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Abstract
Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in 
life-threatening vascular rupture. Herein, we established a modified “Häutchen method” for the local isolation of endothelial 
cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. 
When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regula-
tion of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role 
in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression 
of ECs from aneurysms of the AngII  ApoE−/− model when compared to sham animals mimicked expression patterns from 
predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in 
aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.
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Introduction

Aortic aneurysms are defined as focal dilations of the aorta. 
Extensive aortic enlargement carries the risk of vascu-
lar rupture, which has a high mortality rate. Aortic aneu-
rysms preferentially develop at specific predilection sites 
in humans and also in mouse models. Abdominal aortic 
aneurysms (AAA) develop below the diaphragm, whereas 
thoracic aortic aneurysms (TAA) are most commonly found 

in the aortic root or ascending aortic arch [1]. AAA have a 
high prevalence in industrialized countries and are associ-
ated with other cardiovascular diseases [2], whereas TAA 
are less frequent and often occur in the context of genetic 
syndromes such as Marfan- or Loeys-Dietz Syndrome [3]. 
AAA and TAA are considered to be distinct pathophysi-
ologic entities, because the affected aortic segments are of 
different embryonic origin, the structure of the vascular wall 
differs, there is disparity in protease and chemokine signal-
ing pathways and also shear stress profiles are distinct [4]. 
A key finding of AA formation is structural degeneration of 
the aortic wall, therefore many studies in the past focused 
on changes of the smooth muscle layer and the extracellular 
matrix [5, 6]. Recent evidence in humans and also animal 
models, however, suggests that AAA is also strongly asso-
ciated with endothelial dysfunction [7, 8]. Moreover, ECs 
have been reported to display a pronounced heterogeneity 
in different organs and there is even site-specific heteroge-
neity along the vascular tree within the same organ [9, 10]. 
Based on these findings, we hypothesized that there could 
be regional heterogeneity of ECs in the healthy aorta, which 
predisposes specific sites to AA formation. However, this 
question is difficult to address given the low number of ECs 
in the aortic wall and the need for site-specific isolation. We 
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have therefore established a modified “Häutchen method” 
that enabled us to isolate highly enriched ECs from specific 
segments of mouse aorta. Using in depth bulk RNA-seq 
analysis of aortic ECs we demonstrate prominent transcrip-
tomic heterogeneity between the different sites along the 
healthy aortic tree. At the AA predilection sites of healthy 
mice we found regulation of genes related to extracellular 
matix (ECM) remodeling, angiogenesis and inflammation. 
Interestingly, this expression pattern reflected genetic and 
structural changes at the sites of AA development in the 
AngII  ApoE−/− aneurysm model. Our data suggest that EC 
heterogeneity and dysfunction point towards the site-speci-
ficity of aneurysm formation.

Methods

Isolation of ECs from different aortic localizations 
using the modified “Häutchen method”

For the site-specific isolation of aortic ECs we opened 
the thoracic and abdominal cavity of male healthy 
C57BL/6 mice (10–13 weeks) or AngII  ApoE−/− or sham 
 ApoE−/− mice (see below). Then, the aorta was dissected 
free of connective tissue and perfused with heparin (250 i.E./
ml). After that the whole aorta was isolated and cut into 4 
segments representing the ascending and descending part of 
the aortic arch as well as the thoracic and abdominal part of 
the straight aorta. Intimal ECs and medial/adventitial cells 
were isolated using a modified “Häutchen method” [11]. 
“Häutchen methods” have been originally established to 
isolate endothelial monolayers of vessels after fixation for 
en face microscopy and Hirsch et al. developed a complex 
procedure to expose both sides of the endothelium of fixated 
vessels for autoradiography [12]. Our modified “Häutchen 
method” specifically applies cold to make surface cell layers 
adhere to glass and enable their isolation. To this aim, the 
ring-like aortic segments were cut open and positioned with 
the endothelial site down on top of a 12 mm glass cover slip. 
Then, another 12 mm glass cover slip that was pre-cooled 
in isopentane on dry ice was placed on the adventitial site 
of the aortic segment. Immediately, a pre-cooled copper rod 
(6 mm diameter) was pressed on top of this sandwich for a 
period of 10 s causing the transfer of the superficial cell lay-
ers to the glasses via mechanical force. Thereby, we isolated 
the endothelial and medial/adventitial cell layers adhering to 
one of the 2 separate cover slips, respectively. The remaining 
aortic tissue was discarded. The coverslips were rinsed with 
RLT buffer from the RNeasy Plus micro kit (Qiagen, Hilden, 
Germany) for RNA isolation of ECs or medial/adventitial 
cells. The entire procedure from sacrificing the animal to 
the lysing of the isolated cells did take maximally 25 min. 

Lysates were stored at −80 °C until use. Alternatively, cells 
adhering to the glasses were stained and counted.

