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Abstract Allometric models predicting above-

ground woody biomass for open grown valonian oak

(Q. ithaburensis subs. macrolepis L.) trees growing in

a Mediterranean silvopastoral system were built based

on Bayesian and classical statistical techniques. The

simple power model M = aDb was used for predicting

aboveground woody biomass (M), stem (MS) and

branch (MB) biomass through tree diameter (D). An

informative Bayesian approach (IB) based on prior

information about a and b and increasing variance of

predicted values in relation to D was applied on 25

destructively sampled trees for estimating M. Non-

informative Bayesian (NB), log-linear regression (LR)

and non-linear regression were also built for M, MS

and MB. Quite similar M distribution was derived from

LR and NB across the D range, totally different from

IB predictions which provided biologically sound

estimates. Tree height, stem length and crown length

did not substantially improve predictions for M, MS

and MB. Comparisons to oak trees growing in closed

stands indicated that open-grown oaks sustain much

less stem biomass but maintain larger branch biomass

than forest-grown counterparts. Comparisons to pub-

lished values for open-grown green ash trees sup-

ported the hypothesis that open grown broadleaved

specimens may sustain similar M values, irrespec-

tively of species, growth conditions and tree size. On

the contrary, allocation pattern of organic matter to

stem and branches seems to vary by species and/or site

conditions. Finally, predictions for b = 2.67 derived

from a theoretical model was not supported by this

dataset.

Keywords Mediterranean agroforestry � Carbon

stocks � Regression � Scaling � Greece

Introduction

Silvopastoral systems are considered to be one of the

most prominent agroforestry practice in the Mediter-

ranean landscape and may considered to be both a

source or a sink of carbon depending on their function

and structure (Montagnini and Nair 2004; Schoene-

berger 2009). Additionally, agroforestry systems are

reported to provide important opportunities for adap-

tation and mitigation of climate change (Gitay et al.

2002, p. 37). Murthy et al. (2013) report that carbon
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stocks in tree biomass in such a system is generally

much higher than a treeless land, but empirical

estimates are rather limited (Makungwa et al. 2013;

Zhou et al. 2014). One of the main carbon pool in a

silvopastoral system is expected to be the aboveground

woody biomass (M) of tree species located in a specific

area, although several other components may signif-

icantly contribute to carbon storage. Biomass estimates

for agroforestry systems and therefore allometric

equations that relate tree M to the diameter at breast

height (D) and/or tree height (H) are rather limited.

Specifically for Mediterranean silvopastoral systems,

such information is largely missing from the literature.

On the other hand, a vast amount of tree allometries

were developed for closed forest stands. Linear

regression analysis on logarithmically transformed

biomass data and non-linear regression have exten-

sively been used to derive an empirical equation

between M and D or H. The aforementioned

approaches have been based on the classical statistical

theories, but nowadays Bayesian theorem is rapidly

emerging in ecological studies and specifically in

forest biomass research (Zapata-Cuartas et al. 2012;

Tredennick et al. 2013; Zell et al. 2014; Zianis et al.

2016). Bayes rule can be used to obtain probability

distributions for the predicted biomass values as well

as for the scaling parameters of allometric relationship

(Gilks et al. 1995; McCarthy 2007, pp. 119–120;

Gelman et al. 2014, p. 355).

The theoretical background on tree allometry

originates with the proposition that tree stem is

considered to be an ideal geometric object and

therefore M / V / D2H, where V is stem volume.

Biomechanical constraints assume that H / Dc or

M / Db¼2þc and under fractal geometry 2\ b\ 3.

An integrated approach based on the fractal distribu-

tion of tree branching system was presented by (West

et al. 1997; WBE hereafter) and predicted that M /
D2:67 and M / H4, applicable for trees growing across

the globe. Analyses on a plethora of empirical

aboveground biomass allometries indicated that the

value of b is statistically different from the theoretical

estimate of 2.67 (Muller-Landau et al. 2006; Zianis

2008; Navar 2010 to cite but a few).

Many empirical relationships were reported for trees

growing in closed forest stands and plantations but

equations for open grown trees are largely missing

(Kort and Turnock 1999; Zhou et al. 2014). Trees

growing in open-canopy conditions are expected to

present different architectural and structural character-

istics and in turn different size-shape relationships than

specimens in more closed-canopy environments. Direct

exposure to wind forces and snow loads, less compe-

tition for light, water and nutrient resources, as well as

absence of mechanical support from neighboring trees

result in more expanded crown size, sharper trunk taper

and larger wood specific gravities (Enquist and Niklas

2001; Zhou et al. 2011) than closed-canopy trees (Zhou

et al. 2014). Proportionally, much more organic matter

tends to be allocated in branch biomass in comparison to

trees growing in high density forested stands.

