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Abstract Coffee is often grown in production sys-

tems associated with shade trees that provide different

ecosystem services. Management, weather and soil

conditions are spatially variable production factors.

CAF2007 is a dynamic model for coffee agroforestry

systems that takes these factors as inputs and simulates

the processes underlying berry production at the field

scale. There remain, however, uncertainties about

process rates that need to be reduced through calibra-

tion. Bayesian statistics using Markov chain Monte

Carlo algorithms is increasingly used for calibration of

parameter-rich models. However, very few studies

have employed multi-site calibration, which aims to

reduce parameter uncertainties using data from mul-

tiple sites simultaneously. The main objectives of this

study were to calibrate the coffee agroforestry model

using data gathered in long-term experiments in Costa

Rica and Nicaragua, and to test the calibrated model

against independent data from commercial coffee-

growing farms. Two sub-models were improved:
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calculation of flowering date and the modelling of

biennial production patterns. The modified model,

referred to as CAF2014, can be downloaded at https://

doi.org/10.5281/zenodo.3608877. Calibration

improved model performance (higher R2, lower

RMSE) for Turrialba (Costa Rica) and Masatepe

(Nicaragua), including when all experiments were

pooled together. Multi-site and single-site Bayesian

calibration led to similar RMSE. Validation on new

data from coffee-growing farms revealed that both

calibration methods improved simulation of yield and

its bienniality. The thus improved model was used to

test the effect of N fertilizer and shade in different

locations on coffee yield.

Keywords Agroforestry systems � Bayesian
calibration � Coffea arabica � Modelling � Yield

Introduction

Process-based dynamic models have been used for

over 50 years to explore the effect of variation of

environmental variables or agricultural practices on

agronomic or environmental indicators, like crop

yields or N leached to aquifers (de Wit 1965; Bunn

et al. 2014). Due to their ability to explore a wide range

of options, dynamic models can be used to represent

and optimize management decisions for increased

outputs (Dogliotti et al. 2005). Models are frequently

used to assess the effect of future climate change on

crop yields, as they are able to represent conditions

that are difficult to observe currently. However, to

simulate the impacts of future conditions adequately,

scientists have to evaluate very carefully the adequacy

of their models for a wide variety of current condi-

tions, including production situations to which the

models were not specifically calibrated.

Agroforestry systems combine crops with trees in

the same field. As such, they can represent a solution to

the challenge of producing food for a growing global

population while preserving the resources used for this

production, as well as other ecosystem services

provided to societies, such as provision of clean water,

control of soil erosion, and control of pests and weeds.

For certain crops at least, production under shade trees

can be as good or better than in full sun (Jose 2009).

The trees in agroforestry systems may produce goods

like timber, firewood or fruits (Cerda et al. 2014), or

medicine. But they are also known to protect natural

resources from exhaustion, by working as safety nets

for nutrients, or by mobilizing them better from the

soil (Van Noordwijk et al. 1996), to regulate climate

both locally and globally (Vaast et al. 2015), or to

protect soil surface from crusting, runoff and erosion

(Villatoro-Sánchez et al. 2015).

Agroforestry systems have been used by farmers

only in a limited number of cases. Such cases include

perennial crops, naturally adapted to growth and

reproduction as understory crops, like coffee and

cocoa grown under humid climates in the tropics.

They also include other crops, like dry cereals in dry

climates, when soil fertility and soil water balance are

enhanced by some perennial shrubs, like Guiera

senegalensis or Piliostigma reticulatum (Kizito et al.

2012; Yelemou et al. 2013; Hernandez et al. 2015) or

where crops and trees explore distinct niches, as is the

case for Faidherbia albida in West Africa (Roupsard

et al. 1999). The case of coffee and cocoa, though, is

particular, as those crops are mostly cultivated in

agroforestry systems (Jha et al. 2014).

Success in the combined provision of goods and

services by agroforestry systems depends on delicate

equilibria between the plant species involved, which

can oscillate between competition and facilitation

depending on the species involved, their management,

or the environmental conditions (Jose 2009; De

Beenhouwer et al. 2013; Taugourdeau et al. 2014).

No combination of crop and tree species exists that can

be used everywhere. Scientific knowledge has been

produced for a few decades now on the processes

underlying these combined provisions. Some of this

research has been done on experimental sites, where

long-term experiments have produced a wealth of

information (Imbach et al. 1989; Haggar et al. 2011).

However, even nowadays when interest in agro-

forestry is high, such experiments are few, as they

require large areas of land (due to border effects of tree

plantations) over long times (typically 15–30 years).

Dynamic models can be used to explore the ability

of agroforestry systems to provide ecosystem services.

Agroforestry models can be somewhat artificially

sorted into two types. Some, of a generic nature, focus

on the interactions between species, like WaNuLCAS

(Van Noordwijk and Lusiana 1998). Others are more

focused on a particular crop and try to estimate the

effects of shade trees on its productivity (Zuidema
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et al. 2005; Rahn et al. 2018). These models, whatever

their type, are useful for testing hypotheses on

interactions between species under different environ-

mental conditions, and for testing the impact of

environmental change scenarios on the productivity

and other ecosystem services provided by agroforestry

systems. They have also proven useful to elicit and

nurture fruitful participatory processes between farm-

ers and researchers on the technical management of

cropping systems (Carberry et al. 2004; Whitbread

et al. 2010; Meylan et al. 2014).