AngII  ApoE−/− mouse model for aneurysm formation

Male  ApoE−/− mice (10–18 weeks) were obtained from the 
Jackson laboratory (B6.129P2-Apoetm1Unc/J), fed a stand-
ard laboratory chow and randomly assigned to the AngII 
or control group. Alzet osmotic mini pumps (Model 1004) 
were implanted to deliver 1000 ng/kg/min of Angiotensin 
II (Sigma-Aldrich) for a period of 14 or 28 days. Three 
days before implantation a western diet (1.25% Cholesterol, 
ssniff) was started. Disease progression was monitored using 
a Vevo 3100 ultrasound machine (Visual Sonics, Toronto, 
Canada). As controls,  ApoE−/− animals subjected to sham 
surgeries and western diet were used. All procedures were 
approved by the local government authorities (LANUV, 
NRW, Germany). In accordance with earlier studies from 
other groups we have used males mice, as akin to human 
males, they are more susceptible to aneurysm formation 
[13]. In addition, when focusing on fundamental pathogenic 
processes the standardized use of males helps to overcome 
biases, to enhance reproducibility and comparability across 
aneurysm studies [14].

RNA isolation

RNA was isolated using the RNeasy Plus micro kit accord-
ing to manufacturer’s instruction (Qiagen, Hilden, Ger-
many). To assess RNA quality the RNA integrity number 
(RIN) was determined by a 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA, USA). Only samples with a RIN 
above 5.0 were processed further. There were no differences 
in the mean RIN values of the groups compared.

qPCR analysis

QPCR analysis was performed as reported before [15, 16]. 
For reverse transcription the SuperScript VILO cDNA syn-
thesis kit (LifeTechnologies) was used. Expression of murine 
Cd31 (QT01052044, Qiagen), VwF (QT00116795, Qiagen), 
Cdh5 (QT00110467, Qiagen) and 18SrRNA (QT01036875, 
Quiagen) was determined by QuantiTect Primer Assays 
(Qiagen) together with the QuantiNova DNA polymerase 
(QuantiNova SYBR Green PCR kit, Qiagen).

Digital PCR (dPCR)

DPCR has been chosen because it requires very low amounts 
of template. Therefore, analysis could be performed in the 
same samples that had been applied for RNA-seq experi-
ments. Nevertheless, in some of the samples there was not 
enough RNA left for dPCR, these had to be excluded. For 



Angiogenesis 

dPCR, RNA from the isolated EC samples was first tran-
scribed into cDNA using the SuperScript VILO cDNA 
synthesis kit (LifeTechnologies). This cDNA was then 
applied for digital PCR in a plate (QIAcuity Nanoplate 8.5 k 
24-well) using a reaction mixture containing FAM-labeled 
Taqman probes for the target genes. Following assays were 
used: Aqp1 (Mm00431834_m1, ThermoFisher), Cdh11 
(Mm00515466_m1, ThermoFisher), C7 (Mm01297045_
m1, ThermoFisher) and Grem2 (Mm00501909_m1, Ther-
moFisher), Hand2 (Mm00439247_m1, ThermoFisher), 
Efemp1 (Mm01434321_m1, ThermoFisher), Cd55 
(Mm00438377_m1, ThermoFisher), Ptn (Mm01132688_
m1, ThermoFisher), Hoxc10 (Mm01305933_m1, Ther-
moFisher), Cfd (Mm01143935_g1, ThermoFisher) and 
Cidec (Mm00617672_m1, ThermoFisher). The Hprt gene 
was used as a housekeeper and was detected using a VIC 
labeled Taqman probe (Mm03024075_m1, ThermoFisher). 
Partitioning and imaging (exposure time: 500 ms, gain: 6) 
were performed automatically in the QIAcuity One instru-
ment for endpoint PCR after 40 cycles.

The copy number of the target genes was normalized to 
the housekeeper Hprt.

Histology

Aortic segments from were fixated with 4% PFA for 30 min 
and frozen in TissueTek. Then, 10 µm thick cryosection 
were generated with a cryotome (CM3050S, Leica, Wetzlar, 
Germany). Hematoxylin and eosin stainings were performed 
on aortic segments from male AngII  ApoE−/− or sham mice. 
Sections were then embedded with Entellan (Sigma-Aldrich) 
and pictures were taken with a Keyence BZ-X800 micro-
scope (Keyence, Osaka, Japan) at 20 × magnification.

Immunohistochemistry

Immunohistochemistry was exerted as described before 
[17, 18]. Isolated ECs or cryosections of aortas were fix-
ated with 4% paraformaldehyde and then permeabilized with 
0.2% TritonX-100. Unspecific binding sites were blocked 
with 5% donkey serum (Jackson ImmunoResearch, Suffolk, 
UK) for 30 min. Then, cells or sections were incubated with 
primary antibodies for 3 h: anti-alpha smooth muscle actin 
(1:400, anti-ASMAC, A5228, Sigma-Aldrich), anti-CD31 
(1:800, 550274, BD Biosciences), anti-HOXC10 (1:100, 
Thermo Fisher, 12025–1-Ap), anti-CDH11 (1:100, 71-7600 
Invitrogen), anti-C7 (1:100, PA5-120912, Invitrogen) and 
anti-GREM2 (1:100, 13892-1-AP, Proteintech), anti-CD45 
(1:800, 05-1416, Merck) and anti-FLK-1 (1:100, ab2349, 
Abcam). After that, Cy3- or Cy5-labeled anti-rat/rabbit 
secondary antibodies (Jackson ImmunoResearch) were 
applied for 1 h. Nuclei were stained with hoechst (1:1000, 

Sigma-Aldrich). Embedding of the cells and sections was 
performed with Aqua-Poly/Mount (Polyscience, Warrington, 
USA) and pictures were taken with an AxioObserverZ1 
microscope equipped with an apotome module (Zeiss, 
Oberkochen, Germany). Alternatively, diaminobenzidine 
(DAB) staining was performed using Vectastain Elite kits 
and DAB (Biomol, Germany), embedding was performed 
with Entellan and pictures were taken by an ECLIPSE Ci-L 
microscope (Nikon, Düsseldorf, Germany). For DAB stain-
ings two sections of each aortic segment dervied from two 
aortas were analyzed, analysis was un-blinded.

