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Abstract
Vascularized organoid-on-a-chip (VOoC) models achieve substance exchange in deep layers of organoids and provide a 
more physiologically relevant system in vitro. Common designs for VOoC primarily involve two categories: self-assembly 
of endothelial cells (ECs) to form microvessels and pre-patterned vessel lumens, both of which include the hydrogel region 
for EC growth and allow for controlled fluid perfusion on the chip. Characterizing the vasculature of VOoC often relies on 
high-resolution microscopic imaging. However, the high scattering of turbid tissues can limit optical imaging depth. To 
overcome this limitation, tissue optical clearing (TOC) techniques have emerged, allowing for 3D visualization of VOoC 
in conjunction with optical imaging techniques. The acquisition of large-scale imaging data, coupled with high-resolution 
imaging in whole-mount preparations, necessitates the development of highly efficient analysis methods. In this review, 
we provide an overview of the chip designs and culturing strategies employed for VOoC, as well as the applicable optical 
imaging and TOC methods. Furthermore, we summarize the vascular analysis techniques employed in VOoC, including 
deep learning. Finally, we discuss the existing challenges in VOoC and vascular analysis methods and provide an outlook 
for future development.
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Introduction

Organ-on-a-chip (OoC) is a highly advanced approach com-
bining microfluidics with cell culture, leading to significant 
advancements in simulating human microphysiological sys-
tems and functions [1–3]. The diffusion limit of nutrients, 
such as oxygen, ranges from 100 to 200 μm in the human 
body. Once the size of an organ or tissue surpasses this 
range, efficient substance exchange is achieved through the 
development of microvasculature [4]. Organoids cultured 
in vitro usually have diameters ranging from 50 to 1000 μm 
and rely solely on passive diffusion to receive nutrients and 
oxygen and to remove waste products [5]. When the size of 
an organoid exceeds the passive diffusion limit in hydrogel 
(~ 400 μm), its growth and function are significantly affected 
[6, 7]. Recently, numerous investigators have endeavored to 
construct microvascular networks in vitro using microflu-
idic chips, resulting in the vascularization of organoids and 
enhancing the authenticity of the OoC system. Vascularized 
organ-on-a-chip (VOoC) employs specialized microfluidic 
chips with specific structures to co-culture target organoids 
or spheroids with vascular endothelium and its supporting 
cell lines, leading to the formation of a perfusable vascular 
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network (Fig. 1). Incorporating additional stimuli, such as 
flowing mechanical force and growth factor, can signifi-
cantly improve the success rate of vascular perfusion.

The continuous advancement of VOoC has generated 
a growing need for advanced imaging techniques that can 
efficiently and accurately capture the relevant biological 
processes and the interaction between the organoid and its 
microenvironment. In this regard, confocal/multiphoton flu-
orescence microscopy (CFM/MPM) has gained prominence 
in VOoC imaging due to its exceptional imaging quality [8, 
9]. Furthermore, with the progress of imaging technology, 
emerging microscopic techniques such as light-sheet fluores-
cence microscopy (LSFM) and fluorescence micro-optical 
sectioning tomography (fMOST) have generated attention 
and demonstrated results in achieving comprehensive 3D 
imaging of organoid structures [10, 11].

The enhanced substance exchange in the deep layer of 
organoids allows for further increases in their size. Concur-
rently, the co-culture of multiple cell types related to micro-
vasculature leads to a significant increase in cellular com-
plexity within organoid microenvironment. However, these 
factors, along with the heterogeneity of the chip material, 
can introduce challenges, such as light scattering and refrac-
tive index (RI) mismatches. Consequently, the CFM imaging 
depth is often limited to ~ 100 μm or even lower [8]. Given 
these limitations, obtaining comprehensive information 
about VOoC becomes challenging, hindering the analysis 
of the physiological activities within microvasculature and 
organoids. Recently, tissue optical clearing (TOC) methods, 
such as CLARITY and CUBIC, have been introduced to 
VOoC for obtaining the 3D structure of organoids [12–14]. 
Furthermore, the combination of TOC and LSFM enables 
rapid acquisition of the 3D images [15, 16], significantly 
improving imaging efficiency. While the efficient acquisition 
of comprehensive 3D data for the entire VOoC is essential, 
it is equally critical to process this data quickly, accurately, 
and automatically. Deep learning techniques have rapidly 
advanced in recent years [17] and have played a crucial role 
in cell identification, location tracking [18–20], and the 

analysis of microvascular networks [21, 22], greatly enhanc-
ing the automation level of VOoC systems (Fig. 1).

In this review, we will initially summarize the chip 
designs and vascularization culturing strategies employed in 
VOoC. Subsequently, we will discuss the imaging methods 
that apply to VOoC and briefly outline the advancements in 
TOC techniques within the context of the chip. Furthermore, 
we will present a comprehensive overview of the vascular 
analysis methods applicable to VOoC. Finally, we will delve 
into the future development prospects of VOoC and the 
ongoing advancements in vascular analysis methods.

Vascularized organoid‑on‑a‑chip

Chip design

Microfluidic chips have emerged as promising platform for 
in vitro modeling of microvasculature due to several advan-
tages. Firstly, microfluidic chips can construct perfusable 
microvessels with a diameter of 20–50 μm by controlling 
interstitial flow within the extracellular matrix (ECM) [23], 
closely resembling microvasculature’s function and size in 
the human body. Secondly, microfluidic technology enables 
the creation of hierarchical vessels with similar complexity 
to physiological vessels. This capability allows for a more 
realistic representation of the vascular network. Thirdly, 
microfluidic chips with relatively simple structural designs 
can be mass produced through techniques, such as laser 
cutting or injection molding [24, 25], which is conducive 
to high-throughput culturing and analysis of vascularized 
organoid models. Moreover, microfluidic chips offer pre-
cise control over various parameters, such as growth fac-
tor concentration, shear force, and other environmental 
conditions. This precise regulation facilitates optimal cell 
growth and angiogenesis by providing a controlled and tai-
lored microenvironment [26]. One of key points in VOoC 
design involves incorporating hydrogel channels on the 
chip to facilitate substance exchange and provide structural 

Fig. 1  Schematic diagram of characterization pipeline of VOoC. Created with BioRender.com
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support for vascular growth. Here, we categorized the design 
of VOoC into mainly two types, designs for self-assembly 
of endothelial cells (ECs) to form microvessels and designs 
for pre-patterned vessel lumens.

Designs for self‑assembly of ECs

The designs for self-assembly of ECs on chip predominantly 
exploit the intrinsic hydrophobic properties of the chip mate-
rial, along with the surface tension and capillary effects of 
the hydrogel liquid. These effects collectively contribute to 
effectively confining the hydrogel within the channels. Upon 
curing of the hydrogel under specific conditions, a durable 
solid–liquid interface is established. This interface facilitates 
the adhesion and proliferation of ECs, or alternatively, it 
offers structural support for the self-assembly of vascular 
ECs into microvascular network within a 3D hydrogel envi-
ronment. Currently, there are several microstructures that 
can be employed, including micropillar, microridge, and 
capillary burst valve.

