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Abstract
Snake venoms are intricate mixtures of enzymes and bioactive factors that induce a range of detrimental effects in afflicted 
hosts. Certain Viperids, including Bothrops jararacussu, harbor C-type lectins (CTLs) known for their modulation of a 
variety of host cellular responses. In this study, we isolated and purified BjcuL, a CTL from B. jararacussu venom and 
investigated its impact on endothelial cell behavior, contrasting it with human galectin-1 (Gal-1), a prototype member of 
the galectin family with shared β-galactoside-binding activity. We found that BjcuL binds to human dermal microvascular 
endothelial cells (HMECs) in a concentration- and carbohydrate-dependent fashion and reprograms the function of these 
cells, favoring a pro-inflammatory and pro-coagulant endothelial phenotype. In light of the quest for universal antagonists 
capable of mitigating the harmful consequences of snake venoms, BjcuL emerges as a promising target to be blocked in 
order to regulate pathological endothelial cell responses.
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Dear Editor,

Snake envenomation poses a significant global health chal-
lenge, especially in developing nations. Statistics suggest 
that annually, between 421,000 and 1.8 million individu-
als fall victim to envenomation, leading to a staggering 
81,000–138,000 fatalities and 400,000 cases of disability. 
Consequently, there is an urgent need to investigate novel 
therapeutic strategies to mitigate the detrimental and often 
fatal consequences of these venomous encounters [1].

Snake venoms contain a complex mixture of toxic bioac-
tive factors that exert wide-ranging pathological effects on 
vital functions of the prey organism, including those involv-
ing the nervous and cardiovascular systems. The action of 
venoms from viperid snakes is mainly directed at blood 
coagulation [2]. In fact, hemohistotoxic viperid envenoma-
tion usually leads to local tissue damage and severe systemic 
hemorrhage, inflammation, consumption coagulopathy, or 
cardiovascular shock. In addition, it can impair the functions 
of the central nervous system by interfering with the blood 
clotting system and platelet aggregation, and by damaging 
the vascular endothelium, leading to severe intracranial 
bleeding and/or cerebral infarction [2].

Hemohistotoxic venoms comprise a spectrum of com-
ponents, encompassing enzymes like serine and metal-
loproteinases, alongside non-enzymatic proteins such as 
disintegrins and C-type lectins (CTLs), a family of calcium-
dependent extracellular glycan-binding proteins. Notably, 
CTLs constitute around 5–10% of certain viper venom 
constituents and are believed to disrupt cellular programs, 
including those critical for immune and endothelial cell 
functions [3, 4]. Likewise, galectin-1 (Gal-1), a member of 
the mammalian galectin family with β-galactoside-binding 
activity, plays a pivotal role in regulating immune and vas-
cular processes [5]. In our quest to identify β-galactoside-
binding proteins within the hemohistotoxic venom of B. 
jararacussu, which could potentially impact pro-coagulant 
and pro-inflammatory endothelial cell reactions, we suc-
cessfully isolated BjcuL, a CTL known for its significant 
involvement in immune cell activation and apoptosis [4]. 
We purified BjcuL from the crude venom of B. jararacussu 
by single-step affinity chromatography using a lactosyl-
Sepharose affinity column. SDS-PAGE analysis performed 
under reducing conditions yielded a single 15-kDa protein 
band (Fig. 1A). N-terminal amino acid sequencing identi-
fied the eluted protein as BjcuL, a CTL with high homology 
to lectin sequences from other viper venoms, as shown by 
BLAST analysis (Fig. 1B). Notably, BjcuL induced agglu-
tination of rabbit erythrocytes yet, with higher activity than 
that triggered by human recombinant Gal-1 (Fig. 1C). To 
analyze the glycan-binding capacity of BjcuL, we exposed 
human dermal microvascular endothelial cells (HMECs) 
to this lectin. We found that BjcuL binds to HMECs in a 

concentration- and saccharide-dependent manner, as binding 
was specifically prevented by lactose and galactose (Fig. 1D, 
E).

Since vascular endothelium represents a primary target 
for both the hemohistotoxic and neurotoxic effects induced 
by viperid venoms [3], we next evaluated the impact of 
BjcuL on HMECs, in comparison with human recombinant 
Gal-1. We found that both lectins induce endothelial cell 
proliferation, but tenfold higher concentrations of Gal-1 
were required to elicit similar responses as BjcuL (Fig. 1F, 
G). Moreover, at the highest BjcuL concentrations, we found 
that most cells were in suspension and the HMECs mon-
olayer was completely disrupted (data not shown). Analysis 
of nuclear morphology and viability of these cells revealed 
an increased frequency of apoptotic HMECs triggered by 
BjcuL (Fig. 1H). Interestingly, treatment of HMECs with 
recombinant Gal-1 recapitulated these effects (Fig. 1I). How-
ever, neither BjcuL nor Gal-1 induced cellular necrosis (data 
not shown). The cytotoxic effect of BjcuL and Gal-1 is con-
sistent with previous observations demonstrating the ability 
of these lectins to control cell viability [4–7]. Remarkably, 
non-apoptotic concentrations of BjcuL and Gal-1 increased 
basal expression of intercellular cell adhesion molecule-1 
(ICAM-1) on HMECs (Fig. 1J, K) and triggered the syn-
thesis and release of IL-6 (Fig. 1L), highlighting the ability 