Quantification of elastin breaks

For quantification of elastin breaks autofluorescence of elas-
tin in fluorescence pictures was used. Elastin breaks were 
counted manually at 40 × magnification on pictures of 3 non-
overlapping areas of the aortic media per segment and per 
mouse. Each data point represents the mean value of one 
segment and mouse.

RNA‑seq analysis

RNA-seq analysis was performed as describe before [16]. 
For library preparation, the Trio RNA-Seq Library Prepa-
ration kit (TECAN, Männedorf, Switzerland) was used. 
Five PCR cycles were applied for library amplification 
and libraries with an average fragment size of 317 bp were 
sequenced on a NextSeq 500 in paired-end mode (65 bp, 
NextSeq 2000), data for Fig. 1C were sequenced in sin-
gle-end mode at the GeneCore sequencing service of the 
EMBL (Heidelberg, Germany). For bioinformatic analysis, 
we used the Galaxy platform (Freiburg Galaxy Project). 
RNA sequencing reads were mapped using RNA STAR 
followed by counting reads per gene by using feature-
Counts. As an additional quality control step the purity of 
ECs in the respective sample was determined by analysing 
expression levels of the classical EC marker genes Cd31, 
VwF and Cdh5. The normalized counts of these 3 marker 
genes were added up for each sample and compared with 
EC marker expression in adventitial samples from 2 con-
trol animals. Only samples with EC marker expression 
of > twofold of the mean EC marker expression in adventi-
tial samples were included in the analysis. In the remaining 
samples, differentially expressed genes were identified by 
DESeq2. For data visualization, normalization, and clus-
ter analysis heatmap2 and Volcano plot (Freiburg Galaxy 
Project) was used. Gene ontology analysis of the up- and 
downregulated genes was performed with ClueGO using 
the GO-term database with the sub-ontologies “biological 
processes, cellular-component and molecular function”.
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Fig. 1  Modified “Häutchen method” for high enrichment of ECs 
from distinct locations of mouse aorta. A Schematic diagram of the 
modified “Häutchen method”. B Schematic diagram of different aor-
tic segments (asc: ascending arch, des: descending arch, tho: thoracic 
aorta, abd: abdominal aorta). C Heatmap of EC and SMC markers in 
ECs and medial/adventitial cells from aorta isolated with the modi-
fied “Häutchen method”, for this experiment thoracic and abdomi-
nal ECs or adventitial cells were pooled. D–F mRNA expression of 

EC-specific markers Vwf (C), Cd31 (D) and Cdh5 (E) in ECs and 
adventitial cells isolated from different aortic segments using qPCR. 
G Immunostaining of ECs isolated with the modified “Häutchen 
method” using anti-CD31 antibody (red), nuclei are labeled with 
Hoechst (blue), scale bar: 50 µm. H Quantification of  CD31+ cells by 
counting. D–F Kruskal–Wallis test, Dunn`s post hoc test, **p < 0.01, 
***p < 0.001
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Single‑cell force spectroscopy by atomic force 
microscopy (AFM)

The nanomechanical properties of the endothelial actin cor-
tex were determined by using the Atomic Force Microscopy 
(AFM)-based single-cell force spectroscopy (Nanowizard4, 
JPK, Berlin, Germany) as described before [19]. Briefly, a 
triangular cantilever (Novascan Technologies, Boone, North 
Carolina, United States) with a mounted spherical tip (diame-
ter 10 μm) and a nominal spring constant of 30 pN/nm indents 
the ECs on the aortic patch with a loading force of 3 nN. The 
reflection of a laser beam is used to quantify the cantilever 
deflection. By knowing the deflection sensitivity, the canti-
lever force and the piezo displacement, the stiffness (in pN/

nm) of the cell cortex can be calculated from the resulting 
force-distance curves using the Protein Unfolding and Nano-
Indentation Analysis Software PUNIAS 3D version 1.0 release 
2.2 (http:// punias. voila. net).