The main objective of this study was to report

potential deviation of predicted values obtained by

classical and Bayesian allometries for aboveground

biomass of tree compartments for valonian oak (Q.

ithaburensis subs. macrolepis L.) specimens growing

in an open-canopy Mediterranean silvopastoral

ecosystem. Secondly, the obtained biomass estimates

were compared to published values for open-grown

ash trees. Thirdly, the differences in the allometric

relationships between open-canopy and closed-

canopy trees for Quercus genus reported in the

literature were analyzed. Finally, theoretical predic-

tions from WBE model were validated against empir-

ical values obtained by the analyzed dataset.

Materials and methods

Study area

The studied forest is located in the western part of

central Greece and about 23 km west of Agrinio town.

The heterogeneity of the landscape, consisting of

agricultural, grazing and forested lands, characterizes

the studied silvopastoral system. In the study area,

valonia oaks are found on shallow calcareous soils in

all aspects within an elevation range from 70 to 400 m

above sea level. Mean yearly rainfall amounts to

938.5 mm and mean yearly temperature is 16.8 �C
(National Meteorological Service for the period

1956–2012). The forested stands cover an area of

more than 4400 ha while partially forested area

amounts to 3300 ha. The stands are even-aged and

range from 200 to 240 years. Stand density ranges

from 50 to 60 trees per hectare.
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Biomass measurements

Twenty five valonian oak trees were selected and cut

down. Diameter at breast height (1.3 m above ground)

was measured before cutting and tree height (H), stem

(SL) and crown length (CL) were recorded after cutting

the tree. Branches were separated from the stem after

felling. Fresh weights were measured separately for

stem and for each of the main branches (up to four for

some trees). Two discs were removed from the stem at

0.3 m from the base and the base of crown. The fresh

weight of discs was measured in the field and their dry

weight was determined (oven dried at 80 �C until a

constant weight was reached) in the laboratory. The

oven dried biomass over the fresh weight (measured in

the field) from each disc was therefore determined and

their average value was applied to the stem fresh

weight to obtain dry stem biomass (MS). For each

branch, a disc was removed near its base (about 5 cm

from the insertion point for large branches and about

2 cm for small branches) and the oven dried biomass

over the fresh weight from each disc was determined.

This value was multiplied by the fresh branch weight

to derive dry weight for each branch. The summation

of branches’ dry weight was therefore obtained (MB).

Total aboveground tree woody biomass (M) was the

sum of MS and MB.

Classical modeling techniques

Two different frameworks were used to model the

allometric relationships in our datasets: the classical

regression and the Bayesian analysis. Under the

classical framework two different approaches were

used (Payandeh 1981; Chiyenda and Kozak 1982),

namely the intrinsically linear regression of logarith-

mically transformed data (LR), which assumes a

multiplicative error and thus

ln Y ¼ ln aþ b lnX ð1Þ

and the intrinsically nonlinear regression (NLR),

assuming an additive error term where

Y ¼ aXb ð2Þ

A bias is introduced when predictions from LR are

back transformed to the ordinal scale and thus a

correction factor should be used (Sprugel 1983). In

NLR, a weight function, usually based on a negative

power of X, is introduced to avoid negative predictions

of Y. The most appropriate approach (either LR or

NLR), was selected using the corrected Akaike

information criterion (A) proposed by Xiao et al.

(2011),

A ¼ 2k � 2 lnðLÞ þ 2kðk þ 1Þ=ðn� k � 1Þ ð3Þ

where k, n and L denote the number of parameters, the

sample size and the corresponding likelihood of the

model, respectively. The regression with the lowest

A value was selected as the most appropriate empirical

model.

In the case of Eq. 1, appropriate formulae should be

used in order to predict the mean response for diameter

D at normal scale by the following equation:

M ¼ eðln aþb lnDþv=2Þ ð4Þ

where ev=2 is the correction factor to eliminate the bias

from log-transformation, and

v ¼ Mse 1 þ 1; lnD½ � X0Xð Þ 1; lnD½ �0
� �

ð5Þ

denotes the variance of the predicted value, Mse is the

mean square error of the linear regression and X is the

design matrix of the linear regression. We used the

method by Zou et al. (2009) for the estimation of

predicted intervals (specifically, Eqs. 3 and 4 from the

aforementioned reference for n = 1):

Lower limit of M ¼ M exp � z2
1�a=2vþ v=2ð Þ2

� �1=2
� �

ð6Þ

Upper limit of M ¼ M exp z2
1�a=2vþ v=2ð Þ2

� �1=2
� �

ð7Þ

where z1�a=2 denotes the respected quantile of the

standard normal distribution.