Dynamic crop models simulate phenology along

full crop cycles. Rodrı́guez et al. (2011) proposed a

physiologically-based full sun coffee dynamic growth

and yield model, working from coffee organ (fruiting

node) to whole coffee-plant and validated in two

extreme latitudinal conditions for coffee cropping,

with a special effort to accurately simulate the bud,

flower and fruit phenology. This model proved to be

efficient at early stages of the coffee cycle (0–5 years

old). Recently, Vezy et al. (2020) incorporated the

reproductive modules of Rodriguez et al. (2011),

including reproductive cohorts to best distribute the

fruit carbon demand along the year and scaled them up

to simulate ecosystem services (multi-objective cali-

bration) of a whole agroforestry field for full rotations,

but the model was parameterized and tested for only

one site so far. Indeed, another model existed previ-

ously for the simulation of coffee production at the

field scale in full sun and agroforestry systems,

CAF2007 (van Oijen et al. 2010b). It was built to

simulate coffee plantations in Central America, but

has not been thoroughly parameterized based on

agroforestry trials, nor tested in commercial planta-

tions, so its use has been limited so far.

Adequate parameterization of agroforestry models

is a complex task. Numerous processes are closely

interrelated, so it is difficult to parameterize one

process without having previously parameterized

other connected processes. Measurements on diverse

processes in coffee agroforestry systems have been

carried out in experiments and in commercial planta-

tions for some years now (van Oijen et al. 2010a;

Haggar et al. 2011; Charbonnier et al. 2013; Meylan

et al. 2013; Taugourdeau et al. 2014; Gagliardi et al.

2015; Padovan et al. 2015; Villatoro-Sánchez et al.

2015; Defrenet et al. 2016). This parameterization,

necessary as it is to use a model with reasonable

confidence, cannot be done everywhere. To avoid

parameterizing the model again and again depending

on its intended use, we need to assess the robustness of

the parameterization process itself: to do that, we can

compare site-specific and multi-site calibrations in

their ability to reproduce the same sets of data (Van

Oijen et al. 2013).

The measurements made to parameterize the agro-

forestry models concern complex processes, measure-

ment methods are frequently delicate and their results

often come with significant uncertainties. These

uncertainties need to be taken into account in the

parameterization process. Methods for including

probability distributions for measurements, parame-

ters and outputs do exist, based on Bayesian statistics,

and these methods have proven their suitability to

complex processes and related models (Van Oijen

et al. 2005; Van Oijen 2017). Bayesian calibration has

been implemented in different models for specific

sites. Multi-site calibration is a relatively new method

for calibration of process-based models such as the

VSD model, which simulates chemical solution of soil

and nitrogen pools in natural and semi-natural ecosys-

tems (Reinds et al. 2008), the BASFOR forest model

(Van Oijen et al. 2013), and the BASGRA_N grass-

land model (Höglind et al. 2020). We followed the

procedure described by Van Oijen et al. (2005) which

makes it possible to calibrate the parameters that

influence the model processes based on data measured

in the field while accounting for uncertainties in

measurements and modelling.

This paper reports how the CAF2007 coffee

agroforestry model was modified (and renamed to

CAF2014), parameterized using data gathered over

the course of several years at multiple sites, validated

under commercial conditions for coffee in Central

America, and applied to address challenges associated

with the management of coffee tree plantations

regarding the effect of shade and fertilization dose

and distribution at different sites and altitudes in Costa

Rica and Nicaragua.

Materials and methods

Study area

The study was carried out in the coffee-growing

regions of Nicaragua and Costa Rica. The climatic

conditions in these coffee growing regions have been
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analyzed and clustered in four different climatic zones

shown in Fig. 1, mainly related to the rainfall-

temperature combinations from the WorldClim his-

torical weather data base (Läderach et al. 2017).

Climatic zone 1 is characterized by cold and dry

weather with an annual average precipitation of

1544 mm and a mean annual temperature of 20 �C.
These conditions were only found in Nicaragua.

Climatic zone 2 is cold and humid with an annual

average precipitation of 2503 mm and a mean annual

temperature of 19 �C, present in both countries in

some of the best producing regions, Jinotega and

Matagalpa in Nicaragua and Tarrazú in Costa Rica.

Climatic zone 3 is characterized by being hot and

humid with an annual average precipitation of

2886 mm and a mean annual temperature of 23 �C,
mostly present in Costa Rica (Turrialba) and margin-

ally in Nicaragua. Climatic zone 4 is dry and hot, with

an annual average precipitation of 1688 mm and an

annual mean temperature of 23 �C, mainly present in

Nicaragua (Masatepe, the oldest coffee producing

region in Nicaragua, is a typical example of it), and

almost restricted to the Nicoya peninsula in Costa

Rica.

Sites used for model calibration

Twelve sites were used for calibration, representing

three of the four climatic zones (Table 1). The sites

were located at four different locations:

(a) The CATIE long-term agroforestry experiment

in Turrialba, Costa Rica (six sites—Zone 3)

planted in 2000: Six of the calibration sites were

located in the canton of Turrialba in the

province of Cartago in Costa Rica, at 600 m

above sea level. Haggar et al. (2011) described

this location as one of low altitude with humid

weather. Six sites were selected for calibrating

the model with different intensities of manage-

ment (quantities of fertilizers and other inputs),

different densities and species of shade tree.

(b) The Llano Bonito coffee-growing farm in San

Pablo de León Cortés in Tarrazú, Costa Rica

(single site—Zone 2): The calibration site was

located at a coffee-growing farm in the region of

Los Santos at 1620 m above sea level near the

central mountain range in Costa Rica. The

selected farm has shade predominantly from

Erythrina trees and some from musaceae (Mey-

lan 2012). The coffee field was gradually

replanted conform local farming practice.