Harvesting and preparation of aortas in order to analyze the 
cortical stiffness of single mouse aortic ex vivo EC by AFM 
were carried out as described before[20]. Briefly, aortas from 
male C57BL/6 (age 11–12 weeks) were freed from surround-
ing tissue. Small patches of the whole aorta (≈ 4  mm2) were 
attached on glass coverslips with Cell-Tak® (BD Biosciences, 
Bedford, MA, USA), with the endothelial surface facing 
upwards. After preparation, the aortic patches were cultured 
until the next day for AFM measurements in minimal essen-
tial medium (MEM; Invitrogen Corp., La Jolla, CA, USA) 

Fig. 2  Differential expression of marker genes for neural crest/heart 
development or embryonic patterning in aortic ECs from the ascend-
ing arch (asc) vs the abdominal aorta (abd). A Volcano plot of up- 
and downregulated genes in the ascending arch vs the abdominal 
aorta. B Heatmap of DEGs related to neural crest or heart develop-

ment/function and epithelial to mesenchymal transition (EMT) in 
the respective samples. C Heatmap of DEGs related to arterial/aor-
tic aneurysm formation. D Heatmap of DEGs related to the Hox gene 
family

http://punias.voila.net
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supplemented with 10% fetal calf serum (FCS; PAA Labora-
tories, Pasching, Austria), 1% MEM vitamins (Invitrogen), 1% 
MEM nonessential amino acids (Invitrogen) and 1% Penicillin/
Streptomycin (100 U/ml; 100 mg/ml) under standardized cell 
culture conditions.

Statistical analysis

Statistical analysis was performed using Prism 8 (Graph-
Pad, San Diego, USA). Data are presented as mean ± SD. 
Each data point represents a biological replicate. For 
comparison of differences between more than two groups 
with normal distribution One way ANOVA with Tukey’s 
post hoc test was used, in case of non- normal distribu-
tion of values Kruskal–Wallis test was applied. For com-
parisons of differences between more than two groups 
with data of unequal variances Welch’s ANOVA with 
Dunnett’s post hoc test was used. P values < 0.05 were 
considered significant.

Results

Site‑specific isolation of ECs from the aorta 
of healthy C57BL/6 mice using the modified 
“Häutchen method”

We first analyzed ECs from distinct locations along the 
aortic tree of healthy C57BL/6 mouse aortas. To this aim 
ECs from the intima and cells from the media/adventitia 
were isolated from aortic sections of the ascending and 
descending arch as well as the thoracic and abdominal part 
of the straight segments of the aorta. Therefore, we used 
the modified “Häutchen method” (Fig. 1A,B) that enables 
to separate superficial cell layers from multicellular tis-
sues by their adherence to glass coverslips. Isolation of 
RNA and analysis of bulk RNA-seq data proved prominent 
enrichment of aortic ECs and of medial/adventitial cells by 
this method as correct clustering of samples derived from 
the endothelium and the media/adventitia was found in a 
heatmap of selected EC and smooth muscle (SM)/adven-
titial cell markers (Fig. 1C). This was further confirmed 
by qPCR of new samples revealing strongly enhanced 
expression of the prototypic EC markers von Willebrand 
factor (VwF), PECAM (Cd31) and VE-cadherin (Cdh5) 
in cells harvested from the endothelial, but not from the 
medial/adventitial side of the aorta (Fig. 1D–F). We also 
quantified the number of total cells and ECs obtained 
with the modified “Häutchen method” by applying Hoe-
chst as well as CD31 staining and counting (Fig. 1G). We 
found 356 ± 189 (n = 27) ECs from each of the different 
aortic locations adherent on single cover slips (Fig. 1H); 

the number of ECs derived from different segments of 
the aorta was overall similar (260 to 408 cells, p > 0.05). 
Importantly, the vast majority (91–95%) of isolated cells 
from the endothelial side of all aortic segments was 
 CD31+. Thus, the modified “Häutchen method” enables 
strong enrichment of ECs derived from specific locations 
of the aortic tree.

Differential gene expression of ECs derived 
from distinct sites of healthy aorta

Then we compared the number of differentially expressed 
genes (DEGs) in ECs derived from different regions of 
healthy C57BL/6 aortas and found that it increased with 
greater distance between the respective aortic segments: 
68 DEGs in the ascending vs descending arch, 154 in the 
ascending arch vs thoracic aorta, 222 in the ascending 
arch vs abdominal aorta (Tables S1–3). The analysis of 
ECs from the most distant regions, namely the ascend-
ing arch (n = 5) and the abdominal aorta (n = 6), reveals 
that genetic signatures were strongly determined by their 
developmental origins: In the ascending aorta ECs dis-
played upregulation of (cardiac) neural crest markers 
and regulators[21–26] (Fig. 2A, B). Likewise, we found 
upregulation of genes involved in heart development/func-
tion and valve morphogenesis [22, 27–37] (Fig. 2A, B) 
as well as epithelial to mesenchymal transition (EMT) 
[38–41] (Fig. 2A, B). Interestingly, we also detected an 
upregulation of genes that have been linked to aneurysm 
formation in earlier studies [42–45] (Fig. 2C). In ECs from 
the abdominal aorta, we found an upregulation of vari-
ous homeobox (Hox) genes (Hox 5–10) that are known 
to contribute to the development of this part of the aorta 
[46] (Fig. 2A, D), further underscoring the validity of 
our approach. Regionally restricted Hox gene expression 
reflects embryonic patterning during aortic development 
and is considered as a sign for the positional identity of the 
cells also in the adult [47]. While most of these develop-
mental markers had been previously identified in smooth 
muscle cells we can show by immunofluorescence stain-
ing that they are expressed in both, in  ASMAC+ smooth 
muscle cells and  CD31+ ECs of the aorta further proving 
the validity of our approach (Figure S1A–D).