Tree height (H), stem length (SL) and crown length

(CL) were also used as regressor variables for

predicting M, MS and MB under the LR, NLR and

NB approaches. For the NLR approach (i.e., Eq. 2),

the iterative procedures in the free software environ-

ment R (R Development Core Team 2011) provided

the 95% predicted values of M based on the nls

command.
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Bayesian modeling techniques

In the Bayesian context, the parameters in statistical

models are allowed to follow pre-specified probability

distributions, not assumed to be fixed points as

suggested by the classical method. Thus, previously

empirical information and/or theoretical expectations

are easily incorporated in the modeling approach

(McCarthy 2007, p. 23).

The first step for building an informative Bayesian

model of aboveground woody dry biomass (M) was

the specification of prior distributions for the allomet-

ric parameters. To this end, a large compendium of

published a and b values was used based on several

databases for forested stands (Ter-Mikaelian and

Korzukhin 1997; Eamus et al. 2000; Zianis and

Mencuccini 2003; Jenkins et al. 2004; Zianis et al.

2005; Pilli et al. 2006; Zianis 2008; Navar 2009;

Henry et al. 2011; Zapata-Cuartas et al. 2012). Thus,

a�Log � Normal distribution ð�2:0; 0:5Þ;
b�Normal distribution ð2:35; 0:1Þ:

Furthermore, following Zianis et al. (2016) the variance

(v) of the predicted Mi at a specified Di was modelled as

vi / Mc
i ¼ g aDb

i

� �c

and according to Ducey et al. (2009) c = 1.5 for trees

growing in an Amazonian region. In the absence of

further information about its value for open-grown

trees, the aforementioned estimate for c was used in

our dataset. The variance in logarithmic scale may be

determined as z ¼ ln 1 þ v=M2ð Þ, as reported in Tho-

mopoulos and Johnson (2003). Based on the afore-

mentioned priors and relationships, the following

informative Bayesian (IB) approach was built:

Mi �Log � Normal ðli; ziÞ;

where li is the ln aDb
� �

; zi is the lnð1 þ vi=M
2
i Þ; vi is

the g aDb
i

� �c
; g is the uniform distribution (0.01, 0.05).

For comparison, the following non-informative

Bayesian method (NB) was developed based on the

most commonly used log-linear regression, with non-

informative priors about the parameters:

lnMi � N lnaþ blnDi; vð Þ

lna is the uniform distribution (-4,-1), b is the uniform

distribution (1.5, 3.5) and, v is the gamma distribution

(0.1, 0.01), while predictions at normal scale were

derived as, Mi is the log-normal distribution (lnMi, v).

For stem (MS) and branch biomass (MB) the above

non-informative Bayesian formulation was also used.

Specifically, aboveground woody biomass (M) was

replaced byMS andMB so as to derive non-informative

Bayesian allometries for these compartments. Infor-

mative Bayesian for MS–D and MB–D relationships

could not be built since there is not adequate

knowledge about the distribution of allometric param-

eters for open-grown trees. Additionally, Zhou et al.

(2014) reported that the biomass of these two tree

compartments for open grown ash specimens deviate

by a high degree in comparison to forested trees. Thus,

having used the probability distributions of a and

b from closed-canopy trees would bias the Bayesian

analysis performed on our open-grown tree dataset.

WinBUGS, a free software (Lunn et al. 2000) based

on Markov chain Monte Carlo methods (Spiegelhalter

et al. 2007), was used in order to generate posterior

distributions and in turn to draw estimates for param-

eters and predictions (via Gibbs sampler). A burn-in

period of 2000 steps and 100,000 iterations with a step

of 2, were used to obtain 98,000 estimations per

variable or parameter. In cases where autocorrelation

of MCMC chain was reported, it was eliminated by

increasing the number of iterations to 200,000.

Goodness of fit criteria

The mean absolute percentage difference (PD)

between the predictions and the observed data is

reported to be one of the most appropriate criterions

for assessing model performance in tree allometric

relationships (Parresol 1999; Zianis and Mencuccini

2003; Sileshi 2014) and was therefore used in this

study. The absolute difference between observed and

predicted values divided by the observed is calculated

for each tree and the average value of these deviations

is multiplied by 100 to define PD, or

PD ¼ 1=n� R 1 � Pi=Oij jð Þ � 100

where Pi and Oi denote predicted and corresponding

observed biomass value for the ith tree (i = 1 to

n = 25).

Values close to 0% indicate accurate predictions

while to the best of our knowledge, there is not a

published cut-off maximum value for rejecting mod-

els. It should be mentioned that for a specific diameter,

absolute percentage difference may reach up to 80 or

to 37% when the whole dataset is considered
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(Ketterings et al. 2001). The lower thePD the better the

model, when comparing different models for the same

dataset. The coefficient of determination (R2) was only

used as an indicative criterion since Sileshi (2014)

reported several caveats related to this statistic.