Fig. 1 The coffee growing regions of Nicaragua and Costa

Rica. Four climatic zones: 1 = cold and dry; 2 = cold and

humid; 3 = hot and humid; 4 = hot and dry. Triangles indicate

the experimental and coffee-growing farms from which data

were used for model simulations
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(c) The Coffee-Flux observatory at the Aquiares

farm in Cartago, Costa Rica (single site—Zone

3): The final Costa Rican calibration site was at

the Aquiares farm which is located 10 km

northwest of Turrialba at an average altitude

of 1100 m above sea level. 98% of the selected

site area is cultivated with the Caturra coffee

cultivar with shade from tall free-growing

Erythrina trees (no pruning or thinning). The

general management practices varied from year

to year. The data for calibration in Aquiares

were obtained from Charbonnier (2013), Tau-

gourdeau et al. (2014), Defrenet et al. (2016)

and Kinoshita et al. (2016).

(d) The CATIE long-term coffee agroforestry trial

in the low and dry zone in Masatepe, Nicaragua

(four sites—Zone 4). The sites were located in

the Pacific Center for Training and Regional

Services (UNICAFE) with two repetitions

planted in 2000. The sites were planted with

the Pacas coffee variety (genetically very sim-

ilar to the Caturra variety) with different man-

agement intensities. Two sites were in the shade

predominantly from Inga edulis trees and two

other sites were in full sun (Table 1).

Field data used for calibration

Seventeen variables were used for calibrating the

model. These were variables that the model calculated

and for which also measurements were available, but

not all variables at all sites, as data had been collected

primarily for other purposes. Information was avail-

able about coffee productivity at all sites, but data on

average soil carbon content were only collected at

92% of the sites (Table 2). Data on the content of

carbon in the above-ground portion of the coffee

plants were available for 50% of sites. The leaf area

indices of the coffee and shade trees as well as the

content of carbon in the trunk and coffee leaves were

measured more rarely.

Additionally, we had access to historical data on

coffee flowering dates in the agroforestry trial in

Turrialba. From prior simulations, we knew that

flowering date was not predicted accurately. We used

these data to modify the subroutine of the model that

calculates the onset of flowering, which is essential as

all other phenological stages are based on this

flowering date (see next section).

Table 1 Sites used for model calibration: Turrialba (9.8962 N; 83.6673 W, 610 masl), Aquiares (9.9383 N; 83.7279 W, 1100 masl)

and Llano Bonito (9.6707 N; 84.0951 W, 1620 masl) in Costa Rica, and Masatepe (11.9008 N; 86.1461 W, 467 masl) in Nicaragua

Site Climatic

zone

Shade Fertilization (kg N ha-1

y-1)

Shade tree

pruning

Annual shade tree

thinning

Turrialba-1 3 Terminalia amazonia 280 Regulated 80%

Turrialba-2 3 Terminalia amazonia 150 Regulated 80%

Turrialba-3 3 Erythrina
poeppigiana

280 Drastic 50%

Turrialba-4 3 Erythrina
poeppigiana

150 Regulated 50%

Turrialba-5 3 Full sun 280 – –

Turrialba-6 3 Full sun 150 – –

Aquiares 3 Erythrina
poeppigiana

260 Unregulated Without

Llano

Bonito

2 Mainly E.
poeppigiana

300 Regulated 20%

Masatepe-1 4 Mainly Inga edulis 144 Regulated 61%

Masatepe-2 4 Mainly Inga edulis 73 Regulated 66%

Masatepe-3 4 Full sun 144 – –

Masatepe-4 4 Full sun 73 – –
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From CAF2007 to CAF2014

Original version of the model

CAF2007 is a basic dynamic process model for

simulating managed coffee full sun or agroforestry

fields at a daily time step (van Oijen et al. 2010b). Two

vegetation layers are distinguished: shade tree and

coffee. CAF2007 was designed to assist in taking

decisions associated with management strategies such

as fertilizer dose, shade tree density and species,

pruning and thinning schedule. The model is also able

to simulate the response of the system to environmen-

tal change (climate, atmospheric CO2). The model

simulates growth, yield and other services associated

with specific tree species, taking into account the main

processes occurring in plants and soil. These include

the processes that contribute to the C-, N- and water-

balance of the system. The model is generic by nature

but it has thus far been calibrated only for the edapho-

climatic conditions, coffee and tree genotypes and

management conditions that are typical of Central

America.

The model takes into consideration environmental

inputs including radiation, precipitation, temperature,

[CO2], water, and nitrogen. The behavior of the

simulated agroforestry system is constrained by soil

properties, weather conditions, and individual site

management. CAF2007 simulates the effects of shade

trees on coffee through competition for light, water,

and nutrients, and it takes into account the contribution

of pruning and thinning to organic matter in the litter

layer (van Oijen et al. 2010b).

The model has 104 parameters, 70 of which are

calibrated. Prior information for estimating parameter

values was obtained from reviews of literature (van

Oijen et al. 2010a) including dissertations, project

reports, data collections, and interviews with farmers.

We now describe two modifications of the model,

which led to a new model version that we refer to as

CAF2014.