Next, we compared gene expression of healthy ECs 
derived from AA predilection sites with respective con-
trol segments. Because the aortic root and the ascending 
arch are typical localizations for aneurysm formation, first, 
we compared gene expression of ECs derived from this 
segment (n = 5) with all other aortic segments and identi-
fied 15 common DEGs (Fig. 3A) that are most typical for 
the ascending arch of aorta. We again found upregulated 
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genes displaying neural crest/heart development markers 
(Cdh11, Hand2, Sall1) and downregulated genes char-
acteristic for distal aorta development (Hoxa7, Hoxb9) 
(Fig. 3A, Table 1). Interestingly, the upregulated genes 
in ECs from the ascending arch also reflect a pro-angi-
ogenic signature (Cdh11, Hand2, Sall1, Aqp1, Rab27b) 
(Fig. 3A, Table 1). We then compared the ECs from the 
ascending arch (n = 5) with the adjacent control segment 

of the descending arch (n = 6) and identified 39 up- and 
29 downregulated genes. Gene ontology (GO) analysis 
revealed differential regulation of genes related to mesen-
chymal cell differentiation and embryonic morphogenesis 
(Fig. 3B), the highest number of DEGs, however, could 
be attributed to the categories of angiogenesis and epi-
thelial tube morphogenesis (Fig. 3B). In particular, the 
upregulated genes are known to mediate pro-angiogenic 

Fig. 3  Differential expression of pro-angiogenetic genes in aortic 
ECs derived from the ascending (asc) vs the descensing (des) arch. A 
Venn diagram of DEGs in ECs from ascending arch vs all other aor-

tic segments. B GO analysis of the category “biological processes” of 
the DEGs in ECs from ascending vs dessending arch. C Heatmap of 
pro-angiogenic DEGs in the respective samples
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effects either directly (Epha7 [42], Lepr [48], Ptn [49], 
Hand2 [50], Sall1 [51], Tbx20 [52], Aqp1 [53]) or indi-
rectly (Cdh11 [54], H19 [55], Efemp1 [56], Rab27b [57]) 
(Fig. 3C). Because the typical EC marker expression (Vwf, 
Cd31, Cdh5) was similar in ECs from the ascending and 
descending arch it can be excluded that the differential 
expression of pro-angiogenic genes was due to different 
EC purities in the samples. Thus, ECs from the AA pre-
dilection site of the ascending arch are characterized by 
upregulation of pro-angiogenic genes.

Next, we compared gene expression of ECs from the 
other typical predilection site for aneurysm development, 
the abdominal aorta (n = 6), with all the other segments and 
found 11 common DEGs (Fig. 4A). The upregulated genes 
are representative of cholesterol and fatty acid metabolism 
(acat2) [58], cell adhesion and migration (Epb41l1) [59] and 
angiogenesis (Hoxc10 [60], Uqcrb [61]) (Fig. 4A, Table 2). 
When we compared ECs from the abdominal segment (n = 6) 
with those of the adjacent control segment, the thoracic aorta 
(n = 6), we found 57 up- and 36 downregulated genes. GO 
analysis revealed differential regulation of genes related 
to  ECM-related glycosaminoglycan binding, lipid trans-
port, and negative regulation of signaling (Fig. 4B). In the 

latter category inhibitors of Wnt, BMP, and EGF signaling 
(Ctnnbip1 [62], Cxxc4 [63], Grem2 [64], Errfi1 [65]) were 
detected, but it also contained upregulated pro-angiogenic 
genes (Chrdl1 [66], Dcn [67], Ecm1 [68], Igf1 [69], Fig. 4B, 
Table 3). This revealed that also in ECs of the abdominal 
aorta a genetic signature of altered angiogenesis was found. 
The category with the most DEGs comparing ECs from 
abdominal and thoracic aorta, was related to regulation of 
the immune response with the majority of these genes being 
upregulated (Table 3) [64, 70–81]. Interestingly, we found 
members of the complement system to be upregulated that 
was demonstrated to be involved in atherosclerosis and par-
ticularly in AAA before [82, 83] (Fig. 4C). Thus, ECs from 
the AA predilection site of abdominal aorta are character-
ized by differential expression of markers for ECM binding, 
angiogenesis, and immune response.

In order to confirm the results of the RNA-seq analysis 
we used the same samples and performed dPCR of strongly 
expressed genes regulated in ECs of the ascending arch and 
abdominal aorta. Our results showed that the expression 
pattern of exemplary genes characteristic for ECs from the 
ascending arch (Aqp1 and Cdh11), and for the abdominal 
aorta (C7 and Grem2) was very similar when comparing 

Table 1  Common up- and 
downregulated DEGs in asc

DEGs differentially regulated genes, asc ascending arch, Dds descending arch, tho thoracic aorta, abd 
abdominal aorta

Gene symbol Comparison log2(FC) P adj Function

Up Neural crest
Heart Development
Pro-angiogenic

Cdh11 asc vs des 3.80 0.001
asc vs tho 4.36  < 0.001
asc vs. abd 6.87  < 0.001

Hand2 asc vs des 5.60  < 0.001
asc vs tho 5.82  < 0.001
asc vs. abd 5.33  < 0.001

Sall1 asc vs des 3.71 0.003
asc vs tho 5.32  < 0.001
asc vs. abd 5.10 0.002

Aqp asc vs des 2.82  < 0.001 Pro angiogenic
asc vs tho 2.98  < 0.001
asc vs. abd 3.10 0.001