Results

Stem diameter (D) for the sampled trees ranged from

3.18 to 99.4 cm, covering the size spectrum of the

diameter distribution recorded in the forest manage-

ment plans with 10\D\ 84 cm. Tree height (H) var-

ied from 1.65 to 12.5 m, stem length (SL) from 0.6 to

3.9 m, and crown length (CL) from 1.40 to 10.12 m.

Aboveground woody biomass (M) covered four orders

of magnitude from 0.51 to 4753 kg, branch biomass

(MB) varied from 0.18 to 4123 kg and stem biomass

(MS) from 0.33 to 884.50 kg. The means and the

standard deviations of the aforementioned variables

are reported in Table 1. Scatter plots of M, MB and MS

against D are presented in Fig. 1a–c, while the plot of

Table 1 Dendrometric

characteristic of 25

destructively sampled open-

grown oak trees

Standard deviation (SD) is

also reported

Variable Mean Range SD

Diameter at breast height (D cm) 32.77 3.18–99.4 26.4

Total tree height (H m) 7.54 1.65–12.50 3.72

Stem (SL m) 1.99 0.60–3.90 0.88

Crown length (CL m) 5.76 1.40–10.12 3.02

Aboveground woody biomass (M kg) 905.10 0.51–4753 1392.87

Branch biomass (MB kg) 652.68 0.18–4123 1108.14

Stem biomass (MS kg) 185.05 0.33–884.50 235.02

Fig. 1 Allometric

relationships based on

different regression

techniques for

a aboveground woody

biomass against tree

diameter, b stem biomass

against tree diameter,

c branch biomass against

tree diameter and

d aboveground woody

biomass against tree height.

Insets in a and c were

provided for clarity. Grey

lines depict published

empirical allometries for

oak specimens growing in

closed stands. Raw biomass

data collected from the

studied area are shown with

open circles
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M against H is depicted in Fig. 1d. Using SL and CL as

the regressor variables did not provide any strong

allometric relationships for M, MS or MB under the

three applied approaches (i.e., LR, NLR and NB).

Predictions of M

Within the classical statistical paradigm and based on

the corrected Akaike criterion (Eq. 3), LR is supported

against NLR (A equaled to 287.83 and 346.27,

respectively), indicating that the analyzed M–

D dataset follows a log-normal distribution with

multiplicative error structure. As reported in Table 2,

LR technique yielded slightly better predictions in M–

D allometry, since PD varied from 37 (LR) to 41%

(IB), while size-shape scaling was not statistically

different across the applied methods (the range of

b values overlaps among the regression methods). The

narrowest 5% credible interval for b was derived from

the IB approach and the widest from the NB.

Additionally, the inferences from LR and NB tech-

niques were very similar as exemplified by the

confidence and credible intervals, respectively, for

the scaling parameters a and b. Across the D range, IB

and NLR predict quite similar average M values, even

though the mean b values for the two techniques differ

by more than 0.07. The large relative difference of

parameter a between the two approaches compensates

for the discrepancy in b, resulting in small differences

in M. For D\ 24 cm, IB produced larger average

M prediction than LR but smaller M values were

obtained for bigger trees (e.g., for D = 99.3 cm the

Table 2 Empirical values for the scaling parameters in M–D and M–H allometries under the classical and Bayesian approaches

M–D allometry aA SE a bA SE b R2 PD (%)B

Classical approach

Log-linear (LR)C -2.5524

(-3.1302 -1.9746)

0.2793 2.4688

(2.2913 2.6463)

0.0579 0.97 37

Nonlinear regression weighted (NLR)D 0.1156

(0.0611 0.1970)

0.033 2.3682

(2.2207 2.5337)

0.077 0.97 38

Bayesian approach

Non-informative Bayesian (NB) -2.558

(-3.134 -1.974)

0.2928 2.47

(2.292 2.648)

0.09 0.97 37

Informative Bayesian (IB) 0.0835

(0.0539 0.1163)

0.0158 2.443

(2.351 2.552)

0.0524 0.96 41

M–H allometry aA SE a bA SE b R2 PD (%)B

Classical approach

Log-linear (LR)E -1.8969

(-2.7089 -1.0870)

0.3925 3.7756

(3.3612 4.1900)

0.20 0.93 66

Nonlinear regression weighted (NLR)F 0.1877

(0.077 0.3543)

0.065 3.7467

(3.3357 4.1925)

0.1970 0.93 65

Bayesian approach

Non-informative Bayesian (NB) -1.66

(-1.985 -1.126)

0.237 3.661

(3.375 3.879)

0.1319 0.94 65

Standard error (SE) for a and b, coefficient of determination (R2) and mean absolute percentage difference (PD) are also reported
A Mean value and credible or confidence intervals in parenthesis
B PD ¼ 1=n� R 1 � Pi=Oij jð Þ � 100
C Correction factor = 1.08
D Weight for the NLR in M-D allometry is D-4

E Correction factor = 1.20
F Weight for the NLR in M-H allometry is H-8. The R2 for log-linear models are actually pseudo-R and is only an indicative value
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relative difference is 32%). In terms of uncertainty,

wider prediction intervals were obtained from the IB

for D\ 15 cm, in relation to the LR and NB, but the

reverse trend was derived for D C 15 cm.

