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Abstract Quantitative information of tree biomass

is useful for management planning and monitoring of

the changes in carbon stock in both forest and

agroforestry systems. An estimate of carbon stored

in these systems can be useful for developing climate

change mitigation strategies. A precise estimate of

forest biomass is also important for other issues

ranging from industrial forestry practices to scientific

purposes. The individual tree-based biomass models

serve as fundamental tools for precise estimates of

carbon stock of species of interest in forest and

agroforestry systems. We developed individual tree

aboveground biomass models for Castanopsis indica

using thirty-six destructively sampled tree data cov-

ering a wide range of tree size, site quality, growth

stage, stand density, and topographic characteristics.

We used diameter at breast height (DBH) as a main

predictor and height-to-DBH ratio (a measure of tree

slenderness) and wood density (a measure of stiffness

and cohesiveness of wood fibres) as covariate predic-

tors in modelling. We, hereafter, termed the biomass

models with former two predictors as first category

models (density independent models) and the models

with all three predictors as second category models

(density dependent models). Among various functions

evaluated, a simple power function of the form

yi ¼ b1x
b2
i , in each category, showed the best fits to

our data. This formulation, in each category, described

most of the biomass variations (R2
adj [ 0.98 and

RMSE\ 72.2) with no significant trend in the resid-

uals. Since both density dependent and density

independent models exhibit almost similar fit statistics

and graphical features, one of them can be applied for

desired accuracy, depending on the access of the input

information required by the model. Our biomass

models are site-specific, and their applications should

therefore be limited to the growth stage, stand density,

site quality, stand condition, and species distribution

similar to those that formed the basis of this study.

Further research is recommended to validate and

verify our model using a larger dataset with a wider

range of values for site quality, climatic and topo-

graphic characteristics, stand density, growth stage,

and species distribution across Nepal.
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Introduction

In recent years, tree growth and carbon dynamics are

important issues especially in the context of climate

change, which has drawn the global interest (Meer

et al. 2001). Forests reduce the possibility of climate

change through sequestration of atmospheric carbon.

Majority of forest biomass studies have been carried

out for accounting aboveground biomass that covers

the greatest fraction of the total living biomass in

forest ecosystem (Chave et al. 2005). The agroforestry

system, which is also a part of the forest ecosystem,

comprises substantial amounts of living biomass

(Kumar and Nair 2011; Feyisa et al. 2016). As the

Kyoto Protocol recognizes agroforestry system as a

greenhouse gas mitigation strategy, the global interest

in carbon sequestration through adaption of this

system has increased (Albrecht and Kandji 2003; Jose

2009; Nair et al. 2009; Sharrow and Ismail 2004).

Landholders realize that agroforestry system could

become economically incentive with increased mar-

kets of forest biomass and carbon (Oelbermann et al.

2004). An estimate of forest biomass is useful for

developing climate change mitigation strategies, plan-

ning for sustainable management, and monitoring of

carbon-stock changes in agroforestry systems (Jose

and Bardhan 2012; Tumwebaze et al. 2013; Beedy

et al. 2016). An estimate of aboveground forest

biomass is also important for several other issues

ranging from industrial forestry practices to scientific

purposes (Parresol 1999; Tumwebaze et al. 2013).

However, accurate estimation of aboveground forest

biomass is much challenging task, and a major

challenge in measuring and monitoring carbon seques-

tration potential of agroforestry systems is measuring

aboveground tree biomass, which stores significant

amounts of carbon assimilated by these systems

(Kumar and Nair 2011; Temesgen et al. 2015).

Tree biomass may be estimated by using direct or

indirect methods (Vogt et al. 1998). A direct method

requires destructive sampling, which is time consum-

ing and costly, but most accurate. It is suitable for

small plants and sample sizes. Since forest area is

often large, estimation of tree biomass for an entire

forest using destructive sampling is almost impossible.