Rab27b asc vs des 2.05 0.007 Pro angiogenic
asc vs tho 2.12  < 0.001
asc vs. abd 2.07 0.049

Down
Hox a7 asc vs des −4.34  < 0.001 Distal aorta

Developmentasc vs tho −5.40  < 0.001
asc vs. abd −5.20 0.002

Hox b9 asc vs des −3.44 0.041
asc vs tho −7.18  < 0.001
asc vs. abd −6.33  < 0.001
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values obtained with dPCR (Fig. 5A–D right bars and axis) 
or RNA-seq (Fig. 5A–D, left bars and axis). RNA-seq data 
were further confirmed by dPCR analysis of more genes in 
newly isolated EC samples from the ascending and descend-
ing arch (Efemp1, Cd55, Ptn, Hand2, Figure S1 E–H) and 
from the abdominal and thoracic aorta (Cfd, Cidec, Hoxc10, 
Figure S1 I–K).

We also performed immunohistochemistry of aortic sec-
tions and using fluorecence stainings we found co-locali-
zation of AQP1 (Figure S1 L) and CDH11 (Figure S1 M) 
as well as C7 (Figure S1 N) and GREM2 (Figure S1 O) 
with  CD31+ ECs in the ascending and abdominal segments 
of the aorta, respectively, confirming protein expression of 
these regulated genes in ECs. We also assessed differences 

Fig. 4  Differential expression of ECM-related, pro-angiogenic and 
pro-inflammatory genes in aortic ECs derived from the abdominal 
(abd) vs the thoracic (tho) aorta. A Venn diagram of DEGs in ECs 
from abd aorta vs all   other aortic segments. B GO analysis of the 

category “biological processes” of the DEGs in ECs from abdominal 
vs thoracic aorta. C Heatmap of DEGs related to the complement sys-
tem in the respective samples
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in protein expression in ECs from adjacent aortic segments 
using semi-quantitative DAB stainings. These revealed 
stronger signals for AQP1 (Fig. 5E, F) and CDH11 (Fig. 5G, 
H) in ECs from the ascending vs the descending aortic arch 
and for C7 (Fig. 5I, J) and GREM2 (Fig. 5K, L) in ECs from 
the abdominal vs the thoracic aorta.

Besides gene expression, we also investigated if the 
mechanical properties of ECs from aneurysm predilection 

sites differed from the respective control regions by meas-
uring the cortical stiffness of single ECs ex vivo by atomic 
force microscopy (AFM)-based single-cell force spectros-
copy. Enhanced aortic stiffness has been reported to reflect 
a susceptibility to aneurysm formation [84] and stiffen-
ing of ECs is an early sign of pathological changes as it 
is known to correlate with endothelial dysfunction and 
to increase during ageing [85]. In en face preparations of 
healthy mouse aortas we found elevated cortical stiffness of 
single ECs in segments of the ascending (1.7 ± 0.5 pN/nm, 
N = 4, n = 197) compared to the descending (1.6 ± 0.5 pN/
nm, N = 4, n = 204, p = 0.024) arch, and similar results were 
obtained in aortic segments from the abdominal (1.8 ± 0.6 
pN/nm, N = 4, n = 188) vs the thoracic (1.6 ± 0.5 pN/nm, 
N = 4, n = 182, p = 0.0008) aorta (Fig. 5M). As control, we 
determined stiffness in different locations around the cir-
cumference of the ascending or descending aorta and found 
that it was very similar (asc: p = 0.4, des: p = 0.7). Thus, 
the endothelium from aneurysm predilection sites displays 
increased cortical stiffness already in healthy aortas provid-
ing additional evidence that the endothelium is altered at 
aneurysm predilection sites.

Analysis of gene expression changes in ECs 
from ascending arch and abdominal aorta 
in the AngII  ApoE−/− aneurysm model

Next, we analyzed aneurysms in the ascending arch and 
abdominal aorta derived from the AngII  ApoE−/− model at 
d14 or d28 and compared them with the same sites in sham 
animals  (ApoE−/− mice without AngII application). In the 

Table 2  Common upregulated 
DEGs in abd

DEGs differentially regulated genes, asc ascending arch, des descending arch, tho thoracic aorta, abd 
abdominal aorta

Gene symbol Comparison log2(FC) P adj Function

Acat2 abs vs asc 2.39 0.012 Cholesterol and fatty acid metabolism
abd vs des 2.37  < 0.001
abd vs tho 2.79 0.026

Epb41I1 abs vs asc 2.54 0.020 Cell adhesion and migration
abd vs des 2.50  < 0.001
abd vs tho 3.16 0.025

Hoxc 10 abs vs asc 7.72  < 0.001 Pro-angiogenic
abd vs des 8.04  < 0.001
abd vs tho 8.12  < 0.001

Uqcrb abs vs asc 2.05 0.044 Pro-angiogenic
abd vs des 2.37  < 0.001
abd vs tho 1.92 0.042

Table 3  DEGs related to angiogenesis and immune response in abd 
vs tho

DEGs differentially regulated genes, tho thoracic aorta, abd abdomi-
nal aorta

Gene symbol log2(FC) P adj Genesymbol log2(FC) P adj
Angiogenesis Immune response

