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Abstract The agroforestry systems (AFS) in the

Amazon stand out in the national and international

scenario due to the possibility of cultivating tropical

forest species of high commercial value as the

Brazilian mahogany, concomitantly, has sought to

use more robust approaches to quantifying timber

volume that does not require the same assumptions as

traditional approaches. In this context, this study

aimed to develop volumetric equations, by traditional

approaches, by mixed modeling, and by machine

learning techniques, that accurately estimate the

commercial volume of Brazilian mahogany trees in

an AFS in Amazon as well as verify whether there are

differences in the estimates of these approaches by

univariate analysis. For that, 108 trees were sampled in

36 circular plots of 500 m2 to estimate the commercial

volume. Volumetric equations were developed from

the fit of the Schumacher and Hall volumetric model

and Kozak taper, by nonlinear regression, from the

application of nonlinear mixed modeling in the most

precise traditional model and training of artificial

neural network (ANN) and supporting vector

machines. The analysis of variance indicated that

there was no significant difference between the mean

values estimated by the equations developed by the

different approaches tested in the inventoried individ-

ual data. Nevertheless, it is recommended to use the

equation generated by ANN to perform estimations in

other populations, because it presented more precise

estimates in the test set.

Keywords Artificial neural network � Brazilian
mahogany � Nonlinear mixed effects � Nonlinear
regression � Support vector machine

Introduction

Agroforestry systems are the use of agricultural and

forestry species in the same area and are becoming

common in tropical regions, because they are able to

maintain biodiversity levels between natural forests

and purely agricultural uses, by increasing connectiv-

ity or sustaining biodiversity in fragmented forest

landscapes, using concepts of nutrient cycling,

increased fertility, and soil moisture, thus increasing

crop yields (Ribaski et al. 2001; Haggar et al. 2019).

In these tropical regions, Amazon rainforest has

suffered losses due mainly to deforestation, which has

already reached 20% of its original area (Aguiar et al.
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Paraná 80210-170, Brazil

e-mail: cicerodolacio@ufpr.br

L. R. R. Costa

AMBFOREST Consultoria & Engenharia, Rua Treze
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Pará 67020-510, Brazil

123

Agroforest Syst (2020) 94:1011–1022

https://doi.org/10.1007/s10457-019-00468-3(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-3208-3854
http://crossmark.crossref.org/dialog/?doi=10.1007/s10457-019-00468-3&amp;domain=pdf
https://doi.org/10.1007/s10457-019-00468-3


2016) and climate change, which causes decreasing in

forest resilience, affecting its exuberant biodiversity

(Hilker et al. 2014) and pose a threat to many

endangered flora species (Sakuragui et al. 2013),

being agroforestry systems an appropriate way to use

of forest products.

Among these endangered species, we highlight the

Swietenia macrophylla King (Brazilian mahogany)

which is a shade-tolerant species found in the dryland

forests of Brazilian Amazon, with low population

density and has beenwidely exploited in recent decades

due to the high commercial value of its timber. The

intense exploration and of Brazilian mahogany in

natural areas have grown significantly over the years

(Souza et al. 2008; Rocha et al. 2016; Milagres and

Machado 2016) which makes necessary the creation of

legislation formanagement and exploitation of species.

Nowadays, the way management is practiced

makes it more difficult to explore the species in

natural forests, as they need a better ecological and

silvicultural understanding (Free et al. 2017). The

diametric variation of Brazilian mahogany in natural

forests in Brazil was from 31 to 121 cm and with an

increment in the basal area of 63.1 cm2 year-1 (Cunha

et al. 2016). In the Chiquibul Forest reserve located in

Belize, the diametric variation of species was

30–60 cm, where the increment in diameter over

10 years was increased by approximately 40% with

the cut of lianas. In Indonesia, Brazilian mahogany

was the species that showed very slow growth in

agroforestry systems getting only 40 cm at 40 years,

approximately (Sabastian et al. 2018).