In such a situation, an indirect approach, which

involves estimating biomass of a total tree or its

components using allometric models (Subedi and

Sharma 2012; Sharma et al. 2017). Allometric models

are mathematical relationships that estimate total tree

biomass or by components based on the variables of

standing individuals such as trunk diameter, total

height, wood density (Bartelink 1996; Parresol 1999;

Lima et al. 2012; Picard et al. 2012; Skovsgaard and

Nord-Larsen 2012; Subedi and Sharma 2012; Feyisa

et al. 2016; Sharma et al. 2017). The allometric

biomassmodels, which are used for predicting biomass

of trees through dendrometric characteristics of easy

measuring, are fundamental tools for estimating the

contribution of forest ecosystems to carbon cycles

(Picard et al. 2012; Tumwebaze et al. 2013). A large

number of aboveground forest biomass models for

various tree species and geographical areas are

reported in the literatures (Ter-Mikaelian and Korzu-

khin 1997; Zianis et al. 2005; Muukkonen and Mäkipä

2006; Muukkonen 2007; Návar 2009a, b). All of these

models, whether intended for application to a single

species forest, mixed species forest, specific biogeo-

graphical region, or climate-related biomes, are based

on the allometric relationships between aboveground

biomass and size (diameter, height) and wood density

of trees (Tumwebaze et al. 2013). Allometric biomass

models can be considered as basic tools for estimating

carbon sequestration in agroforestry systems (Albrecht

and Kandji 2003; Martin et al. 2010; Nair et al. 2010;

Feyisa et al. 2016). However, most of the biomass

models developed so far are mainly based on the data

collected from either natural forests or plantations.

Therefore, they might have some limitations while

applying in agroforestry systems, because architecture

of the trees in forest and agroforestry systems would be

different as consequences of different silviculture

tendings applied in the systems (Segura et al. 2006;

Tamang et al. 2012; Beedy et al. 2016).

Agroforestry promotes the production and conser-

vation by diversifying products and services (Kumar

and Nair 2011). Agroforestry, as a part of the multi-

functional working landscape, can play a major role in

conserving and enhancing biodiversity from farms to

the landscape level in both tropical and temperate

regions of the world (Jose 2012). Agroforestry system

is potentially important for livelihood strategies and

forest conservation, and varies greatly according to the

local contexts. Agroforestry system generates sub-

stantial income, supports livelihood and biodiversity,

and keeps ecological functions in intact (Regmi and

Garforth 2010; Oli et al. 2015). The trees growing in

agroforestry systems have immense potentialities for
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producing timber, fuel wood, fodder, food, seques-

trating carbon, conserving soil and water (Dhungana

and Bhattarai 2008).

The Indian Chestnut [Castanopsis indica (Roxb.)]

is a one of the important evergreen broad-leaved tree

species in the mid-hills of Nepal. It grows in a wide

geographical range, distributing from 1200 to 2900 m

above mean sea level (Jackson 1994). It is a multi-

purpose species, whose stem is used as construction

timber, leaves as fodder and raw materials for plates,

branches as fuelwood and fruits as edible food and

leaves of this species contain protein (15%) and fiber

(29%), making nutrient-rich fodder source (Jackson

1994). Most of the C. indica forests in Nepal were

degraded in the recent past, due to policy conflict

between the central government and local forest users.

However, after introduction of community forestry

programs in 1970s (Bartlett 1992), most of C. indica

forests were successfully rejuvenated, but they are still

in immature stages. Most of the agricultural fields

were built after clearing natural C. indica forests and

therefore, agricultural fields are adjoining to these

forests, and also in some cases, agricultural fields are

surrounded by C. indica forests in all directions. Thus,

C. indica forests contribute to the nutrient flow to the

adjacent agricultural fields, for example, 250 kg leaf

litter of Schima–Castanopsis forests may transfer

about 11 kg, 1.3 kg, and 6 kg of nitrogen, phosphorus,

and potassium, respectively, which may help main-

taining fertility in the agriculture fields (Balla et al.

2014). C. indica has a high calorific value, which

makes it a potential source of energy. Besides

producing valuable material products, C. indica also

provides environmental services (soil and water

conservation) and carbon sequestration, which play

important roles in the climate mitigation functions.