Up Up
Chrdl1 3.17 0.036 Grem2 7.75  < 0.001
lgf1 2.86 0.039 Nfil3 5.13 0.004
Dcn 2.58 0.043 Slamf1 4.93 0.024
Ecm1 1.85 0.049 Cfp 3.76  < 0.001

C7 3.46 0.019
Down H2-Ab1 2.84 0.027
Twist1 −3.21 0.023 Ifi207 2.75 0.036

Cfd 2.54  < 0.001
Ighm 2.30 0.048
Ecm1 1.85 0.049
Down
Twist1 −3.21 0.023
Cd47 −1.13 0.031
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vast majority of the AngII  ApoE−/− mice we found aneu-
rysms in the respective locations (7/9 asc, 8/9 abd) that could 
also be detected by ultrasound imaging. Quantitative analy-
sis revealed elevated aortic diameters in AngII  ApoE−/− mice 
vs shams at d14 (Figure S2 A, B). H&E stainings of aortic 
sections confirmed an increased diameter in the ascending 
arch (Fig. 6A) and in the abdominal aorta (Fig. 6E) com-
pared to control sham animals (Fig. 6I, K) consistent with 
aneurysm formation. This was also underscored by elastin 
breaks due to altered ECM organization in the aortic wall of 
both sites (arrows, Fig. 6B,F; Figure S2 C). These changes 
were accompanied by  CD31+ cells (green) in the aortic wall 
(Fig. 6B ,F) as well as FLK-1+ (red)  CD31+ (green) vascular 
structures (Fig. 6C, D, G, H) most likely highlighting vasa 
vasorum and by  CD45+ cells (red) indicating inflammation 
(Fig. 6B, F), all these changes were largely absent in the 
respective aortic segments of sham animals (Fig. 6J, L). 
These typical pathophysiological alterations mirrored the 
transcriptome profile of the endothelium at aneurysm pre-
dilection sites in healthy aortas. Thus, we wondered if these 
genetic changes can also be found in the endothelium of aor-
tas with aneurysm. First, we compared ECs from the ascend-
ing arch or the abdominal aorta of sham  (ApoE−/− with 
western diet) with WT animals and detected a pro-inflam-
matory signature (Fig. S3 A, B), which is in accordance 
with endothelial alterations in the  ApoE−/− model. RNA-seq 
analysis of ECs isolated from manifest aneurysms of the 
ascending arch of the AngII  ApoE−/− mice vs ECs from the 
same segment of sham animals confirmed upregulation of 
DEGs related to the categories of ECM organization, TGF-
beta signaling, angiogenesis and cytokine activity as well 
as acute inflammation (Fig. 6M). The strongest upregulated 
genes belonged to the pro-inflammatory chemokine family 
(Ccl2, Ccl7, Ccl8) (Fig. 6N). When we compared the gene 
expression pattern of ECs from aneurysms of the abdomi-
nal segment of AngII  ApoE−/− mice with shams we found 
very similar categories to be regulated with ECM organiza-
tion, cell adhesion, positive regulation of EC migration and 
immune receptor activity (Fig. 6O). The most upregulated 
genes link ECM remodeling, angiogenesis and inflamma-
tion to aneurysm formation such as Cdh11 [86], Postn [87], 
Serpine1 [88, 89] and Thbs [90, 91] (Fig. 6P). Interestingly, 
we found two distinct genes (Abcb1a, Cd53) that are upregu-
lated in ECs from the healthy abdominal WT aorta as well as 
in ECs from abdominal aneurysms. Taken together, the gene 
expression pattern of ECs derived from the different sites of 
aneurysm formation vs sham animals shows some similarity 
with that found in predilection sites of healthy aortas when 

compared to the adjacent control regions. Thus, the hetero-
geneity of EC gene expression signatures in healthy mice 
indicates the location and pathophysiological alterations of 
aortic aneurysm formation.

Discussion

Aortic aneurysms develop at specific predilection sites, 
namely the aortic arch and the abdominal aorta. So far it 
is unclear if this is solely due to different hemodynamic 
forces or if also intrinsic differences of the vascular wall 
play a role. In fact, earlier work from Haimovici et al. has 
provided intriguing experimental evidence for the genetic 
determination of aortic disease. They transplanted canine 
abdominal aortic grafts that are prone to atherosclerosis into 
the thoracic aorta or the jugular vein of dogs that were fed 
an atherogenic diet. The grafts were found to develop severe 
lesions in the new location while local vessels were much 
less affected. This suggested that the susceptibility to aortic 
disease is determined by tissue properties rather than hemo-
dynamic flow conditions [92, 93].