For these reasons, it is important to study the

development of Brazilian mahogany in integrated

systems with other plant and animal species as an

alternative way to use the species (Viégas et al. 2012;

Sabastian et al. 2018; Silva et al. 2018a), beyond an

excellent long-term production strategy (Santos et al.

2019) due current difficulty of exploring mahogany in

natural forest areas.

However, the success of Brazilian mahogany

cultivation depends on, beyond appropriate silvicul-

tural practices (Silva et al. 2017), accurate methods for

estimating the volume of timber available and

improving decision making in the management of

the species. The volume equations are among the most

traditional estimation methods, requiring normality

and independence residues for their estimates (Fer-

nandes et al. 2017), which is not suitable for many data

that present structures of more complex variances,

such as multiple measures in the same individual,

spatial and temporal correlation, hierarchical and

nested data (Zuur et al. 2009), demanding the use of

more robust methods (Binoti et al. 2016).

Among the most robust methods stand out the

mixed-effects modeling, which allows to include

random effects and variances structures (Pinheiro

and Bates 2000) and machine learning techniques such

as artificial neural networks, and support vector

machines, which present promising and generally

more accurate results in the estimation of wood

volume when compared to traditional methods (Garcı́a

Nieto et al. 2012; Bhering et al. 2015; Vahedi 2016).

That technique makes possible to include variables

that are generally not used in traditional regression fits

(Binoti et al. 2014a, b; Araújo Júnior et al. 2019).

Therefore, this research aimed to develop equations

that estimate the commercial volume of Brazilian

mahogany trees in agroforest systems using traditional

nonlinear approaches, mixed nonlinear modeling, and

machine learning techniques, as well as comparing the

averages of estimates of these approaches by univari-

ate analysis of variance.

Materials and methods

Study area and data collection

Data on the execution of the study were obtained in the

western region of Tomé-Açu municipality, Pará State,

Brazil, (02� 290 1400 and 02� 300 0300 S; 48� 230 1000 and
48� 220 2200 W), 45 m de altitude (Fig. 1). The climate

of the region is Af, rainfall accumulated throughout

the year is 2500 mm, without dry season, and the

average annual temperature is 26 �C (Alvares et al.

2013). Soil is a dystrophic yellow latosol, according to

the Brazilian System of Soil Classification (Santos

et al. 2013) which equates to the Xanthic Ferralsol of

Food and Agriculture Organization of the United

Nations.

Data were measured on Brazilian mahogany trees at

17 years of age, implanted in a 14.65 ha agroforestry

system at an 8 9 6 meter spacing. The standing tree

was sampled in 36 circular plots of 500 m2, system-

atically allocated and equidistant in 50 m. The diam-

eter with bark at 1.3 m height (dbhwb), in centimeters,

and commercial height (hc), in meters, defined by the
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first bifurcation, of all trees on the plots were

measured and three trees per plot (a total of 108

individuals) were standing scaled to compute the

commercial volume by Smalian’s formula (Table 1).

These trees represented a diametric distribution of the

agroforestry system and ensure sample sufficiency

determined by the method proposed by Cochran

(1965), considering a sampling error equal to or less

than 1%.

The agroforestry system was implemented with

scaling species over time, considering the years since

the beginning of project: primarily was cultivated the

Piper nigrum (kingdom pepper) species during the

first 3 years; then Swietenia macrophylla (Brazilian

mahogany) and Coco nucifera (coconut) species were

implemented from the second and third year, respec-

tively, and, after 9 years was implanted Theobroma

cacao (cocoa) species to benefit itself from the shadow

Fig. 1 Location map of study municipality

Table 1 Descriptive statistics of dendrometric variables

Variable Minimum Average Median Maximum SD SE

dbhwb (cm) 6.05 21.80 21.65 33.42 5.84 1.11*

hc (m) 1.60 3.76 3.78 5.82 0.84 0.16*

vc (m
3) 0.00646 0.14759 0.14936 0.35809 0.07359 0.01404*

SD is the standard deviation

*Standard error value of the mean estimate with a confidence level at 95% of probability
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of Brazilian mahogany. Individuals from kingdom

pepper, coconut, and cocoa were implemented under

the spacings of 2.5 m 9 2.5 m, 5 m 9 7.5 m and

3 m 9 3.5 m, respectively.