A strong positive correlation (R2 = 95%) was

obtained when the observed data were regressed against

predicted M values derived from LR. The intercept was

about 121 and the slope = 0.75 (Table 3). Similar

statistics were derived from the NB regression. The

corresponding figures for the IB method indicated a

lower underestimation in comparison to the previous

approaches since the intercept & 114 and the slope

equaled to 0.85. Quite similar results were reported for

NLR (intercept & 92 and slope = 0.87). In all cases,

the variability in predicted M values explained more

than 95% of the variability in the raw data, the intercept

was not significantly different from zero, the slope was

significantly different from one (at 95% level), but the

overall underestimation was higher for LR and NB

regressions.

In Fig. 2, the probability distributions of predicted

M values, derived from the three regression tech-

niques, are illustrated for different diameters. NLR

was dropped from this analysis since it predicted very

narrow normal distribution, implying unsound biolog-

ical outputs. For small diameter (D = 5.73 cm;

Fig. 2a), the 95% interval of M ranged from 1.33 to

24.6 kg for IB, while for LR and NB, M predictions

varied from 2.4 to 14.5 kg. For tree diameter equal to

24.8 cm, the three approaches provided different

probability distributions for M (Fig. 2b), even though

LR and NB presented similar 95% upper limit (ca.

500 kg). For D close to the average value of raw

diameters (D = 37.30 cm; Fig. 2c), LR predicted

M to vary between 280.5 and 1453.2 kg and for NB

the 95% M interval varied from 250.5 to 1,421.1 kg.

The corresponding prediction interval for IB ranged

from 331.40 to 970.90 kg. For the largest recording

sampled tree (D = 99.4 cm; Fig. 2d), LR and NB

provided practically identical log-normal probability

Table 3 Linear regression

statistics for observed

against predicted values

derived from log-linear

(LR), weighted nonlinear

regression (NLR), non-

informative Bayesian (NB)

and informative Bayesian

(IB) for different tree

compartments. The

coefficient of determination

(R2), F statistic and the

p value are also reported.

The confidence intervals at

95% level for the intercept

and the slope are presented

in the parentheses

Tree compartment Intercept Slope R2 F P value

Total aboveground woody biomass (M)

LR 121

(-23 to 267)

0.75

(0.68–0.83)

0.95 481 \0.001

NLR 92

(-44 to 229)

0.87

(0.79–0.94)

0.95 557 \0.001

NB 122

(-24 to 268)

0.75

(0.68–0.82)

0.95 481 \0.001

IB 114

(-29 to 258)

0.85

(0.77–0.94)

0.95 500 \0.001

Stem biomass (MS)

LR 43.7

(-3 to 93)

0.62

(0.50–0.73)

0.84 127 \0.001

NLR 45

(-1.75 to 92)

0.60

(0.48–0.70)

0.83 125 \0.001

NB 43

(-3 to 90)

0.62

(0.50–0.73)

0.84 127 \0.001

Branch biomass (MB)

LR 67.7

(-82 to 210)

0.73

(0.64–0.83)

0.92 270 \0.001

NLR 50

(-99 to 199)

0.86

(0.79–0.98)

0.92 277 \0.001

NB 63

(-87 to 213)

0.75

(0.66–0.85)

0.92 272 \0.001
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distributions for M, totally different than the one

derived from IB. For LR and NB the 95% uncertainty

level ranged from around 3000–17,000 kg (mean =

7179.23 kg) while for IB the range was between 4500

and 8600 kg (mean = 6308.10 kg).

The three applied regressions (LR, NB and NLR)

provided quite similar predicted values for M, when

H was used as the independent variable (Fig. 1d). The

average absolute deviation was ca. 66%, while higher

PD values were derived for allometries developed for

stem and branch compartments (80 and 70%, respec-

tively). These results indicate that biased estimations

may be obtained if allometric equation is solely based

on H.

Predictions of MS

As expected, LR and NB actually provided identical

values for allometric parameters lna and b, which were

not statistically different from the values obtained

from NLR (Table 4). It is clearly illustrated in Fig. 1b

that the three applied regression approaches for the

studied oaks provided quite similar MS values across

the D spectrum. Even though the Akaike criterion

showed that LR technique (A = 234.27) was better

than NLR (A = 293.86), PD indicated that there is no

preference of one approach over the other (41.5% for

LR and 42% for NLR; Table 4). The linear regression

of raw MS data against predicted values, derived from

the three applied regressions (LR, NLR and NB),

explained about 84% of the variability (Table 3). For

LR, the intercept was ca. 44 and the slope equaled

0.62; for NLR the corresponding parameters were 45

and 0.60, while for NB the intercept was 43 and the

slope was around 0.62. In all cases, MS was underes-

timated, the intercepts were not significantly different

from zero but the slopes were significantly different

from one (Table 3). Including SL, CL or H did not

substantially improved predictions (results not

shown).