Because of the immense importance of C. indica

forests, in-depth investigations on this species is

necessary. Among various aspects of investigation,

developing individual tree-based aboveground bio-

mass models can be one of them. Because, a precise

estimate of standing volume and biomass for this

species is necessary for effective management of C.

indica forests. Some previous studies have attempted

to develop allometric biomass models for this species,

such as biomass models for juvenile stage plants

(Bhandari and Neupane 2014) and biomass models

and volume tables for all sized-trees (Tamrakar 2000).

However, Tamrakar (2000) used only diameter as a

predictor in the models, which would be significantly

biased in the stands where trees of C. indica with

similar diameters have different heights, height-to-

diameter ratios (tree slenderness coefficients), wood

densities, and crown sizes. In order to ensure a high

prediction accuracy in such as situations, this study

aims to develop the individual tree aboveground

biomass models using three important variables:

diameter, height-to-diameter ratio, and wood density

as predictor variables. The presented models will be

applied for a precise prediction of the individual tree

aboveground biomass of C. indica in both forest and

agroforestry systems in the mid-hills of Nepal.

Materials and methods

Study area

We carried out this study in three different community

forests (CFs) in Kaski district, one of the mid-hills

districts in Nepal (Fig. 1). The CF is defined as the

forest managed by local people in line with the CF user

group constitution and operation plans. We used three

CFs: Bhangara CF, Thulo CF, and Pachabhaiya CF in

our study. The forests covers 46% area of the district,

and out of which 22% forest is being managed by 497

CF user groups. The altitude of these CFs varies from

637 to 823 m above mean sea level, and slope varies

from 10� to 44�. Mean maximum and minimum

temperatures are reported to be 33 and 5.6 �C,
respectively. Mean annual precipitation varies from

3068 to 3353 mm (DDC 2010). All three CFs have

been managed by local people since last 15–20 years.

Various silviculture tendings such as weeding, clean-

ing, climber cutting, thinning were applied to improve

the productivity of these CFs. Forests were originated

naturally with stand age varying from 25 to 45 years,

and they consist of different tree species such as

Castanopsis indica, Schima wallichii, Bombax ceiba,

Lagerstroemea parviflora, Wrightia arborea, Albizia

procera, Shorea robusta, Syzygium cumini. However,

Castanopsis indica is a dominating species in terms of

its abundance, coverage, stem volume, and biomass in

each CF. The lower boundary of these three CFs are

attached to the agricultural fields. Therefore, their

contribution to the agroforestry system is substantially

high either in terms of providing nutrients or in

stabilizing slopes of both forests and agricultural fields.
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Sampling and measurement

Based on the size (diameter and height) of population

of a species of interest, sample trees were identified

with the help of local people and forest management

plans that were formulated by community forest user

groups. We applied the stratified sampling technique

(Chaturvedi and Khanna 2011) to select the sample

trees that properly represent the variabilities in terms

of size of trees, site quality, stand density, stand

structure, and physiographic features of the stands.

The stratified sampling with subjective tree selection

method is often used to obtain good representative

samples from each stratum of population of a species

of interest (Edwards Jr et al. 2006; Chapagain et al.

2014; Sharma et al. 2017). This selection method

resulted in the thirty-six sample trees representing all

kinds of above-mentioned variabilities. At least three

trees in each diameter at breast height (DBH) class

were identified and measured for standing height,

stump diameter, and DBH. Diameters were measured

to a precision of 1 mm. We excluded diseased,

deformed, top broken, suppressed, leaning, and wolf

trees from being sampled. Since forest consists of a

large proportion of small sized trees, size of sample

trees selected from small-sized classes were also

relatively large. The number of sample trees in each

DBH class varied from 3 to 9.