Volume modeling

The volumetric model of Schumacher and Hall (1933)

and the taper model of Kozak et al. (1969) were fitted

by nonlinear regression (Eqs. 1, 2, respectively). The

first model was fitted for direct estimation of com-

mercial volume and the second to describe the profile

of stem, using the ‘‘nls’’ function of the R 3.4.4

software (R Core Team 2018) and, later, the commer-

cial volume was estimated using a numerical integra-

tion process (Eq. 3), with the ‘‘function’’, ‘‘integrate’’,

and ‘‘mapply’’ functions.

v̂c ¼ b0dbh
b1
wbh

b2
c þ ei ð1Þ

dcc ¼ dbhwb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b0 þ b1
h

hc

� �

þ b2
h

hc

� �2
s

þ ei ð2Þ
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Z

hc

h1

p
40;000
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v̂c is the commercial estimated volume (m3); b0, b1,
and b2 were the parameters to be estimated; dbhwb is

the diameter with bark at 1.3 m height (cm); hc is

commercial height (m); ei is the random error (m3); h1
is the lower height measured (m); h the height whose

dwb was measured (m); and p is the pi value.

A nonlinear mixed-effects model was applied only

in Schumacher and Hall model (Eq. 4), whose crite-

rion for selection was the highest precision in the

commercial volume estimation. Moreover, its struc-

ture with mixed effects for volume estimation is

represented in Eq. 5, where the vector ‘‘b’’ represents
the fixed effects common to all individuals and the

vector ‘‘b’’ is the random effects specific for each

individual for believing that it would increase the

volume estimates precision

v̂c ¼ £0dbh
£1

wb h
£2
c þ ei ð4Þ

v̂c is the estimated commercial volume (m3); £0, £1

and £2 are the parameters to be estimated; dbhwb is

the diameter with bark at 1.3 m height (cm); hc is the

commercial height (m), and ei the random error (m3).

£ ¼
£0

£1

£2

2

4

3

5 ¼
b0
b1
b2

2

4

3

5þ
b0
b1
b2

2

4

3

5 ¼ bþ b: ð5Þ

Given that b * N (0, r2); e e * N (0, r2 I).
The ‘‘nlme’’ function of the ‘‘nlme’’ package

(Pinheiro et al. 2018) implemented in software R

3.4.4 was used for mixed-effects modeling, where it

was estimated the parameters of fixed-effects and

covariance parameters associated with parameters of

random effects, more detailed explanation on mixed-

effects modeling could be found in the work of Yang

et al. (2009).

Artificial neural networks (ANN) and support

vector machines (SVM) also were fitted to estimate

commercial volume, following the assumptions pre-

sented in Haykin (2009) for ANN and Steinwart and

Christmann (2008) for SVM. The ANN used in this

study was multilayer perceptron type with three layers

and feedforward architecture. The input layer con-

sisted of two neurons, dbhwb and hc, in the hidden layer

the number of neurons was varied from one to five, and

at the output layer, only one neuron was used, referring

to vc.

Justified by the simplicity of implementation and

interpretation, the hyperbolic tangent function was

used as the activation function at the hidden layer and

the linear function at output layer. Supervised training

was used with the error backpropagation algorithm

associated with a descending gradient method. In this

algorithm, the error associated with each pair of

neurons of the input and output layers is calculated and

retro-propagated to fit synaptically and bias weights,

aiming to reduce the estimation error (Collazo et al.

2016).