Model modifications for flowering

In the original model, flowering was triggered by daily

rainfall exceeding a certain threshold, set at 10 mm by

Table 2 Output variables for calibration of the CAF2014 model. The frequency indicates the percentage of sites where a variable

was measured

Variable Identifier Unit Frequency (%)

Average content of C in the soil Csoilave t C ha-1 92

Average leaf area index of coffee trees LAIave m2 m-2 17

Average leaf area index of shade trees LAIT m2 m-2 17

C in the above-ground portion of coffee plants CT kg C m-2 50

C in the above-ground portion of shade trees CTT kg C m-2 50

C in coffee leaves in full sun CL(1) kg C m-2 8

C in coffee leaves in the shade. CL(2) kg C m-2 8

C in coffee trunks in full sun CW(1) kg C m-2 8

C in coffee trunks in the shade CW(2) kg C m-2 8

Coffee productivity * harvDMav_year t DM ha-1 y-1 100

Leaf area index in full sun LAI(1) m2 m-2 8

Leaf area index in the shade LAI(2) m2 m-2 8

N in the soil Nsoilave t N ha-1 75

Shade area SA m2 m-2 50

Tree crown area CAtree m2 17

Tree height h m 33

Water content in the soil WC_F m3 H2O m-3 25

*Split into ‘‘under the sun’’ and ‘‘in the shade’’ at Llano Bonito
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default, as soon as it occurred in the calendar year

(Van Oijen 2010b). We modified this to better

simulate actual flowering dates in regions where

flowering is grouped and occurs after a significant

period of water shortage: flowering now starts on the

first day of the year on which the product of the amount

of daily rainfall and the Julian day is greater than 1000.

This means that it can take 100 days after January 1 for

flowering to occur with a daily rainfall of 10 mm to

induce flowering or just 10 days of 100 mm rain. We

used multi-annual time-series of flowering dates

observed at the Aquiares farm experiment to check

the ability of this new routine to improve the

simulation of coffee flowering dates (Fig. 2). The

modification reduced RMSE for flowering date from

41.5 to 26.0. Further increases in prediction quality

may be achievable, but it would require the writing of

a new, complex model that takes into account soil

water content, temperature and day length. We

considered that the model in its new form was

sufficiently accurate for our purposes, and consistent

with our limited knowledge on the triggering of coffee

flowering.

Model modifications for biennial production

In current full sun and moderate shade systems, years

with high yields and low leaf-area index (LAI) tend to

alternate with years with low yields but high LAI

(Carvalho et al. 2020). The original CAF2007 model

did not simulate a biennial pattern of coffee produc-

tivity. To incorporate this widely occurring phe-

nomenon, the sink strength of the coffee beans is

now inversely related to previous year’s sink strength.

This small change leads to biennial variation of

simulated coffee yields which matches observations

as shown in Fig. 3. In the absence of data on bean sink

strength, the inclusion of this modification in the

model was not tested independently of the whole

model.

Initialization and inputs of CAF2014

We refer to the model formed by modifying the

flowering and bean sink algorithms of CAF2007 as

CAF2014. This new model version is freely down-

loadable from https://doi.org/10.5281/zenodo.

3608877, and a description of model structure can be

found in a paper by Rahn et al. (2018), who carried out

a parameter sensitivity analysis of CAF2014 for

application in Uganda and Tanzania. To run the

model, the initial values of state variables must be

specified, as must be the site management practices

and weather conditions. Data to meet these model

information requirements were compiled for each of

the experimental sites and coffee-growing farms in the

study.

• Model initialization. Four values of initial carbon

content in different plant parts are needed for shade

trees, and four values for coffee trees. Seven initial

Fig. 2 Start date of flowering simulated with the original unmodified model, the modified model (CAF2014) and actually observed

flowering in Turrialba, Costa Rica
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values (primarily the contents of N and C) are

needed for the soil.

• Management. Three parameters for coffee man-

agement (first day of pruning, pruning interval, and

pruned biomass fraction), six for shade tree

management (first day of pruning, pruning interval,

pruned biomass fraction, thinning data, thinned

biomass fraction, and initial tree density), and two

for soil fertility management (date of application

and dose of soil fertilizer).

• Weather. Six daily variables: minimum and max-

imum temperature (�C), wind speed (m s-1),

global radiation (MJ m-2 d-1), atmospheric

vapour pressure (kPa), and precipitation (mm d-1).

Bayesian calibration

The values of model parameters are generally poorly

constrained and the consequences of these uncertain-

ties for model outputs must be quantified. We can

represent such parameter uncertainties of process-

based models by means of prior probability distribu-

tions, and use measurements on the model’s output

variables to calibrate the model within a Bayesian

framework (Kennedy and O’Hagan 2001; Van Oijen

et al. 2005; Van Oijen 2017).

Selection and prioritization of parameters to be

calibrated

Some parameters values were known or directly

measurable. These included geographic parameters

and other parameters well documented in scientific

literature. We did not include these parameters in the

model calibration. Also not included in the calibration

were parameters that had no significant impact on the

results of the model, as shown in a sensitivity analysis

by Remal (2009). Therefore, only those parameters

were calibrated that had a significant impact on the

results of the model and were not measured directly.

Depending on each site, the number of parameters

ranges from 63 to 67: 26 tree parameters, 13–17 soil

parameters (depending on whether there was infor-

mation available from a soil analysis at the site), and

24 coffee parameters. The sites with the largest

number of calibration parameters were those for

which there was no initial soil analysis available.

Bayesian calibration

Every Bayesian calibration begins by assigning a prior

probability distribution to the model’s parameters. The

prior distribution for CAF2014 consisted of wide beta

probability distributions based on literature review

and other information (Van Oijen et al. 2010a). The

calibration itself consists of using data on model

output variables to update the parameter distribution,

by application of Bayes’ Theorem. We assumed

independent measurement errors, represented by

zero-centered Gaussian probability distributions with

a coefficient of variation of 0.3. After all data are used,

the updated distribution is referred to as the posterior

parameter distribution. The method that we used for

the calibration was Markov chain Monte Carlo

sampling (MCMC) by means of the Metropolis

algorithm (Van Oijen et al. 2005). The R-code for

the Metropolis algorithm is provided together with

CAF2014 code at https://doi.org/10.5281/zenodo.