Selected trees were felled through October and

November 2013 and total height was measured to a

precision of 1 cm. Foliage, branch, stem of each tree

were segregated immediately after felling. On the

basis of diameter, felled trees were grouped into stem

parts (small: 1.5–10 cm, large: C10 cm), and branch

parts (foliage: \1.5 cm, small: 1.5–10 cm, large:

C10 cm). Each of these parts were weighed in situ

Fig. 1 Study area
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separately. Stem parts and large branches were

segregated to maximum of 3 m length. Within the

limit of 3 m, and based on tapering, segments were

divided into swollen parts or twisted parts. Diameters

on thicker, middle, and thinner ends and total length

were measured for each segment. The wood volume of

each segment was determined using the Newton’s

formula (Chaturvedi and Khanna 2011) as below:

V ¼ L S1 þ 4Sm þ S2ð Þ
6

ð1Þ

where V is the wood volume of a segment (m3); L is the

length of a segment (m); Sl is the basal area at thinner

end of a segment (m2), S2 is the basal area at thicker

end of a segment (m2), Sm is the basal area at mid-point

of a segment (m2);

Discs (wood sub-samples) were cut from thicker,

middle and thinner end of the stem of each sampled

tree. Following the methods suggested by Nelson et al.

(1999), discs were taken in such a way that both inner

and outer parts would be properly included. Based on

the thickness, one or two discs were cut from a large

branch. Also, sub-samples from foliage and small

branches of each sampled tree were taken and their

fresh weights were measured. Wood volumes of sub-

samples from stems and branches were determined by

using water displacement method. All sub-samples

were transported to the laboratory for oven drying.

Sub-samples were dried on the oven (102 �C) until
their weights decreased to a stable state. Dried sub-

samples were weighed separately. Wood density of

sub-samples from stem and large branch was deter-

mined using the following formula (Chave et al. 2006;

Mäkipä and Linkosalo 2011):

q ¼ Wo

Vs

ð2Þ

where q (rho) is the wood density (kg m-3); Wo is the

oven dry weight of a sub-sample (kg); Vs is the water

saturated volume of a sub-sample (m3)

Dry-to-fresh weight ratio was determined and this

was multiplied by total fresh weight to estimate dry

biomass of foliage and small branches. Biomass of

each segment from stem and large branch was

estimated as a product of wood volume and wood

density. Total dry biomass of each sample tree was

obtained by summing up of dry weight of stems,

branches, and foliage. A summary of statistics of data

is presented in Table 1. T
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Model development

Since there is allometric relationship between tree

variables and tree biomass or its component biomass,

this can be modeled as a function of

1. diameter alone (Rizvi et al. 2008; Ajit et al. 2011;

Sharma 2011; Singh et al. 2011; Kuyah et al. 2012),

2. diameter and height (Ketterings et al. 2001; Rizvi

et al. 2008; Hosoda and Iehara 2010; Subedi and

Sharma 2012; Sharma et al. 2017), and

3. diameter, height, and wood density (Chave et al.

2005; Basuki et al. 2009; Alvarez et al. 2012;

Chaturvedi and Raghubanshi 2012; Chapagain

et al. 2014).

Since our preliminary analyses showed poorer

results with use of the first approach compared to

other two, we excluded this from further analyses.

This would be logical in a sense that even within a

small stand, biomass of the trees having similar

diameters might be different, because of differing

heights and wood densities. Also, biomass of the trees

having similar heights and diameters might be differ-

ent because of differing wood densities. Realizing this,

we used all three variables (DBH, height, wood

density) to develop biomass models. Instead of total

height, we used height-to-DBH ratio (HDR). As HDR

is a measure of tree slenderness, it is an appropriate

characteristic to describe the form of an individual

plant (Sharma et al. 2016, 2017). We categorized

predictor variables into two groups: first group: DBH

as a main variable and HDR as covariate predictor;

second group: DBH as a main variable and product of

HDR and wood density as covariate predictors. All

candidate models with each variable group fitted to the

data. The models developed using variables from the

first group are hereafter termed as density independent

models (first category models) while models devel-

oped from second group are termed as density

dependent models (second category models).

We examined the scattered plots of HDR versus

DBH and wood density versus DBH to know the

patterns of their relationships (i.e., linear or nonlinear)

(Fig. 2). We used this figure for covariate modelling

purpose. We applied the parameter prediction

approach (Chapagain et al. 2014; Sharma et al.