SVM is a system based on mathematical optimiza-

tion derived from statistical learning (Binoti et al.

2016). It was used to map the training data in high-

dimensional spaces, using a kernel function, and then,

a linear regression was used to find an optimal

hyperplane with a maximummargin of data separation

(Sheta et al. 2015; Vapnik 1999). Therefore, were used

different values for the cost (C), gamma (c), and
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epsilon (e), totaling 2541 trained SVM configurations,

resulting from the combination of 21 different values

for C (range 90–110, jumps: 1), 11 for c (range 0.02–
0.03, jumps: 0.001), and 11 for e (range 0–0.1, jumps:

0.01), besides radial base function (Eq. 6), only used

in the kernel. To optimize the SVM issue (Drucker

et al. 1996), the objective error function of type I was

used (Eq. 7)

KðXi;XjÞ ¼ e � c� Xi�Xjj j2
� �

ð6Þ

Min
1

2
� wj jj j þ C �

X

N

i¼1

n�i þ C �
X

N

i¼1

nþi

 !

ð7Þ

Subject the following restrictions:

w�U xið Þ þ b�yi � �þ nþi
yi�w�U xið Þ�b� �þ n�i
n�i ; nþi � 0; i ¼ 1; . . .;N

where c is the gamma value; Min is the minimization;

w is the coefficient vector; C is the cost value; ni
-, ni

?

are the gap variables for errors below and above the e;
i is the training case; N is the total number of cases

trained; U (xi) is the kernel function used; b is the

error; yi is the output values; and e is the epsilon value.
Configurations of the SVM were fitted by using

dbhwb and hc as input variables and vc as the output.

During the training of ANN and SVM, the k-fold

cross-validation method was used to avoid overfitting

(Jung 2018), with four and ten folds, respectively.

Both trainings were performed with functions

‘‘h2o.deeplearning’’ and ‘‘svm’’ functions of the

‘‘h2o’’ (The H2O.ai Team 2017) and ‘‘e1071’’ (Meyer

et al. 2017) packages present in the software R 3.4.4.

Statistical analysis

The approaches were compared without bias using

data proportionally partitioned by diametric classes

(Fig. 2), arranged by the formula proposed by Sturges

(1926). For that, were they used approximately 67%

and 33% of the data for the fit and test sets,

respectively. The goodness-of-fit made by the differ-

ent approaches in both sets were evaluated by

Pearson’s linear correlation coefficient ryŷ
� �

, by the

root-mean-square error (RMSE), in percentage, and by

standardized residual scatterplot, beyond of Chi-

square test (v2) at the 5% level of significance, used

only for test set. Additionally, univariate analysis of

variance with a randomized block experimental design

was performed to compare the averages of the

estimates made by the different approaches tested. In

this analysis, we used the approaches that presented

adherence by v2 as treatments repeated ten times in 36

blocks (inventory plots).

The use of each plot as a block was based on the

explanation of Winer (1962), which explained about

single-factor experiments with repeated measures in

the same elements. This author cites that one of the

primary purposes of experiments in which the same

individual is observed under each of the treatments is

to provide control over differences between them, in

this case, on the plots. As a result, each plot served as

its control and the variability attributable to differ-

ences between them was eliminated from the exper-

imental error.

Variances of treatments were evaluated for their

homogeneity by Bartlett’s test (Bartlett 1937). Once

they showed heterogeneous variances, the original

values were transformed by Box and Cox’s method

(Box and Cox 1964), so that were tested the effects of

treatments through Fisher’s test; when it revealed

significant differences in at least one of averages,

Scott–Knott’s test was used at the 5% level of

significance to compare the treatments. In software

R 3.4.4, were conducted analyses with the functions

‘‘bartlett.test’’, ‘‘boxcox’’, ‘‘aov’’, and ‘‘SK’’ of pack-

ages ‘‘stats’’, ‘‘MASS’’ (Venables and Riplay 2002),

and ‘‘ScottKnott’’ (Jelihovschi et al. 2014).
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Fig. 2 Number of trees used for fit and test of the approaches

according to the different diametric classes
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Results

All parameters of the nonlinear equations and the

mixed nonlinear equation displayed a significance of

less than 5%, and all the approaches had a Pearson’s

coefficient of correlation greater than 0.99, and RMSE

values were less than 7.0%, when evaluating the

estimations of the fit set (Table 2).