As depicted in Fig. 2a, in the micropillar design, multiple 
pillars are distributed at specific intervals along the sides of 
the hydrogel channels. The stability of the hydrogel chan-
nels can be improved by optimizing the hydrophobicity of 
the chip material and selecting suitable micropillar spacing 
 (Rx) and channel height  (Rz). These factors influence the 
maximum pressure perturbations a hydrogel channel can 
withstand.

where ΔP is the pressure differential sustained by surface 
tension and � is the surface tension coefficient. A trapezoi-
dal micropillar structure can be utilized to enhance stability 
and promote a more suitable air–hydrogel interface during 
hydrogel injection. This structure effectively reduces the 
perturbation and ensures a more controlled hydrogel filling 
process [27]. Typically, the chip channel heights range from 
100 to 200 μm [28], while lowering the channel height theo-
retically improves stability, channel heights below 100 μm 
may result in 3D vascular networks that lack sufficient depth. 
Micropillar-based OoC is commonly employed in various 
applications, including the construction of blood–brain bar-
rier (BBB) chips [29], kidney chips [30], and VOoC [14]. 
However, it is essential to acknowledge that the hydrogel 
channel formed using micropillar structures can be sus-
ceptible to depression and local defects due to the inherent 
differences in properties between the chip material and the 
hydrogel, which may hinder the formation of a well-defined 
and functional vascular barrier.

The “microridge,” also known as “phaseguide™,” is a 
design that utilizes the meniscus-pinning effect, which is 

(1)ΔP = �

(

1

Rx

+
1

Rz

)

,

generated by a material line or a change in geometry, to 
form the liquid-hydrogel boundary (Fig. 2b) [31]. Gener-
ally, a higher and wider microridge structure contributes 
to increased hydrogel stability. However, it also leads 
to a reduced contact area between the hydrogel and the 
medium channels on both sides. To strike a balance, the 
height of the geometric change in microridge structures is 
typically set to be around 1/4 of the channel height, while 
the width is typically kept similar to the height [32–35]. 
The structural characteristics of microridge enable the 
formation of extensive and flat liquid–hydrogel interface, 
promoting tight adhesion of ECs for effective barrier func-
tionality [36, 37]. Hence, this structure is highly suitable 
for constructing barrier-type organoids that demand high 
hydrogel interface integrity, as well as for observing the 
local formation of tip/stalk ECs [32, 34, 38]. Simultane-
ously, the higher surface area-to-volume ratio facilitates 
substance transport studies [39–41]. However, the hydro-
gel channel formed by microridge is prone to damage and 
leakage due to significant shear stress caused by fluid flow, 
particularly during the injection of the culture medium. 
Therefore, when using microridge chips, it may be advisa-
ble to reduce the height of the hydrogel channels, raise the 
height and width of the microridge, and increase the con-
centration of relevant proteins in the hydrogel to improve 
its stability during perfusion [31].

As shown in Fig. 2c, the capillary burst valve design 
is primarily employed in tissue chamber chips, serv-
ing to connect the central chamber with the culture 
medium channels on both sides [42]. Usually, the size 
of the capillary burst valve is 50 μm and the chamber 
is 1 × 2 × 0.1–0.12  mm (length × width × height). Due 
to surface tension and capillary effects, the hydrogel 
injected into the central chamber will not leak into the 
side channels. Upon the gelation of the hydrogel, the cul-
ture medium is introduced into the channels on both sides, 
with the medium channels typically connected to culture 
medium reservoirs. By adjusting the liquid level in the 
reservoirs, interstitial flow can be generated in the chip, 
thereby stimulating cell growth inside the tissue cham-
bers [42–44]. The relatively simple structure of the tis-
sue chamber chips makes them compatible with a 96-well 
plate [45], enabling high-throughput construction of 
VOoC. Furthermore, using multi-layer microfluidic chips 
connected by vertical perfusion channels holds signifi-
cant potential for facilitating co-culture between different 
organoids [46]. However, it is important to note that the 
tissue chamber chip does impose certain limitations on 
the size (smaller than chamber channel’s height, typical 
120 μm) and seeding sequence of co-cultured organoids. 
If researchers intend to seed larger organoids following 
the formation of microvasculature, alternative chip designs 
may need to be considered.
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Fig. 2  Chip designs of VOoC. a Micropillars with specific spacing 
 (Rx) and height  (Rz) can bind the hydrogel in the central channel to 
provide the scaffold for microvasculature growth [27]. b Microridges 
can form a large area of flat hydrogel interface via the meniscus-pin-
ning effect [75], making it suitable for vascular EC adhesion to form 
the vascular barrier. c Chambers are generally connected with the 
medium channel by the capillary burst valves to provide nutrients for 
vascular growth and regulate the interstitial flow [42]. d Microtubes 
construct the hydrogel lumen utilizing an artificially created vascular 
mold. Subsequently, a suspension containing vascular ECs is infused 

into this hydrogel lumen to create microvascular tubes [54]. e Mix 
ECs with hydrogel, inject into the channel, and place the device with 
gravity. Add low-viscosity culture medium at the inlet and collect at 
the outlet. This washes away high-viscosity hydrogel, forming sym-
metrical three-dimensional hydrogel lumens [51]. f The fugitive sup-
port material Pluronic F-127 is 3D printed on the chip’s hydrogel to 
create vascular molds. After removing Pluronic F-127, ECs are added 
to the resulting hollow vascular channels. Once the vessels form, 
organoids can be seeded into the hydrogel for further study [52]. Cre-
ated with BioRender.com
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The microstructures mentioned above share a common 
characteristic in the formation of hydrogel channels, which 
are guided by capillary forces. They are primarily employed 
in VOoC to separate hydrogel and culture medium channels. 
One or more channels are used for injecting the hydrogel 
mixed with cell suspension, while the remaining channels 
serve for culturing, administering growth factors, or stain-
ing reagents. Interstitial flow can be achieved by creating a 
hydrostatic pressure difference, facilitating the delivery of 
nutrients and removal of cellular waste products [47].

Designs for pre‑patterned lumens

The lumen design constructs microtube structures in hydro-
gels by artificially designing a series of tubular molds, 
facilitating the adhesion and growth of ECs to form blood 
vessels. Microneedle (typical diameter: 150–550 μm) is a 
commonly used vascular mold for simple structure [48, 49]. 
More intricate vascular structures can be created using tech-
niques, such as viscous finger patterning (VFP) [50, 51] or 
3D bioprinting [52, 53].

Figure 2d illustrates an example for constructing speci-
fied 3D vascular structures in vitro using a microneedle 
[54]. In specific, the process involves placing microneedle 
on the chip, then introducing the hydrogel into the chip to 
embed the mold. Once the hydrogel polymerizes, the mold 
can be removed, establishing a microtube with a controlled 
lumen size. The ECs suspension is then introduced into the 
hydrogel lumen and incubated for 15–30 min to promote 
adhesion. To prevent damage to the hydrogel structure dur-
ing the molding process, the surface of the vascular mold is 
typically coated with bovine serum albumin [55]. What’s 
more, by utilizing various sizes of microneedles and multi-
ple demolding steps, it is possible to achieve the construc-
tion of blood vessels with a multi-layered perivascular cell 
structure, which structurally appears more realistic com-
pared to microvasculature composed of a single layer of 
ECs. However, this method is constrained by the diameter of 
the microneedles, making it challenging to construct capil-
laries that closely resemble real sizes [56]. In vascularization 
applications, vascularized tumor models can be achieved 
by introducing tumor organoids into parallel microtube 
or co-culturing tumor cells or organoids within hydrogel 
[54]. Moreover, the BBB function can be reconstructed by 
introducing cerebral vascular ECs and applying fluid flow 
stimulation [57–59]. It is evident that the generation of tens 
of micrometers level blood vessels using microneedle poses 
a considerable challenge, and the corresponding demolding 
process can be quite complex and damaging. Fortunately, 
VFP and 3D bioprinting show great potential in tackling 
this issue [52, 60–62].