3608877. The algorithm produces a representative

sample from the posterior parameter distribution by a

walk through ‘parameter space’. Each proposed next

step of the walk, i.e. each proposed new parameter

vector, is accepted or rejected based on the product of

the prior probability for that parameter vector and the

likelihood of the data given CAF2014’s outputs for the

parameter vector. In this way, Bayesian calibration

Fig. 3 Coffee production at two sites in Costa Rica. Fertiliza-

tion rate was high in Turrialba-3 (280 kg N ha-1 y-1) and

intermediate in Turrialba-6 (150 kg N ha-1 y-1). Blue circles

and error bars: measurements. Black lines: simulations using the

posterior mode from cluster calibration, showing cumulative

yield within each calendar year
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combines prior information with new data. For the

calibrations reported here, we used Markov chains of

length 100,000. Trace plots of the chains—showing

how parameters values changed over the 100,000

iterations, were inspected to assess convergence

visually. Based on this, an initial burn-in phase of

10,000 iterations was discarded from the final sample.

Types of calibration

We carried out both single-site and multi-site calibra-

tions (Reinds et al. 2008). In the single-site calibra-

tions, all calibrated parameters were considered to be

site-specific. A separate MCMC was thus run for each

site of Table 1, leading to twelve different site-specific

posterior parameter distributions. In multi-site cali-

brations, data from multiple sites were used simulta-

neously in one MCMC, and posterior parameter

estimates were assumed to apply to all sites involved.

Two types of multi-site calibration were carried out:

‘cluster’ calibration using subsets of sites close to each

other (this was done for Turrialba and for Masatepe)

and ‘generic’ calibration which included all twelve

sites of Table 1. Therefore a total of 15 different

calibrations were carried out:

• 12 single-site calibrations (one for each site),

• 2 cluster calibrations (a six-site calibration for

Turrialba and a four-site calibration for Masatepe),

• 1 generic calibration (for all twelve sites

simultaneously).

Calibration evaluation

To estimate the goodness of fit of the model to data, the

root mean square error (RMSE) was calculated for the

mode of the posterior parameter distribution. The

number of measurements observed vs. the number of

simulated measurements was taken into account. The

RMSE is defined as the square root of the sum of the

squared differences between observed and simulated

values divided by the total number of values. Values

close to zero indicate a good model fit to the data.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 Xobs;i � Xmodel;i

� �2

n

s

;

where n = number of observations in the sample,

Xobs;i = values observed for the ‘‘i’’-th instance, and

Xmodel;i = are the values modelled for the ‘‘i’’-th

instance.

The validity of the RMSE value is limited in that

this indicator assumes that data measured are accurate,

which is contradictory to the Bayesian calibration

principle that affirms that all values, including mea-

sured data, are associated with an uncertainty repre-

sented by a distribution of probabilities. The

interpretation of RMSE must therefore be taken with

some caution; in our study, we will focus on its use for

the detection of systematic bias in the modelling

outputs and possible correction.

Sites used for model validation

For validation purposes, information was compiled

from non-experimental sites in Nicaragua (Table 3)

where yield and climatic data could be collected

accurately. Historical data were compiled from

farmer-surveys and climatic data from weather sta-

tions near the farms for running the model. These

included input data for driving the model such as

weather, management of coffee plants, trees and soil

as well as data on coffee yields to compare with model

outputs.

One site was taken from each farm, planted with the

Caturra coffee variety where shade comes predomi-

nantly from Inga trees using different coffee tree

management practices. The coffee-growing farms

were located in three climatic zones:

• Climatic zone 2 (cold and humid) was represented

by the Solingalpa farm located in Jinotega. The

farm has steep slopes (25%) planted with the

Caturra coffee variety. Shade comes predomi-

nantly from guaba (Psidium sp.) trees with selec-

tive management practices.

• El Rosal farm is in Climatic zone 4 (dry and hot). It

is located in Carazo department in Nicaragua, and

represented by the ‘‘Las Negras’’ site. This site has

shade predominantly from Erythrina trees with

presence of the Catrenic coffee variety and man-

agement of shade and coffee trees.

• Lastly, the Hammonia and La Pinedita farms in the

department of Matagalpa in Nicaragua represented

Climatic zone 1 (dry and cold), to further challenge

the robustness of model predictions.

123

Agroforest Syst (2020) 94:2033–2051 2041



Sensitivity analysis

To assess model behaviour under a wider range of

conditions than were present in the study sites, we

analysed the sensitivity of the calibrated model to

various management options regarding fertilization

and shade. The calibration sites differed in many

respects (weather, shade management, fertilizer use

etc.), so cannot be compared directly. The sensitivity

analysis standardized fertilization to analyse shade

response differences between sites (Table 5), and it

standardized shade management to analyse fertiliza-

tion impact differences (Table 6).

Results

The study results were first broken down into individ-

ual and multi-site calibrations using the modified

model. The model was then validated using informa-

tion of coffee-growing farms located in different

climate clusters. We finally ran simulations of coffee-

growing sites with the calibrated model, as a prelim-

inary assessment of the capacity of the model to

evaluate different management practices and site

conditions.

Calibration of the CAF2014 model

In the first stage, the calibration was performed

separately for each of the twelve sites listed in Table 1

(single site calibrations), then for Turrialba and

Masatepe (cluster calibrations) and lastly, for the set

of all sites (generic calibration). For each calibration,

100,000 MCMC iterations were carried out. Figure 3

shows examples of model simulations after cluster

calibration for two of sites in Turrialba with different

levels of fertilization and shade.