Predictions of MB

The bias in MB–D allometry was around 60% (PD in

Table 4) for all the applied methods. Irrespective of

the regression technique, MB predictions were similar

Fig. 2 Probability

distributions for predicting

aboveground woody

biomass (M) derived from

the three applied regression

techniques at

a D = 5.73 cm,

b D = 24.80 cm

c D = 37.30 cm and

d D = 99.40 cm. The

‘‘superiority’’ of IB

technique is depicted in

d which is the only one to

provide biologically sound

upper limit for M
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for small trees (D B 25 cm; inset in Fig. 1c), but LR

provided the largest values for bigger trees (Fig. 1c).

NB and NLR predicted quite similar MB values across

the D range. The observed MB data were linearly

regressed against predictions derived from the three

approaches (Table 3). The value of R2 was equal to 92,

irrespective of the applied method. For LR, the

intercept was 68 (-82 to 210) and the slope was

0.73 (0.64– 0.83). The corresponding values for NB

were 63 (-87 to 213) and 0.75 (0.66–0.85). For NLR,

the intercept equaled 50 (-99 to 199) and slope 0.86

(0.79–0.98). For the three applied regressions, the

confidence intervals for the intercepts included zero

but the value of one was not included in the confidence

intervals of the slopes. Inserting tree height (H), as a

second independent variable did not substantially

improve the predictions (PD = 55.1%) Comparisons

to published equations developed for trees growing in

American and European oak forest stands, indicates

that branch biomass fells below the analyzed open-

grown trees, across the D range (grey lines in Fig. 1c).

Discussion

The results presented in this article complement tree

biomass allometry for open-grown trees. One of the

main finding illustrates that both the classical and

Bayesian regressions explained much of the variabil-

ity inherent in aboveground biomass compartments of

open grown valonian trees (Fig. 1). However, it

should be pointed out that the informative Bayesian

model (IB) provided biologically sound predictions

while LR and NB approaches failed to derive realistic

probability distributions for total above ground woody

biomass.

The ‘biological’ inconsistency of LR and NB is

clearly depicted in Fig. 2d, where both techniques

Table 4 Empirical values for the scaling parameters in MS–D and MB–D allometries under the classical and Bayesian approaches

MS–D allometry aA SE a bA SE b R2 PD (%)B

Classical approach

Log-linear (LR)C -2.6007

(-3.2100 to1.9914)

0.2945 2.1167

(1.9295 2.3039)

0.0904 0.95 41.5

Nonlinear regression weighted (NLR)D 0.0755

(0.0432 0.1207)

0.0208 2.1388

(1.9754 2.3066)

0.0866 0.95 42

Bayesian approach

Non-informative Bayesian (NB) -2.5990

(-3.2050 to 1.9880)

0.3000 2.1160

(1.9290 2.3030)

0.0944 0.94 42

MB–D allometry a* SE a b* SE b R2 PD (%)

Classical approach

Log-linear (LR)E -3.5154

(-4.3213 to 2.7093)

0.3896 2.6140

(2.36634 2.8617)

0.1197 0.94 61

Nonlinear regression weighted (NLR)F 0.0454

(0.0211–0.083)

0.015 2.5198

(2.3821 2.7520)

0.1000 0.94 60

Bayesian approach

Non-informative Bayesian (NB) -3.429

(-3.956 to 2.692)

0.3353 2.589

(2.36–2.762)

0.105 0.94 60

Standard error (SE) for a and b, coefficient of determination (R2) and mean absolute percentage difference (PD) are also reported
A Mean value and credible or confidence intervals in parenthesis
B PD ¼ 1=n� R 1 � Pi=Oij jð Þ � 100
C Correction factor = 1.09
D Weight for the NLR in MS–D allometry is D-4.5

E Correction factor = 1.17
F Weight for the NLR in MB-D allometry is D -4.5. The R2 for non-linear models are actually pseudo-R and is only an indicative

value
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predict an upper limit (at 95% level) of M around 16

ton. For a tree with D = 99.40 cm; such a tree is

expected to collapse under its own weight. The

probability distribution from IB seems to follow a

more realistic pattern than LR and NB, as illustrated in

Fig. 2a–d. Not enough data were available to empir-

ically support this finding, but bearing in mind that

trees sustain similar amount of aboveground organic

matter, irrespective of the growing environment

(closed stands versus open grown trees in Fig. 1a;

Zhou et al. 2014), direct comparisons to published data

from trees growing in forest stands can be made. For

example, Brown (1997) reported that a tree (tropical

species) with D = 97.3 cm attained 4386.60 kg of

M (including foliage) while for a specimen with

D = 99.50 cm the corresponding value was

8962.30 kg. The predictions obtained from LR and

NB greatly diverge from these observed values,

providing unsound uncertainty predictions, but IB

approach derived biologically sound M values (for

D = 99.40 cm, M ranges from 4523 to 8675 kg;

Fig. 2d).