2017), which is slightly different from that used in

other biomass modelling works (Rizvi et al. 2008;

Basuki et al. 2009; Hosoda and Iehara 2010; Alvarez

et al. 2012; Subedi and Sharma 2012). Among various

candidate models evaluated, only six model converged

with global minimum, and exhibited biologically

plausible model curves. However, because of a brevity

of space, we have presented only these six models here

(Table 2). The parameter b1 of each of the base models

(Table 2) was found significantly correlated to each of

the two covariate predictors (HDR, HDR 9 wood

density). The parameter b1 of each base model was

then modeled as a nonlinear function of a covariate

(see Eq. 3 as an example for M2 in Table 2). To make

a product value (HDR 9 wood density) smaller, wood

density was cubed root. This allowed variations

between 3 and 9 (Fig. 2, right).

b1 ¼ a1z
a2
i ð3Þ

where zi ¼ HDRi (for first category models), zi ¼
HDRi � q1=3i (for second category models); HDRi is

the height-to-DBH ratio for tree i (m cm-1), and qi
(rho) is the wood density for a tree i (kg m-3), and b1,

a1, a2 are parameters to be estimated.

Fig. 2 Relationship

between covariate

predictors [DBH diameter at

breast height (cm); HDR

height-to-DBH ratio

(m cm-1); rhowood density

(kg m-3)
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Parameter estimation and model evaluation

The model parameters were estimated with nonlinear

least square regression using PROC MODEL in SAS

(SAS Institute Inc. 2012), applying Marquardt’s

method. The estimated models were evaluated using

various statistical measures and graphical appear-

ances. We used following statistical measures: (1)

significance of parameter estimates: this avoids bio-

logically illogical parameter estimates. Unless other-

wise specified, 1% level of significance (a = 1%) was

used in our analyses. (2) Root mean square error

(RMSE): this analyzes precision of the estimation. (3)

Adjusted coefficient of determination (R2
adj): this

reflects the total variability described by the model

considering total number of parameters to be esti-

mated. The expressions of RMSE and R2
adj are found in

the standard text books of statistics (e.g., Montgomery

et al. 2001). (4) Akaike information criterion (AIC):

this compares the estimated models more logically

than others as AIC is based on minimizing Kull-back–

Lieber distance (Akaike 1972; Burnham and Anderson

2002). Additionally, residual graphs and the model

curves produced with each base model were also

analyzed. This helps better understanding whether

models are attributed to theoretical basis and biolog-

ical logics (Zeide 1993).

Model validation is one of the important procedures

of modelling as this provides credibility and confi-

dence about the developed model. Validation is often

carried out by splitting data (Ajit et al. 2011; Sharma

and Breidenbach 2015; Sharma et al. 2017). However,

we were not able to do this because of small dataset.

Even validation by splitting data alone does not

provide more information in addition to the respective

fit statistics obtained directly from the model fitted

with a total dataset (Kozak and Kozak 2003; Yang

et al. 2004). Therefore, validating model with external

independent data can be the best alternative only, but it

would not be possible to get additional destructive

samples, because of resource limitations.

Results

The parameter estimates of the models in each model

category were significant (p\ 0.001) and biologically

plausible. There were only smaller differences among

the six models within the same category than the

models between the different categories (Table 3).

ExceptM6 of the first categorymodels, AIC difference

of each model (with respect to that of the best model,

M2 of the second category models) was less than 10.

As expected, all second category models resulted in

better fits than the models in the first category. A

simple power function of the form yi ¼ b1x
b2
i (M2), in

each category, showed the most promising fit statistics

(smallest RMSE and AIC, largest R2
adj). Even though

this model, in the second category, showed the most

promising fit statistics, a significant part of the biomass

variations was left unexplained (RMSE = 65.4). The

last model (M6), in each category, showed the poorest

fit statistics (largest RMSE and AIC, smallest R2
adj).

Two models M1 and M2, in each category, showed

very small discrepancies in the fit statistics, but

significant differences in the residuals (Fig. 3).

There was no variance heteroscedasticity in data.