VFP leverages the property of a less viscous fluid generat-
ing finger-like protrusions in more viscous fluids, providing 

an alternative to microneedle molding method (Fig. 2e). 
The specific methodology involves infusing a high-viscos-
ity fluid (e.g., collagen I) into microchannels and prior to 
solidification, reinfusing the channels with a low-viscosity 
fluid (e.g., cell culture medium). At this juncture, the high-
viscosity fluid within the channels gradually is replaced by 
the low-viscosity fluid, yet a layer of high-viscosity fluid 
persists on the inner walls of the channels, giving rise to 
finger-like microtubes [63, 64]. Some studies indicate that 
the perfusion pressure and flow angle of the low-viscosity 
fluid can influence the thickness and morphology of the 
resulting microtubes [50, 62]. Specifically, when the chip is 
vertically infused with low-viscosity fluid, a more uniformly 
thick lumen wall is established and an increase in pressure 
during the infusion of low-viscosity fluid results in a larger 
diameter of the formed lumens [51]. However, the resultant 
vessels commonly exhibit widths in the order of hundreds 
of microns, posing challenges in downscaling to the dimen-
sions of typical capillaries. Therefore, Chen et al. utilized 
VFP to construct larger vessels on the side channels and 
employed EC self-assembly to create a microvascular net-
work in the central hydrogel channel, achieving a chip with 
hierarchical microvascular structures [50].

3D bioprinting plays a crucial role in the field of tissue 
engineering, allowing for the precise placement of cells 
in 3D space to achieve the desired organ functions, par-
ticularly in the vascular construction (Fig. 2f). Currently, 
there are two main approaches: directly printing cells to 
form vessels with specific structures [53] and printing vas-
cular mold to allow ECs to attach and grow into vascular 
tubes [52]. Both these two vascular fabrication approaches 
are essentially angiogenic remodeling strategies [65]. To 
achieve the construction of a capillary network, some 
researchers have adopted cartilage-derived ECM micro-
fibers bioink [66] or techniques, such as laser bioprinting 
[67–69].

Other designs

In recent years, some intriguing designs have significantly 
enhanced the diversity and functionality of VOoC. For 
example, Rajasekar et al. developed a microdevice called 
IFlowPlate based on a 384-well plate, applying it to vascu-
larization in colon organoids and greatly improving the ana-
lytical efficiency of VOoC [70]. Additionally, certain studies 
have utilized leaf venation networks as molds to fabricate 
VOoC, allowing perfusion with enhanced physiological 
relevance [71, 72]. Furthermore, these designs often offer 
dedicated organoid compartments, streamlining the loading 
and co-culturing processes [24, 73, 74].
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Vascularization culturing strategies on the chip

Vascularization has been successfully implemented in 
various organoids, including the brain, heart, kidney, liver, 
and intestine [5]. Additionally, a growing body of research 
focuses on the tumor microenvironment, which aims to 
establish microvasculature within tumor spheroid to simu-
late interactions between cells and the ECM [76, 77]. The 
initial formation of organoid/spheroid is crucial in most 
vascularization processes and dramatically influences their 
overall success and researchers often implement structural 
modifications to the chip to facilitate the cultivation and vas-
cularization of organoids better.

Currently, the xenograft and VOoC models are two pri-
mary strategies for generating vascularized organoids. The 
xenograft model is presently considered the most physiologi-
cally relevant method for vascularization. In this approach, 
organoids are implanted into experimental animals, such 
as immunodeficiency mice, through the surgical process 
[78–82]. However, this organoid vascularization strategy 
necessitates better integration and cost reduction. Addition-
ally, it is subjected to various factors, including animal-
individual differences and ethical issues. Microfluidic sys-
tems, serving as carriers for VOoC, offer greater control 
than xenograft  models, providing a valuable in vitro plat-
form for studying the interaction between blood vessels and 
organoids [61, 83]. Based on the morphogenic processes of 
microvasculature, the VOoC model is specifically classified 
into vasculogenesis and angiogenesis.

Organoid/spheroid formation

Stem cells (SCs) can differentiate into both organoids and 
various supporting cells necessary for vascular generation by 
exogenous signals regulation (Fig. 3a) [84]. Consequently, 
regardless of whether they are employed in xenograft or 
VOoC models, SCs-differentiated organoids exhibit a rela-
tively high successful rate in terms of vasculation. Among 
various SCs, human-induced pluripotent stem cells are pre-
dominantly utilized and have exhibited remarkable poten-
tial in establishing stable vascularized organoids, including 
those of the brain [78], kidney [79],intestine [81], skeletal 
muscle [85], and other tissues [70, 86].

Additionally, researchers commonly employ tumor cells 
or fibroblasts to establish mono-culture spheroids for study-
ing on-chip vascularization (Fig. 3b) [87]. However, some 
studies have revealed the challenges associated with con-
structing a perfusable vascular network within a spheroid 
consisting solely of a single tumor cell line [88, 89], so 
this kind of spheroid is primarily employed for investigat-
ing tumor migration and invasion in the microvasculature 
[74, 90, 91]. Fibroblasts spheroids can secrete angiogen-
esis growth factors, such as basic fibroblast growth factor, 

thereby inducing the development of a perfusable vascular 
network and providing a convenient platform to observe sub-
stance exchange within spheroids [24, 74].

In contrast to the conventional mono-culture system of 
spheroids, numerous studies have implemented a propor-
tional ratio of ECs, fibroblasts, and other vascular-support-
ing cells to enhance the success rate of vascularization and 
perfusibility. Fibroblasts play a crucial role in promoting 
microvascular sprouting by secreting related growth fac-
tors and providing basic physical cell–cell interactions [5, 
92], while ECs contribute to the pre-formation of vascu-
lar structures within the spheroids (pre-vascularized) [87]. 
Typically, cell suspensions of experimental cells and vas-
cular-supporting cells are combined in specific proportions 
and cultured in a low-adhesion U-shaped well plate. A low 
volume ratio of Matrigel (e.g., 1% v/v) or Methocel® A4M 
and various growth factors are added [14, 74, 88, 93] or 
the cells are cultured in gelled droplets to form spheroids 
[83]. The specific mixing ratio may vary depending on the 
cell lines utilized. Due to the higher aggregation ability of 
fibroblasts compared to other cells, they tend to gather in 
the center of the co-cultured spheroids [89], which hinders 
the diffusion of growth factors produced by fibroblasts. To 
address this, Wan et al. introduced a fibroblast suspension 
into tumor spheroids and observed that fibroblasts adhered 
to the surface of the spheroids, resulting in a more signifi-
cant effect on enhanced vascularization compared to direct 
co-culture [94]. Additionally, a typical tri-culture approach 
involves culturing experiment cells, fibroblasts, and ECs in 
a specific proportion. Nashimoto et al. demonstrated that 
tri-culture spheroids with an MCF7:HLF:HUVEC ratio of 
3:1:1 exhibited the highest success rate in vascularization 
and perfusibility, effectively reducing the necrosis within 
the inner core of spheroids [89].

Modification of chip for seeding organoid/spheroid

For the convenience of seeding organoids/spheroids into the 
chip, researchers typically make modifications to VOoC.

