 year-1 (1) and 23.10 m3 ha-1 year-1

(4). The latter was the least productive AGP among the

studied systems. The AGP 3 showed an MAI of

23.85 m3 ha-1 year at 5.5 years, while the AGP 5

resulted in an MAI of 24.87 at 6.5 years.

Discussion

Advantages of modeling approaches

The use of regression models and ANNs can be

valuable for forest management in AFS since they can

support planning and decision making by smallholders

(Campos and Leite 2013; Scolforo et al. 2019).

Knowledge about the dynamics of growth and yield

of the tree component can help in choosing an AFS

design, for example, the spatial arrangement in which

the implemented tree component and agricultural

culture depends on the purpose (Paula et al. 2013;

Barbosa et al. 2019).

Modeling using these tools also makes it possible to

determine the best time for carrying out cultural tracts,

such as pruning or thinning. These silvicultural

treatments, in turn, are carried out to reduce compe-

tition between system components, and favor the

growth and quality of wood in the tree component

(Fontan et al. 2011; Tonini et al. 2019). This type of

information is also essential for the management of

pasture and agricultural crops since their productivity

is associated with the penetration of solar radiation

into the system (Paula et al. 2013; Peri et al. 2016).

Additionally, diametric distribution modeling is a

good strategy for carrying out the interventions

mentioned above, as it obtains a higher level of detail

of forest stands, thus corroborating a more efficient

management of AFS (Binoti et al. 2012; Diaman-

topoulou et al. 2015). In addition, studies on the shape

of a tree stem using these methods provide information

on the prediction of wood assortment (Souza et al.

2018; Socha et al. 2020). Wood from AFS can provide

greater profitability to smallholders when destined for

multi-products, such as sawn wood, energy wood,

poles, and firewood (Silveira et al. 2011; Barbosa et al.

2019).

Fig. 6 Percentage of cases by relative error class percentage of volume estimates generated by ANN using resilient propagation (a,
b) and skip layer (c, d) algorithms, for training (a, c) and validation (b, d) data

123

Agroforest Syst (2020) 94:2081–2097 2089



123

2090 Agroforest Syst (2020) 94:2081–2097



Based on data from continuous forest inventories, it

is possible to project growth and yield in the future

(Salles et al. 2012; Binoti et al. 2015) and thus, define

the technical harvesting or thinning age (Villanova

et al. 2018), the financial return fromwood (Somarriba

et al. 2014; Salles et al. 2019), and its productive

potential (Dolácio et al. 2020). In addition, these tools

also play an important role in the fulfillment of

ecosystem services, as it is possible to predict the

carbon and biomass stock (Santi et al. 2017; Zianis

et al. 2019), since the arboreal component of AFS has a

greater potential for carbon storage (Kay et al. 2019).

Comparison of modeling approaches

In the present study, it was found that the general

hypsometric model proposed by Campos et al. (1984)

can be used for all AGPs without loss of accuracy.

According to Özçelik et al. (2018), models that use

variables such as local index, dominant height, and age

can often present more accurate estimates than others.

When total height was estimated by ANN, similar

results were observed between resilient propagation

and skip layer training algorithms. Campos et al.

(2016) reported the good performance of resilient

propagation in estimating total height in commercial

eucalypt stands. In the present study, the skip layer

showed a greater accuracy in data validation and a

higher sensitivity to noise data, because of a highly

heterogeneous system with a wide spatial arrangement

(Soares et al. 2017).When comparing the results

obtained by ANN using the skip layer algorithm with

those obtained by regression, a greater accuracy and

normal distribution of errors were observed in the

estimates of total height; however, these differences

were negligible.

Özçelik et al. (2013) estimated the height of

monocultures from Crimean Juniper in Turkey using

ANN and nonlinear regression models, and reported

them as useful approaches. Despite the good accuracy

of regression, the authors reinforce the greater prac-

tical applicability of ANN, as they require fewer

samples in the field. Binoti et al. (2013) also obtained

the same conclusion when estimating the total height

of eucalypt monocultures using these methods. These

results may indicate interesting possibilities in forest

inventories with low data availability and/or financial

constraints, commonly observed in the small rural

properties of Zona da Mata.