Fig. 1  Characterization of endothelial cell responses triggered by 
BjcuL, a C-type lectin (CTL) purified from Bothrops jararacussu 
venom in comparison with those triggered by human recombinant 
Gal-1. A SDS-PAGE analysis. Lane 1: MW markers; lane 2: whole 
venom lysates; lane 3: venom solution seeded on lactosyl-Sepharose 
column; lane 4: eluate; lane 5: MW markers; lane 6: affinity-purified 
BjcuL; lane 7: purified BjcuL after dialysis and concentration. B 
Alignment of the protein sequence of BjcuL with sequences of other 
CTLs from snake venoms [4] (Bjl: Bothrops jararaca lectin; LmSL: 
Lachesis muta stenophrys venom lectin; RSL: rattlesnake venom 
lectin). Sequences are colored according to percentage of identity, 
ranging from blue meaning high identity and white meaning low 
identity. C Hemagglutinating activity of BjcuL or human recom-
binant Gal-1 on trypsinized rabbit erythrocytes. White arrowheads 
indicate absence of hemagglutination. D Flow cytometry analysis 
of PE/Texas Red-labeled BjcuL binding to HMECs (**p < 0.01, and 
****p < 0.0001. BjcuL 0.70 μM and 1.40 μM versus BjcuL 0.35 µM). 
E Flow cytometry of PE/Texas Red-labeled BjcuL (0.70  μM) bind-
ing to HMECs in the absence or presence of specific (lactose and 
galactose) and non-specific (mannose, methylglucoside) saccharides 
(30 mM) (****p < 0.0001 versus BjcuL alone). F,G Flow cytometry 
analysis of EdU incorporation into viable HMECs triggered by expo-
sure to BjcuL (F) or human recombinant Gal-1 (G) for 24 h. Percent-
age of apoptotic HMECs triggered by BjcuL (H) or human recom-
binant Gal-1 (I), determined by fluorescence microscopy following 
staining with acridine orange and ethidium bromide. Flow cytometry 
analysis of ICAM-1 expression induced by stimulation with BjcuL 
(J) or human recombinant Gal-1 (K) for 24 h. ELISA of IL-6 (L) and 
vWF (M) in HMEC supernatants after 24 h stimulation with BjcuL 
or human recombinant Gal-1 (F–M) (*p < 0.05, **p < 0.01, ***p < 
0.001, and ****p < 0.0001 versus non stimulated HMECs). Results 
represent the mean ± SEM of 3–4 independent experiments

◂



Angiogenesis 



 Angiogenesis

of these lectins to foster pro-inflammatory endothelial cell 
responses. To evaluate the impact of BjcuL and Gal-1 on the 
pro-coagulant activity of endothelial cells, we finally exam-
ined their effects on constitutive secretion of von Willebrand 
factor (vWF) from storage granules. Although both lectins 
promoted the release of vWF, Gal-1 was more potent than 
BjcuL in contrast to the above-reported effects (Fig. 1M). 
Notably, none of these endothelial cell responses were inhib-
ited or synergized when HMECs were treated simultane-
ously with both lectins (data not shown).

Overall, these findings highlight an activating role of 
BjcuL at the endothelium, which may trigger pro-inflamma-
tory and pro-coagulant responses, and could be responsible, 
at least in part, for the deleterious effects of viper enveno-
mation. Interestingly, endogenous Gal-1 could be poten-
tially secreted in response to venom-driven inflammatory 
responses and contribute to these effects through binding to 
shared glyco-epitopes. In this regard, although Gal-1 exerts 
mainly anti-inflammatory and pro-resolving functions in 
several models of autoimmune and chronic inflammation 
[5], recent findings demonstrated pro-inflammatory activity 
of this lectin early during activation of the inflammatory cas-
cade [8]. Thus, BjcuL emerges as a new potential therapeutic 
target in the control pathological endothelial responses trig-
gered by Bothrops jararacussu or other viper envenoma-
tions. This effect could also be achieved by blocking endog-
enous Gal-1 in inflamed or damaged vascular tissues [9].
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