For VOoC based on self-assembly design, there are gen-
erally two modification approaches. The first involves cre-
ating an external seeding port at the central position of the 
chip’s hydrogel channel. The diameter of this seeding port 
typically ranges from 1 to 2 mm (Fig. 3c) [14, 38, 74, 83, 88, 
89]. In theory, the larger the organoid/spheroid to be seeded, 
the larger the seeding port needed. To match the diameter of 
the seeding port, researchers typically trim the tips of 10-μL 
or 200-μL pipettes with a surgical knife. During the seeding 
process, hydrogel and organoid/spheroid should be slowly 
mixed to avoid the formation of additional bubbles. This 
method provides better control over the seeding location of 
organoid/spheroid but carries the risk of increased exposure 
to the external environment and may, to some extent, affect 
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the fluid distribution within the chip. The second approach 
involves increasing the channel height of the chip’s hydrogel 
channel to allow organoid/spheroid to enter the chip through 
the inlet [91, 94–98]. This method ensures the integrity of 
the chip to the greatest extent, and the interstitial flow within 
the chip is not affected. However, the drawback is that the 
distribution of organoid/spheroid is relatively random, mak-
ing it less conducive to subsequent imaging observations. 

Researchers can try to limit the movement of organoid/
spheroid by designing micro pit structures inside the chip 
channels.

For VOoC based on lumen or other designs, it usually has 
a larger space (diameter: ~ 200 μm) and will be relatively 
convenient to seed organoid/spheroid into the lumen or 
directly into the hydrogel, thereby observing the subsequent 
vascularization effects (Fig. 2d–f) [52, 54, 61, 70, 86, 99].

Fig. 3  Vascularization culturing strategies. a SCs can differentiate 
into organoid and vascular formation supporting cells (such as ECs 
and pericytes), significantly improving the success rate of vasculari-

zation. b Three typical spheroid formation strategies for vasculariza-
tion. (c-f) VOoC model based on vasculogenesis and angiogenesis. 
Created with BioRender.com
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Vasculogenesis

Vasculogenesis describes the de novo formation of new 
blood vessels and occurs mainly during the embryonic stage 
and during wound healing in adults [100, 101]. In microflu-
idic chips, vasculogenesis often refers to the process where 
ECs uniformly distributed in the ECM, under external stim-
uli, self-assemble into tube-like networks to form newly gen-
erated vessels [102]. Correspondingly, the vasculogenesis-
based vascularization strategy involves co-culturing mature 
organoids/spheroids directly in hydrogels that contain ECs 
and supporting cell lines, such as fibroblasts and pericytes. 
Depending on the experimental designs, organoids/spheroids 
can be seeded into the chip together with ECs (Fig. 3d) [14, 
90, 91, 94]. Alternatively, ECs can be initially seeded in the 
hydrogel, and the organoids/spheroids are placed on the chip 
once the ECs have self-assembled into a vascular bed. This 
approach allows for observing microvasculature invasion 
into the organoid/spheroid (Fig. 3e) [83]. While the latter 
method necessitates a longer culturing duration, it offers a 
temporal window for independent observation and evalua-
tion of the microvascular network. This enables convenient 
pre- and post-comparison and validation of the effects of 
the organoids/spheroids on the microvascular network [24, 
83, 103].

Angiogenesis

Different from vasculogenesis, angiogenesis characterizes 
the formation of new blood vessels from pre-existing ones, 
encompassing sprouting and intussusceptive angiogenesis. 
In sprouting angiogenesis, new vessels emerge as branches 
from existing ones, whereas intussusceptive angiogenesis 
involves the division of pre-existing blood vessels [104]. In 
the VOoC model based on angiogenesis, ECs are seeded into 
the medium channels on both sides of the hydrogel, allowing 
them to adhere to the hydrogel interface and form a “pre-
existing blood vessel.” Under the stimulation of mechanical 
flow force and growth factors, the pre-existing blood vessels 
on either side grow and sprout, invading the hydrogels to 
establish microvasculature. Once the vascular bed is formed, 
the organoids/spheroids can be placed on the central hydro-
gel channel (Fig. 3f). The microvasculature on both sides 
gradually invades and vascularizes the organoids/spheroids 
under the influence of growth factors and flow stimulation 
[38]. Similar to vasculogenesis, ECs can be seeded into 
the medium channels simultaneously with the seeding of 
organoids/spheroids into the central hydrogel channel. Skip-
ping the step of vascular bed formation can reduce the time 
required for the vascularization of organoids/spheroids sig-
nificantly [88, 89]. Moreover, the specific seeding sequence 
can be adjusted based on different cell lines or experimen-
tal objectives. For instance, when using organoids and ECs 

from SCs, the organoids are first seeded into the chip under 
appropriate differentiation conditions. After organoid dif-
ferentiation is complete, ECs are further seeded [86, 105].

Key factors for VOoC culturing

Regardless of whether the vascularization approach is based 
on vasculogenesis or angiogenesis, the processes of vascular 
growth and vascularization are influenced by several key 
factors, including interstitial flow, growth factors, the ECM 
environment, and supporting cell types.

It has been reported that interstitial flow can not only 
promote vasculogenesis and spheroid vascularization by reg-
ulating matrix metalloproteinase-2 [106] but also increase 
the sprout count and length of angiogenesis by providing 
proper shear stress to ECs, enhancing the success rate of 
anastomosis and perfusability in microvascular networks 
[47]. Generally, interstitial flow can be achieved on the chip 
by setting a hydrostatic pressure difference, and a range of 
2–25  mmH2O pressure difference can typically generate 
interstitial flow rates of 0–10 μm/s within the ECM [102]. 
Researchers can calculate the distribution of interstitial flow 
rates in the chip by combining the channel size and ECM 
properties (e.g., permeability and porosity) of their VOoC, 
constructing hydrostatic pressure differences that conform to 
the physiological flow rate range (1.7–11 μm/s) [24]. Addi-
tionally, as shown in Table 1, 3D rocker and syringe pump 
can also generate controllable interstitial flow in the VOoC.

Vascular endothelial growth factor (VEGF) has played 
a crucial role in promoting vascular growth. It has been 
reported that a concentration of VEGF between 20 and 
100 ng/mL can effectively promote vascular growth on the 
chip [102], with a concentration of 50 ng/mL being com-
monly used [24, 47, 104]. Furthermore, the combined use 
of various growth factors (such as bFGF, S1P, and PMA) 
can enhance the proliferative effect to some extent [34]. As 
shown in Table 1, the mostly used ECM in VOoC is pri-
marily composed of fibrinogen and collagen I, with con-
centrations ranging from 1 to 10 mg/mL. Wan et al. found 
a negative correlation between the density and diameter of 
microvascular network on the chip and the concentration of 
the fibrinogen solution [107].

In addition, Ferrari et al. reported that the stiffness of 
ECM hydrogel controls the size of the patterned vasculature 
and the density of sprouting angiogenesis [104]. Recently, 
some studies have demonstrated the spontaneous formation 
of microvascular networks using synthetically ECM, such as 
soft gelatin methacrylate and a mixture of calcium alginate 
and decellularized ECM [98, 108–110].