Compared to other models, the best fitted model (M2),

in each category, showed no significant trends in the

residuals against the predictor variables (DBH, height,

slenderness coefficient, and wood density) (graphs not

shown). The histograms and probability plots of the

residuals of model M2, in each category, also showed

much better bell-shaped pattern than other models

(graphs not shown). Due to brevity of space, we

Table 2 Candidate models

used to fit data

Wi dry biomass of a tree

i (kg); Di diameter at breast

height (DBH) of a tree

i (cm); b1 ¼ a1z
a2
i with zi ¼

HDRi (for first category

models), zi ¼ HDRi � q1=3i

(for second category

models); HDRi height-to-

Model Mathematical form References

M1 Wi ¼ b1 1� exp �b2Dið Þ½ �2þei Bertalanffy (1957)

M2 Wi ¼ b1D
b2
i þ ei Huxley and Teissier (1936)

M3 Wi ¼ b1 exp b2
ffiffiffiffiffi

Di

p� �

þ ei This study

M4 Wi ¼ exp b1D
b2
i

� �

þ ei Sharma (2011)

M5 Wi ¼ Di= b1 þ b2Dið Þ þ ei Hosoda and Iehara (2010)

M6 Wi ¼ D2
i

�

b1 þ b2D
2
i

� �

þ ei Hosoda and Iehara (2010)
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present only graphs of M2—the best model (Fig. 3).

Compared to other models, M2, in each category,

showed smaller residual variations than that for larger

trees. Trends of the M2-estimated biomass plotted

against the measured biomass nicely followed the 1:1

line (Fig. 4). This indicated that two biomass amounts

were not substantially different, especially for very

small and large trees. The biomass curves produced

with M2, in each category, also showed an adequate

covering to the measured biomass (Fig. 5). There was

a significant differentiation of the curves within the

data range, even for the same DBH due to differing

tree slenderness coefficients and wood densities.

Discussion

We developed both wood density dependent and

density independent biomass models for the prediction

of aboveground biomass of the individual C. indica

trees growing in forest and agroforestry systems. Both

model alternatives show attractive fit statistics

Table 3 Parameter

estimates and fits statistics

of six models (Table 2)

The best performing model

in each category is

highlighted

RMSE root mean squared

errors; R2
adj adjusted

coefficient of determination,

AIC Akaike’s information

criterion; a1, a2, b2, are
parameters

* Defined in Table 2 and

more description is in a sub-

section ‘‘Model

development’’

Category* Parameter estimates Fit statistics

Model a1 a2 b2 RMSE R2
adj

AIC

First M1 684.2589 0.648284 -0.02444 73.6293 0.9804 314

M2 0.034642 0.789939 2.980244 72.1951 0.9811 313

M3 2.780965 0.570763 1.023094 76.8374 0.9786 317

M4 1.500356 0.094673 0.438494 74.9218 0.9797 316

M5 2.180419 -0.31858 -0.03404 75.6059 0.9793 316

M6 1.645352 -0.33981 -0.00046 79.1907 0.9773 320

Second M1 190.328 0.653222 -0.02374 68.0968 0.9832 309

M2 0.007598 0.778986 2.945875 65.4181 0.9845 306

M3 0.87058 0.580227 1.01461 72.1755 0.9811 313

M4 1.252436 0.09428 0.433645 69.9811 0.9823 311

M5 4.205852 -0.3254 -0.03254 71.2643 0.9816 312

M6 3.400865 -0.35722 -0.00044 75.6122 0.9793 316

Fig. 3 Mean residuals of

each model (Table 2)

against two tree variables-

total height and diameter at

breast height (DBH). Mean

residuals were calculated by

10 cm intervals of both

height and DBH

(category = 1: first

category models;

category = 2: second

category models, both are

defined in Table 2)
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(Table 3) and our data adequately represent wide

ranges of tree size (Table 1), site quality, stand

conditions, and topographic characteristics in the

study area. Like other biomass modelling studies

(Chave et al. 2005; Basuki et al. 2009; Návar 2009a, b;

Alvarez et al. 2012; Chaturvedi and Raghubanshi

2012; Lindner and Sattler 2012; Chapagain et al.