Nonlinear equation of Schumacher and Hall with

mixed effects stood out due to better fitting the

variability of separate trees for fit since it showed

higher ryŷ and lower RMSE; however, Kozak’s

nonlinear taper model exhibited the worst fit statistics.

In the test sets, measurements indicated less precision

with lower ryŷ and higher RMSE, since were used

different data sets, on the other hand, the Chi-square

test showed adherence between the estimated and

observed commercial volumes by all evaluated

approaches. Like what happened in the fit, Kozak’s

nonlinear taper model presented lower ryŷ and higher

RMSE; however, the ANN showed higher ryŷ and

lower RMSE.

All approaches showed most of the standardized

residue well distributed and ranged between -3 and 3

(Fig. 3). However, residuals from the fit set had a

smaller amplitude in the distribution compared to the

residuals in the test estimates.

Residual dispersions of approaches were similarly

distributed over most of the amplitude of estimates,

except for the Kozak’s nonlinear taper model, corrob-

orating with the fit statistics. However, estimations

made on data observed in fit set by Schumacher and

Hall equation fitted with mixed-effects modeling

tended to underestimate the vc of trees with lowest

observed values, and, on the other hand, ANN

overestimated them.

It is also observed that the residues of these two

approaches showed a more homogeneous distribution

in all amplitudes of data estimated for the trees of the

test. Because of that and considering test set the most

important modeling process for increasing credibility

and confidence, the equation generated by ANN with

two neurons at the input layer, four neurons at the

hidden layer and one neuron at the output layer was

Table 2 Estimated parameters, hyperparameters, and precision measures of approaches studied for vc estimate

Approach Parameter Fit Test

ryŷ RMSE (%) ryŷ RMSE (%) X2
cal:

Nonlinear Schumacher and Hall b0 0.0000875544* 0.9972* 3.65 0.9887* 7.77 0.0275ns

b1 2.0597405847*

b2 0.7547124725*

Nonlinear Kozak b0 1.4010344919* 0.9905* 6.81 0.9843* 9.34 0.0459ns

b1 - 1.3771047371*

b2 0.7345238044*

Mixed nonlinear Schumacher and Hall b0 0.0000728405* 0.9988* 2.52 0.9887* 7.84 0.0296ns

b1 2.1054283260*

b2 0.7825104901*

Artificial neural network a 0 0.9975* 3.55 0.9890* 7.73 0.0281ns

g 0.005

N 5000

Support vector machine C 108 0.9975* 3.42 0.9881* 8.02 0.0292ns

c 0.0299

e 0

*Indicates that there is significance by t test, and ns indicates that there is adherence between the estimated and observed commercial

volumes
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considered the most accurate, nevertheless it should be

noted that estimates of other approaches provided

good precisions. With the weights and bias obtained in

the training of the best ANN, Eqs. 8–11 provide the

outputs of four neurons in the hidden layer, and vc can

be estimated using Eq. 12
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Fig. 3 Residual

distribution of vc estimated

by the evaluated approaches

£1 ¼
2

1þ e� 2½� 0:015099874
dbhwb�21:6893

5:9571ð Þ�0:431192756 hc�3:7793
0:8291ð Þ�0:560754387�

� 1 ð8Þ

£2 ¼
2

1þ e� 2½� 0:778621435
dbhwb�21:6893

5:9571ð Þ�0:308296472 hc�3:7793
0:8291ð Þþ1:350068118�

� 1 ð9Þ

£3 ¼
2

1þ e� 2½ð� 0:413494974
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£4 ¼
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1þ e� 2½1:068626761 dbhwb�21:6893