For volumetric models, the model proposed by

Schumacher and Hall (1933) presented better perfor-

mance with greater estimation accuracy, when strat-

ified by AGP. According to Campos and Leite (2013),

this model has been widely used in forestry because of

its adjustment feature and lower bias. Based on

specific equations, it was proven that for the 1 and 3

AGPs, there is no difference between the global

volumetric model stratified by spatial arrangement and

genotype. These results demonstrate that spatial

arrangement and genotype cannot influence the stem

shape. However, studies indicate that a spatial planting

arrangement can directly affect individual tree volume

because of a higher radial growth in low-density

planting (Leite et al. 2006; Alcorn et al. 2007;

Liziniewicz et al. 2012; Lin et al. 2013; Ferreira

et al. 2017).

When estimating the individual volume by ANN,

the skip layer was found to be slightly superior in data

validation and noise tolerance than resilient propaga-

tion. According to Bell et al. (2016), the skip layer

makes extra connections directly to the ANN output

layer. Some authors believe that these extra connec-

tions improve training (Srivastava et al. 2015; Huang

et al. 2017). This is suggested as contributing to the

greater efficiency of skip layer in this study.

When comparing the results of regressions with

those from ANN, the error distribution for volume

using regressions was higher than that obtained with

ANN, but the estimates generated by the ANN were as

accurate as the regressions. According to Campos and

Leite (2013), the use of ANN can result in cost

savings, because the amount of data for network

training may be less than that for regression adjust-

ment. Araújo et al. (2016) estimated the volume of

uneven-age forest stands in Minas Gerais, Brazil using

skip layer, and showed similar and even superior ANN

results than regression. These results are interesting

for AFS because of heterogeneous stands, lower

density of the trees, and a more likely occurrence of

noisy data. Variables such as spatial arrangement,

genetic material, soil type, and temperature, among

others, can be included in a single ANN, a fact that

bFig. 7 Plots of the hypsometric relationship by classes (low,

medium, and high) of dominant height, with x-axis represented

by dbh and y-axis by total estimated height by regression

(curves), and predicted by ANN (points) for AGPs: a 1, b 2, c 3,
d 4, and e 5
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could make modeling through regression more com-

plex (Görgens et al. 2009; Binoti et al. 2014; Rocha

et al. 2018).

Considering that the networks were trained with

70% of the data and based on the obtained results, new

studies can be conducted to determine the possibility

of reducing the database without any loss of accuracy.

Such reduction would only make sense on other

occasions when cost, measurement time, and the

modeling of total height and volume of trees would

occur (Tavares Júnior et al. 2019). Binoti et al. (2014)

compared the performance of the model proposed by

Schumacher and Hall (1933), and also demonstrated

the possibility of cost reduction in forest inventory.

Even with a restricted database, ANNs are capable of

generating more accurate volumetric estimates than

regression (Diamantopoulou and Milios 2010). More-

over, in the case of regression, it is necessary to meet

statistical assumptions such as normality,

homoscedasticity, multicollinearity, and others (Gu-

jarati and Porter 2011), which is not the case with an

ANN.

Productivity

The productivity values found in the studied AGPs,

and a high value of MAI (62.41 m3 ha-1 year-1)

observed in the AGP 2 system at 8 years of age

indicate a good adaptation of genetic material associ-

ated with adequate silvicultural treatments. According

to Fontan et al. (2011), good management and right

silvicultural treatments can affect the productivity of

eucalypt stands in AFS. Salles et al. (2012) studied an

AGP with eucalypt clones in a spatial arrangement of

10 9 4 m in northwestern Minas Gerais, and found an

MAI of 24.17 m3 ha-1 year-1 at 8 years of age. This

value is lower than that observed for AGP 2

(62.41 m3 ha-1 year-1) and AGP 1 (25.17 m3 ha-1 -

year-1). Such results can be justified by the differ-

ences in productive capacity between sites and

adaptation of genetic materials (Ogut et al. 2014;

Kim et al. 2015), as well as silvicultural treatments.