Multicellular interactions should be involved in the com-
plex vascular growth process. As mentioned earlier, fibro-
blasts are the commonly used supporting cells in VOoC. 
Fibroblasts can help to prevent early network regression, 
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prolong the lifespan of the vascular network, and enhance 
open lumens formation [92]. Wan et al. reported that as the 
proportion of co-cultured fibroblasts with ECs increased 
in the chip, the diameter and perfusability of the formed 
microvasculature decreased, but the complexity of overall 
network increased [107]. Additionally, depending on the 
specific VOoC being constructed, the corresponding sup-
porting cells may be adjusted. For example, when construct-
ing neurovascular unit (NVU) chip, astrocytes, oligoden-
drocytes, and neuronal cells may be selected as co-cultured 
supporting cells [29, 36].

Optical imaging methods applicable 
to VOoC

To characterize the structural and functional information of 
the vascularization, advanced optical imaging methods are 
needed that span different spatial and temporal scales [111]. 
In the routine culture of VOoC, researchers commonly rely 
on simple inverted fluorescence microscopy (IFM) to assess 
the growth status of the microvasculature. However, for more 
accurate imaging and analysis of 3D settings, other imaging 
techniques, such as CFM/MPM, fMOST, and LSFM, have 
become mainstream choices. The quality and accuracy of the 
acquired image data significantly influence the subsequent 
data analysis.

CFM/MPM

CFM and MPM techniques are favored in practical appli-
cations for their excellent imaging quality and compatibil-
ity with VOoC systems (Fig. 4a). CFM not only allows the 
acquisition of 3D vascular data in VOoC but also enables 
the tracking of fluorescent particles/cells (Fig. 4b-II) and the 
assessment of microvascular structure and function through 
perfusion of FITC-Dextran solutions (Fig. 4b-V) [14, 83]. 
However, traditional CFM has a limited imaging depth of 
approximately 100 µm [112]. In contrast, MPM overcomes 
this limitation by enabling deeper and higher-quality imag-
ing using longer-wavelength excitation lasers, leveraging 
non-linear optical effects, reducing scattering, and mini-
mizing fluorescence excitation outside the region of inter-
est. Two-photon fluorescence microscopy has been widely 
employed for imaging deep layers of organoids, including 
the brain [113], intestine [114], and pancreas [115]. And 
three-photon microscopy has achieved intact imaging of 
label-free and non-transparent tissue in cerebral organoids at 
a depth of approximately 2 mm, providing a valuable option 
for tracking organoid growth [116].

Classic confocal systems, utilizing point scanning and 
photomultiplier tube detectors, are relatively time-con-
suming and can result in photobleaching [117]. Although 

techniques like MPM or spinning disk confocal micros-
copy can enhance imaging depth and speed, there is still a 
demand for further advancements in efficient and accurate 
3D imaging acquisition of entire organoids. To address 
this challenge, a combination of optical sectioning and 
mechanical slicing can be employed for large samples, 
such as sequential two-photon tomography and fMOST.

fMOST

fMOST is a technique that combines fluorescence micros-
copy imaging with a microtome to achieve high-resolution 
full-size 3D imaging. It is widely used for reconstructing 
large-scale samples. The process involves embedding the 
entire sample in resin, followed by fluorescence imaging 
using a laser scanning microscope to provide high sensitiv-
ity. To ensure imaging stability and speed, a non-mechanical 
acousto-optical deflector is employed as the scanner, with 
the scan mode set to rapid frequency swap. Additionally, the 
sample can be immersed in a fluorescent dye solution, facili-
tating real-time staining (Fig. 4c) [118–120]. Ma et al. car-
ried out high-resolution 3D imaging of cerebral organoids 
using fMOST, achieving 3D visualization of GFAP + signal 
and continuous spatial distribution of neurons. The authors 
revealed regional nuclear size and density difference within 
cerebral organoids (Fig. 4d) [11]. While the majority of 
VOoC substrates are presently composed of glass, limiting 
direct application to fMOST, the vascularized organoids 
can be retrieved from the VOoC for subsequent fixing and 
embedding and subjected to fMOST for imaging and analy-
sis. Furthermore, the chip’s substrate can be substituted with 
a flexible material, such as PDMS, to facilitate sectioning 
[121]. In summary, fMOST provides a powerful imaging 
platform that offers a new option for visualizing VOoC in 
future.

LSFM

The LSFM generates a thin light sheet to selectively excite 
samples at a specific plane, while the emitted fluorescence is 
detected orthogonally. This enables 3D imaging with higher 
acquisition efficiency and reduced photobleaching and pho-
totoxicity compared to other imaging techniques [122]. 
LSFM has been extensively used for 3D imaging of various 
real tissues and organs [123–125], cerebral organoids [126, 
127], colon organoids [10], tumor spheroids [128, 129], pan-
creas organoids [130], etc.

In the context of organoids, LSFM and similar imaging 
techniques play a crucial role in characterizing the angio-
genesis and vasculogenesis processes [122]. For example, 
Atlas et al. employed digital scanned light-sheet microscopy 
to observe the formation process of a dense microvascu-
lar network in a collagen hydrogel and quantified relevant 
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generation parameters (Fig. 4f-I) [131]. Sebastian et al. used 
LSFM to visualize a pre-vascularized biological scaffold 
derived from rat intestines with intact arterio-venous capil-
lary loops, allowing analysis of the distribution of typical 
endothelial markers CD31 and vWF factor (Fig. 4f-II) [132]. 
Bissardon et al. utilized LSFM to observe and track the 

angiogenesis process on a microfluidic chip, providing criti-
cal analytical parameters for understanding microvasculature 
formation (Fig. 4f-III) [122]. Steuwe et al. applied LSFM to 
quantitatively measure the subcellular level displacement 
of angiogenic sprouts near the surface (Fig. 4f-IV) [133].
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LSFM systems with conventional orthogonal setups 
require special sample mounting methods to accommodate 
their orthogonal dual-objective configurations. Therefore, 
they are not well suited for imaging samples contained 
within a flat microchip. Additionally, in traditional microflu-
idic chips using materials like PDMS, the RI of PDMS itself 
differs significantly from that of the samples in the hydrogel 
channels, which is unfavorable for light-sheet imaging sys-
tems. To address this issue, Zhu et al. developed an open-top 
optical system and combined it with a novel chip material, 
Bio 133, allowing better imaging results in tumor spheroids 
and enabling high-throughput screening of anti-tumor drugs 
(Fig. 4f-V) [129].

LSFM is a powerful technique for observing the dynamic 
process of microvasculature growth in VOoC with speed and 
accuracy. This capability is crucial for studying and under-
standing the interaction between tissues and blood vessels 
in vitro [134]. Additionally, when combined with optical 
clearing (see section below), LSFM provides an essential 
means to obtain the 3D structure of tissue samples [135].

Tissue optical clearing on the chip

With the advancement of microfluidic and OoC technolo-
gies, tissue on chips increasingly resembles the structures 
and functions of real organs. However, these 3D cultures 
face several imaging challenges, such as adjusting the sam-
ple focal distance, handling tissue refraction variability, and 
addressing reduced light penetration caused by tissue opac-
ity [121].

In general, light attenuation in biological tissue primarily 
arises from the absorption and scattering of light by its inter-
nal components. For instance, heme, abundant in residual 
blood within tissues, exhibits high light absorption within 
the visible light range (400–600 nm) and is a primary con-
tributor to light intensity attenuation in tissues. High scat-
tering is the leading cause of tissue turbidity, mainly caused 
by the difference in the RI between tissue components. On 
a macro scale, most biological tissues consist of water with 
a low RI, along with lipids, proteins, and other substances 
with a high RI. The primary objective of emerging TOC 
technology is to reduce tissue absorption and scattering 
(Fig. 5a) [15]. This can be achieved through dehydration, 
lipid removal, decalcification, decolorization, RI match-
ing, and other approaches while also aiming to preserve the 
fluorescence signal and target protein molecules within the 
tissue to the greatest extent possible [137, 138].