2014), our density dependent models also show higher

accuracies than their density independent counter-

parts. Only small discrepancies were observed in the

fit statistics among the model alternatives (Table 3). If

AIC difference of any model relative to that of the best

fitted model is\10, these models would have identical

prediction accuracies (Burnham and Anderson 2002).

Only less than 2% of the total variations in the

measured biomass remain unexplained by the best

model, because none of the mathematical functions

perfectly describe the measured biomass data due to

large variations among the individual tree sizes. To

capture more and more variations of a response

variable, i.e., biomass amount, fitting of several

models of different functional forms (e.g. power,

exponential, polynomial forms) to the data is neces-

sary and this may offer a good chance of getting

suitable models as per the nature of data (Rizvi et al.

2008; Ajit et al. 2011; Sharma 2011; Subedi and

Sharma 2012; Chapagain et al. 2014; Sharma et al.

2017). Realizing this, we also evaluated several

candidate functions as base models and selected the

best performing one, which describes more than 98%

biomass variations among the individual trees

(Table 3). This indicated that the base model and

predictor variables chosen and modelling approach

applied were best suited to our data.

Non-existence of significant and systematic trends

in the residuals of the best model (Fig. 3), in each

category, confirms the model’s adequacy and preci-

sion (Table 2). A clear differentiation of the curves

produced with M2 within the measured data range,

even for the same DBH (Fig. 5), is due to the

significant effects of other covariate predictors

(p\ 0.001 for a1 and a2 in each category). Because

Fig. 4 M2-estimated

biomass data plottted

against measured biomass

data, and 1:1 line overlaid on

them (category = 1: first

category models;

category = 2: second

category models, both are

defined in Table 2)

Fig. 5 Biomass curves produced with M2 (Table 2), overlaid

on the measured biomass data. The curves were produced using

HDRs at 0.1 intervals, with the lowest and highest curves

belonging to biomass for trees with HDR of 0.2 and 0.9,

respectively (category = 1), and HDR1/3 9 rho at 1.0 interval

with the lowest and highest curves belonging to biomass for

trees with HDR1/3 9 rho of 2 and 9, respectively (cate-

gory = 2). Dots are the measured biomass values (cate-

gory = 1: first category models; category = 2: second

category models, both are defined in Table 2)
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of different heights and wood densities of the sampled

trees used (Table 1), their predicted biomasses are

expected to be different, even for the same DBH as

shown in Fig. 5. Adequate covering of the model

curves to the measured biomass also suggests that the

selected models are adequate enough to describe

biomass variations for all sized trees (Table 1). This

suggests that selected model is biologically plausible

andmathematically robust. Smaller residual variations

for small trees (Fig. 3) suggests that our models can be

more accurate for smaller trees than for larger ones.

This may be the reason that there were fewer data from

larger trees as compared to the smaller ones.

All functions evaluated in this study are nonlinear

and some of them have already been used to model

aboveground biomass for large individual trees and

juvenile stage plants. As in many other studies (e.g.,

Ketterings et al. 2001; Subedi and Sharma 2012;

Chapagain et al. 2014; Sharma et al. 2017), using DBH

as a single predictor in the models did not adequately

describe the data in this study also. These models

would have limited scope of application as they do not

provide desired prediction accuracies in the situations

where trees of similar DBH have different heights,

HDR, wood densities, and crown sizes. This situation

commonly exists in each stand, even a stand is very

small. Alternatively, inclusion of other predictor

variables such as HDR (a measure of tree slenderness),

wood density (a measure of stiffness and cohesiveness

of wood fibres), and crown size (a measure of tree

vigour and health) into the biomass models may

increase the model’s prediction accuracy and have a

wider scope of application. For example, Feyisa et al.

(2016) developed allometric biomass models with

crown area and crown volume along with other tree

variables as predictors for ten woody species in

rangelands of southern Ethiopia. However, we were

not able to include crown variables into our biomass

models because of lack of crown measurements.