The low productivity in the AGP 4 (23.10 m3 -

ha-1 ano-1 MAI) can be attributed to a high late

replanting rate (Trindade et al. 2012; Pereira Filho

et al. 2020) and a significant occurrence of bifurcated

trees. The MAI values at 5.5 and 6.5 years, observed

in AGP 3 (23.85 m3 ha-1 year-1) and AGP 5

(22.21 m3 ha-1 year-1), are lower than those found

by Kruschewsky et al. (2007) (MAI of 29.33 m3 -

ha-1 year-1 at 5.5 years) and Lemos-Junior et al.

(2016) (43.32 m3 ha-1 year-1 at the age of 6). Both

studies are on eucalypt systems, with the first AGP

being in a spatial arrangement 10 9 2 m in the

northwest of Minas Gerais, and the second being a

silvopastoral system in a 3 9 2 ? 14 m spatial

arrangement in triple rosin in the southeastern region

of Goiás State. These results show the influence of

spatial arrangement (Khan and Chaudhry 2007; Zhao

et al. 2011) associated with the quality of site (Clutter

et al. 1983; van Laar and Akça 2007; Resende et al.

2018) on tree productivity in AFS.

bFig. 8 Plots of estimated volume (z axis; m3) by dbh (x-axis;

cm) and height (y-axis; m) by dominant height classes (low,

medium and high) for the AGPs: a 1, b 2, c 3, d 4, and e 5. Red
dots represent estimates by regression, and black dots represent

estimates by ANN

Table 4 Volumetric production and productivity of eucalypt stands in agrosilvopastoral systems located of Zona da Mata mineira

region

AGP Spacial Arrangement (m) Age (years) Volume (m3 ha-1) MAI (m3 ha-1ano-1)

1 12 9 4 and 12 9 2 8 201.37 25.17

2 8 9 3 8 499.32 62.42

3 10 9 3 5.5 131.12 23.84

4 11 9 3 8 184.76 23.10

5 12 9 3 6.5 161.63 24.87
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Conclusions

In the present study, we found that MLN-type ANNs,

using the skip layer training algorithm, were more

efficient in estimating the height and volume of

eucalypt trees in AGPs in the Zona Mata region,

Minas Gerais, and can be recommended for this

purpose. Regression models and ANN are decision

support tools widely used in forestry enterprises, and

they can also assist small holders in AGP

management.

Although the traditional regression models have a

good accuracy, the ANNs also presented some

advantages that facilitated the modeling of height

and volume of trees in AGP. Our study is important,

because it allows us to infer that ANN can be used with

noisy data, which is common in low-density stands.

Thus, the skip layer training algorithm can be recom-

mended for this purpose because of its greater

tolerance to this type of data. Furthermore, the

addition of categorical variables in ANN facilitates

the modeling process, as it allows the inclusion of

variables that can influence the growth of the tree

component. This fact makes modeling through regres-

sion more complex, which in some cases requires the

division of the database into strata, and the subsequent

execution of statistical tests. From the estimates of the

ANN training, the MAI of the studied AGPs was

obtained, which ranged from 23.10 to 62 m3 ha-1 -

year-1 at 8 years of age, 24.87 m3 ha-1 year-1 at

6.5 years of age, and 23.84 m3 ha-1 ano-1 at

5.5 years of age.

Finally, we suggest that future studies involve

ANNs to verify the possibility of reducing a database

while maintaining the same precision obtained with

the classic regression models.
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Viçosa, Viçosa
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Campos JCC, Ribeiro J, Paula Neto F (1984) Inventário florestal

nacional, reflorestamento: Minas Gerais. IBDF, Brası́lia

Campos BPF, da Silva GF, Binoti DHB et al (2016) Predição da
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Pereira LF, Ferreira CFC, Guimarães RMF (2018) Manejo,
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Atlântica de Minas Gerais-Brasil. Nativa Sinop 6:370–379

Peri PL, Hansen NE, Bahamonde HA et al (2016) Silvopastoral

systems under native forest in Patagonia Argentina. In:

Silvopastoral systems in Southern South America.

Springer, Cham, pp 117–168. https://doi.org/10.1007/978-

3-319-24109-8_6

Plano ABC (2012) Plano Setorial de Mitigação e de Adaptação
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