Currently, existing TOC methods, can be categorized into 
ex vivo clearing methods [139] and in vivo clearing meth-
ods [140–142]. However, most of these methods involve 
relatively complex reagent exchange steps, which are labor 
intensive and can easily result in damage or loss of micro-
tissues. Microfluidic systems, on the other hand, possess 
excellent fluid control capabilities, enabling efficient and 
rapid liquid exchange during the clearing process. Therefore, 
microfluidic systems are advantageous for achieving fully 
automatic clearing. However, it is worth noting that micro-
fluidic systems also have certain limitations. For instance, 
the size of the chip limits the number of access ports, mak-
ing it challenging to achieve complex clearing processes. 
Additionally, some reagents used in solvent-based clearing 
methods may have corrosive properties, potentially causing 
damage to the tubes connecting the microfluidic system and 
the chip itself.

With the advancement of organoid and OoC technol-
ogy, obtaining deep tissue information from organoids has 
become a prominent area of research. Ahn et al. improved the 
CUBIC method, allowing for observing vascular marker sig-
nal CD31 at the depth of the HepG2 tumor spheroid (Fig. 5b) 
[14]. Chen et al. integrated spheroid formation, CLARITY 
clearing, and imaging into a spiral-structured chip for quick 
labeling, clearing, and analysis and showed significantly 
enhanced imaging depth for spheroids (Fig. 5c) and suc-
cessful visualization of Langerhans’ vascular structure from 

Fig. 4  Optical imaging methods applicable to VOoC. a Schematic 
representation of CFM for imaging VOoC. b-I Co-culture of HepG2 
organoid and vascular network on-a-chip. Reproduced with permis-
sion [14]. Copyright 2022, Elsevier. b-II Tumor cells are arrested in 
two microvasculatures in VOoC. Reproduced under CC-BY-NC-ND 
license [107]. Copyright 2022, The Authors, published by Wiley–
VCH GmbH. b-III Vascularized kidney organoids on-a-chip. Repro-
duced under exclusive license to Springer Nature America, Inc [136]. 
Copyright 2019, The Authors, published by Springer Nature. b-IV 
Immunofluorescence staining for CD31 of VOoC. Reproduced under 
exclusive license to Springer Nature America, Inc. [33]. Copyright 
2022, The Authors, published by Springer Nature. b-V Perfusion 
testing with 70-kDa FITC-Dextran solution in VOoC. Reproduced 
with permission [24]. Copyright 2022, Royal Society of Chemistry. 
c Schematic representation of fMOST applied to cerebral organoids. 
d Z-projection of cerebral organoids showing GFAP + cells (d-I) 
and PI-labeled cytoarchitecture (d-II). Reproduced under terms of 
the CC-BY license [11]. Copyright 2022, The Authors, published 
by MDPI, Basel, Switzerland. e Schematic representation of open-
top LSFM applied to VOoC. f-I Microvasculature images captured 
by LSFM and its 3D reconstruction. Reproduced with permis-
sion [131]. Copyright 2020, Elsevier. f-II 3D digital reconstruction 
of immunofluorescence on CLARITY-processed bioprinted tissue 
stained for CD31. Reproduced under terms of the CC-BY-NC-ND 
license [128]. Copyright 2018, The Authors, published by Elsevier. 
f-III Tracing the process of microvascular sprouting. Reproduced 
under the terms of the Optica Open Access Publishing Agreement 
[122]. Copyright 2022, The Authors, published by Optica Publishing 
Group. f-IV Quantifying the absolute displacement near the surface 
of the vascular sprout. Reproduced under terms of the CC-BY license 
[133]. The Authors, published by Public Library of Science. f-V 3D 
reconstruction of tumor spheroid. Reproduced under the terms of the 
Optica Open Access Publishing Agreement [129]. Copyright 2023, 
The Authors, published by Optica Publishing Group. Created with 
BioRender.com

◂
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islets [8]. Santisteban et al. developed a microfluidic large-
scale integration (mLSI) chip platform for high-throughput, 
integrated CLARITY clearing (Fig. 5d). The extraction time 
for lipids from adipose-derived stem cell (hASC) spheroids 
was reduced by utilizing pH change osmotic pumping [13]. 
Briana et al. optimized the Scale clearing method in com-
bination with vibratome sectioning to visualize thick neural 
layers in the spinal cord chips [121]. Grist et al. utilized 
SeeDB,  ClearT2, and ScaleSQ with microfluidic chips for 
high-throughput and fast optical clearing of breast cancer 
spheroids [9]. Zhang et al. employed a simplified CLAR-
ITY for passive tissue clearing and lens-free microscopy for 
low-cost and efficient imaging [12]. Oh et al. developed a 
transfer-free 3D micro-tumor culture and visualization sys-
tem, effectively improving imaging depth and facilitating 
high-content tumor phenotypic analysis [143]. Further, Yu 
et al. proposed an on-chip clearing method for imaging live 
3D cell cultures, offering a new strategy for dynamically 
monitoring deep tissue in VOoC [144].

Vascular analysis methods of VOoC

Classic analysis tools

Vascular analysis of VOoC involves quantifying key param-
eters, such as vascular area, number of branches, and diam-
eter; moreover, it involves tracking the movement trajectory 
of fluorescent particles to assess vascular perfusibility and 
connectivity. The standard pipeline for investigating micro-
vascular networks comprises image preprocessing, image 
binarization, skeletonization of the vascular network, and 
analysis of characteristic parameters (Fig. 6a). The vascu-
lar data in VOoC often deviate significantly from real ves-
sels in terms of morphology and structure. Researchers 
often employ analysis tools with intuitive user interfaces 
and real-time feedback on results, such as Fiji, Imaris, and 
AngioTool, which are widely used for biological image 
analysis. These tools allow researchers to adjust parameters 
based on the results to ensure analysis reliability. Moreover, 

Fig. 5  TOC on the chip. a TOC on the chip greatly improves the 
imaging depth and quality of vascularized organoids by reducing 
scattering through refractive index matching. b Schematic diagram 
of the XY- and Z-views of vascularized HepG2 spheroids before and 
after clearing. Reproduced with permission [14]. Copyright 2022, 
Elsevier. c Schematic of on-chip clearing, as well as the tumor sphe-

roids before and after clearing. Reproduced with permission [8]. 
Copyright 2016, National Academy of Science. d The TOC process 
utilizes mLSI chips and depicts the cleared hACS spheroids in bright-
field imaging. Reproduced with permission [13]. Copyright 2017, 
Royal Society of Chemistry
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some researchers develop analysis algorithms specifically 
designed for the characteristics of developing VOoC models, 
thereby improving the efficiency and accuracy of the analy-
sis for microvasculature. In the following, we present several 
examples showcasing the application of these classical tools 
for the analysis of VOoC.