Single-site calibration

Measured production data were available for between

10 and 11 years for all sites, with the exception of

Llano Bonito (only 2 years). Maximum measured

production values of coffee beans dry matter in

Turrialba, Aquiares, and Masatepe were 5.74, 4.3,

and 5 tons DM cherry y-1, respectively. The single-

site calibrated model simulated maximum production

values in Turrialba, Aquiares, and Masatepe of 5.81,

4.8, and 2.27, respectively.

Figure 4 shows simulated coffee production com-

pared against measured production and the relevant

determination coefficients (R2) for each of the cali-

brated sites. We can globally observe that all Turrialba

experiments were adequately simulated, with accept-

able R2, ranging from 0.54 to 0.71. More importantly,

there seems to be no clear bias, overestimations and

underestimations seem to compensate each other. On

the other hand, although low production levels in

Masatepe were correctly estimated, high productions

are not, and this is particularly clear in the full sun

intensive management site, where the best production

was measured at 5 tons ha-1, in 2005–2006, while the

production simulated did not exceed 2.3 tons ha-1. In

Table 3 Coffee-growing farms in three climatic zones in Nicaragua used for validating the CAF2014 model

Climatic

zone

Farm Coordinates/altitude

(masl)

Main shade

sp.

Soil fertilization (kg N

ha-1)

Shade tree

pruning*

Shade tree

thinning**

1 Hammonia 12.99 N 85.92 W/

1237

guaba 80 Once No

1 La

Pinedita

12.92 N 85.90 W/917 guaba 116 None 50%

2 Solingalpa 13.03 N 85, 91 W/

1368

guaba 182 10% 60%

4 El Rosal 11.88 N 86.20 W/588 Erythrina 136 10% 50%

Selective coffee tree pruning

*Fraction for each tree pruning

**Fraction of thinning
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Aquiares the model overestimates most harvests on

average by 0.7 t DM cherry ha-1 y-1. It has, however,

a good fit with an R2 value of 0.71 (Fig. 4).

A comparison of the individually calibrated and

uncalibrated sites (Fig. 5) indicates that the RMSE for

coffee production (t DM cherry ha-1 y-1) improves at

the majority of the calibrated sites with an improve-

ment in RMSE that ranges from 0.22 to 1.84. Several

sites in Turrialba exhibit a good fit with low RMSE.

Llano Bonito exhibits a high RMSE from the calibra-

tion of the coffee production. This is due to the low

number of measured production data. This is also the

case for sites in full sun with high conventional

management practices in Turrialba and Masatepe

before calibration, but RMSE was greatly reduced

by calibration.

Multi-site calibration (by cluster and generically)

Figure 5 shows the RMSE for model simulations of

coffee production in t DM cherry ha-1 y-1, for each of

the sites, after different calibration efforts: (1) no

calibration, (2) generic calibration, (3) cluster calibra-

tion, (4) single-site calibration. The highest RMSE

values are found in the case of no calibration,

confirming that a calibrated model fits measured data

better. On average, RMSE improves by 0.91.

The progression of RMSE from generic via cluster

to individual calibration is uneven: it generally

decreases but this evolution is not systematic: at

Aquiares, surprisingly, the single-site calibration

shows higher RMSE than generic calibration, but

both calibrations show rather low RMSE.

Fig. 4 Simulated vs. measured coffee productivity (t DM ha-1

y-1) at each calibrated site. The simulated yields are from the

posterior mode after single-site calibration. The Llano Bonito

site is not shown because it has data for only two years of

production. The digits on the top two panels identify the six

different sites in Turrialba and the four sites in Masatepe (see

Table 1)
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Coefficients of determination (R2) for cluster and

generic calibrations are shown in Fig. 6. Turrialba and

Masatepe exhibit a similar R2 value of 0.54-0.56.

Some of the high harvest values simulated at both sites

are underestimated. Generic calibration yields an R2 of

0.64. The underestimations of the model at high

productivity remain, but are not systematic.

Table 4 shows average coffee production as sim-

ulated following the three types of calibration. There

were no significant differences versus measured

production for any site with the exception of the

Masatepe-3, the Nicaraguansite in full sun with high

fertilization.

Validation of the CAF2014 model

Production simulations using the generically cali-

brated model exhibit low RMSE values and a good

determination coefficient. Figure 7 shows an R2 of

0.55 for the four validation farms, whose data had not

been used for any model calibration. The model

underestimated some of the high harvests, while the

other harvests exhibit a good fit.

As the results from generic calibration were shown

to perform adequately for calibration sites, without

any dramatic increase in RMSE compared to cluster

calibration or single-site calibration, we decided to use

the generically calibrated model for the following

simulations.

Additional simulations using the generically

calibrated CAF2014 model

Simulations were carried out with the generically

calibrated model to show the effect of shade and

fertilization at different sites and altitudes in Costa

Rica and Nicaragua (Tables 5, 6). The results reveal

that production varies depending on the altitude and

weather conditions at each site. Production in a hot and

dry area (Masatepe) is lower in the sun than in the

shade, in contrast to the wetter conditions (Turrialba

and Llano Bonito) where shade reduces production

(Table 5). But shade has a positive effect on produc-

tivity in the drier conditions. In contrast, in the more

humid Costa Rican areas, production decreases by 10

to 22% in the shade from Inga edulis trees. The model

Fig. 5 RMSE values for coffee production (t DM ha-1 y-1) from 12 sites after different calibrations in Costa Rica and Nicaragua. See

Table 1 for details about the sites
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simulations show that this is due to the fact that the tree

crown diameter grows at a faster rate in humid zones

than in dry zones.