Thus, a coherent analysis for tree biomass allome-

tries should not be based solely on mean predicted

values but on their associated uncertainties, as well.

Within the classical framework of log-transformed

data, linear regressions (LR approach) on different

datasets, each one containing several destructively

sampled trees, are needed in order to make statistically

sound inferences about biomass variability for a

specific diameter. However, such an approach is not

feasible and rarely (if ever) being applied due to

monetary and time restrictions. In Bayesian analysis

this restriction is overcome, since biomass variance is

modeled in a way that reflects its heteroscedasticity

property and derived credible intervals are directly

associated with their probability, based on prior

information and the collected biomass data (Ellison

2004; McCarthy 2007, pp. 27–29).

Larger bias was reported for open-grown valonian

oaks in relation to specimens growing in forested

ecosystems. The value of PD ranged between 37 and

41%, depending on the regression approach used for

the studied species (Table 2), while PD is usually

around 20% for forest trees. A larger degree of

variability of M for a specific D is therefore expected

for open-grown trees. Similar results were derived for

stem and branch biomass, even though R2 values were

quite high (Table 4). As clearly illustrated by Sileshi

(2014), R2 should be used in conjunction to other

goodness-of-fit statistics to test the performance of

empirical allometric models and the results in this

article support this recommendation.

The obtained large deviations between observed

and predicted biomass values are in accordance to the

outcomes recently presented by Zhou et al. (2014),

who developed aboveground woody biomass equa-

tions for coniferous and broadleaved open-grown trees.

The value ofR2, forM–D,MS–D andMB–D allometries

was equal to 0.97, 0.95 and 0.89, respectively, for green

ash trees. Direct comparisons with the predicted values

presented in the aforementioned article could not be

made, since the lower predicted value for green ash

trees with D\ 15 cm provides negative biomass

estimate, implying bias in their empirical models.

However, the raw data by Zhou et al. (2014) for D ca.

15 cm corresponded to M around 80 kg (see Fig. 2a3

in Zhou et al. 2014), which is quite similar to our

dataset (for D = 14.33 cm M = 80.71 kg; Fig. 1a).

The value of MS for green ash, at the specific diameter,

was about 40 kg (see Fig. 2a1 in Zhou et al. 2014) and

close to the valonian oak data (for D = 14.33 cm

MS = 31.87 kg; Fig. 1b), while the MB for green ash

ranged from 40 to 100 kg (see Fig. 2a2 in Zhou et al.

2014), including the value of 50.84 kg found in the

valonian oak dataset (Fig. 1c).

Green ash and valonian oak trees sustained similar

M values for D & 28.5 cm (for oak M = 351.99 kg;

for ash 320\M\ 420 kg). Stem biomass (MS) for

oaks was smaller (for D = 28.7 cm MS = 71.28 kg;

Fig. 1b) in comparison to ash trees (MS ranged from

ca. 220–260 kg; see Fig. 2a1 in Zhou et al. 2014). On

the other hand, MB for oaks was larger than ash trees

for trees with similar stature. For D & 42 cm, both

species sustained ca. 1000 kg of M. Organic matter

was equally allocated to stem and branch compart-

ments for ash trees (around 500 kg) but not for

valonian oaks (MS & 216 kg and MB & 714 kg).

These results support the line of reasoning presented

by Zhou et al. (2014) suggesting that more organic

matter is allocated to branch compartment for open-

grown trees in relation to stem, than in close-canopy

counterparts.

This preliminary comparison between ash and

valonian oak trees puts forward the hypothesis that

open grown broadleaved specimens may sustain

similar total aboveground woody biomass, irrespec-

tive of species, growth conditions and tree size. As a
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corollary, a ‘global’ allometric equation for M–

D relationship may hold valid for ecosystems includ-

ing open grown trees. This kind of equation may be

developed based on the concept of generalized

regressions (Pastor et al. 1984) or on pooled data

regression (Zapata-Cuartas et al. 2012). On the

contrary, allocation pattern of organic matter to stem

and branches seems to vary by species and/or site

conditions and therefore ‘local’ oriented empirical

equations should be developed in cases where predic-

tions on MS and MB are needed. To robustly test these

hypotheses, extensive biomass datasets originating

from different sites and covering several tree species

should be analyzed on a statistically sound framework

(based on Bayesian modeling).