If wood density of the modelled species is avail-

able, density dependent models or M2 (in second

category) could certainly be the first choice. Alterna-

tively, in lacking of the information of wood density of

a species of interest, the density independent model or

M2 (in first category), which requires information of

only DBH and HDR, could be applied. The prediction

accuracies of both model types may not be much

different, because they exhibit almost identical fit

statistics (Table 3) and graphical features (Figs. 3, 4,

5). However, we were not able to compare their

prediction accuracies in different growing conditions

of C. indica, because of lack of external independent

data. Since tree height and diameter are more readily

measureable than wood density, first category models

(density independent models) are often suggested for

application (Ketterings et al. 2001; Rizvi et al. 2008;

Hosoda and Iehara 2010; Subedi and Sharma 2012;

Chapagain et al. 2014). The adequate covering of

simulated biomass curves (Fig. 5) to the measured

data suggests that models could be applicable with an

acceptable accuracy for individual trees having a wide

range of HDR and wood density (Fig. 2).

The sampled trees used in this study (Table 1) are

fairly representative to various site qualities, sizes,

stand conditions, and physiographic characteristics

(aspect, slope, altitude). The destructive sampling is

usually carried out for biomass studies, but it requires

more time and resources. Therefore, this method is

rarely applied for a large sample size and geographic

area. We argue that our sample size (36 trees) is larger

than that used in other biomass studies (Ajit et al.

2011; Sharma 2011; Chaturvedi and Raghubanshi

2012; Subedi and Sharma 2012), which ranged from

27 to 30 individuals. With few exceptions (e.g. Brown

et al. 1993; Chave et al. 2005), biomass modeling

studies requiring destructive sampling only use small

sample size from a small geographic area. Further-

more, most of the allometric biomass models devel-

oped so far are mainly based on the data collected from

either natural or plantation forests (forest systems).

Therefore, some limitations may be realized for their

application in agroforestry systems because of the

differences in tree statures (or tree architectures)

resulted from different silviculture tendings applied in

these systems (Segura et al. 2006; Martin et al. Martin

et al. 2010; Tamang et al. 2012; Beedy et al. 2016;

Feyisa et al. 2016). Thus, it is important to collect data

(as we did in this study) from a population of a species

of interest, covering both forest and agroforestry

systems. This may ensure the adequacy and confi-

dence of the developed biomass models while apply-

ing them for either system.

When sample trees are adequately representative to

all existing sizes, sites, and stand conditions, mea-

surements from only a few trees could be good enough

to secure the desired accuracies of the allometric

biomass models. In order to confirm this possibility,

modellers need to confirm whether the developed
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biomass models could be used for precise prediction

under different growing conditions. Since biomass is

affected by wood density, and wood density by various

factors such as site quality, climate, growth stage of

trees, and competition stresses, inclusion of site index,

age, and competition measure into the biomass models

may significantly increase the model’s accuracy and

scope of application. Further research will be carried

out using data from wider ranges of site quality and

stand condition, and distribution of C. indica when

adequate financial resources are available.

Conclusions

A simple allometric model with DBH, height-to-DBH

ratio, and wood density included as predictors (density

dependent model) showed the best fits to the data.

Compared to this model, the same functional form

with the former two predictors (density independent

model) showed slightly less attractive fit statistics.

However, both model alternatives describedmore than

98% variations in the biomass amounts of individual

trees with no significant trend in the residuals. Thus,

one of the alternatives may be used for a precise

prediction of the individual tree aboveground biomass

of C. indica growing in forest or agroforestry systems,

depending on the access of input information required

by the model. Our models are site-specific, and

therefore model users need to take precautions while

applying them to a wider geographical range, where

conditions for C. indica are different in terms of

growth stage, site quality, stand density, and species

composition that formed the basis of this study. To

make the biomass models more comprehensive,

accurate, and broadly applicable, they need to include

measurements of site quality (e.g., site index), stand

density (e.g., competition index), topographic charac-

teristics (e.g., aspect, slope, and altitude), climate

characteristics (temperature and precipitation), and

soil properties. Thus, further research is suggested to

validate and verify our model using a larger dataset

with a wider range of values for site quality, climate

and topographic characteristics, stand density, growth

stage, and species distribution across Nepal.
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