ImageJ/Fiji

Fiji, a distribution of the open-source software ImageJ spe-
cifically designed for biological image analysis, offers rapid 
algorithm design and application through its powerful soft-
ware library and a broad range of scripting languages [145]. 
The software’s robust image processing capabilities and 
plug-in libraries make it convenient for analyzing microvas-
cular networks formed on the chip. For instance, Winkelman 
et al. utilized ImageJ to project the maximum value of confo-
cal imaging data, binarize the result to analyze the vascular 
area, and skeletonize the binary image to assess parameters, 
such as the number of branches, branch length, and diameter. 
This analysis demonstrated the promotion of angiogenesis 
under flow stimulation (Fig. 6b) [47]. However, the tradi-
tional binarization method used after maximum projection 
can introduce errors along the Z-axis. To address this, Lee 
et al. manually divided the image data into upper and lower 
parts before projection and transformed it into 2D binary 
mask images to measure vascular morphology (diameter, 
area, branch) and evaluate differences in vascular growth in 
diverse culture environments [146]. Additionally, Fiji plug-
ins such as Analyze Particles, Analyze Skeleton (2D/3D), 
and Automated Sprout Analysis significantly enhance the 
accuracy and efficiency of vascular analysis [147, 148].

Imaris

Imaris is a powerful software tool designed for the 3D 
reconstruction and analysis of biomedical images. It pro-
vides a convenient image preprocessing tool for vascular 
analysis in scientific research, including deconvolution, 
signal enhancement, denoising, and more. It also enables 
the reconstruction of the 3D structure of blood vessels 
(Fig. 6c-I, II) to analyze spatial relationships between ves-
sels and can be used for the analysis of volume changes in 
vessels or organoids. With the powerful 3D reconstruc-
tion capability, Imaris facilitates intuitive visualization of 
fluorescent particles within microvascular lumen based 
on the z-stack images (Fig. 6c-III) [149–151]. Ahn et al. 
used Imaris software to 3D render and visualize the vas-
cularized tumor spheroid structures. The ‘surface’ tool in 
Imaris was used to reconstruct the blood vessels and the 
spheroids, while the ‘spot’ tool was employed to recon-
struct the flow path of fluorescent beads (Fig. 6c-IV) 
[14].

AngioTool

AngioTool is a lightweight and user-friendly software devel-
oped by Zutaire et al. It is specifically designed to quan-
titatively analyze vascular networks with repeatability and 
ease. The software employs a series of algorithms to pro-
cess the input image. First, the image is convolved with the 
fast recursive Gaussian kernel and tube-like structures to 
segment the blood vessel. Then, based on a combination 
of the eigenvalues of the 2D Hessian matrix, the software 
computes the vascular structures. AngioTool automatically 
calculates and outputs various parameters, such as vascular 
area, length, and density, according to user-defined vascu-
lar diameter. It also provides desktop applications, is par-
ticularly suitable for entry-level researchers as it displays 
real-time segmentation and recognition results on the image, 
allowing users to adjust parameters easily (Fig. 6d) [152]. 
This software has demonstrated impressive performance in 
the quantitative analysis of VOoC, including colon orga-
noids [70], co-cultured embryoid bodies—tumor spheroids 
organoids [153], and NVU organoids [86].

Other methods

Unlike the analysis of microvascular networks, the angio-
genesis process is highly dynamic and relatively complex, 
requiring high-performance algorithms. Common process-
ing steps include image stitching, registration, vascular seg-
mentation, vascular skeletonization, and branch tracking. 
The Bayesian filtering framework is particularly useful in 
determining the correlation between ECs in the sprouting 
process and treating the tip/stalk cell, lumen, and filopodia 
as separate parts to predict sprout motion (Fig. 6e) [154]. 
Some algorithms combine convolutional neural network 
(CNN) and support vector machine (SVM) to improve vessel 
segmentation and skeletonization [155, 156]. To enhance the 
algorithm’s robustness, some research groups have explored 
using the total cell cytosolic integral and the total nuclear 
integral invading the gel region above the monolayer to 
quantify the sprouting activity and directed migration. This 
approach has shown low sensitivity to signal noise, outliers, 
and diverse shapes and sizes of sprouts [27]. Furthermore, 
utilizing differential equations or mathematical models to 
simulate the process of angiogenesis regulated by tumor or 
growth factors can help strengthen experimental parameter 
control and provide new insights into the angiogenesis pro-
cess [157, 158].

In summary, classical vascular analysis methods pre-
dominantly utilize software or traditional image processing 
and analysis algorithms, sometimes in combination. Manual 
debugging and proofreading can yield relatively accurate 
results but are limited in achieving fully automatic analy-
sis. Although there have been efforts to incorporate deep 
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learning into vascular analysis, the current focus has primar-
ily been on tasks such as image segmentation and parameter 
classification. Therefore, a more effective combination of 
deep learning and VOoC analysis methods will likely be the 
future development trend of this field.

Deep learning‑assisted vascular analysis

With the increasing popularity and development of deep 
learning, powerful toolkits such as TensorFlow and PyTorch 
have emerged. Furthermore, in recent years, MATLAB has 

Fig. 6  Classic vascular analysis methods of VOoC. a Classic vascu-
lar network analysis pipeline. b Fiji (ImageJ) software was employed 
to investigate vasculature growth and demonstrate the improved con-
nectivity of microvascular networks cultured under flow stimulation. 
Reproduced with permission [47]. Copyright 2021, Royal Society 
of Chemistry. c Imaris was utilized for 3D reconstruction of blood 
vessels ((c-I) Reproduced with permission [151]. Copyright 2021, 
American Chemical Society and (c-II) Reproduced under the CC-BY 
license [149]. Copyright 2022, The Authors, published by Elsevier), 
as well as particle tracking of microbeads or fluorescent particles ((c-
III) Reproduced with permission [150]. Copyright 2014, Society for 

Laboratory Automation and Screening, and (c-IV) Reproduced with 
permission [14]. Copyright 2022, Elsevier). d Schematic representa-
tion of AngioTool analysis, wherein the yellow line denotes the out-
line of the blood vessel, the red line indicates the centerline of the 
blood vessel, and the blue point represents the branch point of the 
blood vessel. Reproduced under the Creative Commons CC0 public 
domain dedication [152]. Copyright 2011, The Authors, published by 
Public Library of Science. e Schematic representation of angiogenic 
sprout tracking on the chip, using disk fitting (j disks) to model the 
angiogenic process with the disk radius representing the blood vessel 
radius. Reproduced with permission [154]. Copyright 2013, Elsevier
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provided a comprehensive deep learning network toolbox, 
which has alleviated the environmental set-up difficulties 
and simplified the usage of deep learning. In general, the 
application of a deep learning network involves the follow-
ing key steps: (1) data acquisition, (2) data preprocessing, 
(3) design requirements, (4) network selection and training 
model, (5) model evaluation, (6) hyperparameter optimiza-
tion, and (7) model deploying (Fig. 7). In different scenarios, 
each step may require adjustment. Notably, the data acqui-
sition phase often requires considerable time and effort. In 
deep learning tasks, careful attention must be given to data 
processing, network model selection, and training. During 
hyperparameter optimization, the choice of an appropri-
ate loss function and adjusting other influential hyperpa-
rameters, such as learning rate and batch size, can notably 
enhance the performance of the model [17, 21].

Currently, many studies have successfully integrated deep 
learning with vascular analysis [159], particularly focus-
ing on the vasculature of real organs [160–162]. Diverse 
approaches were developed, including VesSAP, DeepVess, 
and TubeMAP, for segmenting and quantifying brain blood 
vessels in different disease models [125, 163, 164]; Singa-
pore I vessel assessment system for measuring the diam-
eter of human retinal blood vessels [161]; and topology 
and width aware generative adversarial network for retinal 
artery/vein classification [165]. Moreover, deep learning net-
works were used to differentiate vessel invasion and non-
invasion in various cancers and identify tumor angiogenesis 
[166–168].