These site-specific intrinsic differences of the aorta 
may be related to their different developmental origin as 
SMCs from different parts of aorta are derived from differ-
ent embryonic tissues [94, 95] and this correlates with the 
susceptibility of the cells to calcification and aortic disease 
[96, 97]. We demonstrate that the developmental origins of 
the different aortic segments are preserved in the RNA sig-
natures of healthy mouse ECs of the aorta, as we detected 
an upregulation of either neural crest-related genes in ECs 
from the ascending arch or of various Hox genes in ECs 
from the abdominal part. Interestingly, these developmen-
tal genes were reported to contribute to aortic aneurysm of 
the ascending [98, 99], and abdominal [100] AA formation 
and dissection in humans. Most of these studies focused on 
whole aortic tissue or SMCs. Our data on ECs demonstrate 
that their gene expression patterns are very similar to adja-
cent SMCs (e.g., neural crest-specific genes, Hox genes). 
Interestingly, the concept that ECs from the brain, lung and 
heart express genes that are also found in surrounding cells 
and tissues has been proposed in the past and suggests an 
organ-specific plasticity of ECs [101]. EC heterogeneity in 
various organs of mouse [9, 102] but also within the aorta 
has previously been detected by scRNA-seq analyses and 
enabled the identification of 2 or 3 distinct aortic EC popu-
lations [103–106]. However only He et al. could assign EC 
populations to distinct aortic segments. Interestingly, this 
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group also characterized aortic ECs from mice exposed to 
high fat/salt/glucose conditions and, similar to our data from 
ECs of AA, found the appearance of ECs with high Serpine1 
expression [105].

Besides changes in the gene expression pattern recent 
studies emphasized the important role of altered EC function 
in aneurysm formation as endothelial dysfunction, eNOS 
uncoupling and defective EC barrier function were found to 
be involved in the pathophysiology of the disease[107–109]. 
Our data also reveal early signs for endothelial dysfunc-
tion in ECs of healthy animals, as we detected elevated 
endothelial stiffness. Accordingly, some of the differen-
tially expressed genes we found in ECs from the ascend-
ing arch and the abdominal part of healthy aortas suggest 
altered mechanical properties of the cells. For instance, 
Cdh11 [110] and Dcn [111] were reported to regulate col-
lagen and elastin synthesis, while Hand2 has an impact on 
the cytoskeleton [112], all processes affecting the mechani-
cal properties of tissues. Moreover, Aqp1 was claimed to 
be directly involved in aortic stiffening in diabetes [113]. 
Our finding of enhanced cortical stiffness at aneurysm pre-
dilection sites is consistent with earlier reports highlight-
ing segmental aortic stiffening as an early pathomechanism 
evoking aneurysm formation in mouse [114] and humans 
[115, 116]. Even though aneurysm formation only develops 
in the ApoE model with AngII infusion also ECs from our 
sham mice  (ApoE−/− with western diet) showed an altered 
pro-inflammatory gene expression pattern compared to WT 

animals. This is similar to a previous study where gene 
expression of whole aortas from  ApoE−/− vs WT animals 
were compared [117] and corresponds to the well-known 
development of atherosclerosis in this mouse model. Yet, 
the additional AngII application triggers aneurysm develop-
ment and further induces gene expression related to ECM 
remodeling, angiogenesis and inflammation.

The gene expression pattern we found in ECs from 
aneurysms of the AngII  ApoE−/− model fits very well to 
reported pathophysiological mechanisms of aneurysm for-
mation that have been identified in whole aortic tissues of 
aneurysms: We detected changes of ECM-related genes 
such as collagens [118], metalloproteinases and proteo-
glycans/glycoproteins [119] and a dysregulation of lysy-
loxidase (LOX) expression [120]. In addition, we found 
regulation of angiogenetic modulators such as pro-angio-
genic GATA6 [121], leucine-rich alpha-2- glycoprotein 1 
(LRG1) as a regulator of pathogenic angiogenesis [122] 
and osteonectin/SPARC that can regulate EC shape and 
barrier function [123]. Finally, there was also increased 
expression of pro-inflammatory endothelial chemokines 
(e.g., Ccl2, Il6) [124], known to potentiate inflammatory 
processes and to be involved in aneurysm pathophysiology 
[125, 126]. Nevertheless there are also some limitations 
of the study, namely a relatively low number of cells that 
can be isolated and therefore limited material for PCR or 
protein analysis. Future studies taking advantage of spatial 
transcriptomics or multiplexed error-robust fluorescence 
in situ hybridization (MERFISH) may be able to further 
improve the spatial resolution within the aorta and of ECs 
[127] and provide more insights into the site specific het-
erogeneity of ECs.

Thus, we have detected genetic signatures in ECs from 
aneurysm predilection sites of healthy mouse aortas that 
are not identical but correlate with changes found in mani-
fest aneurysms suggesting that these define the site and 
pathophysiological alterations of aneurysm formation in 
aortic disease.

Fig. 5  Analysis of gene expression by dPCR and protein expression 
by DAB staining, mechanical properties of the endothelium. A–D 
Comparison of gene expression by RNA-seq (left) and dPCR (right) 
of strongly expressed genes in the endothelium of the ascending arch 
(asc): Aqp1 (A) and Cdh11 (B) as well as of the abdominal aorta 
(abd): C7 (C) and Grem2 (D). E–L DAB staining of AQP1 (E, F), 
CDH11 (G, H), C7 (I, J) and GREM2 (K, L) in the endothelium of 
the aortic segments indicated, arrows point at staining in ECs, scale 
bar: 50 µm. M Assessment of cortical stiffness of ECs from the dif-
ferent segments of healthy mouse aortas, N = 4. A–D unpaired stu-
dent’s t-test, M Kruskal–Wallis test, Dunn’s post hoc test, *p < 0.05, 
**p < 0.01, ***p < 0.001
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