5:9571ð Þþ0:496493667 hc�3:7793
0:8291ð Þþ0:366771834�

� 1 ð11Þ
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v̂c ¼ 0:071627 ð£1 � �0:78371859þ£2

� 1:35006812þ£3 � �0:26956192þ£4

� 0:36677183þ 0:72287511Þ þ 0:146012

ð12Þ

where £1;2;3;4 are the outputs of hidden neurons;

dbhwb is the diameter with bark measured at 1.3 m

height (cm); hc is the commercial height (m); and v̂c is

the estimated commercial volume (m3).

Volumes estimated by different approaches showed

heterogeneous variances (K = 14.01; pvalue = 0.007),

requiring data transformation to homogenize vari-

ances and test the effects of treatments by Fisher’s test.

The homogenization of variances was affected when

using the 0.5050 value in the Box and Cox formula

(K = 7.40; pvalue = 0.116). The univariate analysis

with the estimated values of commercial volume

indicated that there was no significant difference

among averages of the estimated commercial volumes

by the different approaches (Fcal. = 0.99, pvalue-
= 0.409), but there was a difference between the

plots (Fcal. = 14.75, pvalue\ 0.01). The estimated

minimum and maximum values were 0.0001 m3 and

0.6383 m3, respectively, with a mean of 0.1748 m3

per tree (Fig. 4), divided into interquartile ranges of

0.1029; 0.1587 and 0.2385 m3 to 25%, 50%, and 75%,

respectively.

Discussion

Equations developed using traditional approaches

were viable for estimates of the commercial volume

of Brazilian mahogany trees, as well as equations

developed with nonlinear mixed-effects approaches,

ANN, and SVM, because they all presented accurate

estimates of commercial volume. All parameters

estimated by traditional methods and mixed effects

were significant, which ensures higher accuracy, the

better possibility of use in other works with agro-

forestry system that presents structural characteristics

similar to that used in this research, and no multi-

collinearity among the independent variables used in

the fit (Sileshi 2014; Silva and Santana 2014; Siqueira

et al. 2017).

The Schumacher and Hall model is used worldwide

to model the individual volumetric production of

forest species in natural environments (Akindele and

LeMay 2006; Gimenez et al. 2015, 2017) or in a

monoculture system (Shiver and Brister 1992; Silva

et al. 2009; Schikowski et al. 2018) because it was

developed to explain the functional relationship of the

volume of trees with the variables that are easily

measured in the field as diameter at 1.3 m above

ground and height. The fit of this model in the original

or logarithmic form usually presents significant

parameters and good accuracy, as also observed in

the present study and Ribeiro et al. (2014) with three

species in the National Forest of Tapajós and

Cysneiros et al. (2017) with 32 commercial species

from the Amazon in Concession forest.

Mixed-effects modeling can generate equations

that accurately estimate significantly higher than the

precision of equations generated by the least-square

method (Crecente-Campo et al. 2010; Gouveia et al.

2015; Sharma et al. 2017) because mixed modeling

adds the estimated random parameters to the fixed

value of the parameters before estimating. Contrary to

this statement, Miguel et al. (2013) suggested that

fixed-effects models should be used when calibration

data are not available, even comparing with the use of

mixed effects.

Randomness generates different parameters for

each subsample (Ercanli et al. 2015; Fu et al. 2015;

Sharma et al. 2018), that in this research are individ-

uals, even if implanted in a single site and the accuracy

of these parameters is influenced by the number of

subsamples, with a direct relationship with the

Fig. 4 Variation of vc estimated by different models. ANN is

the artificial neural network; KNL is nonlinear Kozak; SHNL is

the nonlinear Schumacher and Hall; SHNLM is the mixed

nonlinear Schumacher and Hall; and SVM is the support vector

machine
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quantity used (Fu et al. 2013, 2017). Based on the

above, we believe that the parameters estimated in this

research are consistent since were used 108 individ-

uals for their estimates. The use of random effects

variance components in the fit of the Schumacher and

Hall model also increased the accuracy of estimates in

the fit set of this study, but there was no gain in

accuracy when test set estimates were analyzed.