Deep learning relies on a substantial amount of data to 
achieve optimal performance, and OoC technology rep-
resents a cost-effective and high-throughput approach to 
generating the necessary training samples for deep learning 
networks. This combination between deep learning and OoC 
enables automated and intelligent data analysis [21, 169, 
170]. The requisite data volume for deep learning on OoC 
varies based on the specific task and the type of network 
employed. Common image processing tasks and CNNs typi-
cally utilize datasets ranging from hundreds to thousands 
of images [171–174]. In the case of OoC generated from 
precious samples, where obtaining large datasets may be 
challenging, subsequent enhancements in network perfor-
mance can be achieved through data augmentation meth-
ods (e.g., flipping, rotation, scaling, and noise injection). 
In recent years, there have been notable advancements in 
the field of integrating deep learning with OoC [175], with 
a primary focus on applications, such as recognition, clas-
sification [176, 177], target tracking [173, 178], aid imaging 
[179, 180], drug analysis, and disease diagnosis [172, 181].

Recently, deep learning techniques have been used in 
the vascular analysis of VOoC. For instance, Urban et al. 
developed a deep learning model capable of effectively clas-
sifying image data before and after drug treatment on the 

chip, enabling the screening of compounds that can disrupt 
the vascular network [171]. Irisa et al. developed a deep 
learning-based visual methodology in conjunction with a 
vasculature-on-a-chip model to recognize and classify devel-
opmental phases of vascular networks [182]. Tronolone et al. 
employed a random forest model to predict the linear rela-
tionship between oxygen transport and microvascular net-
work characteristic parameters in VOoC [183]. For tracking 
angiogenesis, Wang et al. developed an automated tracking 
system for blood vessels that can extract quantitative infor-
mation about the blood vessels and track their formation. 
They utilized machine learning techniques to enhance the 
effectiveness of blood vessel skeletonization, making the 
system achieved a high precision of 97.3% and a recall of 
93.9% compared to the ground truth [156]. Subsequently, 
Wang et al. further optimized the efficiency of EC tracking 
using CNN and combined it with a Kalman filter to rapidly 
track and accurately analyze the expansion and migration of 
ECs during angiogenesis [155].

In summary, deep learning has emerged as a valuable 
tool in vascular analysis across various fields. However, 
its application specifically in the context of VOoC is still 
limited. Influenced by various factors, including cell types, 
seeding density, and hydrogel strength, microvascular data 
on VOoC tends to exhibit relative instability. Moreover, the 
throughput of current VOoC microphysiological models is 
relatively low, making it challenging to acquire a large vol-
ume of data suitable for training purposes. Establishing a 
versatile deep learning dataset and analysis network appli-
cable to diverse situations poses a challenge. To tackle this 
issue, a potential solution involves designing a deep learn-
ing tool for VOoC analysis that accommodates both train-
ing and analysis, which should allow users to integrate new 
data during usage, facilitating the update of analysis network 
weights. This approach may enhance the tool’s adaptability 
to diverse VOoC data, thereby improving the robustness of 
the network. As VOoC continues to advance, there is sig-
nificant potential for leveraging deep learning techniques 
to detect the growth status of microvasculature, diagnose 
diseases and test drugs (Fig. 7). By combining deep learn-
ing with VOoC, researchers can unlock new opportunities 
for automated analysis, improved disease understanding, 
and more effective drug development. Further exploration 
and development of deep learning methods in the context 
of VOoC hold promise for advancing our understanding of 
vascular biology and enhancing healthcare outcomes.

Discussion and future perspectives

In this review, we provide an overview of various chip 
designs, vascularization culturing strategies, and imag-
ing methods utilized in VOoC, as well as classic and deep 
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learning-based vascular analysis methods. The essential 
information is summarized in Table 1.

The complex vascular environment in vivo is character-
ized by intricate cell–cell and cell–matrix signaling net-
works, coupled with diverse flow status (e.g., flow rate, flow 
direction, and shear stress), and it varies across different 
organs and vascular structures [184]. For instance, the vas-
cular walls in the arterial system are thicker, enabling them 
to withstand higher blood pressure and maintain a relatively 
unidirectional flow, while the distal capillaries typically 
exhibit slow and multidirectional blood flow, facilitating effi-
cient substance exchange; whereas lymphatic vessels incor-
porate blind-ended structures that permit only one-way flow, 
optimizing waste removal and supporting immune functions 
[185]. However, the reported VOoC encounters some limita-
tions in mimicking human physiological conditions and the 
environment, for example, the hydrogel channel height of 
reported VOoC is typically 100–200 μm, the flow pattern 
is generally simple, and the types of cells used for vascu-
larization are also limited. Therefore, constructing a more 
realistic vascular network remains challenging, requiring 
targeted adjustments to the biochemical and mechanical 
environment based on the types of vascularized organoids. 
Common approaches involve regulating concentrations and 

types of growth factors, establishing appropriate flow status, 
or selecting co-cultured cell types [186]. Additionally, some 
researchers are addressing this challenge from the perspec-
tive of microvascular structure, aiming to build microvas-
cular networks with complex hierarchical structures and 
lymphatic vessels featuring blind-ended structures [97, 187].

Furthermore, the increased thickness of tissues poses 
challenges in terms of imaging time and information acqui-
sition in deep tissue. LSFM and TOC techniques have pro-
vided valuable assistants in imaging thick tissues. However, 
LSFM’s performance can be influenced by the chip’s struc-
ture and the on-chip TOC is primarily applicable to fixed 
samples, limiting their applications in real-time dynamic 
observation of microvascular networks. Therefore, optimiz-
ing the design of VOoC to enhance compatibility with imag-
ing systems and realizing TOC for imaging living organoids 
are directions that warrant further exploration.

In terms of data processing, classic methods that rely on 
much manual work are predominantly employed for VOoC 
analysis currently. Consequently, the integration of deep 
learning is expected to improve vascular analysis efficiency 
and accuracy in VOoC significantly. Continued advances in 
VOoC technology and deep learning analysis methods will 

Fig. 7  The pipeline of deep learning for analysis of VOoC. Created with BioRender.com
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contribute to a better understanding of microvasculature and 
its role in human health and disease.

The human body is a complex and dynamic system that 
relies on the coordinated interactions of multiple cells and 
tissues. Therefore, it is of great importance to explore suit-
able cell interactions and develop a multi-cell co-culture 
OoC system for drug development and disease diagnosis. 
The incorporation of a vascular network into a microphysi-
ological system on chips to build VOoC can further enhance 
the authenticity of OoC platforms. However, the structure of 
the VOoC system is relatively simple due to limitations in 
micro/nanofabrication technology and cell culture, typically 
with a standard thickness of 100–200 μm. While a simple 
monolayer vascular network can be constructed within this 
thickness, constructing a thicker and more complex vascular 
layer that closely resembles human physiology is a crucial 
object in this direction [83]. However, realizing an ideal 
thick vascular network presents challenges in imaging and 
data analysis. Researchers should consider how to strike a 
balance between these aspects, which is a topic worthy of 
careful consideration.

In conclusion, it is crucial to establish a comprehensive 
and efficient pipeline encompassing VOoC fabrication, cul-
turing, clearing, imaging, and analysis methods to study 
microvasculature growth and enable quantitative analysis 
of related diseases.
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