Comparisons against published equations for trees

growing in forested stands illustrated small differences

in M. For example, setting D = 14 cm the three

analyzed techniques yielded a value of M between

52.5 and 60 kg, while the corresponding M prediction

from a Q. conferta stand in Greece derived a value of

71 kg (grey line in the inset at Fig. 1a). A value of

60 kg, for the same D, was reported for several oak

trees growing in UK. For D = 50 cm, the British oak

trees sustain 1383 kg of M (grey line in Fig. 1a), while

across the three approaches M ranged between 1181

and 1316 kg. The published equations are reported in

Zianis et al. (2005).

Comparisons to published equations built for stem

and branch compartments for oak trees growing in

closed European and American stands presented

similar patterns as the ones provided by Zhou et al.

(2014) for ash trees. For example, predictions of MS

for several oak species growing in the northern

American forests (Ter-Mikaelian and Korzukhin

1997), diverge upwards (grey lines in Fig. 1b) in

relation to the trees harvested from the studied

ecosystem. Specifically, at D = 40 cm predictions

for MS ranged between 581 and 707 kg for American

oaks, while the corresponding figure for the open-

grown trees was around 200 kg. The ratio of stem

biomass from closed-grown trees over open-grown

specimens increases linearly from small (D = 5 cm;

ratio & 1.44) to average stature trees (D = 35 cm;

ratio & 3) and remains constant for larger trees.

Thus, oak trees growing in closed canopies sustain

much larger stem biomass than open-grown counter-

parts (Fig. 1b), but maintain smaller branch biomass

(Fig. 1c) across the diameter range. Extensive tree

crowns and sharper trunk morphology for open-grown

specimens may explain these trends. These findings

infer that forest-derived equations should not be applied

for estimating stem and branch biomass for open

canopy trees. Aboveground woody biomass seems not

to be differentiated between open-grown and forest-

grown oak trees (relative difference less than 10% as

illustrated in Fig. 1a), but the relative difference for

open-canopy and closed-canopy ash trees attained a

value of 18% (Zhou et al. 2014). Whether forest-

derived equations could be used potentially for pre-

dicting total aboveground woody biomass for open-

grown trees is not clearly demonstrated from the

analyses on these two broadleaved species (valonian

oak and green ash) and further research is needed.

Surpassingly, tree height did not significantly

contribute in capturing much of the variability in

woody biomass, either as a sole independent variable

(Fig. 1d) or in combination to stem diameter. Addi-

tionally given the multicollinearity caveat (Zianis and

Radoglou 2006) originating from the strong relation-

ship between H and D, interpretation of predictions

when both variables are used should be anticipated

with skepticism. Neither stem length nor crown length

provided accurate biomass predictions for different

tree compartments.

The credible (Bayesian approaches) or confidence

(classical approaches) intervals for the scaling exponent

in M–D allometry did not include the value of 2.67,

predicted by the WBE theoretical model. This result

strongly supports similar outcomes from trees growing

in forested stands, where b was statistically different

than the theoretical value (Zapata-Cuartas et al. 2012;

Sileshi 2014). The WBE model failed to predict the

exponent in M–H allometry under the NB regression.

The empirical value was equal to 3.661 (Table 2) and

statistically different (at 95% level) from the theoretical

one which is equal to four. The confidence intervals

from LR and NLR include the value of four, but on

average the model diverged from the empirical esti-

mates (3.7756 for LR and 3.7467 for NLR). Therefore,

analyses on empirical studies imply that a specific

numeric value for the allometric exponent may not well

represent the flexibility found in tree biomass allometry,

which possibly originates from the accumulative effect

of biotic and abiotic agents acting upon tree size-shape

relations. Rather, a probability distribution may better

describe the stochastic nature of the allometric equation

in open-grown trees.
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Conclusions

The IB and NB equations developed may be used to

predict aboveground woody biomass for open-grown

valonian oaks based on the diameter distributions of

sampling plots compiled in the forest management

plans of the studied ecosystem. Assuming that uncer-

tainty is equally or even more important than merely

predicting average values, it is recommended that

future allometric models should report associated

probability distribution for predicted tree biomass

estimates. Informative Bayesian regression is consid-

ered to be more appropriate than classical statistical

approaches (such as log-linear or non linear regres-

sions) or non-informative Bayesian technique for

deriving the variance of the predictive distribution.

Large errors in predicting the biomass of stem and

branch compartments are expected from the imple-

mentation of the derived models based on D, but not

substantial improvement was obtained by inserting

tree linear dimensions in the regressions (such as tree

height, stem and/or crown length). Given that more

biomass data for open-grown trees would become

available, informative Bayesian regressions may

provide better predictions for stem and branch com-

partments. Finally, the theoretical WBE model which

assumes a specific value for the exponent in M–

D allometry (i.e., b = 2.67) was not supported by our

findings.
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