The use of ANN to estimate the volume of trees has

been already reported; however, all studies are not

comparable to ours, because they have not worked

specifically with Brazilian mahogany in agroforestry

systems or natural environmental conditions. Many

studies used ANN to model the volume of species of

genus Eucalyptus (Soares et al. 2011; Silva et al.

2018b; Tavares Júnior et al. 2019), of species of genus

Pinus (Diamantopoulou 2005; Diamantopoulou and

Milios 2010; Çatal and Saplioğlu 2018), of other

species in natural environments or implanted in a

monoculture system (Özçelik et al. 2010; Sanquetta

et al. 2015, 2017), and this study is the first to train and

test an ANN for estimation of the commercial volume

of species in an agroforestry system.

In comparative studies with other approaches, the

ANN was also more efficient in estimating the

commercial volume of trees in the National Forest of

Tapajós (Ribeiro et al. 2016) and the estimation of

stem form of Araucaria angustifólia (Martins et al.

2017), for example. The ANN superiority about the

other approaches is mainly due to the parallel

processing of neurons, a noise tolerance, and the high

capacity of learning by modeling the complex non-

linear interactions that exist between variables (Zou

et al. 2008; Egrioglu et al. 2014; Reis et al. 2018).

The experimental design used was efficient to

reduce the experimental error, but it was not enough to

identify differences between the averages of estimates

made by the approaches. Only results similar to this

were found in studies comparing average values of

volumes estimated by different approaches via anal-

ysis of variance, for example, Correia et al. (2017)

compared the volume of wood estimated in ombro-

philous dense forest on the coast of Santa Catarina by

form factor with the volume estimated by volumetric

equation and Lanssanova et al. (2018) compared

volumetric estimates obtained by form factor, volu-

metric models, and taper model for commercial

species of the Amazon Forest and found no significant

differences.

Nevertheless, it was found that the amplitude of the

estimates made by ANN was the smallest when

comparing the amplitudes of other approaches and a

low value signifies that equation should be sound and

effective for estimate the response variable and that

the estimates presented lower variance, justifying why

the choice of this method as the most accurate. The use

of more accurately approach, even if they show a small

gain in accuracy, would impact considerable differ-

ences in the production of agroforestry system with a

large area, for example.

Conclusion

The equation fitted with mixed effects in the Schu-

macher and Hall model for the estimation of the

commercial volume is more accurate than the fitted of

traditional form, considering only the fixed effects;

however, the artificial neural network presented

greater precision, especially in the test data.

No significant differences were found between the

averages of the commercial volume estimated by the

different methods in the analysis of variance indicat-

ing that using the simplest equation, such as the

Schumacher and Hall nonlinear equation, can be used

to estimate the commercial volume of Brazilian

mahogany in agroforestry systems. However, we

indicate the use of ANN with two input neurons, four

at the hidden layer, and one at the output layer because

presented the highest precision.

This is the first study to develop equations for

estimating the commercial volume of Brazilian

mahogany in an agroforestry system in the Amazon,

and the equations can be used and tested in other

agroforestry systems and serve as a basis for the

management of the species in the Brazilian Amazon.
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Collazo RA, Pessôa LAM, Bahiense L, Pereira BB, Reis AF,

Silva NS (2016) A comparative study between artificial

neural network and support vector machine for acute

coronary syndrome prognosis. Pesqui Oper 6:321–343.

https://doi.org/10.1590/0101-7438.2016.036.02.0321

Correia J, Fantini A, Piazza G (2017) Equações volumétricas e

fator de forma e de casca para florestas secundárias do
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