Two virtual experiments were run to explore

fertilization effects, the most expensive input in coffee

production in Central America (Meylan et al. 2013),

related to dose and fractionation (Table 6). The dose

that simulates the largest production in three fractions

is 300 kg N ha-1 y-1. At higher doses, the production

did not increase anymore; most of this additional N

was lost. Simulations using different fractionation of

this fertilization rate showed that the effects of higher

fractionations were real (with one exception), but

minimal, probably less than the labour cost of an

additional application. The days of N application were

optimized in each experiment.

Discussion

We started fromCAF2007, a simple dynamic model of

coffee agroforestry systems (van Oijen et al. 2010b),

and modified the algorithms for two processes that

were simulated inaccurately, i.e. blossoming date and

biennial oscillation of cherry production. We then

proceeded to calibrate the new model, CAF2014 using

measurements from contrasting environmental condi-

tions and management regimes. A Bayesian method

was used for the calibration, for a total of 12

experimental sites. We found few differences between

calibrations performed for each site separately (lead-

ing to site-specific estimates for coffee, tree and soil

parameters), by cluster (Turrialba- and Masatepe-

specific parameters), or generically for the complete

dataset. The generically calibrated model was able to

Fig. 6 Simulated vs. measured coffee productivity (t DM ha-1

y-1) after two types of multi-site calibration. Top two panels

show results for the posterior mode from cluster calibration, the

bottom panel for the posterior mode from generic calibration.

The digits on the top panels identify the six different sites in

Turrialba and the four sites in Masatepe (see Table 1). The

letters in the bottom panel identify the Aquiares site and the

Turrialba and Masatepe clusters

123

Agroforest Syst (2020) 94:2033–2051 2045



account for most of the variation in independent yield

data from commercial plantations, the model was thus

considered to be robust. We finally found that the

modelled effects of N fertilization were not as strong

as expected, and the effects of shade depended mainly

on local humidity.

Single-site versus multi-site model calibration

Single-site and multi-site calibrations revealed that the

model exhibits very similar fits regardless of whether

it is calibrated for a single site, for clusters, or for all

sites together. The RMSE values are very similar at

any of the sites regardless of the procedure, and always

lower than the RMSE values of the uncalibrated

model. This result is encouraging because it suggests

that parameter values for coffee ecophysiology have

limited variability in the studied region, which facil-

itates broadscale model application across Costa Rica

and Nicaragua without a need for additional calibra-

tion. The finding is consistent with the narrow genetic

base of cultivated Coffea arabica in the Western

hemisphere (Sousa et al. 2017). The RMSE values for

shaded sites for coffee production in Costa Rica and

Nicaragua (t DM cherry ha-1 y-1) were low and the

R2-values were high. Strong model performance for

these sites may have been aided by the availability of

good information on initial constants, site manage-

ment, and a priori distribution of parameters. A

remarkable feature of the calibrated model is that it

accounts very well for the very high interannual

variability in yields that was observed on all sites.

Model predictions always accounted for more than

50% of interannual variation, and for about half the

sites this reached about 70% (Figs. 4, 6). So the

calibrated model can reproduce patterns of alternating

high- and low-yielding years, i.e. alternate bearing

(see also Fig. 3). The absolute values of yield were

underestimated in some years with high yields, in

particular for Masatepe (e.g. Figure 4i). This site is in

Climatic zone 4, which is dry and hot, so CAF2014

may be overestimating the impacts of water defi-

ciency. The calibrated model also had a relatively high

RMSE-value for the Llano Bonito site where shade

was provided by Erythrina poeppigiana trees that

were pollarded twice or thrice each year (see Fig. 5).

CAF2014 uses allometric equations to establish the

relationship between tree branch biomass and crown

Table 4 Average production (10-11 years) in t DM ha-1 y-1 for calibration sites in Turrialba, Costa Rica, and in Masatepe,

Nicaragua

Site Measured

production

Simulated production

(Single-site calibration)

p value Simulated production

(Cluster calibration)

p-value Simulated production

(Generic calibration)

p-value

Turrialba-1 2.25 2.22 0.94 2.19 0.91 1.68 0.25

Turrialba-2 1.58 1.73 0.73 1.56 0.98 1.53 0.92

Turrialba-3 3.03 2.82 0.81 2.88 0.70 2.53 0.36

Turrialba-4 1.90 2.31 0.33 2.68 0.14 2.33 0.33

Turrialba-5 3.53 3.22 0.65 2.47 0.13 2.60 0.16

Turrialba-6 2.87 3.27 0.53 2.47 0.54 2.57 0.63

Masatepe-1 1.59 1.29 0.4 1.19 0.23 1.40 0.25

Masatepe-2 1.47 1.24 0.49 1.25 0.51 1.26 0.92

Masatepe-3 2.28 1.55 0.14 1.26 0.045 1.31 0.05

Masatepe-4 1.78 1.55 0.51 1.30 0.18 1.31 0.198

Fig. 7 Simulated vs. measured coffee productivity (t DM ha-1

y-1) for commercial farms in Nicaragua
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area—and this relationship may conceivably be dis-

rupted by the frequent pollarding. Quick re-growth of

branches of this tree species after pollarding is

generally observed, initiated by rapid mobilization of

reserves from trunks (Nygren et al. 1993). A new,

Erythrina-specific tree submodel would be required to

model the pollarding response, possibly based on the

earlier work by Nygren et al. (1993, 1996). This is

considered for future modifications of the model.

Model testing against independent data

and sensitivity analysis

Our tests against independent data from three of the

climatic zones corroborated that the model behaves

well under different management and biophysical

conditions (Fig. 7). The tests were carried out using

the posterior mode from generic calibration; no site-

specific information was used to adjust parameter

values. Overall, the comparison of model estimates

and production rates at commercial farms showed the

same qualities and defects as the calibration results.

The model correctly estimated low production rates,

but underestimated high production rates. It is possible

that the control of weeds, pests and diseases as well as

the reliability of the data themselves differed between

the experimental calibration sites and the commercial

testing sites, but detailed information on the growing

conditions at the commercial farms is lacking. Nev-

ertheless, the model again ranked high- and low-

yielding years for the most part correctly, leading to an

R2 value of 0.55 (Fig. 7). It thus seems that the

alternate bearing pattern of coffee may largely be

explained from factors that were present in the model,

Table 5 Effect of shade on coffee production at three different altitudes with fertilization fractionated in three doses of 150 kg N

ha-1 y-1

Altitude (m above sea level) Site Production average over 11 years (t DM ha-1 y-1)

Sun Shade/Inga edulis

453 Masatepe 1.61 1.68 (42% shade)

600 Turrialba 3.00 2.70 (53% shade)

1620 Llano Bonito 3.16 2.47 (56% shade)

Table 6 Effect on coffee production of fertilization in different fractions and at different doses for Turrialba and Masatepe

Dose (kg N ha-1 y-1) Fractionation (day of year) Production average over 11 years (t DM ha-1 y-1)

Turrialba Masatepe

Full sun Erythrina trees Full sun

50 (135,289,350) Turrialba

(185, 256, 276) Masatepe

2.61 2.52 1.46

100 2.85 2.73 1.54

200 3.09 2.90 1.66

300 3.17 2.97 1.73

400 3.20 2.95 1.76

300 (135,289) Turrialba

(165,275) Masatepe

3.09 2.92 1.72

(135,289,350) Turrialba

(185,256,276) Masatepe

3.17 2.97 1.73

(135,210,289,350) Turrialba

(165,215,275,300) Masatepe

3.17 2.94 1.73
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i.e. interannual variation in weather conditions and the

negative lag-effects of high reproductive sinks on sink

strengths in succeeding years—conform theories of

carbon allocation in woody plants (Génard et al.

2008). The flowering date, the modelling of which was

modified in CAF2014, also affects the balance

between the sources and sinks of carbohydrates, as

allocation patterns change dramatically after flower-

ing. We note however that our new implementation of

biennial sink patterns was not highly mechanistic, so

there remains significant scope for model improve-

ment. This is complicated because of the difficulty of

measuring sink strength directly and because of the

complicated interannual dynamics of reserves in

perennial woody plants. It does constitute an important

research question because alternate bearing is a

phenomenon common to a large number of species

of fruit trees (Monselise and Goldschmidt 1982). In

future model development, CAF2014 may benefit

from incorporating the equations of Rodriguez et al.

(2011) for the dynamics of cohorts of reproductive

organs and reserve compartment, as was done by Vezy

et al. (2020) in their DynACof model. That would

constitute a more mechanistic simulation of sink

competition between leaf and reproductive compart-

ments than we attempted here, but it would increase

model complexity. Moreover, the method still needs

independent testing across sites in multiple climatic

zones (only one site was used by Vezy et al. 2020) and

Bayesian multi-site calibration following the approach

that we developed here.

Our findings suggest that our model can be used in

Central America, because the calibrations at experi-

mental sites exhibited a good and relatively robust fit,

which was confirmed through validation. Moreover,

the sensitivity analysis provided plausible conclusions

with respect to management: least yield loss from

shading at low altitude ((Table 5) and little benefit

from fertilizer above 200 kg N ha-1 y-1, both of

which are consistent with the literature (e.g. Beer et al.

1998; Meylan et al. 2017). The calibrated model may

thus become a useful tool for various stakeholders,

such as farms and policymakers, to support decisions

regarding issues like climate change, fertilization

efficiency, use of tree species for shade, and other

management practices. The model can also provide

estimates of other ecosystem services, including

water-, carbon- and nitrogen-retention, but the quality

of model predictions for those variables requires

additional data to allow further testing of the model

beyond the yield estimates that we focused on here.

Conclusions

We were able to calibrate the CAF2014 coffee

agroforestry model for farms in Costa Rica and

Nicaragua that span different climatic zones, soils,

shading practices and management conditions. Inter-

annual variability was well accounted for by the

model. Whereas simulation of coffee production (t

DM cherry ha-1 year-1) using the original model

underestimated production, the modified and cali-

brated model showed realistic production rates,

decreasing RMSE and increasing R2. Simulations

were improved for coffee production in three climatic

zones, including one that had not been included for

calibration. However, the model still underestimates

very high production rates at some sites. Coffee

models implemented thus far have allowed providing

an assessment of the niche-range over which the

species is distributed and comparing the ability of

crops to face climate changes in the future. The

calibrated CAF2014 model makes it possible to

simulate coffee production yields in agroforestry

systems, thus enabling estimates of the costs and

benefits of implementing the system as well as the

impacts of climate change, elevated CO2, fertilization

and pruning of coffee plants and trees—estimates that

empirical suitability models are not able to provide

(Ovalle-Rivera et al. 2015). The model may thus be

used as a tool for exploring different adaptation

scenarios in the face of current and future problems of

coffee growers, as shown in our preliminary study of

the effects of N fertilizer and shade in different

locations on coffee productivity.
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